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context of developing an improved turbulence model for general application to
complex three-dimensional jets.

The new model is based on the physical observation that the turbulence shear
stress and the turbulence energy production are associated primarily with the
large scale eddies, while most of the turbulence energy is dissipated by small
scale eddies near the high frequency end of the turbulence energy spectrum.
Therefore, except for flows close to equilibrium, separate turbulence length

6scales are required to characterize the large and small scale motions.

Both a one-dimensional and a two-dimensional turbulence model were developed
around this concept. The addition of a second length scale is equivalent to
adding an elliptic term to the model, and an elliptic procedure was developed
in a relaxation scheme for solving the set of equations. Many of the flows
for which the new model is needed are already elliptic, because of reverse
flows or elliptic pressure effects, and use of an elliptic turbulence model
will not add to the cost of calculating these flows. It is felt that the
importance of elliptic effects has probably been underestimated in most previou.
turbulence model studies.

From the results obtained, the overall behavior of the two-length scale model
appears very encouraging. Results shown provide interesting insights into the

*behavior of the mixing layer over the initial development region. While a
. et considerable effort was made to obtain an optimum set of model constants, the

major effort was concentrated on a study of the initial development region of
a mixing layer and successfully demonstrating that the addition of a second
length scale equation extends the range of application of current turbulence
models. A number of issues that require more detailed study remain, including
an extensive evaluation and refinement of the model constants for a wider range
of flows.

Modeling problems tend to be interrelated in the sense that a modification
that leads to an improvement for one flow may yield worse predictions for
another flow. Currently different constants are necessary for predictions of
planar and axisynmetric jets. This problem needs resolution to obtain an
understanding of the physical reasons for planar vs axisymmetric modeling
differences. A balanced judgement can then be formed on how best to proceed in
the development of an improved turbulence model for complex three-dimensional
fl ows.
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1.0 SUMMARY AND INTRODUCTION

1.1 SUMMARY

Development of a new two-length scale turbulence model is described. This

work was undertaken because the performance of current models for certain

flows appears to be limited by an inadequate treatment of the turbulence

length scale. One flow for which current turbulence models are not adequate

is the initial developing region of a plane mixing layer. Available mixing

layer data is briefly reviewed. An improved ability to analyze this flow is

required for improved prediction of the near field of a jet for a wide range
a',

of applications including those for STOL aircraft applications. The work was
performed in the context of developing an improved turbulence model for

general application to complex three-dimensional jets.

The new model is based on the physical observation that the turbulence shear

stress and the turbulence energy production are associated primarily with the

large scale eddies, while most of the turbulence energy is dissipated by small

scale eddies near the high frequency end of the turbulence energy spectrum.

Therefore, except for flows close to equilibrium, separate turbulence length

scales are required to characterize the large and small scale motions.

Both a one-dimensional and a two-dimensional turbulence model were developed

around this concept. The addition of a second length scale is equivalent to

adding an elliptic term to the model, and an elliptic procedure was developed

in a relaxation scheme for solving the set of equations. Many of the flows

for which the new model is needed are already elliptic, because of reverse

flows or elliptic pressure effects, and use of an elliptic turbulence model

will not add to the cost of calculating these flows. It is felt that the

* Oimportance of elliptic effects has probably been underestimated in most

previous turbulence model studies.
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From the results obtained, the overall behavior of the two-length scale model

appears very encouraging. Results shown provide interesting insights into the

behavior of the mixing layer over the initial development region. While a

considerable effort was made to obtain an optimum set of model constants, the

major effort was concentrated on a study of the initial development region of

a mixing layer and successfully demonstrating that the addition of a second

length scale equation extends the range of application of current turbulence

models. A number of issues that require more detailed study remain, including

an extensive evaluation and refinement of the model constants for a wider

range of flows.

Modeling problems tend to be interrelated in the sense that a modification

that leads to an improvement for one flow may yield worse predictions for

another flow. Currently different constants are necessary for predictions of

planar and axisymmetric jets. This problem needs resolution to obtain an

understanding of the physical reasons for planar vs axisymmetric modeling

differences. A balanced judgement can then be formed on how best to proceed

in the development of an improved turbulence model for complex

three-dimensional flows.

1.2 GENERAL DISCUSSION

It is now generally accepted 1 ) that the Navier-Stokes equations are the

appropriate equations for the description of turbulent flow. In this sense,

the physics of turbulence is completely understood. If there existed a fast

and economical method for solving these equations, interest in turbulent

research as a scientific discipline would quickly disappear. The great

difficulty in solving the Navier-Stokes equations for most flows of interest,

* however, has all but eliminated any near term prospect of using these

equations directly for the solution of practical problems.

," .' • • - , . , - - -" -" -. .* ". , - • . . - . . L -- . L . -. . .- . -



The problem that we are faced with then is in finding a simpler set of
equations that provide an approximation for the behavior of real flows and
that are simple enough to be tractable using present computers. There is, of

course, no guarantee that any such set of equations exist. Nevertheless there

have been major advances in our ability to calculate the behavior of viscous
s flows over the last ten or fifteen years and there is no obvious reason why

'.-

this rrogress should not continue. The extent of this progress is well

illustrated by a comparison of the results of the 1968 Stanford meeting with

.
.-'-2. the rslob thatie arte rcenwth 908the a nfdeing.asmlrsto

In spite of the success of current models in calculating the behavior of

complex turbulent flows, their performance for certain flows appears to be

limited by an inadequate treatment of the turbulence length scale. All

current turbulence models -- or at least all those that have been developed

enough to be useful for practical calculations -- use a single turbulence
length scale. This implies a universal turbulence energy spectrum shape and

is probably not physically reasonable for even a limited range of flows.

