

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU-OF STANDARDS-1963-A

UNITED STORES

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
NBRL, BUSM 82-13	3. RECIPIENT'S CATALOG NUMBER
PHOSPHATE ION EXCHANGE RESIN USED IN THE LIQUID PRESERVATION OF BABOON RED BLOOD CELLS	5. TYPE OF REPORT & PERIOD COVEREI Technical Report
	5. PERFORMING ORG. REPORT NUMBER
AUTHOR(*) C. Robert Valeri, Richard Ouellet, John Mostacci, Denise Harmening-Pittiglio, and John J. Vecchione	NO0014-79-C-0168
PERFORMING ORGANIZATION NAME AND ADDREss laval Blood Research Laboratory Boston University School of Medicine 515 Albany St., Boston, MA 02118	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
. CONTROLLING OFFICE NAME AND ADDRESS laval Medical Research and Development Command	12. REPORT DATE 8 June 1982
Bethesda, Maryland 20014	13. NUMBER OF PAGES
MONITORING AGENCY NAME & ADDRESS(I different from Controlling Office) Sureau of Medicine and Surgery Repartment of the Navy	15. SECURITY CLASS. (of this report) UNCLASSIFIED
lashington, D. C. 20372	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
opproved for public release and sale. Distribution	
DISTRIBUTION STATEMENT (of this Report) Approved for public release and sale. Distribution Distribution Statement (of the obstract entered in Block 20, If different fr	
pproved for public release and sale. Distribution	
Approved for public release and sale. Distribution DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse aids if necessary and identify by block number hosphate ion exchange resin Red blood iquid preservation Red blood	a Report)
Imported for public release and sale. Distribution	cell viability
Ipproved for public release and sale. Distribution Important for public release and sale.	cell viability cell function ransport function ected in 14 percent citrate- plastic bags were stored at grams of phosphate anion measurements after auto- osphate anion exchange resin P50 were higher throughout

1.1.1

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

exchange resin. Twenty-four-hour posttransfusion survival measurements in six baboons after autologous transfusions of red blood cells prepared from whole blood stored at 4 C for 21 days showed a mean of 86 \pm 6 percent in the presence of resin and 83 \pm 6 percent in the absence of resin. In five other baboons, red blood cells prepared from 28-day-old blood showed a mean 24-hour posttransfusion survival value of 82 \pm 4 percent in the presence of resin and 75 \pm 4 percent in the absence of resin.

The addition of a phosphate anion exchange resin to the CPD anticoagulant provided better maintenance of red cell 2,3 DPG and P50 levels during storage of whole blood at 4 C, and red blood cells prepared from whole blood stored in this solution had better oxygen transport function than red blood cells prepared from blood without resin. Red blood cell ATP levels and 24-hour posttransfusion survival values were similar whether or not the anticoagulant contained resin.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Enform

leces	sion For	
TIS	GRALI	-X
DTIC	TAB	
	nounced	
Just	fication	
The s		

CAURIA CONTRA

Dist

Distribution/ Availability Codes Avail and/or/

Special

ABSTRACT

....

One-hundred ml aliquots of baboon whole blood collected in 14 percent citrate-phosphate-dextrose (CPD) anticoagulant solution in plastic bags were stored at 4 C for 28 days in the presence or absence of 0.75 grams of phosphate anion exchange resin. In vitro measurements and in vivo measurements after autotransfusions were made to determine whether the phosphate anion exchange resin had any beneficial effect on the blood.

The in vitro measurements of red cell 2,3 DPG and P50 were higher throughout the 28 days of storage at 4 C in the blood stored in the phosphate anion exchange resin. Twenty-four-hour posttransfusion survival measurements in six baboons after autologous transfusions of red blood cells prepared from whole blood stored at 4 C for 21 days showed a mean of 86 \pm 6 percent in the presence of resin and 83 \pm 6 percent in the absence of resin. In five other baboons, red blood cells prepared from 28-day-old blood showed a mean 24-hour posttransfusion survival value of 82 \pm 4 percent in the presence of resin and 75 \pm 4 percent in the absence of resin.

