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;:¢ stress and the turbulence energy production are associated primarily with the
:;3 large scale eddies, while most of the turbulence energy is dissipated by small
) scale eddies near the high frequency end of the turbulence energy spectrum.

A n Therefore, except for flows close to equilibrium, separate turbulence length
54 scales are required to characterize the large and small scale motions.
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’xj: Both a one-dimensional and a two-dimensional turbulence model were developed -
- around this concept. The addition of a second length scale is equivalent to

adding an elliptic term to the model, and an elliptic procedure was developed
in a relaxation scheme for solving the set of equations. Many of the flows
for which the new model is needed are already elliptic, because of reverse
flows or elliptic pressure effects, and use of an elliptic turbulence model
will not add to the cost of calculating these flows. It is felt that the
importance of elliptic effects has probably been underestimated in most previous
turbulence model studies.

From the results obtained, the overall behavior of the two-length scale model
appears very encouraging. Results shown provide interesting insights into the
behavior of the mixing Tayer over the initial development region. While a
considerable effort was made to obtain an optimum set of model constants, the
major effort was concentrated on a study of the initial development region of

a mixing layer and successfully demonstrating that the addition ofa second
length scale equation extends the range of application of current turbulence
models. A number of issues that require more detailed study remain, including
an extensive evaluation and refinement of the model constants for a wider range
of flows.

Modeling problems tend to be interrelated in the sense that a modification

that leads to an improvement for one flow may yield worse predictions for
another flow. Currently different constants are necessary for predictions of
planar and axisymmetric jets. This problem needs resolution to obtain an
understanding of the physical reasons for planar vs axisymmetric modeling
differences. A balanced judgement can then be formed on how best to proceed in
: the development of an improved turbulence model for complex three-dimensional
e flows.
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7 1.0 SUMMARY AND INTRODUCTION

&

{NJ 1.1 SUMMAR Y

O\

.33 - Development of a new two-length scale turbulence model is described. This
- work was undertaken because the performance of current models for certain

el flows appears to be limited by an inadequate treatment of the turbulence

TKE length scale. One flow for which current turbulence models are not adequate

jif is the initial developing region of a plane mixing layer, Available mixing
’ layer data is briefly reviewed. An improved ability to analyze this flow is

‘3\ required for improved prediction of the near field of a jet for a wide range

’:EI of applications including those for STOL aircraft applications. The work was

gﬂz performed in the context of developing an improved turbulence model for

o general application to complex three-dimensional jets.

o

?ti The new model is based on the physical observation that the turbulence shear

;j;j stress and the turbulence energy production are associated primarily with the

‘::' large scale eddies, while most of the turbulence energy is dissipated by small

.j& scale eddies near the high frequency end of the turbulence energy spectrum.

ljz Therefore, except for flows close to equilibrium, separate turbulence length

TE; scales are required to characterize the large and small scale motions.

%:% Both a one-dimensional and a two-dimensional turbulence model were developed

EI3 around this concept. The addition of a second length scale is equivalent to

jE; adding an elliptic term to the model, and an elliptic procedure was developed

o in a relaxation scheme for solving the set of equations. Many of the flows

e for which the new model is needed are already elliptic, because of reverse
flows or elliptic pressure effects, and use of an elliptic turbulence model
will not add to the cost of calculating these flows. It is felt that the
importance of elliptic effects has probably been underestimated in most
previous turbulence model studies.
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From the results obtained, the overall behavior of the two-length scale model
appears very encouraging. Results shown provide interesting insights into the
behavior of the mixing layer over the initial development region. While a
considerable effort was made to obtain an optimum set of model constants, the
major effort was concentrated on a study of the initial development region of
a mixing layer and successfully demonstrating that the addition of a second
lTength scale equation extends the range of application of current turbulence
models. A number of issues that require more detailed study remain, including
an extensive evaluation and refinement of the model constants for a wider
range of flows.

Modeling problems tend to be interrelated in the sense that a modification
that leads to an improvement for one flow may yield worse predictions for
another flow. Currently different constants are necessary for predictions of
planar and axisymmetric jets. This problem needs resolution to obtain an
understanding of the physical reasons for planar vs axisymmetric modeling
differences. A balanced judgement can then be formed on how best to proceed
in the development of an improved turbulence model for complex
three-dimensional flows.

1.2 GENERAL DISCUSSION

It is now generally accepted(l) that the Navier-Stokes equations are the
appropriate equations for the description of turbulent flow. In this sense,
the physics of turbulence is completely understood. If there existed a fast
and economical method for solving these equations, interest in turbulent
research as a scientific discipline would quickly disappear. The great
difficulty in solving the Navier-Stokes equations for most flows of interest,
however, has all but eliminated any near term prospect of using these
equations directly for the solution of practical problems.
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The problem that we are faced with then jis in finding a simpler set of
equations that provide an approximation for the behavior of real flows and
that are simple enough to be tractable using present computers. There is, of
course, no guarantee that any such set of equations exist. Nevertheless there
have been major advances in our ability to calculate the behavior of viscous
flows over the last ten or fifteen years and there is no obvious reason why
this rrogress should not continue. The extent of this progress is well
illustrated by a comparison of the results of the 1968 Stanford meeting with
the results obtained at the recent 1980-81 Stanford meeting.

