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SECTION 1 , Dts t A + ..

Several methods for modeling and analysis of parallel algorithms and

architectures have been proposed in the recent years. These include

recursion-type methods, like recursion equations, z-transforu descriptions

and 'do-roops' in high-level programming languages, and precedence-graph-

type methods like data-flow graphs (marked graphs) and related Petri-net

derived models,[1], [2]. Most efforts have been recently directed towards

developing methodologies for structured parallel algorithms and

architectures and, in particular, for systolic-array-like systems [3]-[10].

Some important properties of parallel algorithms have been identified in the

process of this research effort. These include executability (the absence

of deadlocks), pipelinability, regularity of structure, locality of

interconnections, and dimensionality. The research has also demonstrated

the feasibility of multirate systolic arrays with different rates of data

propagation along different directions in the array.

The methodologies mentioned above provide some assistance in the

analysis and synthesis of parallel algorithms and architectures, but none of

them is flexible enough to address the wide scope of problems that arise in

this fast developing discipline. In particular, pone of these methodologies

is capable of clearly displaying the multiplicity of choices for

implementing a given set of recursion equations. Recent research has

vividly demonstrated this multiplicity by presenting several distinct

architectures for the same operation (e.g., matrix multiplication [4], [5],

7], [10]).

.-. In his paper we presentra new methodology for modeling and analysis of

parallel algorithms and architectures. Owr methodology provides a unified

conceptual framework that clearly displays the key properties of parallel

systems. In particular,

(1) Executability of algorithms is easily verified.



(2) Schedules of execution are easily determined. This allows for

simple evaluation of throughput rates and execution delays.

(3) Both synchronous and asynchronous (self-timed) modes of execution
can be handled with the same techniques.

(4) Algorithms are directly mappable into architectures. No elaborate

hardware compilation is required.

(5) The description of a parallel algorithm is independent of its

implementation. All possible choices of hardware implementation
are evident from the description of a given algorithm. The
equivalence of existing implementations can be readily
demonstrated.

(6) Both regular and irregular algorithms can be modeled. Models of
regular algorithms are significantly simpler to analyze, since
they inherit the regularity of the underlying problem.

OUI-methodology is largely based upon the theory of directed graphs and can,

therefore, be expressed both informally, in pictorial fashion, and formally,

in the language of precedence relations and composition of functions. This

duality will, hopefully, help to bridge the gap between the two schools of

research in this field.
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SECTION 2

M!DJIkNG PARALLEL ALGOR1MRS AND ARCHITECTURES

The concepts of 'algorithm' and 'architecture,' which have been widely

used for several decades, still seem to defy a formal definition. Books on

computation and algorithms either take these concepts for granted or provide

a sketchy-definition using such broad terms as 'precise prescription.'

'computing agent,' 'well-understood instructions,' 'finite effort' and so

forth. The purpose of this section is to provide a simple formal model for

modeling and analysis of (parallel) algorithms and architectures. This

model, which we call modular computing network (MCN) exhibits all the

properties usually attributed both to algorithms and to hardware

architectures. As a first step toward the formal introduction of this model

we extract in Section 2.1 the main attributes of algorithms from their

characterizations in the literature. This analysis of literature leads to

the conclusion that algorithms can only be defined in a hierarchical manner,

i.e., as well-formed compositions of simpler algorithms, and that the

simplest (non-decomposable algorithms) cannot and need not be defined. The

building blocks of the theory of algorithms are characterized in terms of

three attributes: Function (what building blocks do), execution time (how

long they do it), and complexity (what does it cost to use them). These

observations are incorporated into the modular computing network model, as

described in Sections 2.2 - 2.5.

2.1 TOWARD A FORMAL DEFINITION OF ALGORI71MS AND ARCHITECTURES

In this section we attmpt to extract the main attributes of algorithms

and architectures from a randomly chosen sample of 'definitions.' Most

characterizations of algorithms are Seared to the notion of sequential

Sexecution. Nevertheless, we shall see that this underlying assumption is

ii 3



almost never made explicit. As a result, the attributes of parallel

algorithms are, in fact, included in the available characterizations.

As a typical example consider the following definition. 'The term

'algorithm' in mathematics is taken to mean a computational process, carried

out according to a precise prescription and leading from given objects,

which may be permitted to vary, to a sought-for result' [11]. This

definition simply states that an algorithm is a well-defined input-output

map and that its domain contains at least one element, and usually more than

one. However, the term 'computational process' hints that an algorithm is

more than just a well-defined function. Indeed, 'A function is simply a

relationship between the members of one set and those of another. An

algorithm, on the other hand, is a procedure for evaluating a function'

[12].

But how are functions evaluated? We are told that 'this evaluation is

to be carried out by some sort of computing agent, which may be human,

mechanical, electronic, or whatever' [12]. Thus, the emphasis is on

physical realizability (the existence of a 'computing agent') but not on the

actual details of the realization. The first axiom of the theory of

algorithms is, therefore:

There exist basic functions that are physically realizable.

Further efforts to define physical realizability turn out to be quite

futile. This is recognized by Aho, Hopcroft and Ullman who say. 'each

instruction of an algorithm must have a 'clear meaning' and must be

executable with a 'finite amount of effort.' Now what is clear to one

person may not be clear to another, and it is often difficult to prove

rigorously that an instruction can be carried out in a finite amount of

time' [13]. Physical realizability is a matter of technology: What is non-

realizable today may become realizable in a year or two. The theory of

algorithms has to assume the existence of realizable basic input-output maps

but need not be concerned with the details of their implementation.

Therefore, the core of any theory of algorithms is a non-empty collection of

und-fined objects, which we shall call Processors. These are the 'computing

agents' mentioned above, and they are assumed to have three attributes:

4



(i) Function (an input-output map)

(ii) Complexity measure

(iii) Execution time

A processor is assumed to be capable of evaluating the input-output map in

the specified execution time. The cost of utilizing the processor is

specified by its complexity measure. Notice that the notion of 'effort'

mentioned above is a combination of the processor's complexity and its

execution time.

It is important to draw a distinction between an algorithm and its

description. An algorithm consists of processors (or basic functions),

corresponding to all the functions that need to be evaluated. For instance,

the computation of sin x via the first 100 terms of its MacLaurin series

requires 100 basic functions, one for each term of the truncated series.

The description of the same algorithm in terms of instructions requires only

one instruction, wbich will be repeated 100 times with varying coefficients.

Since descriptions of algorithms need to be communicated, stored and

implemented, they must be finite, i.e., contain a finite number of

instructions. The algorithm itself, on the other hand, may consist of an

infinite number of processors, and used to process an infinite number of

inputs into an infinite number of outputs. Such are, for instance, most

signal processing algorithms: Their inputs and outputs are time-series

which may, in principle, be infinitely long. The executability of these

algorithms depends upon their capability to compute any specific output with

finite time and effort, and to use only a finite number of inputs for this

purpose. This observation also sheds a new light on the concept of

'termination,' which is usually overemphasized in definitions of algorithms.

The basic functions comprising an algorithm are interdependent in the

sense that the outputs of one processor may serve as inputs to other

processors. A complete characterization of an alSorithm requires.

therefore, to specify both its basic operations and the interconnection

between these operations. The same statement applies, of course, to block-

diagram representations of hardware, to flow-graphs and, in fact, to any

network-type schematic. While algorithms are commonly described in some

5



formal language, they can also be described in a schematic manner.

Conversely, schematic hardware descriptions can be transformed into formal

language representations. To emphasize this equivalence we &hall introduce

the concept of a modular computing network (MCN), which exhibits the common

attributes of both algorithms and architectures. Thus, an KCN is a pair

M

where i', the function of the network, is essentially the collection of

basic functions discussed above, and i, the architecture of the network,

is a directed graph describing the interconnections between basic functions.

A detailed definition is provided in Section 2.1.

The concept of modular computing network is hierarchical by nature.

Basic functions can be themselves characterized as networks of even more

basic functions. This requires every MCN to have the three fundamental

attributes of a basic function: Input-output map, complexity and execution

time. We shall show in the sequel how to uniquely associate such attributes

with modular computing networks. The theory of MCNs is, in short, the

theory of network composition (deducing the properties of a network from its

components) and network decomposition (characterizing the components and

structure of a network whose composite properties have been specified).

2.2 MODULAR COMPUTING NETWORKS

A modular computing network (MCNO) is a system of interconnected

modules. The structural information about the network is conveyed by

specifying the interconnections between the modules, most conveniently in

the form of a directed graph (Figure 2-1). The functional information about

the network is conveyed by characterizing the information transferred

between modules and the processing of this information as it passes through

the modules.

The structural attributes of an MCN are completely specified by its

architecture, which is an ordered quadruple

Architecture - (S, T, A, P) (2.2)

6



4 5

Figure 2-1. The Directed Graph Associated with a Modular Computing Network
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where ST are sets whose elements are called sources and sinks,

respectively, and A.P are relations between these sets.

The ancestry relation A specifies the connections of sources to

sinks. The elements of A, which are called arcs. are ordered source-sink

pairs

a e A -> a = (st), s a S. t a T (2.3)

An arc represents a direct transfer of information from source to sink. Two

basic assumptions govern this transfer:

(1) There are no dangling sources. Every source is connected to
exactly one sink.

(2) There are no dangling sinks. Every sink is connected to exactly
one source.

