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1. INTRODUCTION

A natural formulation for many statistical problems is one combining Bayesian,
sequential and decision-theoretic aspects. For the problem of deciding the sign
of a normal mean, Chernoff (1961, 1965a, 1965b), Breakwell & Chernoff (1964) and
Bather (1962) develop an approach to such a formulation where sums of successive
observations are replaced by a continuous time Wiener process. Subsequently,
this approach has been employed by Chernoff & Ray (1965), Chernoff (1967), Bather
& Chernoff (1967a, 1967b), Feder & Stroud (1971}, Petkau (1978), and Chernoff &
Petkau (1981) in a wide variety of problems.

The continuous time prbb]em has a number of fundamental advantages ovér the
discrete time problem for which it is an approximation. First, the continuous
time problem can be normalized so that many of the parameters which appear in
the original (discrete time) problem are eliminated; thus, a single continuous
time problem corresponds to an entire class:of discrete time problems. Second,
the continous time problem is equivalent to an optimal stopping problem for a
Wiener process where.the cost associated with stopping depends only on the
stopping point; any such problem 1s related to a problem in analysis, a free
boundary problem (FBP) fnvolving the heat equatfon. This relationship
facilitates obtaining bounds and asymptotic approximations for the solution
of the continuous time problem.

While these bounds and asymptotic approximations provide valuable insight,
in mos} problems they do not provide an adequate approximation to the solution.
Techniques are }equired which will provide numerical descriptions of the solution
of the continuous time problem; this solution will then provide approximations

to the solutions of an entire class of discrete time problems.



In this paper we will describe simple numerical techniques which can be
easily employed to obtain explicit descriptions of .the solutions of such
continuous time problems. The basic idea is straightforward: the Wiener process
is approximated by a discrete time process and backward induction is emgloyed
to solve the optimal stopping problem for this new process. The techniques will
be illustrated in a number of problems thereby clearly indicating their
properties. Some of these problems have and some have not been
previously investigated in the literature.

The reader may feel that the path that has just been traced is somewhat
circular. We begin with a discrete time Bayes sequential decision (optimal
stopping) probiem which can be solved by backward induction and approximate it by a

continuous time optimal stopping problem for a Wiener process which we propose to

solve by applying backward induction to a discrete time version of the Wiener process.

However, the situation is not quite so empty. First, as already indicated, the
continuous time problem ailows one to derive valuable characteristics of the
solution inciuding asymptotic approximations. Second, there are available
excellent approximations to the difference between the solution of the continuous
time problem and those of its various discrete time versions. Thus, we can solve
the optimal stopping problem for a particular discrete time version and use the
solution, properly adjusted, to approximate that of the continuous time problem.
This approximation can then itself be adjusted further to approximate the solution
of any of the original discrete time probiems, Thus, the single backward
induction applied to the discrete time version of the Wiener process provides
solutions for the normalized continuous time problem and all of its discrete time
versions.

In this paper we will focus on obtaining numerical solutions for continuous

time problems. The question of whether these continuous time solutions, when

properly adjusted, yield accurate approximations to the solutions of the original
discrete time problems must be considered on a problem-by-problem basis. We
merely mention here that this quest}on has been considered in detail for a
problem invelving Bernoulli data by Petkau (1978) and for a different problem
involving normal data by Chernoff and Petkau (1981); in both cases, the adjusted

continuous time solutfons provided accurate approximations to the solutions of the

original discrete time problems.



2. PROBLEMS UNDER INVESTIGATION

The techniques to be described can be applied to obtain a numerical

description of the solution of our special class of optimal stopping
problems involving zero drift Wiener processes. With one exception, the
normalized forms of the continuous time Bayes sequentfal decision
problems to be considered in this paper are special cases of the
following optimal stopping problem: Given a Wiener process {Y({s): s z_s]] in the
-s scale, described by E(dY(s)} = 0 and Var{dY(s)} = -ds and starting at
Y(so) = ¥ (s0 > s]), find a stopping time S to minimize the risk, E{d(Y(S).S)):
here d(y,s) s the cost associated with stopping at the point (y,s) and stopping
is enforced at the end of the problem, namely, when s = Sy

Some characteristics of the solution of such an optimal stopping problem
can now be described. If we define a(yo.so) = inf b(yo.so). where b(yo.so) is
the risk associated with a particular stopping time (procedure) and the infimum
is taken over all procedures, then since Y(s) is a process of independent
increments, a(y.s) represents the best that can be achieved once (y,s) has been
reached, irrespective 'of how it was reached. Thus, the rule "Stop as soon as
a(Y(s).s) = d(Y¥(s),s)," which yields an optimal procedure if one exists, can be
described by the continuation set C = {(y,s): a(y.s) < d(y,s)} or by its complement,
the stopping set § = €% = {(y,s): a(y.s) = d(y,s)); attention can therefore be
restricted to procedures which can be so described. Note that this character-
ization does not depend upon the initial point (yo.so) and thus yields the
solution for all initial points simultaneously. Chernoff (1968, 1972) has
demonstrated that one should expect the solution (&.C) of the stopping problem
to be a solution of the following free boundary problem (FBP) involving the heat

equation (aC denotes the boundary of the set ¢):

¥d, (yis) = dily.s)  for (y.s) e,

(2.1) dly,s) = d(y.s) for {y,s) ¢S,

ay(y.s) - dy(y.s) for (y.s) ¢ aC ;

this relationship enables one to obtain bounds and asymptotic approximations for

the solution. One particular result is that for any such stopping problem one

should never stop at points (y,s) where H(y,s) = kdyy(y.s) - ds(y.s) < 0; if one

thinks of the optimal stopping problem as a gambling problem, then H(y,s) can be

heuristically thought of as the “rate of losing® at the point (y,s). Further, it

1s obvious from (2.1) that changing the stopping cost function d(y,s) by adding

to i1t any solution of the heat equation leaves the solution S of the FBP unchanged.
Some specfal cases of this general optimal stoppipg problem which have

already been fnvestigated in the l{terature are now described.

Example 2.1. Testing for the sign of a normal mean, Chernoff (1961). X‘. XZ' ».

are independent N(u,02) random variables (o? known). It is desired to test
Hl:" > 0 versus HZ:u < 0, where the cost of a wrong decisfon is kju| and the
cost of observing n X's is cn. If the parameter u is assumed to have a normal
prior, what 1s the Bayes sequential strategy? A normalized form of the
continuous time version of this problem 1s a special case of the general
stopping problem formulated above with

(2.2) dly.s) =s"! +H Y(ylsk) for s >0

here



v(x) = ¢(x) - x{1 - #(x)} for xAi 0,

(2.3) .
= y(-x) for x <0,

while ¢ and ¢ are the standard normal density and cumulative respectively. For
further detail, the reader is referred to Chernoff (1961, }965a. 1965b, 1972),
Breakwell & Chernoff (1964) and Bather (1962). Closely related work appears in
Lindley (1961), Moriguti & Robbins (1962) and Lindley & Barnett (1965). We will

refer to this problem as the sequential analysis probiem.

Example 2.2. One-armed bandit problem, Chernoff & Ray (1965). X]. Koueees Xn are

independent N(u,0?) random variables (o2 known). .The payoff for stopping at n <N
is X] + X2 00 Xn‘ When p has a normal prior, the normalized continuous time

version leads to the special case

(2.4) dly,s) = -y/s for s > 1

The variation where X1 is either a or b with unknown probabilities p and 1 - p and
p has a beta prior is ;elevant to (a) a one-armed bandit problem with a limited
number of pulls available, (b) the rectified sampling inspection problem in which
context this problem first appeared, and (c) clinical trials comparing a new
treatment against a known one with a finite horizon of patients t? be treated,

Chernoff (1967). For discussion of the continuous time versfon, see Chernoff
(1967,1972).

Example 2.3. Sequential medical trials involving paired data, Anscombe (1963).

There 1s a horizon of N patients to be treated with one of two available treatments.

In the initial {experimental) phase, n pairs of patients are treated sequentially -
with different treatments randomly assigned to-thé patients in each pair; the
remaining N - 2n patients are all assigned to the'treatment which is inferred to

be supertor. The differences in the values of the outcomes for each pair are

independent N(1,02) random varfables (o? known) and the cést of treating any
patient with the inferior treatment is proportional to |u|. If the parameter
u Is assumed to have a normal prior, what is the Bayes sequentfal strategy?
The continuous time version, recently studied in detail by Chernoff & Petkau

(1981), leads to the special case

(2.5) d(y,s) = -(1 - V/s) |yl for s> 1.

Related work appears in Begg & Mehta (1979), Petkau (1980), Lai, Levin,
Robbins & Stegmund (1980) and Lai, Robbins & Siegmund (1983). We will

refer to this problem as the Anscombe problem.

Example 2.4. Sequential medical trials for comparing an experimental with a

standard treatment, Petkau (1978). There is a horizon of N patients to be

treated with either the standard treatment, characterized by a known probability
of success Pg» OF the experimental treatment, characterized by an unknown
probability of success p. Sampling is to be initiated with the experimental
treatment and continued with this treatment during an experimental period until

a decision is made in favor of one of the treatments; the remaining patients

are then treated with the favored treatment. There is a cost incurred for each
unsuccessful application of either treatment as well as a cost of experimentation
which is incurred for each patient treated during the experimental period. If

a beta prior is assumed for the parameter p, what is the optimal design? A
continuous time version of this problem leads to the specfal case (here y is a

normalized cost of experimentation parameter)

d(y,s) = v/s -y for y>0,s>1,

(2.6)

v/s - y/s for y<0,s>1.



The above examples arise naturally in the statistical problems described.
In each case, closed form solutions are unavailable; complete descriptions of
optimal procedures are available only through numerical techniques such as those
to be described. In order. to fully t1lustrate the properties of these numerical
techniques, a problem of the same general form as Examples 2.1 - 2.4 but for
which the solution is available in closed form will be useful. The following

modification of Example 2.3 will serve our purpose.

_Example 2.5. Modified Anscombe problem. This artificial problem corresponds

to the specia) case

(2.7) dly.s) = -(1 - 1/s) |y - 2s"%(y(s)/s™)  fors s,
where ;(s) is defined by

(2.8) V- elyls)s) = sz

It is easily verified (see, for example, Chernoff, 1968, 1972) that the optimal

solution (a,C) for this problem is given by

(ly.s): Iyl <y(s) . s>1),

o
"

(2.9)

a.
[}

-yl - 25;"“()'/5“) for (y,s) ¢ C,
where ¥ is defined in (2.3); of course, d=d for (y,s) e S= Cc.

The statistical problems described above all lead to special cases of the
general optimal stopping problem for a zero drift Wiener process in the (y,s)

scale which was described in the first paragraph of this section. While these

statistical problems will be the main interest in this paper, the techniques

to be described apply equally well to a class of gambling problems, the general
case of which can be described as follows: Given a Wiener process {X(t): t ; t])
in the t scale, described by E{dX(t)) = 0 and Var{dX(t)) = dt and starting at
X(to) = X, (t0 < t]). find a stopping time T to maximize the expected reward
E{g(X(T), T)};: here g(x,t) 1s the reward associated with stopping at the point
{x.t) and stopping is enforced at the end of the problem, namely, when t = ty-
The solution of any such problem will not depend upon the initial point

(xo,to) and we will denote the optimal reward at (x,t) by é(x.t). For a detailed
study of this general problem, the interested reader is referred to Van Moerbeke
(1974a, 1974b, 1975) and Shiryaev (1978). Two results of particular interest

are that the solution of this stopping problem can be represented as the

solution of a free boundary problem for the backward heat equation,

Lu +u

XX t :
g, (x.t) + gt(x.t) > 0; H(x,t) can be thought of as the payoff rate or "rate

= 0, and that one should never stop at points (x.t).where H(x,t) E

of winning" at the point (x,t). Again, changing the stopping reward function
g(x,t) by adding to it any solution of the backward heat equation leaves the
solution S of the FBP unchanged.

It should not be surprising that there is a close relation between this
general optima) stopping prob];m for a zero drift'Hiener process in the (x,t)
scale and the general problem in the (y,s) scale which was defined earlier; a
simple change of variables transforms one into the other (see, for example,
Van Moerbeke, 1974a, p.547). In spite of this close relation, we will prefer
to work with the statistical problems in the (y,s) scale and the gambling
problems in the (x,t) scale since these are the natural scales.

Two special cases of this general optimal stopping problem in the (x,t)

scale will be considered.
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Example 2.6. Van Moerbeke's gambling problem, Van Moerbeke (1974a, 1974b).

A gambler loses an amount of money equal to the amount of time the process spends
fn the region x < 0 and wins an amount of money equal to the amount of time spent
in the region x >0. If the ganbler is permitted to stop the process at any time
t, 0 <t <1, what is the optimal strategy? 0

For this problem, the payoff rate H(x,t) = + 1 depending on whether the
process is in the positive or negative x half-plane; clearly the gambler should

never stop in the win region, x>0. A naive gambler would stop as soon as the

lose region, x < 0, was entered, but it may pay to lose a bit now in the hope

of winning in the more remote future. The reward function described above differs

from

g(x,t) =1 - ¢+ 2x2 for x>0,

(2.10)
=1-1t

for x <0,
by a solution of the backward heat equatfon. Hence this problem 1s equivalent
to the special case with reward function g{x,t). Van Moerbeke has established

that the optimal solution (a.C) for this problem is given by

C=tlxt): x> -a(1- )%, teny,

(2.11) ‘9lxat) = 201 - (1 + w2) + a1 - t) (welw)

= O+ W) - e(w) 1)/ 6(a) for {x,t) ¢ C,

[}
where w = x/(1 - t)? and o = 0.5061 is the solution of adl(a) = ¢(a).

n

Example 2.7. The Sn/n problem with finite horizon . In the infinite horizon

version of this problem a gambler is allowed to view successively as many terms
as he pleases of a sequence Xl. X2. ... of independent random variables with
common distribution F. If upon stopping at time n the ganbler receives a
payoff of Sn/n. where Sn = x] + ...+ Xn, what is the optimal strategy?

This problem was first studied by Chow & Robbins (1965), who proved the
existence of an optimal stopping.rule when F is a two point distribution.
They also proved the intuitively obvious but nontrivial fact that an
optimal rule 1s to stop at the first n at which Snz Bne and provided
a method of calculating the sequence of numbers By in principle. Dvoretsky
(1965) and Teicher & Wolfowitz (1966) proved that the same result holds for

any F with finite second moment (the g's depend upon F, of course). ODvoretsky

also showed that if F has zero mean and unit variance then 0.32 ... 5_Bn/nk <
4.06 ... for n sufficiently large, and conjectured that lim 8n/nk existed.
This conjecture was proved independently by Taylor (1968), Walker (1969), and
Shepp {1969), who found 0.8399 ... as the limiting value. They pointed out
that considered for large values of n, this problem would be equivalent to its

Wiener process analogue, the special case where for 0 < t <
glx,t) = x/t ;
the optimal solution (g,C) for this problem fs given by

€= {(x,t): x :_ut% v 0 <t <)

oxt) = (1 - a2)t %e(w)/o(w) for (xst) ¢ C,

where w = x/tk and o« = 0.8399 is the solution of ada) = (1 - a2)é(a) .
The fintte horizon varfation of this problem, 1n which the gambler is
permitted to observe at most N terms of the sequence X], XZ""’ has been

considered by J. L. Snell & H, Tisdale (1978). A normalfzed form of the
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continuous time version of this problem leads to the special case where for

0<t<1,

(2.12) g{x,t) = x/t ;

it 1s this particular version of the Sn/n problem which will be considered here.

In the remainder of this section we briefly preview the rest of this
paper. In Section 3, the backward induction methods for the normal and binomial
discrete time versions are described together with alternative versions of
continuity corrections. In Section 4, the examples we have presented are
discussed to illustrate and evaluate the continuity corrections. The modified
Anscombe problem, Example 2.5, for which the solution i; known illustrates the
case of a symmetric region where the boundary is monotone. Example 2.6, Van
Moérbeke‘s gambling problem, illustrates the case where truncation may be used
to capitalize on one-sided stopping regions. Example 2.7 {1lustrates the case
where the boundary 1s not monotone.

In Section 5, the problem of computing solutions over large ranges of s
values is addressed by a technique of changing increments in s. This method is
used to present numerical results for the important classical sequential
analysis problem, Example 2.1, and one-armed bandit problem, Example 2.2.

Finally in Section 6, a new example is introduced. This is the Anscombe
problem with ethical cost considerations. It §s new in two senses. It has not
been treated before in the literature. It is different from Examples 2.1 to
2.7 in that the posterior risk on stopping depends not only on the current
position of the Hiene( process but also on the past history. This problem
can still be solved numerically by backward induction or it can be transformed

into a stopping problem of the same form as the others.

13

3. NUMERICAL TECHNIQUES

| In this section we describe the techniques to be employed in obtaining
numerical descriptions of the solution of the general optimal stopping problem
for a zero drift Wiener process in the (y,s) scale defined at the beginning of
the previous section. As already indicated, the basic 1dea is straighforward:
the process Y(s) which is a Wiener process in the -s scale, is approximated by
a discrete time process, and backward induction is used to solve the optimal
stopping problem for this new process. Using asymptotic results concerning
the relation of the solutfon of tpe discrete time problem to the solution of
the Wiener process problem, the discrete time solution can then be adjusted

to provide an approximation to the solution of the conti&uous time problem.

A natural approximation to the continuous time problem results if one
considers the discrete time problem where one is permitted to stop only on the
discrete set of possible values of s, (s] +ia, 1=0,1, ...} . Nhilg the
value of s decreases by & between these successive possible stopping times,
the process Y(s) changes by a normal deviate with mean 0 and variance a; in
effect, the Wiener process 1s being approximated by an appropriate sum of
independent norma] random variables. At any point (y,s) where s corresponds to
a permissible stopping time, the choice between either stopping at this point
or continuing on to the next permissible stopping time and proceeding optimally
thereafter 1s made on the basis of wﬁich of d(y,s) or E[&(Y(s- A),s - a)|Y(s) =y}
is smaller. Thus, the backward induction algorithm which yields the optimal

solution to the stopping problem for this discrete, time process is specified by

aly.s) = dly,s) fors = s, .

