AD-A138 429 DESIGN AND IMPLEMENTATION OF AN INPUT/QUTPUT INTERFACE 1/"
PROTOCOL FOR THE I..{(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. K N COLE

UNCLASSIFIED DEC 83 AFIT/GE/EE/83D-17 F/G 17/2 NL

1S pas 25
fo sy &
— E m l‘
B I2.o

||||| Ik
—— I 1.8

22 Jes

-

5

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

o
L~ °

DESIGN AND IMPLEMENTATICN
OF AN
INPUT/OUTPUT INTERFACE PROTOCOL
FOR THE INTEL 432/670 COMPUTER SYSTEM

THESIS

AFIT/GE/EE/83D-17 Xenneth N. Cole
1Lt USAF

DTIC

DISTRIBUTION STATEMENT A ELECTE

Approved for public release|] FEB29 1984 ° .
z W

Distribation Unlimited
DEPARTMENT OF THE AIR FORCE B
AIR UNIVERSITY (ATC) -

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

B4 02 29 049

UG FILE COPY

1 AFIT/GE/EE/83D-17

AR P gD, e e e x mp—— e e oo

DESIGN AND IMPLEMENTATICN
OF AN
INPUT/OUTPUT INTERFACE PROTOCOL
FOR THE INTEL 432/670 COMPUTER SYSTEM

THESIS

AFIT/GE/EE/83D-17 Xenneth N. Cole
1Lt USAF

Approved for public release; distribution unlimited.

; DTIC

ELECTE
FEB29 1984

B .

oA At i TR i 0 T T s TR RS

AFIT/GE/EE/83D-17

DESIGN AND IMPLEMENTATION
OF AN
INPUT/OUTPUT INTERFACE PROTOCOL
FOR THE INTEL 432/670 COMPUTER SYSTEM

THESIS

Presented to the Faculty of the School of Engineering
? of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in

Electrical Engineering

by
Kenneth N. Cole, B.S., B.S.E.E,
{ First Lieutenant USAF
' Graduate Electrical Engineering
; December 1983

Approved for public release; distribution unlimited.

This thesis presents the design and development of an
I/0 Interface for a multiprocessor system, using a Computer
Based Message System. This is only the beginning of the
work to be done with the Intel 432 Computer System. The
unique environment provided by the 432's architecture will
entice systems designers to work towards realizing the
system's full potential. I hope the I/0 Interface system
can provide a "stepping stone" towards development of
greater things with the 432 system.
I would like to thank my thesis advisor, Dr. Gary B.
Lamont, for his guidance and, especially, for the freedom he

gave me in this work, I must, also, thank Lt. Col, Hal

Carter for his simple nods, as I tried to explain what I was
doing. They caused me to re-—examine my work, more than
once.

Most of all, I would like to express my 1love and
appreciation to my wife, Mary Anne, and my daughter,
Christina, Their patience and understanding made this
possible. What can I say to someone who smiles, when I tell

her that I won't take anymore classes?

Kenneth N. Cole

Iable of Contents

Page
Preface [] * []] L] L] [] * [] [] . L] L] []] * L] * L d L] o * L] ii
List of Figures . . ¢ ¢ v ¢ s ¢ o o o o o o o o o o o vi
List Of Tables [] L] L] L] L] L] L] L] L] L] * * * L] L] * L d [] [] xi
Abstract * L] L] L J L] L] * L] * L] L] L] [] * ® * [] * [] L] [] L] xiv
Glossary Of TeImsS o« « « & o o o o« o o o o o o o o o o xv
I . INTRODUCT ION e o e o e e » 1 -l

Background . . e o =
Problem Statement . e
Scope and leltatlons .
General Approach . . .
Equipment
Sequence of Presentation

[] [] L] L L] -
* L] L] L] L] L] L]
L] L] ® L] L] .]
[] L] L] * L] L] []
L] L] L] . L L] L]
L] L] L] L] L] L *
L] L] L] L] L] L) L
L] L] L] L] L] . L]

|

L] [] L] L] L] L] L]
[
1
~

NNNNNNNNNN?M DN DN
s

II » REQUIREMENTS L] L] L] L 3 L[] L] * L] * ® . L[] L] * L]
Introduction .,
Conceptual Requlrements of the I/O

Interface Protocol . .
Virtual Operation
Flexibility .« ¢ o o o o
Conceptual Standards . . .

®

.

L]
I

.
« s e a
e o e
e s o o
L] L) . L]
= - 0 0~ b&NH e

Functional Requirements for the I/O
Interface Protocol . . « ¢ ¢ o o -
Relation to the System . « « . . « .
MOdel of Operation e & o e ¢ e 9 e o o -
Functional Description -11
Address Mechanism . « « o« ¢ o o & =12
Format Mechanism . . . ¢« ¢ « « & -13
Control Mechanism « « o ¢ ¢ ¢ « o« =14
Reply MeChanism ® e o o @ o o o @ -15
Functional Standards . « « « o o o o o -16
Uset AddreSS Y Y -17
Message Format ., . « ¢ ¢ ¢ o o & -17
Implementation Constraints . . « ¢« ¢ « & &« -20
Hardwate . . Y . * . . . * - . ° » . 2—20
432 Mzcromalnframe e s e o o o & 2=22
432 Cross Development System ., . 2-23
SOftware e o o . e o o * o e e o . 2-25
432 Software e o o o o e o o o 2=25
Attached Processor Software e o o 2=26
Summary..........-....o..2-27
III. SYSTEM DESIGN ® @6 e e e e e o e e & * o o * o » 3-1
IntrOduCtion e @ o ® e © o e ©& o ® ° o o 3-1
General Design Features . « « ¢« « o ¢ o « « 3=-2
System ProcesSses . « o« o o o ¢ ¢ o o o 3=2
Virtual DeviceS . « o« ¢ ¢« o ¢ o o o » 3=3
System FleXibility ® o o o o e ® o o 3-4

iii

Iable of Contents (continued)

Page

Functional Mechanism Implementation 3-6

Address Mechanism « ¢« ¢« ¢« o« « 3=6

Format MeChanlsm e e e e e o o o o o 3-7

Dev1ce Reply MeChanlsm e o e o ® o o o 3-'8

User Sllblayer e o & © 8 o ® ® e e e e s e » 3-8

User Shell ® e o o o o © o e e & & s o 3-9

Shell e @ ® ¢ o e e e e e o o o o 3-10

Usel'.' Interface ® o o e * e o o o 3-11

SYStem Commands e e e o o e o o @ 3-12

Device Abstraction 3-15

User Agent Sublayer ® o 8 e e e e * ° s & o 3-19
User Shell Agent ® o o e e o ¢ * o ¢ o 3-23 1
DeVice Agents ¢ o ® e o o e e o o o o 3-25 i
Message Transfer Sublayer . . . « « « ¢« « « 3=27 i

Message Transfer System « o 3=-29

Address Manager . . . « « o+ o o o « o 3=31

Route Manager . « « ¢« « ¢ o o o o » » 3-34

CBMS Manager o ® o e e e o e e o = s o 3-35

Summary ® o e & ¢ 8 " & o o o e e 6 o s o = 3-36

Iv. SYSTEM TESTING ® & & o o ®* o & o ° e o o 4~-1

Introduction . . . e o o e 4-1
Environment Valldatlon Test N - i

432 Processor System Valldatzon
User Sublayer Test (432) . . .

~e ® & e s @

432)

User Agent Sublayer Test (432) . -11
Message Transfer Sublayer Test . 4-13
Attached Processor System Validation . 4-15
User Sublayer Test (AP) 4-17
User Agent Sublayer Test (AP) . « 4-18
Message Transfer Sublayer Test (AP) . 4-20
System Inteqration TGSt e 8 e e ® o o o e o 4-‘21
summaty [] L] L] L] L] - * L J . * [4 * L] L] * * L] * 4-22
V. RESULTS, CONCLUSIONS AND RECOMMENDATIONS . . . » 5-1
InttOductlon e o e © o ® © © o ® o ® o o o 5-1
TeBt Results s e e o o o » 5"1
Environment Validation Test e o o o o 5=1
432 Processor TeSt8 . « « o« o o o« o « 5=2
Attached Processor Tests . . « « « » « 5=3
Conclusions e o o« o o« 5=3
Recommendations for Future Study e o o o s 5-6

Inter~Process Communications

PIOjects o o e o o o o 5-7
Intel 432/670 Computer System
PrOjectsoogooooocoons-a

iv

Page

Bibliogtaphy ® 8 & e o o e o 6 & o S & » e E e e e »® BIB-I
Appendix A: Intel 432/670 System Architecture A-l
Appendix B: Object Oriented Systems Design B-l

Appendix C: iMAX 432 Multifunction Applications
Executive................C-l

‘Appendix D: I/O Interface Message Format , D=1
Appendix E: DELNET Network Addressing Scheme ., . . . E-1
Appendix F: Intel 432 Cross Development System

Hardware and Software
Compatibility Guide . . * Y F-l

Appendix G: Ada Compiler Unimplemented Facilities . . G-l
Appendix H: I/O Interface User's Manual BH=-1

Appendix I: I/O Interface Data Flow Diagrams I-1

: Appendix J: 1/0 Interface Software Structure Charts . J-1

Appendix K: Test Results e 8 6 o o o & & o o o o v o K-l

Vita * ® ® L] L 4 * * * L 4 L 4 L4 [J [4 * * * L L] [4 [4 L] . - . V

Accession F?E___#__‘
| NTIS GRAXI
DTIC TAB 3] H

Unannounced O
Justification — i

By

pistribution/
Availsbility Codes |

“iAvail and/or

pist Special

(lﬂ"

Figure Listof Flaures Page
1-1 Intel 432/670 System Processors . . . « e« » 1-2
1-2 ?5£Té§NG 432/670 S¥ste@

rdware Organization . . « ¢« + ¢ o o & 1-3
1-3 ISO Reference Model Organization, 1-4
1-4 Logical Model of a Computer Based

Message System ® & o o o e e o o e s+ o o o 1-5

2-1 IS0 Open Systems Interconnection
Reference Model L] L) L * - L 4 * . * L] L 4 L] L] L] 2-4

2=-2 Message Transfer Protocols in the ISO

Reference Model . ¢« ¢« o ¢ ¢ ¢ o o o o o o & 2-5
2-3 CBMS within the I/0 Interface Protocol . . 2-6
2-4 I/0 Interface Protocol Relationship

to the Other ProtoCols . . ¢ « ¢ o o o o & 2-7
2-5 Model of I/O Interface Protocol Organization
2-6 CBHS Message Sttucture e o » o o e o o s o 2-19
2-7 Intel 432/670 Micromainframe