The addition of a phosphate anion exchange resin to the CPD anticoagulant provided better maintenance of red cell 2,3 DPG and P50 levels during storage of whole blood at 4 C, and red blood cells prepared from whole blood stored in this solution had better oxygen transport function than red blood cells prepared from blood stored without resin. Red blood cell ATP levels and 24-hour posttransfusion survival values were similar whether or not the anticoagulant contained resin. Λ

INTRODUCTION

Glucose and adenine have been added to the CPD preservative in an attempt to extend the shelf-life of red blood cells at 4 C. The CPD anticoagulant without the supplement maintains red cell viability for 21 days; the supplemented CPD solution maintains red blood cell viability at 4 C for 35 days.¹ Supplementation of the anticoagulant does not protect the functional property of the red blood cells during 4 C storage. Anticoagulants are not intended for maintenance of 2,3 DPG or blood pH, and there is a significant reduction in these levels after about 10 days of storage at 4 C.²⁻⁴ Anticoagulants are employed primarily to maintain the ATP level of the red blood cells and to ensure 24-hour posttransfusion survivals of at least 70%.

It has been reported that human blood stored at 4 C in the CPD anticoagulant to which phosphate anion-exchange resin had been added showed satisfactory maintenance of blood pH and red blood cell 2,3 DPG for two weeks; red blood cell viability was not reported.⁵

Red blood cell function can be evaluated from in vitro measurements of 2,3 DPG and P50 values, but the posttransfusion survival of the preserved red blood cells cannot be determined either from in vitro biochemical measurements of ATP or 2,3 DPG or from physical-structural measurements of osmotic fragility, mechanical fragility or morphology.⁶⁻¹⁰ In vivo studies must be done to measure posttransfusion survival values, and healthy human volunteers generally have been used in these in vivo studies. Now, however, some investigators are using the baboon as an

initial test model before performing in vivo studies in humans, because of observed similarities between human and baboon red blood cells.¹¹⁻¹⁹

In the study reported here, we made in vitro measurements and measured in vivo circulation of autologous baboon red blood cells prepared from whole blood that had been stored at 4 C for 21 to 28 days in the presence and absence of the phosphorylated ion-exchange resin.

MATERIALS AND METHODS

Eleven healthy male baboons of the species Papio cynocephalus. weighing from 20-30 kg, were used in the study. Prior to phlebotomy each baboon was sedated with 30 mg of phencyclidine hydrochloride (Sernylan) or with 130 mg of pentobarbital. Using an 18-gauge needle and an AE-2 connector set, a 100 ml volume of peripheral venous blood was drawn into a sterile 150 ml polyvinylchloride (PVC) plastic transfer bag containing 14 ml of CPD anticoagulant, and the whole blood was stored at 4 C for 21 to 28 days in the PVC plastic bag. Some of the units were stored in the CPD anticoagulant without resin, and others in CPD with 0.75 grams of phosphorylated ion exchange resin (Cutter Laboratories, Emeryville, CA) supplied in a dialysis membrane pouch approximately 1 X 2 X 3 cm in size. Samples were obtained from the unit of blood on the day of collection (day 0), and 7, 14, 21, and 28 days after collection, for measurements of red blood cell ATP, 2,3 DPG, P50, blood pH, glucose and lactate, and plasma and blood inorganic phosphate levels. The blood was agitated before each sample was taken.