These assumptions mean that the three sets S,T.A have an equal number of

elements, and that the ancestry relation A establishes a one-to-one

correspondence between arcs, sources and sinks, viz..

(s,t) e A <==> • = A(t) <==> t = A- (s) (2.4)

This one-to-one correspondence will permit us to identify in the sequel each

arc with its associated source and sink, and to eliminate almost all sinks

and sources from the description of network architectures.

The processina relation P specifies the processing of information

extracted from sinks into transformed information, which is re-injected into

sources. The elements of P. which are called Processors, are ordered

pairs of non-empty finite sink-source sequences, viz.,

p a P -=) p = {tlt 2 . . (2.5)

ti a T. se S, I m, n

1t r



The input set (tI , t ..... tm ) consists of all the sinks from which the

processor p extracts information. The transformed information is

distributed among the members of the output set (st s2 # .... * an 
). The

one-to-one correspondence between sources, sinks and arcs allows us to

describe processor inputs and outputs in terms of arcs and to almost

completely eliminate the notion of sources and sinks. The set of input arcs

of a processor p is denoted by Ai(p), and the set of output arcs from

the same processor is denoted by A0 (p). Each processor is assumed to have

unique inputs and outputs, namely

I (p) A i (q)=

p,q e P. p 0 q ==) Ao(p)-( A (q) (2.6)

Similarly, every collection of processors, Q C P, has its uniquely

defined inputs and outputs, viz.,

A (Q) := / Ai(p) - J Ao(P) (2.7a)

pCQ peQ

and

Ao(Q) Ao(p) - Ai(p) (2.7b)
0 psQ peQ

In other words, the inputs of Q are those inputs of processors in Q that

are not connected to outputs of processors in 0. A similar statement holds

for outputs of 0. In particular, A.(P), A (P) are the inputs and
1 0

outputs of the entire network.

Network architectures are most conveniently described by a directed

graph that combines together the ancestry relation A and the processing

relation P into a single block-diagram-like representation (Figure 2-2a).

Sources and sinks are denoted by semi-circles, processors by circles and

arcs are, obviously, denoted by arcs. Sources and sinks are paired, and

each processor has its inputs and outputs adjacent to itself. An obvious
reduction in notation (Figure 2-2b) enhances the comprehensibility of the

description. The reduced form is, essentially, a block-diagram

representation of the network architecture, and can be interpreted as a

directed graph

9
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b. Reduced Form Description

Figure 2-2. Equivalent Full Form and Reduced Form Descriptions of
Network Architectures



= (V, A) (2.Sa)

The set of vertices V of this graph is

V - ( A (P), P. Ao(P) (2.Sb)

where A (F) are interpreted as the sources corresponding to the input arcs
i

and A (P) are interpreted as the sinks corresponding to the output arcs.

The arcs of the directed graph coincide with the original set of arcs A.

The interpretation of network architectures as directed graphs puts at our

disposal the powerful tools and results of graph theory. Some of these will

be used in the sequel to characterize-and analyze -the structure of modular

computing networks.
The functional attributes of an MC( are completely determined by its

architecture and by specifying the functional attributes of each processor.

Thus, the function of a network is an ordered pair

4= F , F) (2.9)

where X, F are sets whose elements are called variables and maps,

respectively.

The elements of X are sets (i.e., domains) and 'assigning a value to

a variable' amounts to choosing a particular element in the domain

corresponding to that variable. There is one variable, xa, associated

with every arc a e A of the corresponding architecture. Consequently,

there is a one-to-one correspondence between variables, sources, sinks and

arcs. This correspondence makes it possible to refer to the variables

• ssociated with the inputs of a given processor p as the input variables

of p and denote them by Ii(p). A similar notation, 1 (p), is used for

the variables associated with the outputs of the processor p.

The elements of F are multivariable maps. There is one map, fp

I associated with every processor p a P of the corresponding architecture.

It maps the input variables of this processor into the corresponding output

variables, viz.,

• I 11



f Xt(p) -- > o 0(p) (2.10)

which means that each of the output variables is a function of the input

variables (not necessarily of all the input variables). This establishes a

precedence relation between the inputs and outputs of a given processor.

viz.,

z -> y (2.11)

if x e Ai(p). y a A (p) and if y is a function of x (and. possibly.

of other input variables). The transitive closure of this relation is also

a precedence (i.e., a partial order): We shall say that xI precedes xn

if there exists a sequence of variables such that

II -1 > 2 - >

in the sense of (2.11). This global precedence will also be denoted by

xI ->n The ancestry [14] of a variable x a X is the set of all

variables that precede x, viz.,

a(z) := [z; z a X, z -) X) (2.12)

These are all the variables that have to be known in order to determine the

value of x.

Since the function of a network consisting of a snile processor p is

= i(P) U Xo(p), f ]p 0 p

there is, essentially, no distinction between the function and the M1 of

p. Thus, the input-output map of a single processor may also be called the

function of the processor. The same is not true for a network consisting of

several processors: The Input-output map of a network is a single

ultivariable map, relating the outputs of the network to its inputs; the

12



function of the network, in contradistinction, is the collection of the

atomic maps that comprise the network. The analysis problem for

computational networks is to determine the network map from its function.

The synthesis problem is to design an MCN (i.e., specify its structure and

function) that realizes a given multivariable input-output map.

Modular computing networks need not be finite. In fact, most signal

processing algorithms correspond to infinite MCNs. However, the concept of

finite effort, involved in the evaluation of variables, imposes certain

constraints upon infinite networks. First, the number of inputs and outputs

of every processor must be finite. This means that the graph V describing

the architecture is locally finite [15]. Next, every variable must be

computable with finite effort, so it will be requi-red to have a finite

ancestry, viz.,

L(x) I < for all x e X (2.13)

We shall also assume that the number of connected components of the

architecture g is countable. A modular computing network that satisfies

the three assumptions stated above--local finiteness, finite ancestry and

countable number of connected components--will be called structurally

finite. The following result characterizes the kind of infinity allowed in

such networks.

Theorem g, 1

A structurally finite MCN has a countable number of variables and

processors. The following three statements are equivalent:

(1) The number of variables is finite.

(2) The number of output variables is finite.

(3) The number of processors is finite.

13



Proof:

The countability of the variables and processors of a connected network

is a direct consequence of local finiteness (see, e.S., [151]). Since each

connected component has a countable number of variables and processors, the

same is obviously true for a countable number of connected components. Thus

the number of variables and processors of a structurally finite MCN must be

countable. As a consequence of local finiteness, a finite number of

processors implies a finite number of variables and vice versa, so (1) and

(3) are equivalent. Clearly (1) implies (2), while (2), via the finite

ancestry condition, implies (1).

U
2.3 CAUSALITY AND EXECUTIONS

The definition of processor; in the previous section did not take into

account any constraints imposed by hardware implementation considerations.

the most important among these constraints is the causality property. It

will be henceforth assumed that an output of a processor cannot become

available before the inputs of the same processor that precede this output

became available. In the beginning all variables are unavailable; the

inputs of the network are made available at a given instant, and following

that event, all variables of the network gradually become available. This

temporally ordered process, which we shall call execution, must be

consistent with the precedence relation between variables induced by the

directed nature of the architecture 1. A network that possesses an

execution in which every variable ultimately becomes available is said to be

executable (or 'live' in the terminology of Petri-nets [1]. It is clear

that a network containing a cycle cannot be executable since every variable

(= arc) on the cycle can never become available. In order to satisfy the

causality assumption every variable in the cycle must temporally precede

itself (i.e., it must be available before it becomes available (Fig. 2-3)),

which is, clearly, impossible. It turns out that every acyclic architecture

is executable. To prove this result we shall need to formalize the notion

of execution.

I4



Figure 2-3.

An execution of an MCN is a partitioning of Its variables into a

sequence of f~in!ite disjoint sets, viz.,

E = (S I 0 s i < S~ 15 I < -, SI(-) S~ = for 1 0#j, .Si 1  )

(2.14a)

such that the precedence relation is preserved. viz.,

i-1
"5(S C U Si I 0, 1,.. (2.14b)

J-0

Here a(S) denotes the ancestry of the set S, defined as the collection

of all ancestors of members of S. viz.,

U(S) a=~. (x) (2.15)

V a

*In simple words, every ancestor of z a S must be contained in one of the

scts SVsp...0 S i 1 1 which we *hall call levels. Executions cat be
interpreted as multistep procedures for evaluating all the variables in X.

I Te members of the level S~ are evaluated at the i-th step, and the

15



condition (2.14b) guarantees the availability of all their ancestors at the

right moment. Since the ancestors of the level S I  strictly precede SI

all variables in this set can be evaluated simultaneously giving rise to a

parallel execution. If each set Si contains exactly one variable the

execution will be called sequential.

Since each level S. in an execution is finite, the evaluation of theI

variables in S i from the members of the preceding levels requires finite

effort. Since each variable belongs to some level Si. the total effort

involved in the evaluation of a single variable from the global inputs is

also finite. Thus, the existence of an execution for a given M(N implies

that every variable can be evaluated with finite time and hardware. A

network-that has an execution deserves. therefore, to be called executable.

The preceding discussion implies that executability is a structural

property, since only the precedence relation between variables is involved

in constructing executions. The following result presents a simple

structural test for executability of M(Ns.

Theorem 2.2

A structurally finite MCi is executable if. and only if, its

architecture is acyclic.