(3.1) . "
= min[d(y,s), E{d(y + Za*, s - 4)}] for s > 5,



where Z represents a standard normal deviate.

This approximation is a natural one since the discrete time problem is

embedded within the continuous time problem; the former corresponds to the

special case of the latter where one is permitted to stop only on the discrete

set of vaiues of s given by (sl +ia, 1=0,1, ...}.

From this point of view

it is obviols that the continuous time problem is more favorable. For a sequence

of values of A approaching 0, the solution of the discrete time problem (both

the continuation region and the risk) would approach that of the continuous

time

problem in a monotonic fashion.

Note that the evaluation of the expectation appearing in (3.1) would

require a numerical integration for which purpose the y axis would also be

discretized.

Thus, in practice, the backward fnduction is carried out on a

grid of (y,s) points each of which is classified as efther a stopping or

continuation point during the course of the computatfon.

How would one use the results of the backward induction algorithm (3.1)

to obtain an approximation to the boundary ;(s) of the continuation region for

the continuous time problem? Chernoff (1965b) presents a detailed investigation

of the relation of this discrete time problem to the continuous time problem;

the results Tead to two distinct methods of approximating the continuous time

boundary ;(s).

The first method consists of simply adjusting the boundary of the optimal

continuation region for the discrete time problem; this boundary is determined

by the "break-even" points ;A(s) at.-which d(y,s) = E(&(y + ZA*. s - 4))

Chernoff (1965b) has established that

(3.2)

;(&) = ;A(s)_ikak + ofa

),

15

where the sign is determined so as to make the continvation region for the
Wiener process problem larger and k = -c(k)//7;'= 0.5826, where ¢ is the
Riemann zeta furction. The first method should then be clear: For a (reasonably
small) value 4, carry out the backward induction algorithm and obtain the
break-even points ;A(s) at each fixed value of s. Then use the correction
implied by (3.2) to approximate y(s). Note that since the entire backward
induction is carried out on a grid of (y,s) points, the break-even points 9A(S)
would only be obtained approximately, presumably by some interpolation or
extrapolation scheme (Day, 1969, provides the details of a scheme for car}ying
out the backward induction together with an 1nterbolation scheme for approx-
fmating the break-even points for the discrete time version of Example 2.3).

He shall call this the adjustment method and label it A,

For the second method, the break-even points need not be approximated.
Chernoff (1965b) has established that, in the neighbourhood of the boundary
of the optimal continuation region for the continuous time problem, the
difference between the optimal risk for the discrete time problem and the cost
for stopping behaves asymptotically (as o + 0), at every fixed value of s,
like a simple function which depends upon the (unknown) location of the
continuous time boundary at this value of s and whose form he provides; indeed,
it is this result which leads to the relationship (3.2) . This result forms
the basis of the second method: For a (reasonably small) value of a, carry out
the backward fnduction algorithm to obtain the optimal risk for the discrete
time problem at each grid point. Then, a{ each fixed value of s, fit the known
values of the difference between the optimal risk for the discrete time problem
and the cost for stopping at those grid points in the interior of the continuation
region (but adjacent to the boundary) to the relationship provided by Chernoff



(1965b) in order to approximate (or, more precisely, to extrapolate to) the
location of the continuou$ time boundary (further details for a closely related

scheme will be provided below). We shall call this the extrapolation method

and label it E.

While the discrete time process with normal increments is the most natural .
approximation to the Wiener process, we propose to use the simpler approximation
in which the Wiener process Y is replaced by the simple random walk process
where Y(s - ) = Y(s)j;A%. each with probability 1/2. This approximation to the
Wiener process results in a very simple corresponding backward induction
algorithm; the standard normal deviate Z in (3.1) is replaced by a random

Jariable which is + 1, each with probability 1/2, leading to the algorithm

d(y,s) = dly.s) for's = s,
(3.3)
Y

min[d(y.S).(&(yM", s-a)+dly-a% s-a)1/2]  fors > 5q-

Obviously, this algorithm is considerably simpler to implement than that
specified by (3.1) which requires a numerical integration to evaluate the risk
at each grig point (y,s). As was the case with the previous approximation,
the backward {induction 1s_carried out on a grid of (y,s) points; in the present
approximation, however, the discretization of the y-axis is necessarily related
to the discretization of the s-axis. Whereas the Wiener process was previously
being approximated by the s;m of its increments, in this simpler approximation
the increment of the Niene} process is itself replaced by a Bernoulli random
variable. While the second moment of the Bernoulli variable is chosen to match
that of the increment it is re?]acing. the higher even moments do not match.

Tn general, therefore, it is not clear whether this discrete problem is more
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or less favorable than the Wiener process broblem. Further, while the solution
of this discrete time problem (both the continuation region and the risk) would
also approach that of the continuous problem as A approached 0, one would not
necessarily expect the behavior to be monotone.

Chernoff & Petkau (1976) have investigated the relation of this discrete
time simple random walk problem to the original continuous time problem. They

establish that the appropriate analogue of (3.2) for the present case is

(3.4) yls) = y,(s) + 0.50%+ o(s"),

-and also provide the form of the simple function which describes, for each

fixed value of s, the asymptotic (as A + 0) behavior of the difference between
the optimal risk for this discrete time problem and the cost for stopping in
the neighbourhood of the boundary of the optimal continuation region for the
continuous time problem. These results enable the same two general approaches
described above of approximating the continuous time boundary to be used in
connection with the backward induction algorithm (3.3). Further detail§ of
these methods in the context of this discrete time simple random walk
approximation will now be provided. For simplicity of discussion, we will
suppose throughout the remainder of this section that we are in the case of a
one-sided problem where the optimal continuation region for the continuous
time problem is given by C = {{y,s): s > 5 and y < ;(s)) , where ;(s) is
monotonically increasing in s.

To implement the adjustment approach, the break-even points iA(s) at

which d(y,s) = d*(y,s) where

(3.5) d* (y,s) = (dy+4a%, s-a) + dy- 4%, s-a)1/2 .
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must be approximated at each fixed value of s ¢ {s] +ia:i=1,2, ...} .
In carrying out the algorithm (3.3) at s, one would discover the grid level
= yo(s) on the y axis determined by the condition that the grid points
(yo - jA%. s) = (yj.s) say, be classified as continuation points (d* < d)
for J = 0,1, ... and as stopping points (d* > d) for j = -1,-2, ... . The
grid level yo(s) might be called the higheét. or last, continuation level
at s; the sequence of highest continuation levels would be nondecreasing
and a naive aﬁproximation to }A(s). the break-even point at s, would be
provided by yo(s). Note, however, that in the case of this discrete time
random walk approximation, the gria being employed has a vertical spacing
of Ak which is coarse compared to the horizontal spacing of a; for reasonably
smail values of 8, therefore, as s increases successive values of yo(s)
would often be identical and this naive approach would produce a serfes of
steps as an approximation to the gradually increasing sequence of break-even
points. One might attempt to smooth the sequence of levels ¥o(s) to form
an improved (hopefully) approximation to the sequeﬁce of break-even points
;A(s). This could be accomplished by the crude approach in which }A(s) is
approximated by yo(s) only at those values on the s grid where the last
continuation level changes, that is, yo(s) > yp(s - 8); line segments
connecting these approx%mat‘on points could then be used to approximate
;A(s) at any intermediate value of s. The approximation can then be adjusted
by 0.5A5 to provide the crude adjusted estimate of 9(5); this method is
labelled CAT

The above method of approximating the break-even points may seem crude
since the computed values of the risk at the grid points are completely

ignored, except that they are employed to classify the grid points as either

stopping or continuation points . In carrying out the algorithm (3.3), the
value of d-d* is determined at each grid point; at each fixed value of s then,
the values of d-d* at the grid points could be used in an interpolation to
approximate the break-even point }A(s). The simplest such scheme would be a
1inear one based on the values of d-d* at yo(s) and y_](s) = yo(s) + Ak. the
grid levels between which it is known that the break-even point QA(S) lies.
Alternately, one might employ%a quadratic interpolation scheme based on the
values of d-d* at either y](s). yo(s) and y_](s) or yo(s). y_](s) and y_z(s).
Day (1969, p.306) points out that for two-sided problems with normal
increments where d-d* is symmetric and convex (in y at each s) and has a
monotone decreasing second derivative, these two quadratic interpolations
will actually yield an underestimate and an overestimate respectively of the
break-even point 9A(s). This suggests, and we shall use, the average of the
two Interpolated values as the approximation. The estimates of §A(s)
described here can be adjusted by O.SAk to give variations of A which may be

called LA and QA for linear adjusted and quadratic adjusted.

Each of the above adjustment methods involves adjusting an estimate of
;A(s). It is possible, at considerable computational expense, to approximate
the points }A(s) more precisely by repeating the discrete backward induction

with each of a series of related grids. By using the grid

(3.6) (G.S:s=sg+in, ymctkah i =01, o, k=04, ...)

with many fractional values of C/A% (without Toss of generality, we assume

0<cc< A%), one can estimate the break-even points QA(S) arbitrarily well.



We now consider EX, an analogue of the extrapolation method E, which

bypasses the explicit calculation of }A(s). Defining

Dly,s) = dly,s) - d(y.s) ,
where d is the optimal risk in the discrete time problem (the function
evaluated by the algorithm (3.3)), the results of Chernoff & Petkau (1976)

indicate that for the one-sided problem under discussion, at each fixed value

of s, one should expect
(3.7) D(y(s) + vat,s) = - H(y(s),s)r(v)a

where the function r(v) is given by

r(v) =0 for v > -1/2 ,
(3.8) 2 2
= v® - inf(v + j) for v < -1/2 ,
J
and
(3.9) H(y,s) = % dyy(y.S) - d.y.s)

is the "rate of losing". Suppose then that the algorithm (3.3) has been
carried out and we wish tq approximate }(s). At those values on the s grid,
the value of D{y,s) is available at yj(s) for j =0, V1, ... (of course,

D=0 at yj(s) for j = -1,-2, ...). If we represent
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(3.10) Yols) = yls) + v,

°

we only require an approximation for v. Fitting the known values of D at

yo(s) and yl(s) to the re]atign (3.7) leads to

2 D(yy(s)es) = ar(v). ,

(=]
#

(3.11)
E D(y](s),s) = ar(-1 +v)

—
|

where the unknown constant a = -H(;(s).s) . Assuming as suggested by (3.4)

that - 15 <vs - & , (3.11) becomes

D= av? - (v+ 1)) =-aleve 1),
(3.12) ‘
= a{(v - ])2 - (v + 1)2) = -a(dv) .

Solving the system (3.12) leads to the approximations

a-= —D]/4v >
{3.13)

<
I

= 01/2(200 = Dl) B

this value for v is then substituted into (3.10) to yleld the extrapolation
estimate of }(s); this method is labelled EX. Note that in the special case
where yo(s) is itself a break-even point, D0 = 0 and this extrapolation scheme

calls for estimating ;(s) as yo(s) + 0.5A¥, while in the case Do< 0 the scheme



22

calls for a correction which is Targer than O.SA* ; these properties agree
with what is suggested by (3.4).

In summary, the technique which we propose to employ to solve the general
optimal stopping problem for a zero drift Wiener process in the (y,s) scale defined
earlier is as follows: The Wiener process Y(s) is approximated by a discrete
time simple random walk process and backward fnduction is employed to solve the
optimal stopping problem for this discrete time problem. The solution of the
discrete time probiem is then adjusted by one of the methods CA, LA, QA or EX
to approximate the solution of the Wiener process problem. In the above, details
of the methods of adjusting the discrete time solution have been discussed in
the context of a one-sided problem with a monotone increasing boundary. It should
be clear that the same methods can be used in problems with more complicated
types of optimal continuation regions. Further, it should not be surprising that
exactly the same techniques can be employed to solve the general optimal stopping
problem for a zero drift Wiener process in the (x,t) scale defined earlier.

The reader will already have noticed that while we have dwelt at some
Tength on adjusting the boundary of the optimal continﬁation region for the
qiscrete time problem to provide an improved approximation to the boundary
of the optimal continuation region for the continuous time problem, nothing
has been said about how one might similarly adjust the optimal risk. In order
to do so, a relationship between the discrete and continuous time risks

analogous to the relationship between the boundaries given by (3.4) would
be necessary; unfortunately, no such relationship is known at present.

In the next section, these techniques will be 1llustrated on some of the
examples described in Section 2; the behavior of the optimal discrete time risk

as an approximation (unadjusted) to the optimal continuous time risk will also
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be considered. We remark that for certain problems there are a number of ways
of reducing the labor involved in carryfng out the backward induction algorithm
(3.3); these typically depend upon the particular problem under consideration

and will be discussed as the opportunity arises in the next section.



4. TLLUSTRATION OF TECHNIQUES

In this section we illustrate the behavior of the general technique described

in the previous section in the context of some of the examples presented in
.Section 2; each example has its own particular features, but the basic algorithm
is in every case the same. While application of this technique to derive refined
estimates of the optimal boundary and risk for the continuous time problem would
require an exorbitant amount of computation, nevertheless, it is extremely easy
to program and relatively coarse grids on the s axis yield surprisingly accurate
estimates.

The (y.s) problems which have been described all have the property that the
interval of possible values of s is infinite. For these statistical problems, the
region of large values of s is of particular interest since it corresponds in
each case to the "beginning" of the problem where little information is yet

available. The question of how one obtains estimates in a practical mamner for

large values of s will be discussed in the next section; in this section we restrict

attention in each case to the interval 100 > s > Sy

We begin with the examples for wﬁich exact solutions are known; these permit
a careful examination of the convergence of the estimates as the grid spacing is
refined. We then discuss the implementation of the techniques for the other

examples and present a few results.

Exampie 2.5. Modified Ansconbe problem. This problem is symmetric in y with

optimal continuation region C = {(y,s): }y| :};(s). s > 1), where the monotonically
increasing boundary y(s) is specified by 1 - o(;(s)/sk) =§71y2 Note that

;(s) ‘(n/z)*(s - 1) as s + 1 and ;(s) = (2s log s)lj as s + e,
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Consider carrying out the algorithm (3.3) to determine the solution of
the corresponding random walk problem, using a grid of the form {3.6) for
some value of c. The computation proceeds in stages: At the fnitial (zero-th)
stage, the values of & are assigned at all points of the grid corresponding
to the final value of s, namely s = sy " 1. At the kth stage, a has already
been evaluated at all points of the grid corresponding to the values of
s=1+J5 forj=0,1, ..., k-1; & {s then evaluated at all points of
the grid corresponding tos = 1 + ka . In the course of this computation
which yields the optimal risk for the random walk problem, each of the
individual grid points is classified as either a stopping point or a continuation
point for the random walk problem. Thus, the sequence of highest coniinuation
levels corresponding to the partfcular grid being employed are determined and
any of the methods described in the previous section can be employed to obtain
an approximation to the continuous time boundary ;(s).

While this computation is straightforward, there are a number of fairly
obvious modifications which reduce the amount of computation involved in
carrying out the algorithm (3.3) for this particular problem. First, due to
the symmetry, we have d(-y,s)=d(y,s) at each s. Using a grid which is
symmetric about y = 0 (use of ¢ = 0 in (3.6)) then allows attention to be
restricted to the positive y half-plane. Second, 1t is fntuitively obvious and
easy to show that the sequence of break-even points for the random walk problem
inherits the monotonicity property of the continuous time boundary ;(s). Thus,
at stage k where s = 1 + k-a, the grid levels O.Ak. ZAB, cees yo(l + (k - Da),

where yo(] + (k - 1)a) is the highest continuation level corresponding to

s =1+ (k - 1)a, are known to be in the continuation region. At stage k then,
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& can simply be assigned the value of d* (sée (3.5)) at these grid levels. The
minimization indicated by the algorithm (3.3) néed be carried out only at
successively higher grid levels until the first stopping point is encountered;
all higher grid levels will also be within the stopping region for the random
‘walk problem. In fact, for reasonable values of A, the minimization need be
carried out only at the‘single grid level y_](] +(k - 1)a) = yo(l + (k - 1)a)
+ A% since if the highest continuation level does change at stage k, 1t will
change from yo(1 + (k - 1)a) to y_](l + (k - 1)a).

These computations have been carried out for a sequence of grids specified
by decreasing values of the grig spacing A. Since the only apparent pattern

in the size of the errors, e = ; - ; of estimation of the continuous time

boundary ;(s) was a very slight tendency for the errors to decrease as s increased,

an overall summary should be.an adequate description. Such an overall summary
for each of the methods CA, LA, QA and EX is provided in Table 1.

Examination of Table 1 reveals that while methods CA and QA underestimate
the correction required to approximate the continuous time boundary for coarse
grid spacings and overestimate it for the (more reasonable) finer grid spacings,
method LA overestimates the correction for all spacings considered. Method EX
underestimates the correction for coarse grid spacings, but this bias begins
to disappear as the spacing is refined. Perhaps the most important observation
to be made about Table 1, however, is the apparent relationship between the size
of the errors made and the grid spacing for method EX: refining the grid spacing
in s by a factor of 4 appears to reduce the size of the errors, as measured by
either Ave (|e[) or Max (|e|), by a factor of between 3 and 4 (note that if the

factor truly is 4, this implies the size of the errors is proportional to the

grid spacing in s). Since refining the grid spacing in s by a factor of 4 involves
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8 times as much computational work, this leads to the rough estimate of 2.8 to
3.7 times as much work required to reduce the size of the errors by a factor
of 2 when method EX is employed. Although it is clear that the size of the
errors made by the other methods will also decrease as the spacing 1s refined,
the agtual behavior is unpredictable since no such empirical relationship is
obvious for these other methods. The table clearly indicates that while
methods CA and EX should not be used with coarse grids, these become the
preferred methods with the (more reasonable) refined grids. It should be noted
that all four methods provide excellent approximations to the continuous time
boundary ¥(s) when reasonable grid spacings are employed.