Nine baboons received autotransfusions of red blood cells prepared from blood stored in CPD with resin, and nine baboons received red blood cells prepared from blood stored without resin, and measurements were made of 51 Cr 24-hour posttransfusion survival and lifespan as described previously.^{20,21} The length of time in days when 50% of the red cellassociated radioactivity disappeared from the blood is reported as the T50 value. Red blood cell ATP and 2,3 DPG levels were measured as previously described.²²⁻²⁴

and the second

The red blood cell affinity for oxygen of washed red blood cells in phosphate-buffered saline, pH 7.2, was measured at a temperature of 37 C and a pCO₂ tension of 0 mm Hg using the Hemoscan Oxygen Dissociation Analyzer (American Instruments Co., Silver Spring, MD).²⁵ The pO₂ tension at which 50% of the hemoglobin was saturated with oxygen is reported as the P₅₀ value. Blood pH, pCO₂, and pO₂ determinations were performed at 37 C on the IL 813 Blood Gas Analyzer (Instrumentation Laboratory, Inc., Lexington, MA). Perchloric acid filtrates were prepared from blood for glucose and lactate determinations. Glucose was measured using the glucose oxidase method. Lactate was determined as described by Hohorst using a spectrophotometric procedure.²⁶ Inorganic phosphorus levels in blood and plasma were determined spectrophotometrically.²⁷

The in vitro data were analyzed by non-paired t-test, and the 24hour posttransfusion survival and T50 values were analyzed by either the non-paired or the paired t-test.

RESULTS

Throughout the 28 days of 4 C storage, the units stored in CPD with resin showed consistently higher pH's than those stored in CPD without resin (Table 1 and Figure 1). The initial pH of the blood stored in the resin-supplemented anticoagulant was 7.1; on the 28th day of storage it was 6.9. The blood stored in CPD without resin had an initial pH of 7.0; the pH was 6.7 on the 28th day of storage. After 28 days of blood storage at 4 C, red blood cell ATP levels were similar whether or not resin was used in the anticoagulant (Table 1 and Figure 2).

Measurements of red blood cell 2,3 DPG and P50 made after 14, 21 and 28 days of 4 C storage were significantly higher in the blood with resin, and in each group there was a parallel between the red blood cell P50 value and the red blood cell 2,3 DPG level (Table 1).

Glucose utilization was greater in the blood with resin: after 28 days of 4 C storage the blood with resin contained 141 mg percent of glucose compared with 176 mg percent in the blood without resin. The glucose levels in the blood with resin were consistently lower throughout the period of 4 C storage, although the differences were not statistically significant (Table 1).

Blood lactate levels during the 28 days of storage at 4 C were not statistically different between the two groups (Table 1), although interestingly the levels were somewhat higher in the blood with resin even though this blood had higher pH levels. On the 7th and 14th days of storage, the blood with resin exhibited statistically significant

6.

TABLE

FIG.

FIG. 2

reductions in pCO_2 levels (Table 1). Throughout the 28 days of 4 C storage, blood and plasma levels of inorganic phosphate were higher in the blood with resin (Table 1).

The mean 24-hour posttransfusion survival value was 86 \pm 6 percent for autologous red blood cells prepared from blood stored with resin and 83 \pm 6 percent for those prepared from blood stored without resin for 21 days (Table 2). When the storage period was 28 days, the mean 24-hour <u>TABLE 2</u> posttransfusion survival value was 82 \pm 4 percent for autologous red blood cells prepared from resin stored blood and 75 \pm 4 percent when resin was not utilized during blood storage (Table 2).

DISCUSSION

Human red blood cells and baboon red blood cells preserved in a similar manner exhibit similar 24-hour posttransfusion survival values.¹⁷ In the study reported here, the addition of resin to the CPD anticoagulant before storage of baboon blood at 4 C provided better maintenance of red blood cell 2,3 DPG and P50 throughout 28 days of storage. Red blood cell ATP levels and posttransfusion survival values were similar whether or not the anticoagulant was supplemented with resin.