Proof:

If an execution exists, then it can be easily converted into a

sequential execution by ordering the variables in each (finite) level Si

in some arbitrary manner. Thus, executability is equivalent to the

existence of a seauential execution. By a well-known result in the theory

of finite directed graphs, a sequential ordering exists if, and only if, the

graph is acyclic. Thus, the theorem holds for finite MCNs. The proof for

infinite networks is given in Appendix A.

16



Corollary 2.2

Executable MCNs always have sequential executions.

The corollary confirms the intuitive notion of executability: Any

computation that can be carried out in parallel can also be carried out

sequentially. Parallel execution offers, however, an attractive trade-off

between hardware and time, which will be discussed in detail in Sec. 3.4.

Theorem 2.2 provides a simple test for executability and, in effect.

prevents the construction of non-executable MCIs. Thus, the pitfalls of

starvation and deadlocks, well known in the context of Petri-nets [M] are

easy to avoid. Notice also that since each variable in an MCN is evaluated

exactly once, safeness [I] is guaranteed. This means that inputs to

processors do not disappear before they have been used to evaluate the

subsequent outputs. Safeness is achieved because once a variable becomes

available it stays so forever, and never disappears.

2.4 HIERARCHICAL COMPOSITION OF KCNs

Nodular computing networks are, by definition, constructed in a

hierarchical manner. A processor p in an MCN can itself be a network.

provided it has a well defined input-output map f . In this section weP

analyze the constraints that have to be imposed upon MCN composition in

order to guarantee the existence of a well-defined global input-output map.

From the structural point of view a composition is simply a network of

networks. The 'processors' of the composite network are MC s and the arcs

represent Interconnections between outputs of NCNs to inputs of other NCNB.

The architecture of the composition, obtained by regarding each NCN

component as a simple 'processor' has to satisfy the constraints of Sec.

2.2. An architecture is called admissible if it satisfies the three

following constraints:

I (1) No dangling inputs and outputs

(2) No cycles

(3) It is structurally finite

17



The importance of these constraints lies in the fact that an admissible

composition of admissible architectures is itself an admissible architecture

(see Appendix B for proof). It is interesting to notice that the

admissibility conditions are instrumental also in establishing other

important properties of architectures. In particular, an admissible

composition of self-timed elements is itself a self-timed element [6], [7].

To establish the hierarchical nature of composition it is only

necessary to verify that an admissible composition of processors with a

well-defined input-output map also has a well defined input-output map.

This will be done by interpreting executions as decompositions of MCNs into

elementary parallel and sequential combinations.

Parallel composition of two architectures, I and " is defined as1 "2&
the union of the two networks without any interconnections between '6 and

I2 (Fig. 2-4a). Sequential composition involves the connection of every

output of V1 to a corresponding input of f2; thus the number of outputs

of "C must equal the number of inputs of £2 (Fig. 4-2b). We shall

denote parallel composition by !I # I2 and sequential composition by

1 1 '2" The parallel composition of a countable number of admissible

networks is always admissible. The sequential composition of a sequence of

admissible networks is admissible too, i.e.,

£ 1 * " . .

is admissible because the unilateral nature of the cascade preserves the

finite ancestry property, while local-finiteness and countability of

components are clearly preserved.

18
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a. Parallel Composition 1 # 162

1 '

b. Sequential Composition It 9r.2

Figure 2-4. Fundamental Architecture Compositions
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Executions define a rearrangement of M.CNs as a sequential composition

of subnetworks, each subnetwork being a parallel composition of processors.

The XCN of Figure 2-1 can. for instance, be described as

(fI # a # e)*(e # f2 
# e)*(f 4 

# e # f3)*(e # f5 # e)0(f 6 
# a # e)

where e is an identity input-output map. The importance of this

observation lies in the fact that the input-output map of any sequential-

parallel composition is well-defined. Consequently, every execution has a

well-defined input-output map. This leads to the following result.

Theorem 2.1

Every executable MCN has a unique well-defined input-output map.

Proof:

See Appendix C.

U
The theorem establishes the utility of the notion of execution. While

each execution corresponds to a different ordering of the computations

required to evaluate the output variables of an MCN, all executions

determine the sane input-output map. And, while each execution provides a

different description of the network, they all correspond to the same MCN.

Descriptions of computational schemes will be considered eauivalent if

they determine the same input-output map. They will be considered

structurally equivalent if, in addition, they determine the same M(CN.

Structural equivalence, which amounts to different choices of executions,

leaves both the architecture and the function of the MtC4 unchanged. Other

types of equivalence transformations will affect both the architecture and

the function of the MCN but will keep its input-output map unchanged.

20



2.5 COMPARISON OF MCNs WII OTHER NETWORK MODELS

2.5.1 Block-Diagrams and Finite-State Machines

Numerical algorithms are most frequently described in terms of

recursion equations involving indexed quantities, known as signals. Z-

transform notation and block diagrams (or signal-flow-graphs) are sometimes

used as equivalent descriptions of recursion equations.

The main difference between MCNs and Z-transform block-diagrams is in

the distinguished role of time in the latter model. A cascade connection of

three blocks, each with its own state (Fig. 2-5a) -corresponds to an MCU of

infinite length (Fig. 2-5b). Each row of the MI represents a single step

of the recursion. Each input/output is a single variable, not a time-

series. While the MCN description seems wasteful, it does in fact enhance

our understanding of the various possibilities of implementation. Moreover,

MCNs can describe irregular algorithms that cannot be described in terms of

recurrence equations. This means that every block diagram can be converted

into an MCN but not vice versa. The conversion amounts to duplicating the

block diagram several times (once for every iteration of the recursion) and

converting delay elements into direct connections between consecutive

duplicates, as in Figure 2-5.

The preceding discussion considered only block-diagrams that correspond

to sets of recursion equations. Such diagrams always consist of delay

elements and memoryless operations. This means, of course, that only block-

diagrams whose blocks represent finite-state machines can be converted in a

straightforward manner into an MCI. Any other block-diagram has to be first

converted into a state-space form (i.e., every block has to be represented

by a state-space model or a combination of such models) before it can be

converted into an MCN. Thus, in particular, any signal-flow-graph with

rational transfer functions can be transformed into an MCN.

.1 The correspondence between block-diagrams and MO]s provide a simple

test for the executability (c computability) of algorithms represented by

I block diagrams.
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Executability Test

A finite block-diagram (or signal-flow-graph) whose blocks are

characterized by delay elements and memoryless maps is executable if, and

only if. the directed graph obtained by deleting delay elements from the

diagram (or equivalently, by setting z-1 = 0 in the transfer functions) is

acyclic.

Proof:

Since delay elements are causal. they can never give rise to cycles in

the corresponding MCN. In other words, since all operations in the i-th

iteration temporally precede all operations in the (i+l)-th iteration, the

only cycles the MCN representation of a block-diagram may have must be

contained within a single layer, corresponding to a single iteration. A

single layer of the MCN is obtained by removing all delay elements from the

block-diagram. U

The test not only establishes the executability of a given block-

diagram but indicates how to transform non-executable networks into

executable ones. Consider, for instance, the network in Figure 2-6a. It is

non-executable if H{() 0 0, because a cycle exists in the network for

z = -. However, the same transfer function can be realized by the network

in Figure 2-6b, which is executable.

2.5.2 Data-Flow-Graphs and Petri-Nets

The XCN is, clearly, a data-flow-graph [181 with the additional

constraint that only one token is placed at every input of the network, and

consequently, only one token eventually appears at every output of every

processor. Thus, an N is p e by definition. In spite of this
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Figure 2-6. Transformation of a Non-Executable Network

into an Equivalent Executable One
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I
observation every data-flow-graph (safe or unsafe) can be converted into an

MCN, as long as every firing of a vertex in the flow-graph removes one token

from every input line and adds one token to every output line. This

constraint implies that the data-flow-graph can be converted into a block

diagram involving only delay elements, advance elements and memoryless maps.

This block-diagram can in turn be converted into a (not necessarily

executable) MN. The executability condition, when transformed back to the

data-flow-graph domain becomes a cycle sum test, as described in [19].

Petri-nets are more general than data-flow-graphs. They allow two

different kinds of vertices, known as places and conditions. Conditions

correspond to our concept of processors, while places are combinations of

multiple sources and sinks and thus have no counterpart in the MCN model.

Petri-nets whose places have at most one input and at most one output are,

in fact, data-flow-graphs (also known as marked graphs [20]) and can be

converted into Nas.

2.5.3 High-Level Programming Languages

Most high-level-language computer programs can be converted with little

difficulty into MCNs. Each assignment statement of the program be-'mes a

processor in the corresponding MON. Program variables are mappeu into

network variables according to the following rules:

(i) Each program variable, say x, is mapped into several network
variables, denoted by zip 12. etc.

(ii) An occurrence of a program variable x in the right-hand-side
of an assignment statement is mapped into the same network
variable x, as the preceding occurrence of the same variable
in the program.

(iii) An occurrence of a program variable x in the left-hand-side of
an assignment statement is sapped into a new network variable,
i.e., into xi+1 if the most recent occurrence was sapped into
I..



Recursions (do-loops) are mapped into sequential compositions of identical

processors, each processor corresponding to one step of the recursions. The

mapping of conditional recursions ('if' and 'while' statements) is somewhat

more complicated and will not be described here. A separate technical memo

will be devoted to the details of converting computer programs and other

descriptions into MCNs, and vice versa.