One flow for which current turbulence models are not adequate is the initial
developing region of a plane mixing layer. This flow can be regarded as an
idealization of the near field of an axisymmetric jet. Since a free mixing

layer entrains mass, it acts as a sink and thus influences the local external

flow. The magnitude of these effects depends on the initial conditions and

the geometry of the flow, but can, under certain circumstances, be quite

-- important. For example, many STOL aircraft in design or development use the

strong coupling between the Jet engine exhaust and the inviscid outer flow to

. achieve enhanced landing and take-off performance, or to improve maneuvering

• capabi leity. This coupling changes the circulation on the wing and,

* *hence, the aerodynamic characteristics of the aircraft. Since adequate

methods for predicting these strongly coupled jet/aerodynamic surface

interactions do not exist at present, design of these aircraft is achieved
through expensive parametric wind tunnel testing. In addition, many of these

' tests must be run at full scale because of the problems associated with

attempts to scale-up model scale test data. The understanding and prediction

of the near field mixing region is thus of very practical as well as

q3



scientific interest. The work described in this report is a study of a new

two length scale turbulence model with primary emphasis on the developing

region of a plane mixing layer. The plane mixing layer was selected for

detailed study, in part because it is a relatively simple, well documented

flow for which current single length scale models are clearly inadequate; but

-. primarily because an improved ability to analyze this flow is required for

- . improved prediction of the near field of a jet for a wide range of

applications including those for STOL aircraft.

The work described in this report is an attempt to improve the prediction of

the relaxation region of a mixing layer by the addition of a second turbulence

length scale. This work was performed in the context of developing an

improved turbulence model for general application to complex three-dimensional

jets. Before discussing work on the new model the available mixing layer data

is briefly reviewed.

°. 4
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2.0 MIXING LAYER

2.1 FULLY DEVELOPED REGION

The radius of an axisymmetric jet is generally large enough compared with the
width of the mixing layer so that lateral curvature effects can be ignored for

a distance of about two diameters downstream of the nozzle exit. The mixing
layer in the near field of an axisymmetric jet is often idealized as a planar
layer between two semi-infinite streams. In practice, there is little
difference between the development of at least the mean velocity profiles of

. the two flows until near the end of the potential region. Therefore, in the
.

present review both flows will be discussed together.

It is convenient to divide the mixing layer into an initial developing region

and a fully developed region (Figure 1). The developing region is a
transition region between an initial wall boundary layer flow and the fully
developed flow farther downstream. At lower Reynolds numbers, when the wall
boundary layer is laminar, the developing region will also involve a

transition from laminar to turbulent flow. The flow in the fully developed
a-fa region is self-similar and spreads linearly with downstream distance.

Although the mixing layer is geometrically simple, it has caused considerable

problems experimentally. So much so, in fact, that until recently the
variation in the reported data was such that there was no general agreement

that a unique asymptotic flow, independent of initial conditions, existed.

Some of this experimental scatter can be attributed to experimental error or

to confusion arising from the use of different definitions for the width of
the mixing layer; but the major problem was an underestimate of the

0; persistence of the effects of initial conditions and the experimental
difficulty of achieving a fully developed flow, particularly for a mixing

layer developing from a turbulent wall boundary layer.

0., Bradshaw (4 )  studied the influence of initial conditions earlier and
particularly noted that tripping the initial wall boundary layer would extend

#45
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the length of the developing region; but the importance of these results was

- not fully appreciated until much later. The nature of the problem is probably

best illustrated by a plot of the reported spreading rate of nominally fully

developed mixing layers as a function of a Reynolds number based on downstream

distance. This is shown in Figure 2. The tabulated data are given in Table

1 1. The definition of the width of the mixing layer is the distance between

the point at which the velocity squared is 0.1 and 0.9 times the freestream

value.

Note that although the plotted spreading rates differ by more than 50%, there

is little evidence of genuine data scatter. The flows developing from laminar

wall boundary layers appear to reach a constant spreading rate for values of

Re greater than about 7x105  -- the value originally suggested byx

Bradshaw. The effect of tripping the boundary layer is also well illustrated
in this plot. When the wall boundary layer is turbulent at the separation

point, the mixing layer does not appear .to become fully developed until a

value of Re of greater than 2xlO6.
x

For most of these experimental studies, the initial conditions are not

sufficiently well documented to make a direct comparison of the various data

sets very meaningful. There are, however, four sets of data (references 5,

19,37) for which the initial conditions are well documented. All four flows

develop from fully developed, turbulent, wall boundary layers. These data

sets, normalized by the momentum thicknesses of the boundary layers at their

separation points, are shown in Figure 3. The solid line is an estimate of

the asymptotic mixing rate slope. The lack of scatter in this data is even

more surprising when one realizes that two of the flows are axisymmetric and

two are planar. These flows do not become fully developed for a distance of

at least 15000, where 0 is the momentum thickness of the boundary layer

at its separation point.

Apart altogether from the fact that most jets encountered in practical

applications develop from turbulent wall boundary layers, jets developing from

laminar wall boundary layers are not, in general, suitable for evaluating

numerical calculations. The problem is that the thin laminar shear layer just

downstream of the separation point is very sensitive to external disturbances,

I~p.
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including freestream turbulence, noise and mechanical vibrations. Sirfce it is

difficult to completely document or control these sources of disturbances, the

experimental data for such experimental studies tend to be apparatus

dependent. For a detailed discussion of some of these problems see references

6 and 7.

2.2 DEVELOPING REGION

A plot of the local spreading rate, obtained by directly differentiating the

data in Figure 3 is shown in Figure 4. Again note the surprisingly small

scatter in the data. The first point to be made about the developing region

is its length. For a fully turbulent initial wall boundary layer, a single
stream mixing layer does not appear to reach its asymptotic state for a

distance of about 1500 0 downstream of the separation point. For more

strongly perturbed flows, this distance can be considerably longer. The

initial spreading rate for this flow is approximately half its fully developed

valie. The spreading rate increases steadily with downstream distance,

overshoots its fully developed value, and at 700 0 is about 20% larger than

its asymptotic value. From then on, it slowly relaxes back to equilibrium.

The maximum local spreading rate is, incidentally, almost exactly what one

would infer from the data of Figure 2.