Hardware Confiquration . . . ¢« &« ¢ o ¢ o & 2-21
2-8 The Intel 432 Cross Development System . . 2-23
3-1 I/0 Interface Context Diagram . « « + « « & 3-5
3-2 I/0 Interface Sublayers within the ISO

Applications Layer e ® o @ e e o o o e o o 3-6
3-3 User Shell Context Diagram . « ¢ ¢ ¢ o & « 3-9
3-4 User Shell Main Program Data Flow 3-10
3-5 Perform_System_Command Data Flow 3-14
3-6 Typical User Agent Receive Procedure

DataFlOW................. 3-19

3=-7 Typical User Agent Send Procedure
Data?low.oooooo...ooooooc 3"21

Figure

3-8

3-9
3-10
3-11
3-12
4-1

4-2

4-3

A-1

A-2

A-3
A-4
A-5
A-6

B-1

C-1
C-2

C-3
C-4

C-5
D-1

List of Fi (continued)

Typical User Agent Initialization
Data FlOW . & o ¢ o o o o o s o o »

I/0 Interface System Organization .
Mts_Receive Data Flow . « « ¢ ¢« « &

Mts_Send Data Flow . ¢ ¢ ¢ ¢ o o o«

I/0 Interface Device Naming Structure

I/0 Interface Software System Structure

Environment Validation Test
Hardware Configuration

Attached Processor Validation Test
Hardware Configuration &

iAPX 432 Minimum System Organization
Two-Level Mapping . « « ¢ ¢ o o o o
GDP Program Structure . . « « « « o«

IP Program Structure « . &

General 432/670 System Configuration

Intel 432/670 Micromainframe
Multiprocessor Configuration ., . .

A Module in the Object-Oriented
Methodology o« ¢ ¢ ¢ o« o ¢ ¢ o & o &

Static Process State Transitions .

Dynamic Process State Transitions
wi th BPM * L] [4 L] * L 4 * L2 [4 * L] L] *

iMAX Storage Management Transitions

iMAX Message AD State Transitions ., . .

432/670 System Bus Hardware Configquration

General Message Structure &

vii

Page

3-22
3-28
3-30
3-30
3-33
4-2

4-15
A-3
A-4
A-9
A-11
A-16

A-17

B-3
C-2

C-6
c-9
C-11
C-18
D=2

Figure

D-2

H-10
H-11
H-12
H-13
J-1

List of Fi (continued)

Encoding Mechanism for Qualifiers and
Length COdes [] - L] L L L] L] L] L] L] - L]

I/0 Interface Message Address Format

Intel 432 Cross Development System
Hardware Environment . . ¢« o ¢ o o &

System 432/670 Standard Configuration

432/670 Cross Development System
Hardware Configuration ., « &«

AFIT/ENG 432/670 Computer System
Hardware Configuration .,

AFIT/ENG 432/670 I/0 Interface System
User View of the I/0 Interface System
User Agent Receive Process Data Flow

Typical User Agent Send Procedure
Data Flow [) L L) L] L] L] L] [] o * L] L] * *

User Shell Operating Hardware
Configuration . « ¢« ¢« ¢ ¢ ¢ ¢ o o o &

Help Command Syntax . « « o o o o o o
Set Command Syntax . « « « o ¢ o o o
I/0 Interface Device Naming Structure
Copy Command Syntax « « o« ¢ o ¢ o o o

432 System Initialization
Structure Chart (0.1) « ¢« ¢ o ¢ « o &

Attached Processor System Initialization

Structure Chart (0.1) ¢« ¢« ¢ « ¢ o o

Main (User Shell) Structure Chart (0.2)

Perform System Command (System Commands)
Structure Chart (2.1) « o o o« o o o o

Page

E-2

H-4

H-6

H-13
H-19
H-21
H-22

H-24

H-36
H-40
H-43
H-44
H-45

J-4
J=-5

J-6

List of Fi (conti 3

Figure Page

J-5 Determine System Command (System Commands)
Structure Chart (2.1.1) ® e o ¢ o o v e e ¢ J-7

J-6 Set (System Commands)
SttuCtUte Chart (2.1.1.1) e e o o o‘o * o o J-B

J=7 Help (System Commands)
Sttucture Chart (2.1.102) e o o o o o o e o J-g

J-8 Copy (System Commands)
structure Chart (2.1-103) e o o o o o ° o o J-lo

J-9 USA_Open (User Shell Agent)
Structure Chatt (6.2) ® o o o o o ® e e e o J-ll

J=-10 USA_Close (User Shell Agent)
StrUCture Chart (6.3) ® ® e o © ® o o e o J‘l2

J-11 USA_Read (User Shell Agent)
StIUCture Chart (604) e ® o o o o e o o o o J-13

J=-12 USA_Write (User Shell Agent)
Structure Chart (6.5) « &« ¢ ¢ ¢ o ¢ o o « J-14

J-13 USA_Page (User Shell Agent)
Structute Chart (6.6) ® o o o e e e e o ¢ o J-ls

J-14 USA_Title (User Shell Agent)
structure Chart (6.7) ® & & o o e o e o o o J-16

J-15 USA_Delete (User Shell Agent)
Sttucture Chart (608) e e & o e e 5 e e e o J-17

J-16 USA_Rename (User Shell Agent)
Sttucture Chatt (6.9) ® ® ® ® e o e e * ° o J-le

J=-17 USA_Reset (User Shell Agent)
Structute Chart (6.10) e 6 ® o o e e o o o J—lg

J-18 USA_Get_Config (User Shell Agent)
strUCture Chart (6.11) e o e o o o o e o = J-ZO

J=-19 USA_Set_Config (User Shell Agent)
Structure Chatt (6.12) e & o e o o e o ° » J-21

J=-20 USA_Test (User Shell Agent)
Structure Chart (6.13) . . ¢ ¢ ¢ ¢ ¢ o o J-22

- IR W O TR P Ao - gy

B

List of Fi (¢ 1)
. Figure Page

J=21 USA_Receive (User Shell Agent)
StruCture Chart (6.101) e & o o ® o o ® o J-23

J=-22 PSA_Receive (Printer System Agent)
Structure Chart (7.1.1) . « ¢ ¢ ¢ o ¢ o o & J-24

J-23 IFSA_Receive (ISIS File System Agent)
StructUIE Cha!t (8.1.1) e @ o o o o o e o o J-zs

J-24 S3CA_Receive (Series III Console Agent)
Structure Chart (9.1.1) . ¢ ¢ o ¢ ¢ « s ¢ & J-26

J=-25 MTS_Receive (Message Transfer System)
Sttuctute Chart (1001'1) o & e o s & o e o J-27

!
1
?
j

i d g

Table
2-1
2-1I
3-I
3-I1
3-III
3-1Vv
3~V
3-VI

3-VII
3-~-VIII
3-IX
3-X

3-XI

3-XII
3-XI1I
3-XIV
4-1
4-II
4-III
4-1IV

4-v

4-V1

List of Tables
I/0 Interface Message Fields
Summary of I/O Interface Requirements . .
I/0 Interface Functions and Reply Codes .
Procedures of the User Interface Package .
Procedures of the System Commands Package
Procedures of the Printer System Package .

Procedures of the ISIS File System Package

Procedures of the Series III
Console Package . « « o« ¢ o o« « o o o o o

Procedures of the User Shell Agent Package
I/0 Interface Replies to Function Requests
Procedures of the Device Agent Packages .

I/0 Interface Function Mapping to
System Devices . . &+ o ¢ ¢ o o ¢ o« o o o @

Procedures of the Message Transfer
System Package « « o ¢ ¢ ¢ ¢ ¢ o ¢ o o o o

Procedures of the Address Manager Package
Procedures of the Route Manager Package .
Procedures of the CBMS Manager Package ., .
I/0 Interface Testing Procedures
Environment Verification Test Procedure .
PRIME Program Software . . « « ¢ o o ¢ «

432 Processor Software Validation Test
Command L i st [] [] [] * L] e [] L] [] [] L] L] [] L] L]

User Sublayer Validation Software (432) .

User Agent Sublayer
Validation Software (432) . . . « &+ o o &

xi

Page
2-18
2-28

3-11
3-13
3-16
3-17

3-18
3-23
3-24
3-25

3-29
3-31
3-34
3-35
4-4

4-8

4-9
4-10

4-12

O o e

List of Tabl (i 1)
Table Page

4-VII Message Transfer Sublayer
Validation Software (432) . . «. ¢« ¢ ¢ o o & 4-13

4-VIII Attached Processor Test Shell Commands . . . 4-16
4-IX User Sublayer Validation Software (AP) . . . 4-17

4-X User Agent Sublayer
Validation SOftwate (AP) * o o e o o° o o o o 4-19

4-XI Message Transfer Sublayer
Validation Software (AP) e o e ® e e o o o o 4—20

e —

4-XI1I System Integration Test Commands 4-21

5-1 Summary of Test Results . . . « ¢ ¢ ¢ ¢ « o« 5-2

5-II Summary of Recommendations
fOt Futute Study e e o e o o e o e ¢ e ¢ o o 5-7

C-I Comparison of Ada Tasks and
iMAx BPM Processes e e o o ® o & o o o e o o C-3

C-I1 iMAX 432 Storage Management Capabilities . . c-8

C-I11 Syncronous I/0 Interface Operations and
Dev ice Types L] L] * . L] L] L) L] L] L] L] L] L 4 L] L) * C-14 '

C-1V Asyncronous Interface Command and |
Reply Cross—Reference . . ¢ « ¢ ¢ o o o o o C-16 {

D-1 I/O Message Fields e e o e © o o e o s ° o+ o D_3

D-I1I I/O Intetface DeVice Names e e o o ¢ o e o o D-ll

|
|
P-I Hardware and Software Compatibility Guide . F=-2

G-I Ada Compiler System Implementation
Restrictions e e ® © & e o e o & o o e ¢ ° » G-4 ’

H-I 432 Cross Development System
VAX/VMS Directoties ® @ o e e 8 * ¢ o o o o ﬂ"9

H-1I 432 Cross Development System
Series III Workstation Software

)
L]
n
1
-
[

xii

Table
H-III
H-1V

B-V1

B-VII
H-VIII
H-IX

H-XI

H-XII

H-XIII
H=-XIV

H-XV

List of Tabl (continued)

I/0 Interface 432 Software Packages

I/0 Interface 8086 Software Packages

I/0 Interface Replies to Function Requests

Mapping of I/0 Interface Commands to
Device Functions . « « « o o « o o &

Printer System Functions
ISIS File System Functions
Series III Console Device Functions

Guidelines for Adding New Devices to
the I/0 Interface . « « o « ¢ o o o

User Shell System Files . .,

Logical Operands for Command
Syntax Definition ¢ ¢« o &

Help Command Response (Default) . .

