
AD-A138 477 SFTWARE INTEROPERARIIT AND REUSABILITY VOLUME UW 12.
ROE NO .AEROSPACE CO SEATTL WA P E PRESSONJU 83 RAC N83 7L0.362RDC0

UNCLASIFIDE /G /2NL

I EEsshmhhhEEmhEE

V'si uo 2.2

- a.

,1 .2 li A 11.6

MICROCOPy RESOLUTION TEST CHART

NMllONAL BUREAU OF STANDRDS-1963-A

A

4.',

-7 z

UNCLASSIFIED
SEUIYCLASSFICATION OF THIS PAGE gWtew e076ur4-

REPORT DOCUMAENTATION PAGE 3103 INSTRUTINS O

1. RPR N Ia. GOVT ACCESSION MO . 111ECIPIEHTFS CRATALOG NUMBER

RADC-TR-83-174, Vol I (ofL~ twoT ~mDCOE
Final Technical Report

SOFTWARE INTEROPERABILITY AND REUSABILITY Aug 80 - Feb 83
S. PERFORMING ONG. REPORT NUNNSER

* 1. AUTNORtfs) RaOTRACT OR GRANT NUMSEr.)
P. Edward Presson Jonathan V. Post
Juitien Tail Robert Schmidt F30602-80-C-0265
Thomas P. Bowen
P. PERFORMING ORGANIZATION NAMC AND ADDRESS I0. PRGAM ELMT PROEC.nAS

*Boeing Aerospace Company A6NI702FER

* P0Box 99955812019
Seattla WA 98124

* IL CONTROLLING OFFICE NAME AND ADDRESS I2. REPORT DATE

Rome Air Development Center (COEE) July N1983OPGE

* Griff isa AnE NY 13441 176
14. MONITORING AGENCY NAME & AODRESS(I d111tferi n Countrollin Office) IS. SECURITY CLASS. (of led repout)

UNCLASSIFIED
Same I 1. OECLrASSIFICATI ON/ DOWNGRADING

IN/A SCHEDULE

14. DISTIIUTION STATEMENT (of this Rbport)

Approved for public release; distribution unlimited

* 17. DISTRIISUTION STATEMENT (of tA. abotract .eted In Wleek 20. it ff110enet 1ern A@~ee)

Same

SOIL. SUPPLEMENTARY NOTES

RADC Project Engineer: Joseph P. Cavano (COEE)

it. Key W*oD (Coufiue em, reveeee Oldse if neeeesv -Ma dIde IV bweek nmebe)

Software Quality Software Resuability
Software Metrics
Software Measurement
Software Interoperability.

20. AIISTRACT (Coeeflan - eveeo olde It neessary and fdeefdfr. by Neek mi1 et

Software metrics (or measurements) which predict software quality were
extended from previous research to include two additional quality factors:

linteroperability and reusability. Aspects of requirements, design, and
source language programs which could'affect these two quality factors were
identified and mtrics to measure them were defined. These aspects were
identified by theoretical analysis, literature search, interviews with
project managers and software engineers, and personal experience. 7

WIFOR W noOF I NOV 435 S SOLSE

SECURITY CLASIICATION OF TurnS PAGE (1ea MW 90 14101

UMCASSMFED
cumTv aASUPSCA OF,~@ THIS PA41E(11b bat ~Bal4t

A for Software Quality Mleasurement was produced to assist in
setting quality goals, applying metrics and making quality assessments.

Dis

UNCIASSIFIKD

SUMMARY

Software metrics (or measurements) which predict software quality were extended from
previous research (RADC Contracts F30602-76-C-0417 and F30602-78-C-02J6) to include

two additional quality factors: interoperability and reusability. Aspects of requirements,

design, and source language programs which could affect these two quality factors were

identified and metrics to measure them were defined. These aspects were identified by

theoretical analysis, literature search, interviews with project managers and software

engineers, and personal experience.

The metrics for each of these two quality factors were structured in a metric framework,

and data worksheets were designed to gather the necessary data to validate the metrics.

The worksheet data was collected from several projects; from that data metric scores for

each software module were computed. Mathematical analyses of the metric scores for

each quality factor were then performed.

Because interoperability and reusability were determined to be very different qualities,

the frameworks and research that followed diverged. Interoperability is primarily a

system consideration, whereas reusability is usually focused on the module level.

Validation of interoperability metrics was approached very conservatively; it could only

be done at the system level for two reasons. First, interoperability was defined at the

system level, not at the module level. Second, interoperability ratings were only available

at the system level; there was no way to meaningfully rate the interoperability of a single

module. The limited number of software projects with interoperability requirements

constrained the use of normal validation techniques, for these techniques require more

data points (i.e., metric scores plotted versus interoperability ratings) than there were

systems available for study.

Exploratory data analysis was performed on the data to ascertain the meaningfulness of

the data. Interoperability ratings for each project were obtained to validate the metric

framework by a modified Delphi survey technique. Since these ratings were estimates

and therefore subject to a considerable possibility of error, a sensitivity analysis was

performed to determine the impact on the solution due to small errors in the interoperabl-

lity ratings. The results indicated that a multivariate analysis of the relationship between

L

the metric framework and the interoperability analysis was very sensitive to small errors

in the interoperability ratings. So sensitive was this relationship that small changes in the

interoperability ratings could completely alter the solution. Thus, no confidence could be

given to any solution. However, several metrics were found to be descriptive, and could
be used as the basis for further research.

Because interoperability proved to be such a problematical quality to discuss, predict, and
measure; extensive interviews with project personnel were undertaken early in the

research to aid in construction of a reasonable interoperability metric framework. These

series of interviews provided considerable insight into the nature of interoperability

which is discussed in the body of this report.

Reusability proved to be more tractable. Reusability ratings were computed at the
module level and used to validate the reusability metric scores using regression and
correlation analysis techniques. These results were plotted and evaluated by computer

using the metric data base collected from four major projects. The most successful
approach came from using productivity figures from the projects to estimate the effort

spent to reuse software. Good correlation between these reusability quality ratings, or

productivity measures, and system reusability metric scores were obtained. Using the

system reusability measures, module-level reusability measures were computed and

correlated against the module metric scores. The results showed a positive correlation

between several metrics and the software system reusability ratings.

Volume I describes the technical effort accomplished under this contract.

Volume II is a guidebook for using the software quality measurement framework.

L4--
-.

SOFTWARE ENTEROPERABILITY AND REUSABILITY
FINAL REPORT - Volume I

TABLE OF CONTENTS

Title Pap

SUMMARY
1.0 INTRODUCTION I

1.1 Objectives of Research 1
1.2 Background 1
1.3 Software Quality Framework 5
1.4 Technical Approach 8

2.0 TECHNICAL ACCOMPLISHMENTS 11

2.1 Software Interoperability & Reusability 11
2.1.1 Top Level Framework 11
2.1.2 Cost/Benefit Perspective 14
2.1.3 Quality Concerns 15

2.2 Interoperability 17
2.2.1 Key Concepts 18
2.2.2 System Characteristics 19
2.2.3 Interoperability Criteria 40
2.2.4 Tradeoffs Between Interoperability and Other Quality Factors 48

2.2. Data Collection 53
2.2.6 Metric Validation 55
2.2.7 Conclusions and Recommendations 69

2.3 Reusability 74
2.3.1 Key Concepts 76
2.3.2 System Characteristics 78
2.3.3 Reusability Criteria 91
2.3.4 Reusability Concepts vs Reusability Criteria 98

2.3.3 Reusabiity Metrics 102

11 *

SOFTWARE INTEROPERABILITY AND REUSABILITY

FINAL REPORT - Volume I

TABLE OF CONTENTS (Continued)

Title NE

2.3.6 Impacts of Application on Reusability 106
2.3.7 Reusable Software Development Guidelines 106
2.3.8 Tradeoff Between Reusability and Other Quality Factors 114
2.3.9 Data Collection 118
2.3.10 Conclusions 127
2.3.11 Recommendations 127

2.4 Impact on AMT 129
2.5 Quality Measurement Manual Enhancement 1 30

References
Appendix A Project Regression Analysis Results A-i

B Regression Analysis-Combined Projects B-i
C Reusability Metric Plots C-i
D Multivariate Analysis Results D-1

iv

.' ', , . A. _ -

LIST OF FIGURES

1.1-1 Software Quality Model 3

1.3-1 Software Quality Framework (Old) 6

1.3-2 Software Quality Model (New) 6

1.4-I Software Interoperability and Reusability Task Flow 9

2.1-1 Software Quality Framework (Old) 12

2.1-2 Operational Use of the Interoperability and Reusability 16

Quality Factors

2.2-1 Cost to Make Interoperable Depends on Functional Overlap and 33

Module Strength

2.2-2 Original & New Interoperability Framework 41

2.2-3 Metric Combinations vs. Interoperability Ratings 34

2.3-1 Reusability Hierarchy 75

2.3-2 Reusability Framework 94

2.3-3 Software Development Phases 109

2.3-4 Productivity vs. Reusability Factor Metric 121

C-1 Reusability Rating vs. Metric FS.I C-2

C-2 Reusability Rating vs. Metric GE.2 C-3

C-3 Reusability Rating vs. Metric ZD.2 C-4

C-4 Reusability Rating vs. Metric MO.2 C-5

C-5 Reusability Rating vs. Metric SC.1 C-6

C-6 Reusability Rating vs. Metric SC.2 C-7

C-7 Reusability Rating vs. Metric SC.4 C-8

C-8 Reusability Rating vs. Metric SD.I C-9
C-9 Reusability Rating vs. Metric SD.3 C-1 0

C-10 Reusability Rating vs. Metric SLI C-li
C-11 Reusability Rating vs. Metric SL3 C-i 2

C-12 Reusability Rating vs. Metric SL4 C-i 3

V

TO

LIST OF TABLES

1.1-1 Enhanced Software Quality Measurement Framework 7

2.1-1 Classification of Quality Factors 13
2.2-1 Characteristics that Impact Software Interoperability 20

2.2-2 Interoperability Concepts vs. System Concepts 31
2.2-3 Seven Criteria Determine Functional Strength 34

2.2-4 Interoperability Tradeoffs with Other Quality Factors 52

2.2-5 Interoperability Metric Summary (by Project) 58

2.2-6 Interoperability Metric Summary (by Criteria) 59

2.2-7 Interoperability Metric Summary 59

2.2-8 Median Metric Scores by Project 60

2.2-9 Mean Cumulative Worksheet Scores 65

2.2-10 Last Sample Metric Scores 67

2.3-1 Key Concepts of Software Reusability 76

2.3-2 System Characteristics for Reusability 78

2.3-3 Impact on Reusability by Chaiacteristics 90

2.3-4 System Characteristics and Reusability Criteria 92

2.3-5 Definition of Reusability Criteria 93

2.3-6 Reusability Concepts vs. Reusability Criteria 99

2.3-7 Software Reusability Quality Metrics 103

2.3-8 General Design Guidelines for Reusability 108

2.3-9 Tradeoff of Reusability with Other Quality Factor 114

2.3-10 Reusability Criteria and Other Quality Factor 115

2.3-11 Worksheet Data Collected 119

2.3-12 Metrics Summary (By Criteria) 120

2.3-13 Productivity vs. Reusability Metrics 120

2.3-14 Summary of Module Reusability Rating Values 123

2.3-15 Regression Analysis Example 124

2.3-16 Reusability Metrics with Correlation 125

Vi

LIST OF TABLES (Continued)

A-I Project I - Regression Analysis Summary A-2

A-2 Project 2 - Regression Analysis Summary A-4

A-3 Project 3 - Regression Analysis Summary A-4

A-3 Project 4 - Regression Analysis Summary A-9

B-I Projects - Combined Regression Analysis Summary

D-I Multivariate Analysis Summary D-1

vii

Li"

SECTION I

INTRODUCTION

1.1 OBJECTIVES OF RESEARCH

This work was performed under a research contract (F30602-80-C-0265) for Rome Air

Development Center, Griffiss AFB, NY. The object of this effort was to develop

techniques which can be used to measure software interoperability and reusability. This

study looked at the software from the life cycle viewpoint, and examined the software

characteristics which contribute to these two software quality factors. The characteris-

tics of the requirements, design, and the actual software source program were considered.

This study was conducted to develop and validate proposed metrics for software

interoperability and reusability. This effort was also conducted to expand and refine the

software quality measurement framework defined in prior Government (RADC) contrac-

ted research, Factors in Software Quality, F30602-76-C-0417 and Software Quality

Metrics Enhancement, F30602-78-C-0216. The Software Quality Measurement Manual

(RADC-TR-80-109, Volume II) which was developed under the latter contract, was

modified and expanded to include the new metrics and is included as Volume II of this

report.

The results of this study are expected to enhance the methodology for AF software

acquisition managers to determine software quality requirements over a project life

cycle in terms of its software quality factors and to specify or describe those

requirements to contractors. The results are also expected to provide the methodology

for software development managers to control the quality of software products using the

increased visibility provided by predicting and measuring software quality factors.

1.2 BACKGROUND

Rome Air Development Center (RADC) has been pursuing a program since 1976 to better

specify and control software quality. This program has been seeking to identify the key

issues and provide a valid methodology for specifying and measuring software quality of

major AF weapon systems.

)1

t__ _,_,_ _....__ _
- - - - - - - - - - - -- - - - - - - - - - - - --- -

In 1976 RADC and Electronic Systems Division (ESD) sponsored an effort which defined a
set of eleven user-oriented characteristics or quality factors (correctness, efficiency,
integrity, usability, testability, flexibility, reusability, maintainability, reliability, porta-
bility, and interoperability) which extended throughout the software life-cycle, this
effort established a hier&,-hical software quality measurement framework as shown in
Figure 1.1-1. The user-oriented factors, designed for use by acquisition managers to

specify quality requirements, are at the top level. The software oriented criteria

(attributes which indicate quality) and software metrics (quantitative measures of
attributes) are at the second and third level, respectively. The metrics represent the
most detailed level of the framework. Taken collectively, this hierarchy forms the basis
of a model for predicting and controlling software quality. This research was performed
under contract F30602-76-C-0147, and was described in technical report RADC-TR-77-
369, Factors in Software Quality.

. ,.

FACTOR USER-ORIENTED VIEW OF
PRODUCT QUAUTY

CRITERION CRIERIO CRITERION SOFTWARE-ORIENTED
A1-rRIBUTES WHICH
INDICATE QUAUTY

METRIC METRIC METRIC QUANTITATIVE MEASURES
OF ATTRIBUTES

Figure 1.1-1 Software Quality Model

3

*~~~ --.MEL_____

In 1978, RADC and the US Army Computer Systems Command sponsored additional

research to enhance this framework under contract F30602-78-C-0216, Software Quality

Metrics Enhancement. The results of this effort were reported in technical report
RADC-TR-80-109, Volume I Software Quality Metrics Enhancement and Volume H
Software Quality Measurement Manual. The manual provides methodology to assist the

AF acquisition manager in describing to a contractor what quality factors the manager
considers the most important.

In 1979, RADC and the US Army Computer Systems Command issued contract F30602-79-

C-0267 to develop an Automated Quality Measurement Tool for the H6180/GSOS

Computer System. The purpose of this tools was to automate the collection of specific

metric data and provide quality measurement assessments. This tool was delivered to the

Air Force in September 1981.

In 1980, RADC sponsored further research into the software factors interoperability and

reusability with this contract (F30602-80-C-0265). The objective was to enhance the

Software Metric Model by incorporating new findings for these factors which had not been

extensively studied in prior research contracts. This research was to formulate and

validate metrics for interoperability and reusability and to provide this information in a

j Iform useful to the AF software acquisition manager.

This contract reflects the increasing importance of these two quality factors in the cost

of large military systems with embedded software. As an increasing number of

sophisticated systems are deployed, it becomes more important for these systems to be

able to transmit, receive, and use information of mutual interest in order to be able to

deal effectively with rapidly changing threat environments. Thus, a reliable method for

predicting and measuring interoperability is needed to minimize the impact on costs,

schedules,!and national security by the failure of systems to interoperate successfully.

The increasing cost of software for military purposes has also raised an awareness of the

cost of rebuilding software for similar purposes again and again. Much attention is now

being focused on ways to reuse software, and as a result it is important to identify those

software qualities which enhance its reusability.

4

1.3 SOFTWARE QUALITY FRAMEWORK

The goal of the quality metrics is to enable a software acquistion manager to specify the

types and degrees of qualities desired in the end product and to predict those qualities

during the development process. McCall and et. al. had established a framework for

viewing software quality. Figure 1.3-1 is a simple depiction of this framework, showing a

hierarchical relationship between the quality factors, and the quality criteria. The

framework has now futher expanded and revised into new model. Figure 1.3-2 is a simple

depiction of this new model, showing a hierarchical relationship between the quality

factors, i.e. interoperability and reusability, the quality criteria, and the quality metrics.

The quality factors are user-oriented terms representing concerns of the acquisition

manager or product user. Quality factors are used to specify the type of quality desired.

Criteria are software-oriented terms representing attributes of the software which, if

present in the software, indicate the presence of a type of quality (a quality factor).

Metrics are software-oriented phrases or sentences which ask questions concerning details

of an attribute (criteria) of the software. Answers to the questions enable quantification

of the degree of presence of quality criteria and, hence, quality factors.

j Reusability of software requires that the software be understandable, flexible, modifi-

able, adaptable, applicable and accessible. Simplicity, system clarity, and self-

descriptiveness criteria will enhance the understandability. Generality, machine and
software system independences, application independence and modularity will improve the
flexibility, modifibility and adaptability. Functional scope is an application dependent

criteria, which will depend on what kind of functional requirement is needed in the

reusable application. Well-structured documentation and no-control access will improve

the accessibility. Thus the simplicity criterion was added to the reusability criteria.

Software system independence and machine independence were consolidated into and

replaced by the term independence. This enables consideration of modular and functional

independence. Overall, of the five original criteria, three remain identical, two were

consolidated into one criterion with a new name, one was added, and three are different.

I Interoperability is a function of how well one embedded software system matches the

system with which it is to interoperate, as well as a function of the ease with which the

software can be changed or expanded to interoperate with another system. The system

matching is measured by the commonality and independence, and the new criterion of

5

SEF

system compatibility. The ability to change or expand the software system is measured

by the original criterion of modularity, the modified criterion of augmentability, and the

new criterion of functional overlap.

In summary, the new enhanced software quality measurement framework has the new

features as showed in the Table 1. 1-I

TABLE 1.1-I Enhanced Software Quality Measurement Framework

FACTOR STATUS CRITERIA METRICS

INTEROPERABILITY ADD 5 (2 NEW) 13 (7 NEW)
DELETE I I

MODIFY 3 6

-i

NET 3-"o7 4--o-16

REUSABILITY ADD 5 (4 NEW) 20 (16 NEW
DELETE I I

MODIFY 1 2

NET 5--P9 9--28

)7

1.4 TECHNICAL APPROACH

The approach to this problem was to use the previous work accomplished by RADC (see

section 1.2) as well as previous Boeing software quality metrics research as a baseline.

The technical approach was divided into a series of eight tasks in order to accomplish the

objectives and the requirements of the statement of work. The following task flow is

shown in Figure 1.4-1.

Task 1: Identify interoperability and reusability characteristics

Task 2: Develop analysis and prediction methodology

Task 3: Develop design guidelines

Task 4: Develop software quality measurement framework

Task 5: Assess impact on Automated Measurement Tool (AMT)

Task 6: Collect data

Task 7: Validate metrics

Task 8: Integrate results for Final Report and Handbook

In task 1 the distinguishing characteristics of interoperability and reusability were

identified. Details of requirement specification, design, and development practices that

are related to the quality factors of interoperability and reusability were identified.

Tradeoffs between various quality factors were described, and concrete recommendations

for implementing requirements for interoperability and reusability in the Air Force

environments were developed.

In task 2 a framework for the analysis and prediction of interoperability and reusability

was constructed. Since the two quality factors of interoperability and reusability are so

different the metric framework for each was developed separately. Reusability could be

assessed and predicted at the module as well as system level, but interoperAbility has

8

Vo

*
Ire

meaning only at the system level. These frameworks and the considerations which guide

them are discussed separately in detail in sections 2.2 and 2.3.

In task 3 design guidelines for facilitating a choice among possible design implementations

were considered. These guidelines for interoperability and reusability considerations

appear in sections 2.2 and 2.3 respectively.

In task 4 the software quality metric framework defined in "Software Quality Metrics

Enhancement" and "Software Quality Measurement Manual" (RADC-TR-80-109, Volumes I
& II) were expanded and refined to enhance the quality factors of interoperability and

reusability. The manual was also reformatted and reorganized to enhance readability and

usability and is included as Volume I of this report (also see section 2.5 of this volume.)

In task 5 the impact of this research on the Automated Quality Measurement Tool (AMT)

was assessed. The result of this assessment appears in section 2.4.

In task 6 the methodology for data collection was developed, and was implemented in the

form of worksheets. (These worksheets are included in Volume II as Appendix A.) Data

was collected from various softwace development projects; the specific software exa-

mined was determined by the influence interoperability or reusability had played on that

software. As a result, different modules wete examined for interoperability than for

reusability, even though both might come from the same project. (See sections 2.2.5 and

2.3.8)

In task 7 the data collected in task 6 was used to validate the metrics for interoperability

and reusability. The validation techniques used in RADC-TR-77-369 were reviewed and

compared against other numerical analysis and statistical correlation methods in order to

select the validation methodology most appropriate to the characteristics of the data.

(See sections 2.2.6 and 2.3.9)

,

10

V - .. ;

SECTION 2

TECHNICAL ACCOMPLISHMENTS

2.1 SOFTWARE INTEROPERABILITY AND REUSABILITY

The software quality framework developed in (McCall 79-1) identified eleven quality

factors and established a system of criteria and metrics through which the degree of a

quality factor possessed by a software system or module could be measured or predicted.

The framework for the quality factors of interoperability and reusability was not fully

developed by that research however.

This section establishes a perspective on these two quality factors from which a quality

assessment system can be developed.

2.1.1 Top Level Framework

Figure 2.1-1 shows the top level framework within which software interoperability and

reusability quality factors were investigated. From a user standpoint a software system

must possess some minimum degree of the other quality factors otherwise the software

would not be considered worthy of reuse. Similarly when a user considers putting two

systems together, he is very concerned about the end result; will the new system reflect

the best, or the worst, qualities of each subsystem. Interoperability is similar to

reusability because when a new system is created from two existing systems, they are

being reused in a context that differs from the one in which they were developed.