The optimal risk for the discrete time simple random walk problem was
also examined as an approximation to the optimal risk for the continuous time
Wiener process problem. A cryde summary of the errors in this approximationl
is presented in Table 2. This summary indicates that refining the grid spacing
in s by a factor of 4 leads to a reduction in the size of the errors by a
factor of between 3 and 4 also. Further, the table clearly indicates that the
risk in the discrete time simple random walk problem provides an excellent
approximation to the optimal risk for the continuous time problem, even for
quite coarse grids.

We remark that in contrast to the continous time problem, the random walk
problem under consideration here has the property that the continuation region
is prematurely truncated; that is, there exists an interval on the s-axis,
(].Sf(A)), on which none of the grid points will be classified as continuation
points. An easy calculation indicates that, for small values of a, the grid
point y =0, s = 1 + ka will first (as successive stages of the backward

induction are carried out) belong to the continuation region for the random
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walk problem when k = (ZHA)-B + 1+ 0o(1). While this represents a substantial
number of successive stages only for very small values of o, this feature could
also be incorporated to make the computation more efficient for such small

values of A.

Example 2.6. Van Moerbeke's ganbling problem. This gambling problem has a
one-sided continuation region C = {(x,t): x > x(t), t < 1} with monotenically
increasing boundary x(t) = -a(1 - t)g. where a = 0.5061 is the solution of
a¢{a) = ¢(a). Although this problem is formulated in terms of the Ffunction

" g(x,t) which specifies the reward received by the gambler upon stopping at (x,t)
and is given in (2.10), the problem can be equivalently formulated in terms of

the stopping cost function

d(xlt) r 'g(xrt)

The appropriate modification of the algorithm (3.3) is then given by

&(x.t) &(x,t) fort =1,
(4.1) ' ‘

minfd(x,t), [&(x+A¥.t*A);-a(x-Ak.t*A)1/2] for t < 1.

While the first few stages of this algorithm can be carried out analytically
and lead to break-even points ;A(l -8) =0, ;A(I-ZA)= (—2*33)Ak = -0.268A5,
;A(l-3A)= -(4’105)A5/2 = -0.419Ak, and so on (note that applying the %AH
correction to these exact break-even points would lead to estimates of the
continuous time boundary of x(1-8) = -0.5008", x(1-28)= -0.543(28)",
;(1-3A)=-0.531(3A)B. and so on), these exact calculations become unmanageable

after a few stages.
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Carrying out the algorithm (4.1) proceeds similarly as in the case of
Example 2.5 and any of the_methods described in the previous sectfon can be
employed to obtain an approximation to thecontinuous time boundary ;(t).

The present problem, however, has its own special features. For the contin-
uous time problem, {(x,t): x > 0, t < 1} C; this fact would be known even
if the exact solution were unknown since the “rate of winning®,

H(x,t) = ¥g_ (x,t) + g (x,t) > 0 for x >0, t < 1. Since it can easily be
shown that the sequence of break-even points for the random walk problem
inherits the monotonicity property of the continuous time boundary ;(t). and
since ;A(l - 4) =0, the above result is algo true for the discrete time.
random walk problem. Again, it can be shown that the minimization indicated
by the algorithm (4.1) need only be carried out at a single grid level at
each stage of the computation.

The fact that a{] grid points above the x axis are known to be continuation
points can be incorporated to reduce the amount of computation required in
car?ying out the algorithm (4.1). Consider a particular path of the random
walk process originating at the point (x,t) = (c + Ak. 1 - na). The path of
the process could hit the grid level x = ¢ for the first time at :
t=1-(n-1)a, V- (n-3)a, ...; alternately, the path ceuld remain above
the 1ine x = ¢ all the way to t = 1. Since all che grid points (c, 1 - ta)

for £ =1, 2, ... are continuation points, we have the relation

o n o o -
(4.2) d(c+Ak.l-nA) = Ilpmd(c.l-(n-m)A) + kz?" kd(c+kA".l)
m= =]"?*

where P is the probability that a simple random walk starting at the origin

first passes through the Tevel -1 at the mth step, and 9,k is the probability
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that a simple random walk starting at the origin stays above the level -1 for

the first n steps and achfeves level k - | at the nth step. Feller (1968, p.89,
Theorem 2) provides ' '

= m -m
Pu = ﬁ'[(m+l)/2]2 for m odd ,

= 0 for m even ;

for m positive, P2 = mpm/(m + 3) with Py = 1/2 and Po.= 0. Feller (1968, p.73,

Ballot Theorem) alsc provides

U,k = 0 for n + k even ,

k' n+l -
mT [(n+k+l)/2 ]2 u otherwise .

The relation (4.2) provides a slight modification for carrying out the

ba?kward induction which we will call the truncation modification. At the

initial (zero-th) stage, that is at t= 1, the risks are specified by d(x,t).
At any subsequent stage, corresponding to t = 1-na say, compute the risk at
the grid level x = ¢ + 2% by means of (4.2). The risks at the grid levels
x=c+ kAk for k = 0, -1, -2, ... can be computed using the algorithm (4.1)
as described above.

Returning for a moment to the continuous time problem, we have already
pointed out that changing the‘stopping reward function by adding to it any
solution of the backward heat equation leaves the optimal continuation region

unchanged. For present purposes, it is convenient to consider the new stopping

K}

reward function g'(x,t) defined by

9'(x,t) = g{x,t) - 2(1 - t + x?) ,

or the new stopping cost function d'(x,t) = -g'(x,t). MNote that d'(x,1) = 0
for x > 0. The algorithm (4.1) can be employed to obtain the optimal risk
J'(x.t) for the discrete time random walk problem corresponding to this
version of the continuous time problem; in this case the relation (4.2)
simplifies to

(8.3) d(c+a,1-m)-= '{']pmd“-(c.l - (n - ma)
.\3 m'_'

which results in a reduction in the computation involved in carrying out the
algorithm. Limited empirical evidence suggests that the truncation modification
reduces the computation time required by a factor of approximately two in

those cases where the simplification (4.3) obtains.

In the general case, the transformation

g'(x,t) = g(x.t) - [.., (t,- e ¢((X'-X)/(t,-t)'“’)g(x'.t])dX'
X
1

produces a new stopping reward function with the same optimal continuation
region and satisfying g'(x,t]) =0 for x2x;. Unless this integral can be
explicitly evaluated, however, no real simplification obtains. For our special
function g In (2.10), this integral {with x; = 0, ty = 1) does not coincide with
2(0 -t + xz). but the difference §s simply a solution of the backward heat

equation.

The computations have been carried out for a sequence of grids specified
by decreasing values of the grid spacing; 1in all cases, grids of the form

(3.6) with ¢ = 0 were employed . Since there was no apparent pattern in the
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size of the errors e = x - x of estimation of the continuous time boundary x(t),

an overall summary of these errors should be adequate. Such an overall summary
for each of the methods CA, LA, QA and EX appears in Table 3.

TJable 3 reveals that while methods CA, LA and QA always overestimate the
correction reqqired to approximate the continuous time boundary (except at the
coarsest grid spacing in the case of CA), such a severe bias is not apparent
with EX although the method does tend to underestimate the correction required.
The relationship between the size of the errors made and the grid spacing is

quite clear for methods CA, LA and QA: refining the grid spacing in s by a

factor of 4 appears to reduce the size of the errors by a factor of 2; for method

EX the reduction factor appears to be about 3. While all methods provide

excellent approximations to the continuous time boundary ;(t) when employed with

reasonable grid spacings, the preferred method would appear to be EX.

A crude summary of the errors in the approximation of the continuous time
risk by the optimal risk in the discrete time random walk problem is presented
in Table 4; it is apparent that-this approximation is excellent even for
relatively coarse grids. Further, it is clear that refining the grid spacing
in t by a factor of 4 leads to a reduction in the errors by a factor of 4. It
is interesting to note that in this example it appears the various discrete
Fime random walk problems are uniformly less favourable than the continuous
time problem. Examination of isolated grid points indicates that the risk
in the discrete time problem converges monotonically to the continuous time
risk. These observations are in contrast to the situation in Example 2.5.

Recall that the methods CA, LA, and QA proceed in two stages: first the
break-even points for the discrete time random walk problem are approximated;

these are then adjusted by O.SAIi as suggested by the asymptotic relationship
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(3.4). At an early stage of these investigations, the performance of this

adjustment of 0.5Ak

was investigated in the context of Example 2.6. For
a fixed grid spacing 4, the results of carrying out the backward induction
with grids of the form (3.6) with ¢ = 0(0.0001)4 were combined to locate
the break-even points to within an error of 0.0001 at the expense of a
very substantial amount of computing . The errors in the approximation of the
continuous time boundary by both the “raw" break-even points and the "adjusted"
break-even points (adjusted = raw - O.SAB) were then evaluated. The results
for a few grid spacings are summarized in Table 5. Note that Ave(|e}) and
Max(|e|) are similar throughout the table; this indicates that the errors are
roughly constant at different values of t. As expected on the basis of (3.4),
the errors with the raw break-even points are very close to O.SAH. While the
adjustment of O.SAk is slightly too large for each grid spacing, this error
seems to decrease faster than 0.5 Ak as the grid spacing decreases (393/5000 =
0.079, 156/2500 = 0.062, 58/1250 = 0.046). Comparing these results to those
in Table 3, it becomes clear that, for this problem, while method LA does not
estimate the break-even points very accurately, QA does reasonably well,
particularly for the coarser grid spacings. Method CA always underestimates
the break-even points (for this problem and generally) and this compensates
for the fact that O.SAH is an over-adjustment here. It is important to note
that the errors incurred with method EX are very similar to the errors
reported in Table 5 (compare especially Max(le|)): for this problem method
EX does as well as any possible method based upon adjusting estimated
break-even points.

These methods can be adapted for all of the examples we have discussed.

The methods employed in Example 2.5 apply without modification to Example 2.3.
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A slight modification was required for Example 2.4; attention could not.be
resticted to the positive y half-plane since the problém was not symmetric
in y. Detailed results for these examples have already appeared in Chernoff
& Petkau (1981) and Petkau (1978) respectively. In the remainder of this

section we examine the behavior of these methods in Examples 2.1, 2.2, and 2.7.

Example 2.1. Sequential apalysis problem. This problem is

symetric in y with optimal continuation region
C = {(y,s): |yl s } (s}, s 20}. Asymptotic expansions for the
monotonfcally increasing boundary demonstrate that y(s) = %s? as s + 0 and
}(s) = (3s Tog 5)5 as s + =, The methods emp1o}ed in Example 2.5 apply
without modification, and the random walk version of this problem is also
naturally truncated; an easy calculation indicates that, for small values of
A, the grid point y = 0, s = ka will first belong to the continuation region
when k * Z‘IZA-?'., + Z’Sﬁ'n'vzls'% + .

Although the desired computations can be carried out in a straightforward
manner, it'{s more difficult to examine the performance of the methods since
" the exact solution to the continuous time problem 1s unknown. To i1lustrate
behavior as the grid spacing decreased, the approximatfon to the continuous
time solution provided by a given method with the most reftned grid spacing
was taken as a baseline for that method. The deviatfon of the approximation
obtained with a less refined grid spacing from this baseline is summarized
in Table 6. The disparity among the approximations obtained by the different
methods with each spacing employed is summarized in Table 7: Table 7 indicates
clearly that, in this example, the approximations to the continuation regions
for the continuous time problem produced by methods LA and QA are strictly
larger than that produced by EX; the same tendency can be noted for CA.

Relative to the size of the grid spacing, the methods CA, QA and EX agree quite
well for the smaller grid spacings. Table 6 indicates that while methods CA
and EX 1mprove drama;ically as tﬁe spacing 1s refined, the improvement s less
dramatic for LA and QA. Overall, the patterns here appear to be very similar
to those observed in Example 2.5.

) The convergence of the optimal risk in the random walk problem as the
grid spacing decreased was also examined. The optimal risk with the most
refined grid spacing was taken as the baseline. The results as summarized in

Table 8 and are not unlike the results obtained in Example 2.5.

Example 2.2. One-armed bandit problem. This problem has a one-s{ded contin-

uation regfon C = ({y,s): y > ;(s). s > 1) with a monotonically decreasing
boundary ;(s). Asymptotic expansions demonstrate that ;(s) - -u(s-l)g as

s + 1, where a = 0.63884 is the solution of (02 - 1)¢(a) + a¢(a) = 0, and

;(s) ~ -(2s logsf’ as s + =, The first few stages of the backward induction
algorithm lead to break-even points }A(l +AY=0, QA(I* 28) = -AB(1+2A)/(3+2A).
9A(l+3A) = -ﬂnk(|+A)(]+3A)/(7+ISA*6A2).and so on. Addition of any solution

of the forward heat equation to the stopping cost d(y,s) given in (2.4)

leayes the optimal continuation region of the continuous time problem unchanged.
Upon converting to the new stopping cost function d'(y,s) = d(y,s) + y, for
which d'(y,1) = 0, the methods employed in Example 2.6 apply to this example
without modificstion. The results for this example are summarized in Tables

9, 10 and 11. Overall, the results are quite similar to those for Example 2.1.

Example 2.7. The Sn/n problem with finite horizon. Since the "rate of

winning" for this gambiing problem is positive for negative x, this region

is contained within the optimai continuation regfon. As would be anticipated,
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this problem has a one-sided continuation region C = {(x,t): x < ;(t).
0 < t < 1}; asymptotic expansions demonstrate that ;(t) ~ uotlj as t + 0,
where ag = 0.83991 is the solution of a¢(a) + (a2-1)¢(a) = 0, and

0.63884 is the same constant which

;(t) - m](l-t)!i as t + 1, where a;
appears in the asymptotic expansion of the boundary for the one-armed bandit
problem. The first few break-even points for the random walk problem are
given by x,(1-8) = 0, x,(1-28) = a%(1-28)/(3-28), x,(1-3a)= 48"(1-2) (1-3a)/
(7—\5A+6A2). and so on. Since the sequence of break-even points will not be
monotone, sTightly more detailed calculations are necessary when carrying out
the backward induction than was the case in Example 2.6. However, converting
to the new stopping reward function g*(x,t) = g(x,t) - x, for which

g'(x,1) = 0, allows the general technique employed in Example 2.6 to be used
here also. The results for this example are summarized in Tables 12, 13 and
14. While the results are qualitatively similar to those in the previous
examples, a few features should be noted. Since the optimal boundary is
dome-shaped, it is clear that method CA, which approximates this curved surface
by a flat surface in the region of the maximum, must do poorly for coarse
grid spacings. While both LA and QA produce smooth approximations, method

i EX produces approximations which occassionally exhibit a lack of smoothness
in the neighbourhood of values of t at which the highest continuation level
changes; this tendency is most pronounced with coarse grid spacings but
persists even with refined grid spacings. Further, since the optimal risk
approaches infinity as t + 0, the deviations summarized in Table 14 become
large at the smaller values of t; indeed, the deviation which is largest in
magnitude in each case occurs at t = 0.04, x = 0.1 . 1In spite of these

limitations, the results presented again indicate that the methods perform
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quite well. In Table 15, we p;esent an abbreviated table of the approximation
to the boundary of the optimal continuation region'for the continuous time
problem obtained from the computation with the most refined grid spacing. Note
the accuracy of the 1-term asymptotic expansions given above as t + 0 and

t+1.
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5. PRACTICAL IMPLEMENTATION IN STATISTICAL PROBLEMS

The continuous time problems described in Examples 2.1-2.4 arise from
statistical problems and share the propertyvfhat the range of possible s
values s infinite. In this section we indicate how the numerical methods
which have been described can be employed to obtain estimates of the stopping
boundary and the Bayes risk for these problems in the region of large values
of s. The properties of the proposed technique will be examined in the
context of Example 2.5, the modified Anscombe problem, and summarfes of the
estimates obtained for both the sequential analysis problem and the one-armed
bandit problem will be presented.

While the results of the previous section establish that estimates obtained
with the numerical methods are accurate provided that small grid spacings a
are employed, the use of a small grid spacing in a backward induction designed

- to obtain estimates for large values of s, say out as far as s = 106. would
require an exorbitant amount of computer time. On the other hand, while the
use of a large grid spacing will allow the determination of reasonably good
estimates at large values of s, the estimates obtained at smaller values of s
would typically be poor. A hybrid technique which uses a small grid spacind
at the initial stages of the backward fnduction and larger grid spacings at
larger values of s is required.

A naive techﬁique of this sort would consist of carrying out a number of
separate backward inductions, the first with é very small value of .4 and
successive ones with successively larger values of Ao. Each of these backward
inductions would begin at Sye the initial value ;f s, and if each was carried
out to the same number of stages, estimates would be obtained in successively

larger overlapping intervals of s. The results of the separate backward

inductions could then be combined; at any fixed value of s, the estimates would
be obtained from the backward induction involving the smallest value of A to
reach this value of s. Thus, in different intervals of s, the estimates of the
Bayes risk and the stopping boundary for the continuous time problem are the
estimates obtained in different approximating discrete time simple random walk
problems. While this simple technique seemed to lead to adequate estimates in
Petkau {(1978), estimates at large values of s might be unnecessarily crude
sincg these are obtained by backward inductions which use fairly large values
of A even at the initial stages.