The second point of interest is the tendency of the turbulence to overshoot

during the relaxation process, although the precise behavior will, of course,

,-* depend on details of the flow. For example, for a two stream mixing

-'- - layer(8) with a velocity ratio of 0.3, the turbulence overshoots when the

initial boundary layer is laminar; but for a turbulent initial boundary layer

it appears to approach its asymptotic state monotonically. With strong

excitation over the initial region, the shear stress will undershoot during the

relaxation process. If the excitation is strong enough, the shear stress may

* collapse completely, leading to a region of almost no growth. (9 )  The

important point is that the mixing layer behaves like an underdamped second

order system and it can only be meaningfully discussed from this point of

view. A discussion, for example, of whether a given perturbation increased or

S. decreased the mixing rate is therefore not very useful. The fully developed

. . . ..
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flow will always remain unchanged, while the flow in the relaxation region

4- will generally contain regions that have spreading rates that are both higher

and lower than the fully developed value, irrespective of the perturbation.

An interesting consequence of this behavior is that, although there may be

."large variations in the local spreading rate, the spreading rate averaged over

the whole region is often close to the fully developed value. For example,

Foss (5 ) studied the development of a planar mixing layer developing from

both laminar and fully developed turbulent wall boundary layers in the same

experimental apparatus. The results showed that although the local spreading

rate was different over the whole region, depending on whether the flow was

initially laminar or turbulent, the total width of the layer at the last

station was almost the same for both flows. Similar results for an

axisynunetric mixing layer are reported by Hussain. (37)
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3.0 MULTI LENGTH SCALE MODELS

3.1 THEORETICAL BASIS

The theoretical basis of the approach used here for the development of the new

two length scale turbulence model is described in detail in references 10-12.

In brief, it is based on the idea that turbulent flow tends toward a dynamic

equilibrium characterized by a critical Reynolds number,

m ULUL (1)

where U and L are characteristic velocity and length scales for the mean flow

and v T* is the equilibrium effective turbulent viscosity.

If the equilibrium viscosity is written as vT*, then it seems reasonable

to expect tha* the local eddy viscosity can be written in terms of a series

expansion about this value. In one dimension this is simply

dv T d 2V T
VT* = T F + F2 +  (2)

dx

The simplest approximation, assuming that VT = VT*, is equivalent to

the use of a local equilibrium model. The next simplest approximation is

dvT
VT=VT + TF --- (3)

or

0:v F d =V T*  'T (4)

*x 14
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If one assumes that the turbulence viscosity is a funcion of the turbulence

kinetic energy 'k' and a turbulence length scale 'i,

V T = const. k 1 /2 9,  (5)

then because

1 D~vT m-2n k. Dk ~ (1/2 -n) 9 1-m) D(k n X mcost kF=~i 17tm D (6)

equation (4) can be regarded as a contraction of a model based on the solution

of differential equations for 'k' and a length scale containing quantity
Snm. The two equation models can in turn be regarded as

simplification of a complete Reynolds stress model.

3.2 ONE DIMENSIONAL MODEL

From equation (2), we would expect that a second order approximation would

lead to a turbulence model with an improved range of application. In terms of

Eq. (2), this means models of the form

dv T  d T

VT*= VT + F -Fx + F2  (7)
dx

Since there are advantages in formulating a turbulence model from conservation

type equations, we will do this starting with the first order model equation
(4), written in a slightly different form.

dVT au VT2

u - - Av - B - (8)

where A and B are constants, u is the average convection velocity and L is a

local length scale.

15
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A major problem with this model is the presence of a local length scale 'L' in
the dissipation term. This suggests adding a second differential equation for

this length scale or for the dissipation term, D, itself. A simple version of

the resulting model is

Sa-T Au (9)

-d D A ( 10)

.- = BD VT - -v (10)

where A, B, and C are constants. Note that differentiating Eq. (9) with
respect to "x" and substituting for dD/dx from Eq. (10) yields an equation of

the same form as Eq. (7) containing a term of the form F2 a 2T/@x2

These equations can be written in nondimensional form by replacing u by

.(U+U 2)/2 and au/ay by (u1-u2)/L to give

1 dT 2Mp1D
VT dx

I-=-2BX (1 - D) (12)x dx
-u l - u2 ul-u 2

where A, B, and C are again constants, X - 2 and P =v 1 2

12 L

A two-dimensional version of the model can obviously be derived by replacing

094 Eqs. (9) and (10) by their two-dimensional equivalents. Although one of these

more complex versions of the model will be needed for some practical

applications, the present discussion will be confined to the one-dimensional

model given here.

.

3.2.1 Physical Implications

Before discussing the performance of the second order model derived above in
detail, the physical implications of adding an equation for the dissipation

will be briefly considered. Adding an equation for the dissipation 'D' in

*. 16
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combination with an equation for the viscosity 'VT' is equivalent to

adding a length scale equation, since a length scale can be inferred from the

ratio (vT/D)1 2. But since 'vT'  already contains a length scale,

which has been identified with the energy containing large eddy structure, the

change to a second order model involves the addition of a second length

scale. This second length scale is used to characterize the dissipation

process. At high Reynolds number, most of the energy is concentrated near the

low frequency end of the turbulence energy spectrum while most of the

dissipation takes place at the high frequency end of the spectrum. The two

length scales used in the present turbulence model, therefore, constitute a

simple two parameter description of the turbulence energy spectrum.

In first order models, the length scale which appears in the dissipation term

is assumed to be proportional to either a local length scale or to a length

scale which characterizes the turbulence energy. Of these two assumptions the

second is probably most valid, but even this implies a universal shape for the
turbulence energy spectrum, which cannot in general be true. In the present
model, since the turbulence energy and the dissipation are characterized by

different length scales, this assumption is not required.

The effect of adding a second length scale equation will now be studied by

comparing the predictions of the second order model derived here with a range

of experimental data.

3.2.2 Comparison with Data

Before it is possible to evaluate the performance of the present turbulence

model, the values of the constants A, B, and C, which appear in Equations (9)

and (10) must be specified. The values used here are

A = 0.16

B = 0.17

0- C = 0.16

A comparison between the predictions of the resulting model and experimental

data for the spreading rates of three free shear flows are given in Table 2.