The conversion of an MCN into a computer program is straightforward:

Each processor is mapped into several assignment statements, and each

network variable is mapped into a program variable. As an example consider

a simple computer program (Table 2-1) written as a subroutine to emphasize

the role of inputs and outputs. The corresponding MCN is Liven by the same

table, and is described graphically in Figure 2-7. Notice that the order of

assignment statements of an MCN is incbnsequential- Any arrangement of

these statements conveys exactly the same information. Also notice that we

have the option of aggregating several statements with the same inputs into

one processor in order to enhance the comprehensibility of the

representation. The MCN representation of Table 2-1 is, in fact, the

'computer program' equivalent of Figure 2-7, so that no translation is

required once such a 'formal language' representation is available.

Translation of MCNs into computer programs usually results in poor

utilization of computer resources. This inefficiency can, however, be

easily handled at the compiler level. On the other hand, the

comprehensibility of NCN representations is much better than the average

computer program.

2.5.4 Summary

The preceding analysis has shown that MCs are essentially equivalent

to computer programs, to block diagrams involving finite-state-blocks, and

to a subclass of Petri-nets (marked graphs). The major distinction between

MCNs and most other representations is the embedding of the notion of

executability into the MCN model itself. Thus, the only way to design non-

executable M(Ns is by the introduction of cycles in the network

architecture. Moreover, the test for executability is very easy to carry
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TABLE 2-1. CONVERSION OF COMPUTER PROGRAMS INTO NCNs AND VICE VERSA

SUBROUTINE EXAMPLE (X,Y,Z,W)

YTEM = X*Y

0 ZTEM = Z*W

Y_ 1)Z YTEM +ZTEM

END

MCN EXAMPLE (XI,Y1,ZL,Wl;X2,Y2,Z2,W2)

1YTEM = Xl*Yl

X2 = xi+ Y

2) ZTEM = Zl*Wl

CL4 W2= Z1+ Wl

3) Y2 = YTEM + ZTEM

Z2 = YTEM - ZTEM

END
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Figure 2-7. The MCN 'EXAMPLE' Corresponding to Table 2-1.

out and can be included in any compiler for CN representations. It is much

easier, on the other hand, to design malfunctioning Petri-nets or computer

programs, and much more difficult to detect the errors in the design.
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SECTION 3

STRUCTURAL PROPERTIES OF MCNs

The notion of cecution, defined in the previous section, provides

several quantitative characterizations of the XCN architecture. In

particular, it can be used to number the processors of an MCN and to

introduce concepts of dimensionality._ A refinement of the notion of

execution leads to time schedules and to the formulation of composition

rules for execution times. Thus, the objective of associating a unique

execution time with every output of an MCN is achieved. The third

objective, that of associating a unique measure of complexity with each MCN,

has yet to be accomplished. Currently there is no consensus even upon the

measure of complexity for a single processor, let alone for a network of

processors. Some progress has been made in characterizing complexity in

terms of 'area,' but more research is required before commonly-accepted

rules for composition of complexity can be formulated. For this reason the

topic of complexity will not be considered in the sequel.

3.1 NUMBERING OF VARIABLES AND PROCESSORS

The concept of execution, which was defined in Section 2.3. defines a

numbering E(z) on the variables of an MC, viz.,

x a S i <--> E(z) i (3.1)

Since the partitioning (SI] and the numbering E( ) determine each other

and convey equivalent Information, we shall call the function E( ) itself

an execution. Several variables may share the same value of E(), which

means they belong to the same level S i. If each level of an execution

contains exactly one variable the execution is called seanential. The

function E(z) defines, in this case, a sequential ordering of the
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variables and of the processors comprising the MCN. The numbering of

variables determined by an execution E( ) is consistent with the

precedence relation since we clearly have

E(z) k 1 + max (E(y); y s a(x)) (3.2)

y

Similarly, we can define a numbering of the processors by

E(p) := max (E(x); x e Xi(p)) (3.3)
x

The value of E(p) indicates the earliest instant at which all Inputs of

the processor p become available. Ve can also define a precedence

relation for processors, viz.,

q -> p

if there exists a directed path from q to p. This relation, in turn,

determines the ancestry set a(p) of each processor by

a(p) := (q; q & P. q -> p) (3.4)

It can now be seen that an analog of (3.2) holds for the numbering of

processors, viz.,

E(p) 1 1 + max (E(q) ; q a a(p)) (3.5)
q

Since a typical NO has fewer processors than variables, the numbering of

processors is a more convenient tool for structural analysis of an MCN.

3.2 DIINENSIONALIT AND ORDER

A family of sequential executions (E ) on a given NOq is called

representative if
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q a a(p) (=> El(q) < El(p). all 1 (3.6)

Notice that a representative family can never consist of a single execution

(except in the case of a purely sequential CN() because there exist always

two processors q, p such that E(q) < E(p) even though q does not

precede p (nor does p precede q). The following result shows that

every MCN has at least one representative family.

Theorem 3.1

The collection of all sequential-executions Qf a given MCN is a

representative family.

Proof:

By the definition of execution

q e a (p) ==> E(q) < E(p)

for every execution (sequential or not). To prove the converse assume that

fE ( )] is the collection of all sequential executions, and that for some

processors p. q

Ei(q) ( El(p), all i

Clearly p cannot precede q, but they may be incomparable. In this case

there exists a non-sequential execution E( ) such that

E(p) - E(q)

Since every execution can be transformed into a sequential one by

4 arbitrarily ordering the variables in each level, it follows that can be
converted into a sequential execution, say E , such that

I
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E (q) > E (p)0 0

This, however, contradicts the assumptions. Hence, p. q cannot be

incomparable and we must have q e a (p).

U
A representative family with the smallest number of members will be

called a basis (it need not be unique). The cardinality of bases is defined

as the dimensionality of the MCQN in consideration. The members of a basis

{Ei( )) define a coordinate basis for the network, such that the

coordinates of a processor p are (E1 (p), E2(p), .... En(p)). Notice that

the dimensionality of a network is bounded below by the dimensionality of

all its subnetworks, so adding long chains of processors to a 2-dimensional

network cannot reduce the overall dimension below 2 (Figure 3-1).

Every basis of an MCN determines a unique non-sequential execution

obtained by ordering the processors according to the sum of their basis

coordinates. For the example of Figure 3-1 this execution is

(1) , (2,3) (4) (5) . .. nW

The order of a basis is defined as the number of variables in the largest

layer of the parallel execution determined by the basis. For the example

above the order is 2 since there is a set of 2 processors in the parallel

execution. Since an MCN may have many bases it has no unique order.

Moreover, each execution E (not necessarily associated with a basis) has

its own order, defined by

ord E) := max (p; E(p) = i) (3.7)
i

Executions can be implemented in hardware by mapping each layer into a

single iteration, with all the processors in the layer implemented in

parallel. The order of an execution, which is the number of processors in

the largest layer, is therefore a measure of the hardware complexity of such

an implementation.
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i!' Figure 3-1. Example of a 2-D Network. The basis is formed by

l the executions 1.2,3,4,5, .... a and 1.3.2,4,5 ..... nm.
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Once we have coordinate bases at our disposal we can apply metric

arguments to the representation of an MCN. For instance, we can define

distances between processors and introduce the concept of local

communication between processors in a rigorous manner. However, more

research is required to establish the properties of metrics defined by

coordinate bases; in particular, it is not yet clear how the choice of the

coordinate basis affects the metric.

3.3 SCHEDULES, DELAY AND 1HROUGHPUT

The execution of an MCN represents only its precedence relation and

does not take into account the actual time required for execution. The

evaluation of each variable requires a certain amount of execution time when

implemented in hardware. Since each output of a processor may involve a

different execution delay, execution times have to be specified for arcs of

the precedence graph rather than for the vertices. The execution time

associated with a variable x will be denoted in the sequel by T(x). This

is the time required to evaluate x from its immediate ancestors

(= parents), i.e., from the variables that serve as inputs to the processor

whose output is the variable x.

The incorporation of time delays into the notion of execution results

in a schedule, which is formally defined as a function x(x) that satisfies

the constraint

x(i) I T(x) + max (x(y) ; y e u(x)) (3.8a)

y

and is zero for the network inputs, viz.,

x a Xi (P) ==) {x) 0 (3.8b)II

This constraint guarantees, in particular, that the parents of x will be

available at time v(z). Thus, schedules are refinements of executions. In

particular, with every execution E( ) we can associate a schedule r( )

by choosing

T max (Ty) + T(W) ; E(y) E(z) -1) (3.9)

y
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Such schedules are, generally, non-minimal in the sense that some operations

have all their inputs available before their scheduled execution time, i.e.,

(3.8) holds with a strict inequality for such operations. A gchedule which

satisfies (3.8) with equality for every x e X is called minimql.

Minimal schedules are important because they characterize the fastest

executions of a given M(N. This property is made explicit by the following

result.

Theorem 3.2

Every structurally finite MCN has a unique minimal schedule (). The

minimal schedule satisfies

T(x) (T (x) (3.10)

for every x a X and for every schedule T().