In spite of the success of current models in calculating the behavior of
complex turbulent flows, their performance for certain flows appears to be
limited by an inadequate treatment of the turbulence length scale, All
current turbulence models -- or at least all those that have been developed
enough to be useful for practical calculations -- use a single turbulence
Tength scale. This implies a universal turbulence energy spectrum shape and
is probably not physically reasonable for even a limited range of flows.

One flow for which current turbulence models are not adequate is the jnitial
developing region of a plane mixing layer. This flow can be regarded as an
idealization of the near field of an axisymmetric jet. Since a free mixing
layer entrains mass, it acts as a sink and thus influences the local external
flow. The magnitude of these effects depends on the initial conditions and
the geometry of the flow, but can, under certain circumstances, be quite
important. For example, many STOL aircraft in design or development use the
strong coupling between the jet engine exhaust and the inviscid outer flow to
achieve enhanced landing and take-off performance, or to improve maneuvering
capability.(2’3) This coupling changes the circulation on the wing and,
hence, the aerodynamic characteristics of the aircraft. Since adequate

methads for predicting these strongly coupled jet/aerodynamic surface
interactions do not exist at present, design of these aircraft is achieved
through expensive parametric wind tunnel testing. In addition, many of these
tests must be run at full scale because of the problems associated with
attempts to scale-up model scale test data. The understanding and prediction
of the near field mixing region is thus of very practical as well as
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scientific interest. The work described in this report is a study of a new
two length scale turbulence model with primary emphasis on the developing
region of a plane mixing layer. The plane mixing layer was selected for
detailed study, in part because it is a relatively simple, well documented
flow for which current single length scale models are clearly inadequate; but
primarily because an improved ability to analyze this flow is required for
improved prediction of the near field of a jet for a wide range of
applications including those for STOL aircraft.

The work described in this report is an attempt to improve the prediction of
the relaxation region of a mixing layer by the addition of a second turbulence
length scale. This work was performed in the context of developing an
improved turbulence model for general application to complex three-dimensional
jets. Before discussing work on the new model the available mixing layer data
is briefly reviewed.
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2 2.0 MIXING LAYER

‘\:

o~

lit 2.1 FULLY DEVELOPED REGION

=

Eﬁ ~ The radius of an axisymmetric jet is generally large enough compared with the
- width of the mixing layer so that lateral curvature effects can be ignored for

Ln; - a distance of about two diameters downstream of the nozzle exit. The mixing

;%f layer in the near field of an axisymmetric jet is often idealized as a planar

layer between two semi-infinite streams. In practice, there is 1little
difference between the development of at least the mean velocity profiles of
- the two flows until near the end of the potential region. Therefore, in the

)
ﬁ:ﬁ present review both flows will be discussed together.

- It is convenient to divide the mixing layer into an initial developing region
;; and a fully developed region (Figure 1), The developing region is a
3: transition region between an initial wall boundary layer flow and the fully
= developed flow farther downstream. At lower Reynolds numbers, when the wall
{ 5 boundary 1layer is laminar, the developing region will also involve a
s transition from laminar to turbulent flow. The flow in the fully developed
1{ region is self-similar and spreads linearly with downstream distance.

A

:7; Although the mixing layer is geometrically simple, it has caused considerable
RS problems experimentally. So much so, in fact, that until recently the
QQ' variation in the reported data was such that there was no general agreement
. that a unique asymptotic flow, independent of initial conditions, existed.

‘:i: Scme of this experimental scatter can be attributed to experimental error or

y to confusion arising from the use of different definitions for the width of
3t the mixing layer; but the major problem was an underestimate of the
fi; persistence of the effects of initial conditions and the experimental
difficulty of achieving a fully developed flow, particularly for a mixing
Tayer developing from a turbulent wall boundary 1ayer.

Y Bradshaw(4) studied the influence of initial conditions earlier and
particularly noted that tripping the initial wall boundary layer would extend
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the Tength of the developing region; but the importance of these results was
not fully appreciated until much later. The nature of the problem is probably
best illustrated by a plot of the reported spreading rate of nominally fully
developed mixing layers as a function of a Reynolds number based on downstream
distance. This is shown in Figure 2. The tabulated data are given in Table
1., The definition of the width of the mixing layer is the distance between
the point at which the velocity squared is 0.1 and 0.9 times the freestream
value,

Note that although the plotted spreading rates differ by more than 50%, there
is little evidence of genuine data scatter. The flows developing from laminar
wall boundary layers appear to reach a constant spreading rate for values of
Rex greater than about 7x10§ -- the value originally suggested by
Bradshaw. The effect of tripping the boundary layer is also well illustrated
in this plot. When the wall boundary layer is turbulent at the separation
point, the mixing layer does not appear .to become fully developed until a
value of Rex of greater than 2x106.

For most of these experimental studies, the initial conditions are not
sufficiently well documented to make a direct comparison of the various data
sets very meaningful. There are, however, four sets of data (references 5,
19,37) for which the initial conditions are well documented. All four flows
develop from fully developed, turbulent, wall boundary layers. These data
sets, normalized by the momentum thicknesses of the boundary layers at their
separation points, are shown in Figure 3. The solid line is an estimate of
the asymptotic mixing rate slope. The lack of scatter in this data is even
more surprising when one realizes that two of the flows are axisymmetric and
two are planar. These flows do not become fully developed for a distance of
at least 15000, where O is the momentum thickness of the boundary layer
at its separation point.