Help Command Response (Set Command Query)

Help Command Response (Help Command Query)

xiii

Help Command Response (Copy Command Query)

Page
H-16
H-18
H-23

H-26
H-28
H-29
H-31

H-33
H-37

H-39
H-41
H-41
H-42
H-42

\ Abstract

| N

Distributed computer systems have many advantages to
offer in terms of simplicity, efficiency, protection, and
security as well as improved performance from the
concurrency in such a systenm, Communication among
distributed processors is a key issue in the design of a
distributed sy3ten. While the 1lower 1levels of a
communication system are generally defined by the hardware
configuration and thus, implementation dependent, protocols
for communication may be developed at higher 1levels that

are independent of the hardware implementation. Using the

Computer Based Message System under development for the
National Bureau of Standards, this thesis investigation is
an attempt to develop a usable I/0 interface for a
distributed computer system.

The Intel 432 Micromainframe computer system is a
functionally distributed multiprocessor system, The
hardware organization and operating system features 1lend
themselves to the implementation of a message based
communication system among users and devices on distinct
processor.

This specific research effort involves defining the
protocol requirements, as well as designing, implementing

and testing a distributed I/O system communication interface

on the 432 computer system,

ACS: Ada Compiler System.

Ada: A registered trademark of the United States Department
of Defense, Under Secretary for Research and Engineering.
The programming language defined by the document ANSI/MIL-
STD-1815A, dated 22 January 1983.

Ada Compiler System: The Intel Ada language cross compiler
which executes on the VAX-11/780 computer system and produces
object code for the iAPX 432 processor hardware.

Address Manager: The software package containing procedures
which define the mapping of I/0 Interface device names to
their unique CBMS addresses.

Address Mechanism: The method of wuniquely designating
entities of the system which may be source or destination
points for messages.

AFIT: Air Porce Institute of Technology, at Wright-Patterson
A.F.B, Ohio.

AM: Address Manager.
AP: Attached Processor.

Applications Layer: The seventh (highest) layer of the ISO
Reference Model for Open Systems Interconnection.

ASM—-86: An assembler for the 8086 microprocessor. Produces
machine executable code from mnemonic assembly language
instructions.

Attached Processor: A processor element of the Intel 432/670
Micromainframe Computer System, A computer system containing
an Interface Processor board which 1is connected to the
Interface Processor Link board on the system bus of the
432/670 chassis.

CBMS: Computer Based Message System.

CBMS Address: A unique 32-bit designation for the device
abstraction or user process.

Complete Device Name: An I/0 Interface User Shell device

name containing identifiers for all four parts; country code,
network code, host code, and user-id.

Xv

o

- ‘4——---—NU-_--lllIllI--M-l-llI---!--,-.--!.-.--.__‘--‘

Glogsary (continued)
Computer Based Message System: A system of protocols being

developed by the National Bureau of Standards, Institute for
Computer Sciences and Technology.

CON: The 1/0 Interface User Shell device name for the Series
III MDS console using the ISIS operating system.

Control Mechanism: The method of causing the system devices
to perform specific actions.

Country-Code: The designation for the most significant part
of the DELNET network user naming scheme.

Cross Compiler: A language compiler program that executes on
one computer system and produces machine code for another

computer,

Data Element: A part of a field (in a message). A data
element contains four parts: the identifier, the length, the

qualifier, and the data contents.,

Data Plow Diagram: A schematic representation of the
information movement within a portion of a computer program.

Data Link: The second layer of the ISO Reference Model for
Open Systems Interconnection.

Dead Lock: The state of a system when further processing is
not possible, due to interaction between concurrent
processes, (e.g., each of two processes has control of an
asset that the other is waiting for).

Debugger: The designation for the Intel Series III MDS which
is an Attached Processor to the Intel 432/670 system and is
executing the DEB432 software to act as the software
debugging workstation during 432 software development.

Debug Workstation: The console of the Debugger system (Intel
Series III MDS).

DELNET: Digital Electronics Laboratory NETwork.

Device Abstraction: The logical definition of a device by
description of its functions. Also, a set of functions which
define the perception of a device.

DFD: Data Flow Diagram,

xvi

Glossary (continued)
Digital Engineering Laboratory Network: A network system,
currently under development at AFIT, that includes system

nodes implementing the lower three levels of the IS0
Reference Model.

g DOD: Department of Defense. A bureaucratic organization of
, the United States Government,

DSK: The I/0 Interface User Shell device name for the Series
III MDS disk system using the ISIS operating system.

Dummy Module: A grocedure used during testing, to simulate a
procedure that as not been coded. In general, dummy
procedures perform only those actions essential to let the
execution of the test code continue.

Pield: A part of a message. A field consists of one or more
data elements.

Plexibility: The ability of a system design to be gracefully
modified to incorporate new elements,

Format Mechanism: The definition of organization for the
message data structure,

GDP: General Data Processor.

General Data Processor: A processor element of the Intel

432/670 Micromainframe Computer System. A 2-chip
microprocessor in the iAPX 432 microprocessor hardware
family.

Host-Code: The third part of the DELNET network user naming
scheme,

iAPX: Intel Advanced Processor System.

iAPX 432: A familg of microprocessor elements, designed and
manufactured by the Intel Corporation, of Santa Clara,
California,

IDA: The command name, used in Intel documentation, for the
Ada language compiler of the ACS.

IPS: 1ISIS File System.

IPSA: ISIS File System Agent.
iMax

Intel Multifunction Applications Executive,

xvii

Glossary (continued)
Interface Processor: A processor in the Intel 432/670
Micromainframe Computer System that acts as a communication

system between the system bus of the 432/670 and the Attached
Processor system,

I/0: Input and Output.
IP: Interface Processor.

IPC-85: The Integrated Processor Card for the Intel Series
III MDS system, based on the 8085 microprocessor,

ISIS: Intel System Implementation Supervisor, The
operating system designed for the Intel Development Systems.

ISIS File System: The I/0 Interface device abstraction
providing access to the disk file system of the Intel Series
IITI MDS using the ISIS operating system facilities.

ISIS Pile System Agent: The CBMS User Agent for the ISIS
File System entity.

ISO: International Standards Organization.

LINK432: The command name of the linker program of the Intel
432 Cross Development System,

LINK-86: A linker program for the 8086 microprocessor which
creates an executable code module from several related object
code modules,

MDS: Microcomputer Development System, Generally used in
connection with the Intel Series ITI Microcomputer
Development System.

Message: A string of bytes (8-bit data) representing data to
be communicated from one entity to another.

Message Transfer System: The CBMS entity which is
responsible for moving messages between User Agents.

Message Transfer Sublayer: The first (lowest) layer of the
CBMS model. A sublayer of the Applications layer of the ISO

model.
Micromainframe: A registered trademark of the Intel
Corporation, Refers to mainframe-like features of the

microprocessor based 432/670 system architecture.

xvili

Glossary (continued)
MULTIBUS: A registered trademark of the Intel Corporation,

referring to the bus structure defined by the IEEE 796
standard.

MTS: Message Transfer System.
NBS: National Bureau of Standards.

NETO: DELNET Network Code designation for the original
network containing the Intel system.

Network-Code: The second part of the DELNET network user
naming scheme.

Network Layer: The third layer of the ISO Reference Model
for Open Systems Interconnection,

Object-Oriented: A system design methodology that is focused
on using the implementation of system structures as the basic
entity for building complex organizations. Generally
contrasted with methodologies based upon the implementation
of system functions.

PL/M~-86: A high-order language for the 8086 microprocessor.
Similar in organization to the PL/I language.

Physical Layer: The first (lowest) 1layer of the 1ISO
Reference Model for Open Systems Interconnection.

Port: In hardware or software, a point of communications
interface where a device or process expects to receive
information,

Port-Code: The fourth (and least significant) part of the
DELNET network user naming scheme.

Pragma: A compiler command for the Ada language.

Presentation Layer: The sixth layer of the ISO Reference
Model for Open Systems Interconnection.

PRIME: Program name for the prime number computing program,
an example Ada language program, supplied by Intel, for the
432/670 system.

Printer System: The I/0 Interface device abstraction

providing access to the TTY serial port of the Intel Series
IITI MDS through the ISIS operating system.

xix

Glossary (continued)

Printer System Agent: The CBMS User Agent for the Printer
System.

Property List: A field within the CBMS message structure.
The Property List field is not used in the 1I/0 1Interface
message structure.

Protocol: The definition of a systematic structure of
communication,

PRT: The I/O Interface User Shell device name for the
Printer System device.

PS: Printer System.
PSA: Printer System Agent.
Remote System: The outer-most system in a star network of

computer systems or the Attached Processor system of the
Intel 432/670 system organization.

Reply Code: An 8-bit element of the Reply Message set by the
User Agent of the destination device and returned, by the
CBMS system, to the source user process.

Reply Mechanism: The method of providing device status i
information in response to a request for action,

RM: Route Manager.

RM67: DELNET Country Code designation for Room 67 of ;
Building 640 where the Intel systems are located. !

RPB-86: The Remote Processor Board of the Intel Series III
MDS. A special configuration of the 1Intel iSBC 86/12A !
processor board. J

Route Manager: A software package containing procedures
which define the mapping of CBMS addresses to the ports where
the user, or device, expects to receive messages.

providing access to the console of the Intel Series III MDS
Attached Processor using the ISISs operating system
facilities,

Series IIXI Console: The I/0 Interface device abstraction a

Series III Console Agent: The CBMS User Agent for the Series
III Console entity.

XX

Glossary (continued)
Session Layer: The fifth layer of the ISO Reference Model
for Open Systems Interconnection,

Static Task: A task that is started at the time of system
initialization and cannot be destroyed.

S3C: Series III Console.

S83CA: Series III Console Agent.

Task: A single process entity within a computer program.
Top~Down: The sequence of system development beginning with
the most general (highest) concepts and ending with the most
specific (lowest) features,

Transport Layer: The fourth layer of the ISO Reference Model
for Open Systems Interconnection,

UA: User Agent.

UNID: the Universal Network Interface Device. The network
node hardware device of the DELNET system.

US: User Shell.
USA: User Shell Agent,

User Agent: The CBMS entity which provides access to the
message system for the using process,

User Agent Sublayer: The second layer of the CBMS model. A
sublayer of the Applications layer of the ISO model.