The blood treated with resin had slightly higher blood lactate levels than the blood without resin. A previously reported observation that an accumulation of lactic acid causes a decline in pH during blood storage at 4 C^{28} was not borne out in our study; we saw higher pH levels throughout the storage period in the blood treated with resin. The higher pH in the blood might have been due to a slow release of monohydrogen phosphate anion (HPO4⁼) from the resin during storage. Inorganic phosphate is known to stimulate glycolysis in red blood cells,^{29,30} and this was reflected in the higher lactate level and greater glucose utilization in the blood stored in the resin for 28 days.

The higher phosphate levels observed in the whole blood and plasma in the presence of resin throughout the 28 days of storage reflected the release of inorganic phosphate. Although inorganic phosphate usually has a deleterious effect on 2,3 DPG and a beneficial effect on ATP, 3^{1-33} in this study +'.e slow release of phosphate anions by the resin helped to maintain blood pH and reduce blood pCO₂ levels, and facilitated maintenance of 2,3 DPG and P_{50} . An increase in the blood pCO_2 level in the blood without resin paralleled a decline in blood pH independent of lactic acid.

The red blood cells prepared from baboon blood after storage in the liquid state in the presence of phosphate ion exchange resins exhibited superior oxygen transport function, but the ATP levels and posttransfusion survival values were similar whether or not the anticoagulant was supplemented with resin.

The baboon can serve as an excellent model for in vivo studies of red blood cells subjected to modified anticoagulants, new plastic containers, and new freezing methods. The safety and effectiveness of these variables can be determined in the baboon before studying human volunteers.

Red Cell 2,3 DPG, ATP, P_{50} , Blood pH at 37 C, Blood Glucose, Lactate, and Phosphate, and Plasma Phosphate, and pCO₂ Levels, in Baboon Blood Stored for 28 Days With and Without

0.75 g Resin

			Day O	Day 7	<u>Day 14</u>	Day 21	<u>Day 28</u>
2,3 DPG (uM/g Hb)	Control	Mean SD SE n	15.85 2.96 0.99 9	9.47 4.10 1.45 8	2.74 1.80 0.60 9	0.89 0.37 0.12 9	0.60 0.52 0.20 7
	Resin	Mean SD SE n	15.08 2.59 0.86 9	13.91 4.45 1.57 8	12.19 4.42 1.56 8	5.59 2.31 0.77 9	2.36 1.13 0.40 8
		df t p	16 0.59 > 0.50	14 2.08 ➤0.05	15 5.91 ∡ 0.002	16 6.03 ≰0.002	13 3.79 ≰0.01
ATP (uM/g Hb)	Control	Mean SD SE n	4.22 0.65 0.21 9	3.96 0.98 0.33 9	3.58 0.88 0.29 9	3.26 0.87 0.29 9	2.46 1.02 0.39 7
	Resin	Mean SD SE n	3.81 0.78 0.26 9	3.56 1.40 0.53 7	2.86 0.86 0.29 9	2.94 0.99 0.33 9	2.55 1.35 0.48 8
		df t p	16 1.23 ▶0.20	14 0.68 → 0.50	16 1.77 ▶0.05	16 0.73 ▶0.20	13 0.15 ▶0.80
Р <u>50</u> (mm Hg)	Contro1	Mean SD SE n	31.82 1.71 0.57 9	28.75 3.14 1.11 8	23.58 2.03 0.72 8	22.43 0.89 0.30 9	21.92 1.04 0.35 9
	Resin	Mean SD SE n	32.13 1.47 0.49 9	31.65 2.57 0.91 8	30.80 2.27 0.76 9	24.67 1.95 0.65 9	23.48 1.84 0.65 8
		df t p	16 0.41 ≱0.50	14 2.02 ▶0.05	15 6.89 ∢ 0.002	16 3.12 ≰0.01	15 2.17 ≰0.05

10.

TABLE 1

10A.