Table 2.1-1 classifies quality factors as either user oriented or production oriented. This

is a departure from the McCall classification of product operation, product revision, and

product transition. The product operation quality factors correspond to the user oriented

factors. The product revision plus the product transition quality factors correspond to the

production oriented factors. The selected classification emphasizes the differences

between the orientation of what the user wants and what the software developer may do

to cost effectively produce software. Of the six production oriented quality factors,

interoperability and reusability are best suited to the prediction of user oriented quality

factors because they capitalize on the fruits of previously developed software.

11

currimeow crny meo CREE men IOTWAREORIENTWD
ATTRSU 1 4101 PROVODE

METROCMETUCMETRI {(JNTITIVE MEASURES OFWTON METIC TOSEATTRIBUTES

LL

Table 2.1-I Classification of Quality Factors

USER ORIENTED PRODUCTION ORIENTED

QUALITY FACTORS QUALITY FACTORS

Correctness Maintainability

Efficiency Flexibility

Integrity Portability

Reliability Testability

Usability Interoperabiity

Reusability

13

f.*.
L

2.1.2 Cost/Benefit Perspective

The major thrust of this report involves the determination of the interoperability and

reusability potential of existing software. The reason for this is that it is assumed that

interoperability and reusability quality factor ratings can be improved only at increased

cost. Hence an acquisition manager would be reluctant to apply resources that would

benefit some future unknown application. The developers would probably choose to

improve some other quality factors since they would not necessarily benefit from

improving the software interoperability and reusability.

One exception is when an organization specifies programming techniques that improve

interoperability and reusability quality factors in order to reduce later development costs.

However, the added costs of improving interoperability and reusability may not be

justified if the software is not subsequently reused or coupled with another system. Since

4 this cannot usually be determined in advance, any relatively large cost penalties for

improving interoperability and reusability will probably be avoided.

Another aspect is when software is designed to be interoperable or reusable, the

j conditions of the usage will not be known in advance. Therefore, all factors which affect

the software's potential to be reused or to interoperate must be addressed, which may be

quite costly. However, if existing software is being assessed for reuse or interoperation
with other systems, the software will be known to meet the needs of the new application.
Also the environment will be known, allowing the identification of unimportant interoper-

ability and reusability quality factors. For example, if the software will be reused on the

same computer, word size factors are unimportant.

For software to be reused, or coupled with other software, the cost of its use must be less

than the cost of new software development. The largest potential benefit of software

interoperability and reusability quality metrics is in estimating those costs and reducing

the risk in a decision to utilize existing software in a new system.

14

2.1.3 Quality Concerns

The user has two primary concerns relative to reusability and interoperability. They are

1) What is the cost of reusing software or making software systems interoper-

able?

2) What is the operating cost of the resulting software system?

The first question refers to development costs. Where the quality factors portability,

flexibility, and testability are the most important. During operation, efficiency,
maintainability, and reliability have the greatest cost impact.

Usability, correctness, and integrity are usually of greatest importance during the initial
committment to reuse the software or make it interoperable with another system.

Figure 2.1-2 shows how the factors of interoperability and reusability may be used to

estimate software development costs. The new application will have both functional and
quality requirements. The functional requirements are used to set criteria for reusability

and interoperability. The existing data base of software is assessed and a subset is
selected and evaluated for its conformance to user quality requirements and its potential
of reuse or interoperation. Quality upgrade needs are assessed by comparison of the
required software quality profile with the existing software quality profile. The quality
upgrade needs may be converted to quality upgrade costs through use of curves that relate

quality enhancement to cost.

The interoperability and reusability ratings provide estimates of the amount of change

needed to make existing software functionally acceptable. New functions are identified
by comparison of existing functions with the application requirements. The combined

assessment yields the software quantity needs. The change quantity needs may be
converted to quantity upgrade costs through the use of curves that relate to productivity.
The quality upgrade costs and the quantity upgrade costs are then used to predict new

* product software costs.

115

I.JR
AU

EXWN ASE= TE

SFTWRE 2.1-2 AR QULT PREIC

ODAT BAS" FCTORSOFTA1I

RAIGSCS

2.2 INTEROPERABILITY

The software quality factor "interoperability" is defined in the Software Quality Measure-

ment Manual (McCall 79-1) as "the effort required to couple one system with another."

Coupling includes linking two programs to interoperate on a single computer or linking

programs on separate computers to interoperate. The quality factor interoperability is

therefore important when:

1) retrofitting two or more previously developed systems.

2) developing new systems independently that will interoperate with each other.

3) developing a system with the expectation that it will eventually interoperate

with an, as yet, undefined future system.

When compared to the other quality factors, interoperability shows several unique aspects

that are not considered in the other factors. Each of the other factors is defined in terms

of "a (computer) program" or "(computer) software." In contrast, interoperability is

defined in terms of "a system." There is an immediate implication that interoperability

considers something more global than the other factors, for "system" implies something

more than "software" - it implies the framework of hardware, communication links, and

human interaction in which the software is embedded. Thus, the approach to define and

validate metrics for systems was different in kind from the approaches used strictly for

software.

Interoperability was approached by first reviewing definitions of interoperability (2.2.2.4),

then by building a framework of criteria and metrics (2.2-2.5). Because interoperability

includes a large range of problems beyond any one researcher's experience, various

managers and engineers whose experience included work on projects with interoperability

considerations were interviewed. They were asked to talk about interoperability problems

they had encountered, and then were asked to review the proposed framework for

interoperability metrics. As a result of the interviews, significant changes were made in

both the framework and our data worksheets. The interviews provided so much additional

insight into the range of interoperabiity problems that it prompted an entire section

(2.2.2) on the results.

17

OW fl

Section 2.2.3 is a description of the metric framework for interoperability and its
theoretical basis. It also includes a discussion of the reasons various metrics were
dropped and others added. Section 2.2.4 discusses tradeof fs between interoperability and
other quality factors. This section is followed by a description of the data collection
methodology (2.2.5). The next two sections present the validation results (2.2.6), the

conclusions and recommendations (2.2.7).

2.2.1 Key Concepts

The two key interoperability concepts are sharing of data and sharing of functions
between two or more systems. These concepts are referred to as data coupling and
functional overlap, respectively.

2.2.1.1 Data Coupling

Systems may be data coupled through sharing a common data structure, data management
system, communication link or network. The two extremes of data coupling are "loosely
coupled" and "tightly coupled"1.

Two software systems are loosely coupled when specific data items are shared through use

of a communication framework that passes the items between the systems. Generally the
amount of data shared is relatively small and the occurrence of data sharing is infrequent.
Issues arising in such systems include increased communications overhead and delays, the
impact of shared resources on system performance, the impact of adapting the two
systems to a unified executive, the potential for software redundancy (duplicated code)
and/or conflicting results between the two systems, and problems in timing and synchroni-
zation.

Two software systems are tightly coupled when they share a common data structure or

database and a mechanism is required to prevent conflicts between the systems during
data access and updates. Generally, the amount of data shared is relatively large and the

occurrence of data sharing is frequent. Issues arising in such systems are similar to those
of loosely coupled systems, but to different degrees. Communication overhead and delays
may be less of a problem, but the issues of conflicting results, timing and synchronization
may be significantly more important.

18

2.2.1.2 Functional Overlap

Systems may be coupled through the sharing of common functions, referred to as

functional overlap. If two systems have few functions in common the degree of functional

overlap is low. If they have a large number of functions in common the degree of

functional overlap is high. If the two systems have in common some similar, but not

identical functions, problems may arise from conflicting results. Other issues arising in

such systems are increased maintenance requirements, additional complexity, timing and

synchronization and the possible need for an external control mode.

2.2.2 System Characteristics

This section identifies the characteristics which impact a systems ability to interoperate.

A Table 2.2-1 details all of the system characteristics that were considered. Those marked

"accepted" are described with respect to software interoperability. Those marked

"rejected" were considered to be redundant or of lesser importance with respect to

software interoperability.

i

, i 19

2 1
i • -!

Table 2.2-1 Characteristics that Impact Software Interoperability

Accept Reject

Accessibility x

Algorithms x

Precision of algorithms

Computer Architecture

Memory and mass storage x

Microcode x

Standard Features x
Word size x

Data Management Methodologies x

Access Methods

Database Management Systems

Mass storage devices

Data Structures x

Element association

Structure types

Documentation (of second system) x

Domain Generality x

Environment Dependence

Data Dependence x

Machine Dependence x
Software System Dependence x

External Control Modes x

Interactive

Batch

Computer

Combined Control Language

Fault tolerance x
Fault containment

Fault detection
Fault diagnosis

Fault recovery

* 20

Li 1

Table 2.2-1 (Cont.)

Accept Reject

Functional Overlap x

Hardware x

Analog

Digital

Human Engineering x

I/O Protocol x

Interface message processor

Host to host protocol

Data transfer protocol

File transfer protocol

Graphics protocol

RJE protocol

Languages x

Modularity x

Interface Complexity

Coupling

Output Mode x

Scope of functions x

Security x

System Architecture x

System Availability x

System Size x

Timing x

21

- .-i----

LI
2.2.2.1 Definition or Meaning of Accepted Characteristics

Algorithms - A series of operations to achieve the desired result.

Computer Architecture

Memory and Mass - The configuration of main memory and secondary

Storage storage. Virtual memory is an issue.

Word Size - The number of bits in a word, usually stored and

handled as a unit.

Data Management Metho-

dologies - The methods used to manage, store and manipulate

data.

Data Structure - A structure to allow organized access and storage of

internal data (e.g. lists, trees).

External Control Modes - The means of providing user control over a system.

Fault Tolerance - The ability to detect, contain, diagnose and recover

from faults.

Functional Overlap - A comparison between two systems determines the

number of functions common to both systems.

Human Engineering - The measure of how demanding it is to use the system.

1/0 Protocol - Specifications that describe 1/O standards and proce-

dures.

Languages - Systems of symbols which can be used to provide

instructions to a computer such as the computer input

set, assembler and HOL languages.

22

'K-.)

Modularity - Those attributes of the software that provide a struc-
ture of highly independent modules.

Output Mode - The type of output, to mass storage devices or other
peripherals, printers, terminals or graphics.

Security - Protection of classified computer system components,
software and data.

System Availability - The percentage of time a system is free from compon-
ent failures.

System Size - The total amount of system resources.

Timing - The timing requirements for a system operation.

2.2.2.2 Impact of Characteristics on Software Interoperability

* Characteristics of the individual systems have an impact on the effort required to make
them work together. The following summarizes the effect that differences in these

characteristics between two systems, may have on the cost of making them interoperable.
The two key characteristics functional overlap and coupling will be discussed in section
2.2.2.3 in relation to the other characteristics.

2.2.2.2.1 Algorithms

An algorithm is a plan made up of a series of operations that, when programmed and
executed, will produce the desired data or alterations to data or data structure. If two
systems share the same function, variations in algorithms, age of the data or precision of
the machine may cause unacceptable differences in the results.

23

2.2.2.2.2 Computer Architecture

Memory and Mass Storage

Many aspects of memory and mass storage architecture are covered under other system
characteristics discussions i.e., Software System Dependence, Machine Dependence of
Code and System Size. Special problems of memory and mass storage are virtual memory

versus real memory and that of access to mass storage.

Virtual Storage machines are essentially unlimited core machines. Very large programs

can be handled via paging facilities. Problems occur when using conventional program-
ming techniques to develop programs for use on a Virtual Storage machine.

Overuse of paging facilities result in very slow programs. Programs most appropriate for
rehosting on a Virtual Storage machine are modular and able to execute in a limited

portion of the machine. Program functions should execute in a manner that once core is

set up, all the processing is completed before the configuration changes.

J Mass storage access is also a problem. If a system utilizes an access method that is not

j supported by the host system, radical redesign may be required to make the systems work

together.

Word Size

This is one of the physical characteristics of systems that must be considered when

studying system interoperability. Each computer utilizes an operating system which is the

linkage between the application software and the hardware. Computer system designers

try to optimize the system to keep operating costs at a minimum. The result has been

that many systems have different word sizes. Word sizes affect the accuracy of

computations and the addressabiity of the memory locations. These differences impact

the interoperability of a system with respect to the system it is intended to be merged

with.

Computer accuracy in floating point calculations is dependent on the length of the word.

Longer words will carry more significant figures and be less affected by round off errors.j 24

Software with many computational algorithms designed to runm on a 60 bit word sized

machine will not transport to a 16 bit word sized minicomputer without extensive work.

* On the other hand it may be quite simple to transport in the other direction. A problem

could occur from a space point of view if a great quantity of variables were used on the

16 bit word machine in conjunction with a larger program.

Addressability is the other area of potential problems. A 16 bit word inherently provides

core addressing to the 16 bit level. Some machines only provide addressing to the byte

level which can be six or eight bits. Others address on the half word. Obviously a

program that was designed to take advantage of the addressability of the 16 bit word

computer would require extensive rework to be usable on the larger word size machine.

2.2.2.2.3 Data Management Methodologies

Data management is the combination of software with data structures to allow efficient

manipulation of data. A variety of data base management systems exist employing

different data structures, access methods and mass storage devices. Access methods used

include direct techniques like attribute or content addressing, indirect techniques like

ordered positioning, chains or directories, or search techniques like sequential, binary or

calculated searches. Two systems which interoperate through data management require

common data structures, common access methods and compatible mass storage devices.

A mechanism may be required to prevent conflicts during data access and updates.

2.2.2.2.4 Data Structures

Data structures are used to organize data for easier manipulation. Within a data

structure elements may be associated with each other by means of labels, locations, keys,

pointers or links. Typical structures might include tables, linked lists, multiple lists, rings

or trees. For two systems to interoperate they may require that element associations be

altered and that a more complex combined data structure be devised. Response times for

both systems could be slowed by the larger amounts of data in a combined structure.

25

2.2.2.2.5 External Control Modes

The external control over a system may be interactive, batch, or by another system. The
coupling of two interactive systems may result in the need for a common or combined
control language. The coupling of batch systems may require the use of mutually
compatible mass storage devices. The section on Output Mode discusses external control
by other computer systems.

2.2.2.2.6 Fault Tolerance

A fault tolerant system will incorporate elements of fault detection, fault containment,
fault diagnosis and fault recovery. The amount of fault tolerance incorporated into a
system depends on a tradeoff between the future cost associated with failures versus the

present cost of adding the tolerance.

When coupling two systems, one or both may require the addition of fault tolerant

features. An advantage to be gained by interoperable systems which reside on different

computers is that should one computer fail, the other system may be able to save some of
* its data, take over portions of its calculations, perform some diagnosis and aid in system

recovery. A disadvantage is that the failure of one computer may render the other

computer system inoperable.

2.2.2.2.7 Functional Overlap

Refer to section 2.2.2.3.

2.2.2.2.8 Human Engineering

Human engineering is a characteristic associated with the ease to which users can

interface with a system. The specific area of interest is how demanding the system is to

use. A system that can be easily operated by users with little experience or training is

better human engineered than one that requires a high degree of training.

2.2.2.2.9 1/0 Protocols

These are specif ications that describe the information necessary to connect to a host

computer system such as in ARPANET. Computers typically differ from one another in

26

type, speed, word length, operating systems, etc. Connecting host to host usually requires

an interface message processor (IMP) for each computer. The IMP's are then connected.

The H-ost - IMP interface is the first level protocol. This protocol is not sufficient to

specify meaningful communication between processes running on dissimilar hosts. The

next level specifies methods of establishing communication paths, managing buffer space

and providing a method of interrupts. This is known as Host-to-Host protocol. Further

layers of protocol include initial connection which provides a convenient standard for

processes to gain simultaneous access to some specific process. A telecommunications

network protocol provides mapping of terminals into a network to facilitate communica-

tion between a terminal at one host site and a terminal serving process at another. A

data transfer protocol specifies standard methods of formatting data for shipment through

S4 a network. File transfer protocols specify methods of reading and writing and updating

files stored at a remote host.

Graphics protocols specify a means of exchanging graphics display information. Remote

job service protocol specifies methods for submitting input and obtaining output from, and

exercising control over, hosts which provide batch processing service.

Each of the above protocol specifications provide essential information required for

connecting a system. If these are available the merging of additional components is* I straight forward. If they are not available it is probable that they will have to be

prepared prior to any extensive system modification and reviewed thoroughly in determin-

ing the effort required to couple the systems. If the systems use different protocols one

or both must be changed.

2.2.2.2.10 Languages

Programming languages in use today can generally be divided into three categories,

machine oriented (i.e. assembler), procedure oriented (i.e. Fortran, Cobol, Jovial) and

problem oriented (i.e. Mark IV, RPG).

Machine oriented languages strongly reflect the features of the particular computer,

while higher level languages are more standardized. Functional coupling could be difficult

if one or both of the systems were programmed in a machine oriented language.

* Languages may also affect systems which require data coupling even if using a higher

level language. For example, on the CD3C Cyber 70, a Fortran program will read

27

imbedded blanks in numeric hollerith data as zeros while embedded blanks cause an error

for Cobol programs, furthermore the Fortran program requires a decimal place on floating

point numbers, but Cobol can assume a decimal place. Additional problems may occur

between other languages.

2.2.2.2.11 Modularity

Refer to section 2.2.2.3.

2.2.2.2.12 Output Mode

The important aspects of this characteristic are output mode, output content and output

format.

* Output may be to a mass storage device i.e., drum, disk, tape. It may go directly to

peripherals for processing i.e., printing, card punching, tape punching. Or, it may be sent

to a users terminal and displayed graphically. Collecting and analyzing this kind of data
for each system supports determination of how much effort will be required to convert

the output data of the systems to couple them.

j Formats of the output may have to be revised to be consistent in the final system.

Reading computer outputs is simplified if the layouts of different reports are made

similar.

Outputs from two systems could be related or duplicated. It is generally necessary to

review output reports and integrate data from both systems into a single set of output

reports that provide maximum information in a concise, clear manner.

* 2.2.2.2.13 Security

A special case of processing to be considered is handling of classified input and output

* material. Almost every instance would require the new system be classified to the

* highest level of the separate system. The effort of merging would not be affected as

* much as the handling of the program and its outputs thereafter.

28

t.aim

2.2.2.2.14 System Availability

This is a measure of the percentage of time that a system is ready to be used or being

used. This measure depends on the amnount of time that a system is down for problem

correction (unplanned maintenance) and for adding enhancements (planned maintenance).

Availability then is clearly a function of the failure rate (unplanned), how long and how

difficult it is to fix (maintainability) and planned enhancements. The combination of high

failure -ate and a large number of enhancements will reduce system availability

significantly.

When merging two systems it is important that availability of each be known and the

requirements of the new system. It is also important to understand how easy or difficult

it is to modify the software. Finally the amount of planned machine maintenance must be

considered. This total spectrum is required in order to predict whether the final system

will meet availability requirements.

2.2.2.2.15 System Size

A system may already be utilizing a large percentage of available resources. In coupling

systemns, interface penalties in buffer space, high speed memory or mass storage may

occur due to alterations in one or both systems algorithms, data structures or data

management techniques. The alterations may require memory overlays or may be beyond

the current systems capability.

2.2.2.2.16 Timing

System timing can be commonly divided into three categories, real-time, interactive and

delayed or batch. A real-time system interacts with a physical environment in order to

service or control that environment, which makes timing critical. In interactive systems

responses are in real time but timing is not critical while in batch systems processing

occurs as convenient.

In coupling systems, penalties in execution and response time may occur due to alterations

in algorithms, overlays, data structures, data management techniques, or other overhead

incurred by working together. These penalties may alter critical timing relationships in

real-time systems or cause unacceptable delays in response times of interactive systems.

29

2.2.2.3 Data Coupling and Functional Overlap vs. System Characteristics

This section examines the relationships that exist between the key concepts of software

interoperability (data coupling and functional overlap) and other system characteristics.

Table 2.2-2 presents selected system characteristics on one axis and key concepts on the

other. Areas where relevant relationships exist are marked with an item number to

reference following discussions.

30

K 9

pI

Table 2.2-2 Interoperability Concepts vs. System Characteristics

Interoperability Key Concepts

Large Small

Tightly Loosely Functional Functional

System Characteristics Coupled Coupled Overlap_ Overlap

Algorithms I

Computer Architecture

Memory and Mass Storage 2

Word Size

Data Management Methodologies 3

Data Structure 4

External Control Modes 5

Fault Tolerance 6

Functional Overlap

Human Engineering

I/O Protocol 7

Languages 8 8

Modularity
Output Mode
Security 9 9

System Availability

System Size

Timing 10 10 10 10

t

3

I3

... ,- j ,.* , :I.

The same function in two independent systems may use different algorithms. One

algorithm may be designed for speed and the other algorithm for accuracy. If
the requirements are the same for both functions and the code is modularized
(high functional strength), it may be possible to share one of these functions.

However, if each system module contains many functions (low functional strength)
it may be difficult to share either function. It may be necessary to rewrite the

function involved to achieve coupling.

Figure 2.2-1 summarizes the relationship between functional overlap, module

strength and the cost of coupling two system-s. The classification scheme for
module strength is that defined by (Meyers 75). The cost for informational and
functional is linear because these types of modules have high independence from
other modules, are easy to use in other programs, and are easy to extend. The
others are non-linear because they lack these properties to various degrees.

The test for modularity is presented in decision table format in (Meyers 75). This
table is shown here as Table 2.2-3. The decision table provides a simple means

of determining the strength of a module. The criteria are primarily judgmental,j but are amenable to interactive analysis.