Apart altogether from the fact that most jets encountered in practical
applications develop from turbuient wall boundary layers, jets developing from
laminar wall boundary layers are not, in general, suitable for evaluating
numerical calculations. The problem is that the thin laminar shear layer just
downstream of the separation point is very sensitive to external disturbances,
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p INCOMPRESSIBLE SINGLE STREAM MIXING LAYERS
N
s ::f,
;:}_f INVESTIGATOR INITIAL CONOTIONS  Re, X 10°¢ % REFERENCE
- - TOLLMIEN ? 2.3 .11 13
> CORDES 1 0.6 a3 14
N REICHARDT ? 2.8 .098 15
T LIEPMANN & LAUFER LAMINAR 1.1 113 16
el MAYDEW L REED TURBULENT .6 19 17, 18
5.6 118
* 6.3 .10
. BRAOSHAN LAMINAR 0.7 118 ‘
e GARTSHORE TURBULENT 1.4 12 19
"":3 ILIZAROVA TURBULENT ? 110 20
MILLS ? 0.175 119 21
? 0.26 124
A SUNYACH & MATHIEU LAMINAR (1) .16 .128 22
20 WYGNANSK] & FIEOLER TURBULENT 0.47 .48 23
b PATEL TURBULENT( ?) 1.8 18 4
3.\ SPENCER LAMINAR 2.6 113 2s, 26
o BATT, KUBOTA & LAUFER LAMINAR 0.66 119 [
TURBULENT . .148
3o dh JOHNSON LAMINAR 6.1 .18 28
AR CASTRO LAMINAR 1.1 118 29, 30
o FIEDLER LAMINAR 0.4 a2 3
- CHAPAGHE,, PAD L
- WYGHANSK] TURBULENT (2) 0.4 138 32
BIRCH TURBULENT 0 119 3
. “ 2.0 119
- " 4.0 124
- OSTER, WYGHANSKI § LAMINAR 1.1 120 H
e FIEDLER TURBULENT 1.1 145
o HUSSAIN & 2EDAN NOMINALLY 0.3 107 35, 36
- LAMINAR 0.25 .109
' 0.27 .109
.. 0.19 .110
T 0.25 115
._:'_.; 0.40 118
< -
NN WUSSAIN & 2EDAN TURBULENT 0.18 126
0.25 132
> 0.40 .136
- 0.3t .128
A 0.40 128
- HUSSAIN & ZEDAN ALY LAMINAR,  0.39 .108
T LBME 0.29 .108
. i 'S HIGHLY 0.20 .109
v. 3T - 0.26 -119
. 0.132 121
N 0.21 132
: 0.17 .13
.. 0.15 136
.. HUSAIN & HUSSAIN LAMINAR 0.97 118 »
o. TURBULENT - 132
TABLL 1. INCIMPRESSIBLE SINGLE STREAM MIXING LAYERS
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including freestream turbulence, noise and mechanical vibrations. Sirce it is
difficult to completely document or control these sources of disturbances, the
experimental data for such experimental studies tend to be apparatus
dependent. For a detailed discussion of some of these problems see references
6 and 7.

2.2 DEVELOPING REGION

A plot of the local spreading rate, obtained by directly differentiating the
data in Figure 3 is shown in Figure 4. Again note the surprisingly small
scatter in the data. The first point to be made about the developing region
is its length. For a fully turbulent initial wall boundary layer, a single
stream mixing layer does not appear to reach its asymptotic state for a
distance of about 1500 O downstream of the separation point. For more
strongly perturbed flows, this distance can be considerably longer. The
initial spreading rate for this flow is approximately half its fully developed
value. The spreading rate increases steadily with downstream distance,
overshoots its fully developed value, and at 700 O is about 20% larger than
its asymptotic value. From then on, it slowly relaxes back to equilibrium,
The maximum local spreading rate is, incidentally, almost exactly what one
would infer from the data of Figure 2.

The second point of interest is the tendency of the turbulence to overshoot
during the relaxation process, although the precise behavior will, of course,
depend on details of the flow. For example, for a two stream mixing
layer(a) with a velocity ratio of 0.3, the turbulence overshoots when the
initial boundary layer is laminar; but for a turbulent initial boundary layer
it appears to approach its asymptotic state monotonically. MWith strong
excitation over the initial region, the shear stress will undershoot during the
relaxation process. If the excitation is strong enough, the shear stress may
collapse completely, leading to a region of almost no growth.(g) The
important point is that the mixing layer behaves like an underdamped second
order system and it can only be meaningfully discussed from this point of
view. A discussion, for example, of whether a given perturbation increased or
decreased the mixing rate is therefore not very useful. The fully developed

11
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: flow will always remain unchanged, while the flow in the relaxation region
will generally contain regions that have spreading rates that are both higher
,- and lower than the fully developed value, irrespective of the perturbation.