User~Id: The least significant part of the I/0 Interface
device name. Also known as the Port-Code of the DELNET
naming scheme,

User Shell: The using process developed to demonstrate the
I/0 Interface,

User Sublayer: The third (highest) layer of the CBMS model.
A sublayer of the Applications layer of the ISO model.

USR: The I/0 Interface User Shell device name for the User
Shell process (i.e., the Series III MDS Debugger console).

Virtual Machine: A sgset of functions which define the
apparent operation of a system.

xxi

Background

Since the development of the digital computer,
researchers in government and private industry have been
trying to improve the capabilities of their systens.
Computers of smaller size and greater power are now
available to the general public. The Intel iAPX 432 family
is an extension of the current state of these developments,

The Intel 432/670 Micromainframe Computer System is a
multiprocessor system containing three distinct processor
types; General Data Processors (GDPs), Interface Processors
{(1Ps), and Attached Processors (APs). The physical
relationship between these three processors is shown in
Figure 1-1. The system architecture forms a network of
processors. Within this network, the GDPs are the central
processors of the system; the APe are the input/output (1/0)
processors for the system, and the IPs provide communication
facilities between the GDPs and APs. All system I/0 is
handled by the APs, which are the external nodes of the
network arrangement. Appendix A, included with this report,
gives a more detailed description of the 432/670 System.

The Attached Processors may be any 8/16-bit processor
system that is capable of MULTIBUS connection with the
Interface Processor (see Appendix A). Different processors

may be used to add nodes with a wide range of intelligence.

1-1

e oa . e © e W ek ik fmmeh e W e - e et

e

? Figure 1-1.

appropriate

Microcomputer

The

f o
1
|
General
Data
Processors
(GDPs)
. I}
<1 Intel 432 Processor to Memory Interface >>
Interface Interface
Processor Processor
! (IP) (IP)
Attached Attached
Processor Processor
(AP) (AP)
i
~ _ E—

system

would

Development

be the

System (MDS)
compatible bus structure and been designed for

of hardware and software systems.

Intel 432/670 System Processors

One approach to providing I/0 facilities for the 432 system,

would be use of a commercial computer system as an AP, An

Series III

which has a

development

Series III MDS has a number of peripheral devices

1-2

s

1
System Processors 1/0 Devices
Printer
1 Mass Storage
GDPs IP je—»{ AP]
4 CRT Terminal
0o
h o
o)

—

Pigure 1-2. AFIT/ENG 432/670 System
I/0 Hardware Organgzation

which may be accegsed through its operating system (ISIS)
driver routines. Software can be developed on this system to
allow the 432 processor to access the existing I1/0
facilities of the Series III MDS through the IP. PFigure 1-2
shows this basic organization of hardware. This type of
resource sharing is one of the primary functions of computer
networks (Ref 31:1-2). It follows, then, that the software
structure, of the 432 system I/0 interface software, should
follow the general software organization for computer
network systems, in order to effectively apply the concepts
of network organization to the 432 computer system.

The International Standards Organization (IS0) has

developed a Reference Model for Open Systems Interconnection

c {cati
[iApplications Layer ——e System User

Presentation Layer

Session Layer

Transport Layer ——e oSt to Host

Network Layer

: Data Link Layer — System ‘
f Interconnection
~ Physical Layer

m_ R oy

Figure 1-3. 1ISO Reference Model Organization

which has been used as a standard for network system

functional organization (Ref 11,30,32). Figure 1-3 shows
the hierarchy of layers in the ISO model. The lowest three
layers (Physical, Data Link, and Network) establish the
interconnection of network nodes. The Transport layer uses
the interconnection facilities of the Network layer to

provide reliable host-to-host communication facilities to

the layers above. The protocol of the Transport layer
defines the mechanism for message based communications
between distinct processors of a network system, The
Session and Presentation layers are, often, grouped with the
Applications layer, as providing services only required for
specific user functions. The Presentation layer provides

data manipulations necessary for interpretation of the

1-4

‘.- N R f e s SRSV TL M e et o

— -
User Posting Message Delivery User
Agent Protocol Transfer Protocol Agent
-~ I System L o I
| I
Posting Delivery
Slot Slot

Message Flow
Originator # Recipient

Figure 1-4. Logical Model of a Computer Based
Message System (Ref 8:3) g

information (e.g., coding or character set transformations).

The Session layer provides for process to process
communication, generally, of longer duration that a simple
message and response system. A minimum communications
system does not require these services, The tasks that use
the communications system, then, are placed in the highest
layer (Applications layer).

One such application of the communication facilities is |
a message transfer system. The U.S. National Bureau of

Standards is working to develop Computer Based Message

s Do o T S

System (CBMS) as a part of a family of computer network
protocols (Ref 8:1-5). Figure 1-4 shows the logical model

of the CBMS. The "User Agent" is a functional entity, that

acts on behalf of a user, helping to create and handle

1-5

b e

-

T e AR Y 10 o s 134

R

messages and communicate with the Message Transfer System.
The Message Transfer System (MTS) is a process that accepts
messages from an originating User Agent and passes them to
the receiving User Agent. The MTS may use the
communication facilities of the 1lower layers to move
messages from one computer system to another (Ref 8:2-3).
There is a similarity of structure between the CBMS
organization, shown in Pigqure 1-4, and the physical
interconnection of the processors of the 432/670 computer
system. The 1SO and NBS standards define an organization of
users which are interconnected by lines of communication,
The architecture of the 432 system is a network of
processors (432 central processor and multiple APs) where
there is a need for communication between system users on
the 432 processor and 1/0 devices on the APs. This suggests
that the development of an interface protocol for I/O for
this configquration. Using the CBMS satisfies the need for
an I/0 communication system and meets the requirements of
the ISO Reference Models structure. Implementation of the
protocol on the AFIT/ENG 432/670 Computer System allows
future users of the system to build on this interface. This
protocol should also provide access to the I/0O systems qf
the Series III Microcomputer Development System (a 452

system AP).

Eroblem Statement

The purpose of this study is to design, implement and

test a message-based input/output interface for the Intel
432/670 Micromainframe Computer System, which provides
access to the I/0 devices of the 1Intel Series ITI

Microcomputer Development System.

g i Limitati

The Series III Microcomputer Development System is used
as the I/0 processor system because it is an available

system which uses the MULTIBUS (IEEE Standard 796)

structured system bus (see Intel System 432/600 Svstem
Reference Manual (Ref 24) for system hardware interface
requirements). The Series III MDS also provides a software
development environment which is compatible with the 432
operating system modules that must execute in the AP (see
Appendix C). Other MULTIBUS-based systems (Ref 18,19) are
not available at the AFIT Digital Engineering lab or cannot
provide an established software development environment with
I/0 devices already implemented.

The design of the I/0 Interface protocol includes the
specification of device abstractions which define each 1I/0
device as a set of operations. Also, the functions
available to users of the interface and the mapping of those
functions onto the operations of each I/O device must be
defined. These definitions create a logical specification
of the I/0 Interface.

Lt e e, AR R RN < A T v el R A e St SeanSile ma

et

£ AT

The system design follows the hierarchial structure of
; the 1ISO Reference Model and the NBS Computer Based Message
System to maintain agreement with accepted standards and the
DELNET system (Ref 32), Structure charts provide for all
I/0 1Interface software and test procedures allow for
validation of each level of the interface program structure.

An I/0 Interface Users Guide is provided (Appendix H),

which includes instructions on the use and operation of the
interface. Also, a procedure is given for implementation of
new devices into the I/0 Interface system. The Users Guide
is intended to be a complete reference for use of the
AFIT/ENG 432/670 Computer System implementation of the 1I/0
Interface.

This implementation provides for only three devices;

the Printer System, the Series III MDS console, and the ISIS

File System. These were selected as the devices most often
connected to the Series III MDS. Therefore, the devices i
most 1likely to be required for 432 system I/O operations. i
However, the common device access structure presented by the
ISIS operating system allows any system I/O device ¢to be '
used in a similar manner (Ref 13:1-1/1-5), Alternatives to !
using the ISIS device drivers would include using another
operation system which provides device drivers or designing
special device drivers within iRMX 86 operating system
structure, These approaches may be used to make

improvements to the system.

1-8

The device driver routines of the ISIS operating system
are used by the 1/0 Interface software to simplify the
implementation. Also, the 432 operating system (iMAX)
functions to create and handle messages and communication
ports are used by the lower level modules of the 1I/0
Interface implementation. This is a divergence from the ISO
Reference Model which specifies the services provided by the
Transport Layer. This decision does not disrupt the
structure of the entire design because the use of these
procedures is restricted to the Message Transfer System
modules which may be modified to use proper Transport Layer
routines. However, the implementation of the Transport
Layer on the 432 system is not necessary for validation of
the 1I/0 Interface Protocol design or use of the interface

systen.

General Approach
The initial approach is to perform a literature search

for information on the design of related systems.,
Familiarization with the Intel 432 Micromainframe system
is emphasized. Past AFIT theses and Intel publications on
the 432 computer system is the starting point for this
study.

It is the objective of this investigation to create an
interface system which may be used in future development
work with the 432, To this end, system flexibility and

complete documentation is emphasized. The interface

1-9

| Atanaae |

protocol is designed to be practical for communication with
the Series III MDS and ISIS operating system functions for
purposes of this study. In addition, considerations are
made for expansion of the protocol to handle future system
needs. Users operating instructions are provided in
Appendix H for both the I/0O 1Interface and the user
interface demonstrating the implementation.

The top-down design philosophy (Ref 38:32,50-176) is
followed in the software development to create a
maintainable system for future users. Also, Object-oriented
design techniques, as described in Appendix B, are used to
create a software organization consistent with the hardware
and software architectures of the 432 (Appendix A) and its
operating system, iMAX 432 (Appendix C).

Testing procedures are also emphasized to provide a
secure foundation upon which new 432 System software
projects may be developed, The testing procedures
documented with this study (Chapter 1IV) are designed to be
usable by future system implementors to test hardware and
software configurations of the 432 System. These tests are
used throughout the stepwise development of system software.
The first test is validation of the 432 Development System
environment. Next, validation tests are performed on the
432 processor and the AP, separately, to validate each
system's hierarchy of software, Finally, the system is

tested in a complete configuration. All the testing

1-10

procedures are documented with sufficient detail to enable

the procedures to be duplicated.

Equipment

The hardware and software used in this thesis effort
are listed in Appendix H of this report. It is available in
the Digital Engineering Lab in building 640 of the Air Force
Institute of Technology (AFIT).