A simple way of avoiding this difficulty is to carry out a single backward
induction that incorporates a changing step sfze as it proceeds. The first
phase of this backward fnduction might execute M] stages corresponding to a
very small grid spacing 8qs from the initial value 53 to s]+M|-Al = s; say,
and the second phase might execute Mz stages corresponding to a larger grid
spacing 85, from the initial value for this phase of s, = s; to sz+M2-A2 = s;
say. At the first stage of the second phase, estimates of the risk at all
the new grid levls at Sy could be interpolated from the estimates of the risk
at the old grid levels at Sy The backward induction could be continued for
as many phases as desired; an interpolation of the estimates of the risk would
be required at the first stage of each successive phase. Of course, the
estimates of the Bayes risk and the stopping boundary for the continuous
time problem which are obtained in this way do not correspond, except in first
phase, to the estimates which would be obtained from any particular approxi-
mating discrete time simple random walk. On the other hand, this technique

should lead to more accurate estimates at large values of s than the naive
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technique described above; since very small values of A could be employed in This technique was employed fn Chernoff and Petkau (1981), and will also

be employed here.
the initial phases, this would insure that the computations at later phases mployed here. The overall mechanics of the proposed technique are specified

by the grid spaci d
of the backward induction would be based on excellent approximations to the v . pacing to be used and the number of stages to be executed in each

hase of the backward inducti d th
Bayes risk for the continuous time problem at the earlier phases. ¥ o = R PR R

from each phase to th t. Weh
Implementation immediately revealed that this technique led to slight L ek o e e enatSallyRekplored thelpossible

versions of the technique, but rather d i
discontinuities in the estimates of both the Bayes risk and the stopping ma . i e tre i fgpston (R lRRRCIS

number of stages to be ted " ph
boundary for the continuous time problem at the values of s which marked the g ° executed 1s the same in a1l phases, the grid spacing s

increased by a constant multiple f h h , and th t of
transition from one phase to the next. To overcome this difficulty the & r Siml o0 hiiase tothesmext, and thelExtiatie

2 overlapping is a fixed fracti he {1 ich th
technique was modified to have successive phases carried out on overlapping Pping EEtion GIAEERntenaliCrgisRua TUSS By wiiShiithe

- stages of the vious phas ted.
intervals of s. Specifically, the first phase is carried out as described g previous phase were execute

The result sented in the f btained i
above, but the initial value P for the second phase’'would no longer be s; esults presented in the following were obtained using the technique

with 2080 stages in each phase, the grid i i db tor of
but rather some value of s intermediate between $ and s;. The estimates 9 e A € gridispacing 2, incredtedidyiattactario

4 f h ph to th , and th
of the risk obtained at this intermediate value of s would be stored during P AL nextipan e extent of overlapping corresponding to

one-half the int 1 of lues db hase;
the course of the computations in the first phase, enabling the interpolation e 3 VENUCSICOUE RS QY the pregio\g) cissEsRthis)excent

of overlapping corresponds to 1040 stages of the jous phase or, since a is
necessary at the first stage of the second phase to be carried out. The RRICE R g LA TG ghe €

increased by a f. of 4 f
estimates of the Bayes risk and the stopping boundary for the conttnuous n e eCtoy HOW each phaseftopthe=next, 260 stages offiths

[ t phase. Si -
time problem at values of s in the overlapping region would be those obtained i b nce only grids centered on the y-axis were employed (use of

c=0 in (3.6)), :
with the finer grid spacing; that 1s, those obtained in the earlier phase. n (3.6)), use of the factor 4 for increasing & from phase to phase mplies

that th i
This modification would be implemented at the transition from each phase to at the grid at the previous phase is a refinement of the grid at the current

the next, and the backward induction could be continued for as many phases phase. Consequently, the estimates of the risk at the new grid levels at the

as desired. Empirical evidence indicated that for all practical purposes value of s corresponding to the first stage of any phase are provided by the

estimates of the risk at those sa id levels at thaf value of s in the
this modification removes the observed discontinuities provided that the MR v s€ same or EVELS ue n

revious phase; no interpolation is necessary.
overlapping interval corresponds to a sufficient number of stages of the next P & * P y

: . For each example, the grid spacing for the first phase was taken to be
phase. -Although what constitutes a sufficient number of stages depends upon

4 =25 x 1076 and estimates were obtained out to s = 106, The estimates
the particular problem, our experience suggests that an interval corresponding

of the risk were obtained as described above. Estimat f the b
to a hundred stages of the next phase would certainly be adequate. 3 mates of the boundary were

printed out whenever the grid level corresponding to the last continuation



level changed; the estimates at these values of s were obtained by method

EX. Subsequent to the completion of the backward induction, an estimate of
the stopping boundary at any fixed value of s can he obtained by interpolation
from this listing. Where a tabulation of the stopping boundary is provided

in the following, linear interpolation has been employed.

Since the solution of Example 2.5, the modified Ansconbe problem, 1is
available in closed form (see (2.8) and (2.9)), the behavior of the above
technique can be examined in detail. A crude summary of the accuracy of
the estimates of the risk within the continuation region is provided in
Table lé. This summary suggests that the relative errors tend to be
largest close to y = 0, where they are of the order of 107%;
detailed examination of the errors on a much finer grid of (s,z)
values, where z = y/sk. suggests the empirical upper bound of 3x10™" on the
relative errors in this probiem when the proposed technique is employed in
the manner described above. A summary of the errors in the estimate of the
stopping boundary {s provided in Table 17. The largest relative errors
(which are still relatively small) occur in the region of s values close to 1
where the stopping boundary ;(s) is close to 0; in this regfon, asymptotic
expansions would be avatlable for ;(s) and could complement the numerical
results. For this problem, the relative errors decrease slightly across phases
until the grid spacing exceeds 1 when they begin to increase again. The errors
themselves increase across phases roughly in proportion to Ay, the size of
grid spacing on the y-axis (at least as long as the grid spacing {s less
than 1; after this the rate of increase appears to be a bit faster). It is
interesting to note that the estimates of the boundary are flways overestimates

(errors > 0) for phases 1-6 and underestimates (errors < 0) for phases 9-13.

Since this performance of the proposed technique was Judged to be adequate’
for our purposes, the technique was implemented in exactly the same fashion for
Examples 2.1 and 2.2. Detailed estimates of the Bayes risk and the stopping
boundary for these problems have not been presented in the literature; we
summarize the results here.

Example 2.1. Estimates of the stopping boundary for the sequential analysis

problem are tabulated in various scales of interest in Table 18. The asymptotic

expansions
;(s) = ;(s)/s ~ % s{1 - %? sd + i%ﬁ-sﬁ -...] as s » 0,
2s) = ys)s¥ - F s - s s Tose o] as s - 0,

8(s)

1 - e(z(s)) - % - ;%E %—s%a[l - é%»s3 +...] as s + 0,

can be used to extend the table to even smaller values of s. On the other

hand, the asymptotic expansions

1

x(s) = y(s)/s - s'k{log s3 - Tog(8s) - 6(log s3)'] +...1% as s » w,

2(s) = 9(5)/5% ~ {log s3 - log{(8r) - 6(log 53)-] + ...)% as S + o,

8(s) = 1 - o(z(s)) - 2(s%log s3)75(1 + [2 + %—iog(Bn)](log s3)'] + ...}
as s + m,

perform only moderately well at s = 106,



The Bayes risk in the continuous time version of the sequential analysis

problem corresponding to starting at the point (yo.so) in the normalfized form of

the continuous time version (the coordinates Yo and sq are determined by the

parameters o and 9 of the prior distribution for u together with the parameters

k. ¢ and o; see the discussion of Example 2.1 in Section 2) is given by
k23323 e caqv(s),s)) SUR
and the contribution to the Bayes risk of the cost of sampiing is given by

RIERVERIEIIS IS U

where S is an optimal stopping rule and d(y,s) is given in (2.2). The Bayes
expected sample size is obtained by dividing the Bayes expected cost of
sampling by c, the cost of sampling assoctated with a single observation.
E{d(Y¥(S),5)} can be approximated by the techniques described above, and the
expectation E(S") can be approximated in a straightforward manner during the
execution of the backward fnduction. For simplicity fn tabunar presentatton
we may use the normalization

BR 2/3cl/302/3

Bayes risk/k

-1
0 »

E(d(¥(S).5)) - s

and
2
ECS = Bayes expected cost of sampling/kzlacllao /3

= E(s7) - sal .

where both BR and ECS depend only upon the initial values o and Yo OF tO = l/s0

and L yO/s:)/2 = uo/oo. Small representative subsets of the normalized risks

BR and expected costs of sampling ECS which have been evaluated are presented
in Tables 19 and 20 respectively. The behaviour of these properties of the

optimal procedure s also {llustrated in Figures 1-4. The Bayes risk and
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expected cost of sampling are plotted against log(to) for a few values of
z, in Figures 1 and 2 respectively. In Figures 3 and 4 these quantities are
plotted against z, for a few values of tO' The asymptotic behavior is $ore

clearly 11lustrated in Figures 5-8 where log BR and log ECS are plotted
against log(to) and z,.

The tables and figures reflect the form of the asymptotic expansions

BR ~ K 561/2 9(20) as 55 =,

s 1/2
ECS K'so o(zo) as sy > =,

provided by Chernoff (1965a). The values of BR and ECS for g ™ 108 and

Z, = 0 suggest K ~ 5.89, K' ~ 3.91; regressing the values of BR/56|/2¢(20) for
5o * (1,2,...,10) x 105 and Z, = 0 against the next term of the asymptotic
expansion leads to the estimate K w» 5.98.

Example 2.2. Estimates of the stopping boundary for the one-armed bandit
problem are provided fn Table 21. The asymptotic expansions

x(s) = y(s)/s - -(S-I)I’{c0 +(cy - colls=1) + ...} as s + 1,
3 i Y Y 1

2(s) = y(s)/s® - -(s-1) (e, + (c] - I'CO)(S") +...) as s+ 1,
8(s) = o(z(s)) - %—- ;%E (s-l)k(q)+ [c, as s + 1,

- ¢o(3 +¢42)/61(s-1) +...)
where " 0.63883 and €) = 0.23625 are defined by -

coo(co) +“(C0) = 0 ] C] "2C0/(5 + Coz) Y

fit very well for values of s close to 1. Here, as in the sequential analysis
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problem, the asymptotic expansions for large values of s

x(s) = y(s)/s - -§Jﬁlog s2 - 2log(log s2) -‘109(8n) + ...]k as § + =,
z(s) = 9(5)/55 - ~{log s? - 2lo0g(log s2) - log(Bx) + ...]5 a5 § + =,
8(s) = a(2(s)) - 25']}1 + 2/log s2 - %[log (1og s2)/10g 52]2 + ...

35 § » o,

are only moderately accurate at s = 106.

The Bayes expected payoff in the continuous time version of the one-armed
bandit problem corresponding to starting at the point (yo.éo) in the normalized
form of the continuous time version (the coordinates Yo and sp are determined
by the parameters Yo and % of the prior distribution for u together with the
parameters N and o; see the discussion of Example 2.2 in Section 2) is given
by

fog 5o/ CLELACY(S).50) + y /sl
and the Bayes expected sampie size is given by

oZogZsolels™)-s3'1,

where S 1s an optimal stopping rule and d(y.,s) = -y/s for s 2 1 s as given
in (2.4). Since the use of d'(y,s) = dly,s) + y = y(1 - s']) in place of d(y,s)
sitmplified implementation of the truncation modification {see the discussion
of Example 2.2 in Section 4), the computatfons for the Bayes risk employed the
{dentity

Bayes expected payoff = - a2 -1 JIZ[E{d'(Y(S) $)) - d° (yo.s ).

For simplicity in tabular presentation we may use the normalization
BEP = Bayes expected payoff/ozoa].

and

EN = Bayes expected sample sizelozaaz .
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where BEP and EN depend only upon the initial values Yo and Sgor g = yols]/2
uo/o0 and to l/s = a /(o ) the fraction of the total potential
fnformation which s in the prior. 3Small representative subsets of the
normalized quantities BEP and EN are presented in Tables 22 and 23 respectively.
The behavior of these properties of the optimal procedure {s also illustrated

in Figures 9 - 12,

The tables and figures reflect the form of the asymptotic expansions
BEP ~ solo(zo) + zoo(zo)) as sy > =,
EN ~ soo(zo) as 55 > =,
provided by Chernoff and Ray (1965). This behavior is more clearly i1lustrated

in Figures 13 - 16 where 1og(BEP + 1) and Yog{EN + 1) are plotted against

Iog(to) and z,.
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6. THE ANSCOMBE PROBLEM WITH ETHICAL COST

Armitage (1963) has argued that the model of Example 2.3, the Anscombe
problem, fails to deal adequately with the physician’s ethical requirement
that he provide his current patient with the treatment he believes to be
best. This requirement often frustrates attempts to gain knowledge to benefit
future patients. One way to compromise is to modify the model so that an
additional ethical cost is attached to each application of a treatment which
the physician believes to be inferfor. In this section we present results for
the special case where this ethical cost is taken to be proportional to the

estimate, based on the current posterior distribution, of the inferiority |;|.

This consideration of ethical costs introduces a fundamental change in the
nature of our optimal stopping problem. Fortunately it can be handled with a
minor modification of our methods. The results are compared to those of
Chernoff and Petkau (1981) where this ethical cost is not included in the model.
We begin with a more detailed discussion of the Anscombe problem without the

ethical cost.

The discrete time formulation of the model for the Anscombe problem is
described briefly in Section 2. The expected loss or posterior risk associated
with stopping after treating n pairs of patients has two components. The first
is E(n|u|) which represents the expected cost in patient benefit incurred during
the experimental- phase where n of the 2n patients treated were assigned to the
inferior treatment, and the second is the expected cost due to the poss}bility

of selecting the inferior treatment for the final stage and thus losing

(N - 2n)|ul.
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If u §s assigned an N(uo.uoz) prior distribution, upon observing the
differences Xl. XZ' 50606 xn in response for the first n pairs of patients the
* *
postertfor distribution of u becomes N(Yn,sn) where

n
* _ g o2 - - - * - S
(6.1) Yn = (oo g + 0 Z‘Z]xi)/(ao2 + no 2) v oS, = (002 + no”?) 1 .

For n > m, the marginal distribution of Y: - Y;, if we treat u as random, is
N(O.s; - s;) and Y; - Y; is independent of Y; . Thus as sampling continues,
Y; behaves 1ike a Gaussian process of independent increments starting from

YB = pg- Since the preferred choice of treatment for the vemaining N - 2n
patients is indicated by the sign of Y;. the expected Toss or posterior risk
associated with stopping after treating n pairs of patients is nE(|y])

+ (N - 2n)E[max(0;-sgn(Y;)ul] where E represents expectation with respect to
the posterior distribution of u. Straightforward calculations then lead to the

expression

Lo R *
Ns,, v(Ynsn ) -%(N - 2n) |y |

for the posterior risk, where y(u) = ¢(u) + ule{u) -%) =y( u) +%}u] and
y is defined in (2.3). Using (6.1) the posterior risk can be written as

* * o
d](Yn.sn). where

o

(6.2) di(y",s”) = NsHR(yrsH) ©oo2(s, 70 - st |yt
Here 4 ’
(6.3) sy = 062 + kNo~2 '
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50
Yo = volog? + ¥M™2)% | s = 002(0p2 + §No72)
may be regarded as the total potential information for estimating u. The

Setting y = ay*, s = aZs*, from (6.2) we have, for s; >s 21,
problem of selecting the best sequential procedure for terminating the experi-

mental phase is equivalent to the optimal stopping problem where the Gaussian d](y'.s.) i Na"sk;(ys°a) - a02(1 - s~Y)|y|
. *
process Yn is observed and one selects the stopping time n to minimize the

(6.4) o20p150 (21 ~ s51)s ¥ys ™) - (1 - s7Y)y|)

expected risk E(d,(Y",s%)),

A natural approximation to this discrete time problem results if the dz(y.s) .

discrete sequence of partial sums in is replaced by the continuous time

ko Y v satisfies the heat
Wiener process X(t*), with drift u and varfance o2 per unit in the t* scale Since s7v(Y(s)s™) 1s a martingale, the term involving sy satisfies the hea

fon. H th tinuous time version of
(0 < t* < &N). The posterior distribution of u, given X(t') for 0<t' ¢t* equation and does not affect the solution ence the continuo

] to the parameter-free problem where the
is N(Y'.s'), where the Anscombe problem is equivalent to parame p

stopping cost is

: i —
Y* = y*(sﬁ) = {o(-]zuo + G-ZX(t*)]/(aaz + t.q"Z)' S‘ a3 (062 + t‘o-z)-] s d3()’-5) (] S )Iyl

In parallel with the above, y*(s*) fs a Wiener process with drift 0 and The parameters enter only fn the determination of the starting point (yo.so)

*
. ,t ale.
varfance 1 per unit in the -s" scale, and orfginates at the initial point and the transformation back to the original (X,t') sc

(Y5~55’- where 56 ~ o, y; - y'(sa) =g As T o G T N, From (6.4) the Bayes risk corresponding to starting at (ygssgy) s given by

s decreases from 55 to s, as defined in (6.3).

~ 1,
e g2 “lg ¥ S+ 200 - s s vy s )]
The posterior risk associated with stopping at (Y",s") is d](Y*,s*), (6.5) E(dZ(Y(S).S)] 020" 1s o [Eidy(¥(s),5)) + 2( 0 ) 0 "Weo

and this continuous time problem is equivalent to an optimal stopping problem

; th antity E{d,(Y(S),S)} can be approx-
for the continuous time process Y*. Since for a > 0 the transformation where S 1s an optimal stopping rule e qu y 3

imated by the techniques described earlier.

Y = a¥*, s = a%s” replaces Y*(s*) by a Wiener process Y(s) in the -s scale, ,
After observing the differences in response for the first n pairs of

we may select a so that a?s, = 1, that is, a = s;k = (092 + &Na")k. Then

atfents, the current estimate of ufs Y* . To incorporate the ethical cost,
the initial point (YG.SS) = (ugs9p?) 1s transformed to (yp+5g)» where p ' n
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the additional cost of yIY: |, where y is a constant of proportionality,

is incurred if the decision is to observe another pair of patients; this
“additional cost corresponds to the application of an apparently infefiof
treatment to one of the patients in the pair. During the experimental phase,

this ethical cost is accumulated at the rate
* w5 hy Aok
y|Yn|dn a 7|Yn|sn ds o

+ which corresponds in the continuous time problem to

*

—02y|Y*|S*_2dS -o2ay|y|s™%ds

—azaalsgglels-zds

in the transformed scale.

The introduction of the ethical cost has changed the nature of our problem.