Proof:

Since by Theorem 2.1 a structurally finite MCN has a countable number

of variables, the result can be established by induction. Thus, let S be

a subset of X that is closed under the ancestry relation, namely for every

s S we must have a(x)C S. Assume that S has already been assigned a

minimal schedule 9( ) and that this schedule also satisfies (3.10).

Choose a variable y not in S and consider the augmented network

determined by SVJc(y). We need to show that i( ) can be extended to

this augmented network and that it will satisfy both (3.8) and (3.10) The

J schedule V( ) is now extended to a(y) in the following manner:

(I) Assign i(z) - 0 to every z a a(y) that has no ancestors.

U (ii) Identify the collection of variables for which all ancestors have
already been assigned a schedule (this set is never empty).
Assign to each one of these variables the schedule

r(z): T(z) + max (i(w); w a G(z))
w
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For every w e o(z). either T(w) 0 or v e S, so that
i(w) j T(w) for any schedule T(). Since any schedule T( )
has to satisfy (3.8) we obtain

-c(z) 2 T(z) + max (c(w); w e a(z)3
w

2T(z) + max (i(w); vw a (z)) - iw
V

which proves that (3.10) is preserved in this step.

(iii) Augment S, viz.,

S := SUCa(y)

and go back to (il).

The repeated application of this procedure results. in the assignment of

i(s) to ever variable of the MCN. The resulting schedule is minimal,

i.e., it satisfies (3.8) with an equality, unique (by construction) and also

satisfies (3.10).

As with executions, we can also define schedules for processors. The

schedule of a processor p c P is defined as

N(p) := max ( N(); x 8 X l (p) (3.11)
z

in analogy with 3.3. It is the instant at which all input variables of the

processor become available. Some of the inputs of the processor may become

available earlier and need, therefore, storage or buffering until they can

actually be used. A variable x is called critical with respect to a given

schedule T( ) if

X a 1i(p) =-> N() - '(p) (3.12)

and non-critical otherwise. Thus, the schedule of each processor is

determined by the schedule of its critical inputs. Since non-critical

variables require storage the general objective of scheduling is to reduce

the total storage requirments.
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Storage is measured by the product of volume (e.g., the number of bits

to be stored) and duration. The duration of storage for a variable

I a Xi (p) is the difference between the time it becomes available and the

most recent instant it still needs to be available, i.e.,

max {(cy) - T(y); y e X (p), X -) y) -(x)

This interval will be minimized if we choose the difference v(y) - T(y) as

short as possible. In view of (3.8), we have to choose T(y) - T(y) = T(p),

namely the minimal schedule also minimizes the storage requirements of the

network. The minimal schedule still has both critical and non-critical

variables. However, only the critical ones determine the schedule, as

demonstrated by the following result. -

Lemma 3.3

Every processor in a structurally finite NCN is connected to a network

input by a finite path whose variables (arcs) are critical under the minimal

schedule.

Proof:

The definition of a critical variable implies that every processor has

at least one critical input variable. The critical path is obtained by

tracing back through the critical inputs of the preceding processors. Since

the ancestry of each processor is finite, this procedure terminates in a

finite number of steps when the path reaches a network input.

3U
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Corollsry_3 3

The minimal schedule of a processor equals the length (sum of

processing delays) of a critical path that connects a network input to this

processor.

The corollary implies an interesting principle for the physical design

of hardware implementations--critical paths need to be considered first so

that the length of the physical connections along the path can be minimized.

Non-critical paths can accommodate extra propagation delays and can, there-

fore, be designed later.

The construction of a schedule is based upon-the assumption (3.5b) that

all MCN inputs are available at the very beginning. Thus, a zero schedule

was assumed in (3.8) for every MCN input, i.e.,

x Xi(P) ==> (x) = 0

This is, however, inessential, since many of these inputs will not be

required until much later. The scheduling of the network inputs can be

modified, once a schedule v( ) has been determined, to reflect the

earliest instant they are required in the execution. Thus, for every

x C X.(P) redefine the schedule of the inputs to be
1

x 8 Xi(P) ==> c(z) :(p) where x e Xi(p) (3.13)

and no buffering, or storage, of the inputs will be necessary. This is

particularly important if not all the inputs can be made available in the

same instant, e.g., in real time processing of time-series. Notice that

this modification in the scheduling of inputs does not affect the schedule

of any other variable in the network. This is so because only non-critical

input variables are adjusted. The meaning of (3.13) is that all network

inputs are made critical to reduce the storage requirements of the network.

The schedule of output variables is commonly known as del. The delay

of x is the time hat has elapsed from the moment some variable in c(x)

382
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becomes available until the moment the variable z itself becomes

available. This is, clearly,

W(x) - min (V(y); y C a(x))

and in many cases it will be equal to v(x). In typical signal processing

applications the delay of outputs usually increases without limit as more

and more inputs are applied to the processor and more and more outputs are

evaluated. In such cases one is interested in the rate of output

evaluation, commonly known as throughput, rather than in the delay of the

outputs. The throughput is roughly the number of MCN outputs that are

evaluated in a unit of time. Since this rate may vary, we need a more

rigorous definition based on the concept of schedule.

Every schedule determines a temporal ordering of the MCN variables (it

need not be sequential), which is consistent with the precedence relation

between variables. In order to quantify the rate at which output variables

are evaluated, we define the output counting function

N (v) number of elements in the set (3.14)
0

(y; y e X 0 (P), (y) ( v0

The input counting function can be similarly defined, viz.,

N.(v) := number of elements in the set (3.15)
1

(y, y a Xi(P). v(y) ( v)

We can now plot the counting function N(x) as a function of x for both

j the inputs and the outputs (Figure 3-2). The functions Nl(r); N0 (-) are,

of course, staircase functions (indicated by broken lines in Figure 3-2) and

can be upper-bounded by a pair of continuous, piecewise-linear curves

(indicated by the solid lines in Figure 3-2). The slope of these
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curves (which are always strictly monotone increasing) is a measure of the

rate of information flow into the network and out of it, and will be called

the input and output throughput, respectively. A schedule is called regular

when both its input and output throughput are periodic with the same period

(and, in particular when both throughputs are constant). An MCN is called

temporally-regular when its minimal schedule is regular. Many temporally-

regular networks have equal input and output throughputs, but this need not

be true, in general.

3.4 SPACE-TIME DIAGRAMS

The continuous-time character of the schedule is beat demonstrated by

introducing a time-axis into the graphical description of an MCN. The

vertices are arranged so that the vertical displacement from the top of the

diagram to the location of any given vertex p indicates, on an appropriate

scale, the value of the schedule v(p) for this vertex (Figure 3-3. compare

with Figure 2-1). This space-time diagram has several interesting

properties:

(1) All arcs point downward.

(2) The vertical displacement of an arc indicates the total execution
time associated with this operation, including any buffering time
that may be required beyond the actual execution time T(x).

(3) Changes in local execution times are easily accounted for by

shifting the corresponding vertices up or down along the time
scale. The global effects of such shifts are clearly depicted by
the diagram.

(4) Non-executable MCNs (with zero or negative execution times) can

still be described by the diagram. This is useful to establish
.. equivalence between various descriptions of the same MCN (e.g.,

precedence graphs and signal flow graphs).

I
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The collection of processors (vertices) with the same schedule form an

isochrone.

The execution of a network according to a given schedule may now be

interpreted as the propagation of a jin le wavefront of activity through the

architecture. The location of the activity wavefront at any given instant

is indicated by the corresponding isochrone. Observe that the isochrones

are parallel straight lines (or parallel planes if the precedence graph is

described in a three dimensional space) and do not intersect. Also notice

that the inputs and outputs of a temporally-reaular network are evenly

distributed in time (i.e., along the vertical axis of the space-time

diagram). These properties are particularly significant for the analysis of

iterative MCNs, which is carried out in Section 4.

As an illustration of the equivalence between various descriptions of

the same MCN consider the block-diagram of an hIR filter (Figure 3-4a). The

corresponding MCN (Figure 3-4b) can be rearranged in many ways without

modifying the architecture of the network. However, if Figure 3-4b is

interpreted as a space-time diagram (with time being the vertical axis),

such modifications result in different schedules and also in different

block-diagrams. In particular, the delay elements can be moved to the lower

path (Figure 3-5) or split between the two signal paths (Figure 3-6). The

latter version is the only one that can be implemented in hardware because

it contains only downward-pointing arrows; the other two versions

require instantaneous evaluation of each variable associated with a

horizontal arrow. The third description makes it also clear that the time

interval between successive application of inputs is equal to two delay

units. It is also possible to associate unequal computing times with the

forward and backward propagation through each block. After all, the forward

path only feeds information through the block while the backward path

involves a multiply-and-add operation. The resulting space-time diagram

(Figure 3-7) has delays TfV Tb associated with the forward and backward

paths, and the input interval is clearly Tf + Tb . Notice that the block

diagram description involves two different delay blocks: This is known as a

multirate implementation [8]. The throughput rates are, nevertheless, equal

to (Tf + Tb)- for both the input and the output.

The same technique can be applied to analyze the several proposed

systolic-array-like implementations for matrix multiplication: the

41
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hexagonal array of H.T. gun$ (5]. the improved hexagonal array of Weiser and

Davis (41. the wavefront array processor of S.Y. lung (71 and the direct

form realization of S. Rao (101. Details are provided in Appendix E.