			Day O	Day 7	<u>Day 14</u>	<u>Day 21</u>	<u>Day 28</u>
Blood pH - 37 C	Contro1	Mean SD SE n	7.032 0.036 0.012 9	6.899 0.034 0.011 9	6.822 0.087 0.029 9	6.741 0.038 0.013 9	6.715 0.036 0.012 9
	Resin	Mean SD SE n	7.071 0.037 0.012 9	7.020 0.028 0.010 8	6.945 0.041 0.014 9	6.882 0.043 0.014 9	6.867 0.035 0.012 8
		df t p	16 2.28 > 0.02	15 7.95 ∢ 0.002	16 3.83 < 0.002	16 7.45 ≪ 0.002	15 8.83 ≰0.002
Blood Glucose (mg/dl)	Contro]	Mean SD SE n	357 71 27 7	336 76 27 8	264 59 20 9	213 77 26 9	176 46 16 8
	Resin	Mean SD SE n	348 57 19 9	277 71 25 9	223 49 16 9	187 26 9 9	141 29 10 8
		df t P	14 0.30 ▶0.50	15 1.71 ▶0.10	16 1.63 ≯ 0.10	16 0.94 7 0.20	14 1.84 7 0.05
Blood Lactate (uM/ml)	Control	Mean SD SE n	3.63 1.68 0.56 9	8.46 2.48 0.83 9	14.30 2.48 0.83 9	21.20 6.72 2.24 9	28.90 15.60 5.90 7
	Resin	Mean SD SE n	3.33 1.23 0.41 9	9.14 1.55 0.52 9	15.60 2.23 0.79 8	23.40 6.90 2.30 9	34.80 14.70 5.20 8
		df t p	16 0.43 ▶0.50	16 0.71 >0.20	15 1.17 > 0.20	16 0.67 ≽0.50	13 0.76 > 0.20
Blood Phosphate (mg/dl)	Control	Mean SD SE n	10.80 2.31 0.77 9	15.89 6.14 2.05 9	20.38 3.62 1.21 9	23.94 2.80 0.93 9	21.18 5.44 1.92 8
	Resin	Mean SD SE n	15.06 1.96 0.65 9	17.88 3.64 1.21 9	21.81 5.67 1.89 9	29.19 4.79 1.60 9	27.46 4.55 1.61 8
		df t P	16 4.20 ≰0.002	16 0.84 ▶0.20	16 0.64 > 0.80	16 2.83 ∢ 0.02	14 2.11 ⋧0.05

ŀ

Ľ4

i di se

10B.

			Day O	Day 7	<u>Day 14</u>	<u>Day 21</u>	<u>Day 28</u>
Plasma Phosphate (mg/dl)	Control	Mean SD SE n	12.00 2.67 0.89 9	14.30 5.20 1.72 9	16.20 3.80 1.26 9	16.00 3.30 1.10 9	19.00 3.60 1.28 8
	Resin	Mean SD SE n	15.90 2.93 0.98 9	21.80 3.50 1.17 9	23.90 3.80 1.26 9	23.70 4.90 1.62 9	23.60 6.10 2.16 8
		df t P	16 2.92 ≰0.01	16 3.59 ≰0.01	16 4.32 ≰0.002	16 3.91 ≰0.002	14 1.83 ➤ 0.05
Biððð pCO2 (mm Hg, 37 C)	Contro1	Mean SD SE n	76.5 6.6 2.2 9	92.3 10.0 3.3 9	110.5 22.1 7.4 9	95.7 13.9 4.6 9	72.5 7.0 2.3 9
	Resin	Mean SD SE n	70.2 10.3 3.4 9	64.1 12.9 4.6 8	72.6 15.3 5.1 9	80.0 16.6 5.5 9	66.6 6.9 2.4 8
		df t p	16 1.53 7 0.10	15 5.07 ∠0.002	16 4.24 < 0.002	16 2.17 ▶0.02	15 1.78 ▶0.05