»

-t, An interesting consequence of this behavior is that, although there may be
S:I‘ : large variations in the local spreading rate, the spreading rate averaged over
S the whole region is often close to the fully developed value. For example,
L Foss(s) studied the development of a planar mixing layer developing from
‘\;ﬁ both laminar and fully developed turbulent wall boundary layers in the same
: experimental apparatus. The results showed that although the local spreading
- rate was different over the whole region, depending on whether the flow was
:.: initially laminar or turbulent, the total width of the layer at the last
E station was almost the same for both flows. Similar results for an
k‘; axisymmetric mixing layer are reported by Hussain.(37)
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3.0 MULTI LENGTH SCALE MODELS

3.1 THEORETICAL BASIS

The theoretical basis of the approach used here for the development of the new
two length scale turbulence model is described in detail in references 10-12.
In brief, it is based on the idea that turbulent flow tends toward a dynamic
equilibrium characterized by a critical Reynolds number,

UL
v (1)

where U and L are characteristic velocity and length scales for the mean flow
and vT? is the equilibrium effective turbulent viscosity.

If the equilibrium viscosity is written as vT*, then it seems reasonable
to expect that the local eddy viscosity can be written in terms of a series
expansion about this value. In one dimension this is simply

dv; d?,
R BASE ol Sow SR AEIL (2)
The simplest approximation, assuming that Vi o= vT*, is equivalent to

the use of a local equilibrium model. The next simplest approximation is

vt =V e Fp L (3)

or

F —__=\)T*-\) (4)
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I[f one assumes that the turbulence viscosity is a funcion of the turbulence
kinetic energy 'k' and a turbulence length scale '%',

Vo = const. K1/ (5)

then because

)Y (1-m) nem
1 T_m-2n & Dk (1/2-n) & D(k'27)
const, Dt ~ " 2m kf7?'5f +k '?F—__"—%WE

(6)
equation (4) can be regarded as a contraction of a model based on the solution
of differential equations for 'k' and a length scale containing quantity
kM, The two equation models «can in turn be regarded as a
simplification of a complete Reynolds stress model.

3.2 ONE DIMENSIONAL MODEL
From equation (2), we would expect that a second order approximation would

lead to a turbulence model with an improved range of application. In terms of
Eq. (2), this means models of the form

dvy d*,
S A SRS W ra s Do (7)

Since there are advantages in formulating a turbulence model from conservation

type equations, we will do this starting with the first order model equation
(4), written in a slightly different form.

2

dv \V]

- T du T
Yo Pty B (8)

where A and B are constants, u is the average convection velocity and L is a
local length scale.
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A major problem with this model is the presence of a local length scale 'L' in
the dissipation term. This suggests adding a second differential equation for
this length scale or for the dissipation term, D, itself. A simple version of
the resulting model is

dv
=T _ du
Ve T Mty ®)
3@-_-3[)'32 -c.l?_z_ (10)
dx dy \)T :

where A, B, and C are constants. Note that differentiating Eq. (9) with
respect to "x" and substituting for dD/dx from Eq. (10) yields an equation of
the same form as Eq. (7) containing a term of the form Fy Bsz/sz.

These equations can be written in nondimensional form by replacing u by
(u1+u2)/2 and du/dy by (“1'"2)/L to give

dv

1 Py D

v, W 2M (1 - ) (11)

1 dD D

pax - (1-7p) (12)
U1-Y o

where A, B, and C are again constants, A = ———=and P = v

u1+u2 T L

A two-dimensional version of the model can obviously be derived by replacing
Eqs. (9) and (10) by their two-dimensional equivalents. Although one of these
more complex versions of the model will be needed for some practical
applications, the present discussion will be confined to the one-dimensional
model given here,

3.2.1 Physical Implications

Before discussing the performance of the second order model derived above in

detail, the physical implications of adding an equation for the dissipation
will be briefly considered. Adding an equation for the dissipation 'D' in




combination with an equation for the viscosity 'VT' is equivalent to

izf adding a length scale equation, since a length scale can be inferred from the
{F‘ ratio (v¥/D)1/2. But since 'VT' already contains a length scale,
;;u‘ which has been identified with the energy containing large eddy structure, the
‘:-.J' change to a second order model involves the addition of a second length
:SF scale. This second length scale is used to characterize the dissipation
e

process. At high Reynolds number, most of the energy is concentrated near the
low frequency end of the turbulence energy spectrum while most of the
dissipation takes place at the high frequency end of the spectrum. The two
length scales used in the present turbulence model, therefore, constitute a

Yt

simple two parameter description of the turbulence energy spectrum.

. In first order models, the length scale which appears in the dissipation term
P is assumed to be proportional to either a local length scale or to a length
. scale which characterizes the turbulence energy. Of these two assumptions the
";5 second is probably most valid, but even this implies a universal shape for the
e turbulence energy spectrum, which cannot in general be true. In the present
: model, since the turbulence energy and the dissipation are characterized by
( different length scales, this assumption is not required.