Basically we must consider not only the cost of stopping but also the charge
for continuing each short period of time. There are two equivalent ways of
regarding this problem. One is in terms of the optimizing backward {induction
and the other is in terms of the diffusion or modified heat equation satisfied

by the risk function. The former is, for s > 1 and Z a standard normal deviate,

aa(y.s) = min[da(y.s).ylyls'zds + 5(33(y+l(d5)¥. s - ds)}] .

with natural discrete time normal and Bernoulli analogues (compare with (3.1)).
The second term on the right incorporates the novel cost term. It leads

to the following free boundary problem in terms of a nonhomogeneous diffusion

equation (compare with (2.1)):

53
d, (y.s) = 4d, (y.5) + y|y]s2 for (y.5) e C
35 Y, 3yy . Y r {y.s € o
dyly.s) = dy(y.s) for (y.s) ¢ S,
d3y(y-5) = day(yns) for (y,s) e aC,

For the discrete time Bernoulld analogue of the backward induction we have

(6.6) 33(1/95) = dy(y.s) . for s =1,
= min[d3(y.S).vlyIS'2A +(33(yfA¥.S-A) +33(y-A".S-A)l/2] for s > 1,

and the CA, LA, QA and EX adjustments can be calculated in the same way as before
Using the discrete time versions the ethical cost accumulated over the
interval s to s-a is zero when Y(s) = 0. But in the continuous time version the
expectation of the ethical cost accumulated over the same interval would be
(ignoring the constant multiplier ozoa]sg) the positive quantity
S-4
-YE{IS lY(u)Iu'zdulY(s)=Ol .

In general the difference between Iyls'ZA and
| Sl =2 -] -V ko ok
-E(J [Y(u)}|u du|¥(s)=yl = -lyls™'+ 2(s-a) " a¥E(yn F)
3
S-A
+ [ w0 K ts
s

represents one source of error in our approximations. This difference can be

Zualsg. an asymptotic expansion

estimated. Ignoring the constant multipler o
shows that with ¢ = /&/s , C, the expectation of the ethical cost accumulated

over this faterval in the continuous time version, is approximated by

¢S ar(0sF &84T vl oy -0,
Y P for y £ 0,

whereas the analogue in the discrete time version is y'yIS-ZA = y|y|s']eg s
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thus our approximation tntroduces errors of order 0(:3) = 0(A3/2) .

An alterpative approach to the ethical cost problem consists of
transforming 1t to an equivalent stopping problem without the nonhomogenecus
cost term. In this particular applicatfon that approach is not practical
because the transformed problem involves a stopping cost containing an
integral, the evaluation of which throughout the course of the backward {nduction
ts too expensive to be worthwhile. The general principie may be of some'interest
and is presented here.

Given Y(so) * Yg» Sg 2 S 2 5y, the stopping cost corresponding to stopping
at Y(s) = y is

d(y,s) + I(s,.s)

where

S
sgis) = < cl¥tu)u)au
S
: 0

and c(y,s) 1{s the rate of accumulation of the ethical cost when Y(s) = y.
This stopping cost depends not only on Y(s) and s but also on the path
Y(s*), So

Let Fs denote the sfgma algebra containing the history of the process

28 258 .

from $o tos 2 5 - Then
M(s) = E(I(s, s‘)lFs) = E(l(so.s)IFs} + E(I(s.s])lFs)
is a martingale. Moreover
E(1(sg.s) [F} = I(sg.s)

and
Sy

ECI(s,s,)|F) = -j ECe(¥(u) u)[F,)du = h(¥(s),5) say .
S

Thus, the stopping cost

d(¥(s),s) + I(sy.s) = d(¥(s).s) - h(Y(s),s) + M(s)
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may be expressed as a functfon of Y(s) and s plus a martingale. But the expecta-
tion of the martingale is {ndependent of the stopping rule and the optimal stop-

ping rule {s the same as for the problem with stopping cost
d'{y,s) = d(y,s) - hly.s} ,

for which our methods apply.

In our special problem, the functfon h 1{involves an integral of the form
s

)]
] o' (s-u) Fp (y(s-u) F)du
S

which would have to be evaluated numericaily throughout the course of the
backward induction. Since this was judged to be impractical, the first approach
was employed here; from (6.5) the approximatfon to the Bayes risk fn the

continuous time problem corresponding to the starting point (yo.so) is given by

0206153 (33(y0.so) + z(l-sal)sg F(ybso'*)]
where 33 fs evaluated by the backward finduction algorithm (6.6).

Properties of the optimal stopping rule in addition to the Bayes risk can
also be approximated. For the continuous time problem, direct calculation shows
that the contributfon to the Bayes risk of the post-experimental phase (where
all the remaining patfents are assigned to the treatment which is inferred to be

superfor) 1s given by

(6.7) ol L2EC (1-s)sPr(v(s)s7H))
while the Bayes expected sample size (number of pairs of patients treated during
the experimental phase) is given by

2 -2 -1 -1
(6.8) LA so(E(S ) -5 ) .

The two expectations appearing in these expressions can be approximated in a

straightforward manner during the execution of the backward fnduction which leads
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to the approximation of the Bayes risk.
Some of the results of such computations for the Anscombe problem

without ethical cost were reported in Chernoff and Petkau (1981); there

V25 -V/2,

d4(y,u) - da(y,-) + 28 Viys

- -(l—n—‘)lyl + 20‘/2;(y--‘/2

3-‘/2)

)
- |Y|l—‘ + 2-‘/20(y

was employed. The term added'to 4. is a solution of the heat equation and

3

therefore does not affect the optimal policy. It was expected to contribute
-1/2 i

to numerical stability since for large |y|- / it is approximately |y| and

cancels the major part of 4. and is important when s is large. 1In this

3

case, d. is replaced by d4 in the algorithm (6.6) and the approximation to

3
the Bayea.rlsk in the continuous time problem corresponding to the starting.
point (yo,no) is given by

- - -1
°2o 1.1/2 /2)).

-1 /2~
s {dA(yo"o) - 2-0 / W(YOIO

(6.9) o %o

These computations have been carried out for the cases y = 0 (the
Anscombe problem without ethical cost), 0.1, 1.0 ang 10.0. The computations
were implemented in exactly the fashion described for Examples 2.5, 2.1 and
2.2 in Section S 2080 stages were carried out in each phase, the grid
spacing A was increased by a factor of 4 from each phase to the next, and
the extent of overlapping corresponded to one-half of the interval of s
values covered by the previous phase. For each case the grid spacing for
the initial phase was taken to be 4 = 25 x 10_6 and estimates were obtalned
out to 8 = 10-6. The entire computation for the individual cases, which
included evaluation of the Bayes expected sample size and the proportion of
the Bayes risk due to ihe experimental phase as well as the Bayes risk,
required between 28 and 35 seconds of CPU time at ‘a cost of between $2.00
and $2.50 on the 12-megabyte Amdahl 470 v/8 at the University of British

Columbia.
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The optimal procedure for the continuous time problem may be
described by the stopping boundary Ey(t) =1 - 0(;¥(t)), presented for the
cases under consideration in Table 24 and interpreted as follows. Define

z = v(a)/a'/? = ¥ (a"yss"1/3,

the number of standard deviations that the current Bayes estimate of p is

away from zero, and

-1 2

- - L. - -
/8.‘ O (002 +t o 2,/(002, 1 no

L]
t = 1/a =g 3

), .
the currently available proportion of the total potential information. If
at any time § = 1 - 0(|Z|) < EY(t)' stop taking observations and for the
remaining N - 2t. units of time use the treatment in accord with the sign of
Y.. Note that B is the observed P value for a one-sided test of u = 0 based
on the data and the prior. At time t, the curve ;;(t) specifies the number
of standard deviations required for stopping and E}(t) {8 the corresponding
nominal significance level. Thus the optimal procedure may be described as
a sequence of repeated significance tests with the nominal significance
level varying with the amount of information available; as the proportion of
information available increases from 0 to 1, the nominal significance level
becomes less stringent, increasing from O to 1/2. The optimal boundaries
are plotted in the (B,t) scale in Figure 17. Note that for a given value of
t, Bayes estimates of y further from zero are required for stopping for
larger values of Yy, the ethical cost parameter; that is, larger values of Y
imply earlier stopping.

Although Fiqure 17 provides a clear overall comparison, the exact
form of the stopping boundaries near the distinquished points t = 0, where

few patients have been treated, and t = 1, where nearly all the patients
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have been treated, is of particular interest. An asymptotic expansion for

values of t close to i ylields

/2
[4

~ it s . _ 1/2
. ~ e (1-t) By ~1/2 - e (i-t) /727,

where c7 is the unique positive solution of

2~
¢lc) = (14y)c"p(c);
A
for the values y =0.0, 0.1, 1.0 and 10.0, c7 - 0.7642, 0.7401, 0.5972 and
0.2893 respectively. An asymptotic expansion for small values of t yields
2 ~4

~2 ~2 2 -
-21 t~z_ 4+ 1 +1 2w(1+ 4+ 2
og Y og £, og{2w(1+y)°) £ + z

B, ~ Qentl + 3 (log )72/4).

Since small values of t are particularly relevant for problems involving
large values of the horizon size N, it is lmportanq to note the accuracy of
the approximation E;(t) ~ {1+4y)t for small values of t in Table 24.

¥While comparison of the atopping boundaries indicates the effect
of the ethical cost on the optimal stopping rules, of possibly greater
interest are the risks incurred when these optimal procedures are employed.
These risks depend upon the five parameters "0' oo, g, N and y. For
simplicity in tabular presentation we may use the normalization
BR = Bayes rink/azc;‘ ’

vwhere, as is clear from (6.9), BR depands only upon Y in addition to the
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initial values of t and Z, namely
2

to = 082/(062# % Ng 7Y, Zo = uO/ao.
A small representative subset of the normalized risks BR which have been
evaluated are presented in Table 25. 1In each case the normalized Bayes
expected sample size

EN = Bayes expected gsample size/ozo;2
and the proportion, PR, of the Bayes risk resulting from the experimental
phase where one-half of the patients are assigned to the inferior treatment
are also tabulated; these quantities are computed according to (6.8) gnd
(6.7) respectively.

For fixed values of to and zo, the Bayes risk increases
monotonically with y; the tabulated values provide an indication of the
magnitude of the effect of the ethical cost. The tabulated values of EN
reflect the differences in the stopping rules which are evident in Table 24
as well as Flgure 17, and translate these differences into more meaningful
quantities. HNote that for small values of tO' the ethical cost has little
effect on PR, the proportion of the Bayes risk due to the experimental
phase. The leading term of an asymptotic expansion for to small and zy not

larqge indicates that
e isk ~ 0 (14y) (ZO)( g t]) .
Bayes ris 00 Y 0 lo

This result explicitly indicates the effect of the ethical cost, and means
that the order of magnitude of the optimal Bayes risk is (log N)2 which may
seem surprisingly small. These asymptotic expansions for the Bayes risk and
the optimal stopping boundaries can be obtained by the techniques described

in Chernoff and Petkau (1981).
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The behavior of these Baves properties of the optimal procedure is
illustrated in Figures 18-23. The Bayes risk, Bayes expected sample size,
and proportion of the Bayes risk due to the experimental phase at z, 0 are
plotted against 109(t0) = -loq(so) in Figures 18, 19 and 20 respectively.
While the quadratic nature of the dependénce of the Baves risk on log s, for
large values of s, is tlearly indicated in Fiqure 18, Figure 19 indicates
that the Bayes expected sample size grows at a considerably faster rate,
These trends are even more apparent when the same quantities are plotted
against (1oq(t0)]2, although such plots are not included here. These same
plots for other values of z, yielded similar patterns. In Fiqures 21,22 and
23 these same quantities at to - !0_6 (so- 106) are plotked against zoy the
same plots for other values of to yielded similar patterns.

The results presented were all obtained using the backward
induction (6.6) with d3 replaced by d4. This algorithm approximates the
e#pectation of the ethical cost accumulated over the interval s to s~4 in
the continuous time version by the ethical cost accumulated over the same
interval in the discrete time version, thereby introducing errors of order
0(63), where 62 = A/8. Since €2 € 0.003 in our implementation of this
algorithm, these errors should have neqgliqgible effect.

The investigation of the convergence properties of two different
versions of the backward 1nduc;10n algorithm provides detailed information
on the magnitude of this effect. Version 1 is that described above while
version 2 is the modification obtained by replacing the term ylyln-zA -

Ylyls™'e? in (6.6) with
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¢ = o) ?[2e/01-€") + 10g{l1-€)/(14€)}] for y = o,

= vlyls™' [1/01-¢}) - 1] for 3 ¢:0
except for terms of order 0[¢7Q(ys—‘/2¢-‘)l in the case of y # 0, ¢ 1is equal
to C, the expectation of the ethical cost accumulated over the interval s to
s8-8 in the continuous time version.
The computations carried out are similar to those described for

Examples 2.1 and 2.2 in Séction 4; the algorithm is executed over the

interval 1 < 5 € 100 for each grid in the sequence specified by 4 = 4’k for

k=0, 1, 2, 3, 4. For each version, the approximation to the continuous
time solution provided by the results for the most refined grid spacing is
taken as baseline and the deviation from this baseline of the approximation
obtained with a less refined qria spacing i{s examined. The results for both
versions in.the case Y = | are summarized in Table 26 and are qualitatively
similar to the results obtained in Examples 2.1 and 2.2. HNote that the
correction required to approximate the continuous time boundary is
underestimated in both versions. On the other hand, while version 1 results
in underestimates of the continuous time risk, version 2 results in
overestimates.

Of greater interest in the present case im the examination of the
behaviour of the differences between the results produced by the two
versions as the grid spacing 8 decreases. The differences in the estimates
of both the boundary and the risk for the computations described above are
summarized in Table 27. The results clearly indicate that the differences
in the estimates of the Bayes risk produced by the two versiong, as measured
by either the maximum or average difference, are directly proportional to A,
the grid spacing in s. Either version will produce excellent approximations
to both the boundary and the risk of the continuous time problem vhen

reasonable grid spacings are employed.
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7. SUMMARY AND COMMENTS

We have presented a method for obtaining numerical solutions for
optimal stopping problems involving a stopping cost d(y,s) when the Weiner
process Y(s) in the -s (s zsl) scale stops at (Y(S),$) = (y,s). The main
idea of this method is to approximate the Weiner process by a
discrete time process with independent Bernoullf increments ZiAg.

i.e. li = 41 with probability ¥ and

Y ] 7,05
-y-i- A
(72.1)

The optimal stopping procedure for a stopping cost d(y,s) associated with
the above discrete time process may be derived by the backward induction

scheme with the following simple recursion equation for the optimal risk

dly,s)

1

(7.2) dly,s) - min{d(y,s) . [a(y"A;’.S-A)*a(y-A”.s-A)]/Z) A

the optimal stopping procedure calls for continuation when a(y,s) < d{y,s)
and stopping otherwise.
If the boundaries for the optimal stopping problems for continuous and

discrete time are denoted by y and }A. then the approximation

(7.3) ¥y * ¥, 0.5
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furnishes the basis for a considerable improvement in accuracy. Unfortunately
a single backward inductfon calculation provides a(y.s) only on a rectangular
grid of points and ;A is not calculated directly and may be in error by as
much as A*. Several alternate continuity correction methods were described to
compensate for this difficulty. Three simple methods of estimating ;A are'the
crude adjusted (CA), Vinear adjusted (LA), and quadratic adjusted (QA). A
fourth, more refined, method called the extrapolation method (EX) 1s based on
the solution to a simple discrete time stopping problem which also provides
the theoretical basis for (7.3). It {nvolves the calculation of O(y,s) =
a(y.s) - d(y,s) at the two continuation points closest to ;A(s) for each s

on the grid.

This approach 1s fundamentally unsound as a numerfcal method to derive
refined approximattorswith accuracy to many significant digits. To {ncrease
accuracy by cutting A* in half involves fncreasing the numerical work by a
factor of 8. Without continufty corrections this would increase the accuracy
by a factor of 2. As determined by numerous calculations on several examples,
one obtains surprisingly good results for crude fntervals a. Moreover as
4 + 0, the use of EX seems to divide the error by 3 to 4 when A*
is cut in half indicating that doubling the accuracy requires only about
three times as much numerical computation.

Several variations of the basic approach are occasionally useful 1n
reducing the computing effort. [1) If results are desired over a very large
range of s values, then it was suggested that a small value of & be used for
a range of s values, followed by a largér value of & over an overlapping
range of s values, etc. (2) When the optimal continuation region is unbounded
in y, a truncation procedure was described where a(y.s) need not be calculated

fory > ¢ if y 2 ¢ is in the continuation region for all s > 5y This method



depends on the probability that the (Yn.sn) process originating at

(c + Ak,s) will reach (c,sn)‘for some 5. <s. It is particularly useful
when d(y,s) =0 fory > c and s = 5y Moreover, a transformation of d
(to be discussed shortly) which reduces the computational effort and
does not affect the optimal stopping boundary can be applied to make
d=0fory>cand s = 5)- (3) Mhen d{y,s) 1s symmetric in y, 1t is
possible to restrict calculations to values of y 2 0 thereby reducing
the numerical work by half.

The qriginal continuous time stopping problem has a solution which
can be described in terms of a free boundary problem (FBP) involving the
heat equation. Related to that is the fact that if one adds a solution of
the heat equation to the stopping cost d(y,s), the optimal stopping region
is qot affected and the risk is increased by this solution of the heat
equation. This fact is a special case of the more general fact that if
d(Y¥(s),s) s increased by a martingale M(s), the optimal stopping procedure
is not affected. These properties were used in the truncation variation
of the proceeding paragraph. They were used in one of the examples where
d and d became large to reduce d and thereby attain numerical stability.
Finally, they were used in the Ansconbe problem with ethical cost to
transform that problem to a stopping problem with stopping cost d{Y(s),s).

Efght applications were considered. Several consisted of problems
with known solutions so that the numerical accuracy of the methods could
be’ evaluated. Several‘consisted of old problems of importance in the
statistical literature so that refined calculations of the solutions could
be presented. These include the sequential analysis and one-armed bandit

problems. Finally the Anscombe problem with ethical cost represents a new

problem whose solution may be regarded as having potential value in applications.
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One method of describing the optimal stopping procedure for some of
these problems, which derive from observations on a Wiener process with
unknown mean with a normal prior distribution, is in terms of a nominal
significance level 8 = 1 - 0(|;|s'¥), This description can be used to
interpret the optimal procedure as a sequence of repeated significance
tests where the significance level 1s not held constant, but depends on
the amount of information collected to date.