Intel Corporation is working to improve the 432/670

System, Updates to the software and hardware of the system
are provided to AFIT as they become available and future

users of the 432 will probably £find the development

environment much improved over the current release of the

system. However, to enable this thesis effort to progress
smoothly, the software and hardware systems are "frozen" to
the configuration described in the I/0 Interface Users Guide
(Appendix H).

Sequence of Pregentation

This chapter presents an introduction to the work to be

accomplished. Chapter II defines the requirements for the
I/0 1Interface Protocol and system implementation. The
system design and implementation are presented in Chapter
III and the testing procedures are described in Chapter 1IV.
Finally, the test results, conclusions and recommendations

are given in Chapter V.

1-11

Introduction

The purpose of this chapter is to define the h
requirements for the 1I/0 Interface Protocol for message
based communication within a multiprocessor computer system
and the implementation of the interface on the Intel 432/670
Micromainframe computer system (432/670). The requirements

for the I/0 Interface are presented in three parts. The

conceptual requirements for the I/0 Interface are described,
first. Next, the functional requirements are defined
independent of the implementation environment, The

standards which apply are presented at the end of each

section, Finally, the implementation constraints are
described for the hardware and software environment of the

AFIT/ENG 432/670 computer system.

Conceptual Requirements of the I/0 Interface Protocol

The conceptual requirements deal with the
characteristics of an ideal system, The input/output
functions of a system are generally device specific
procedures which are provided by the operating system to
enable the user to perform I/0 functions with simple
commands (Ref 4:2-3). One possible idealization of an I/O
; device 1is a functional view where the device is defined by

the user services. For example, an ideal printer might

B L e

consist of a set of printer-type functions (i.e.,
print_file, print_character, form_feed, etc.) which perform
actions a user would require. The details of how the
printer performs the functions are hidden from the user.
The interface, with the printer functions, is free from
dependency on the characteristics of a particular device.
This virtual operation concept can be extended to the level
above the devices, If all system devices respond to the i
same set of functions, then this common interface appears to
the user as a simple set of general I/0 functions. Yirtual
operation is thus, one requirement of the I/0O Interface, i

An operational system does not, generally, remain
fixed, As the needs of the users change, the system is
modified to meet those needs, The I/0 configuration of the

system may change significantly as new devices are added and

0ld devices are modified or removed. The interface must be
able to accept changes gracefully and not hinder the efforts
to improve the system. Therefore, flexibility is a

requirement of the I/0 Interface,

Yirtual Operation. Virtual operation implies that the
user can communicate with any peripheral device in the
system at the same level and in the same manner. For
example, the user may read a line from a file structured

device as easily as the keyboard input from a terminal. The

characteristic differences of the operations, which depend

on the particular devices, are hidden from the user. While,

2-2

servicing each request, on a various system devices, may
require greatly different functions, the wuser issues a
command that differs only in the device name. This
transparency is essential to realizing efficiency and
effectiveness in the I/O interface. Tradeoffs may be made
to develop workable implementations within the limitations

of the system environment discussed later in this chapter,

Elexibility. Plexibility in system design means
planning for unforseeable events, The increasingly high
costs of system design and development have forced engineers
to consider the life-cycle of new designs more closely. New
systems must be maintainable in their present condition and
be able to grow with the needs of the user. It has become
necessary to build in "flexibility" so that a product can be
used for a variety of tasks with little or no modification.
On the other hand, care must be taken not to over-design a
new system or it will become too awkward and unwieldy for
the user. Too comprehensive a system may not function
efficiently in any application, Therefore, the application
of "flexibility"™ is more art than science.

The I/0 interface protocol must fulfill the needs of
the system with regard to existing or predictable device
interconnections and be flexible enough to allow for
expansion and reconfiguration. While any new system's I/0
needs are minimal at first, the protocol must be capable of

handling peripheral devices whose structure or use 1is not

2-3

e B R b B N Y e S TR S

APPLICATIONS

PRESENTATION

SESSION

TRANSPORT

NETWORK

LINK

HINvIWIeaiTO]IA S

PHYSICAL

Figure 2-1. ISO Open Systems Interconnection Reference
Model (Ref 11:8)

foreseen. Flexibility, as it applies to the I/0O interface,
specifically addresses the ease with which new devices or
new configurations can be adapted to the structure of the
interface. This 1is especially true in relation to the
installation of different processors or peripheral devices
into the system. The protocol must be completely
independent of the type, number, or organization of the
processors on which it operates. However, it must be

capable of working in all future processor configurations.

Conceptual ___ Standards. Communication among
interconnected computer systems can be viewed as seven
levels. The International Standards Organization (ISO) Open
Systems Interconnection Reference Model identifies these

layers of communication protocol (see Figure 2-1). The

2-4

- —_—

(information
exchange)

User Agent ; User Agent
Sublayer Sublayer
(message
Message Transfer transfer) Message Transfer
System Sublayer |Wresessmms——gp]{ System Sublayer
Presentation Presentation

Session Session
Transport Transport
Network Network
Link Link
I Physical Physical

Figure 2-2, Message Transfer Protocols in the ISO
Reference Model

lowest levels (Network, Link, and Physical), are generally
the concern of local area networking. There are existing
standards for system interconnection at these levels (e.g.,
EIA's RS-449, CCITT's X.25). Higher levels are not as well
defined, however, some work is being done in this area by
the 1Institute for Computer Sciences and Technology of the
National Bureau of Standards (Ref 11:8-9). This work
includes several reports on the features and specification
of a computer based message system (CBMS) (Ref 11,10,9,8).

A CBMS is an application level system which allows its
users to prepare, manage, s8send, and receive messages (Ref

8:2-5, 10:2-4). Message transfer protocols are used

2-5

R IR R S P, S ST Tz &

I/0 Interface System

Requests Control

I/0
Interface
Protocol

Peripheral
Device

Responses

Computer Based Message System

CBMS CBMS
Messages Messages

Message
Transfer
System

Figure 2-3. CBMS Within the I/0 Interface Protocol

when a message is moved from one CBMS to another. The model
for a CBMS divides the components of the system into two
classes, User Agents (UAs) and the Message Transfer System
{MTS) . The UAs provide the message creation, display and
management services to the CBMS users. The MTS provides the
functions necessary to transfer messages between different
UAs. Figure 2-2 shows the CBMS classes with respect to the
ISO reference model. (Ref 8:1-6). The use of the CBMS
within the I/0 Interface is shown in Figure 2-3.

2-6

-

Central Processor System
Operating System Protocol User
I/0 Interface cee cee
Protocol
Remote Processor Peripheral
Operating System Device

Protocol

_

Figure 2-4. I/0 Interface Protocel Relationship
to the Other Protocols

Depending upon the size, complexity, and specific
purpose of the network, the three top levels of the 1SS0
reference model (applications, presentation, and session)
may be blurred as to their specific definitions. However,
the CBMS protocols clearly belong above the transport layer
and depend upon the services of that layer to function. A
strict presentation layer, however, is not required (Ref

8:6-7) .

Punctional Requirements for the 1/0 Interface Protocol

The functional requirements for the I/0 Interface
protocol are presented from several viewpoints for clarity.

These views include the protocol in relation to the entire

2=7

L3

system, a model of the protocol operation and the functional

description of the protocol.

Relation to the System. As shown in Figure 2-4, the

I/0 Interface protocol communicates with the operating
system protocols of the central processor and remote
processor. The remote system communicates directly with the

peripheral devices.

Model of Operation. The model of operation for

performing an I/0 function through the remote processor is
illustrated by the following (see Figure 2-5):
1. The user's application program prepares the data and
calls the 1I/0O Interface to create and transfer the
message to the appropriate remote system which controls
the desired peripheral device. The data, destination
address, and other parameters are passed as arguments
of the call.
2. The UA module of the I/O Interface prepares the
message format. The MTS module then determines the
inter-processor port for the given system address, in
this case, assume it is the address of a printer,
3. The MTS then sends the message to the I/0 port
connected with the remote system controlling the
requested printer. Operating system functions are used

for this transfer.

R e ol

1#
HARDWARE

SOFTWARE

Central
System

Remote Peripheral
System Device

Applications Layer
User Sublayer

User Agent
Sublayer

Message Trans
Sublayer

Operating Sy
Support
Sublayer

fer

stem

Drivers

Virtual
Device
Punctions

Drivers

Presentation Layer
Session Layer
Transport Layer
Network Layer

Data Link Layer

Device
Hardware

Physical Layer

N (N

IP Port

2-9

ng

Figure 2-5., Model of I/O Interface Protocol Organization
Within ISO Reference Model !

N

4, The remote system interface reads the control
parameters of the message (MTS level examining the
message envelope) and sends the message to the UA
servicing the process which handles the printer
operation.

5. Upon completion of the task by the peripheral
device, the status of the operation is returned as a
reply message created by the UA. This reply message is
then sent back to the originating process.

6. The User Application Program then receives the
reply and determines if further action is necessary
based on the status of the operation as indicated in
the message. The status information is mapped into the
appropriate error message or status code for the

applications program or operating system.

Figure 2-5 shows this process as a data flow among system
modules. The physical system boundaries are indicated by
vertical dotted 1lines in the figure. The ISO Reference
Model layers are shown by horizontal divisions. The
interface to another network would be done at the Transport
Layer of the 1ISO model. For example, the Digital
Engineering Laboratory's Network (DELNET) provides the
services of the 1lower three layers of the 1ISO model.
Interconnection to this subnetwork implementation would
require a Transport Layer protocol be provided within one

processor system and a I/0 Interface system user entity

2-10

created to communicate with the protocol functions.

Eunctional Desgcription. The functional requirements
for the I/0 Interface are presented as a set of features, or
k mechanisms. Structured Analysis and Design Technique
diagrams (SADTs) and Data Flow Diagrams (DFDs) will not be
used because these requirements are not necessarily
functional in nature. The I/O Interface functional
‘f requirements are characteristic features of the interface
system and may be defined within one physical system or]
several, and within one software module or several. The
next chapter will use DFDs to describe the design of the I/0
interface for the Intel 432 Micromainframe computer system. j

The overall purpose of the I/0 Interface protocol is to i

move data from a central system to a peripheral device,

This is done using a CBMS between the device user process

and the device driver process. The interface function
modules reside in the central and remote processors of the

1 system. The data is routed from one module to another until

the device driver is reached. The reply, giving the status

of the operation, is then transmitted back along the same
path. Thus, one important mechanism of the 1/0 Interface
protocol is the I/0 device addressing.