* 17-. ..
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Table 2

SHEAR LAYER 2-D JET RADIAL JET
dL/dx dL/dx dL/dx

2nd Order Model 0.12 .110 .102

Experimental Data 0.115 .105 .110

This shows that the agreement between experimental and prediction, using this

model, is good for all three flows; probably within the uncertainty in the

data themselves. Compared with the results presented in, for example,

reference (12) it is clear that the present turbulence model gives as good or

better overall agreement with the experimental data than any other model.

Although these results are encouraging, the most dramatic improvement in

prediction ability occurs for strongly perturbed flows. This will be

illustrated by considering the initial developing region of a free shear

layer. This flow is shown diagramatically in Figure 1. The far field region

.• is the region where the shear layer has become fully developed and is

spreading at a constant rate. This is the region already considered above.

The region under consideration here is the developing region where the flow

changes from a wall boundary layer to a fully developed free shear layer. To

the author's knowledge, no previous turbulence model will naturally predict

this region of the flow, even qualitatively, correctly.

The flow in this developing region is known to be sensitive, not only to the

initial boundary layer, but also to external excitation, such as noise,

mechanical vibration, free stream turbulence, etc. This is particularly true

when the boundary layer is initially laminar. Since it is not possible to

accurately simulate the initial wall boundary layer with a one dimensional

- model, it is only possible to demonstrate that the present model will predict

O the correct general behavior of the flow in this region.

.. Two specific situations will be considered. In one it will be assumed that

-! the wall boundary layer is initially laminar and in the other it will be

*- assumed that the boundary layer is initially turbulent. For the laminar case

*_ 18



the calculation is started at a position that corresponds to the region just

downstream of transition, where the shear stress has started to increase but

where the turbulent dissipation is still small. This is simulated using a

value for the turbulence viscosity vT which is approximately one quarter

of the value it would have if the shear layer were fully developed. The

dissipation is assumed to be small but finite. The turbulent initial boundary

layer is simulated using the same initial value for the viscosity. In this

case, however, the dissipation is selected so that the production and the

* dissipation are approximtely equal. To show that the prediction is not

particularly sensitive to the value of the dissipation selected, a second run

was made in which the initial dissipation was increased by a factor of three.

This resulted in an initial decrease in the shear stress level for a short

distance downstream. The subsequent development of the flow, however,

remained the same.

These results are shown in Figure 5. In this Figure, the shear stress shown

is the peak shear stress at a given 'x' station. It is normalized by the

value it would have in a fully developed shear layer. The Reynolds number

Rex is defined as

Rex = ux/v (13)

There are two important points to note for the case where the initial boundary

layer is laminar. The first is that the shear 'stress initially rises very

fast, overshooting its fully developed value, and then slowly relaxes back

farther downstream. The second point to note is that the Reynolds number

based on this total distance is approximtely 7 x 105; the value found

experimentally by Bradshaw. 4 )  When the boundary layer is initially

turbulent, the shear stress rises more slowly. It again overshoots its

equilibrium value, but not by as much as when the boundary layer was laminar.

The important difference here is that the length of the development region has

approximately doubled. This is again in good agreement with Bradshaw's

results. It is also consistent with the experimental data discussed in

section 2.

19
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3.3 TWO DIMENSIONAL MODEL

In order to make a new two-dimensional model as compatible as possible with

existing models, it wa-s decided to develop the two length scale model as an

extension of an existing model. To minimize the complexity at this stage of

development, it was decided to start with a two equation model, although

* eventually it may be desirable to extend the model to a full Reynolds stress

model, or at least an algebraic stress model.

Since there appears to be very little basic difference among the various

two-equation models it was decided to start with a standard version of the k,

k9, model. The selection of the k9, equation for a length scale equation

was based simply on the belief that it would be less confusing to use an

equation for k9 to calculate the integral length scales than, for example,

an equation for the dissipation rate '.

The particular version of the model that was used here is that developed by

Rodi and described in detail in reference 11, and is:

-- = au t C P 112  (14)
Puv - k(4.- t py u v u

'k k a t 3k au 2 k3/2
Pu ax Pv ayay(3- ) + pt() - CD P  9 (15)

L X . a_

Pu d + Pv ay a (_ -  1 - CsPk (16)
X a y ) B C 3/

CU = 1.0 CB 0.98
+. - (17)

C 0.09 CS  0.058

D
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The basis for using an integral length scale in the dissipation term 'is the
argument that the dissipation scales act merely as an energy sink and that the
dissipation rate is determined primarily by the rate at which energy is fed
from the large scale energy containing eddies. Therefore, the appropriate

length scale for the dissipation term is the same integral length scale that
characterizes the large scale energy containing eddies. Although this

*argument is probably correct in a Lagrangian sense, it does not necessarily
follow that the same length scale can be used to model the turbulence energy
production and dissipation rates in an Eulerian formulation of the equations.

The reason for this is the finite life of the large eddy structure. The

turbulence energy production is necessarily associated with the initial growth
-" phase of the large eddies while the dissipation (or the transfer of energy

from the large scales to the small scale dissipation range) is necessarily
associated with the decay phase.

For mixing layers and wakes, the width of the mixing region approximately
doubles during the life of a typical large eddy. The problem is compounded by

the results of reference (38), which suggest that most of the dissipation
takes place in a short time near the end of the life of the large eddies.
Therefore, because of the finite life of these eddies, the production and

dissipation processes associated with a given group of eddies are separated

both in space and time. At a given location, the eddies responsible for the
turbulence energy production will, in general, differ from those responsible

for the dissipation. Therefore, unless the flow is only changing slowly with
downstream distance, the length scales characterizing the production and

dissipation processes at a given location in the flow will in general be
different. Note that this is a somewhat different physical argument than that

used by Hanjalic and Launder in reference (39).