32

COINCIDENTAL STRENGTH

LOGI CAL

CLASSICAL

PROCEDURAL

COMMUNICATIONAL

INFORMATIONAL

FUNCTIONAL STRENGTH

COST TO MAKE
INTEROPERABLE

FUNCTIONAL OVERLAP BETWEEN SYSTEMS
IN TERMS OF NUMBER OF FUNCTIONS

Figure 2.2-1 Cost to Make Interoperabte Depends on

Functlonal Overlap and Module Stroeth

_ _ _ _ _ _33

L

Z - - - - -."- -- -

z z 3

z IN- X ,- X-

z z- Z)" U0

*0
z " z Z - z

z 30- z x. 0

U

z c

IL z4. - - . - - - -

. z z n : Rz 1

a .Z C) C- - 0 0a. wo d 0uu 6Zz Z z L zz aJ
z a D a Z az wa II C

) o Z -6 Z co. 4 a Z C-
RL I I- LCa. R 4C Rz

w uu zz ~U w 4A z 4 I
=0 z ze > a= a 0 Mo aW ..J 04 4 a
W Wo C Z. LL. 1 0 La. 4. a LLx.49 Z

Z _ja 014-6 J4 I-. ix W4 1 -. J W- a l 0
I-. Z W U) U L oW uO Z3 014 4

LL. 0W Wa lz - ~~ 4 J Z _ w 4 U z
ca Z Zw 4c z C -1 = aJ U to 0 N

a W a AL w -. - 0 IL u 4 z 6

Ia.~ ~ C Jz Ci ZW 0 U.Z . 0 U K a U

I.WR4 CRITEUR FUCIOA STRENGTH 0 K i. Z

6-4 ~ ZW 4 o.. ~e O a .1 34

2. The memory required for shared resources and a unified executive may exceed
machine capacity. Paging and swapping facilities may be too slow for a
combined systems.

3. To tightly couple two systems to share a common DBMS requires compatibility
of their data bases. A common sort key or common element association is
necessary. Record processing codes need to agree.

4. To achieve a tightly coupled system through a shared data structure, it may be
necessary to create previously unneeded portions of the data structure for Use
by one of the systems. If multiple calling modules are operating it may be
necessary to save and restore portions of the data structure. Program modules
may have access to unnecessary data which can cause inadvertant side effects
or compromise data integrity.

5. Two systems with large functional overlap require a combined external control
mode.

6. Fault tolerance can be added to loosely coupled systems at low cost.

7. Loosely coupled systems require commonality of 1/0 protocol for the interface
message processor, telecommunications network and data transfer.

S. Sharing of functions between systems which utilize different assembly lan-
guages is difficult due to the machine dependence of the languages.

0 0%upling brings a new dimension to the problem of security, as it adds
complexity due to the number of systems and levels of security within each
system. This may cause a severe impact in terms of cost, design and
schedules.

10. In coupling systems, sacrifices in execution and response time may occur due
f to alterations or overhead incurred in coupling the systems.

35

2.2.2.4 Interoperability Definitions

As noted above, the working definition of interoperability is "the effort required to couple

one system with another." This definition was compared to those cited in technical papers

and reports on "interoperabiJity" listed below

1.) The ability of systems, units, or forces to provide services to and accept

services from other systems, units, or forces and to use the services so

exchanged to enable them to operate effectively together.

DODD 2010.6 Standardization and Interoperability of Weapon

Systems and Equipment Within the North Atlantic Treaty Organi-

zation (NATO), 11 March 1977.

2.) (The ability of one service's system to receive and process intelligible informa-

tion of mutual interest transmitted by another service's system.

JINTACCS INTEROPERABILITY

ref-PM99 21 DEC 1974 HQDA

3.) The ability of one system to receive and process intelligible information of

mutual interest transmitted by another system.

INTEROPERABILITY VIA EMULATION

Ingrid A. Eldridge

Proceedings of the 1978 Summer Computer Simulation Conference

July 24-26, 1978

Los Angeles, Calif.

Interoperability is conceived as a good quality, in the same way we speak of reliability.

These definitions correspond to common sense notions. Defining "interoperability" in

terms of effort is an indirect way to look at this quality factor.

There are further problems with the McCall definition. The words "system" and "couple"

are never clearly defined. This definition, taken literally, includes only the connectivity

36

____-____ --- AM=

and compatibility issues of interoperability; it implies only equipment level consider-

ations. Two persons using exactly the same UHF transmitters on the same frequency may

not be able to interoperate, particularly if one person speaks only Chinese, the other

speaks only Arabic. Hardware compatibility does not assure interoperability. Interoper-

ability is achieved when both persons can transmit and receive information of mutual use

and understandability.

The NATO definition is also unsatisfactory because it stresses standardization, especially

of equipment. The emphasis on standardization of hardware and software overlooks the

content of the messages and the differing operational requirements that affect interoper-

ability.

The JINTACCS and DoDD 2010.6 definitions are preferred. This preference is based not

only on review of technical publications, but also on interviews with many managers and

engineers who have faced interoperability problems. These definitions seem to most

accurately define the ultinate meaning of interoperability.

The working definition was chosen by the original researchers (McCall, et. al.) because it

gave them something they could measure; most projects have some estimate of manpower

expended. This, in turn, provided a measure against which the metrics could be

correlated. This approach was attractive, because it would provide a method to predict

cost.

2.2.2.5 interoperability Interviews

The wide range of interpretations of interoperability in the literature suggested that a

comparably wide range of interoperability experience must exist. So managers and

software engineers who had had experience with interoperability requirements or pro-

blems were interviewed. Twenty interviews were held. As a result, the concept of

interoperability and of which criteria most influence interoperability were considerably

altered.

The interviewees had an enormous range of experience. Projects varied from micropro-

cessor systems to very large embedded software systems containing over a million lines of

high order source code. The interoperability problems also varied from those within

37

t ___-__D -r=

small sub-systems to those between several large command, control and communication

(C3) systems of different nations. As a result of the interviews the common essence of

these problems was extracted and stated in general terms. The following guidelines

represent a distillation of all the recommendations received on how best to assure

interoperability.

I. The most critical decisions with regard to interoperability are made during the

specification of the system level requirements and interface requirements.

2. The specification of operational procedures and interface definitions should be

as explicit as possible, rather than general, to assure interoperability. This

point was stressed by most of the project personnel interviewed:

It is not how generally the interface requirements are specified, but

rather how specifically. The more precisely the interface is defined, in

terms of its protocols, message format, and message content, the more

likely interoperability will be achieved. Thus metrics should measure the

precision and completeness of communication requirements, and their

adherence to standards.

3. The definition and understanding of the operational procedures for using the

system is as important as the technical interface definition.

4. Hardware interoperability, while important, is only the first step in achieving

system interoperability; and it is a comparatively minor problem.

5. 'Off-line interoperability,' such as the requirement that two systems must use

the same data reduction and analysis software is also important. A ground

based data reduction and analysis system may have requirements to work with

several surveillance systems, so their data can be processed, reduced, ana-

lyzed, and compared. Neither surveillance system in this example, has the

requirement to interface with each other. But both systems have the

requirements to prepare mission recording tapes that can be processed by the

ground based data reduction system. This is off-line interoperability. This

distinction, however, appears not to be important in metric calculations, for

38

.4

the basic interface considerations are almost identical. Transmission rate

considerations become a matter of tape motion speed; communication and

data considerations become the relatively simple factors of number of tracks,

formatting, blocking, and data representation standards. Thus, a separate set

of criteria and factors were not developed for the off-line situation.

6. The availability of accurate and up-to-date documentation is very important.

7. Timing requirements are as important as message format and content stan-

dards. There are two major timing categories: first, the response time of one

system to a message from another interoperating system; second, the 'data

stale' requirements. An example of the latter would be a system requirement

that data older than 20 seconds is of no use because it is 'stale', or too old to

be of value. Such a data stale requirement may dictate the interrupt structure

of an executive, or impose limits on the buffering of data.

8. A common vocabulary between users of both systems is of major importance.

9. A simple interface is important, but an explicitly defined interface is crucial.

10. The human interface should be as good as possible, since the human is

sometimes the only interface between systems.

Interoperability requirements are sometimes more subtle than they first appear. For

example, E-3A was designed to replace BUIC, which in turn was designed to replace

SAGE. Both older systems had interface definitions that were, to some extent,

technically obsolete. Yet, since the older systems were also, to some extent, still

operational, E-3A was required to interoperate with both of them; which further

perpetuated the clumsy interfaces. On the other hand, E-3A was required to interface

with modern systems planned to be operational during the E-3A life span. Conflicting

requirements force compromises in the efficiency of present and future interfaces. An

optimal resolution of these conflicting interoperability requirements is difficult to

achieve, and inevitably involves unattractive compromises.

39

t i

2.2.3 Interoperability Criteria

The original and the new interoperability frameworks are illustrated in Figure 2.2-2. The

new framework was derived by re-examination of all criteria which could conceivably

affect interoperability. This re-examination included several approaches in the

consideration of the effect on interoperability by each candidate criteria and its

constituent metrics.

If interoperability is considered in very basic terms, three approaches suggest themselves.

The first approach is to measure the "goodnesses" within the software of a single system

that would enhance interoperability. The second approach is to measure how easily the

software could be changed, for some change is usually required to make the system

interoperable. The third approach is to measure how well two specific systems would

interoperate. Each of the approaches is discussed separately in section 2.2.3.1 thru

2.2.3.3.

The criteria chosen for the new framework (Figure 2.2-2) are defined below.

**AUGMENTABILITY (AG) Those attributes of the software that pro-
vide for expansion of data storage require-
ments or computational functions.

**COMMONALITY (CL) Those attributes of the software that pro-
vide the use of standard protocols and inter-
face routines.

COMMUNICATIVENESS (CM) Those attributes of the software that pro-
vide useful inputs and outputs which can be
assimilated.

*FUNCTIONAL OVERLAP (FO) A comparison between two systems to
determine the number of functions common
to both systems.

**INDEPENDENCE (ID) Attributes of the software that determine
software dependency on the software envi-
ronment such as software system, data sys-
tem, machine, algorithm and computer
architecture.

* New
*=Revised

40

t. .

LO
seem

OL muoMOArry COMMOALIT

FUNCTIOSAL: I OVERLAP

NEW IWTEROPERMSILITY FRAMEWORK

PW &2 Ov fi A w hw Wt Frouuw*

41

MODULARITY (MO) Those attributes of the software that pro-
vide a structure of highly independent mod-
ules.

*SYSTEM COMPATIBILITY (SY) A measure of the hardware, software and

communication compatibility of two sys-
tems.

* = New
** =Revised

2.2.3.1 Metrics Measuring the Interoperability of a Single System

This discussion of attributes which directly affects the interoperability of a single system

has an underlying assumption. The assumption is that there are attributes that always

contribute toward interoperabiity in the same way. That is, the "good" attributes always

have a positive effect on interoperability, and the "bad" attributes always have a

negative effect. Another way of stating this assumption is that there are certain

fundamental relationships that govern interoperability, and that these relationships are

universal and invariant. This assumption is necessary when trying to identify attributes

that affect interoperability, for there would be chaos if the effect of all attributes were

unpredictable.

The following criteria and metrics were proposed as having a direct and predictable effect

on interoperability; each is discussed in turn. Metric codes in parentheses identify the

specific metrics within each criteria. With the exception of new metrics, these

identifiers refer to metrics defined in McCall's report. As a result of the interviews,

several of the proposed metrics were rejected; the rejection rationale is also discussed.

COMMUNICATION COMMONALITY - The Communications Commonality checklist

(CL.l) assesses the system software for 1) a definitive statement of require-

ments for communication with other systems (requirements phase), 2) com-

munications protocol standards for communication with other systems, and 3)

single module interface for input from another system, as well as single

module interface for output to another system. These elements all contribute

to the probability that the system will be interoperable, and that it will easily

modified if necessary. (CL.l)

42

DATA COMMONALITY - The Data Commonality checklist (CL.2) assesses 1) A
definitive statement for data standard representation for communication to
other systems (requirements phase) and 2) translation standards among repre-
sentations established and followed (design and implementation phase), as well

as 3) the use of a single module for each translation. (CL.2)

MACHINE INDEPENDENCE - When the software source code is in a programming

language available on other machines, is independent of character and word

size of the particular machine, is relatively free from I/O references bound to

the particular machine, and uses a data representation that is machine

independent; then it is more likely to be interoperable with other systems.

(ID.2)

SOFTWARE SYSTEM INDEPENDENCE - When the software is independent of

specific operating system software or utility software, it is more likely to be
interoperable with another system. (ID.l)

ANOMALY MANAGEMENT - The first two anomaly management metrics (AM. 1 and

AM.2) assess the error handling architecture and the ability to recover from

* improper input data. With these characteristics, the software system is far

more likely to work with another system, since it can gracefully handle and

recover from anomalies that may occur when interoperating with another

system. DELETED

This criteria was deleted after interviews with personnel whose project experi-

ence included solving interoperability problems. The consensus was that error

correction is normally addressed in the design of the communication link; and

that the protocols are structured to compensate for the link architecture. For

example, critical data may be transmitted several times to assure that it is

received correctly. On the other hand, data of relatively low criticality may
not be worth the effort to recover; by the time that data is reconstructed or

recovered, it is stale (out of date).

Those interviewed did not agree on the subject of error tolerance. One

manager thought that software should not be rated lower if it is not error

tolerant. Intolerant software is usually very specific in what it will accept.

43

This intolerance results in a precise interface definition. An error tolerant

software module that is to be made interoperable may present a greater

problem, because its error tolerant design must be understood completely in

order to define the interface. The interface becomes much more complex

because the error tolerance adds an element of ambiguity to the interface

definition. This opinion evoked strong responses, both for and against, from

the other interviewees.

I/O USER INTERFACE - The human engineering design of the user interface with

the system is important with respect to interoperability. The user interface

with the system must be simple, intuitively consistent, and as conventional as

possible. The user may serve as an important link in the interoperability

chain, so his interfaces with other systems should be identical. (CM.l User

Input Interface Measure, CM.2 User Output Interface Measure)

2.2.3.2 Metrics Measuring the Adaptability of a System

These criteria and metrics were selected on the assumption that software changes win be

required in order to make that system interoperable. -;hus, these criteria are associated
with the ease of software modification. Each criteria is discussed below.

EXPANDABILITY CRITERIA - The data storage and processor timing reserves

available for expansion will affect the difficulty of making the modifications

that may be required for interoperability. If timing and sizing margins are

tight, it is difficult to add new capabilities within these constraints. (AG.I)

DATA STORAGE EXPANSION

MODULAR IMPLEMENTATION - Software that is constructed in a modular fashien

will tend to limit the impact of changes necessary for interoperability, thus

making the modifications easier to assess and implement. (MO.2)

Total modularity is not required for interoperability. Most discrepancies

between systems can be resolved in the interfaces between them. Only in rare

cases will significant changes be required to the computational modules in a

44

hIN L

system. Since most of the changes will be made in the interface modules, the

modularity of these modules contributes more to interoperability than the

modularity of the rest of the system.

CONSISTENCY - Software with a high consistency rating (CS.l and CS.2) will be

easier to modify due to its adherence to a consistent set of standards

throughout its design and source code. DELETED - see below

SIMPLICITY - If the design structure of the software system is simple, it will be

easier for the software engineer to understand, and thus easier to modify.

(SI.1) DELETED

SELF-DESCRIPTIVENESS - The quantity and quality of the comments in the source

code and the level of the language will directly affect the ability of the

software engineer to comprehend the software design well enough to imple-

ment the modifications necessary for interoperability. (SD.l, SD.2) DELETED

DELETED: These three criteria, consistency, simplicity and self-descriptiveness were

dropped based because they were judged relatively less important than the

other adaptability criteria. This opinion was strongly seconded by a large

majority of those project managers and software engineers in the interviews.

Additionally, we were trying to reduce the large number of proposed criteria

to a manageable number.

2.2.3.3 Metrics Measuring the Interoperability of Two Systems

These metrics are based on the concept that, in a particular case, interoperabiity can

only be discussed meaningfully in terms of the two systems that must interoperate. Thus,

all these criteria tend to measure how much two systems are alike in those areas required

for interoperation. These measurements do not presume that there are ideal characteris-

tics for interoperability; rather they consider only the two systems in isolation and ask: do

they work well together in these critical respects?

There are certain philosophical assumptions that are called into question by this approach.

The first two metric groups were based on the assumption that there are certain "good"

45

and "bad" qualities that are predictable in their effect on interoperability. The third

metric group ignores these ideals in preference to a pragmatic evaluation of the two

systems. This raises a significant question: should the third criterion which compares the

two systems without consideration of ideal criteria be used ?

It is possible that two systems individually might be rated poorly using the first two

metric groups, but be rated highly interoperable by the third. This could occur when both

systems are far from ideal, but are very similar. For example, they might both be

written in the same assembly language for the same non-standard hardware using the

same non-standard communication interface.

As a result of these considerations, using the three metric groups is proposed to include

both idealistic and pragmatic considerations. Using the third set of metrics alone is not

recommended. If the system being reviewed has an extended life span, compromises to

ideal qualities in favor of short term pragmatic decisions based on similarity to another

existing system may prove very costly over the the life span of the software. If this

system must eventually interoperate with other future systems, then the price paid for a

more 'ideal' system may prove well worthwhile.

The following metrics are included in the third group:

FUNCTIONAL OVERLAP - When there is functional overlap between the two

systems, several situations are possible, each of which may adversely affect

interoperability. First, one of the overlapped functions may have to be

deleted to eliminate the redundancy. When functions overlap, there may be

accuracy or timing differences between them which must be resolved to

achieve interoperabiity. Additional complications may result from data

dependencies and synchronization problems associated with the overlapped

functions. Each of these considerations may involve extra effort to achieve

interoperability. There is another possibility; namely, that interoperability

will be enhanced by the functional overlap. If the functions are performed

identically in both systems, then the effort to achieve interoperation may be

reduced. (FO.1 Functional Overlap **NEW**)

46

L

COUPLING FACTOR - This metric measures the relative 'dosenes or 'looseness of

the proposed system coupling. This metric measures such aspects as whether

the systems share the same hardware, the same data base, the same I/O

system, a common operating system, etc. DELETED

DELETED. The idea of the Coupling Factor, so attractive and inventive at first

glance, proved to be intractable when applied pragmatically in the real world.

None of the researchers who worked on interoperability could come up with a

reasonable theoretical framework that could not immediately be disproven

with numerous counterexamples. This criteria, in particular, was a principle

reason for conducting extensive interviews with personnel whose experience

included projects with interoperability problems. These discussions resulted in

the same conclusion: 'coupling factor' criteria was unworkable. No one was

able to suggest a practical and theoretically sound way of applying it as a

criteria of interoperability.

COMMON VOCABULARY - This metric measures the use of the same vocabulary

(same words with same meanings) on both projects. Case histories reported in

the literature indicates that the usual Tower of Babel differences between

projects greatly compounds the problems of achieving interoperation. A third

consideration is the effect of the human on interoperability. The report on

"NATO Interoperability Handbook of Lessons Learned" cites 'common under-

standing of terms' as a major problem in achieving interoperability. It should

be noted that the handbook is speaking of human understanding, as well as that

of computers. Indeed, the human is sometimes the only link between two

interoperating systems. (CL.3)

OTHER SYSTEM DOCUMENTATION - The existence and availability of clear,

usable, complete and up-to-date documentation of the other system(s) is an

important facet of achieving interoperation. (SY.5 Documentation for Other

System) NEW

SYSTEM COMPATIBILITY - The following metrics measure the compatibility of the

two systems being compared:

47

DATA COMPATIBILITY - This metric measures the compatibility of

data format, code (e.g., ASCII, EBCDIC), access techniques, and

security levels. The greater the compatibility of these factors, the

greater the potential interoperability. (SY.2 Data Compatibility,

part of SYSTEM COMPATIBILITY) NEW

COMMUNICATION COMPATIBILITY - This metric measure the com-

patibility of communication protocols, transmission rates, and I/O

formats. (SY.I Communication Compatibility part of SYSTEM

COMPATIBILITY) NEW

SOFTWARE COMPATIBILITY - This metric measures the compatibility

of source language, system software, and utility software. The

greater the compatibility of these elements, the greater the

potential interoperability of the systems. (SY.4 Software Compati-

bility part of SYSTEM COMPATIBILITY) NEW

HARDWARE COMPATIBILITY - This metric measures the compatibility

of such characteristics as word length, architecture, and interrupt

structure, which will impact interoperability. Interoperability will

be greatly enhanced if these characteristics are identical. (SY.3

Hardware Compatibility part of SYSTEM COMPATIBILITY) NEW

2.2.4 Tradeoffs Between Interoperability and Other Quality Factors

The goal is to enhance a systems interoperability. The result of achieving the goal is a

reduction in the effort required to make the system interoperate with another system. In

order to achieve the goal, other quality factors may be sacrificed in the system.

Specifically, tradeoffs between system interoperability and other software quality factors

must be made. The following factors are defined in McCall (79-1) and are discussed here

in terms of tradeoffs with interoperability.

48

AN

Correctness: Developing new systems to meet interoperability requirements does not

adversely impact correctness. However, modifying an existing system may cause

inadvertent side affects that degrade correctness. Other correctness sacrifices may

result from new problems in synchronization, data sharing and functional sharing.

Efficiency: Whether developing a new system, or modifying an old one, overall efficiency

is sacrificed for interoperability. Additional computations may be required to convert

character sets, floating point representations and word sizes. Extra checks are necessary

to prevent conflicts in accessing and updating shared data structures. Additional

resources like buffer space, memory and communication links may be required to support

conversion and interface routines. Response time could be increased.

One possible improvement in efficiency may be gained by eliminating redundant opera-

tions. By sharing functions, two systems may actually improve overall efficiency. The

danger is that by sharing functions, the two systems become dependent upon each other,

and may not be capable of operating individually.

Flexibility: Whether modifyir, an existing system, or developing new systems, flexibility

will be partially improved by enhancing interoperability. Both flexibility and interoper-

ability are improved with increased modularity.

However, flexibility will be partially impaired from increased complexity. Generality will

be sacrificed at the expense of the additional interfaces required for communications and

data commonality. Synchronization constraints will also hinder the ease at which

modifications can be made.

Integrity: Improving communications and data commonality generalizes the methods of

data access. Generalized access methods result in more difficult access control. The

sharing of data by two or more systems requires a larger number of access methods by a

potentially larger number of users. Security becomes more difficult, and less reliable.

Integrity is sacrificed as interoperability is enhanced.

Maintainability: Whether modifying an existing system or developing new systems,

maintainability is partially enhanced by improving interoperability. Both maintainability

and interoperability are improved by increasing modularity.

49

if

However, maintainability is also partially impaired by improving interoperability. Addi-
tional complexity is required to improve communications and data commonality. Com-

plexity hinders maintenance. Other maintenance problems arise from synchronization,

data sharing and function sharing, all potential features for increasing interoperability.