To have effective communication between a sender and a

receiver, it is necessary to have a well-defined message

—~———— -

system, The structure of the message must be clearly

understood by both the originator and the recipient of the

2-11

message. The sender must be able to create a structured

message so that the receiver can extract the meaning. The

formatting of messages is a necessary mechanism of the 1I/0

Interface protocol.

The receiver of a message may be given control !
information indicating the purpose of the data in the
message. This can extend the usefulness of the of the
message system by allowing multiple formats for data

transfer. When the message arrives at the UA, the receiving

process may use the control information to determine the

format of the remainder of the message and even the function

to be performed by the user process. Thus, a control

mechanism is important in defining the functions available ;
to users of the interface. |
% Likewise, the success or failure of the operation is i

important to the process which originated it. The receiving i

process must have a method of communicating the status of

the operation to the requesting process, The protocol

provides a mechanism for reply, defining the responses which

may be made by a device serving the interface.
The following paragraphs discuss these mechanisms
required for the interface protocol; address, format,

control, and reply.

Address Mechanism. A distinction is made in the

address mechanism between names, addresses, and routes (Ref

9:9). A name is an identifier of a resource. An address is
the specific location of that resource. A route is a path
between two resources. The I/0 Interface implements a
mapping from names to addresses.

The mapping function can be performed by the
originating UAs or by their associated MTS agents. The
information relating the name to its address is stored in a
CBMS directory. This directory is 1logically a single,
centralized database. However, it may be distributed and
partially redundant, That is, the process of looking up a
name may be done in a distributed manner. 1In that way, each
MTS only determines enough of the address to know the next
destination in the route (i.e,, the next MTS or the
destination UA).

Format ___ Mechanism. The message format
specification describes the form and meaning of messages as
they are sent by one CBMS and received by another. Messages
are generally composed of "fields" (segments of a message),
containing different types of information. These types
include names of the originator and receiver, subject data,
gsecurity classification, references to previous messages, as
well as the text of the message. Standard syntax for
messages provides a means for the contents of messages from
one CBMS to be retrieved by another CBMS. Standard
semantics for the different types of information allows

consistent interpretation of the message by the receiver. A

2-13

definition of the message syntax and semantics is required

for the I/0 Interface.

Control Mechanism. The control mechanism is the
highest definition of function in the interface, It may be
used to indicate the active fields within the message, the
particular function requested of the receiver, or the type
of handling required. This control mechanism may be
implemented as a field of the message (UA level) or the
message envelope (MTS level).

If the control is placed on the envelope, then the
information would not generally be available to the UA
receiving the message. The MTS would place the message at
a particular UA depending upon the control field contents,
Where messages were extremely complex, such a system would
allow the UAs to be simplified, each handling only a single
message format or function.

Placing the control field in the message would allow
the control data to be used as a function control for the
user, thus, the message might only consist of the control
field. For example, a request for a "form feed" on a
printer device requires no additional data in the request
message, However, each UA must able to process messages of
all types. While many may not apply to a particular user,
all control values must be handled properly, generating the
appropriate response. This requires greater attention to

generating responses for improper requests.

2-14

The control mechanism must allow for expansion. It
must be defined to allow new functions or message types to
be incorporated within the existing organization. New
formats or functions may be required by future users of the

interface.

Reply Mechanism. The reply mechanism is the

method by which a receiver reports the status of the
requested function to the sending process. A distinction
must be made between the response message, which may be
generated by a receiver as a result of a particular
function, and the status reply message. A "read" request,
for example, will result in a message containing the input
data being sent to the requester. This is only a reply if
the message also c¢ontains status information on the
condition of the read operation.

The status information may be provided to the user by
the UAs or their associated MTS agents. The status
information should be encoded to reduce the length of the
message necessary for the reply. The meaning of the code
should be available to all users from a common “error
message directory”. This directory is logically a single
database, as with the addressing information, and may be
distributed. Each system may then have its own directory of
error messages which apply to those users or devices with
which the system interfaces. Generally, this will require

duplication of most of the directory from one system, to the

2-15

it oty AR B P R i ot 4 P L Bere v aded

iR

next, to allow freedom of communication among the systems.

As with the control mechanism, flexibility in the reply
mechanism is necessary. New uses may require additional
status information to indicate the condition of their
functions. The reply mechanism must be able to expand to
meet future needs.

Functionally, the I/O Interface protocol provides for
addressing, formatting, control, and reply, among the user
processes or devices using the interface, Implementation of
the protocol is restricted by the limitations of the current

432 system at AFIT.

Functional Standards. Standards for the functions of
the I/O Interface are those which apply to Computer Based
Message Systems (CBMSs) in general. The National Bureau of
Standards (NBS) is preparing standards for CBMS systems at
this time. Their work includes a proposed standard for
message formats (Ref 12) and a report on naming and
addressing in CBMS systems (Ref 9). In addition, standards
have been adapted for network addressing using the AFIT
Universal Network Interface Device (UNID) developed here at
AFIT (Ref 32). This latter work is important because it is
proposed that most of the small computers at AFIT will be
connected to a subnetwork of UNIDs in the near future. In
general, these proposed standards for interfacing message
systems place functional requirements on the I/O Interface

design in two areas; user address, and message format.

2-16

'!-lIlIlII-IIlIIlIIlII---ll-llI-!'lIIII-.-Il-I-III---------r

User Address. An address consists of a series of
attributes defining a location relative to the MTS layer. A
general discussion of the attributes which can be used in
addressing and their representation is presented in the
report “"Naming and Addressing in Computer Based Message
Systems," written for the National Bureau of Standards
(NBS), Institute for Computer Sciences and Technology (Ref
9:30-33). The general structure of the addressing
mechanism presented in this document suggests an address
with four attributes to indicate the specific address of a
UA relative to the system; country, network, host, and user-
id. In addition, to have compatibility with the DELNET
subnetwork system proposed for AFIT computer systems, the
addresses structure must match that expected by the
Universal Network Interface Devices (UNIDs).

The addressing system used in the UNIDs is compatible
with the proposed NBS system using country, network, host,
and user-id attributes (Ref 9:33-34, 32:3-5/3-9), In the
UNID system, the user-id is called the "port-code” as a
designation of a particular I/O port address on a
microprocessor. Details of this addressing scheme are

presented in Appendix E.

Message format. A general description of the

syntax and semantics for CBMS messages i1s presented in the
Proposed Federal Information Processing Standard

*Specification for Message Format for Computer Based Message

2-17

B

e

TABLE 2-I

I/0 Interface Message Fields

PR ——
Originator Fields
FROM Required
REPLY-TO Basic
Date Field

POSTED-DATE Required

Recipient Field

TO Required
Message Content Fields

SUBJECT Basic

TEXT Basic

‘-—-—-— .

Systems" (Ref 12:20-56). This section presents the
requirements for the I/0 Interface system message format.

The message fields required for the I/0O Interface are

listed in Table 2-I. These fields include those which are
required by the CBMS format specification and those optional
fields which are necessary or basic to the functioning of
the 1I/0 Interface. Many other fields are possible within
the CBMS format as defined by the NBS proposed standard (Ref
12:15-34) and may be required by a CBMS with a larger scope
of action that of the I/0 interface system developed here,
The CBMS message consists of two types of components,
fields and messages. Fields correspond to the semantic
components described above. A message is simply another
message., The type of field determines its meaning and

organization of its contents. The fields are composed of

2-18

ol oy 5 i < o oD A2 1 il sn” SN A RGN AP L o s) s i sl o5 S

v

FIELD FIELD FIELD cen FIELD FIELD

Message Structure

DATA ELEMENT DATA ELEMENT DATA ELEMENT

Field Structuée

IDENTIFIER | LENGTH QUALIFIER | DATA CONTENTS |

Data Element Séructure
!
L__ | ;~

Figure 2-6. CBMS Message Structure

data elements which have, at most, four components;
Identifier, Length, Qualifier, and Data Contents. Figure 2=~
6 shows the organization of the components of a data
element.

The standard syntax also includes an optional "Property

List" component, which may contain a printing name (label)

for the data element or one, or more, comments. This
information is not necessary for the operation of the 1I/0
Interface and, therefore, use of the "Property List" element

is not required for the implementation.

The 1Identifier is always the first byte of the data
element. It is one octet (8 bits) in length and indicates

the type of the data element, The next component is the

2-19

g e Ak 's 24 A PR or S S TR IRAT T VYRS W2 PRI SR S ,J.uw-“a—:ri-mww‘—-f-r—"

Length. This is an unsigned integer giving the number of

octets that appear following it in the data element. The

Qualifier component supplies additional information to
identify the element and, finally, the Data Contents contain i

the actual data of the element. Details of the structure

are presented in Appendix D.

Imp] tati . traint

The constraints on the implementation of I/O interface
on the 1Intel 432 Micromainframe computer system are
primarily due to its immature state of development of the ‘
system, The 432 system design is continually being updated

as improvements are made to the hardware and software. To

allow implementation design work to be completed, the
configuration of the 432 system must be frozen at some

point. For purposes of this thesis effort, the fixed

eammarmm i e e o

environment is the hardware and software compatible with the
"Release 2.1" hardware components (see Appendix F). The
following sections will discuss the 1limitations of the

hardware and software in this environment.

Bardware. There are two hardware systems to consider
with the Intel 432 system. These are the configuration of f
the 432/670 Micromainframe computer system (432) and the |
components of the Cross Development System (CDS). The
limitations of each)lace constraints on the development of

the I/0 Interface implementation.

s S pagareey... gyt

2-20

)
NP T VI, SN . . - B - - . G A TemmEm e e) []

ro——o 1

{
Storage Memory iAPX 432 iAPX 432
Arrays Controller General General
Data Data
Processor Processor
e
Intel 432/670
Processor to Memory Interface
b) ’ (4
II 11
Interface Interface
Processor Processor
Link Link
\
Intel 432 Proc Link }
iAPX 432 iAPX 432
Interface Interface
Processor Processor 5
!
Debugger 1} System Remote 1} System f
A :‘
Debugger Processor Attached Processor f
Multibus Multibus ;
{) {I | 11 11
8086/12A Peripheral 8086/12A Peripheral
Debugger Device Attached Device
Processor Controller Processor Controller

Intel 432/670 Micromainframe

Figure 2-7.
Hardware Configuration

2-21

432 Micromainframe. The 432 is complex

multiprocessor system. As explained in Appendix A, the

system contains multiple General Data Processors (GDPs) and
communicates with the outside world through Interface
Processor (IP) communication links with Attached Processor
? subsystems (APs), which may be any 8 or 16 bit
microprocessor systems using MULTIBUS, IEEE standard 796,
interface (kef 24:1-3) .
k These AP subsystems perform all the input and output
functions for the 432 computer system, One of the 1I/O
subsystems is the debugger, or Debug Workstation (Ref 22:1-
2/1-4) . This Debug Workstation processor system is not i
usable for any other purpose with the 432 while it acts as
the system debugger. Therefore, implementation of an 1I/0 !
Interface to a functioning device requires a second AP E
subsystem with its own IP system (see Figure 2-7). f
Currently, only one 1IP board has been modified to be E
compatible with the Release 2.1 configuration (Ref 35:A-2/A- ?