- In the present model a single additional equation is added for the turbulence

. energy dissipation rate 'E This equation is:

_E 't ki/ 2  2)E +E 3E-~-- k E.,.Q% 6u x  + V Ivo" = -y ( y +  C3PE "[- "C P k-(18)
Cx y dy 3 -7- C4k

Y o

0_ 22

-9 I " ' . I , W - . . . . - ; -- ' ":' -' ' ' 
"

" " - "" ' ' " " " " " " " "" "



." "-V

In equilibrium when the rate of production of ' is equal to its rate of

destruction this reduces to the conventional expression for

S1 2  219C3P € C4P k -( 9

C 3/25C ' 3 k(20)
4

For the two length scale model 'c' is substituted directly into the

turbulence energy equation, equation (15) for the dissipation term. For the
'kk' equation, equation (16), the destruction term is rewritten as:

CsPk3 2  const. pet (21)

3.3.1 Numerical Method

In the present work, use was made of a modified version of a general

two-dimensional parabolic program. This program is part of a series of
programs that includes a three-dimensional parabolic program and a

three-dimensional wall boundary layer program, together with a number of

supporting utility programs. These programs share a common structure and

common input and output procedures. A detailed discussion of the

.- . three-dimensional parabolic program can be found in references 40 and 41.

The describing equations are written in cylindrical coordinates in the

following form:

Continuity

..- ~ -~ pydrl +
prur + pry pru(dT+ n (r-r))] 0 (22-.. ax 3T xd

O.

* 23

-.;. . % *.5,-. - ..
" . . . . . .

::::!::



Momentum

a ru2  2 2 drI d([pru lro-r)] + [pruv " pru (x'-+ n x (ro-r 1))]

1 i) au) dP

= 1 a (r r ) dP (23)
(r -r1  Tyxar a

where r is the effective viscosity, r I and r0 are the inner and outer
radii of the computational domain and

•r-r I  (24)
r-r I

Provision is also made for the solution of up to five additional equations

written in the general form

S- [{rvdr I

x- [pur(ro-r I ) + [(pr pru (-d- + TI dx (r0-r)

- 1 - (r r t) + S (25)
(ro- r1) an a

where S is the appropriate source term for the general variable i*

The density p is obtained from the ideal gas law

p P/RT (26)

where R is the qas constant and T is the static temperature. The static
temperature can be specified as an input or obtained from the solution of an

energy equation.

The finite difference equations are formed by integrating the equations over

24

° . . . . . . .. . ° .. ... , °. . . . . .



small control volumes that surround the grid nodes. First order dffferencing

is used for the convection terms and a hybrid central/upwind differencing

scheme is used for the diffusion terms. The resulting equations are solved

*. sequentially using a standard tri-diagonal solver and the solution is iterated

between planes to convergence.

3.3.2 Relaxation Procedure

Initial attempts to run the 2-D multi-length scale model led to instability

- problems on some runs. As is obvious from the previous discussion, the

* *.addition of a second length scale is equivalent to adding an elliptic term to

the model, although the individual equations are still parabolic. Experience

with the 1-D model suggested that the elliptic effect would be small enough to

allow the use of a marching solution procedure and, at least if the initial

perturbation was not too large, this was probably correct. The problem,

however, was that the turbulence model equations are dominated by the source

terms and small changes in the adjustable constants can lead to large

differences in the behavior of the model. The tendency of the equation set to

develop instabilities made the selection of an optimum set of constants

extremely difficult, since it was often difficult to determine whether the

behavior with a given set of constants was due to an inappropriate selection

of constants or to stability problems. After a considerable effort to develop

a stable marching procedure, it was eventually decided to develop an elliptic

procedure.

The reluctance to use an elliptic procedure initially was due to the fact that

it would be more expensive to run than a marching procedure and that this

would tend to hamper model development. Although this is true, the

disadvantage is not as bad as it might at first seem. First, the use of an

elliptic procedure is not necessarily that much more expensive than a marching

procedure. Second, many of the flows for which the additional length scale

0. will be needed are already elliptic, either because of reverse flow or because

of elliptic pressure effects, so that the use of an elliptic turbulence model

will not necessarily add anything to the cost of calculating such flows. Even

for many of the simpler self-similar flows such as jets, the normal stress

0 .25
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gradients are not really negligible, about 10% of the shear stress gradients,

so the argument that they can be ignored is at best questionable and is in

reality due more to the mathematical simplification that results than to the

fact that the terms are genuinely negligible.

The sensitivity of the model equations to changes in the source terms,

initially led to problems in developing an efficient iteration procedure.

i Simply calculating the dissipation on one sweep and using it on the next sweep

did not work even when the iteration procedure was strongly underrelaxed. The

iteration procedure eventually developed turned out to converge very fast. On

* the first sweep the ratio

e- (27)
k o3/2/9

was calculated and stored. On the second sweep the dissipation term in the

energy equation was multipled by the ratio calculated during the first sweep

and a new ratio based on the most recent values of the variable was calculated

and stored. The dissipation term was therefore

"'__£k *312
k 1 

(28)
i-i i-i 1

where the subscript i refers to the latest iteration.

3.4 RESULTS AND DISCUSSION

In order to obtain some idea of the sensitivity of the standard model to

changes in the dissipation term, a calculation for a simple mixing layer was

run with the dissipation term set to zero in both equations. The results

4 obtained are shown in Figure 6. It was known from previous work that a

reduction in the dissipation term in the turbulence energy equation would lead

to a reduction in the shear stress; but it was not anticipated that a

-reduction in the dissipation term in both equations would also lead to a
reduction in the shear stress.

* 26
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Both equations are source term dominated, so that when the dissipation terms

are set to zero both k and kk must increase. Since the effective viscosity

is assumed to be proportional to the product of k1/2 and 9., one would

expect the effective viscosity also to increase. This does not happen because

the length scale ,9. used in the definition for the effective viscosity and

in the source term for the equation for "k" is obtained from the relation

ktj (29)

What happens when the source terms are set to zero is that "k" increases much

faster than "kV" with the result that "9" and the effective viscosity both

decrease. Calculations with a standard version of the k, c model yielded

essentially the same result.

This behavior is obviously not physically meaningful; but it does provide an

excellent example of why the modeling of a particular term can only be

meaningfully discussed in the context of the model as a whole. It must, after

all, be remembered that we are dealing with a coupled set of partial

differential equations. What appears to happen in this case is that in a

standard two-equation model the production and dissipation terms in both

equations are expressed in terms of the single turbulence velocity scale and a

single turbulence length scale. The coupling that results from this

effectively constrains the ratio t/k so that it remains approximately

constant. When an attempt is made to specify the dissipation independently,

however, this constraint is removed and the model starts to exhibit a

physically unrealistic behavior.