The analysis of the previous examples makes it clear that the common

MUN architecture shared by all the representations of a given processing

system induces certain invariants. For instance, the total number of

outputs of each processor remains invariant, even though in some

representations some of these outputs are connected to a local memory rather

than to a nearby processor (Figure 3-8). The same is true for the total

number of inputs of each processor. Notice that the blocks in Figure 3-Ba

are still the same as in Figure 3-4a, including the orientation of paths

(one forward, one backward). On the other hand, the roles of the blocks are

quite different; in-particular, outputs are obtained from the local memories

rather than from the left-most block alone, as in Figure 3-4a.
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SECTION 4

ITERATIVE NETWORKS

An MCN is called iterative when it can be described as a sequential

composition of identical subnetworks, i.e.,

network

Each of the identical components will be called an iteration. One

reason for this name is that the kCN can be executed by implementing a

single component '6 in hardware and simulating a sequential composition of

such components by spreading the execution of the components in time. The

motivation for studying iterative MCis is that most signal-processing

algorithms and, in particular, all systolic-array-like architectures can be

described by such networks. Observe that every block-diagram representation

corresponds to an iterative MCN. The iterative structure induces certain

regularity constraints upon the MCN which lead to a simplified

representation.

4.1 PROPERTIES OF ITERATIVE MCNs

The minimal schedules of iterative networks are, clearly, periodic with

the same period for input and output schedules. Thus iterative MCN are

temporally-regular. In addition, they are functionally-reaular in the sense

that each iteration involves the same function jr. Consequently, their

properties can be determined by analyzing a single iteration. For instance,

the entire network is acyclic (hence executable) if a single iteration is

acyclic. In particular, the executability of &-transform representations of

iterative MCNQs is tested by removing all separators and examining the

remaining directed graph for occurrence of cycles (see also (91).
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Similarly, the (minimal) schedule of the network can be determined by

considering a single iteration.

Iterative MCNs are commonly described by recursion equations (or

equivalently by z-transform diagrams), data-flow diagrams (marked graphs).

or by 'do-loops' in high-level programming languages. While precedence

graphs of iterative networks still indicate all possible executions,

recursion equations restrict the choice of execution to one or at most two

possibilities (Figure 4-1). And while precedence graphs avoid the pitfall

of non-executable iteration by explicitly describing each iteration as part

of an executable (acyclic) precedence graph, data-flow diagrams contain

cycles which may cause the entire MCN to be non-executable.

Since all iterations are identical, the schedules of every two

consecutive iterations differ by the same constant, which we shall call the

input interval. The input interval is the period of the input schedule or,

equivalently, of the input throughput, as well as of the output schedule

(recall that iterative MCNs are temporally regular). It determines an upper

bound on the rate at which inputs are applied to the network (lower rates

are permitted, but require additional buffering).

The time-space diagram of an iterative MCN corresponds to its minimal

schedule and is, therefore, periodic. It is important to notice that the

period (= input interval) is, in general, shorter than the time required to

complete the execution of a single iteration (= the iteration delay). This

means that hardware realizations of the MCN can be pipelined: New inputs

can be applied before the processing of previous inputs has been completed.

The following section provides a detailed analysis of pipelinability in

MCNs.

4.2 HARDWARE ARCHITECTURES

The functional regularity of Iterative MCNs implies that they can be

implemented in special purpose VLSI hardware by mapping the precedence graph

of a single Iteration directly into silicon. Each processor is mapped into

a cell ('processing element') and precedence relations are mapped into

interconnections between cells. Neither translation nor hardware

compilation are required to accomplish this mapping since the hardware
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a. Parallel Input Application

b. Sequential Input Application

Figure 4-1. Equivalent Pipelined Executios of an MCN.
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architecture is an exact image of a single layer of the network

architecture. An execution is now interpreted as the propagation of a

sequence of wavefronts through the hardware rather than the propagation

of a single activity wavefront through the iterative MCN (Figure 4-2). The

time spacing of these wavefronts equals the period of the underlying MCN

minimal schedule.

Since a single layer of the NCN is used to 'simulate' the entire

network each processor is activated many times and each arc of the hardware

architecture corresponds to a time-series of variables rather than to a

single variable. This raises a design problem of a new kind: It is

necessary to guarantee that variables do not disappear before they have been

used to evaluate their successors. There are three different solutions to

this problem:

(1) Iterative execution: A new iteration is initiated only after the
execution of the preceding iteration has been completed. This
means that the input interval is extended (by buffering of
intermediate results) to the length of the iteration delay, and
the time-overlap between iterations is completely eliminated.

(2) Scheduled execution: The (minimal) schedule of the network is
determined in advance and execution is carried out according to
schedule. Buffering is provided to guarantee the availability of
inputs to processors on schedule (only non-critical variables need
to be buffered).

(3) Self-timed execution: Processors are activated as soon as their
inputs become available. Acknowledgment signals (hand-shaking')
are used to guarantee the correct transfer of data between
processors.

While scheduled execution offers the shortest execution time and requires a

fairly simple control system, it is extremely sensitive to scheduling

perturbations. Such perturbations, which are caused by clock-skewing and

local variations in execution times, may result in loss of synchronization

between cells and a complete failure of the system. Iterative execution is

insensitive to scheduling perturbations and requires a very simple control

system, but wastes processing time since the hardware is idle most of the

time. Self-timed execution provides a nice tradeoff between these two

extremes: Its execution time is only slightly longer than the theoretical

minimum achieved by scheduled execution; and the control system it requires
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a. XCN Perspective

b. Hardware Architecture Perspective

Figure 4-2. Execution Interpreted as Activity Wavefront Propagation
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has about the same complexity as the timing system for scheduled execution.

It is interesting to observe that the conditions for self-timed

execution 111], [12] coincide with the concept of admissible composition.

which was shown to be the necessary and sufficient condition for

executability in general. Thus, every MCN can be implemented as a self-

timed system.

The notion of self-timed execution suggests the introduction of self-

timed block-diagrams. These are obtained by removing the delay-elements

from a conventional block-diagram and replacing them by direct connections.

The hardware implementation of such self-timed diagrams is straightforward

provided two simple rules are obeyed:

(i) Each cell is activated as soon as all its inputs become available

and deactivated as soon as all its outputs have been evaluated.

(ii) Each input variable is accompanied by an acknowledgment line.

Each input port (sink) acknowledges the arrival of a new input
variable to the processor that evaluated this variable. The

acknowledgment is sent when the processor connected to the input
port becomes activated.

These rules assume that each cell is provided with sufficient memory to

store its output variables until they become acknowledged.

The acknowledgment of inputs associated with self-timed implementations

can (and should) be reflected in the space-time diagram of the network.

Acknowledgment signals are just one more set of variables in the network,

and are represented in the space-time diagrams by arcs, as any other

variable. For instance, a cascade connection of (identical) processors

(Figure 4-3a) has an input interval of v + C2 where v1 is the execution

time of the processor and T2 is the delay between the reception of an

acknowledgment signal from the subsequent processor and the transmission of

an acknowledgment signal to the preceding processor (Figure 4-3b). The

interval T2  includes the propagation time through the processor and the

connecting wires pLus the time required to carry out checks on the input

data (parity, error detection, fault detection, etc.). Notice that the need

for explicit acknowledgment can be eliminated in many cases, e.g., when

there is an information carrying path along the cascade in the backward

direction.
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a. Self-Timed Block-Diagram
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FiSure 4-3. Propagation of Acknowledpfent Signass (AS) in

Self-Timed Systems
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The horizontal dimension of space-time diagrams can now be interpreted

as hardware: Processors located along the same horizontal line

(isochrone) represent computations that need to be carried out

simultaneously and must, therefore, be implemented in parallel hardware. We

shall adopt the convention of interpreting the vertical dimension of space-

time diagrams as pure time: Processors located along the same vertical line

will represent computations that are carried out by the same processing

element but during different (non-overlapping) intervals of time. Thus, for

instance, the MCN of Figure 4-4 can be implemented in hardware with four

processing elements (Figure 4-4b). Each vertical column of processors in

the space-time diagram of the XCN (Figure 4-4a) is mapped into a single

hardware cell; connections between columns are mapped into physical

connections between cells and connections within columns are implemented by

locally storing intermediate results inside the appropriate cells. However,

the correspondence between space-time diagrams and hardware block diagrams

is not always so straightforward. For instance, the various representations

of the IIR filter (Figures 3-4 through 3-6) seem to indicate that the

hardware implementation of an m-th order filter requires m + I processing

elements. However, we also observe that only 50% of these elements are

active at any given instant of time. Thus, it is possible to cut the number

of processing elements by half without affecting the schedule at all (Figure

4-5a). In general, every two processors p, q whose schedules satisfy

v(q) I max v(Wx); x c Xo(P)) (4.1)

can be implemented as a single hardware cell, which first evaluates the

outputs of p. then the outputs of q. The condition (4.1) guarantees

that the computations represented by the processor p are completed before

the computations represented by the processor q are started. Since

adjacency of processors in the time-space diagram is, in general, mapped

into spatial adjacency of hardware cells, the merging of non-adjacent

processors into a single hardware cell will require a complex network of

interconnections between cells. In order to reduce the complexity of cell

interconnections to a minimu only adjacent cells can be considered as

candidates for merger. The most frequent example of such merger is the

interleaving of two adjacent columns, as in Figure 4-5.
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a. Space-Time Diagram

b. Self-Timed Block-Diatram

Figure 4-4. Hardware Implementation Of an Iterative N.
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Figure 4-5. Resource Sharing by Interleaving
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Self-timed or scheduled execution is, indeed, faster than iterative

execution only if the input interval is shorter than the execution time of a

single iteration. An implementation of such an execution will initiate a

new iteration before the execution of the previous iteration has been

completed. Such implementations deserve to be called pipelined. Thus.

iterative executions are never pipelined, while self-timed (or scheduled)

executions are pipelined only for pipelinable MCNs.