The effect of adding a second length scale equation will now be studied by

15} comparing the predictions of the second order model derived here with a range
) of experimental data.
Iﬁ;} 3.2.2 Comparison with Data
f}ﬁ Before it is possible to evaluate the performance of the present turbulence
,;; model, the values of the constants A, B, and C, which appear in Equations (9)
'lig and (10) must be specified. The values used here are
A= 0.16
S B = 0.17
0. C = 0.16
e,
:?J? A comparison between the predictions of the resulting model and experimental

data for the spreading rates of three free shear flows are given in Table 2.




o Table 2

‘_\ SHEAR LAYER 2-D JET RADIAL JET

A dL /dx dL /dx dL /dx
2nd Order Model 0.12 . .110 .102
2 Experimental Data  0.115 .108 .10

St

o

- This shows that the agreement between experimental and prediction, using this
'{_’.f model, is good for all three flows; probably within the uncertainty in the
f-_‘:_f-'. data themselves. Compared with the results presented in, for example,
reference (12) it is clear that the present turbulence model gives as good or
i-_:ﬁ better overall agreement with the experimental data than any other model.

Y

\,_J Although these results are encouraging, the most dramatic improvement in
- prediction ability occurs for strongly perturbed flows. This will be
: illustrated by considering the initial developing region of a free shear
:,‘, layer. This flow is shown diagramatically in Figure 1., The far field region
, is the region where the shear layer has become fully developed and is
spreading at a constant rate. This is the region already considered above.
The region under consideration here is the developing region where the flow
"‘ changes from a wall boundary layer to a fully developed free shear layer. To
the author's knowledge, no previous turbulence model will naturally predict
this region of the flow, even qualitatively, correctly.

‘f?q

“ The flow in this developing region is known to be sensitive, not only to the
,*- initial boundary layer, but also to external excitation, such as noise,
0. mechanical vibration, free stream turbulence, etc. This is particularly true
.\ when the boundary layer is initially laminar. Since it is not possible to
x accurately simulate the initial wall boundary layer with a one dimensional
:."j-'.: model, it is only possible to demonstrate that the present model will predict
0 the correct general behavior of the flow in this region,

Z;:EZ} Two specific situations will be considered. In one it will be assumed that
the wall boundary layer is initially laminar and in the other it will be
’ assumed that the boundary layer is initially turbulent. For the laminar case
8




1@ the calculation is started at a position that corresponds to the region just

o downstream of transition, where the shear stress has started to increase but
where the turbulent dissipation is still small. This is simulated using a
value for the turbulence viscosity VT which 1is approximately one quarter
of the value it would have if the shear layer were fully developed. The
dissipation is assumed to be small but finite. The turbulent initial boundary
layer is simulated using the same initial value for the viscosity. In this
case, however, the dissipation is selected so that the production and the
dissipation are approximtely equal. To show that the prediction is not
particularly sensitive to the value of the dissipation selected, a second run
was made in which the initial dissipétion was increased by a factor of three.
This resulted in an initial decrease in the shear stress level for a short
distance downstream. The subsequent development of the flow, however,
remained the same.

These results are shown in Figure 5. In this Figure, the shear stress shown
is the peak shear stress at a given 'x' station. It is normalized by the
value it would have in a fully developed shear layer. The Reynolds number
Rex is defined as

Re, = ux/v (13)
There are two important points to note for the case where the initial boundary
layer is laminar. The first is that the shear 'stress initially rises very
fast, overshooting its fully developed value, and then slowly relaxes back
farther downstream. The second point to note is that the Reynolds number
based on this total distance 1is approximtely 7 X 105; the value found
experimentally by Bradshaw.(4) When the boundary layer is initially
turbulent, the shear stress rises more slowly. It again overshoots its
equilibrium value, but not by as much as when the boundary layer was laminar.
The important difference here is that the length of the development region has
approximately doubled. This is again in good agreement with Bradshaw's
results. It is also consistent with the experimental data - discussed in

section 2.
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‘;4- 3.3 TWO DIMENSIONAL MODEL

L %

S

o

1 In order to make a new two-dimensional model as compatible as possible with
:.; existing models, it was decided to develop the two length scale model as an
-:3':: extension of an existing model. To minimize the complexity at this stage of
) development, it was decided to start with a two equation model, although
eventually it may be desirable to extend the model to a full Reynolds stress
model, or at least an algebraic stress model.

s

_ Since there appears to be very little basic difference among the various
two-equation models it was decided to start with a standard version of the k,

il

k% model. The selection of the k% equation for a length scale equation
was based simply on the belief that it would be Tess confusing to use an
equation for k% to calculate the integral 1length scales than, for example,

s
-

an equation for the dissipation rate 'e’,

The particular version of the model that was used here is that developed by
Rodi and described in detail in reference 11, and is:

— du _ 172

Puv = 1, 5y * My = C,Pk L (14)
T ) 3/2
3k 3k _ 8 Mt ak 3u\2 k
::\_- Pu ax + Pv ay = ay (_0.‘: a'-y-) + th(ay) - CD P =7 (15)
::’_'_::
e 3 (K& 3(ke) _ 3 Mt a(ke Bu,2 3/2
- pu 4K 4 oy %L o %l) + Oyt (337 - C ok (16)
o C, = 1.0 Cg = 0.98
9. (17)
: Cp = 0.09 Cq = 0.058




''''''''''

-l

The basis for using an integral length scale in the dissipation term is the
argument that the dissipation scales act merely as an energy sink and that the
dissipation rate is determined primarily by the rate at which energy is fed
from the large scale energy containing eddies. Therefore, the appropriate
length scale for the dissipation term is the same integral length scale that
characterizes the large scale energy containing eddies. Although this
argument is probably correct in a Lagrangian sense, it does not necessarily
follow that the same length scale can be used to model the turbulence energy
production and dissipation rates in an Eulerian formulation of the equations.