4) . Until the second IP board is upgraded, the system is a

constrained to only a single AP system which must be the

debugger. This means that it is impossible to fully test the

interface. There 1is no way to communicate between the 432
processor and an AP system running the I/O Interface
software. Limited testing of the software is still possible

without system interconnection.

2-22

U R S UM COTSLE S TR RY AL NPT DY SRR P R el 4

Sl i

A e 44 e e s e L

-

VAX 11/780
Cross
Development
System

Asyncronous Serial
Link

Intel
Series III
Debug Workstation

f Interface Processor
Link

Intel 432/670

Micromainframe

I — N —————

Figure 2-8. The Intel 432 Cross Development System

432 Cross Development Svystem. The cross

development system for the 432 involves three distinct
computer systems. First, the compiler and linker for the
Intel 432 execute on a VAX 11/780 computer system. Second,
executable code must be transmitted to a debugger system (an
8086~based Intel Series 1III Microcomputer Development
System) for 1loading into the third system, the 432/670
Micromainframe (Ref 22:1-3/1-6). Figure 2-8 shows this
organization. Limitations in the operational condition of
any of these systems constrains the software development

process for the 432,

2-23

Specifically, the Intel Series III, Debug Workstation,
is required to have at least one hard disk system for full
operation, The available systems at AFIT currently do not
have a hard disk. This limits the maximum size of the
executable code file to the space available on an 1ISIS
double density floppy disk (3895 blocks of 128 bytes each).
This limits the development of 432 processor software. The
iMAX operating system run-time environment is nearly 3000
blocks alone, The AP environment is not a problem because
the iRMX 88 run-time system is configurable and need only
contain the modules necessary to support system calls that
are made. Until a hard disk system becomes available, it
will be necessary to minimize the size of the modules which
must be linked together for execution on the 432, The 432
processor software must be designed to be tested in this
limited environment.

These hardware restrictions will eventually be overcome
and, thus, do not permanently negate the value of this
design effort. The hard-disk system has been promised by
Intel Corporation as a part of the 432 system package which
will provide an environment for development of productive
software systems. The Interface Processor board is being
upgraded by Intel technicians and will be returned as soon
as possible. As larger projects require more hardware, the
432 configuration may be expanded to include several

additional 1IPs providing interface with a large variety of

2-24

AP systems.

Software. Software development for the 432 system is

highly constrained. There is only one programming language

available for the 432 processor (Ada). Selection of the
language used with the AP (8086-based system) is limited by
the 4328 operating system (iMAX), which is provided as a set
of PL/M-86 source code programs. In addition, compatibility
must be maintained among the utility programs (compiler,
linker, debugger, and operating system) of the 432 Cross
Development System (see Appendix F). These facts leave
little room for discussion of the optimum programming

language for this work.

432 Software. A cross compiler for the Ada t
programming language is the only compiler available for the
Intel 432 computer. The current version of the compiler
does not implement the full Ada language as defined by MIL-
STD-1815A (Ref 1). The restrictions on the Ada language for
the current compiler are listed in the "Intel 432 VAX Host
Users Guide" (Ref 21:A-1/A-4) and summarized in Appendix G.

Extensions to the Ada 1language which permit more

efficient use of the features of the iAPX 432's instruction
set have been included in the compiler implementation. The
extensions to Ada are detailed in the Intel Reference Manual
for the Intel 432 Extensions to Ada (Ref 27). Generally, it

would be advisable not to use extensions to an established

2-25

L s N s S L L

PRI = A SR

language for the software development to avoid problems with

portability and the non-standard aspects of these
extensions, However, since the compiler 1is not fully
implemented and the system structure is unusual, use of the
language extensions could allow more efficient
implementation of the software. The software is clearly
annotated where these extended features have been used.
Puture implementations and modifications to .the software
will make use of compiler features then available and use

proper Ada langquage constructs to perform these functions.

Attached Procegssor Software. The languages
available for the 8086 Attached Processor system are also
limited. While several compiler systems are available which
create 8086 executable code, the program modules which
provide for control of the Interface Processor are written
in PL/M-86. Also, the I/O functions of the iMAX operating
system are implemented on the AP using the executive
features of iRMX 88 Real-Time Multiprogramming Executive
(Ref 25:I0I-1). The software provided by Intel for linking
with these operating system functions is written in PLM-86.
A compiler system for PLM-86 language is available on the
Intel Series III Development System and programs may be
written which are compatible with modules written in
assembly language (ASM-86) . A linker (LINK-86) is provided
to combine assembled or compiled program modules and library

functions into executable files.

2-26

o b A

Two program languages are used in this thesis effort:
Ada, for the 432 processor, and PL/M-86 for the 8086-based
AP, The top-down approach was used in the development and
testing of the Ada software to permit the greatest possible
progress towards a fully functioning interface system (i.e.,
largest possible executable module that can be transferred
to the Debuggers disk system). Where a choice existed, Ada
language facilities are used, in favor of iMAX operating
system structures, to provide compatibility with future
software developmen§§, using improved Ada compilers., Also,
the structuring of the PL/M-86 software, for the AP, is
similar to the Ada language software (object-oriented) to

maintain system continuity.

Summary

This chapter has defined the requirements for the 1I/0
Interface protocol and the implementation of the protocol on
the 1Intel 432 Micromainframe computer system from the
conceptual and functional viewpoints. These requirements
are summarized in Table 2-II., The conceptual requirements
focused on the virtual operation and system flexibility.
The functional requirements were defined for the 1I/0
Interface protocol including mechanisms for addressing,
formatting, device control, and reply. Finally, the
constraints on implementing the protocol using the Intel 432
Micromainframe were discussed. The next chapter presents

the design for the I/O Interface protocol.

2-27

RN i

TABLE 2-II

Summary of I/0 Interface Requirements

I Concepts

! Virtual Device Operation
System Flexibility

Structural Models

ISO Open Systems Interconnection
Reference Model

NBS Computer Based Message
System Model

Functional Mechanisms

Addressing
Formatting
Device Control
Device Reply

1 Implementation Constraints

Lack of Interface Processor
for Attached Processor System
Lack of Hard Disk for Program
storage in Debugger System
Incomplete Ada Language Compiler

2-28

III. SYSTEM DESIGN/IMPLEMENTATION

Introduction

The first two chapters have presented the objectives
and requirements for the I/0 Interface on the Intel 432
Micromainframe computer system., Chapter I made reference to
two tools for a successful design effort with the 432
system. These are the use of top-down structured i
implementation and the object-oriented design methodology.

This chapter deals with the actual design of the 1
interface functions as implemented in 432 software. The
design 1is approached from the user's viewpoint, dealing

initially with the highest level of functionality which must

be provided to the using process or device. These functions

are referred to as the "services" provided by that 1level.

The design proceeds to the lowest level where iMAX operating

system services are used to perform the required services.

Before discussing the top~down development of the 1I/O

Interface, it is important to look, again, at the concepts

and functions required for the interface. The next section
describes the general features of the system design, which
implement the conceptual requirements, The following
sections, then, present the implementation of the functional

mechanisms of the I/0O Interface and finally, the design of

f the system within the structure of the ISO Reference Model.

et e A ANATSEA T SRORan e 1t o s a8 Ve T 0 e RS s

ciadiliileiiaindas : et e

General Design Featureg

The general design features of the I/O Interface
include the structure of the system processes and the
conceptual requirements presented in Chapter II; virtual
devices, and system flexibility. The method of
implementation for each of these features is presented in

the following paragraphs:

System Procegses. The processes implemented on the 432

processor are created as "static" tasks under the iMAX
operating system. This means that the task cannot be
created or destroyed during system operation (refer to
Appendix C for more information on tasks). This was done
because the Ada language compiler (Version 2,0) does not
support the tasking facilities of the language defined by
the DOD manual (Ref 21:A-1/A-4). The use of the tasking
facilities provided by iMAX (Ref 25:BPM-1/BPM-19) would
create a more powerful environment, but, restrict the system
to using the iMAX process management system with all future
modifications. This is because, in general, it is advised
not to use the tasking facilities of Ada and iMAX together
due to the differences in process data structures (Ref
25:BPM-1) .

For the I/O Interface system, this means that users may
not be added or removed while the system is executing. In a
multiuser environment, it would be necessary to start a

shell process for each user, This was unnecessary for

3-2

et v e e wi e L T T e e

i

TABLE 3-1

I/0 Interface Functions and Reply Codes

q“
I/0 Interface I/0 Interface
Functions Reply Codes
0 Open 0 Ok
1l Close 1 1Invalid Command
2 Read 2 End of File
3 Write 3 Bad Data
4 Page 4 Device Error
5 Title 5 Device Closed
6 Delete 6 Device Offline
7 Rename 7 Device Busy
8 Reset 8-255 Reserved for :
9 Get Config Future Use :
10 Set Config L
11 Test
12-255 Reserved for
Future Use i

S — m— t-

simply testing the I/O Interface. The result is that the

system is strictly single-user. However, on the AP system
there 1is dynamic creation of the tasks for each device. i
This would allow new devices to be added to the system '

during execution. This function may be implemented by

future designers.

virtual Devicges. The implementation of the 1/0

Interface protocol presents a set of virtual devices to the

user., These devices are designated by a name and address
which uniquely specify the location of that device within

the complete system, The user's view of the interface is a

set of procedures which perform I/0 functions. The user

provides the name of the device as an argument in the

3-3

T A AT A el it b "

procedure call, Thus, the set of procedures forms an
abstraction, or virtual mechanism, of the system 1I/0
devices.