Notice that the input interval is uniquely defined for every

temporally-regular M10, but the iteration delay (= execution time of a

single iteration) depends upon the partitioning of the MCN into iterations.

Since this partitioning need not be unique, an iterative MCN may have

several hardware realizations, each with a different iteration delay. Thus,

pipelining is primarily a property of a given hardware realization. An MCN

is considered pinelinable if it has at least one pipelined realization.

Pipelinability is most frequently associated with completely regular MCNs

(. systolic-array-like networks). The connection between complete

regularity and pipelinability is discussed in the following section.

4.3 COMPLETELY REGULAR MCNa

An iterative MCN is called completely regular if it satisfies the four

following conditions:

(i) All processors are identical, i.e., have the same input-output
map.

(ii) The architecture of a single iteration is regular, i.e., it can

be represented by a regular multidimensional grid (also known as
mosaic in the 2-D case [21]).

(iii) The architecture of a single iteration is nested, i.e., it can
be considered as a sequence of architectures of growing size,
each being obtained from the previous one by adding cells in a
regular manner (Figure 4-6).

(iv) The minimal schedule of the network is regular. This means that
adding the time dimension to the regular representation of a
single iteration produces a regular space-time diagram.
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The last condition is important, for it is quite possible to have regular

architectures with identical processors yet irregular schedules (Figure 4-

7). A network of the form described in Figure 4-7 is, clearly, not

pipelinable: The input interval coincides with the iteration delay, A

completely regular network, on the other hand, has an input interval that is

much shorter than the iteration delay, and is, therefore, pipelinable.

The nestedness of a completely regular architecture is a purely spatial

attribute. The temporal dimension of the corresponding space-time diagram

is not affected when the size of the nested architecture varies. In

particular, the input interval is fixed and does not depend upon the spatial

extent of the space-time diagram. The iteration delay, on the other hand.

increases as the spatial extent of the network increases, since each

iteration involves more and more processors. Consequently, the input

interval is less than the iteration delay, i.e., the MCN is pipelinable.

The invariance of the input interval with order (= spatial extent of the

network) is sometimes taken as the definition of pipelinability [9].

However, this invariance is guaranteed only for completely regular MC4s: It

is possible to have pipelinable iterative networks whose input interval

grows (slowly) with order.

A completely regular MCN determines a coordinate basis for a single

iteration in a natural manner. Adding the temporal dimension to this

spatial basis produces a set of coordinates for the complete MCN (i.e., for

its space-time diagram). It is interesting at this point to relate this

basis to the more abstract definition provided in Section 3.2 for arbitrary

MCNs. That definition was based upon the notion of representative families

of sequential executions, which are highly nonunique. The natural

coordinate basis associated with a completely regular architecture also

provides a natural and unique choice of a representative family. This is

| accomplished by considering the lexicographic ordering of processors induced

by the basis. The coordinates (e., ..., ea). which for a completely

regular MCN have integral values, are scanned from • 1 to •n. This means

I that the lexicographic ordering of vertices of a 2-D square grid of size 3

is: 11, 21. 31, 12, 22, 32, 13, 23. 33. Each cyclic permutation of (e1.

... , en) determines one sequential execution, and the totality of n

sequential executions form a representative family. The corresponding

coordinate basis is consistent with the natural basis (e1, ... ,

'3I



a. Block Diagramn

b. Space-Time Diagram

Figure 4-7. Example of a Regular Arebiteture That Is Not Pipelinable
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SECTION 5

CONCLUSIONS

A modeling and analysis methodology for parallel algorithms and

architectures has been presented. Modular computing networks (MCNs) were

introduced as a unifying concept that can be used to describe both

algorithms and architectures. The representation vf an MCN exhibits all the

relevant information that characterizes a parallel processing algorithm,

from precedence relations and order of execution, through scheduling and

pipelinability consideration, to map compositions and global

characterization. It clearly displays the hierarchical structure of a

parallel system and the multiplicity of choices for hardware implementation.

Our methodology applies both to arbitrary (irregular) networks and to

iterative ones. Regularity of networks translates directly into regularity

of the model we use to describe them and, consequently, into regularity of

the associated architectures. Problems of non-executability (deadlocks,

safeness, etc.) are insignificant in our methodology and can be easily

detected and resolved.

Infinite MCNs, which occur in most signal processing applications, have

been characterized. It has been shown that the key property for

executability of such networks is structural finiteness (in addition to

absence of cycles, of course). Infinite MCNs are most frequently iterative,

in which case they are guaranteed to be structurally finite and can be

represented by a finite single-layer diagram.

There exist three distinct modes of execution for iterative networks:

iterative, scheduled and self-timed. Iterative execution is simple but slow

and storage-intensive. Scheduled execution is fast but sensitive to

schedule perturbation caused by clock skewing. Self-timed execution offers

a simple and robust alternative at the cost of introducing handshake

protocols between communicating processors. It is the best choice for large

networks containing many processors.
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APPENDIX A

PROOF OF THEORIN 2.2 FOR INFINITE .MCNs

If the MCN has an execution then it must be acyclic, as was pointed out

at the beginning of Section 2.3. To prove the converse we shall construct

an execution for an arbitrary acyclic, structurally-finite CN.

First, notice that, by Theorem 2.1, the inputs of the 5CN can be

numbered. Let us, therefore, denote the inputs by {z; 0 < i < -.. Next,

recursively define a sequence of sets of variables (Ni) according to the

following rule:

U0  (a0)

Mi+1 [A0 (Mi i+1

Thus, each set contains one new inputs of the MCN and all the immediate

successors of the preceding set. The sets M i are clearly disjoint, and.
i

in view of the local-finiteness property, each M i set is finite.

Moreover, every variable of the MCN is included in some M i set, because

every variable is either a global input or a finite successor of some global

input. Thus, the cascade

N0 * N N 2 * ..o 1 2

is, in fact. a representation of the network as a cascade of finite

(disjoint) subnetworks. Each K i set is finite, hence has an execution

with a finite number of levels. If we replace each M I by its execution,

we obtain a refinement of the previous representation, viz.,

S00 0 01 S 10 S 11
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where fS )are the levels corresponding to the &at M. Since each S.

is finite, this is clearly an execution of the global NCN.
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APPENDIX B

ADMISSIBLE ARCHITECTURES

A composition of processors is called admissible if the following three

conditions are satisfied:

(I) There are no dangling inputs or outputs.

(iO There are no directed cycles.

(iii) The architecture is structurally finite.

Each of the processors comprising an architecture can itself be a

composition of more elementary processors. The hierarchical nature of the

admissibility property implies the following result.

Theorem B.1

An admissible composition of admissible architectures is itself an

admissible architecture.

The theorem states that the three properties making up admissibility

should be exhibited by the composite architecture, if they were exhibited by

each of the subnetworks.

(i) The composite architecture has no dangling terminals, because
every terminal is connected to some subnetwork (by admissibility
of the composition) and no subnetwork has dangling terminals (by
admissibility of the subnetworks).

(1i) The composite architecture has no cycles because neither the

subnetwork nor the composition has cycles.I1



(iii) Structural finiteness is made up of the three following
properties: Local finiteness, finite ancestries, and
countability of connected components. Local finiteness is
inherited by the composite architecture because composition does
not change the number of inputs/outputs of processors within
each subnetwork. To prove that the finite ancestry property is
also inherited by the composite architecture it will be
sufficient to consider a single variable x. Suppose that x
belongs to some subnetwork V.. By the admissibility of the
composition, q. has a finite number of ancestor subnetworks.
The ancestry of I is obtained by tracing back the ancestry
relation through the finite collection of subnetworks a.' ).
And since each subnetwork is admissible, the portion of aG)
within each ancestor of (!i is also finite, hence a(x) itself
is finite. Finally, an adilssible composition has a countable
number of subnetworks (see Theorem 2.1) and each subnetwork has,
by assumption, a countable number of connected components.
Hence, the total number of-connected components in the composite
network is countable, too.
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APPENDIX C

PROOF OF THEOREf 2.3

MINIALXECUTONN OF FINITE MCNs

Every execution determines a numbering E( ) of the variables of an

MCN. viz.,

x 6 S <--> E(x) = ii

This integer valued function satisfies the inequality (see Section 3.1)

E(x) - 1 _ max {E(y); y a oCx)) (C.1)

y

Every finite directed acyclic graph has a unique numbering i( ) of its

arcs (or equivalently of its vertices) that satisfies the equality

E(x) - 1 = max (y); y a a(x)) (C.2)

y

This well-known result (see, e.1.. [141) implies that every finite

executable MCN has a unique execution that satisfies (C.2). We shall call

this unique execution minimal for reasons that will become clear in the

sequel.