The simplest solution to this problem is to insert the relation

t = const. k (30)

directly into the production term in the "kW" equations to give

- ,311 . 3u,2 k uC ( )- x const const C kk (31)
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One would not expect this modification to have a major influence on the
p.. behavior of the basic two equation model and a limited number of calculations

* supported this view; but it does dramatically change the behavior of the model

when a second length scale is introduced. When the dissipation terms are set

to zero in the modified two equation model, a mixing layer calculation yields

a self-similar solution and approximately a doubling of the shear stress and

the spreading rate.

The resulting turbulence energy, length scale and dissipation equations that

constitute the new two-length scale turbulence model, written in cartesian

coordinates, are as follows:

3 k 3 t Bk + Bu)2
Pu 3 x + Pv = - + y tp3 (32)

k

Y _L _ CfLt) --Qe
PU1**~ + PV3 t 1

=t ay k9 ay-C (33)

ac a C aUt ac k 1/2 C2

Puax + Pvay = (-V ay + C3P - C4P (34)

Ut = CpI/ 2  (35)

The constants used for the calculations presented in this report are:

CU = 1.0, C1 = .355 C2 = .645

C3 = .045, C4 = .5 (36)

From the results obtained so far, the overall behavior of the two-length scale

model appears to be very close to what one would expect from the results

obtained using the simple one-dimensional model. Although a considerable
effort was made to obtain an optimum set of constants, the major effort was

concentrated on a study of the initial developing region of a mixing layer and
it is probable that the constants used for the results presented here are not

optimum for a wide range of flows.

29
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Before discussing these results in detail, it is useful to briefly discuss the

behavior of the modified two-equation model with particular emphasis on the

initial developing region of a planar mixing layer. The calculation was run,

starting from a fully developed turbulent wall boundary layer using the data

specified as starting conditions for CASE 0311 in the 1980/81
'. - ( 4 2 )

AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows. The results

shown in Figure 7 were obtained using the standard k, kk turbulence with the

- source term in the kP- equation modified as described by equation (31). The

same calculation was performed using the k,c model and the results are shown

in Figure 8. The only significant difference between the two calculations is

that the constants in the k, k9. model have been adjusted to match the

asymptotic spreading rate of the fully developed mixing layer and, so, is in

slightly better agreement with the experimental data. Otherwise, both

calculations are very similar.

A detailed examination of the numerical calculations provides some interesting

insights into the behavior of the mixing layer over the initial developing

region. In the wall boundary layer upstream of the separation point, the

turbulence energy production and dissipation rates are approximately in

balance in the steep gradient region close to the wall. Downstream of the

separation point, when the influence of the wall is removed, the dissipation

starts to decrease. The turbulence energy and length scale increase; but

since this is accompanied by a decrease in the mean velocity gradient, there

is no sudden increase in either the shear stress or the spreading rate of the

mean velocity profile. The subsequent relaxation rate appears to be

determined simply by the turbulence time scale. The development of the mixing

layer in this region is, therefore, dominated by the small scale turbulence

and the overall behavior of the flow appears to be predictable from fairly

simple considerations, in spite of the fact that the detailed behavior of the

turbulence may be very complex and still be poorly understood.
-0

Farther downstream both models predict that the spreading rate approaches its

asymptotic value monotonically; there is no evidence of the overshoot observed

experimentally. One consequence of this is that the length of the developing

30

-. * 3 0"' - " '° . ." ' , , . , ' ' " " ' . . - % . . " '" " " " " , ' " ° " -" " " " " "" " - " " . . ," • ' ° .' . - - " - '



C'.4

a L-

x z
u'a

zz

La Z

a. C4)

I-IZ

qa

oil-

W3Y NXW 0HCp

31'



ic b , ..-- .- - -

0 z z S
n ccu

un - n 

o- -D ID

U U

X

EE3

2 IM c

Ofl~~ ~ ~ ~ Hii 3kv )II

32z



region is under predicted by about a factor of four. Even in the fully

developed region of the flow, where the calculated and measured spreading

rates are in agreement, the width of the mixing layer is under predicted.

A calculation of the same flow using the new two-length scale model is shown

in Figure 9 and a plot of the calculated normalized shear stress is shown in

Figure 10. It is clear that use of the new model leads to a considerable

improvement in the agreement between the calculations and experimental data.

The first point to note is that the overall qualitative behavior of the

relaxation process is well predicted. In particular, the length of the

relaxation region is in good agreement with experimental data and it was found

to be fairly insensitive to the values of the adjustable constants. This

again seems to be an indication that the time scale of the relaxation process

is determined simply by the time scale of the turbulence and that it tends to

emerge naturally once the qualitative behavior of the model is correct.

The available experimental shear stress data is not reliable enough for a

direct evaluation of the calculations; but it appears that the calculated

overshoot in the shear stress and mixing rate is somewhat less than that

observed experimentally. The magnitude of the predicted overshoot is

sensitive to the values of the selected constants; but it is believed that

further refinements of the constants is unlikely to significantly improve the

overall agreement. This is due in part to the fact that the one-dimensional

model studied earlier also seemed to under predict the overshoot and in part

to the fact that attempts to obtain a larger overshoot increased the initial

growth rate of the shear stress. This led to a shear stress peak that was too

close to the separation point and no real overall improvement in the

agreement between the calculations and experimental data.

One possible cause of this discrepancy, that needs to be investigated, is that

the small extra strain rate terms that are generally ignored in thin shear

layer calculations may be important in the relaxation region. This is most

likely for the region of the flow just downstream of the separation point

O. where conditions are changing rapidly.
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In spite of this it is believed that the discrepancy is most likely to be due

to the use of constant coefficients. It seems likely, even from simple

physical considerations, that at least some of the coefficients should depend

on the shape of the turbulence energy spectrum. One simple way of

-" incorporating such a dependence would be to make one or more of the constants

a function of the ratio of the turbulence energy production to its dissipation

* rate. Such a study, however, was not possible in the time available for the

*present work.