The reason for this is the finite l1ife of the large eddy structure. The
turbulence energy production is necessarily associated with the initial growth
phase of the large eddies while the dissipation (or the transfer of energy
from the large scales to the small scale dissipation range) is necessarily
associated with the decay phase.

For mixing layers and wakes, the width of the mixing region approximately
doubles during the 1ife of a typical large eddy. The problem is compounded by
the results of reference (38), which suggest that most of the dissipation
takes place in a short time near the end of the life of the large eddies.
Therefore, because of the finite life of these eddies, the production and
dissipation processes associated with a given group of eddies are separated
both in space and time. At a given location, the eddies responsible for the

turbulence energy production will, in general, differ from those responsible
S for the dissipation. Therefore, unless the flow is only changing slowly with
8y downstream distance, the length scales characterizing the production and
dissipation processes at a given location in the flow will in general be
different. Note that this is a somewhat different physical argument than that
used by Hanjalic and Launder in reference (39).

;Pf In the present model a single additional equation is added for the turbulence
N energy dissipation rate 'e'. This equation is:
S € e _ 5 Mt oe 172 el

. DUW+DV@=BY (E;ay)+c3°€"£_"c4p K (18)




In equilibrium when the rate of production of 'c' is equal to its rate of
destruction this reduces to the conventional expression for '¢'.

". ”c ". ,~"‘."'. - "."...' o ”

N

N

o (172 2

L Cype — = Cpo 5 (19)
S ,

e Cy 3/2

Ak 3 k

. € = - (20)
v t;

)

L For the two 1length scale model 'e¢' 1is substituted directly into the

fj; turbulence energy equation, equation (15) for the dissipation term. For the
ﬁié 'ke' equation, equation (16), the destruction term is rewritten as:

I

Y

e c pk3/2 = const. pel (21)
Y s

i:; 3.3.1 Numerical Method
e . In the present work, use was made of a modified version of a general
':f two-dimensional parabolic program. This program is part of a series of
Vi programs that includes a three-dimensional parabolic program and a
:?ﬁ three-dimensional wall boundary layer program, together with a number of
( supporting utility programs. These programs share a common structure and
fi;i common input and output procedures. A detailed discussion of the
NN 4

Et{ three-dimensional parabolic program can be found in references 40 and 41.
0

}. The describing equations are written in cylindrical coordinates in the
ok following form:
2 o

;y% Continuity
= 3 3 b
;;:% 3;-[pru(r°-r1)] +~§; [orv - pPU(a;—‘+ n Ek(ro'rl))l =0 (22)
ey
Y
9.
.',:-:.
.
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Momentum

dr
2 2 1 d -
%; foru (ro-rl)] + g—n [pruv - pru "&T' *n 3% (ro-rl))_l

"o T & (23)

where T is the effective viscosity, * and r_ are the inner and outer

radii of the computational domain and

0

Y'-Y'I

S (24)
ro rI

Provision is also made for the solution of up to five additional equations
written in the general form

3 3 dry ¢
% [pur(lr'o-rI o1 + 3?."[{9” - pru (37(_ *n g% (ro-rl))}¢]

} ‘ro%"lj %ﬁ_ (I‘¢ rg%) ' S<b (2°)
where Sc|> is the appropriate source term for the general variable 4.
The density p is obtained from the ideal gas law
o = P/RT (26)
where R is the gas constant and T is the static temperature. The static
temperature can be specified as an input or obtained from the solution of an

energy equation.

The finite difference equations are formed by integrating the equations over




small control volumes that surround the grid nodes. First order dffferencing
is used for the convection terms and a hybrid central/upwind differencing
scheme is used for the diffusion terms. The resulting equations are solved
sequentially using a standard tri-diagonal solver and the solution is jterated
between planes to convergence.

3.3.2 Relaxation Procedure

Initial attempts to run the 2-D multi-length scale model led to instability
problems on some runs. As is obvious from the previous discussion, the
addition of a second length scale is equivalent to adding an elliptic term to
the model, although the individual equations are still parabolic. Experience
with the 1-D model suggested that the elliptic effect would be small enough to
allow the use of a marching solution procedure and, at least if the initial
perturbation was not too large, this was probably correct. The problem,
however, was that the turbulence model equations are dominated by the source
terms and small changes in the adjustable constants can lead to large
differences in the behavior of the model. The tendency of the equation set to
develop instabilities made the selection of an optimum set of constants
extremely difficult, since it was often difficult to determine whether the
behavior with a given set of constants was due to an inappropriate selection
of constants or to stability problems. After a considerable effort to develop
a stable marching procedure, it was eventually decided to develop an elliptic
procedure.

The reluctance to use an elliptic procedure initially was due to the fact that
it would be more expensive to run than a marching procedure and that this
would tend to hamper model development. Although this is true, the
disadvantage is not as bad as it might at first seem. First, the use of an
elliptic procedure is not necessarily that much more expensive than a marching
procedure. Second, many of the flows for which the additional length scale
will be needed are already elliptic, either because of reverse flow or because
of elliptic pressure effects, so that the use of an elliptic turbulence model
will not necessarily add anything to the cost of calculating such flows. Even
for many of the simpler self-similar flows such as jets, the normal stress

25




Y

(
3
4

gradients are not really negligible, about 10% of the shear stress gradients,
so the argument that they can be ignored is at best questionable and is in
reality due more to the mathematical simplification that results than to the
fact that the terms are genuinely negligible.