The general approach is easily adaptable to decémposing the optimal
risk into parts representing terms such as the cost of sampling, the cost
of error, etc. It may also be applied to evaluate alterpative, non-optimal
procedures although that was not done in this paper and the refinement due
to the correction (7.3) and to the use of EX is not meaningful then.

Many problems originate as discrete time or discrete time and discrete
process problems. For example, the rectified sampling inspection problém is
such a problem where the fraction defective in a lot is compared to a fixed
nunber Po- The continuous time version of that problem {s the one-armed
bandit problem which is approximated by our approach. But the solution of the
latter problem is only an'approximatipn to the solution of the sampling
inspection problem which involves a Bermoullt process with increments which
have probability Py and 1 - Po respectively. The theorem which provides
the approximation (7.3) also provides a similar approximation relating y
and the optimal boundary for the original discrete time sampling inspection
problem. This approximation is discussed in Chernoff and Petkau (1976).

The idea of using a discrete approximation to a Wiener process problem which
itself approximates a discrete time problem is not as circular as it seems.
Our numerical calculation is particularly simple partly because we can choose

the intervals in s to suit our taste. Moreover the Wiener process version



of the problem often allows normalizations which permit us to solve many
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TABLE 1. ERRORS IN ESTIMATION OF BOUNDARY FOR EXAMPLE 2.5.* TABLE 2. ERRORS IN ESTIMATION OF RISK FOR EXAMPLE 2.5.%
Grid Spacing Method Grid Spacing
s y CA LA QA EX ’ s y Ave(e) Ave(|e]) Max(le|)
1 1 Ave( e ) -1690 8 -818 -1676 1 1 -587 ' 2391 9162
Ave(|e|) 1690 209 818 1676 IS -243 576 1515
Max(|e|) 3358 813 1276 2857 42 72 -118 178 53
§4-3  2-3 -34 48 148
4 71 Ave( e ) -266 283 -91 -419
Y el -9 13 39
Ave(le]) 266 283 93 M9
Max(]e|) 649 466 197 666

*In each case, the errors summarized are 10 6xe = optimal risk in discrete

§2 72 Ave( e ) -14 209 29 -101
time problem - optimal risk in continuous time problem at all grid points on
Ave(le]) 29 209 29 104 .
) the intersections of the 1ines s = 25(1)100, y = 0{1) = and within the contin-
Max(|e]) 13 315 55 175
vation region for the discrete time problem. Note that Ave(e) # Ave(le|)
a3 73 Ave( e ) 19 116 k! -22 demonstrates that it is not the case that the various discrete time random
Ave(le]) 19 e 34 26 walk problems are uniformly less favourable than the continuous time problem
Max(|e|) 36 180 48 52 {n this example (in fact, these discrete versions are on the average more
= = favourable here); nor fs 1t the case that the convergence is monotone at
s e Ave( e ) 1 70 23 7
fixed (y,s) grid points.
Ave(|e|) n 70 23 9
Max(]el) 16 96 30 17 Note that the optimal risk for this problem is symmetric in y, always negative,

and, for fixed s, becomes increasingly negative as ly| increases; inside

] - th 1 " h - - =
*In each case, the errors sumarized are e = (3 - 7] x 10% at s = 25(1)100; e continvation region the risk decreases from -4.0 to -10.3 at s = 2%
" and f -8.0 -25.8 = 100.
for this range, y varies between 10 and 26. MCRTinoH fo) S2o Bt st



TABLE 5. ERRORS IN ESTIMATION OF BOUNDARY FOR EXAMPLE 2.6.*
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i

Grid Spacing Method
t X CA LA QA £X
1(-2) 1(-1) Ave( e ) -65 -N21 -357 194
Ave(|e|) 106 na21 357 237
. Max(|e]) 307 1529 460 436
471(-2) 271(-1) Ave( e) -51 -560 ~-197 51
Ave(le]) 51 560 197 7))
Max(|e]) 129 788 257 140
472(-2) 2-2(-1) Ave( e) -37 -281 -102 13
Ave(|ef) - 37 281 102 24
Max( |e]|) 64 404 138 62
473(-2) 273(-1) Ave( e ) -17 -140 -52 3
Ave(le]) 17 140 52 8
Max(|e|) 23 204 73 20
4"(-2) 7%(-1) Ave( e ) -7 -Nn -26 1
Ave{le]) 7 n 26 3
Max(le]) 10 104 38 10
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TABLE 4. ERRORS IN ESTIMATION OF RISK FOR EXAMPLE 2.6.*
, .
6rid Spacing '
t X Ave(e) Ave([e|) Max([e|)

1(-2) 1(-1) 658 658 2126
471(-2) 27Y-1) 148 148 537
472(-2) 272(-1) 36 36 14p
473(-2)  273(-1) 9 9 37
4-4(-2)  27%(-1) 2 2 7

4

*In each case, the errors suimarized are e = (; - ;) x 10% at t = 0(0.01)0.75;

for this range, x varies between -0:25 and -0.51,

** In this and all following tables a{-n) represents a x10°".

*In each case, the errors summarized are 10 6xe = optimal risk in discrete
time problem - optimal risk in continuous time problem at all orid points
on the intersections of the lines t = 0(0.01)0.75, x = 0(-0.1)-= and within
the continuation regfon for the discrete time problem. Ave(e) = Ave(|e})
indicates the various discrete time random walk problems are uniformly less

favourable than the continuous time problem.

Note that for the version of the problem being considered the optimal risk is
always negative in this portion of the continuation region and, for fixed t,
becomes increasingly negative as x decreases from 0; in this portion of

the continuation region the risk decreases from -O.iB to -0.83 at t = 0.75
and from -0.72 to -3.32 at t = 0.



TABLE 5. ACCURACY OF ADJUSTMENT (3.4) FOR EXAMPLE 2.6.*
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TABLE 6. DEVIATIONS IN ESTIMATION OF BOUNDARY FOR EXAMPLE 2.1.*

Grid Spacing

t X Ave(e) Ave(|e]) Max{ |e|)
1(-2) 1(-1) Raw 4607 4607 4637
Adjusted -393 393 436
§4-1(-2) 2°1(-1) Raw 2344 2344 2362
. Adjusted -156 156 178
4-2(-2) 2°2(-1) Raw 1192 1192 1203
Adjus ted -58 58 69

" *In each case, the errors summarized are e = (x - x) x 105 at t = 0(0.01)0.75;

for this range, x varies betyeen 0.25 and 0.51.

Grid Spacing Me thod
s y CA LA QA EX
1 1 Ave( d ) -1454 239 -687 -1869
Ave(|d]) 1454 381 687 1859
Max(|d}) 3299 880 1474 3592
471 27! Ave( d ) -259 . 298 -76 -473
Ave(|d]) 266 300 86 478
Max(|d}) 677 540 246 919
472 72 Ave( d) -14 149 23 -1m
Ave(}d|) 35 152 28 127
Max(]d|) 140 302 58 228 '
473 273 Ave( d ) B 67 14 -26 .
Ave(]d]) 12 81 15 34
Max(|d]) 27 128 34 55

*The computation with grid spacing ins = 4°%, iny = 27% provides the baseline
for each method. In each case, the deviations summarized are d = (;] - ;z)xlo“
a2t s = 25(1)100, where ;2 is the approximation to the continuous time boundary
at baseline and ;] is the approximation at the grid spacing listed (both
computed by the same method). For this range of values of s, } varies between

11 and 31.
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TABLE 7. DEVIATIONS IN ESTIMATION OF BOUNDARY FOR EXAMPLE 2.}1.*
6rid Spacing Method
5 y CA LA QA
1 1 Ave( d ) 435 2182 1212
Ave(]d]) 794 2182 1212
Max(|d]) 2222 3571 2578
4! 27} Ave( d ) 234 845 428
Ave(|d]) 309 845 428
Max(ldl) 702 125 809
4-2 2-? Ave( d ) 17 334 164
Ave(|d|) 124 334 164
Max(|d]) 238 527 248
43 273 Ave( d ) 55 166 70
Ave(]d]) 55 166 70
Max(ldl) 91 236 100
4 27y Ave( d ) 20 74 30
Ave(|d|) 20 74 30
Max(|d]) 32 13 45
*In each case, the deviations summarized are d = (y - iEx)x 10% at s = 25(1)100,

where ;EX is the approximation obtained using method EX at the grid spacing

under consideration. For this range of s values, } varies between 11 and 3.
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TABLE 8. DEVIATIONS IN ESTIMATION OF RISK FOR EXAMPLE 2.71.*

Grid Spacing

s y ) Ave(d) Ave(]d]) Maxi |d])
1 1 210 288 139
41 2-1 -5 73 457
4-2 272 ' -5 20 J37
4-3 273 -3 5 33

*In each case, the deviations summarized are 108 times the differences
between the optimal risk in the random walk problem with the grid spacing
listed and that with grid spacing fn s = 4-%, iny = 2°% at al) grid points
on the intersections of the 1ines s = 25(1)100, y = 0(1)= and within the
continuation region for the discrete time problem with the less refined grid,

spacing.

Note that the optimal risk for this problem is symmetric in y, always positive,
and, for fixed s, decreases as |y| increases; inside the continuation region

the risk decreases from 0.30 to 0.06 at s = 25 and from 0.17 to 0.01 at s = 100.



TABLE 9. OEVIATIONS IN ESTIMATION OF BOUNDARY FOR EXAMPLE 2.2.*
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TABLE 10.

DEVIATIONS IN ESTIMATION OF BOUNDARY FOR EXAMPLE 2.2.*

Grid Spacing Method
s y cA LA QA EX
1 1 Ave( d ) 107 -308 4 1227
Ave(]d|) 107 330 481 1227
Max(|d]) 2417 627 870 2187
4! 27! Ave( d ) 164 -310 19 314
Ave(|d|) 168 30 43 n7
Max(|d|) 469 510 104 475
4-2 2-2 Ave( d ) -5 -167 -30 72
Ave(|d]) 23 167 30 78
Max(|d]) 52 309 64 135
43 273 Ave( d ) -Nn -57 -16 13
Ave(|d]) 13 74 19 23
Max([d]) 24 134 37 47

*The computation with grid spacing ins =

for each method. In each case, the deviations summarized are d = (;1 - ;z) x 10%

4%, in y = 27" provides the baseline

at s = 25(1)100, where }2 is the approximation at baseline and j] is the

approximation at the grid spacing iisted (both computed by the same method).

For this range of § values, y varies between -8 and -21.

Grid Spacing Method
y s cA LA QA
1 1 Ave( d ) -196 -1594 ~775
Ave(|d]) 494 1594 775
Max(]d|) 1441 2014 1716
41 27! Ave( d ) -167 -698 -323
Ave(]d]|) 189 698 323
Max( |d]) 420 987 437
472 272 Ave( d ) -94 -313 -130
Ave(]d|) 99 313 130
Max( |d]) 183 458 186
4-3 273 Ave( d ) -4] -144 -57
Ave(]d]) a1 144 57
Max( |d}) 69 221 87
4 27 Ave( d ) -17 =75 -29
Ave(]d}) 17 75 29
Max( |d|) 30 109 42

*In each case, the deviations summarized are d = (y - }Ex)x 10 at s = 25(1)100
where 9EX is the approximation obtained using method EX at the grid spacing

under consideration. For this range of s values, y varies between - 8 and -21.

»
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TABLE 11. DEVIATIONS IN ESTIMATION OF RISK FOR EXAMPLE 2.2.* TABLE 12. DEVIATIONS IN ESTIMATION OF BOUNDARY FOR EXAMPLE 2.7.*

Grid Spacjng Grid Spacing Method
s y Ave(d) Ave(]d]) Max( |d]) & i s 3 QA . EX
1(-2) 1(-1) Ave( d ) -6501 523 188 1984
1 ] 1205 1474 8487
. Ave(]d]) 6501 523 188 1984
41 27! -22 155 420 . ,
Max(|d]) 9688 985 579 5910
472 272 -10 39 {k]]
43 273 -3 8 20 471(-2)  271(-1) Ave( d) -830 444 160 216
' Ave(]d]) 843 a44 160 222
*In each case, the deviations summarized are 10® times the differences between Max(|d]) 2188 685 245 1050
the optimal risk in the random walk problem with the grid spacing listed and .
’ 4-2(~2) 272(-1) Ave( d) -248 204 75 56
that with grid spacing ins = 4°%, in y = 2°% at all grid points on the
Ave(|d|) 256 209 76 61
intersections of the lines s = 25(1)100, y = 0{-1)-« and within the contin-
. Max(|d|) 938 375 138 297
uvation region for the discrete time problem witg the less refined grid spacing.
473(-2)  273(-1) Ave( d) -55 74 28 n
Note that for the version of the problem being considered the optimal risk is ’
- Ave(]|d]) 64 9 33 15
always negative in this portion of the continuation reglion and, for fixed s, )
Max(|d|) 313 168 62 64

becomes increasingly negative as y decreases from 0; in this portion of the

continuation region the risk decreases from -1.7 to -6.7 at s = 25 and from - . N _
*The computation with grid spacing in t = 4 "x10 “, in x =2 "x 10 ! provides
-3.7 to -20.8 at s = 100.

the baseline for each method. In each case, the deviations summarized are

d= (il - ;2) x 105 at t = 0.04(0.01)0.75, where ;2 is the approximation at

baseline and i] is the approximation at the grid spacing listed (both comﬁuted

by the same method). For this region of t values, x varies between .16 and .35.



TABLE 13.

DEVIATIONS IN ESTIMATION OF BOUNDARY FOR EXAMPLE 2.7.%
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Grid Spacing Method
t x cA LA QA
-2)  ¥-1) Ave( d ) -8504 -1400 77
Ave(|d]) 8504 1575 1783
Max( |d]) 13006 5410 5504
Y-2)  27-1)  Ave( d) -1064 289 -3
Ave(|d]) 1064 426 196
Max([d]) 2402 866 946
a2(-2)  2°2(-1)  Ave( d ) -322 209 38
Ave(|d]) 323 229 87
’ Max( |d]) 1042 359 254
473(-2)  2-3(-1)  Ave( d) -84 124 3%
Ave(|d]) 85 128 a8
Max( |d]) 395 197 69
a4(-2)  27%-1)  Ave( d) -18 61 20
Ave(|d]) 20 61 21
Max( |d]) 80 103 38

*In each case, the deviations summarized are d = (i - ;EX’ x 105 at

t = 0.04(0.01)0.75, where ;EX is the approximation obtained using method EX

at the grid spacing under consideration.

between .16 and .35.

For this range of t values, x varfes
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TABLE 14. DEVIATIONS IN ESTIMATION OF RISK FOR EXAMPLE 2.7.*

Grid Spacing

t X Ave{d) Ave(|d]) Max(|d})
1(-2) 1(-1) 6133 6133 111700
41(-2) 271(-1) 2 1378 1378 22643
4-2(-2) 2-2(-1) 338 338 7560
473(-2) 273(-1) 65 65 1006

*In each case, the deviations summarized are 105 times the differences between
the optimal risk fn the random walk problem with the grid spacing listed and
that with grid spacing fn t = 47 x 1072, in x = 2°% x 10-1 at all grid points

on the intersections of the Tines t = 0.04(0.01)0.75, x = 0.0{0.1)~ and *
within the continuation region for the discrete time problem with the less

refined grid spacing.

Note that for the version of the problem being considered, the optimal risk

is always negative in this portion of the continuation region and, for fixed
t, becomes increasingly negative as x increases from 0; in this portion

of the continuation regfon the risk decreases from -.03 to -.07 at t = 0.75,

from -.15 to -.37 at t =~ 0.45, and from -1.57 to -2.67 at t = 0.04.



TABLE 15. APPROXIMATION TO BOUNDARY FOR EXAMPLE 2.7.

t x(t) t x(t)
0.001 0.027 0.55 0.3
0.002 0.038 0.60 0.333
0.005 0.059 0.65 0.321
0.01 0.082 0.70 0.306
0.02 0.114 0.75 0.287
0.03 0.138 0.80 0.263
0.04 0.157 0.82 0.252
0.05 0.174 0.84 0.240
0.06 0.188 0.86 0.226
0.07 0.201 0.88 0.21
0.08 0.213 0.90 0.194
0.09 0.223 0.91 0.185
0.10 0.233 0.92 0.175
0.12 0.250 0.93 0.165
0.14 0.265 0.94 0.153
0.16 . 0.277 0.95 0.140
0.18 0.289 0.96 0.126
0.20 0.298 0.97 0.109
0.25 0.318 0.98 0.090
0.30 0.332 0.99 0.064
0.35 0.30 0.995 0.045
0.40 0.346 0.998 0.028
0.45 0.348 0.999 0.020
0.50 0.346

YABLE 16. ERRORS IN ESTIMATION OF RISK FOR MODIFIED ANSCOMBE PROBLEM
z2=y/s

s 0 1 2 3 4

10 ER* -.6(-4) -.1(-3)
RER™™  .2(-4) .3(-4)

102 ER -.5(-3) -.5(-3) -.2(-4)
RER .6{-4) .4(-4) L1(-5)

102 ER -.2(-2) -.3(-2) .4(-4) J1(-4)
RER .8(-4) J7{-4) -.6(-6)  -.7(-6)

0% ER -.4(-2) - (-2) A(-2) .2(-3)
RER .5(-4) .8(-5) -.5(-8)  -.7(-6)

105 ER -.2(-1) -.8(-2) .3(-2) .9(-3) .2(-4)
RER .6({-4) .2(-4) -.5(-8)  -.(-5) -.2(-1)

106 ER -.2(-1) - 1(-1) .5(-2) A(-2)  -.5(-5)
RER .3(-4) 1(-8) -.3(-5)  -.4(-6) J1(-8)

*ER = Error = Estimate of risk - optimal risk

**RER = Relative error = Error/optimal risk
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. TABLE 18. ESTIMATES OF STOPPING BOUNDARY FOR SEQUENTIAL ANALYSIS PROBLEM
TABLE 17. ERRORS IN ESTIMATES OF BOUNDARY FOR MODIFIED ANSCOMBE PROBLEM .