Portability: Whether developing new systems or modifying existing systems, portability

will be enhanced by improving interoperability. Both portability and interoperabiity are

improved by increasing modularity. The use of I/0 standards and protocols will enhance

data commonality, communications commonality, software system independence and

machine independence. Isolating I/0 to a few (or only one) modules will improve both

interoperability and portability.

However, interoperability of a system is enhanced by improving its commonality with the

other system it will be coupled with. This particular commonality adversely affects

portability by making the system both machine and software system dependent.

Reliability: Whether developing a new system, or modifying an old system, reliability is

sacrificed for interoperabiity. Accuracy and precision may be sacrificed for data and

communications commonality. Added complexity from synchronization and interface

requirements adversely affect reliability. Error tolerances may be altered to accommo-

date the other system. Inconsistencies may be introduced inadvertently. Synchronization

constraints, data sharing and function sharing tend to complicate the system and degrade

reliability.

Reusability: Whether developing new systems or modifying existing systems, reusability

will be enhanced by improving interoperability. Both reusability and interoperabiity are

improved by increasing modularity. The use of I/O protocols and standards will enhance

*data and communications commonality, software system independence and machine

* independence. Isolating I/O to a few (or only one) modules will improve both interoperabi-

lity and reusability.
a

However, interoperability is enhanced by improving the commonality of a system with the

system it is to be coupled with. This commonality adversely affects machine and

50

software system independence. In addition, interface and synchronization requirements

for enhanced interoperability adversely affect generality. Reusability is degraded as a

result of all of these influences.

Testability: Both testability and interoperability are improved with increased modularity.

In that regard, testability is enhanced when interoperabiity is enhanced.

However, improved interoperability means increased complexity for interface, synchroni-

zation and data and function sharing requirements. Complexity adversely impacts

testability.

Usability: By improving a systems interoperability, no substantial impact results on its

usability. Minor affects may occur from increasing data and communications commonal-

ity on the ease of interpretation of outputs. The major impact on usability occurs from

making the system actually interoperate with another system. Complexity of 1/O,

response time, accuracy and synchronization problems can all adversely impact the users

effort to operate the system.

Table 2.2-4 summarizes the types of tradeoffs and the overall impact of improving

interoperability on the other software quality factors. As the table clearly shows, for

most quality factors there are both positive and negative affects when system interoper-

ability is improved. However, as the table also shows, the overall impact of improved

interoperability on the other quality factors is negative. To develop or modify a system

to increase the ease of making it to interoperate with other systems comes at the high

price of compromising other desirable software quality factors.

L

Table 2.2-4 Interoperability Tradeoffs with Other Quality Factors

QUALITY TYPES OF OVERALL

FACTOR TRADEOFFS IMPACT

Correctness

Efficiency + or -

Flexibility + or -

Integrity

Maintainability + or -

Portability + or - +

Reliability

Reusability + or - +

Testability + or -

Usability no major impact

Legend: + positive impact

- negative impact

52F.__________________

2.2.5 Data Collection

Ideally, different reviewers looking at tie same system would provide exactly the same

answers to the worksheet questions. The worksheet questions were designed to be as

explicit, objective, and non-ambiguous as possible. However, an extensive human factor

evaluation was not conducted.

All the interoperability worksheets were completed by the same person. This should

assure consistent interpretation of workbheet questions, but it does raise the question of

how the researcher's own biases may have skewed the data for all projects. The specific

nature of the questions are designed to minimize this effect. The bias, if it occurs, is

most likely on Worksheets I and 2, because the questions are comparatively more broad

and subjective.

The data from the three projects is summarized below. As described above, the modules

from each system were identified by the project as being impacted prnciply by

interoperability considerations.

DATA EXAMINED

SYSTEM A SYSTEM B SYSTEM C

NO. OF MODULES 57 11 18

LINES OF CODE 5253 1937 6122

Not all of the modules in the impacted portion of these systems were examined.

Representative sample modules were examined, and the table above describes those

selected, not the total.

2.2.5.1 Data Collection Methodology

Data was collected from three separate projects which all had interoperability require-

ments or considerations. Specific software modules were selected from each project

based on the recommendations of project personnel. Those modules were changed or

written due to interoperability considerations. For example, the Project C Communication

software was chosen because it had specified interoperability requirements. The Inertial

53I t,

Navigation System of Project B software was identified as the software most impacted by
interoperability considerations. Finally, Project A software was a deliverable product
that generated mission data and it had to interoperate with several entirely separate
Systems.

System level data for Worksheets I and 2 were gathered by reviewing high level
specifications that would have been available at the time of normal completion of these
worksheets. This approach was supplemented by interviews with project personnel to
confirm our understanding of the specifications. We attempted to complete the forms
using the knowledge that was available at the appropriate time in the project history,
rather than using current specifications.

Worksheets 3 and 4 were completed using source code listings and the output of support
programs. Some of these support programs easily provided details that entailed tedious
manual techniques on other projects which did have equivalent support software. Project
A, for example, had extensive set/use and call linkage tables which provided easy answers
for some Worksheet 3 and 4questions.

2.2.5.2 Comments on Data Collection and Metric Computation

Numerous anomalies arose during the evaluation of collected data and the computation of
metrics. Certain metrics; in the framework which appeared simple, easy to apply, and
virtually foolproof proved difficult to measure, or unrealistic to compute as originally
defined, or, in the worst cast, meaningless in context.

An example of the latter is the computation of modularity used in the evaluation of
interoperability. The computation is based on (in part) the ratio of various calling
sequence parameters to the total number of calling sequence parameters. The computa-
tion of modularity includes the ratio of the number of control parameters to the total

number of parameters in the calling sequence list. On one of the projects surveyed, there
were no calling sequence lists because the program design stored all data in common
storage areas. The design approach was used to reduce the storage space that would have
been required by the use of calling sequence linkages.

54

How, then, should the modularity of a module which does not use calling sequence

parameters be rated? Should it be arbitrarily rated 'I' because it doesn't have any calling

sequence parameters? Or should it be rated '0'? In the case under consideration,

modularity is, perhaps, a much more complicated function of the set/use patterns of

variables in the common storage areas. It is possible to devise metrics that would

measure the use of variables in common storage areas by each module; however, the data

would have to be extracted by a set/use utility, which the project in question did not have.

Before developing such an elaborate metric, however, a new question arises: Is it worth

developing this intricate and expensive-to-apply metric to measure modularity (as

redefined)? In the present case, the project had no need for such support software, and it

was too costly to develop as part of this research. The modules were rated '0'.

At first, questions on a second system that was unknown at the time of the worksheet's

theoretical completion resulted in a response of N/A (not applicable) on the worksheets.

This approach was later re-evaluated: if the information was not available, then that fact

should be counted against the system being evaluated. The presence of second system

data should ideally add to the potential for interoperation; therefore its absence should

subtract from its interoperability rating. All N/A's were then changed to 0's.

2.2.6 Metric Validation

The discussion of metrics validation is divided into two sections: the first describes how

interoperability ratings were derived, the second reviews the results of the validation.

2.2.6.1 Selection of Interoperability Ratings

In order to validate the metric framework for interoperability, it is necessary to find a

measure of effort for each of the modules from the three projects. This proved

problematical. None of the projects considered for interoperability had collected data on

the effort to develop individual modules. Project-level productivity rates were available

on two of the projects in terms of lines of source code per man-month. These figures did

not permit reasonable comparison of modules, since if the rate was constant on a project,

the effort spend on each module was directly proportional to the number of lines of source

code in each. This meant we were comparing the metrics not to a measure of

55

L

interoperability, not to a measure of effort, but to the size of the module. Out of

curiosity, this comparison was made and the results were not meaningful.

The next consideration tried to compare the effort between projects. Each of the

projects had a productivity rate used for estimating software development costs. The

productivity rates reflected very different contractual requirements and software

development environments, so these rates were not comparable and could not be used for

developing a rating for interoperability effort.

Four other approaches were then considered for developing an interoperability rating

factor for validating the metrics.

The first approach was to consider the ratio of effort to achieve interoperability to the

effort to develop a completely separate and independent interface software product that

would couple the two systems together. This approach would require the project

personnel to estimate the effort used to achieve interoperability in reality, and to also

estimate the effort to build a completely independent software interface product rather

than modifying the system under study. This approach was rejected because the second

estimate was extremely subjective when compared to the approach finally selected.

The second approach was to perform a Delphi survey on the comparative interoperability

of the three projects included in the study. That is, to interview a number of 'oracles'

who had sufficient knowledge of all the systems to assess their relative success at

achieving interoperability. This approach was rejected because we couldn't locate enough

oracles with the first-hand knowledge of all three systems could not be located. This

approach also seemed too subjective.

The third approach was to consider the ratio of software to hardware costs entailed to

achieve interoperability on each system. The argument was that the greater the relative

proportion of software cost (to hardware cost), the greater the effort to achieve

interoperability. Several contradictory examples were raised and this approach was

dismissed.

* Lindstone, Harold A. and Murray Turoff. (Editors), "The Delphi Method-Techniques and

Applications", Addison-Wesley, Reading, Mass., 1975

56

lif

The fourth approach was to consider the ratio of the effort spent in achieving

interoperability to the effort to initially develop the software system.

Rating = I - eff2/(eff I + eff2)

where effl = effort to build the software without interoperability (or initial

effort)

eff2 = effort to achieve interoperability

The three effort ratings were

Project A 0.75

Project B 0.61
Project C 0.91

As noted above, it was problematical to isolate the interoperability costs from the costs

of other enhancements and refinements that were included in the budgets during the

effort to achieve interoperability. However, there were people on each of the three

projects that had worked during both the development and interoperability phases; the

ratios of effort were determined from interviews with these personnel. While these ratios

are also subjective, they are based on intimate knowledge of the project histories; these

people had a sense of what proportion of the work was due to enhancements, and what

proportion was due to interoperability considerations. This approach was found to be the

most attractive and reliable, and it was implemented. Al interoperability rating factors

were derived in this way.

2.2.6.2 Validation Results

Table 2.2-5 Summarizes the metric scores for each System (A, B, C). Tables 2.2-6 and

2.2-7 summarize the composite criteria and metric scores for all the three projects.

57

L

Table 2.2-5 Interoperability Metric Summary (by Project)

WORKSHEET METRIC PROJECT

A B C

CL.I .5 .92 1.0
CL.2 1.0 0.0 1.0

I CL.3 0.0 N/A 0.0
CM.2 0.0 .33 .5
SY.5 0.0 N/A 0.0
F0.1 .75 N/A 0.21
Average .37 .42 .62

CL.1 .33 1.0 .62
CL.2 .69 1.0 .70
CM. 1 .46 .69 .83

2 CM.2 .74 .60 .76
SY.1 N/A .50 .25
SY.2 0.0 0.0 0.0
SY.3 .33 0.0 0.0
SY.4 0.0 .33 0
Average .36 .52 .40

AG. 1 .28 .42 .43
AG.2 0.0 0.0 .33

3____ ___ .98_ 1.0_1.

ID.2 .98 1.0 1.0
MO.2 .78 .85 1.0
MO. 2* .61 .65 .75

________ Average .61 .65 .75

*=Repeated measurement during test phase

58

Table 2.2-6 Interoperability Metric Summary (by criteria)

CRITERIA A B C MEAN STD.DEV

Commonality .58 .66 .58 .58 .40
Communicativeness .3 .49 .62 .54 .24
System Compatibility .33 .21 .06 .20 .29
Augmentability .14 .21 .38 .24 .18
Independence .99 1.0 1.0 .99 .01
Functional Overlap .75 0 .21 .32 .39
Modularity .71 .75 .88 .76 .58

TOTAL SCORE .53 .47 .53

Table 2.2-7 Interoperability Metric Summary

METRIC RANGE MEAN STD.DEV.

cl. .33 - 1 .73 .26
cl.2 0 - 1 .73 .35
cl.3 0 - 0 0 0
cm.l .46 - .83 .66 .19

cm.2 0 - .76 .49 .26
sy.1 .25 - 1 .58 .38
sy.2 0 - 0 0 0
sy.3 0 - .33 .11 .19
sy.4 0 - .33 .11 .19

sy.5 0 0 0
ag.1 .28 - .43 .38 .08
ag.2 0 - .33 .11 .19

id.l .98 - 1 .99 .01
id.2 .99 - 1 .99 .006

mo.2 .05 - 1 .76 .58
fo.1 0 - .75 .32 .39

59

I

For the purposes of exploratory analysis, 'median polish' analysis on the worksheet scores

was performed. This method summarizes patterns in a table of medians (Table 2.2-8).
Medians as opposed to means are used because medians are a more resistant measure of

location. In other words, a mean from a sample containing an outlying data point would

be skewed by that extreme value; whereas a median would not be as greatly affected.

The median is more descriptive.

Table 2.2-8 Median Metric Scores by Project

PROJECT

WORKSHEET A B C
1 .25 .33 .75

2 .33 .55 .43
3 .69 .75 .87-

Rating .75 .61 .91

From this matrix of medians, the residual median variability in each cell was computed.

Then a value R was computed, this is a measure of the percentage of cell median

variability explained by the differences between worksheets and the differences between

projects. This value was 62%, which implies that 38% of the variability comes from

effects other than the project-to-project differences and worksheet-to-worksheet differ-

ences. These effects might be errors on worksheets, human transcription errors, or

conceptual errors in the metric framework.

Since the worksheet 2 score of project C was the most anomalous, it was changed in the

above analysis from .435 to .8, so that it would lie between system C's worksheet I and 3

scores and the analysis was repeated. This changed the computed R from 62% to 69%,

which indicated that even if the worksheet 2 value of .8 is correct, a fairly large

percentage (3 1%) of variability from uknown sources still remains. This was not an

encouraging sign for the validation process.

60

Several different analytic approaches were used to validate the data. Using the

interoperability rating factors, a sequence of equations were set up in the form

R = axi + bx2 + cx3

where

xl = unweighted mean metric score from Worksheet I

x2 = unweighted mean metric score from Worksheet 2

x3 = unweighted mean metric score from Worksheet 3

One such equation was written corresponding to each of the three systems, resulting in a
system of three equations and three unknowns, which could then be solved using standard

mathematical techniques. The results were

a = -0.68

b = -1.59

c = 2.62

These results are counter-intuitive; the negative coefficients for the first two worksheets

might be interpreted to mean that metrics from Worksheets I and 2 were negatively

correlated with interoperability. At this point several other ways of considering the

worksheets were explored; worksheet 3 was eliminated, worksheets I and 2 scores were

averaged and used with worksheet 3, and the 'second system' metrics were removed from

worksheet I and 2 scores. Additionally, various combinations of the above approaches

were used. In each case, when the resulting set of equations were solved, the coefficients

varied widely. Due to the small number of cases (systems), the mathematical techniques

were very sensitive to the odd sequence of scores on System C. That is, because

System C scored higher on worksheet I than on worksheet 2, only the worksheets I and 3

scores correlated closely to the ratings.

Since the interoperability ratings had been determined by using a modified Delphi method

(interviews, not worksheets), there was considerable margin for error in these ratings. So

we analyzed the sensitivity of the equations to errors in the ratings was analyzed; that is,

the effect on the solution (a,b,c) due to changes in the ratings of systems A and B was

determined. Using the results of this analysis, the limits of errors in ratings for systems

A and B which would result in all positive coefficients were computed.

* This analysis is a modification of the Sensitivity Analysis described in section 3 of

chapter 8 of "Linear Programming" by Saul I. Gass, McGraw Hill, N.Y., 1975.

61

V

When a system of linear equations

Ax= b

is solved, yielding
xo =A-lb

some of the components of xo may have intuitively objectionable characteristics, such as

being negative when their interpretation excludes such values. That is, xo 0 is required.

One possible remedy is to assume that the right hand side (r.h.s) vector b contains errors

in some of its components. To analyze the sensitivity of the system to such errors, the

vector b may be incremented by a vector d, producing a hypothetically correct r.h.s.

vector b'. When the resulting system is solved, there follows:

Ax= b + d =b'

x'= A' b'

= A- ib + A- ld

= xo + A d

The requirement x * 0

produces a set of constraints on the components of d; they must satisfy the relation
A-1d + xo " 0

Analysis of these constraints may produce a set of feasible d components, the magnitude

of which could qualify them to cancel errors in the original b components.

Using the actual unweighted mean of the metric scores, we have

.37 .36 .61 1
A .42 52 .6J

L162 .40 .5

the interoperability ratings

a I .75

b= .61

62

K ' •m

it is found that [-.6811
=1 -1.591

L2.62 j

The first two components of xo are negative, contrary to requirements. To test the

sensitivity of the solution to small changes in these components, define

dli

d= d2

d3

and set Ax =b, where b =b + d.

Since

-10.64 2.62 6.30

A "- -7.66 7.87 -. 66

12.83 -6.35 -3.50

the conditions on the d components to produce a satisfactory solution

e= A- 1d + xo -0

are these:

x1= -10.64 d I + 2.62 d2 + 6.30d3 - .68V 0

x= - 7.66 d I + 7.87 d2 - .66d 3 -1.5940 1

xi 12.83 dI - 6.35 d2 - 3.50d3 + 2.62*0 HI

Some insight into an appropriate choice for the components of d is gained by forming the

partial derivatives of the components of x' with respect to the components of d. Note

that the partial derivative of x.' with respect to dj is the (i, j)-th element of A -1 and that

the partial derivative of x with respect to d is column j of A l.

The interpretation of - is the rate of change of the solution vector x with respect to d.

alone. In particular, coider

63

. L- " - - " m. .. |

6.301
X -.66

3- -3.50

and assume that initially XI x o, with d =0. Then if d 3 increases, with d I and d2 held

fixed, x I will increase, as desired, but x 2 will decrease, becoming even more negative.
Similarly, if d 3 decreases, again with d, and d 2 held fixed, x2' will increase, as desired,

but xi' will now decrease, becoming more negative.

That is to say, there is no change in d 3 which causes an improvement in both xand x
together. An improvement in one is made to the detriment of the other. Therefore, this

component of d will not be varied:

d 3 - 0

The set of feasible d,, d 2 pairs which satisfy inequalities 1411l form a triangular region in
the d,, d 2 plane. The additional constraints

0' bI
trim down the region of feasibility slightly:

0O*.752 d I 1

0,9.606 d 2 * I

Any point of the feasible region can be used as a test of sensitivity of the system; eg.,

d d1 0, d 2 .3 gives

.7,
b'= .91 and x .7[.911 .71

64

7I- 2

Similarly, the vertex dI -.2, d2 .007 produces

b= 1.61 and x, o
.91 0

That is, seemingly small changes in the r.h.s. vector b produce major changes in the

components of the solution vector.

This shows that expected errors in the ratings would have a large effect on the solution.

The system of equations is very sensitive to error in the rating factors, probably due to

the very small number of cases available for analysis. Thus, no solution can be accepted

with any degree of confidence.

Several additional approaches were tried. It seems reasonable that at each phase in the

development cycle when interoperability is assessed with metrics, that the results of

previous assessments be used in conjunction with the current assessment. One would

expect to see the interoperability assessment converge toward a realistic prediction as

additional knowledge was gained. The scores at each phase were averaged with previous

scores; that is, at phase 2 the mean score from worksheets I and 2 was computed, at

phase 3, the mean score from worksheets 1, 2, and 3 was computed (see Table 2.2-9).

This, indeed, tended to smooth out the predictions, but not enough to significantly reduce

the sensitivity of the system of equations to small rating errors.

Table 2.2-9 Mean Cumulative Worksheet Scores

PROJECT A PROJECT B PROJECT C
mean
score 1 0.37 0.42 0.62

mean
score 2 0.37 0.47 0.51

mean
score 3 0.44 0.53 0.59

Q. Rating .75 .61 .91

65

I f.. i ! ,.

This approach gave the following ratings to the worksheets

x, = -1.6
.2.6

A third approach was to average worksheets I and 2 and to retain worksheet 3. This

results in

-2.6x' 2.9
Since visual inspection of the metric scores for cl.3, sy.5, and fo.l on worksheet I and

sy.1, sy.2, sy.3, and sy.4 indicates they may be problematical, we excluded them from the
worksheet score. This resulted in

0.58

Once again, the solutions were shown to be very sensitive to change of approach, and none
of the approaches showed any great promise.

The significance of individual metrics was also considered. It was conjectured that the

last measured value (most recent) of each metric be used, since the last sample estimate

of each metric is presumed to be the most accurate one. These are shown in Table 2.2-10.

CM.2, the second commonality metric, was the only single metric that vaqvely corres-

ponded to the interoperability ratings.

Considering various combinations of metrics, there are several combinations of "last

sample" metrics which seem quite descriptive. These combinations are:

1. CL.I, CL.2, FO.1 (user input and user output effectiveness, and functional

overlap)

2. CL.2, CM.2, FO.1 (user output effectiveness, data commonality, and func-

tional overlap)

3. CL.2, CM.2, FO.l, MO.2 (same as (2) above plus modularity)
t

I.
., K.

Their relationship to the estimated interoperability are shown in Figure 2.2-3. It should

be remembered that these plots should be considered as descriptive, not predictive. There

is simply not enough projects (there are only 3) to conclude that there is predictive

significance to these plots.

Table 2.2-10 Last Sample Metric Values

Last

Value A B C

CL.1 .33 1.0 .62

CL.2 .69 1.0 .70

CL.3 0 0 0

CM.1 .46 .69 .83

CM.2 .74 .6 .76

SY.l 0 .5 .25

SY.2 0 0 0

SY.3 .33 0 0
SY.4 0 0 0

SY.5 0 0 0

FO. .75 0 1

AG. 1 .28 .42 .43
AG.2 0 0 .33

IDAI .98 1.0 1.0

ID.2 .99 1.0 1.0

MO.2 .61 .65 .75

Q.Rating .75 .61 .91

67

L

IA

A-

.2-
* .tCM..poF.1
II CLZ CM.2. P0.1I
0 CL. Ck.Z Fo1. M0.2

4.

Fipr. 22- 3 410 Ac Cambkwft PL P qembt Rhh

2.2.7 Conclusions and Recommendations

This study produced several conclusions on the subject of measurement and prediction of

interoperability. These conclusions are interrelated, and so will be discussed together. In

order that the recommendations can be understood in context, they are presented in the

discussion along with the conclusions which prompted them.