The sensitivity of the model equations to changes in the source terms,
initially led to problems in developing an efficient iteration procedure.
Simply calculating the dissipation on one sweep and using it on the next sweep
did not work even when the iteration procedure was strongly underrelaxed. The
iteration procedure eventually developed turned out to converge very fast., On
the first sweep the ratio

(27)

was calculated and stored. On the second sweep the dissipation term in the
energy equation was multipled by the ratio calculated during the first sweep
and a new ratio based on the most recent values of the variable was calculated
and stored. The dissipation term was therefore

€ i )
. 28)
372 X (
SIS WATIS R

where the subscript i refers to the latest iteration.

3.4 RESULTS AND DISCUSSION

In order to obtain some idea of the sensitivity of the standard model to
changes in the dissipation term, a calculation for a simple mixing layer was
run with the dissipation term set to zero in both equations. The results
obtained are shown in Figure 6. It was known from previous work that a
reduction in the dissipation term in the turbulence energy equation would lead
to a reduction in the shear stress; but it was not anticipated that a
reduction in the dissipation term in both equations would also lead to a
reduction in the shear stress.
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NN

;ﬁ}f Both equations are source term dominated, so that when the dissipation terms
?ff are set to zero both k and k% must increase. Since the effective viscosity
S is assumed to be proportional to the product of kl/2 and %, one would
{:,1 expect the effective viscosity also to increase. This does not happen because
.S;Z; the length scale "&" used in the definition for the effective viscosity and
N in the source term for the equation for "k&" is obtained from the relation

¢ = L":_‘)_ : (29)

What happens when the source terms are set to zero is that "k" increases much
faster than “"k&" with the result that "%" and the effective viscosity both
decrease, Calculations with a standard version of the k, € model yielded
essentially the same result,

This behavior is obviously not physically meaningful; but it does provide an
excellent example of why the modeling of a particular term can only be
meaningfully discussed in the context of the model as a whole. It must, after

all, be remembered that we are dealing with a coupled set of partial

{ ) differential equations. What appears to happen in this case is that in a
KRR standard two-equation model the production and dissipation terms in both
gﬁ;i equations are expressed in terms of the single turbulence velocity scale and a
;ﬁ;ﬂ single turbulence length scale. The coupling that results from this
‘}" effectively constrains the ratio t/k so that it remains approximately

o constant, When an attempt is made to specify the dissipation independently,
N{:E however, this constraint is removed and the model starts to exhibit a
EEQj physically unrealistic behavior.

The simplest solution to this problem is to insert the relation

T = const. k (30)
?iﬁf directly into the production term in the “k&" equations to give
R
o T (gg-)z X const-ﬁ— = const Chkt S; (31)
'ii~ 28




-----------------------------------------------

One would not expect this modification to have a major influence on the
behavior of the basic two equation model and a limited number of calculations
supported this view; but it does dramatically change the behavior of the model
when a second length scale is introduced. When the dissipation terms are set
to zero in the modified two equation model, a mixing layer calculation yields
a self-similar solution and approximately a doubling of the shear stress and
the spreading rate. -

The resulting turbulence energy, length scale and dissipation equations that
constitute the new two-length scale turbulence model, written in cartesian
coordinates, are as follows:

K 3k _ 3 Mt 3k du,2
Puax * PVay = oyl ay) TR (ay) - P (2
k

(kL (kL) 9 Mt a(kh 3

Jde d€ d ut d€ k1/2 sz

e orl/2
My = C Pk (35)

The constants used for the calculations presented in this report are:

1.0, Cl = .355 c
. 045, C

, = 645
.5 (36)

4

From the results obtained so far, the overall behavior of the two-length scale
model appears to be very close to what one would expect from the results
obtained using the simple one-dimensional model. Although a considerable
effort was made to obtain an optimum set of constants, the major effort was
concentrated on a study of the initial developing region of a mixing layer and
it is probable that the constants used for the results presented here are not
optimum for a wide range of flows.
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i%i Before discussing these results in detail, it is useful to briefly discuss the
g:? behavior of the modified two-equation model with particular emphasis on the
o initial developing region of a planar mixing layer. The calculation was run,
E\;. starting from a fully developed turbulent wall boundary layer using the data
-zif specified as starting conditions for CASE 0311 in the 1980/81
E;?Z AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows.(42) The results

ara shown in Figure 7 were obtained using the standard k, k& turbulence with the
source term in the ki equation modified as described by equation (31). The
T same calculdtion was performed using the k,€ model and the results are shown
‘Zﬁf in Figure 8. The only significantAdifference between the two calculations is
. that the constants in the k, k& model have been adjusted to match the
S0 asymptotic spreading rate of the fully developed mixing layer and, so, is in
slightly better agreement with the experimental data. Otherwise, both
calculations are very similar.

e A detailed examination of the numerical calculations provides some interesting
fii insights into the behavior of the mixing layer over the initial developing
f”: region. In the wall boundary layer upstream of the separation point, the
("‘ turbuience energy production and dissipation rates are approximately in
SN balance in the steep gradient region close to the wall. Downstream of the
separation point, when the influence of the wall is removed, the dissipation
: starts to decrease. The turbulence energy and length scale increase; but
T since this is accompanied by a decrease in the mean velocity gradient, there
is no sudden increase in either the shear stress or the spreading rate of the
mean velocity profile. The subsequent relaxation rate appears to be
- determined simply by the turbulence time scale. The development of the mixing
39 layer in this region is, therefore, dominated by the small scale turbulence
}t{ and the overall behavior of the flow appears to be predictable from fairly
iﬁ; simple considerations, in spite of the fact that the detailed behavior of the
turbulence may be very complex and still be poorly understood.