Ż

- 1

TABLE 2

⁵¹Cr Survival In Vivo of Baboon Red Cells Stored at 4 C for 21 to 28 Days

With or Without Resin

Ŋ,

ŝ

<u>Baboon</u>	24-Hour Survival (%) Without Resin With Resin			T50 (Days) Without Resin With Resin		
			21 DAYS AT 4 (<u>c</u>		
1 2 3 4 5 6		87 86 83 86 83 72	77 91 86 81 92 90	12.5 12.5 14.5 15.9 15.5	14.8 14.9 13.9 15.3 14.7	
	Mean SD SE n	82.8 5.6 2.3 6	86.2 6.0 2.5 6	14.2 1.6 0.7 5	14.7 0.5 0.2 5	
Pai	Paired t 1.20 p NS			0.12 NS		
			28 DAYS AT 4 (<u>2</u>		
7 8 9		71 78 77		12.1 17.8 		
	Mean SD SE n	75.3 3.8 2.2 3	 	15.0 4.0 2.9 2		
10 11 8		 	83 77 85		14.1 14.7 11.6	
	Mean SD SE n	 	81.7 4.2 2.4 3		13.5 1.6 1.0 3	
Non-Pa	ired t		97 IS	0.5 NS		

FIGURE 1

 $^{51}\mathrm{Cr}$ survival of baboon red blood cells stored with or without resin for 21 days at 4 C.

 $^{51}\mathrm{Cr}$ survival of baboon red blood cells stored with or without resin for 28 days at 4 C.

ACKNOWLEDGMENT

The authors acknowledge the assistance of Linda E. Pivacek, Cynthia A. Valeri, and Marilyn E. Leavy in the preparation of this manuscript.

REFERENCES

- Valeri CR. Blood banking and the use of frozen blood products. Boca Raton: CRC Press, 1976:35-48.
- Benesch R, Benesch RE. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Siophys Res Commun 1967;26:162-67.
- Chanutin A, Curnish RR. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch Biochem Biophys 1967;121:96-102.
- Valtis DJ, Kennedy AC. Defective gas transport function of stored red blood cells. Lancet 1954;1:119-25.

- 5. Harmening DM, Dawson RB, Masters JM. The use of ion-exchange resins as a blood preservative system. Transfusion 1979;19:675-81.
- 6. Dern RJ, Brewer GT, Wiorkowski JJ. Studies on the preservation of human blood. II. The relationship of erythrocyte adenosine triphosphate levels and other in vitro measures to red cell storageability. J Lab Clin Med 1967;69:968-78.
- Haradin AR, Weed RI, Reed CF. Changes in physical properties of stored erythrocytes: relationship to in vivo survival. Transfusion 1969;9:229-37.

- Nakao M, Nakao T, Tatibana M, Yoshikawa H, Abe T. Effect of inosine and adenine on adenosine triphosphate regeneration and shape transformation in long-stored erythrocytes. Biochim Biophys Acta 1959; 32:564-5.
- 9. Nakao K, Wada T, Kamiyama T, Nakao M, Nagano K. A direct relationship between adenosine triphosphate level and in vivo viability of erythrocytes. Nature (London) 1962;194:877-8.
- Wood LA, Beutler E. The viability of human blood stored in phosphate adenine media. Transfusion 1967;7:401-7.
- 11. Herman CM, Rodkey FL, Valeri CR, Fortier NL. Changes in the oxyhemoglobin dissociation curve and peripheral blood after acute red cell mass depletion and subsequent red cell mass restoration in baboons. Ann Surg 1971;174:734-43.
- 12. Rice CL, Herman CM, Kiesow LA, Homer LD, John DA, Valeri CR. Benefits from improved oxygen delivery of blood in shock therapy. J Surg Res 1975;19:193-8.
- Spector JI, Zaroulis CG, Pivacek LE, Emerson CP, Valeri CR. Physiologic effects of normal- or low-oxygen-affinity red cells in hypoxic baboons. Am J Physiol 1977;232(1):H-79-84.
- 14. Valeri CR, Rorth M, Zaroulis CG, Jakubowski MS, Vescera S. Physiologic effects of hyperventilation and phlebotomy in baboons: Systemic and cerebral oxygen extraction. Ann Surg 1975;181:99-105.