Interoperability is a system level measure only, which means that we cannot speak

meaningfully of the interoperability of a software module. We can only speak of the

interoperability of the embedded software system as a whole. This means that we can

only measure interoperability at the system level. The operation definition of interoper-

,. ability used in this metric research is consistent with this interpretation.

2.2.7.1 Definition of Interoperability

The working definition, was chosen by the original researchers because it gave them

something they could measure: most projects have some estimate of manpower expended.

This, in turn, provided a measure against which the -metrics could be correlated. This

approach was attractive,. because it would provide a method to predict cost.

An unfortunate side effect of this definition is that there is no measure of how well the

systems couple together, all that is evaluated is how much it cost to achieve the coupling.

Only costs (effort) are evaluated when the interoperability of two systems is compared,

the relative success of the two interoperability efforts is not evaluated. This may be the

only workable definition at the moment, but it is a poor one. Is effort what should be

measured? Although effort is important because it is a measure of cost, the constrained

definition omits any measure of how well two systems work together.

A more realistic definition of interoperability must be developed, otherwise the metrics

will measure something quite different from interoperability. For example, if effort is

used as the measure of interoperability, on a project where effort is available only as a

general relation of lines of code/man-month (which includes documentation, reviews,

etc.), the effort figure that is used will be directly related only to module size. Thus,

metrics are being correlated not to interoperability, not even to effort, but to module

size. Is module size really directly equivalent to interoperability? Very unlikely.

69

The major problem in the validation of interoperability metrics was the inability to get a

good measure of the interoperability of the software modules evaluated. Without that

measure, there is nothing which the metrics can be correlated against to evaluate their

success or failure.

The definition of interoperability as a measure of effort to achieve interoperability may

be a dead end. If reliability had been defined as the effort required to achieve a reliable

product, it is highly unlikely that the field of reliability would have developed into a

practical and useful science. Similarly, interoperability will never be an analytically

useful field of study until it is defined in a quantitative way. There are several possible

interoperability definitions that may be worth consideration. These alternative defini-

tions use factors other than effort in the evaluation of interoperability. Each has its

advantages and disadvantages, which are discussed below.

The first definition is the fraction of total functions shared with respect to the total of all

functions on both systems. This definition measures how much of each system is mutually

used by the other, which gives some measure of how much functionality is shared. The

disadvantage of this approach is that the measure becomes a relatively subjective one.

One expert observer may disagree with another, because of varying interpretations of the

words "function" and "shared." Care would be required to define these terms so that they

are unambiguous, easy-to-understand, and easy-to-apply.

A second definition is the fraction of data shared mutually with respect to the total data

of the two systems. This approach has the advantage of being more easy to measure

objectively, since most observers can agree on whether certain data is used mutually or

not. The disadvantage of this definition is that is does not consider how the data is used

functionally. One function may require a very large data base, another only a few words

of storage; yet the second function may be more critical to interoperation of the two

systems.

If there appears to be no way to quantify interoperability, and if effort to achieve

interoperability remains difficult to measure; interoperability may be beyond the ability

of current technology to measure or predict. The system-level considera.,s inherent to

this quality factor may put it beyond the ability of the metrics approach to predict.

70

2.2.7.2 Recommendations for Data Collection

Interoperability metrics require information not easily available from normal CDRL

documentation, and not normally collected as part of the development process. With the

information normally available to the contract's technical monitor and the procurement

agency, it is very difficult, if not impossible, to compute interoperability metrics.

Therefore the procurement agency will require additional information from the developer.

This additional information should be obtained by making it a contractual requirement via

the CDRL. Metric data collection procedures must be designed to reduce, to the greatest

extent possible, any subjective evaluation by the reviewer. Therefore, the metrics must

be based on the most accurate information available; this is only known by the developer.

New CDRL items or revised Data Item Description forms (DIDs) must be developed. For

example, the DIDs for Preliminary and Critical Design Reviews could include require-

ments for metric data.

The procuring agency could, alternatively, require the contractor to compute the required

metrics, and to deliver these as part of CDRL items during various phases of the contract.

If this alternative is chosen, it would be prudent to require that the data used to derive
the metrics also be delivered.

The primary decisions that affect interoperability are made during the earliest phases of

requirements analysis and definition. The requirements should include very precise

interface definitions. Most of the pertinent questions can be answered only by the project

designers. If interoperability metrics are imposed on a contractor, the data necessary for

computing the metrics must be specified in CDRL requirements.

Even the assumption that the major cost of modifying a software item is due to its

interoperability is problematical. Many different factors affect the cost of modification.

Even when specific data are available on the cost to modify a specific system, and the

reason for that modification is supposedly only to achieve interoperability with another

system, this assumption is suspect. Many changes are made for reasons that have nothing

to do with interoperability: to restructure the program more efficiently, to improve its

maintainability, to correct deficiencies. These changes are often not tracked in the

overall budget because many of the changes have been informally requested by the

71
4

_ _ _ _ _

customer, or are implemented as a no cost change. Therefore, projects should be chosen

for validation only when explicit interoperability effort is available.

To conclude, it is very difficult for the Contract Technical Monitor or Acquistion Manager

to determine the answers necessary to compute interoperability metrics without requiring

additional data from the developer. It will be important to assess the cost effectiveness

of this additional burden. It appears that the most meaningful data is collected during the

early phases of requirements analysis and definition.

2.2.7.3 Number of Projects Required for Validation

This study located three projects with interoperability requirements that had to be solved,

and which had data available for the computation of the metrics. This means that only

three interoperabiity ratings were available (one for each system) for the validation of

the proposed interoperability metrics. So no matter how much metric data is collected

on the three projects, there are only three interoperability ratings against which to

validate them. Mathematically, this is not adequate; which leads to the next conclusion -

- there must be a reasonably large number of projects in order to validate interoperabil-

ity metrics. Certainly, at least eight; ideally, a dozen or more.

2.2.7.4 Future Research

The current metric framework assumes that all the metrics are orthogonal; that is, none

of the metrics are measuring the same thing. No one, however, has proven this to be true.

No one has demonstrated that one metric is not, for example, a linear combination of

other metrics. Factor Analysis could be used as an approach to demonstrating that the

metrics are orthogonal.

The minimum number of metrics should be used for a specific criteria. If three metrics

can be shown to provide an estimate that correlates to the effort required t- achieve

interoperability as well as a five-metric measure, then the three metric measure is

clearly preferable. Various combinations of metrics could be evaluated, and the estimate

should be chosen based on the smallest number of metrics and that has an acceptable

residual error. This approach will help reduce the cost of implementing software metrics.

72

A>.4

The analysis reported in section 2.2.6 suggests that the criteria of Communicativeness,

Commonality, Functional Overlap, and Modularity are most closely descriptive of the
interoperability scores of the three projects studied. More specifically, the metrics CL.2

(us,.r output effectiveness), CM.2 (data commonality), FO.I (functional overlap), and MO.2
(modularity) seem to provide a dose description of the scores. The word 'description' is

used because the data and analysis are not conclusive enough to warrant their use as
predictors. These metrics and criteria appear to be the most promising, and should be

used as the basis for further research. A second consideration is the cost to implement

and administer such a system of metrics. Not only should such a metric system be
validated, but it should also be cost effective. The cost effectiveness of measuring and

predicting interoperability by software metrics should be evaluated by a phased imple-
mentation over several projects. If the use of metrics to predict interoperability is judged

cost effective, then it is feasible to begin phased imposition of interoperability require-

ments. Again, the cost effectiveness of these requirements will require careful

evaluation.

73

I ,-.. . ..

2.3 REUSABILITY

Software reusability is defined in the Software Quality Measurement Manual (McCall

79-1) as the "extent to which a program can be used in other applications", and is
measured in terms of "the effort required to move a program, or a part of a program, to

another application". Reusability can also be defined in the sense of "the potential of the

software for reuse". Reusability is a measure of the extent to which a software program

can be used in other applications, related to the packaging and scope of functions that
programs perform, either in part or in total. If the effort required to reuse the software
is much less than that required to implement it initially, and the effort is small in

absolute sense, then the software program is highly reusable. Note that this does not

exclude complete rewriting of the reusable program modules. The degree of software

reusabiity is determined by the number, extent and complexity of the changes, and hence
by the difficulty in software reusable implementation process. A universal reusable

* software program can be considered as a completely portable software program.

Software consists of the programs and documentation which result f rom a software

development process. In order to evaluate software in a systematic manner it is

important to understand what quality or qualities are most important from user's point of

view. In this study, we present a method of associating the generally understood software

qualities to more specific and measurable software characteristics which become the

basis for the evaluation. In order to bridge the rather large gap between user

understanding and software itself an intermidate set of user-oriented software quality

criteria are defined. The hierarchy is illustrated by Figure 2.3-1.

The individual metric score is accumulated to obtain the criteria score, and each criterion

score is accumulated to obtain the overall score for the quality factor-esoftware

reusabiity. The evaluation for the software reusability is designed and presented in the

metric worksheet. The actual evaluation procedure take the following steps: collect the

worksheet data for the project, compute the metric score from raw worksheet data, and
finally perform regression analysis on the reusability rating and computed metric data.

It should be noted that not all the software quality factors are complementary with

software reusability. For example, the very characteristics which in a given application

74

CNTERbom-, CUATERIOWJ60 CITERION-N

-METRIC-I

-METRIC-2

EMETRI-N

F~jum 2t3 1. RembIity HkrwthV

76

have a positive effect on reusability may well have a negative effect on efficiency. This
fact is due in part to the current state-of-art in hardware architecture versus software
architecture is that there are usually no directly efficient implementations of high order
language constructs. Thus, there is the commonly held view that assembly language is
the necessary source language for real-time programs which require high effiency.

2.3.1 Key Concepts

Three key concepts which determine the reusability of a software product can be
identified. These are level of reuse, extent of reuse, and degree of reuse. These concepts
and their subcategories are shown in Table 2.3-1.

TABLE 2.3-1 Key Concepts of Software Reusability

REUSABILITY SUBCATEGORY
CONCEPT OF CONCEPT

Module
LEVEL of REUSE Functional

System

EXTENT of REUSE Partial

Total

Low

DEGREE of REUSE Medium

High

There are three distinct levels of software reusability: module, functional, and system.
Module reusability refers to individual modules which can be reused in different systems.
A subroutine that computes the "square root" function exhibits module reusability.
Functional reusability refers to groups of modules which together perform a specific
function or related functions, which can be reused in other systems. Navigation

76

t

subsystem and mathematical libraries exhibit functional reusability. System reusability

-' entails the reuse of the entire software package, such as spares inventory program and

DAIS (Digitized Avionics Informations System) program.

Software reusability can also be viewed in terms of the extent of reusability: partial or

total. Partial reusability is exhibited when software can be reused in another application

with some modifications. These modifications may consist of changing only a portion of

the executable code. An example of this type of reuse is in an operating system device

driver. Rarely is a new driver written from scratch. Instead, a driver for a different

device is usually modified to handle the new device. Total reusability implies reuse of

the whole software system, with only those changes which are necessary to make it run in

a new environment. The functions, interf aces, etc., of the system are lef t essentially the

same. This type of reuse is examplified by the "square root" subroutine that is reused,

unchanged, in several applications.

The degree of reuse of a software product relates to the items that can be reused from

each phase of development. Generally, the more abstract an item is, the more reusable it

j is. For example, a concept is more reusable than a design, which is more reusable than

the code. This is because at each step in the development, decisions must be made which
tend to limit the reusability of the item. For example, the selection of any language to

implement some software will diminish its reusabilty because someone may need the

software in another language, although the design may be reused. On the other hand, the

more abstract an item is, the more work is required to produce a useful product from it.

In general, a high degree of reuse means that more concrete items, such as code, test

procedures, etc., may be reused with minimal effort. A low degree of reuse would signify

that only fairly abstract items, such as concepts or algorithms, may reasonably be reused.

There are exceptions to this general rule. For example, a module may be directly

reusable in a new application, but the requirements, design, integration and acceptance

documentation and test cases may not be suitable for reuse. In this case the code which

* represents 15~% of the cost would be saved, the other 85 would not be avoided.

On the other hand the requirements, design, integration and acceptance documentation

and test cases may be reused, but the module itself may have to be recoded. An example

77

is the replacement of a discrete Fourier Transform with a Fast Fourier Transform. In this

example the code is not reusable but 85% of the cost is saved.

2.3.2 System Characteristics

This section identifies system characteristics which impact the reusability of software.

Table 2.3-2 details all the system characteristics that were considered with respect to

reusability. Those marked "accepted" are defined in section 2.3.2.1 and 2.3.2.2 and

described in terms of their impact on software reusability in section 2.3.2.3. Those

marked "rejected" were considered to be redundant or of less importance in their impact

on reusability, and were not investigated.

TABLE 2.3-2 System Characteristics for Reusability

SYSTEM CHARACTERISTICS IMPACT ON REUSE

ACCEPT REJECT

Accessibility x

Scope of Functions

Specificity x

Commonality x

Completeness x

Independence

Data independence x

Machine independence x

Software system independence x

Standard computer architecture x

Microcode independence x

Word size x

Memory addressing limitations x

Data Management Methodologies

Database management systems x

Access methods x

Mass storage devices Ix

Data Timing x

Algorithms x

78

'9

, I I |

TABLE 2.3-2 (Continued)

SYSTEM CHARACTERISTICS IMPACT ON REUSE

ACCEPT REJECT

Languages

Acceptability x
Level (Order) x
Ease of use x

External Control Modes x
Fault Tolerance x

Hardware

Analog x
Digital x

Documentation

Completeness X
Correctness x
Organization x

Data Structures

Complexity x
Parameterization (extensibility) x

System Complexity

Interface complexity x
Module coupling x

Output Mode x
Security x

System Architecture x
System Availability x
System Maturity x
System Reliability x
System Size x
System Sophistication x
Timing x

79VL

2.3.2.1 Applicability of Interoperability Characteristics to Reusability

The following definitions are those interoperability characteristics which have applicabi-

lity to reusability.

INDEPENDENCE:
Machine Independence - Software not reliance on unique charac-

teristics of a specific machine.

Software System Independence - Application software not on utility and

features of a specific operating system.

Algorithms - A plan consisting of a series of operations
to achive the desired result.

Languages-Acceptability - Systems of symbols which can be used to
provide instructions to computer and

acceptable to the system requirement.

Fault Tolerance - The ability to detect, contain, diagnose

and recover from faults.

Documentation-Completeness - Completed written and well-organized

-Organization forms or records to aid in the operation

and explanation of a system.

Data Structures - A parameterized data structure to allow

Parameterization organized access and storage of data (e.g.

lists, trees).

2.3.2.2 Identification of New Characteristics

The characteristics defined in this section are also important in the analysis of tne

software quality of reusability.

80

Accessibility - The ease of access to system source code
and documentation.

Scope of Functions:
Specif icity - The degree to which all of the modules in

a system perform single, precisely defined
f unctions.

Commonality - The usefulness, to other applications, of
the functions performed by the software.

Completeness - The degree to which a system performs a
total function (in terms of user needs).

Independence:

Data Independence - Those attributes of a software system
that make necessary data usable in ail the
environments (e.g. location independent
data in a tracking system).

Standard Computer Architecture -The use of a standard computer architec-
ture or instructure set for ail applica-
tions.

Microcode Independence -A very low level machine language is not
used to implement conventional machine

Language it%... :-ructions.

Memory Address Limitations -The upper limit on the amount of memory

that a computer can directly access.

System Complexity:
Interf ace Comnplexity -The ease of understanding module inter-

faces, in terms of the data affected.

Module Coupling - The level of interdependence between

81modules within a system.

81-- ,

2.3.2.3 Impact of Characteristics on Reusability

The characteristics of software systems have a significant impact on the effort required

to reuse them. The following paragraphs discuss the relationships, where they exist,

between characteristics of software and its reusability.

2.3.2.3.1 Accessibility

Ease of access is a prime determinant of the reusability of software. There are thousands

of potentially reusable software products that are not utilized because subsequent

designers do not know of their existence or they are too difficult to obtain. In light of

this, it is probably better to have some moderately reusable products gathered in one

place, than to have many highly reusable software products which are inaccessible or

unknown to potential users. The term "software product" is used here to denote code,

design documents, requirement documents, test procedures, etc. A system designer will

choose to build a new item rather than reuse an existing one unless the expected effort to

obtain and adapt the reusable product is considerably less than the expected development

effort for a new one (Bowen 81). If a designer must spend several days or weeks tracking

down and evaluating software for possible reuse, he is unlikely to feel that it is worth the

effort. The problem is compounded by the fact that programmers usually underestimate

the work involved in building new software products. In addition to these problems, the

cost of reuse will increase if the software or documentation is available in a less optimal
form. For example, the cost of reusing software that is available only as printed listing is

much higher, due to keypurch costs and errors, than software available on a standard-

format magnetic tape.

2.3.2.3.2 Scope of Functions

One group of key characteristics of reusable software relate to the scope of the functions

performed by the software. These characteristics are specificity of function, commonal-

ity of function, and completeness of function. Specificity of function is needed for

reusability because a module that does a single well-defined function is more likely to be

reused than one that performs several, perhaps unrelated, functions. This is because the

inclusion of unwanted functions may make the module inefficient or hard to verify as

correct, and may necessitate :stly modifications to remedy this.

82

Specificity of function is related to Myers' (Myers 75) concept of module strength.

Module strength ranges from coincidental strength, where unrelated items make up a
module, to functional strength, where the entire module performs a single function. One

way to determine the specificity of function of a module is to write a sentence describing

its purpose:

- if the sentence is a compound sentence, has more than one verb, or contains a

comma, then the module probably performs more than one function

- if the object of the verb is not a single specific item, then the module probably

performs more than one function

- if the sentence contains time relationships (e.g. first, when, after, etc) then more

than one function is probably performed

Commonality of function, the usefulness of the function(s) that the software performs to

other applications, determines the potential for reuse of a software product. For

example, a "square root" function exhibits a high cornmonality of function, while a special

purpose simulator may not.

j Finally, completeness of function is important to reusability because a module, subsystem,

or system that doesn't perform a "complete" function (as defined by the user) may be

j costly to modify to incorporate the missing features. An example of a system performing

an "incomplete" function is an editing program without a string substitution capability.

2.3.2.3.3 Independence

Another group of key characteristics relate to the software's independence on its

operating environment. Specifically, these are machine independence, software system

independence, and data independence., Any independence of the software on its

operating environment will make the software easily reused in a different application

environment. Software dependence on a virtual operating system (Hall 80) interface,

however, will not directly decrese the reusability of the software because the virtual

operating system is, itself, implemented in an environment independent manner.

Several architectural features have an impact on the potential reusability of software

system. These are standard features of architecture, microcode independence, and

memory addressing limitations. The impact of these architectural features is explored in

83

the following paragraphs. Standardization of computer architecture can increase the

potential reuse of software by increasing the number of environment in which the

software can be executed without change. This lessens the need for software to be

machine independent in order to be reused. If this standardization is coupled with a

standardization of operating system interfaces, the need for software system indepen-

dence is also reduced.

However, it should be noted that whenever multiple architectures are available, even if

each is standardized, the costs to reuse software from another architecture is not

eliminated by this standardization. For example, there is significant cost when software

is moved from a standard 32 bit architecture to a standar 8 bit architecture. There is also

a significant cost penalty when software is moved from a standard 8 bit architecture to a

standard 32 bit architecture.

Machine independent constructs in software products, such as microcode microcode

independence and machine language independent code, increase the number of environ-

ments where the software can be reused. These techniques also tend to increase the

software's flexibility, which has a positive effect on reusability.

* Systems that have restrictive limits on memory address size, and hence program variables

for unrelated data, 'hard coding' parameters and limits, and combining independent

functions. The cost to modify such software in order to reuse it in another application

can be high.

2.3.2.3.4 Algorithms

The algorithms used in a software system have a direct impact on the ease of reuse of a

software system. An algorithm that functions well over a wide range of inputs will

generally require less modification before it can be reused. In addition, an algorithm that

is accurate and efficient can be used in more software systems with few changes. Finally,

the use of table-driven algorithms will, if properly designed, produce highly reusable

software which can be easily adapted to different applications. For example, a table-

driven parsing algorithm can be easily changed to accept a new input language; but a

recursive descent parser which is not table-driven is usef ul only for a single language.

84

The availability of algorithm certification, test data, and test reports also has an impact

on the reusability of software. The risk that the software will not meet later

requirements will make it unlikely that anyone would choose to reuse software without

these. If these items are available, however, suitability of the software for other

applications can be easily assessed.

2.3.2.3.5 Languages-Acceptability

The use of nonstandard, unacceptable languages in software can increase the cost of

reusing software, and may preclude the reuse of code entirely. For example, nonstandard

FORTRAN extensions, if used in a software module, can make reuse on another .nachine

difficult and costly. Also, if software is implemented in a non DOD-approved language,

such as LISP, the reuse of it in a DOD product is not acceptable under normal

A circumstances. This may necessitate recoding in an acceptable language. However, it

should be noted that coding and code level testing are typically less than 20% of

development costs.

2.3.2.3.6 Fault Tolerance

* The higher the level of fault tolerance in a software product, the more reusable it will

generally be. Fault tolerance in software will increase the number of environic.,ents and

* applications where the software can be used. This is because, in aerospace and weapons

* . systems, a software fault can be a catastrophic event if not handled properly. For

instance, a sensor out-of-range value, due perhaps to lightning, may cause an autopilot

system to fail, which could result in the crashing of the airframe. Fault tolerance in the

software may enable it to ignore the incorrect data and continue operation. Many

military and aerospace systems require such fault tolerance. If software meets this

requirement without modification, it can be reused at a low cost.

2.3.2.3.7 Documentation

The availability, accuracy, focus, style, and completeness of documentation for software

systems will influence the cost to reuse them. Inaccuracies or incompleteness in

specification or design documents will increase the difficulties encountered in determin-

I ing the adequacy of the software for use in another application, and the cost of any

85

AD-A138 477 SOFTWARE INTEROPERABILT AND REUSAB IT VOLUME lU) 3
BOEING AEROSPACE CO SEATTL WA P E P RESSON E L
,ULAS 8 63 RADC-TR-83 174VO- 0 P30602-80-C-0265

UNCLASSIFIED Fl....2l..