Farther downstream both models predict that the spreading rate approaches its
asymptotic value monotonically; there is no evidence of the overshoot observed
experimentally. One consequence of this is that the length of the developing
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- region is under predicted by about a factor of four. Even in the fully
AER developed region of the flow, where the calcuiated and measured spreading
rates are in agreement, the width of the mixing layer is under predicted.

‘ A calculation of the same flow using the new two-length scale model is shown
;;j ‘ in Figure 9 and a plot of the calculated normalized shear stress is shown in
Figure 10. It is clear that use of the new model leads to a considerable
improvement in the agreement between the calculations and experimental data.

N The first point to note is that the overall qualitative behavior of the
relaxation process is well predicted. In particular, the 1length of the
- relaxation region is in good agreement with experimental data and it was found
to be fairly insensitive to the values of the adjustable constants. This
. again seems to be an indication that the time scale of the relaxation process
?i is determined simply by the time scale of the turbulence and that it tends to
N emerge naturally once the qualitative behavior of the model is correct.

The available experimental shear stress data is not reliable enough for a
(ui direct evaluation of the calculations; but it appears that the calculated
overshoot in the shear stress and mixing rate is somewhat less than that
o observed experimentally. The magnitude of the predicted overshoot s
. sensitive to the values of the selected constants; but it is believed that
,3; further refinements of the constants is unlikely to significantly improve the
. overall agreement. This is due in part to the fact that the one-dimensional
el model studied earlier also seemed to under predict the overshoot and in part
Eﬁ? to the fact that attempts to obtain a larger overshoot increased the initial
‘n, growth rate of the shear stress. This led to a shear stress peak that was too
close to the separation point and no real overall improvement in the
agreement between the calculations and experimental data.

-@, One possible cause of this discrepancy, that needs to be investigated, is that
the small extra strain rate terms that are generally ignored in thin shear
Tayer calculations may be important in the relaxation region. This is most

,{i likely for the region of the flow just downstream of the separation point
. where conditions are changing rapidly.
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In spite of this it is believed that the discrepancy is most likely to be due
to the use of constant coefficients. It seems likely, even from simple
physical considerations, that at least some of the coefficients should depend
on the shape of the turbulence energy spectrum. One simple way of
incorporating such a dependence would be to make one or more of the constants
a function of the ratio of the turbulence energy production to its dissipation
rate. Such a study, however, was not possible in the time available for the
present work,

Although the present study was successful in demonstrating that the addition
of a second length scale equation extends the range of application of current
turbulence models, there remain a number of issues that require more detailed
study. In addition, the development of the new model to the point where it
could be used reliably for practical predictions would require an extensive
evaluation and refinement of the model for a wide range of flows., It is
believed that such an effort would be premature at this time.

The reason for this is that the problem considered here is just one of the
problems encountered in attempts to predict the behavior of complex
three-dimensional jets. Another serious problem is the necessity of using
different constants for planar and axisymmetric jets. Since modeling problems
tend to be interrelated in the sense that a modification that leads to an
improvement for one flow may well yield worse predictions for another flow, it
would be desirable at this time to at least obtain an understanding of the
physical reason or reasons for the planar/axisymmetric jet problem before
embarking on an extensive development program for a new turbulence model.
With this information in hand, it would then be possible to form a balanced
judgment of how best to proceed in the development of an improved turbulence

model.




4.0 CONCLUSIONS

This report presents results of a study of a new two-length scale turbulence
model. The addition of a second length scale is intended to extend the range
of application of turbulence models to strongly perturbed flows that are far
from equilibrium. The model is based on the physical observation that the
turbulence shear stress and the turbulence energy production are associated
primarily with the large scale eddies, while most of the turbulence energy is
dissipated by small scale eddies near the high frequency end of the turbulence
energy spectrum. Therefore, except for flows close to equilibrium, separate
turbulence length scales are required to characterize the large and small

scale motions.

Most of the work described in this report deals with a detailed study of the
developing region of a plane mixing layer. Nevertheless, it is believed that
the new model is generally applicable to a wide range of flows, although some
further refinement of the turbulence model constants is probably required.
The new model correctly predicts an overshoot in the developing region of a
mixing layer although the magnitude of the overshoot is slightly less than
that observed experimentally. With a single length scale equation model,
there is no overshoot at all.

Two important conclusions of the present study, which are only indirectly
related to the new model, are that the form of the production term in most
current length scale equations appears to be incorrect and that the
importance of elliptic effects has probably been underestimated in most
previous turbulence model studies.
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