3 - . - . - 3
t=1/s x(s)=y(s)/s 2(s)=y(s)/s* B8(s)=1-0(2(s))
‘Phase Last s value ady Maximum AER* Maximum ARER**
10.00 .02499 .0079 .4968
9.50 .02630 .0085 .4966
1 1.052 .005 .00010 .004 9.00 .02776 .0093 .4963
. 8.50 .02939 .0101 .4960
.2 1.234 .010 .00025 .004 8.00 .03123 .0110 .4956
7.50 .03331 .0122 .4951
3 1.962 .020 .00057 .002 7.00 .03569 .0135 .4946
6.50 .03843 L0151 .4940
4 4.874 .040 .00124 .001 6.00 .04163 .0170 .4932
5.50 .0454) .0194 .4923
5 16.522 .080 .00222 .0008 5.00 .04995 .0223 49N
: 4.50 .05550 .0262 .4896
6 63.114 . .160 .00443 .0004 4.00 .06243 . 032 .4875
3.50 .07130 .0381 .4848
7 249.482 .320 .00564 ~ .0003 3.00 .08315 .0480 .4809
2.50 .09961 .0630 .4749
8 994.954 .640 .01246 .0003 2.00 .1240 .0877 .4651
: 1.50 .1636 L1336 .4469
9 3,976.842 1.280 .05500 .0005 1.40 .1744 .1474 .4414
' 1.30 .1865 .1636 .4350
10 15,904,394 2.560 .16643 .0007 1.20 ,2004 .1830 . .4274
’ . 1.15 .2080 . 1940 .4231
1 63,614,602 5.120 .50157 .001 1.10 .2162 .2061 .4184
1.05 .2250 .2196 AN
12 254,455,434 10.240 1.34060 001 1.00 .2344 .2344 .4073
.95 .2451 .2515 ' .4007
13 1,017,818.762 20.480 3.29124 . .00 .90 .2563 .2702 L3935
.85 .2679 .2906 .3857
- .80 .2805 .3136 .3769
o .75 .2942 .3395 .36;}
# = = o= .70 .308 .3688 .35
AER = Absolute error = absolute value of y y ) ‘65 .3540 .3012 _3333
[k = = vt v)/v 2 .60 . 3409 .440 .329
ARER = Absolute relative error = absolute value of (y + y)/y 55 "3590 4840 3142
.50 ' .3781 .5348 .2964
.48 .3862 .5574 . 2886
146 .3943 .5814 .2805
.44 .4026 .6069 .29
.42 A1 .6343 .2629
.40 .4198 .6637 .2534
.38 .4285 .6951 .2435
.36 .4373 .7288 .2331
.34 .4461 .7651 L2221
.32 .4550 .8042 .2106

.30 .4637 . 8466 .1986




TABLE 18.

(continued)

t=1/s x(s)=y(s}/s z(S)=y(S)/sk 8(s)=1-¢(2(s))
.28 .4724 .8928 .1860
.26 .4809 .9432 .1728
.24 .4892 .9986 .1590
.22 .4969 1.0595 . 1447
.20 .5038 1.1264 .1300
.19 .5069 1.1629 1224
.18 .5097 1.2013 .1148
17 5121 1.2421 L1071
16 .5144 1.2859 .09924
.15 5159 1.3319 .09144
.14 .5170 1.3818 .08351
.13 .5175 1.4352 .07562
12 .5170 1.4926 .06778
1 .5158 1.5552 .05995
.10 5134 1.6234 .05225
.09 .5096 1.6985 .04471
.08 .5039 1.7816 .03741
.07 .4961 1.8751 .03039
.06 .4855 , 1.9819 .02375
.05 .4707 2.1052 .01764
.04 .4507 2.2534 .01212
.03 .4222 2.4376 .007392
.02 .3797 2.6848 .003629
.01 .3074 3.0738 .001057
9(-3 .2969 3.1294 .8759 -3;
8(-3 .2853 3.1903 .7107(-3
7(-3 .2726 3.2583 .5605 -3;
6(-3 .2583 3.3345 .4273(-3
5(-3 .2420 3.4231 .3096(-3
4(-3 .2231 3.5276 .2097(-3
3(-3 .2004 3.6581 1271{-3
2(-3 A4 3.8329 .6334(-4
1(-3 .1300 .18 .1964 -4;
9(-4 1246 §.1518 .1650(-4
8(-4 .1187 4.1964 .1357(-4
7(-4 1123 4.2461 .1088(-4
6(-4 .1054 4.3028 .8440(-5)
5{-4 .09767 4.3681 .6271(-5)
4(-4) .08895 4.4473 .4352(-5)
(-4 .07874 4.5462 .2733(-5
2(-4 .06620 4.6811 .1428(-5
(-4 .04902 4.9020 .4749(-6)
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TABLE 18.

(continued)

89

t=1/s

x(s)=y(s)/s

2(s)=y(s)/s"

8(s)=1-a(z(s))

(-5

R WA NDO=RN WD N0
1
o

.04681
.04446
.04193
.03918
.03614
.03274
.02881
.02403
.01759
.01678
.01590
.01497
.01396
.01285
.01161
.01018
.008453
.006146

4.9346
4.9709
5.0113
5.0578
5.1113
5.1773
5.2603
5.3742
5.5638
5.5917
5.6227
5.6581
5.6986
5.7457
5.8031
5.8759
5.9770
6.1456

.4021(-6)
.3337(-6
.2707(-6
.2124(-6
.1602(-6
.1128(-6
.7204(-7
.3854(-7
.1323(-7
N27(-7
.9428 -8;
.7675(-8
6056 —8;
.4590(-8
.3266 —8;

8

.2110(-
.1140(-8
.3999(-9




TABLE 19.

ESTIMATES OF BAYES RISK FOR SéQUENTIAL ANALYSIS PROBLEM®

Zg = ¥/
t, = 1/8, 0 0.5 1.0 1.5 2.0 3.0 4.0 5.0
5.00 +1759 -
2.00 .2667
1.00 .3414
.50 .3876
.20 3765 .3183 .1828
.10 .3322 .2910 .1934 .9099(=1)
.05 <2775 2468 1734 +9498(-1) +3737(=1)
.02 «2072 -1856 .1338 +7816{=1) .3705(=1)
.01 1614 21447 .1048 +6201(=1) +3052(=1) +3763(=2)
5(-3) 21234 .1106 .8001(=1) .4730(=1) .2343(=1) +3697(=2) .
2(-3) .8468(-1) 27576(=1)_  .5447(-1) +3187(=1) 21559(=1) +2642(=2)
1(-3) .6284(=1) .5611(~1) 24011 (=1) +2321(=1) J17(=1)  .1858(~2) <2094 (=3}
5(-4) +4619(=1) «4118(=1) +2926(=1) «1674(=1) +7902(~2) 21253(=2) .1833(=33
2(-4) +3040(=1) +2704(~1) 21907(=1) +1076(=1) .4954(-2) - .7210(-3) +1167(=3)
1(-4) «2199(=1) «1953(=1) $1371(=1) +7660(=2) +3466(=2) .4698(~3) .7563(=4)
5(-5) +1583(=1) +1405(=1) .9819(=2) +5441(=2) +2425(=2) +3056(=3) 24697 (~4) +6465(=5)
2(=5) .1020(=1) +9032(=2) +6286(=2) .3451(=2) «1512(=2) $1743(-3) +2409(-4) +4874(=5)
1(=5) «7283(~=2) +6446(=2) .4475(~2) «2444(-2) +1060(=2) +1149(=3) +1429(=4) +3309(-5)
5(-6) 5191 (=2) +4591(=2) ,3180(=2) <1729(=2) .7432(~3) .7639(-4) .8430(-5) +2092(=5)
2(=6) +3308(-2) +2924(=2) +2021(=2) <1094(=-2) .4660(=3) +4517(=4) .4185(=5) +1071(=5)
1{=6) +2349(-2) +2075(=2) +1432(=2) <7733(~3) .3278(-3) +3066(~4) +2480(=5) .6247(-6)
*The quantity tabulated is BR = Bayes risk/k2’/ ¢/ ¢?/> . e{d(v(s),s)} - s;'
TABLE 20. ESTIMATES OF BAYES EXPECTED COST OF SAMPLING FOR SEQUENTIAL ANALYSIS PROBLEM®
2o = ¥9/%
t, = /3, 0 0.5 1.0 1.5 2.0 3.0 4.0 5.0
5.00 2501 (~=2)
2.00 L1457(=1)
1,00 44931 (=1)
.50 .1079
.20 .1575 1166 +2389(=1)
.10 1606 .1345 +7380(=1) .1243(-1)
.08 .1459 1275 .8386(=1) .3804(~1) .4990(-2)
.02 1166 .1040 .7382(~1) <4141 (=1) .1738(=1)
.01 +9410(=1) +8437(=1) .6101(=1) .3583(-1) «1710(=1) +5592(=3)
5(-3) L7391 (=1) .5636(=1) .4824(=1) «2873(~1) £1429(=1) .1805(=2)
2(=3) .5209(=1) +4673(<1) .3388(-1) 22013(=1) £1007(=1) .1698(=2)
1(=3) .3927(=1) .3517(=1) .2537(=1) .1494(=1) .7384(-2) +1293(=2) .5924(-4)
5(~4) +2925(~1) +2614(=1) .1874(=1) +1090(=1) .5293(~2) .9086(~3} .1063(=3)
2(-4) .1951(=1) 21739(-1) +1236(=1) .7081(=2) .3347(-2) +5358(~3) .8427(~4)
1(~4) .1423(-1) .1266(=1) .8949(-2) +5066(=2) +2347(-2) +3509(=3) .5855(=4)
5(-5) £1031(=1) +9163(~=2) .6442(=2) .3610(=2) .1642(=2) .2278(=3) .3787(-4) .2344(=5)
2(=5) +6685(=2) +5929(=2) .4144(-2) +2295(=2) .1022(-2) .1286(-3) +2000(~4) .3204(-5)
1(=5) .4793(~2) +4246(=2) +2958(=2) +1627(=2) L7151(=3) .8390(=4) +1200(-4) +2469(=5)
5(-6) «3426(-2) .3033(-2) +2106(=2) .1152(=2) .5006(=3) .5512(=4) .7106(=5) .1669(=5)
2(~6) +2190(=2) .1937(=2) +1341(=2) .7291(-3) .3132(-3) .3208(-4) .3518(-5) .8997(-6)
1(=6) +1558(=2) 1377(-2) .9518(-3) .5155(=3) +2200(-3) .2153(=4) .2068(=5) .5382(-6)
*The quantity tabulated is ECS = Bayes expected cost of sampli.ng/kz/?'t:.'/302/3 = E(S-1) - .

06

*16
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TABLE 21. ESTIMATES OF STOPPING BOUNDARY FOR ONE-ARMED BANDIT PROBLEM TABLE 21. (continued)
" . R - - N E TR e [ = e s 1
t = 1/s x(s)=y(s)/s 2(s)=y(s)/s¥ a(s)=e(2(s)) t=1/s x(s)=y(s)/s 2(s)=y(s)/s B(s)=¢(z(s))
.18 -.4311 -1.0160 .1548
.9995 -.01430 -.0143 .4943 .16 -.4252 -1.0630 L1439
.999 -.02026 -.0203 4919 14 -.4176 -1.1161 1322
.995 -.04524 -.0454 .4819 12 -.4076 -1.1767 1197
.99 -.06391 -.0642 4744 .10 -.3946 -1.2477 .1061
.98 -.09022 -.0911 .4637 -09 -.3866 -1.2886 .09877
.97 -.1103 -. 1120 4554 .08 -.3773 -1.3340 .09110
.96 -.1272 -.1298 ~4484 .07 -.3665 -1.3854 .08296
.95 -.1420 -.145%6 4421 .06 -.3540 -1.4450 .07423 .
.94 -.1554 -.1603 .4363 .05 -.3387 -1.5146 .06494
.93 -.1675 -.1737 .4310 .04 -.3198 -1.5988 .05493
.92 -.1789 -.1865 .4260 .03 -.2956 -1.7069 .04392
.91 -.1894 -.1986 .4213 .02 -.2626 -1.8569 .03166
.90 -.1993 -.2101 .4168 .01 -.2108 - -2.1081 .01751
.88 -.21717 -.2321 .4082 9(-3) -.2035 -2.1454 .01596
.86 -.2344 -.2528 .4002 . 8(-3 -.1956 -2.1868 .01438
.84 -.2498 -.2725 .3926 -3 ~-.1869 -2.2336 .01275
.82 -.2640 -.2915 .3853 6(-3 -.1772 -2.28M .01109
.80 -.2775 -.3103 3782 5(-3 ~.1662 -2.3500 .009388
.78 -.2900 -.3284 .3713 4(-3 -.1534 -2.4258 .007638
.76 -.3017 -.3461 .3646 3(-3 -.1381 -2.5222 .005832
.74 -.3129 -.3637 -3580 2(-3 -.1188 -2.6554 .003961
.72 -.3234 -.3811 3516 1(-3 -.09090 -2.8744 .002024
.70 -.3333 -. 3984 .3452 9(-4) -.08720 -2.9067 .001826
.68 -.3428 -.4157 .3388 8(-4 -.08321 -2.9420 .001630
.66 -.3517 -.4329 .3325 7(-4 -.07892 -2.9829 .001428
.64 -.3602 -.4503 .3262 6(-4 -.07420 -3.0293 .001226
.62 -.3683 -.4678 .3200 5(-4 -.06895 -3.0836 .001023
.60 -.3760 -.4854 .3137 4(-4 -.06297 -3.1487 .8201(-3)
.58 -.3832 -.5032 .3074 3(-4 -.05597 -3.2316 .6155(-3)
.56 -.3901 -.5212 .30m 2}-4 -.04730 -3.3445 .4122(-3)
.54 -.3965 -.5396 .2947 1(-4 -.03533 -3.5327 .2057(-3)
.52 -.4026 -.5583 .2883 9(-5 -.03378 -3.5605 .1851(-3)
.50 -.4086 -.5778 2817 8(-5 -.03213 -3.5917 .1643 -3;
.48 -.4138 -.5973 2752 7(-5 -.03034 -3.6263 .1438(-3
.46 -.4187 -.6173 .2685 6(-5 -.02838 -3.6640 1242 -3;
.44 -.4231 -.6379 .2618 5(-5) -.02625 -3.7116 .1030(-3
.42 -.4272 -.6592 .2549 4‘-5 -.02383 -3.7680 .8230 -4;
.40 -.4309 -.6813 .2479 3-5 -.02103 -3.8397 .6162(-
.38 -.4340 -.7041 .2407 25-5; -.01762 -3.9388 .4095(-4)
.36 -.4367 -.7278 .2334 1(-5 -.01297 -4.1013 .2055(-4)
.34 -.4388 -.7525 .2259 9(-6 -.01238 -4.1257 .1849(-4
.32 -.4405 -.7187 .2181 8(-6 -.01175 -4.1532 .1640§-4
.30 -.4415 -.806) .2101 ‘7{-6 -.01107 -4.1839 .1434(-4
.28 -.4419 -.8351 .2018 6(-6 -.01033 -4.2190 .1228(-4
-26 ~.4416 -. 8660 1932 5(-6 -.009526 -4.2602 1022(-4
.24 -.4404 -.8990- .1843 4(-6 -.008620 -4.3101 .8163{-5
.22 ~.4383 -.9345 .1750 3(-6 -.007570 -4.3706 .6200(-5
.20 -.4354 -.9736 1651 2(-6 -.006307 -4.4597 .A107(-5
1(-6) -.004608 -4.6077 .2038(-5