- 15. Valeri CR, Rorth M, Zaroulis CG, Jakubowski MS, Vescera S. Physiologic effects of transfusing red blood cells with high or low affinity for oxygen to passively hyperventilated, anemic baboons: Systemic and cerebral oxygen extraction. Ann Surg 1975;181:106-13.
- 16. Valeri CR, Lindberg JR, Contreras TJ, et al. Measurement of red cell volume, plasma volume, and total blood volume in baboons. Am J Vet Res 1981;42:1025-9.
- 17. Valeri CR, Lindberg JR, Contreras TJ, et al. Liquid preservation of baboon red cells in ACD or CPD anticoagulant: Effects of washing of liquid-stored red cells. Am J Vet Res 1981;42:1011-3.
- 18. Valeri CR, Lindberg JR, Contreras TJ, et al. Freeze-preserved baboon red blood cells: Effects of biochemical modification and perfusion in vitro. Am J Vet Res 1981;42:1590-4.
- 19. Zaroulis CG, Pivacek LE, Lowrie GB, Valeri CR. Lactic acidemia in baboons after transfusion of red blood cells with improved oxygen transport function and exposure to severe arterial hypoxemia. Transfusion 1979;19:420-5.
- 20. Valeri CR, Szymanski IO, Runck AH. Therapeutic effectiveness of homologous erythrocyte transfusions following frozen storage at -80 C for up to seven years. Transfusion 1970;10:102-12.
- 21. Valeri CR, Cooper AG, Pivacek LE. Limitations of measuring blood volume with iodinated I 125 serum albumin. Arch Intern Med 1973;132:534-8.

- 22. Valeri CR. Oxygen transport function of preserved red cells. Clin Haematol 1974;3:649-88.
- 23. Valeri CR. Metabolic regeneration of depleted erythrocytes and their frozen storage. In: The human red cell in vitro. New York: Grune and Stratton, 1974:281-321.
- 24. Valeri CR. Simplification of the methods for adding and removing glycerol during freeze-preservation of human red blood cells with the high or low glycerol methods: Biochemical modification prior to freezing. Transfusion 1975;15:195-218.
- 25. Dennis RC, Bechthold D, Valeri CR. In vitro measurements of P_{50} the pH correction and the use of frozen red blood cells as controls. Crit Care Med 1979;7:385-90.
- 26. Hohorst HJ. L-(+) lactate. In: Bergmeyer HU, ed. Methods of enzymatic analysis. New York: Academic Press, 1963:266-70.
- 27. Daly JA, Ertingshausen G. Direct method of determining inorganic phosphorus in serum with the "Centrifichem." Clin Chem 1972;18:263-5.
- 28. Beutler E, Duron O. Effect of pH on preservation of red cell ATP. Transfusion 1965;5:17-24.
- 29. Rose IA, Warms JVB, O'Connell EL. Role of inorganic phosphate in stimulating the glucose utilization of human red blood cells. Biochem Biophys Res Commun 1964;15:33-7.

- 30. Tsuboi KK, Fukunaga K. Inorganic phosphate and enhanced glucose degradation by the intact erythrocyte. J Biol Chem 1965;240:2806-10.
- 31. Beutler E, Duron O. The preservation of red cell ATP: The effect of phosphate. Transfusion 1966;6:124-9.

- 32. Bishop C. Blood preservation solutions containing adenine, phosphate and guanosine. Proc Soc Exp Biol Med 1966;122:424+8.
- 33. Dawson RB, Kocholaty WF. Hemoglobin function in stored blood. VI. The effects of various phosphate concentrations on the levels of ATP (viability) and 2,3 DPG (hemoglobin function). Am J Clin Pathol 1971;56:656-60.