II

f 1.5 I.Uu1A 1.
1132

MICROCOPY RESOLUTION TEST CHART

NATINAL BUREAU OF STANDARDS
-
1963-A

, S

. . . .- •-- • . . : ,. ". . .I ! -

necessary modif ications. Poorly written documentation requires a considerable effort to

understand it. Worse still, the unavailability of such documentation would require these
documents to be rewritten before the software could be reused, vastly increasing the

costs to reuse. The following paragraphs review the impact of the availability of the
documentation and its usefulness.

Available documentation comes in many forms such as requirements specifications, design

specifications, development specifications, product specifications, user manuals, operat-
ing instructions and maintenance manuals. Basically these documents can be divided into

two groups, User documents and Design documents.

User documents describe how to use the system. System users must have the following

kinds of information:

o How to bring up the system on the computer

o How touse it
0 Preparing data
0 Interaction guide

o How to interpret its results

Design documents describe the system's structure. If modifications are to be made this

kind of information is needed:

0 What functions are performed

0 What data is used by each function
0 What is the relationship between functions

o What are the limitations of the system

0 What are the performance criteria

Usef ulness of documentation is the other important consideration. How usable is a

document? Usefulness is a function of the information contained in the documentation

and how accessible it is to the person seeking the information.

86

Information needs to be complete, concise and correct. Completeness is determined by
reviewing the tables of contents of all system documentation to make certain the user and
designer topics have been well covered. Determination of conciseness and correctness
generally requires a thorough review of the contents of all system documentation.

Accessibility of information depends on documentation structure and the table of contents
and index system used. A properly structured set of documents will be divided into
separate volumes based on function. Each document will be divided into chapters or
sections. These are subdivided into subsections and paragraphs. Each higher entity
introduces the content in terms of the next lower set of entities.

Finally, the code itself should be well documented. That is, a programmer should be able
to determine the function and operation of the software by reading the source code.

This ensures that any changes that are required to reuse the software can be made

quickly and accurately.

This hierarchical structure makes it easy to skim a document until the required

information is found, then read in detail. Good documentation will have very little
overlap. It is far too easy to lose consistency and correctness when information needs to

be updated in more than one place.

2.3.2.3.8 Data Structures-Parameterization

The design of data structures in a software system has a great impact on the system's

reusability. Generalized data structures which are easy to understand, flexible, and
extensible reduce the costs associated with reusing the software. Most importantly, data

* structures, such as arrays, which are described parametrically are highly reusable since
* changes can be made in a simple, organized way.

* Since changes are often required to reuse software in new applications or new environ-
ments, parametric definitions of data structures will reduce the reuse costs. However, in
the case of total reuse, where no changes to the software are required, data structure
design does not aff ect the cost to reuse the sof tware.

87

- M-

2.3.2.3.9 System Complexity

The more complex a software system is, the higher the cost to reuse it will be. This is

because a significant effort will be required to understand the structure and function of

the system, a prerequisite to reuse.

Additionally, any modifications that are required to reuse the system will be made more
difficult in complex systems, and debugging the modifications will be costly. A system
with a design and function that is easy to understand will, therefore, be less costly to

most relevant to reusability are module coupling and interface complexity.

The level of module coupling within a system influences the cost to reuse the software. In
this instance, "module" can mean either a single procedure or a functional subsystem. A
high degree of coupling between two modules means that a change in one module probably
requires a modification of the other. This may be because of shared data, for example
through a FORTRAN common block, or because one sets a control variable of the other,
or because one module makes an unconditioned transfer to some part of the other. As the

coupling of modules increase, the reusability of the modules decrease. With a high degree
of coupling, the modules will need extensive modification before they can be reused,

thereby increasing the cost to reuse them.

It should be noted that two modules may have a high degree of coupling without actually

interacting in an operational sense. For example, two modules may share a FORTRAN

COMMON block in which each module access different data items. That is, they don't

technically share data. However, if one module must have its common area definition
changed to add or delete data items (or expand or contract one), then the other must be

changed also. Therefore, the modules don't have an interface as described below, but they
are highly coupled.

* The complexity of the interfaces in a software system is a strong factor in the reusability

* of software modules. The complexity of a construct, in terms of hunan perception, is
determined by the amount of information that is passed across the interface, the
accessibility of the information, and the structure of the information. (Yourdon 79)

In terms of software interfaces, the amount of information passed corresponds to the

number of data items used or modified across the interface. As this amount of data
increases, the complexity increases. The accessibility of the information depends on how

many data items are passed "implicitly" across the interface, as in a FORTRAN COMMON
area, as opposed to those passed directly, as the parameters of a CALL statement are.

The more items that are passed implicitly, the more complex the interface becomes. In

addition, the accessibility of the information is enhanced if it is presented in a standard or

intuitive, rather than unexpected form. Finally, certain information structures, such as

excessive nesting or the use of negative qualification (e.g. a procedure returning a
'TRUE" on a failure), tend to increase interface complexity.

2.3.2.4 Summary of Software Reusability Characteristics

Section 2.3.2.3 identifies software characteristics which impact reusability. Some of
these characteristics affect the cost to reuse the software, and some affect the potential
of the software for reuse. Table 2.3-3 lists the characteristics described in section 2.3.2.3
and assesses how much each determines the ease, or cost, of reuse and the potential for
reuse. The table demonstrates that several characteristics, such as commonality of

function, primarily affect the potential of software for reuse. Other characteristics,

such as data structures, mainly impact the ease of reuse of the software.

89

TABLE 2.3-3 Impact on Reusability by Characteristics

SYSTEM CHARACTERISTICS IMPACT ON REUSABILITY
EASE OF REUSE POTENTIAL FOR REUSE

Accessibility M H
Scope of Functions

Specificity H H
Commonality L H
Completeness M H

Independence

Machine Independence H H
Software System Independence H H
Data Independence H H

Standard Computer Architecture
Microcode Independence H H
Memory Address Limitations H L

Algorithms H H
Languages-Acceptability M H
Fault Tolerance M H
Documentation

Completeness M H
Organization H M

Data Structures-Parameterization H L
System Complexity

Interface Coupling H L
Module Coupling H L

Legend:
H - High level of determination

M - Medium level of determination
L - Low level of determination

90

2.3.3 Reusability Criteria

This section identifies the criteria, Table 2.3-4, that are groupings of the r--stem

characteristics discussed in previous sections, which impact the reusability of software.

Some of those criteria affect the cost to reuse the software, and some affect the

potential of the software for reuse. These criteria are defined in Table 2.3-5.

9

I 91

L

I

TABLE 2.3-# System Characteristics and Reusability Criteria

SYSTEM CHARACTERISTICS REUSABILITY CRITERIA

Data Independence

Data Structure

Standard Computer Architecture Application Independence

Microcode Independence

Algorithms

Documentation Document Accessibility

Completeness

Organization

Scopes of Function Functional Scope

Specificity

Commonality

Completeness

Machine Independence Generality

Memory Addressing Limitation

Software System Independence Independence

Machine Independence

Module Coupling Modularity

Interface Complexibility System Clarity

Languages Self-Descriptiveness

Languages Simplicity

Acceptibility

92

L.V

TABLE 2.3-5 Definition of Reusability Criteria

REUSABILITY CRITERIA DFNTO

APPLICATION INDEPENDENCE Software possesses the characteristics of application

mentation is independent of database system, system
libraries, microcode, computer architecture and algo-
rithms.

DOCUMENT ACCESSIBILITY Software possesses the characteristics of document
accessibility to the extent that it provides an easy
access to software documents, software source listing
and selective use of the software programs components.

FUNCTIONAL SCOPE Software possesses the characteristics of functional
scope to the extent that it provides scope of functions
required to be performed i.e. function specificity, f unc-

tion commonality and function completeness.

GENERALITY Software possesses the characteristics of generality to
the extent that it provides breadth to the functions
performed.

INDEPENDENCE Software possesses the characteristics of environment

independence to the extent that the implementation of
software is independent of the software operating sys-

tem and machine hardware system.

MODULARIT Y Software possesses the characteristics Of modularity to

the extent that a logical partitioning of software Into
independent parts components, and modules has

___ occurred.

93

TABLE 2.3-5 (Continued)

SYSTEM CLARITY Software possesses the characteristics of system clarity

to the extent that it provides a clear descriptions of

program structure in the most non-complex, easy

understandable and easy modifiable manner.

SELF-DESCRIPTIVENESS Software possesses the characteristics of self-

descriptiveness to the extent that it contains informa-

tion regarding its objectives, assumptions, constraints,

inputs, processing, outputs, components, etc.

SIMPLICITY Software possesses the characteristics of simplicity to

the extent that it lacks complexity in organization,

language, and implementation techniques and is con-

structured in the most understandable manner.

The resulting reusability quality framework is shown in Figure 2.3-2

CRITERIA
* APPLICATION INDEPENDENCE Al

* DOCUMENT ACCESSIBiLITY DA
* FUNCTIONAL SCOPE FS

GENERALITY GE

REUS.BILITY- ** INDEPENDENCE ID
MODULARITY MO

* SYSTEM CLARITY SC

SELF-DESCRIPTIVENESS SD

& SIMPLICITY Sl

LEGEND

* :NEW

S* : MODIFIED

& : ADDED TO FRAMEWORK

Figure 2.3-2 Reusability Framework

94

The following subparagraphs explain f uther the detailed description of the reusability

criteria.

2.3.3.1 Application Independence

The characteristics of application independence are database system independence data
structure, architecture standardization, microcode independence, and algorithm. The
design of data structures in a software system has a great impact of system's reusability.
Generalized data structures which are easy to understand, flexible, and extensible reduce
the costs associated with reusing the software. Data structures, such as arrays, which are
described parametrically are highly reusable since changes can be made in a simple,
organized way. Standardization of computer architecture can increase the potential reuse
of software by increasing the number of applications in which the software can be
implemented without change. Use of machine dependent constructs in software products,
such as microcode and machine language code, will reduce the number of applications
where the software can be reused. Use of microcode also tend to reduce the software's
flexibility, which has an adverse effect on reusability. An algorithm that functions well
over a wide range of inputs will generally require less modification before it can be
reused. The use of table-driven algorithms will, if properly designed, produce highly
reusable software which can be easily adapted to different applications.

2.3.3.2 Document Accessibility

Documentation is defined here as the program functional specifications and design
descriptions, the user's guides, the test specifications and results, the flow charts, and the
program source listings that are delivered as part of the products of software project.
The availability, accuracy, focus, style, and completeness of documentation for software
systems will influence the costs to reuse them. Poorly written documentation requires a
considerable effort to understand it. Inaccuracies or incompleteness in specification or

4 design documents will increase the difficulties encountered in determining the adequacy
of the software for wse In another application, and the cost of any necessary modifica-
tions. Accessibility of Information depends on the documentation structure, and table of
contents and Index systemn used. The documentation with hierarchical structure will make
it easy to skim through until the required information is found, then read In detail. To
make the software more reusable then the documents should be accessible to everybody
and the documentation Is in public domain.

95

2.3.3.3 Independence

The characteristics of independence are machine independence and software operating
system independence. Any dependence of the software on its operating environment can
be costly to correct should the software be reused in a different eironment, which often
is the case. The software with those environment dependent parts isolated out from
environment independent parts will tend to make it more easily modifiable and reusable.
The software that uses only the simplest operating system facilities, and does not use
system library routines will tend to be more reusable.

2.3.3.4 Functional Scope

The characteristics of functional scope are specificity of function, commonality of
function, and completeness of function. Specificity of function is needed for reusability
because a module that does a single well-defined function is more likely to be reused than
one that performs several, perhaps unrelated, functions. This is because the inclusion of
unwanted functions ma1 make the module inefficient or hard to verify as correct, and
may necessitate costly modifications to remedy this. Specificity of function is related to
Myers' (Myers 75) concept of module strength. Module strength ranges from coincidental
strength, where the unrelated random items make up a module, to functional strength,
where the entire module performs a single integral function. Commonality of function,
the usefullness of the function(s) that the software performs to other applications,
determines the potential for reuse of a software product. For example, a "square root"
function exhibits a high commonality of function, while a special purpose simulator may
not. Completeness of function is important to reusability because a module, subsystem or
system that doesn't perform a "complete" function (as defined by the user) may be costly
to modify to incorporate the missing features.

2.3.3.5 Generality

The characteristic of generality implies that the software is generally designed and
implemented. The machine interface functions are isolated to a few controlled modules.
If the software has the machine interface functions isolated, then the software can be
reused in a different machine with the same application by only modifying the machine
interface parts. The characteristics Of generality also imply that the 1/0 functions and

processing functions are not mixed in a single module. Since the 1/0 functions are in

96

general, machine dependent, whether or not they are separated from processing functions
will determine the difficulty to reuse the software. If the module processing is not data
value and data volume limited and the module is more general and more reusable.

2.3.3.6 Modularity

Modularity is the concept of confining specific design decisions or functions into a distinct

design element which is as independent of other elements as possible. This independence

helps to localize the impact of modifications to within one or a few modules. The

advantage of such a modularly designed system is that modules can be replaced or

modified without disturbing system functions so long as their interface meets the stated

requirements. The primary design goal is to produce a design of the modular structure of

the program so that the modules are highly independent. The parts of a module join

forces to perform a single specific well-defined function and the data should be explicitly

passed as parameters or arguments. In other words we want to maximize the relationships

among parts of each module (module strength) and to minimize the relationships among

modules(module coupling). As more and more modular programs are implemented,

libraries of reusable modules can be accumulated. These modules can be used in various
places in the same program or reused as building blocks in future programs. If the
modular programs are designed correctly, every module has the potential to be reused.

2.3.3.7 System Clarity

The system clarity, in both design and implementation, is one of the keys to easily

understandable and easily modifiable software. System clarity is enhanced by modularity,

by structured code and top-down design and implementation. The module is designed with

simple control structure and in accordance with a prescribed standard. Module interfaces

can be easily identified and understood. The software system in which a module

interfaces with other modules via passed parameters in calling sequences, is likely to be

more expandable, more extensible and require less effort to reuse in other application

than one making extensive use of global or shared variables. Improvement in system

clarity will tend to decrease the amount of mental effort required for comprehension of

the program. This increase in comprehensibility will reduce the effort to modify and

reuse the software programs. To improve the system clarity then the communication

program flow, and functional application should not be complex, and the program

structure should be clear and without any impurity or ambiguity.

97

2.3.3.8 Self-Descriptiveness

The concept of self-descriptiveness implies that the software contains enough in forma-

tion for the reader to determine or verify its objectives, assumptions, constraints, inputs,

processing, outputs, components, etc. This quality is very important in being able to

understand the software. The documentation contains useful explanations of software

program design. The objectives, assumptions, inputs, etc. are useful at least in varying

degrees of detail in source listing. The intrinsic descriptiveness of source code

commentary will greatly aid efforts to understand the program operation. To make

software understandable and reusable, the program source code should contain an

explanations of program functions, assumptions, inputs, outputs, etc. in different detail.

2.3.3.9 Simplicity

The concept of simplicity implies that the software is lacking in complexity. The more

basic techniques, structures, etc. are used, the simpler the software will tend to be. The

use of a high order language as opposed to an assembly language tends to make a program

simpler to understand. The quantitative counts (number of operators, operands, nested

control structures, nested data structures, executable statements, statement labels,

J2 I decision points, parameters, etc.) will determine to a great extent how simple or complex
the source code is. Simplicity, in both design and implementation, will tend to make
programs simpler, easily understandable, and easily modifiable.

2.3.4 Reusabiity Concepts vs. Reusability Criteria

This section examines the relationships that exist between reusability concepts (see Table

2.3-1) and reusabiity criteria (see Table 2.3-5). Table 2.3-6 presents the relationships

between the reusabiity concepts and criteria; those marked with item numbers are

references to the following discussions.

98

Ai

TABLE 2.3-6 Reusability Concepts vs. Reusability Criteria

REUSABILITY REUSABILITY CONCEPTS

CRITERIA LEVEL OF REUSE EXTENT OF REUSE DEGREE

OF

MODULE FUNCTION SYSTEM PARTIAL TOTAL REUSE

APPLICATION

INDEPENDENCE I I I I I I

DOCUMENT

ACCESSIBILITY 2 2 2 2 2 2

INDEPENDENCE 3 3 3 3 3 3

FUNCTIONAL

SCOPE 4 4 4 4 4

GENERALITY 5 5

MODULARITY 6 6 6

SYSTEM CLARITY 7 7 7

SELF-

DESCRIPTIVENESS 8 8 8

SIMPLICITY 7 7 7

99

!.

1. Application Independence is an important criterion of software reusability, and

is a crucial factor in all types of reuse. Software with generalized data
structures is more extensible and flexible tends to be more reusable. An
algorithm that functions well over a wide range of inputs will generally require
less modification before it can be reuse. Software implemented with such
algorithm, although the source code sometime may not be reusable however
the algorithm design can still be reused in other application.

2. Document Accessibility is a prime determinant of software reusability and
cuts across all of the reusability concepts. That is, in all cases the document
accessibility of software directly influences the cost to reuse it. The
accessibility of requirements and design documentation determines whether
the software will be considered for reuse. The accessibility of the source code
and test procedures will have a large impact on the cost to reuse the software.

3. Independence, consisting of machine independence and software system inde-
pendence, is a crucial factor in all types of reuse. That is, as the level of
environment independence increases, the potential saving in cost to reuse the
software raises with it. However, the importance of this is variable since

~. t software may be reused in the same environment. In such a case, the

environment independence of software is irrelevant. In general, the software
with environment independence characteristics tend to be more reusable.
Although a low Level of environment independence may render the software
source code and test procedures unusable. The design, however, may still be
reusable.

4&. Functional Scope will affect the software reusability. A high level of

specificity of function of system components is very important in module and
functional reuse. This is because these components will be reused based
primarily on the function each one performs. In system reuse, however, only
the function of the entire package is important. In order for total reuse to be
feasible, the scope of functions performed must be almost exactly those
needed in the application. Otherwise, partial reuse would be necessary. Due
to the necessity to completely understanding each function, partial reuse will
usually cost more than total reuse. The degree of reuse of a software product
is influenced by the specificity of function of system components. Actual

100

source code may be costly to reuse if it has a low level of specificity of

function. However, the design and test procedure may still be cost-effective

to reuse with some modifications.

5. A module is considered to be more General in nature if it is used by more than

one module. If the module is generally designed and implemented, then it will

takes less modification for module, function or partial reuse of the software.

6. The Modularity of software is the key factor of module, function, and partial

reuse. Since this type of reuse entailes interfacing of the existing software

with new software, the modularity of the existing software will determine the

cost of reuse the software.

7. The Simplicity and System Clarity are the important characteristics of

software comprehensibility. In the module, function or partial reuse of

software, how simple and clear the software is will determine the costs to

reuse the software.

8. The Self-Descriptiveness is very important in being able to understand the

software. For the module, function or partial reuse of the software, there is a

necessity of completely understanding the software. After the functions

performed have been identified, and location for modifications are established,

then the change for reusable application can be made.

101

2.35 REUSABILIT Y METRICS

This section identifies the metrics of software reusabiity. The metrics of software

reusability reflect that the required software is understandable (functions performed can

be easily identified, locations for modifications can be easily established, and changes for

reusable applications can be easily made), modifiable (enhancements, extensions and

changes can be easily made), and adaptable (can be easily altered to fit different

application). There are a number of metrics that implementors of reusable software

should be aware of. The metrics can be grouped as in Table 2.3-7 using the reusability

criteria discussed in section 2.3.3 and 2.3.4. Not every metrics is equally important and

some can be easily dealt with by every designer and implementor.

I 102

TABLE 2.3-7 Software Reusability Quality Metrics

CRITERIA METRIC ACRONYM

APPLICATION INDEPENDENCE DATABASE SYSTEM INDEPENDENCE * ALI
DATA STRUCTURE * AI.2
ARCHITECTURE STANDARDIZATION * AI3
MICROCODE INDEPENDENCE * AI.4
ALGORITHM * AI.5

DOCUMENT ACCESSIBILITY ACCESS NO-CONTROL * DA.I
WELL-STRUCTURED DOCUMENTATION * DA.2
SELECTIVE USABILITY * DA.3

INDEPENDENCE SOFTWARE SYSTEM INDEPENDENCE * ID.I
MACHINE INDEPENDENCE ** ID.2

FUNCTIONAL SCOPE FUNCTION SPECIFICITY * =5.1
FUNCTION COMMONALITY * FS.2
FUNCTION COMPLETENESS * FS.3

GENERALITY REFERENCE GENERALITY GE.1

IMPLEMENTATION GENERALITY GE.2

MODULARITY MODULAR IMPLEMENTATION MO.2

SYSTEM CLARITY INTERFACE COMPLEXITY * SC.1
PROGRAM FLOW COMPLEXITY * SC.2
APPLICATION FUNCTIONAL COMPLEXITY * SC.3
COMMUNICATION COMPLEXITY * SC.4
STRUCTURE CLARITY * SC.5

SELF-DESCRIPTIVENESS QUANTITY OF COMMENTS SD.A
EFFECTIVENESS OF COMMENTS SD.2
DESCRIPTIVENESS OF IMPLEMENTATION SD.3
LANGUAGE

SIMPLICITY DESIGN STRUCTURE & Sl.1
STRUCTURED PROGRAMMING & SI.2
DATA AND CONTROL FLOW COMPLEXITY & SL3
CODE SIMPLICITY & SI.4

* = New

& = Added
* - Modified

103

L

2.3.6 IMPACTS OF APPLICATIONS ON REUSABILITY

The type of application performed by a software system has a significant impact on its
potential for reuse. Many software applications have specific characteristics that
distinguish them from other applications. This section will examine several common
applications and explore them in terms of the concepts and criteria of reusability.

2.3.6.1 Database and MIS

Most information management systems perform a comprehensive set of functions for
some specific user need. Often this set of functions is well defined and needed over a
long period of time with little modification. An example of such a software system is an
inventory program.

In this environment, reusability usually is taken to mean the complete reuse of the entire
software system. This then implies that reusability of such systems is essentially the
same as portability. However, information system reuse often necessitates the reuse of
the system's information as well as its software. For this to be possible, either the
software system's internal data must be in a machine independent, portable form, or one
of the functions included within the system must be the translation of information to and

from a machine independent form. An example of this distinction of data storage in
software systems is that between sequential formatted FORTRAN files, which are
machine independent, and direct access unf ormatted FORTRAN files, which are not.