Although the present study was successful in demonstrating that the addition

of a second length scale equation extends the range of application of current

turbulence models, there remain a number of issues that require more detailed

study. In addition, the development of the new model to the point where it

could be used reliably for practical predictions would require an extensive

evaluation and refinement of the model for a wide range of flows. It is

believed that such an effort would be premature at this time.

The reason for this is that the problem considered here is just one of the

problems encountered in attempts to predict the behavior of complex

three-dimensional jets. Another serious problem is the necessity of using

different constants for planar and axisymmetric jets. Since modeling problems

tend to be interrelated in the sense that a modification that leads to an

improvement for one flow may well yield worse predictions for another flow, it

would be desirable at this time to at least obtain an understanding of the

physical reason or reasons for the planar/axisymmetric jet problem before

embarking on an extensive development program for a new turbulence model.

With this information in hand, it would then be possible to form a balanced

judgment of how best to proceed in the development of an improved turbulence

model.
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4.0 CONCLUSIONS

This report presents results of a study of a new two-length scale turbulence

model. The addition of a second length scale is intended to extend the range

" of application of turbulence models to strongly perturbed flows that are far

from equilibrium. The model is based on the physical observation that the

turbulence shear stress and the turbulence energy production are associated

primarily with the large scale eddies, while most of the turbulence energy is

dissipated by small scale eddies near the high frequency end of the turbulence

energy spectrum. Therefore, except for flows close to equilibrium, separate

turbulence length scales are required to characterize the large and small

scale motions.

Most of the work described in this report deals with a detailed study of the

developing region of a plane mixing layer. Nevertheless, it is believed that

the new model is generally applicable to a wide range of flows, although some

further refinement of the turbulence model constants is probably required.

The new model correctly predicts an overshoot in the developing region of a

mixing layer although the magnitude of the overshoot is slightly less than

. that observed experimentally. With a single length scale equation model,

there is no overshoot at all.

Two important conclusions of the present study, which are only indirectly

related to the new model, are that the form of the production term in most

current length scale equations appears to be incorrect and that the

importance of elliptic effects has probably been underestimated in most

previous turbulence model studies.

37

.. ..



5.0 REFERENCES
-'.

1. Reshotko, E., Ad Hoc Committee Report, "Which Equations of Motion are

Suitable for Prediction of Coherent Structure," Proceedings of

AFOSR/Lehigh University Workshop on Coherent Structure of Turbulent

Boundary Layers, p. 476, 1978.

2. Welliver, A. D., " Propulsion Research Requirements on Powered Lift

Aircraft," Proc. of SQUID Workshop on Engine Airframe Integration, Report

No. PU-RE-78, May 1977.

3. Tjonneland, E. and Birch, S. F., "Applications of Viscous Analyses to the

Design of Jet Exhaust Powered Lift Installations," ASME Paper No.

79-GT-Irs-15, 1979.

4. Bradshaw, P., "The Effect of Initial Conditions on the Development of a

Free Shear Layer," J. Fluid Mech., Vol. 26, Part 2, pp. 225-236, October

1966.

5. Foss, J. F., "The Effect of the Laminar/Turbulent Boundary Layer States on

the Development of a Plane Mixing Layer," Proceedings Symposium on

Turbulent Shear Flows, pp. 11.33-11.42, April 18-20, 1977.

6. Drubka, R. E. and Nagib, H. M., "Instabilities in Near Field of Turbulent

Jets and Their Dependence on Initial Conditions and Reynolds Number,"

AFOSR Report AFOSR-TR-82, December 1981.

. 7. Drubka, R. E. and Nagib, H. M., "Turbulent Jets with Controlled Initial

Conditions," Proceedings IUTAM Symposium on "Structure of Complex

0., Turbulent Shear Flow," pp. 146-153, Springer-Verlag, 1983.

8. Browand, F. K. and Latigo, B. D., "Growth of the Two-Dimensional Mixing

Layer from a Turbulent and Non-turbulent Boundary Layer," Phys. Fluids,

Vol. 22, No. 6, pp. 1011-1019, June 1979.

38
2..- .*. . S..

5*I"~~. . *. . . . . . . . . . * 5- 5 -,S S A



9. Wygnanski, I., Oster, D., and Fiedler, H., "A Forced, Plane, Turbulent

Mixing Layer -- A Challenge for the Predictors," Proceedings 2ndSymposium

on Turbulent Shear Flows, pp. 8.12-8.17, July 2-4, ;1979.

10. Birch, S. F., "A Critical Reynolds Number Hypothesis and its Relation to

Phenomenological Turbulence Models," Proceedings of the 1976 Heat Transfer

and Fluid Mechanics Institute, pp. 152-164, 1976.

11. Birch, S. F., "Turbulent Length Scales in Nonequilibrium Flows,"

Proceedings of the First International Conference on Numerical Methods in

Laminar and Turbulent Flow, University College Swansea, Swansea, pp.

231-243, 1978.

12. Birch, S. F., "Turbulence Models - Progress and Problems," Computer

Methods in Fluids, eds. K. Morgan, C. Taylor, and C. A. Brebbia, pp.

285-308, Pentech Press, 1980.

13. Tollmien, W., "Berechnung Turbulenter Austreitungsvorgange," Z. Angew,

Math. Mech., Bd. 6, Heft 6, pp. 468-478, December 1926. (Available in

English translation as NACA TM 1085, 1945.)

14. Cordes, G., Untersuchungen zur statischen Druckmessung in turbulenter

Stromung, Ing.-Arch., Bd. VIII, Heft 4, pp. 254-270, August 1937.

15. Reichardt, H., "Gesetzmassigkeiten der Freien Turbulenz,"

VDI-Forschungsheft 414, 1942.

16..Liepmann, H. W. and Laufer, J., "Investigations of Free Turbulent Mixing,"

NASA Technical Note No. 1257, 1947.

17. Maydew, R. C. and Reed, J. F., "Turbulent Mixing of Axisymmetric

*; Compressible Jets (In the Half-Jet Region) with Quiescent Air," Sandia

Corp. Research Report SC-4763(RR), March 1963.
.. '..