Let E( ) be an arbitrary non-minimal execution. Then, there exists

I: some variable x for which the strict inequality

E(x) -1 > max (E(y); y e o(x))

y

holds. This means that z is evaluated several steps after all its

ancestors became available. Consequently, the numbering of x can be

modified to 1 + max (E(y); y a a(x)) without violating the precedence
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relation. We shall refer in the sequel to this modification as an

elementary shift.

Each execution is a series-parallel combination and consequently has a

well defined input-output map. Elementary shifts replace expressions of the

form e*e*...Op by expressions of the form p*e*...*e (see Figure C-i).

If the physically justifiable identity

p0e = ep (C.3)

is added as an axion of the theory of NCis (see Appendix D), we conclude

that input-output maps remain invariant under elementary shifts. This leads

to the fallowing result.

Theorem C.1

Every execution E( ) of a finite MCN can be transformed by a finite

number of elementary shifts into the unique minimal execution.

Proof:

The minimal execution E( ) is constructed by the following simple

* algorithm (see, e.g., [14]):

(1) Put all the global inputs of the MCN in S

(ii) For i 0,1,2... put all the immediate successors of members
of Si in
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a. Before the Shift

10 00 0Il.x
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I I

b. After the Shift

Figure C-1. The Effect of an Elementary Shift.
E(Z) - i; ma (1(y); y I a(x)) j.
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Now, if E( ) is a nonminimal execution we transform it into E( ) by the

following rule:

For i = 0,1,2 .... shift all members

of S from E(x) to E(x) = i.

Since the MCN is finite, a finite number of shifts will transform E(

into E( ). Notice that each variable is shifted exactly once. Also notice

that by its construction, the number E(x) is equal to the lengths of the

shortest path connecting x to some global input. Hence, E(x) cannot be

further reduced.

Corollary C.1.1

The minimal execution E( ) satisfies E(x) E E(x) for every variable

x and for every execution E(). m

Corollary C.1.2

A finite executable CNO has a unique well-defined input-output map.

This is so because all executions define the same map, by Theorem C.l.

m
Proof of Theorem 2.3

Corollary C.1.2 establishes the theorem for finite MNOs. For infinite

networks it will be sufficient to prove that for every execution E( ) and

for every variable x the map from global inputs to x is unique and does

not depend upon the choice of execution. However, E( ) induces some

execution on the finite NC corresponding to a(x), the finite ancestry of

x. Therefore, the map from inputs to x coincides, for every choice of

E(), with the unique map determined by the minimal execution on a(x).
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it is interesting to notice that an infinite MCN does not have, in

general, a minimal execution. The construction procedure described in the

proof of Theorem C.1 is still valid, but S are. in generalj uinte and

do not determine a valid execution.
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APPENDIX D

ELEMENTARY EQUIVALENCE TRANSFORMATIONS

The general theory of MCNs does not involve any specific assumptions

about the properties of the processor maps (fp ). Consequently, there are

only a few equivalence transformations that are still valid in this general

framework. Most equivalence transformations used with block-diagrams and

signal-flow-graphs involve linearity assumptions and do not hold for general

nonlinear maps.

Two basic maps, the identity map e and the split map s can be used

in conjunction with any MCN manipulation. The identity map leaves its input

variables unchanged, viz.,

e(x) = x

The split map duplicates input variables, viz.,

s(z) =(x,x)

It is possible, of course, to have more than two copies of the same

variable, either by introducing a split processor with several outputs, or

by using several two-output split processors.

The properties of the identity and split processors give rise to

several elementary equivalence transformations (Figure D-1):

(a) The identity commutes with any other processor f.

-1
(b) The cascade of a processor f and its inverse f can be

replaced by an identity processor, provided the processor f has
an inverse.

(c) The split processor 'commutes' with any processor f.

(d) Any processor f with two outputs can be replaced by a
composition of a split processor and two single output processors
f f  The processors f ' f2 correspond to the maps from

inputs to each of the two lutputs, respectively.
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a. Commutativity of the Identity

b. The Inverse Processor

f

f sS

f

c. Commutativity of the Split

f S

ff

d. Splitting of Multivariable Outputs

Figure D-1. Elementary Equivalence Transformations
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APPENDIX E

ANALYSIS OF MATRIX MULTIPLIERS

The multiplication of two matrices involves the computation of inner

products between every row of one matrix and every column of the other one.

To emphasize this interpretation we shall consider in the sequel the product

C :=A B

so that the inner products are between columns of- A and columns of B. In

fact, CiJ is precisely the inner product between the i-th column of A

and the j-th column of B. Consequently, we can compute the product by

feeding the columns of A,B, which we denote by ai, b., into the MCN of

Figure E-1. Each input is a column vector which is propagated without

modification through the network. The a,b inputs of each processor

propagate through without modification and the inner product of the two

input vectors is computed inside the processor. This multichannel

configuration can be further decomposed by observing that the inner products

can be computed recursively, i.e., if c := a~b where a = (ai). b(pi)

are column vectors of length N, then c = cN where!N
c c i 1 + at . c o = 0I

Thus, every single processor in Figure E-1 is, in fact. a cascade of basic

'multiply and add' processors (Figure E-2). Then this decomposition is

1combined with the architecture of Figure E-l, we obtain the MCN for matrix

multiplication. Figure E-3 displays a side view of this 3-D network whose

top view is shown in Figure E-I. The complete MCN consists of N

horizontal layers such as in Figure E-1 arranged in a vertical stack.

Equivalently, we may say the MCN consists of three vertical layers such as

in Figure E-3 arranged behind each other. It is important to notice that

811



b b2  b3  b4

3 31 32 33 4

b1 b 2  b3 b4

a. The Complete Network

bin

ain _0out

b
out

D-

aout ain' b ou t  bin C al n bi n

b. A Sigle Processor

Figure E-1. A Basic Matrix Multiplier
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Figure E-2. A Basic Inner Product Array
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Figure E-3. The MCN of Matrix Multiplication
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the direction of the C-paths can be either from top to bottom, as shown in

Figure E-3, or from bottom to top. This is a consequence of the

commutativity and associativity of addition, viz.,

N 1

i=l i=N

This means that there are two distinct MCNs that correspond to matrix

multiplication and they differ only by the direction of the C-paths.

Every architecture for matrix multiplication is equivalent to the XCN

of Figure E-3. The various architectures are obtained by imposing

additional constraints upon the matrices (i.e., bandedness) and rearranging

the resuTting reduced MCN as a space-time diagram. The corresponding self-

timed block-diagram follows immediately from this rearrangement.

The matrix multiplier of S.Y. Kung [7] is obtained by interpreting the

vertical dimension in Figure E-3 as 'time.' Since vertical arrows

correspond to local storage, the resulting block-diagram is described in

Figure E-4 (notice the similarity with E-l). The elements of each column

vector a., b. are fed sequentially into the array and each processor has a

self-loop which computes the inner-product c a I b recursively in

time.

The matrix multiplier of S. Rao [10] is designed for a banded B

matrix. It will be sufficient to analyze it for a single column of A, say

aI . The MCN of Figure E-3 now has only one vertical layer, and many

processors in this layer have zero inputs and can be eliminated. The

resulting reduced MCN is shown in Figure E-5a. Dummy processors, shown in

broken line, were added to emphasize the tridiagonal nature of the NQ . A

self-timed block-diagram (Figure E-Sb) is obtained by considering the

diagonal axis as 'time.' It consists of a linear array of identical

processors, one for each nonzero diagonal of the banded matrix B. The

elements of B are fed into the array by diagonals. The elements of A. C

are handled by coluwins: Every column of A produces a row of C and

requires a linear array as in Figure E-Sb. It is interesting to notice that

the input interval of this matrix multiplier is x c +v where T is the

I
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a. Self-Time Block-Diagram
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b. Single Processor

Figure E-4. The Matrix Multiplier of S.Y. gung
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a. Reduced MCN
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b. Self-Tivied Block-Diagram

Figure E-5. The Matrix Multiplier of S. K. Rao
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time required to compute 'c ' and T is the time required to propagatea
'a' through one processor When the direction of the C-path or,

equivalently, of the A-path, is reversed the input interval becomes

Tc - Ta Since T <a ( T c the two networks differ only slightly in their

throughput. However, we shall presently encounter another example where the

reversal of the C-path results in a large increase in throughput.

The matrix multiplier of H.T. Kung is designed for banded A, B

matrices. This means that the active processors in the non-reduced MCN of

Figures E-1 and E-3 are located within a parallelepiped aligned with one of

the main diagonals of the rectangular prism representing the non-reduced

MCN. A simple illustration of the reduced MCN is obtained by considering

two adjacent horizontal layers (Figure E-6). When we slide the horizontal

layers so that they overlap, the resulting network corresponds to H.T.

Kung's multiplier (Figure E-7). This network clearly has an input interval

of T + 2v . However, if we reverse the C-path we obtain the configurationc a

of Weiser and Davis [4] (Figure E-8) which has an input interval of

It - 2v 1. The difference between the two multipliers is significant whenc a

they are implemented by single rate systolic arrays. In this case

C I = T so that the former network has an input interval of 3T while

the latter has an input interval of vi
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layer i+l

a. Side View

\layer i+1

b. Top View

Figure E-6. The Reduced N for Banded Matrix Multiplication
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layer i .

layer i+1

a. Side View

b. Top View

Figure E-7. The Matrix Multiplier of H.T. lung
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a. Side View

b. Top View

Figure E-9. The Matrix Multiplier of Weiser and Davis
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