The reusability of information management systems also depends on the level of other
* related quality factors, including operability, correctness, and reliability. That is, the

software is not likely to be reused if it doesn't also attain a reasonable level of these
factors.

2.3.6.2 Missile Systems

In order for missile systems software to be reusable, it must be flexible and portable. In
addition, since missile systems often perform life-critical functions, they must be highly
reliable. Finally, these systems are invariably at the leading edige of technology and
require very high level of efficiency to be practical. It is well established that several of

104

these factors are at odds with each other, since the generality needed for flexibility and
portability will increase software overhead and, consequently, decrease the software's
efficiency. (McCall 79-1)

This analysis shows that it is very difficult to construct reusable missile software that is
still viable. However, not ail parts of a missile system must have extremely high levels of
efficiency. Knuth (Knuth 71) has demonstrated that, typically, 50% of the CPU time is
spent executing 5% of the code. This would imply that as much as 80%-90% of the
software can be implemented with sufficient portability and flexibility to be highly
reusable. This would correspond to a partial functional reuse with a possibility of some
total module reuse.

To achieve it, a system designer should identify those parts of the system where high
efficiency is required. In these parts, only a medium level of reusability should be
specified. In other parts of the system, reusability factors should take precedence over
efficiency. Finally, the interface between these parts must be specified in a way which
will allow the nonreusable parts to be easily replaced at a later time.

Although some parts of the system may not be reusable at code level, the design of these
parts is highly reusable since the functions they perform are needed in most missile

systems. This then requires that requirements and design documents be available and
include the design 'as built'.

2.3.6.3 Support Software

The reusability potential of support software depends largely on the functions performed.
Some support software is highly reusable because it is largely application independent, and
applicable to most software development efforts. That is, the software exhibits a high
degree of commonality of function. A few examples of this type of software are database
management systems, floating point packages, and variable cross-reference generators.
Other support software is less reusable because it Is application dependent or because it
conforms to a standard for some subset of the programming community. This software
has a lower degree of commonality of function. An example of such a system is a special-

purpose simulator, such as for a particular network architecture.

105

2.3.6.4 Executive Sof tware

Executive software lies somewhere between missile software and support software in
terms of efficiency constraints. Although efficiency is not generally the overriding
concern in executive software, it is often important. In this application a moderate level
of reusability should be specified in the system requirements in non-time-critical
segments. Reuse in this type of software would most likely be partial reuse of a system,
although partial and total module and functional reuse is also possible.

2.3.6.5 C31 Sof tware

Although C31 software has historically been plagued by problems with software, it is one
area where reusability has a high payoff potential. There are several well defined and
well understood subsystems in C31 software that can be performed by reusable software
products. These include communications, display, and man/machine interface subsystems.
In such cases, the type of reuse is total functional reuse and it is very much similar to the
use of mathematical libraries. Other subsystems have a lower reuse potential because
they generally require high levels of security and integrity that could be compromised by

I reuse.

2.3.7 Reusable Software Development Guidelines

In general, it is not possible to develop software in a completely top-down manner if
reusable software modules and subsystems are to be included. Systems employing

previous software must use reusable modules as a baseline in much the same way
conventional language constructs are used. This requires a large set of compatible
routines which are easily accessed by a designer. Modules selected for reuse generally
need high levels of flexibility, portability, and generality unless the particular application
can be met with the sof tware "as is!' (i.e. total reuse case)

Systems which may produce reusable software as a by-product of their development
should be designed with this in mind. That is, modules and subsystems that are identified
as having a high potential for reuse should be developed with a high reusability level
required of them. These modules should be specified early in development, and designed

with flexibility, portability, and generality in mind.

106

Some of the questions that should be asked in determining potential reusability of modules
and subsystems include:

- Is language to be used available on many machines, especially those likely to
be used in this application (machine dependence)

- Is language to be used expected to be available and acceptable on machines
which become available during anticipated reuse time?

- Is function to be performed expected to be required again in the future
(commonality of function)?

- Is applicable, is specific hardware used in the application likely to be available
k for future systems, or will compatible hardware available? In addition, the

following question should be asked to determine whether partial or total
reusability should be emphasized:

- Is the function to be performed likely to be required unchanged in the future,

or will it probably be slightly different?

The general design guidelines for reusability are presented in Table 2.3-8.

107

TABLE 2.3-8 General Design Guidelines For Reusabiity

*PROGRAMING LANGUAGES:

--Use only DoD standard high order language.

--Use only standard language features,'i- not use language extentions.

--Read the standard language definition.
*SOFTWARE PROGRAM STRUCTURE:

-- Use structured design and modular approach concept.

--Seperate input, output, and processing function.

--Modules flow top to bottom.

-- Modules perform single integral function.

--Single entry and single exit in each module.

-Comment the software program source.
*OPERATING SYSTEM PROBLEMS:

Do not use the system library routines and system facilities if possible.

-Use only the simplest operating system facilities.

-- Document (comment) the facilities used cornpletely.
*MACHINE ARCHITECTURE:

-- Use standard computer architecture.

--Source code is independent of word length and character size.

Data representation is machine independent.

*DOCUMENTATION:

-Should be complete and manageable.
--Structured according to level of detail and functions performed.

- Contains algorithms used, limitations, and restrictions.

- Describes the functions performed and relationships between functions.

--Contains program flow charts and source listing.

Referring to Figure 2.3-3, the general problems associated with the software reusability

4 can be addressed at the various review points in the software development process. The

development guidelines to be addressed at each review are listed in the following

paragraphs; they are intended to be used by designers and installers of reusable software.

These guidelines will aid in developing potentikl reusable software programs with a wide

range of generality in design and code and sufficient modifiable capability.

108

I It " cmca

Fipww 2.343 Softwwm O.va%*Wft P

Minimum attention has been paid to the problem of modifying existing programs to other

applications, although the decision to the problems to reuse software is usally made after

the original implementation. These guidelines may still be useful to localize the

problems, and determine the feasibility of software reusability.

2.3.7.1 SRR (Software Requirement Reviews)

* Plan the design and document the contents in detail to ensure a workable

design that meets requirements

* Have the table of contents for all software system documents

Determine major functions, with proper functional partitioning into subfunct-

tions, to be performed, interrelationships between functions/subfunctions,

system limitations and performance criteria

Briefly draw software system function charts identifying and defining

interface requirements at inter and intra levels

* Develop abstract models for describing and structuring modules

Prepare statements of requirements for input data, error tolerance, and

processing failure recovery

* Have information regarding how to bring up the system, prepare data, use

(interactive with) the system and interpret results

* Identify the possible potential reusable applications

110

L -

2.3.7.2 PDR (Preliminary Design Reviews)

* Design the software in a manner that makes it easy to reuse

* Design the software system in a top-down fashion

* Provide a modular hierarchy of the software system and identify all modules

and database interfaces definition in the system

* Determine the functions to be performed and the data to be input or output by

each module

* Allocate the functions and subfunctions to modules in a way that enhances

modularity and functional independence

* Have each module perform a single integral function

* apply structured design technique to draw the system structure charts and

show in detail the logical structure of the programI * Describe the structure of the system, explain the functions and the interfaces

* Prepare the plans to bring up the software system and test the software

2.3.7.3 CDR (Critical Design Reviews)

* Follow the hierarchical structured development concepts to design simple

independent modules that have low coupling, high cohesiveness and high

functional binding (i.e. maximize the intramodule strength and minimize the

intermodule coupling):

a. Top--down design (program flow always forward)

b. Break the system into small independent modules

C. Modules limited in size

d. Single entry and exit in each module

e. Structured programming, avoid generating complicated hard to
understand "spaghette" code

f. Temperary storage should not be shared between modules

Construct the function (module) which facilitates or encourages its use

elsewhere either in part or in total

Construct modules which are functionally cohesive and perform single integral

function

Use modular approach to design each module with single integral function

performed

Identify the limitations of processing performance in each modules

Define all module interfaces in a simple and explicit manner and define

control data to be passed between the interfaces

The module should be internally structured so the paran eters which customize

it for each occasion are isolated %nd place4 in a single table. The table

provides the control parameters *licfh properly r6ute processing

* Centralize the 1/0 functions and separate them from computation functions

* Describe the control flow, data flow and algorithmic considerations within the

various modules

* Draw the structured system flow charts, function flow charts and module flow

charts

* Prepare the procedures to bring up the software system and the test

procedures

* Have the table of contents, system and functional design specification and/or

index for all software system documents

112

Isolate machine interfaces by assigning machine interface functions to a few

controlled routines. Use global data structures to define peripheral

characteristics, i.e. use 'virtual' instead of physical peripherals.

2.3.7.4 CR (Code Reviews)

* Implement on standard computer architecture and use DoD (Department of

Defense) standard HOL (High Order Language)

* Avoid using software system utility programs and library routines

.* Each module contains a commentary header block which describes the

following:

a. Functional description

b. Input/output parameter, local and global data items descriptions

c. Restrictions and limitations

d. Calling what modules(routines) and called by what modules(routines)

e. Methods used and/or algorithm description

f. Assumptions

* g. Error recovery types and procedures for all error exits

Comment all machine dependent codes and all non-standard HOL (High Order

Language) statements

* Comn,ent all software system dependent utilities and routines used

* Comment all transfer of control and destinations

* Clearly specify any inter-module communication by comments

* Comment and define all parameter ranges and their default conditions

Describe the physical or functional property represented by variable names

and explained in the comments

113

Limit size of modules

* Avoid using embedded constants/literals and self-modifying codes

* Make all code maximally machine-independent, logically blocked and indented

* Reduce interface communication complexity by passing parameters directly

between modules if possible.

2.3.8 Tradeoff Between Reusability and other Quality Factors

The software characteristics that make software reusable have a positive effect on some

of the other quality factors but a negative effect on others. The following sections

describe the reasons for conflict in those with possible negative impacts, and discuss the

effects of other factors on software reusability. Table 2.3-9 shows the relationship

between reusability and other quality factors.

TABLE 2.3-9 Tradeoff of Reusability With Other Quality Factor

OTHER FACTORS REUSABILITY
CORRECTNESS +
EFFICIENCY
FLEXIBILITY +
INTEGRITY
INTEROPERABILITY +
MAINTAINABILITY +
PORTABILITY +
RELIABILITY + or -
TESTABILITY +
USABILITY +

Legend: + POSITIVE RELATION
- INVERSE RELATION

114

The Table 2.3-10 shows the criteria used to determine the software reusability and other

quality factors which have these same criteria in common. This Table clearly shows that

in order to achieve software reusability by improving certain criteria which other quality

factors will also benefit.

TABLE 2.3-10 Reusability Criteria and Other Quality Factor

REUSABILITY OTHER QUALITY

CRITERIA FACTORS BENEFITTED

GENERALITY Flexibility

MODULARITY Flexibility

Interoperability

Maintainability

Portability
Testability

INDEPENDENCE Portability

SELF-DESCRIPTIVENESS Flexibility

Maintainability

Portability

Testability

SIMPLICITY Maintainability

Reliability

Testability

2.3.8.1 Correctness vs. Reusability

*t Implementing software satisfy program specifications to make it easier to

reuse in other application will increase correctness

115

I.

2.3.8.2 Efficiency vs. Reusability

* Software generality and environment independence required to make software
reusable will decrease the efficiency of the software system

* Using moduality and well-commented high level code to increase the
reusability will result in less efficient operation

* The overhead required to provide reusability can often decreases the

efficiency of the software system

* Use direct code or optimized system software or utilities to improve the
efficiency tends to make software less reusable

2.3.8.3 Flexibility vs. Reusability

* Both reusability and flexibility are improved by the increased modularity, self-
descriptiveness and generality

* Reusable software in general modifiable and flexible

* Software flexibility will be enhanced by improved reusability

* Software with flexibility will be modifiable, then it tends to be more reusable

2.3.8.4 Integrity vs. Reusability

* Generality in code, data structures and documentation required by reusable

software will have a negative impact on integrity

* Additional code and processing required to control the access of the software
to achieve the integrity tends to make the software less reusable

* Accessibility of system requirements, design documentation, code, and test

procedures to improve reusability will adversely influences of software integ-
rity

116

2.3.8.5 Interoperability vs. Reusability

* Both reusability and interoperability are improved by increasing modularity

* Separating I/O functions from other functions to achieve reusability will also

improve interoperability

2.3.8.6 Maintainability vs. Reusability

Both maintainability and reusability are improved by the increased modularity,

self-descriptiveness and simplicity

* Reusable software will be easy to modify and easy to maintain

* Maintainable software, in general, is simiplicity in design and coding and fully

modularized without increasing system complexity, therefore it tends to be

more reusable

* Software maintainability will be enhanced by improved reusability

2.3.8.7 Portability vs. Reusability

• Both reusability and portability are improved with increasing modularity,

software independence, machine independence and self-descriptiveness

• Portable software programs are considered as total reusable programs

• Software portability will be enhanced by improved reusability

2.3.8.8 Reliability vs. Reusability

* If reusability is attained through methods that guarantee proper action over a

wide range of inputs, the software becomes more reliable

* If reusability is attained through a great deal of flexibility and the software is

modified for each application then reliability may decrease

117I.

* If reusability is attained through simplicity of software design and coding then

reliability may increase

* Reliable efficient code seems harder to reuse and reusable code introduces

processing and storage overhead which decreases reliability

2.3.8.9 Testability vs. Reusabiity

* Both reusability and testability are improved with increasing modularity, self-

descriptiveness and simpiicity

* Reusable software ought to be testable. A software program that does not

perform its intend function tends not to be reusable, testability is required to

prove software performs its intend function

* Software testability will be enhanced by improved reusability

$2.3.8.10 Usability vs. Reusability

* Software developed for usability, i.e., to minimize the effort required to learn,

operate, prepare input, and interpret output, also tends to be more reusable

* Software usability will be enhanced by improving reusability

2.3.9 Data Collection

To measure the software reusabiity, the metric worksheet for the software reusability

have been throughly developed. Worksheet data was collected from four major projects.

Some of the modules have been actually reused, some of the modules, designed with

flexibility in mind, all code is maximumaily machine independent, and using top-down

modular design techniques, which are potentially reusable. The reusabiity of software is

mainly concerned with module reusability, so the module worksheet data of the projects

are collected. The number of modules and lines of code of the projects which the

worksheet data have been collected is showed in Table 2.3-Il.

118

TABLE 2.3-11 Worksheet Data Collected

PROJECT 1 1 2 3 41INUMBER OF MODULES 28 I32 I20 23
LINES OF CODE 12720 3265 j 589 7748

Those four projects which the worksheet data were collected have different characteris-
tics of software reusability. One of the projects has employed the modern programming
practices, one of the projects is avionics support software which have been reused in
different applications, one of the projects is developed into two phases due the
requirements been changed, however the phase I software had been reused in the phase 2
development, and finally one of the projects, the software have been reused in the
contract development due to using different kind of computers.

A software program was implemented to compute the reusability metrics from the
reusability raw worksheet data. The reusability module metrics are then obtained. The
unweighted average system total metric score for each criteria, and the system total
metric score for the factor were computed for each project. The results are shown in
Table 2.3-12, where Al stands f or Application Independence, DA for Documentation
Accessibility, FS for Functional Scope, GE for Generality, ID for Independence, MO for
Modularity, SC for System Clarity, SD for Self-Descriptiveness, and SI for Simplicity.

119

TABLE 2.3-12 Metrics Summary (By Criterion)

REUSABILITY PRO3ECT

CRITERIA 1 2 3 4

Al .90 .74 .73 .74

DA .85 .90 .90 .90

FS .96 .52 .48 .50

GE .63 .60 .68 .39

ID 1.00 .63 .74 1.00

MO .85 .71 .66 .67

SC .81 .64 .54 .58

SD .76 .42 .34 .41

SI .68 .64 .40 .37

PRO3ECT

AVERAGE .83 .64 .61 .62

The reusability productivity, i.e. resulting lines of code developed during conversion of

program per mam-month, is also collected for each project. Note the conversion efforts

include the software requirement analysis, program design and implementation (coding).

In Table 2.3-13, the productivity is presented with their corresponding reusability metric

score, and Figure 2.3-4 shows the plot of the productivity versus the reusability factor

metric.

TABLE 2.3-13 Productivity vs. Reusability Metrics

PRO3ECT 1 2 3 4

PRODUCTIVITY

(L.O.C./M.M.) 79 24 12 15

REUSABILITY

METRIC SCORE .83 .64 .61 .62

2.3.9.1 Validation of Reusability Metrics

The reusability rating value is defined as

120

PRODUCTIVITY ye REUSABILITY METRICS

d

/

/

-c / /

Id -

. I

F.2 so 0.0 OL ,70 0.75 0.80 O.0

, REUWIM/BILITY MI[TRI M

SFigure 2.3-4: Productivity vs. Reusability Metrics

121

R I lC/D

where "IC" is the ef fort to convert a program in a reusable application, and I'D" is the

effort to initially develop the program. During the validation of reusability metrics some

difficulty in obtaining the exact rating value for reusable application was experienced.

First, information related to reusable conversion efforts on any particular module was not

available. Second, the efforts spent on improving program algorithms, logics, operations,
and etc. could not be separated from pure reusable conversions. However, the

productivity figures are available for each project, which show that the higher the

reusable metrics score the higher the reusability productivity. In other words, the higher

the reusable metrics score the easier to reuse the software; it takes less time to convert
the program for other application. That is

where"1 M "Iis the average total metric score for reusability, and "K" is a constant Then,

R ==>-I - (K / M)D I -K'/ M

where "K"'I is equal to "KID" and is a constant for a particular project. And,

K==o-(I -)R M

For any particular project, the data on conversion efforts and development efforts provide

the capability to compute the system rating value for reusability. Knowing the system

rating value and the average total reusable metric score, the constant "K"'I can then be

computed. The module rating value can then be computed in the following way:

R (module) ==)-. I - KI M

where I'M" is average module metric score. The increase of productivity due to the

employment of modem programming practices is also considered in the computation of

"IK"'. In Table 2.3-14, the module reusability rating values are presented.

122

L~filr

TABLE 2.3-14 Summary of Module Reusability Rating Values

PROJECT-I MODULE REUSABILITY RATING VALUES

.24 .33 .28 .32 .32 .29 .31 .31 .34 .36 .37 .35 .35 .35 .34 .34

.34 .32 .37 .37 .29 .33 .31 .35 .32 .34 .32 .32

PROJECT-2 MODULE REUSABILITY RATING VALUES

.34 .35 .29 .28 .26 .24 .29 .28 .35 .31 .28 .30 .28 .35 .27 .30

.29 .29 .35 .30 .32 .31 .29 .29 .26 .26 .26 .29 .30 .27 .28 .31

PROJECT-3 MODULE REUSABILITY RATING VALIIES

.21 .19 .28 .25 .20 .22 .20 .26 .17 .24 .31 .29 .19 .18 .28 .16

.17 .28 .28 .27

PROJECT-4 MODULE REUSABILITY RATING VALUES

.25 .26 .24 .30 .25 .24 .30 .23 .23 .24 .24 .25 .26 .26 .28 .26

.26 .25 .25 .22 .23 .24 .28

Based on the above arguments, the least square linear regression on the module rating

value and module metrics is then performed. Routines to perform the analysis were
developed on the VAX 11/780 and plotting is done using "S" and the HP7221 plotter. Since
the metric and quality factor rating were normalized positive values, all data points fall

within the positive quadrant of the graph. We assume:

Y=A+B* X

where "Y" represents the rating value, "X" is the metric score, "A" is the Y-intercept

value, and "B" is the slope. For each set of metric data ("X") the corresponding slope

coefficient ("B") and Y-intercept ("A") are then determined by the least square linear

regression. That is

B = (N * jXi Yi - ZXi * Z Yi) / (N * Z Xi Xi - (EXi)*(.Xi))

A = Mean(Y) -B * Mean(X)

where the r is summed from i=l to i=N and N is the number of samples, Mean(Y) is the

sample average of Y data, and Mean(X) is the sample average of X data. The least square

123

linear regression analysis program has been implemented. The standard deviation of

module metric and rating values, slope coefficient("B"), Y-intercept("A"), standard error

of estimate, correlation coefficient of the linear regression analysis results of Project-i

Metric SC.I are presented in the Table 2.3-15. In Appendix-A, all the least square linear

regression results are presented. In Appendix-C, the rating and metrics data are plotted

with least square linear fit lines, the 90 percent confidence interval for the data is also

illustrated with dashed lines. In Appendix-B, the least square linear regression results on

all four projects combined data are presented.

TABLE 2.3-15 Regression Analysis Example

PROJECT-I METRIC REUSABILITY

SC. I RATING

Average .72 .32

Range .60-.81 .23-.37

Standard

Deviation .059 .029

Slope

Coeff.("B") .40

Y-intercept("A") .041

Std. Error

of Estimate .018

Corr. Coeff. .80

124

2.3.9.2 Observations on Data Collection Results

The results obtained for the software reusability metrics are futher analyzed by

regression analysis. The result in Table 2.3-16 shows those metrics that have correlation

with reusability. Those metrics without any correlation due to no variation in the metric

data, do not show in the Table.

TABLE 2.3-16 Reusability Metrics With Correlation

PROJECT

METRIC 1 2 3 4

AI.3 Y

FS.I Y Y Y Y

GE.2 Y Y

ID.1 Y

ID.2 Y

MO.2 Y Y Y Y

SC.I Y Y Y Y

SC.2 Y Y Y Y

SC. Y Y Y Y

SD.I Y Y Y Y
5D.2 Y Y Y

SD.3 Y Y Y Y
SI.I Y Y Y
51. Y Y Y Y

SI.4 Y Y Y Y

Y: Good Correlation

In evaluating reusability metrics, a number of techniques were utilized, to provide a

desirable balance between inituitive judgment and analytical objectivity. Plots were

prepared of all data collected for each metric, both individually by project, and

collectively, by pooling the project data. When there was sufficient data, regression lines

125
L

for each metric were constructed for the projects individually, as well as pooled. Pooling

* data sometimes increased the correlation for metrics where project data was sparse

* and/or highly scattered. From comparison of graphic presentations of the data, including

the regression lines and the associated confidence bounds, it was possible to classify

certain metrics as too project sensitive, at one extreme, and too insensitive to variation

in metric level, at the other.