TABLE 22, ESTIMATES OF BAYES EXPECTED PAYOFF FOR ONE~ARMED BANDIT PROBLm'
25 = ¥y/9,
to = 1/!o [} -0.5 -1.0 =1.5 =2.0 =3.0 -4.0
+50 1774 .0035
«20 «1059(1) .2390
10 +2769(1) <8971 .0839
.08 .6420(1) +2479(1) 5178
.02 «1784(2) «7773(1) «2375(1) «3003
.01 «3728(2) «1708(2) «5961(1) «1249 .0268
5(=3) «7658(2) +3618(2) +1362(2) «3592(1) «3915
2(=3) «1953(3) 9447(2) «3758(2) «1150(2) «2219(1)
1(=3) «3940(3) «1925(3) «7838(2) .2538(2) «5867(1)
5(=-4) «7920(3) «3892(3) «1607(3) «3387(2) «1370(2) 0233
2(=-4) «1987(4) .9812(3) «4093(3) «1406(3) «3824(2) «8137
1(=4) «3981(4) +1969(4) +8245(3) «2861(3) +7992(2) +2089(1)
5(=5) +7969(4) «3946(4) «1657(4) «5783(3) «1640(3) »5440(1)
2(=5) +1994(5) .9878(4) «4154(4) «1456(4) .4175(3) .1628(2)
1(=5) +3988(5) «1977(5) «8319(4) «2920(4) +8409(3) «3482(2) 0493
5(=6) «7977(5) «3955(5) +1665(5) .5850(4) .1689(4) 7247(2) 4370
2(=6) «1995(6) .9890(5) «4165(5) +1464(5) «4232(4) .1860(3) «211701)
1{=6) «3989(6) «1978(6) .8330(5) «2929(5) «-8477(4) «3765(3) .5354(1)
‘The quantity tabulated is BEP = Bayes expected payotf/cza(;‘ = -s;/z[z farceesy, s} - d'(yo.so)].
*
TABLE 23. ESTIMATES OF BAYES EXPECTED SAMPLE SIZE FOR ONE~ARMED BANDIT PROBLEM
29 ¥/ %
to-l/so [} -0.5 -1.0 =-1.5 -2.0 -3.0 -4.0
.50 <5786 .083S
20 $2217(1) «1047(1)
.10 «4851(1) «2637(1) 7097
.0S «1001(2) «5782(1) +2256(1)
.02 22528(2) «1513(2) .6942(1) .1884(1)
.01 «5052(2) «3064(2) »1480(2) .5065(1) 5210
5(=3) .1008(3) «6157(2) «3055(2) -1154(2) .2588(1)
2(=-3) «2512(3) «1542(3) «7795(2) 3125(2) «9084(1)
1(=3) .5016(3) .3086(3) «1571(3) «6434(2) «2018(2)
S(=-4) «1002(4) ,6172(3) «3155(3) .1308(3) 4257(2) .5929
2(=4) »2502(4) «1543(4) «7913(3) +3308(3) «1103(3) .4387(1)
1(=4) .5003(4) »3086(4) .1584(4) «6643(3) «2236(3) .1094(2)
5(=5) «1000(5) «6172(4) <3171 (4) «1332(4) «4507(3) 22417(2)
2(~5) «2501(5) «1543(5) +7931(4) .3336(4) -1132(4) «6433(2)
1(=5) «5001(S) .3086(S) «1586(5) «6677(4) «2270(4) «1314(3) «1032(1)
5(=6) +1000(6) «6171(5) «3173(5) «1336(5) 4544 (4) «2659(3) «4101(1)
2(=6) «2500(6) .1543(86) «7935(%) «3340(5) «1137(5) .6696(3) «1334(2)
1(=6) +5000(6) .3086(6) .1587(6) .6681(5) «2274(5) .1344(4) +2907(2)
*The quantity tabulated is EN = Bayes expected sample s:i.ze/cxzc:(;2 = so[E(S- ) - s;‘ ] )

vo
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TABLE 24. STOPPING BOUNDARIES gy(t) FOR ANSCOMBE'S PROBLEM WITH ETHICAL COST
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t v=0.0 y=0.1 y=1.0 ¥y=10.0
1(~6) 1.03(-6) 1.13(-6) 2.05(-6) 1.12(-5)
2(-6) 2.05(-6) 2.25(-6) 4.10(-6) 2.25(-5)
3(-6) 3.07(-6) 3.38(-6) 6.13(-6) 3.37(~5)
4(-6) 4.09(-6) 4.50(-6) 8.17(-6) 4.50(-5)
5(-6) 5.11(-6) 5.62{-6) 1.02(~5) 5.63(~5)
6(-6) 6.14(-6) 6.75(-6) 1.23(~5) 6.76(-5)
7(-6) 7.15(-6) 7.87(-6) 1.43(-5) 7.88(-5)
8(-6) 8.17(-6) 08,98(-6) 1.64(-5) 9.02(-5)
9(-6) 9.20(-6) 1.01(-5) 1.84(-5) 1.01(-4)
1(-5) 1.02(-5) 1.12(-5) 2.05(-5) 1.13(-4)
2(-5) 2.04(-5) 2.25(-5) 4.09(-5) 2,26(-4)
3(-5) 3.07(-5) 3.38(-5) 6.15(-5) 3.39(-4)
4(-5) 4.09(-5) 4.50(-5) 8.20(-5) 4.53(-4)
5(-5) 5.12(-5) 5.65(-5) 1.03(-4) 5.65(-4)
6(-5) 6.16(-5) 6.78(-5) 1.23(-4) 6.79(-4)
7(-5) 7.20(-5) 7.91(-5) 1.44(-4) 7.92(-4)
8(-5) 8.22(-5) 9.04(-5) 1.65(-4) 9.05(-4)
9(-5) 9.25(-5) 1.02(-4) 1.85(-4) 0.00102
1(-4) 1.03({-4) 1.13(-4) 2.06(-4) 0.00113
2(-4) 2.07(-4) 2.27(-4) 4.13(-4) 0.00223
3(-4) 3.11(-4) 3.42(-4) 6.21(-4) 0.00332
4(-4) 4.16(-4) 4.56(-4) 8.28(-4) 0.00437
5(-4) 5.20(-4) 5.71(-4) 0.00103 0.00540
6(-4) 6.25(-4) 6.86(~4) 0.00124 0.00642
7(-4) 7.28(-4) 8.01(-4) 0.00144 0.00741
8(-4) 8.34(-4) 9.15(-4) 0.00165 0.00839
9(-4) 9.39(-4) 0.00103 0.00185 0.00935
0.001 0.00104 0.00114 0.00206 0.0103
0.002 0.00208 0.00228 0.00405 0.0191
0.003 0.00311 0.00340 0.00599 0.0269
0.004 0.00412 0.00451 0.00786 0.0340
0.005 0.00513 0.00561 0.00969 0.0405
0.006 0.00612 0.00668 0.0115 0.0466
0.007 0.00710 0.00775 0.0132 0.0523
0.008 0.00807 0.00880 0.0149 0.0576
10,009 0.00903 0.00984 0.0166 0.0626
0.01 0.00998 0.0109 0.0182 0.0674
0.02 0.0190 0.0206 0.0332 0.1060
0.03 0.0274 0.0295 0.0462 0.1339
0.04 0.0353 0.0378 0.0578 0.1560
0.05 0.0427 0.0457 0,0684 0.1741
0.06 0.0498 0.0531 0.0783 0.1896
0.07 0.0566 0.0602 0.0876 0.2014
0.08 0.0631 0.0670 0.0962 0.2153
0.09 0.0694 0.0736 0.1043 0.2260
0.10 0.0754 0.0799 0.1120 0.2357
0.1 0.0813 0.0860 0.1193 0.2445
0.12 0.0870 0.0918 0.1263 0.2525
0.13 0.0926 0.0976 0.1330 0.2600
0.4 0.0980 0.1032 0.1394 0.2669
0.15 0.1033 0.1085 0.1456 0.2735

.t = currently available proportion of total potential information
= nominal significance level

S
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TABLE 24 (continued)

t Y=0.0 y=0.1 y=1.0 ¥=10.0
0.16 0.1085 0.1138 0.1515 0.2795
0.17 0.1135 0.1190 0.1573 0.2852
0.18 0.1184 0.1240 0.1629 0.2906
0.19 0.1233 0,1290 0.1683 0,2958
0.20 0.1280 0.1339 0.1736 0.3006
0,22 0.1374 0.1434 0.1839 0.3100
0.24 0.1463 0.1525 0.1935 0.3183
0.26 0.1550 0.1612 0.2026 0.3259
0.28 0.1635 0.1698 0.2114 0.3330
0.30 o.1718 0.1781 0.2198 0.3396
0.32 0.1798 0.1862 0.2279 0.3458
0.34 0.1877 0.1941 0,2358 0.3516
0.36 0.1955 0.2019 0.2434 0.3571
0.38 0.2031 0.2095 0.2508 0.3623
0.40 0.2106 0.2170 0.2579 0.3672
0.42 0.2180 0.2243 0.2650 0.3720
0.44 0.2253 0.2316 0.2718 0.3765
0.46 0.2325 0.2388 0.2786 0.3809
0.48 0.2397 0.2459 0,2852 0.3852
0.50 0.2468 0.2529 0.2917 0.3893
0.52 0,2540 0,.2601 0.2982 0.3934
0.54 0.2610 0.2670 0.3045 0.3974
0.56 0.2680 0.2740 0.3108 0.4012
0.58 0.2751 0.2809 0.3170 0.4049
0.60 0.2821 0.2878 0.3231 0.4085
0.62 0.2891 0.2947 0.3292 0.4120
0.64 0.2961 0.3016 0.3353 0.4155
0.66 0.3032 0.3086 0.3414 0.4190
0.68 0.3104 0.3156 0.3475 0.4224
0.70 0.3176 0.3227 0.3536 0.4258
0.72 0.3249 0.3298 0.3598 0.429
0.74 0.3324 0.3371 0.3660 0.4325
0.76 0.3399 0.3445 0.3723 0.4359
0.78 0.3477 0.352% 0.3787 0.4393
0.80 0.3556 0.3599 0.3853 0.4428
0.82 0.3639 0.3680 0.3921 0.4461
0.84 0.3725 0.3763 0.3990 0.4500
0.86 0.3914 0.3849 0.4063 0.4537
0.88 0.3908 0.3941 - 0.4139 0.4576
0.90 0.4009 0.4039 0.4219 0.4617
0.92 0.4118 0.4145 0.4307 0.4660
0.94 0.4241 0.4264 0.4403 0.4708
0.95 0.4309 0.4330 0.4458 0.4735
0.96 0.4383 0.4403 0.4517 0.4765
0.97 0.4467 0.4484 0.4583 0.4797
0.98 0.4566 0.4580 0.4660 0.4835
0.99 0.4694 0.4704 0.4761 0.4884
0,995 0.4784 0.4791 0.4831% 0.4918
0.999 0.4904 0.4907 0.4924 0.4963
0.9995 0.4932 0.4935 0.4947 0.4975
1.0000 0.5000 0.5000 0.5000 0.5000




TABLE 25.

BAYES PROPERTIES OF OPTIMAL PROCEDURES IN ANSCOMBE'S PROBLEM WITH ETHICAL COST

o}
0.0 0.5 1.0 1.5 2.0 3.0
to Y BR (PR) EN BR (PR) EN BR (PR) EN BR (PR) EN BR (PR) EN BR (PR) N
1(=1) 0.0 1.78(.61) 1.76 1.62(,.57) 1.43
0.1 1.83(.60) 1.69 1.66(.56) 1,37 z =4 /g
1.0 2.16(.53) 1.29  1.99(.49) .99 RN
10.9 3.54(.34) 47 3.18(.24) «23 - to = proportion of total information in prior
5(-2) 0.0 2.55(.83)° 2.91 2.34(.81) 2.47 BR = Bayes risk/c2q°l -
0.1 2.63(.63) 2.80  2.42(.60) 2.36 g
1.0 3.20(.56) 2.15 2.99(.54) 1.78 PR i
. o . = proportion of Bayes risk due to the
10,0 5.81(.40) .82 5.45(.35) «54 experimental phase
2(=2) 0.0 3;80(.86) 5,31 3.52(.65) 4.61 2.78(.62) 2.96 0
. . . . ° . ° EN = Bayes expected sample size 02 2
0.1 3.94(.66) Se11 3.65(.65) 4.42 2.89(.61) 2.82 i b { 06
1.0 4.99(.60) 3.93 4.69(.60) 3.35 3.76(.55) 2.01
10.0 10.20(.46) 1.57 9.77(.45) 1.21 7.25(.29) 41
1{=2) 0.0 4.95(.68) 8.11 4.60(.68) 7.11 3.68(.66) 4.75
Q.1 5.15(.68) -7.80 4.80(.67) 6,83 3.85(.65) 4.54
1.0 6.70(.63) 6.01 6.31(.63) 5,21 5.16(.60) 3,34
10,0 14.82(.51) 2.46 14.27(.50) 2.01 11,42(.42) .98
5(-3) 0.0 6.31(.70) 12.19 5.87(.70) 10.75 4.73(.69) 7.34 3.30(.65) 3.80
0,1 6.59(.70) 11,73 6.14(.69) 10.34 4.97(.68) 7,04 3.48(.84) 3.62
1.0 8.77(.65) 9.08 8.27(.85) 7.92 6.82(.64) 5,28 4.80(.59) 2.56
10.0 20.82(,.54) 3.76 20.06(.54) 3.18 16.65(.50) 1,82 10.33(.31) 49
2(=3) 0.0 8.45(.72) 20.53 7.86(.72) 18.17 6.35(.72) 12.59 4.51(.70) 6.79 2.81(.65) 2.77
Q.1 8.86(.72) 19,76 8.25(.72) 17.48 6.70(.71) 12.09 4.78(.70) 6.50 2.98(.64) 2.63
1.0 12.12(.68) 15,27 11,41(.68) 13.47 9.46(.68) 9,21 6.84(.66) 4.31 4.19(.58) 1.79
10.0 31.21(.59) 6.45 30.00(.59) 5.58 25.45(.58) 3.55 17.69(.50) 1.49 8.35(.13) 13
= & =
@
TABLE 25 (continued)
v 2]
0.0 0.5 1.0 1.5 2.0 3.0
to Y BR (PR) EN BR (PR) EN BR (PR) N BR (PR) EN BR (PR) EN BR (PR) EM
1(=3) 0.0 10.34(.74) 130,15 9.61(.74) 26.72 7.77(.74)  18.61 5.55(.73) 10.18 3.54(.70) 4.34
0.1 10.88(.73) 29.03 10.13(.73) 25.72 8.22(.73) 17.90 5.89(.73) 9.77 3.76(.69) 4.14
1.0 15.17(.70) 22.47 14.26(.70) 19.87 11.,80(.70) 13,72 8.60(.69) 7.37 5.49(.65) 2.98
10.0 41.25(.62) 9.59 39.54(.62) 8,38 33.69(.62) 5.54 24.39(.58) 2.54 13.66(.41) +69
S(=4) 0.0 12.50(.75) 44.00 11.60(.75) 39.01 9.3%(.76) 27.21 6.68(.75) 14.98 4.32(.74) 6.51
0.1 13.19(.75) 42.37 12.16(.75) 37.356 9.92(.75) 26.19 7.12(.75) 14.40 4.81(.73) 6.24
1.0 18.71(.72) 32.85 17.55(.72) 29.08 14.47(.73) 20.20 10.58(.72) 11.00 6.90(.70) 4.65
10.0 53.42(.64) 14.15 51.,03(.65) 12.44 43.46(.65) 8.41 32.12(.63) 4.29 19.63(.54) 1,48
2(=4) 0.0 15.77(.77) 71.90 14.61(.77) 63.74 11.73(.78) 44.47 8.35(.78) 24.51 5.44(.77) 10.74
0.1 16.69(.77) 69.26 15.,49(.77) 61.40 12.47(.77) 42.83 8.92(.77) 23.59 $.83(.77) 10.33
1.0 24.17(.74) 53.81 22.60(,74) 47.68 18.53(.7S5) 33,21 13.51(.75) 18.22 8.93(.74) 7.90
10.0 73.13(.68) 23,43 69.51(.68) 20,69 58.89(.69) 14.23 44.00(,.68) 7.58 28.52(.64) 3,02
1{-4} 0.0 18.57(.78) 103,73 17.19(.78) 91.92 13.74(.79) €4.05 9.74(.79) 35.24 6.35(479) 15.43
0.1 19.71{.78) 99.95 18.26(.78) 88.57 14.64(.79) 61.72 10.42(.79) 33.95 6.81{.79) 14,86
1.0 28.94(.76) 77.78 27,00(.76) 68.9¢ 22,0%(.77) 47.99 15.98(.77) 26.36 10.60(.77) 11.49
10.0 91.05(.70) 34.11 86.22(.70) 30.17 72.62(.71) 20.89 54.30(.71) 11.30 36.00(.69) 4.72
5(=5) 0.0 21.67(.79) 149.08 20.02(.80)132.05 15.93(.80) 91.88 11.24(.81) 50.41 7.31(.81) 21.99 2.67(.75) 2.25
0.1 23.05(.79) 143.68 21.31(.79)127.27 17.01(.80) 88.56 12.04(.80) 48.59 7.86(.81) 21.19 2.86(.74) 2.18
1.0 34,28(.77) 111.98 31.90(.77) 99.19 25.86(.78) 69.03 18.66(.79) 37.88 12.38(.79) 16,51 4.38(.70) 1.6
10,0 111.73(.72) 49.44 105.42(.72) 43.77 88.18(.73) 30.40 65.74(.74) 16.58 44.09(.73) 7.10 12.11(.45) .42

66



TABLE 25 {(continued)

o}
0.0 0.5 1.0, 1.5 2.0 3.0
to Y BR (PR) EN BR (PR} EN BR (PR) EN BR (PR) EN BR (PR) EX BR (PR) EN
2(~5) 0.0 26.24(.81) 239.73 24,19(.81)212.20 19.13(.B1)147,31 13.38(.82) 80,45 8.66(.83) 34.84 3.30(.79) 3.85
0.1 27.97(.80) 231.10 25.81(.81)204.57 20.46(.81)142.02 14.36(.82) 77.58 9.32(.83) 33.61 3.55(.79) 3.43
1.0 42.,25(.79) 180.44 39.20(.79)15%8.75 31,53(.80)110.97 22.54(.81) 60.68 14.89(,.81) 26,33 5.61(.76) 2.66
10.0 143.62(.74) 80.30 134.90(.74) 71.11 111.75(.75) 49.44 82.67(.76) 27.07 55.75(.76) 11,72 18.40(.62) 1.0%
1(=5) 0.0 30.06(,.82) 342.35 27.66(.82)302.87 21.78(.82)209.94 15.13(.83)114.31 9.74(.84) 4%9.22 3.78(.81) 4.93
0.1 32.09(.81) 330,09 29.56(.82)292.03 23.33(.B2)202.44 16.26(.83)110.25 10.50( .84) 47.48 4.08(.81) 4.76
1.0 48.98(.80) 258.05 45.34(.80)228,.34 36.25(.81)158.40 25.72(.82) 86.38 16.90(.83) 37.30 6.56(.79) 3.75
10.0 171.31(.75) 115.45 160.38(.76) 99.65 131,.87(.77) 71.05 96.83(.78) 38.89 65.25(.78) 16.87 23,32(.69) 1.60
5(-6} 0.0 34.19(.83) 487.99 31.41(.83)431.54 24.62(.83)298.64 16.98(.84)162.10 10.86(.85) 69.41 4.27(.83) 6,77
.1 36.56(.82) 470.57 33.62(.82)416,.15 26.40(.83)288,02 18.27(.84)156.36 11,73(.85) 66,98 4.62(.83) 6.55
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A 1oglo(scs) Fig. 6. Bayes Expected Cost of Sampling for Sequential Analysis Problem
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Fig. 10. Bayes Expected sample Sizes for One-Armed Bandit Problem
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F X Fig.l8. Bayes Risks at 2, = 0 for Anscombe's Problem with Ethical Cost .
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; N EN Fig. 22. Bayes Expected Sample Sizes at t, <10 for
- Anscombe's Problem with Ethical Cost
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