18. Maydew, R. C. and Reed, J. F., "Turbulent Mixing of Compressible Free

e. Jets," AIAA Journal, Vol. 1, No. 6, op. 1443-1444, June 1963.

39



19. Gartshore, I. S., "The Streamwise Development of Two-Dimensional Wall Jets

and Other Two-Dimensional Turbulent Shear Flows," Ph.D. Thesis, McGill

University, August 1965.

20. Ilizarova, L. I., "Some Results of Velocity Fluctuation Measurements in

the Initial Section of an Axisymmetric Jet," (in Russian), Promyshlennaya

Aerodynamika (Industrial Aerodynamics), No. 27, pp. 111-120, 1966,

Translated into English by A. I. Schidlovosky, APL Translation Series

TG230-T552, March 1968, (AD 669937).

21. Mills, R. D., "Numerical and Experimental Investigations of the Shear

Layer Between Two Parallel Streams," J. Fluid Mech., Vol. 33, No. 3, pp.

591-616, 1968.

22. Sunyach, M. and Mathieu, J., "Zone de Malange d'un Jet Plan," Int. J. Heat

Mass Transfer, Vol. 12, pp. 1679-1697, 1969.

23. Wygnanski, I. and Fiedler, H. E., "The Two-Dimensional Mixing Region," J.

Fluid Mech., Vol. 41, Part 2, pp. 327-361, 1970.

24. Patel, R. P., "A Study of Two-Dimensional Symmetric and Asymmetric

Turbulent Shar Flows," Ph.D. Thesis, McGill University, 1970.

25. Spencer, B. W., "Statistical Investigation of Turbulent Velocity and

Pressure Fields in a Two-Stream Mixing Layer, Ph.D. Thesis, University of

Illinois, 1970.

26. Spencer, B. W., and Jones, B. G., "Statistical Investigation of Pressure

and Velocity Fields in the Turbulent Two-Stream Mixing Layer," AIAA Paper

No. 71-613, June 1971.

* 27. Batt, R. G., Kubota, T., and Laufer, J., "Experimental Investigation of

the Effect of Shear-Flow Turbulence on a Chemical Reaction," AIAA Paper

No. 70-721, 1970.

40

. " " " . .



28. Johnson, D. A., "An Investigation of the Turbulent Mixing Between Two

Parallel Gas Streams of Different Composition and Density with a Laser

Doppler Velocimeter," Ph.D. Dissertation, University of Missouri, 1971.

29. Castro, I. P., "A Highly Distorted Turbulent Free Shear Layer," Ph.D.

Thesis, University of London, February 1973.

30. Castro, I. P., and Bradshaw, P., "The Turbulence Structure of a Highly

Curved Mixing Layer," J. Fluid Mech., Vol. 73, Part 2, pp. 265-304, 1976.

31. Fiedler, H. E., "On Turbulence Structure and Mixing in Free Turbulent
Shear Flows," Turbulent Mixing in Nonreactive and Reactive Flows, ed. S.

N. B. Murthy, Plenum Press, pp. 381-409, 1975.

32. Champagne, F. H., Pao, Y. H. and Wygnanski, I. J., "On the Two-Dimensional

Mixing Region," J. Fluid Mech., Vol. 74, Part 2, pp. 209-250, 1976.

33. Birch, S. F., "On the Developing Region of a Plane Mixing Layer,"

Turbulence in Internal Flows, ed. S. N. B. Murthy, pp. 89-100, Hemisphere

Publishing Company, 1977.

34. Oster, D., Wygnanski, I., and Fiedler, H., "Some Preliminary Observations

on the Effect of Initial Conditions on the Structure of the

Two-Dimensional Turbulent Mixing Layer," Turbulence in Internal Flows, ed.

S. N. B. Murthy, Hemisphere Publishing Company, pp. 67-87, 1977.

35. Hussain, A. K. M. F. and Zedan, M. F., "Effects of the Initial Condition

on the Axisymmetric Free Shear Layer: Effect of the Initial Fluctuation

Level," Phys. Fluids, Vol. 21, No. 9, pp. 1475-1481, September 1978.

36. Hussain. A. K. M. F. and Zedan, M. F., "Effects of the Initial Conditions

on the Axisymmetric Shear Layer: Effects of the Initial Momentum

Thickness," Phys. Fluids, Vol. 21, No. 7, pp. 1100-1112, July 1978.

41
* .. . . . .



' . 1 . 1 dc S. l *- .7 . S . S .. S . . .-

37. Husain, Z. D., and Hussain, A. K. M. F., "Axisymmetric Mixing Layer:

Influence of the Initial and Boundary Conditions," AIAA Journal, Vol. 17,

S.-No. 1, pp. 48-55, January 1979.

38. Dimotakis, P. E. and Brown, A. L., "The Mixing Layer at Reynolds Number:

Large Structure Dynamics and Entrainment," J. Fluid Mech., 78, 3, pp.

535-560, 1976.

39. Hanjalic, K. and Launder, B. E., "Turbulent Transport Modeling of

Separating and Reattaching Shear Flows," University of California, Dept.

of Mech. Engineering, Report No. TF/78/8, 1978.

" 40. Birch, S. F., Paynter, G. C., Spalding, D. B., and Tatchell, D. G.,

"Numerical Modeling of 3-D Flows in Turbofan Engine Exhaust Nozzles," J.

of Aircraft, 15, 8, 1978.

41. Barton, J. M., Birch, S. F., Paynter, G. C. and Crouch, R. W., "An

Experimental and Numerical Study of 3-D Turbulent Jets," AIAA/SAE 14th

Joint Propulsion Conference, Paper No. 78-994, July 1978.

42. Birch, S. F., "Planar Mixing Layer," Proceedings of 1980-81

AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows, Vol. 1,

pp. 170-177, 1981.

42

£-o7
;.?.

B. . . . . . . . . . . . . . . .•- - - . . . . . .



Ol

Ir

9*64

Ki At 1l4.V 44

*~~~ Y'$7 ~r~t

0~ ItJ

'Ile