An alternative screening approach was also exercised, involving completely objective

statistical analysis. This method involves comparison of the individual project regression

lines for a metric by means of simple analysis of covariance. The details of this technique

can be found in section 11.14 of Statistical Theory and Methodology in Science and

Engineering, Second Edition by K.A. Brownlee (John Wiley & Sons, Inc., New York, NY,

1965).

Essentially, the method tests the hypothesis that the differences between regressions

* obtained either from several individual groups of data or by merging the groups are

attributable to chance alone.

jFor the reusability metrics, tests were performed at the 2.5% level of significance,

* meaning that the hypothesis under test would be falsely rejected with probability not

greater than 0.025. The test was applied to nine metrics regressed with data from four

projects and two each regressed with data from three and two projects, respectively. The

results generally confirmed the findings of the more intuitive graphic approach. However,

in two instances the method accepted the hypothesis under highly counterintuitive

conditions, indicating that its objectivity should not be regarded as an infallible substitute

for qualified judgment.

In Appendix B, plots are presented of the regressions for the metrics selected by the

combined screening techniques mentioned above. Those pooled on the basis of the

analysis of covariance alone are P5.1, GE.2, ID.2, MO.2, SC.4, SDAl, SU., and S1.3.

Additional metrics, pooled on the basis of visual comparisons of project plots, pooled plots,

and plots supplemented with project data for which regressions could not be made but

which correlated well with other pooled data are SC. I, SC.2, SD.3 and 51.4.

126

In Appendix D, a multivariate (multiple regression) analysis is presented. Those metrics
that have correlation with reusability and those that are project insensitive, are included
in the multiple regression equation. This amounts to eleven independent variables
(metrics). The details of this analysis can be found in sections 11.1-11.3 of Applied Linear

Statistical Models, by J. Neter and W. Wasserman (Richard D. Irwin, Inc., Homewood,

Illinois, 1974).

Simply, the technique analyzes the intercorrelations between the metrics by developing a
correlation matrix. The presence of many intercorrelations among the metrics provides a
rationale to screen the metrics to obtain a representative subset. The metrics that are
highly correlated with reusability are also highly correlated amongst each other. This

characteristic may add little to the predictive power of the regression equation.

Therefore, the next step is to find a subset of metrics. The method used is the all possible
regressions search procedure. This involves examining all regression equations containing

the eleven independent variables (metrics) and the selection of the subset of variables
based on some criterion. The R2 and Cp criteria, of the above mentioned text, were used

to develop Table DI in Appendix D.

2.3.10 Conclusions

Software reusability has been measured on four different projects both at the system level
and module level. From studying the trend of software reusability in four different
projects, the conclusion has been reached that the higher the reuseability metrics

scores, the less effort needed to convert the program in reusable application, in

other words, the higher the reusability rating.

From the module level data analysis, the metrics Ai.3, FS.l, GE.2, ID.2, MO.2, SC.l,

SC.2, SC.4, SD.l, SD.2, SD.3, SI.1, SI.3, and SI.A are validated and accepted in the
reusability framework. Other metrics do not show significant variation in different
modules and the linear regression analysis are not performed. Although the reusability

quality measures could be misleading without a large reusability database, based the data

available the results are very promising.

2.3.11 Recommendations

The ultimate reusability quality level is determined by the software development process

itself. The probability of success of achieving reusability at acceptance (application)

127

time is a function of the method used by the development organization augmented by
* reusability quality criteria satification checklists in the development process.

Reusability of software is a measure of software independence, understandability,
modifiability, and adaptability. In other words, reusable software should be environment
independence, that is software system independence, machine independence, and database
system independence; reusable software should be understandable, that is functions
performed can be easily identified, locations of modifications can be easily established,
and changes for reusable applications can be easily made; reusable software should be
modifiable, that is enhancements, extensions and changes can be easily made; and
reusable software should be adaptable, that is can be easily altered to fit different
applications. To achieve the goal of software reusability, it should be follow the reusable
software development guides, start with modular design, and implement in simple and
general fashions.

Building programs from reusable software modules can significantly reduce costs. There
is currently no way of knowing exactly how much DoD spends on 'support' and
'applications' software which had previously been produced for some other program or

-* programs. The first effort to control costs in duplication of software development should
begin with reusing software. With clear software development standards of software
reusabiity for defense systems acquisition, the software development costs resulting from
duplication of software can then be reduced.

Software reusability has been proved to be cost effective. To develop a reusable
software may cost more initially, however in the long run not only reusability benifit but

* also maintainability and portability benefit. Reusability metrics have proven useful in
actual practice. As shown in Figure 2.3-4 the higher the reusable metrics score the more

* reusable the software is, in turn the reusable productivity is higher. To develop the
reusable software, reusable metrics score can be used as feedback to implementors during
program development to indicate the reusabiity of their software product. When the
metric scores for their software modules below the acceptable threshold value, implemien-
tors are instructed to consider ways to improve the software reusabiity. Software

reusability has been proved to be cost effective. To reuse the "old" source code could
save 20-25% of the production cost.

128

To achive the software reusability, first, the reusable software programs should be

* produced. Second, these reusable software programs should be accessed by the potential

software implementors that is the reusable software library should be established. In this

library there will have the data base contain a directory of content, functional

descriptions of content categories and reusability architectures, and detailed descriptions

of the reusable modules and algorithms - including performance requirements, design

documentation, source code and data, verification documentation, timing and sizng data.

The remote, interactive user interface would enable access by projects implementors.

The library would be generated and maintained by a particular reusable software control

group. This group would accept information in the form of code, data, and documentation

from outside groups and organizations and would select and/or modify incoming informa-

tion, certify and release information to the library, maintain the library contents, and

provide training on use of the library. Then the potential benefits of reusable library to a

software project will be realized. That is productivity is increased, the development time

is reduced, the risk is reduced, and the reliability is increased.

2.4 IMPACT ON AMT

* The worksheets of quality metrics; and metrics, tables have been updated. Original metrics

tables do not always give the metrics score between 0 and 1. The corrected algorithms

have been included in the new metrics table. For example, to name a few: SLl(5) now is

corrected as 0.5*(1/11 entrances + I/# exists) so that SUM(5 will never be greater than 1,
MO.2(2) now is corrected as = 1 if module size is less than 100 LOC (lines of code) or =

100/LOG if module size is greater than 100 LOC. and, GE.2(2) now is corrected as IM(+

#/ machine dependent functions) so that GE.2(2) can never have an infinitive answer. The
worksheets statements are also corrected as closer corresponding to metrics tables. In

the new metrics tables and the metrics, worksheets, some are corrections of the original

errors and some are newly added to reflect the new interoperability and reusability

quality metrics. This will have some significant impact on the Automated Measurement

4 Tool. In other words, the Automated Measurement Tool should be updated and the

metrics, computation algorithms used in the Automated Mesurement Tool should be

corrected.

129

2.5 QUALIT Y MEASUREMENT MANUAL ENHANCEMENT

The software quality measurement manual (Vol. 11 Software Quality Measurement Manual)

presents a complete set of procedures and guidelines for introducing and utilizing current

software quality measurement techniques in a quality assurance program associated with

large scale software system developments. The new software quality measurement

manual is more complete and self-sufficient. It contains not only the worksheets but also

the metric tables. The new software quality measurement manual is no-- made more

usable and more expandable; i.e., the foliowing new features are added and improved: -

Worksheet and metrics tables now included as appendices, easily updated, easily used -

* Worksheet reorganized is more parallel in structure to software development phases -

Metrics tables now ordered alphabetically by criteria - Metrics tables now have corrected
metrics computation algorithms - Inconsistencies have been removed (e.g. cross-reference

between metrics tables and worksheets) -Worksheets more closely correspond with

metrics tables.

130

REFERENCES

McCall 79-1 McCall, 3., Matsumoto, M., "Software Quality Measurement Manual",

RADC, Sept 1979.

Bowen 81 Bowen, T., "Conceptual Framework for Reusable Software", Boeing

Document D180-25964-1, 1981

Hall 80 Hall, D., et. al., "A Virtual Operating System", CACM, Vol 23, No. 9, pp.

495-502, Sept 1980

Yourdon 79 Yourdon, E., Constantine, L., Structure Design, Prentice-Hall, Engle-

wood Cliffs, N.J., 1979

Knuth 71 Knuth, D., "Empirical Study of FORTRAN programs", Software Practice

and Experience, Vol. 1, No. 2, pp 105-133, April-June 1971

McCall 79-2 McCall, 3., Matsumoto, M., "Software Quality Metrics Enhancements

Final Report, RADC" Sept 1979

Myers 75 Myers, G., Reliable Software Through Composite Design, Mason/Charter

1975

REFERENCES FOR STATISTICAL METHODS

Lindstone, Harold A. and Murray Turoff (Editors), "The Delphi Method - Techniques

and Applications", Addison-Wesley, Reading, Mass., 1975

Saul. 1. Guss, "Linear Programming", McGraw Hill NY, 1975,

* K. A. Brownlee, "Statistical Theory and Methodology in Science and Engineering",

Second Edition, John Wiley & Sons, Inc., New York, NY 1965

J. Neter and W. Wasserman, "Applied Linear Statistical Models", Richard D. Irwin,

Inc., Homewood, Illinois, 1974,

131

APPENDIX A

Project Regression Analysis Summary

t A-i

TABLE A-I: Project-I Regression Analysis Summary

STATISTIC METRIC

FS. I GE.2 ID.2 MO.2 SC.I SC.2 RATING

AVERAGE .91 .95 1.00 .69 .72 .80 .33

RANGE .50-1.00 .40-1.00 .98-1.00 .26-.88 .59-.81 .59-.92 .24-.37

STANDARD

DEVIATION .18 .14 .00 .19 .06 .11 .03

SLOPE

COEFFICIENT .13 .14 6.19 .09 .39 .22

Y-INTERCEPT .21 .19 -5.85 .26 .04 .15

STANDARD

ERROR OF

ESTIMATE .02 .02 .02 .02 .02 .02

CORRELATION

COEFFICIENT .76 .70 .73 .63 .80 .82

I

A-2

IBM

TABLE A-i: Project-I Regression Analysis Summary(Continued)

STATISTIC METRIC

SC.4 SD.! SD.3 SLI SI.3 S.4 RATING

AVERAGE .71 .58 .86 .60 .31 .80 .33

RANGE .44-1.00 .37-75 .83-.95 .50-62 .00-1.00 .74-.87 .24-.37

STANDARD

DEVIATION .17 .08 .03 .04 .32 .04 .03

SLOPE

COEFFICIENT .12 .16 .29 .19 .07 .39

Y-INTERCEPT .24 .24 .08 .21 .31 .02

STANDARD

ERROR OF

ESTIMATE .02 .03 .03 .03 .02 .03

CORRELATION

COEFFICIENT .74 .44 .26 .30 .72 .49

A-3

I&I1

TABLE A-2: Project-2 Regression Analysis Summary

STATISTIC METRIC

PS. I MO.2 SC.1 SC.2 SC.4 SD.1 RATING

AVERAGE .38 .42 .41 .38 .62 .26 .29
RANGE .06-.50 .33-.43 .33-.79 .07-.75 .40-.87 .04-1.00 .24-.35

STANDARD

DEVIATION .18 .02 .08 .21 .06 .17 .03

SLOPE

COEFFICIENT .10 .75 .25 .1 .012 .07

Y-INTERCEPT .26 -.02 .19 .25 .29 .28

STANDARD

RROR OF

STIMATE .02 .03 .02 .01 .03 .03

ORRELATION-

COEFFICIENT .63 .51 .68 .87 .03 .39

A-4

I

TABLE A-2 Project-2 Regression Analysis Summary (Continued)

STATISTIC METRIC____

SD. 2 SD.3 SU3 SI.4 RATING

AVERAGE .17 .83 .29 .77 .29

RANGE .17-.25 .83-.84 .01-1.00 .67-.84 .24-.35

STAN DARD

DEVIATION .02 .00 .30 .04 .03

SLOPE

COEFFICIENT .96 .85 .09 .36

Y-INTERCEPT .13 -. 42 .27 .02

* STANDARD

ERROR OF

ESTIMATE .02 .03 .01 .03

CORRELATION

COEFFICIENT .72 .08 .90 .42

A-5

7r

TABLE A-3 Project-3 Regression Analysis Summary

STATISTIC ____ METRIC________

FS. I GE.2 10.1 ID.2 AI.3 MO.2 RATING

AVERAGE .29 .76 .85 .62 .97 .32 .23
RANGE .10-.50 .60-.80 .75-1.00 .25-1.00 .69-1.00 .20-.48 .17-.31

STANDARD-

DEVIATION .17 .07 .13 .36 .08 .07 .05

S L O P E. 9. 0. 3COEFFICIENT .90432 .12 .19 .36

Y-INTERCEPT .18 .20 -. 04 .16 .04 .11

STANDARD

RROR OF

STIMATE .04 .05 .02 .02 .05 .04

CORRELATION

COEFFICIENT .66 .06 .86 .89 .35 .53

A-6

TABLE A-3 Project-3 Regression Analysis Summary (Continued)

STATISTIC METRIC

SC. I SC.2 SC.4 SD.1 SD.2 SD.3 RATING

AVERAGE .37 .25 .48 .23 .16 .62 .23

RANGE .32-.43 .04-.60 .43-.56 .01-.48 .12-.20 .51-.67 .17-.31

STANDARD

DEVIATION .03 .13 .03 .14 .02 .04 .05

SLOPE

COEFFICIENT .41 .16 .64 .28 1.81 .86

Y-INTERCEPT .08 .19 -.08 .17 -. 05 -. 30

STANDARD

ERROR OF

ESTIMATE .05 .04 .04 .03 .03 .03

CORRELATION

COEFFICIENT .22 .43 .47 .79 .78 .82

A-7

V . _ _ _ _ __ _ _ _ _ _

U ' " :b. . - r " :

TABLE A-3 Project-3 Regression Analysis Summary (Continued)

STATISTIC ____ METRIC

S1.1 S1.3 51.4 RATING

AVERAGE .40 .05 .74 .32

RANGE .27-.50 .00-.25 .68-.83 .17-.31

STANDARD

DEVIATION .09 .06 .04 .05

SLOPE-

COEFFICIENT .43 .43 .03

Y-INTERCEPT .06 .21 .19

STANDARD

'I ERROR OF)ESTIMATE .03 .04 .05

CORRELATION

COEFFICIENT .82 .58 .04

A-8

TABLE A-4 Project-4 Regression Analysis Summary

STATISTIC ____ METRIC _______

S. I MO.2 SC.1 SC.2 SC.4 SD.1 RATING

AVERAGE .33 .34 .38 .25 .48 .23 .25

RANGE .10-.50 .26-.40 .36-.52 .02-.61 .44-.55 .03-.60 .22-.28

STANDARD

DEVIATION .15 .05 .03 .14 .03 .14 .02

SLOPE

COEFFICIENT .06 .34 .49 .11 .39 .10

Y-INTERCEPT .23 .14 .07 .22 .07 .23

'S j .STANDARD--.1 ERROR OF
ESTIMATE .02 .01 .01 .01 .02 .02

CORRELATION

COEFFICIENT .44 .76 .76 .79 .58 .67

A-9

TABLE A-4 Project-4 Regression Analysis Summary (Continued)

STATISTIC ____ METRIC____

SD.?2 SD. 3 S1.1 SI.3 S1.4 RATING

AVERAGE .34 .67 .37 .05 .70 .25

RANGE .29-.48 .66-.68 .33-.50 .00-.20 .64-.77 .22-.28

STANDARD

DEVIATION .04 .01 .05 .06 .04 .02

SLOPE

COEFFICIENT -. 17 .60 .23 .35 .49

Y-INTERCEPT .31 -. 15 .16 .24 .09

STANDARD
ERROR OF

ESTIMATE .02 .02 .02 .01 .01

CORRELATION

COEFFICIENT -. 33 .14 .56 .92 .84

A-1i0

APPENDIX B

Regression Analysis - Combined Projects

B-1

TABLE B-I: Projects-Combined Regression Analysis Summary

STATISTIC METRIC

FS. I GE.2 ID.2 MO.2 SC.1 SC.2 RATING

AVERAGE .50 .87 .84 .46 .48 .44 .28

RANGE .10-1.00 .40-1.00 .25-1.00 .20-.879 .33-.76 .02-.92 .16-.37

STANDARD

DEVIATION .31 .15 .29 .18 .16 .27 .04

SLOPE

COEFFICIENT .12 .27 .17 .19 .21 .14

Y-INTERCEPT .22 .05 .14 .20 .18 .22

STANDARD

IERROR OF

ESTIMATE .03 .04 .03 .03 .03 .03

CORRELATION

COEFFICIENT .75 .67 .84 .73 .72 .80

B-2

L

TABLE B-I: Projects-Combined Regression Analysis Summary (Continued)

STATISTIC METRIC

SC.4 SD. I SD.3 SI.1 SI.3 51.4 RATING

AVERAGE .59 .33 .76 .47 .20 .76 .28

RANGE .40-1.00 .01-1.00 .51-.95 .27-.62 .00-1.00 .64-.87 .16-.37

STANDARD

DEVIATION .14 .20 .11 .12 .27 .05 .04

SLOPE

COEFFICIENT .24 .16 .36 .37 .13 .56

Y-INTERCEPT .14 .23 .01 .10 .26 -.14

STANDARD

ERROR OF

ESTIMATE .03 .03 .03 .03 .03 .04

CORRELATION

COEFFICIENT .70 .69 .79 .85 .70 .60

B-3

a-.

I'

* (1

4 1

K' - -

APPENDIX C

Reusability Metric Plots

C-1

REUSABILITY METRICS PLOT
C

0Pr~o -1 R - .22 + .12 * FS.i
+ P oJ"-2 Correlation Coefficient - .75

I+ +

0.0 0.2 0.4 0.6 0.O 1.0
METRIC F&. I

Figure c-I Reusability Rating vs. Metric FS.1

C-2

REUSABILITY METRICS PLOT

Legemb R - .05 + .28* GE. 2
0 fieoe- Correlation Coefficient *.67
+ Prejeft-2

APrajea".4

CS

A

-C-

Wmim

REUSABILITY METRICS PLOT

* p.-sjet-1 R - .14 + .17 * 10.2
* P.-Jot-2 correlation coefficient u.84

CS

d

0. 0.2 0.4 0.5 0.5 1.0

MEMIC M0.2

Figure C-3 :Reusablity Rating vs. "Itric 10.2

C-4

REUSABILITY METRICS PLOT
0

0 pro.0tv-1R - .20 + .19 NO. 2
+ PV-.OA,2 Correlation Coefficient *.73

* pf-.j..-3

d

Id

-a-

REUSABILITY METRICS PLOT

0

Cl~~~ ar~m-II .18 + .21 * SC.1I

* P.jeo.-a Correlation Coefficient - .72
A P.J. -4

Cdl

0.0 020.4 0.0 008 1.0

Figure C-5 : Reusability Rating vs. Metric SC.1

C-'

____.......____

REUSABILITY METRICS PLOT

0 pt-0.00%r R a .22 +.14 *SC.2
+ Pv-ojoft,2 Correlation Coefficient *.80* Pr-0.0"@'-

d

+11

d

0.0 0.2 IL.4 0.S 0.6 1.0
MWmIC 9C. 2

Figure C-6 Reusability Rating vs. Metric SC.2

i C-7

REUSABILITY METRICS PLOT

L 3 P ojotv- R - .14 +.24 *SC.4

+ Prjo- Correlation Coefficient -. 70
A Pr..."

C1A

-J-

REUSABILITY METRICS PLOT

R -. 23 +.6 * SO1

+ correlation Coefficient a.69

CS

CS

+ 13

so

d
0.0 0.2 0,4 0.6 I0.6 1.0

Figure C-8 Reusability Rating VS. Metric SD.1

C-9

REUSABILITY METRICS PLOT

R a .01 + .36 * S.3
+ PIm.-2 Correlation Coefficient - .79, Pr.sme-U

i~

dd

3d

C-1

i .'

Ito
C-9•

C. 1

REUSABILITY METRICS PLOT
a 0

+ Ji~ Correlation Coefficient *.85

k d

3d

0. .2040. .

MERI 91.1b

FiueC1Iesblt Rtn s ercS.
I-1

REUSABILITY METRICS PLOT
0

0 ~R - .26 +.13 *S1. 3
+ P.jm-2Correlation Coefficient *.70

A Pr.m@,-

[03

C-1

REUSABILITY METRICS PLOTI 0

0 I~oeeb-1R - -. 14 + .S6S SI.4
+ Preb-2 Correlation Coefficient - .60

. -

m

C-1

I'.'

r +0. 02". 0. • .1 1."

f I

c-i

APPENDIX D

Multivariate Analysis Results

D-1

TABLE Dl: Multivariate Analysis Summary

No. of Coefficient

Independent of

Variables)etermination Standard

(Metrics) Regression Equation (R2) Error

1 .10 + .37 MSI.I .73 .028

2 .13 + .29 MSI.I + .08 MSI.3 .79 .022

3 .10 + .08 MSD.1 + .19 MSD.3 + .07 MSI.3 .84 .019

4 .11 + .04 MFS. I + .06 MSD.I + .16 MSD.3 + .87 .018

.07 MSI.3

5 .11 + .03 MFS.I + .04 MSC.4 + .06 MSD.I + .88 .017

.14 MSD.3 + .06 MSI.3

6 .11 + .03 MFS.I + .03 MSC.4 + .05 MSD.I + .88 .017

.12 MSD.3 + .05 MSIJ + .06 MSI.3

7 .11 + .03 MIFS. + .01 MMO.2 + .03 MSC.4 + .88 .017

•05 MSD.l + .12 MSn.3 + .05 MSI.I + .06 MSI.3

8 .11 + .03 MFS.I + .01 MMO.2 + .003 MSC.2 + .88 .018

.03 MSC.4 + .05 MSD.I + .12 MSD.3 + .05 MSI.

.06 MSI.3

This table contains only the eight most significant n-tuple (n=1,8), with respect to the R2

and Cp criteria.

NOTE: The variability in the rating of reusability is reduced by 88 percent when only five
of the eight potential metrics are included in the equation and the standard error

levels at .017. Little predictive power is gained when a 6th, 7th or Sth variable is

added to the equation.

D-2

""r'" " "'' I : I i I
'

I- --'----

I I