Each of these procedures also requires a reference to
an integer variable which may be modified by the routine.
This variable is set to a "reply code” which is a status
indication from the device. Table 3-I shows the available
functions and the reply codes which may be returned. The
virtual device created by the I/O Interface will, therefore,
respond to a known set of requests with a status indication
from a known set of values,

This virtual device representation is implemented in
the User Agent level of the CBMS structure presented in
Chapter II., This is the point at which the user applications
programs would have access to the CBMS communications
system, This organization makes the CBMS system a tool of
the I/0 Interface and allows the user access to only the
functions of the I/0 Interface. The use of the CBMS is
effectively hidden from the user's view. The details of the

implementation are presented later in this chapter,

Sygstem Flexibilitv. Flexibility of the system design
is provided on two levels. First, flexibility is provided
in the software design by using the object-oriented design
methodology described in Appendix B. This modular design
approach protects information about the implementation of

data structures within software modules, This allows the

Request

User
Program

1/0
Interface

Fiqure 3-1., 1I/0 Interface Context Diagram

system designer to modify the implementation with minimum
effects on other parts of the software system (Ref 17:6-23).
The second level of flexibility is in the implementation of
the control and reply mechanisms for the I/0 1Interface.
Essentially, the user's view of the interface 1is the
representation of several copies of a single type of device
which accepts a known set of commands and responds with one
of a known set of replies, Any new device would be used in
the same manner, and thus, be made immediately available to
all users through the same interface. Figure 3-1 shows this
in a context diagram. The I/0 Interface appears to the user
as a single set of functions which allow access to all the

devices in the system.

3-5

-

User Sublayer

Applications Layer User Agent Sublayer

Message Transfer Sublayer

Figure 3-2., I/0 Interface Sublayers within the ISO
Applications Layer

F £ 1 Mechani Imp] tati

Chapter II presented four mechanisms required for the
I/0 Interface; addressing, formatting, device control and
device reply. This section describes the location of these
mechanisms within the organization of the I/0 Interface and
the ISO Open System Interconnection Reference Model.

The 1/0 Interface is implemented within the
Applications layer of the ISO Reference Model, The
requirements for the interface have divided this ISO layer

into sublayers., These sublayers are shown in Figure 3-2,.

Address Mechanism. The addressing mechanism is
implemented in the Message Transfer Sublayer. The mapping
of device names to device addresses, referred to as "CBMS
addresses®, must be used by the MTS procedures to determine
the correct route for the destination requested. The CBMS
address may also be included as a part of the device name
itself according to the NBS report describing naming and
addressing in CBMS systems (Ref 9:23-36). However, the 1I/0

3-6

o Aman T ey Bt e G e e s e e - P

f—— - e S b g

{
i

¢
v
t

Interface only uses the CBMS address to determine the
appropriate route for the message.
The Message Transfer Sublayer is given the destination

of the message in the form of a device name which it maps to

a CBMS address. But the CBMS address is only a binary code
for the precise location of the device and the MTS process
requires the local system address of a communications port 3

where the message should be sent. So there is a second

mapping function which takes the address of the device and
determines the communications port to use for that device
relative to the current location. Both these mapping

functions are presented in detail in the section describing !

the Message Transfer Sublayer. 1

Format Mechanism. The procedures which handle the
format of the CBMS messages are all contained in one
software package in the Message Transfer Sublayer. The
message structure is not available to direct access by any
other procedures. This effectively hides the CBMS structure
from the rest of the system, Message information may only
be accessed by the procedures provided in the package and
any changes to the structure of the messages does not affect
any software outside the package. This is an example of the
object-hiding feature of object-oriented design (see
Appendix B).

Implementation of the format mechanism is presented

with the Message Transfer Sublayer later in this chapter.

3-7

The details of the message structure, the CBMS message

format, are presented in Appendix D.

Device Control Mechanism. The device control mechani- m
is half of the implementation of the virtual device feature
described above. The device control procedures available
have been listed in Table 3-I above. These procedures are
found in the implementation of the User Agent Sublayer of

the I/0 Interface.

Device Reply Mechanism. The device reply mechanism
completes the virtual device implementation of the 1I/0
Interface and is also located in the User Agent Sublayer.
The reply codes returned by the control procedures are also

listed in Table 3-I,

The following sections discuss the design of each
sublayer and the software packages which implement these

mechanisms described above.

User Sublayer
The User Sublayer is the highest level of software in

the I/0 Interface implementation. In fact, this layer is
not actually a part of the interface proper. The User
Sublayer contains the processes and devices which use the
interface for communication. This level is implemented as a
part of this thesis effort to demonstrate the functioning of

the 1I/0 Interface and show, by example, how processes and

Command Response User
Line Line Output
Device

User Shell
Process

Figure 3-3, User Shell Context Diagram

devices interact with the interface. On the 432 processor,
within the User Sublayer, a minimal "shell" process is
implemented which accepts user commands and communicates
with other system devices using the I/0 Interface, On the
AP system, the User Sublayer contains the device

abstractions with which the User Shell can communicate.

Dser Shell. The User Shell is a process which executes
on the 432 processor, There are two significant data
structures in the implementation of the shell. First, the
syntax of the command line is defined and managed by the
procedures of the User Interface package. Second, the
system commands available to the user are defined and
controlled by the procedures of the System Commands package.
The third software package of the User Shell is simply
called Shell and contains the procedure Main which controls

the sequencing of action in the Shell. The Shell package is

3-9

e

r R

Response
Line

Respond
to User

Command, Arg_String
Arg_String_Length

Response

Perform
System
Command

Read User
Command

Figure 3-4., User Shell Main Program Data Flow

presented first, followed by the User Interface and System

Commands packages.

Shell. The shell is implemented as a simple
command processing 1loop. The Shell package of the User
Shell contains only one procedure, Main, which is the
primary control 1loop calling functions provided by other
packages to perform the requested commands.

Pigure 3-4 shows the data flow within the Main program
loop. The Read_User_Command and Respond_to_User procedures
are part of the User Interface package. The

Perform_System_Command procedure in the System Commands

package.

TABLE 3-II

Procedures of the User Interface Package

Read_User_Command
Get_Argument

Read_from_User
Write_to_User
Respond_to_User

User Interface. All interface with the system

operator or user is done through the User Interface package.
The package contains several procedures which create an
abstraction of the user (see Table 3~II); Read_User_Command,
Get_Argument, Read_from_User, Write_to_User, and
Respond_to_User. These procedures hide the method of access
to the user and the syntax of communication with the user.
The Read_User_Command procedure reads a single line of
text from the Debugger console of the 432 system and returns
pointers to two string variables and their respective
lengths; the Command, Command_Length, Arg_string, and
Arg_string_Length. The command word, Command, is the first
word of the input line delimited by a blank space. The
remainder of the input line is placed in the Arg_string.
Generally, this will contain the command arguments and
options requested by the user. The 1lengths of these
variables are provided to make processing the input easier.
The procedure Get_Argument takes Arg_string and

Arg_string_Length as inputs and returns Argument and

3-11

Arqgument_Length to the calling program, The values of
Arg_string and Arg_string_Length are modified to reflect
that the Argument has been removed from the left end of the
string. Get_Argument is used by the procedures within the
System Commands package which require access to the
individual arguments from the input line.

The procedures Read_from_User and Write_to_User are

provided to allow access to the system operator by functions
executing as a result of a previous command. Both
procedures require a pointer to a string variable,

Text_string, and an integer, Text_string_Length, as input

and return the same variables modified by the operation
performed.

The procedure Respond_to_User is a simple modification
of Write_to_User. In addition to writing Text_string to the
user console, the procedure also writes a line~feed
character and a command prompt. The procedure is intended
to be used upon completion of all shell commands, to write
the response message to the console and prompt for the next

command.,

System _Commands. The System Commands package

contains the procedures which perform the requested
commands. The package hides the implementation of the
commands and even their names, which means, all
modifications to the commands will affect only this package.
Table 3-III lists the procedures found in the System

3-12

o e s

¥
R

1
-

TABLE 3-III

Procedures of the System Commands Package

Mr

2.1 Perform_System_Command

2,1.1 Determine_Command
201.1.1 set
2.1.1.2 Help
2.1.1.3 Copy

2.1.2 Create_Response

Commands package. The only System Commands procedure which

may be called from outside the package is
Perform_System_Command.

Perform_System_Command uses the procedure
Determine_Command to select the command to be executed and
call the command procedure to perform the function (see
Figure 3-5). The output, from the command procedure, is a
pointer to a text string, Response, and an integer value,
Response_Length. A null pointer and length of =zero are
returned if the operation is successful. Otherwise, the
string contains an error message. The exact message is
determined from the status returned from the command
procedure execution. The Create_Response procedure takes
the status value as an input and returns Response and
Response_Length. There are three commands implemented to

demonstrate the I/0 Interface. These are SET, HELP, and

COPY,

3-13

Command "function”
Arg_String SET, HELP
Arg_String_Length or COPY

Arg_String
Arg_String_Length

Determine
Command

Create
Response Response,
Response_Length

Figure 3-5, Perform_System_Command Data Flow

The SET command allows the user to modify system
parameters during execution. The primary uses affecting the
1/0 Interface system are setting the time (used by the UAs
to time stamp the messages) and setting default device
naming for source and destination arguments. The latter
allows the user to give the only the local device name and
the system will attach the more significant members of the
device name from the default selected.

The HELP command is implemented in a minimal form ¢to
remind the user of the commands available and their
respective syntax and semantic requirements, The procedure
implementing the command contains the text responses as

constant values and returns a pointer to the proper text

3-14

B L TP AP Y et T Ty

l string when that information is requested.

; The COPY command demonstrates the use of the 1I/0
Interface. This command calls the services of the User
Shell Agent package to perform the information transfer]
requested. First, the source and destination files are

opened. Then the source is read and the data is written to

A TITR i T v—— £ YD

the destination. Finally, the source and destination
devices are closed and a status is returned to the r
Perform_System_Command procedure. After each step (which is
actually generating a CBMS message) the procedure waits for
a reply message indicating the status of the operation. If

an error 1is indicated the process performs the necessary

TPV T B ey wim, Y vitem

operations to close any files and return an error status.

Revice Abstraction. System devices are also users of
the I/0 Interface system. Unlike the User Shell, they will

only respond when they receive messages from other system
users. These devices are provided as a package of functions

which establish the characteristics of the device,. This

abgtraction of each device is a functional view of the

services provided by the implementation of the device.

Thus, the I/O Interface devices are implemented as a package
of device procedures which call upon the device . driver
routines of the operating system to perform the function,

Each device package also provides a test procedure which

f
)
E
g,
!

simply returns a valid status if the device is active and

ready to receive messages. The device packages include a

3-15

TABLE 3-IV

Procedures of the Printer System Package

Ps_Open
Ps_Close
Ps_Print

Ps_Form_Feed
Ps_Title_Page
Ps_Test

Printer System (PS), the ISIS File System (IFS), and the
Series III Console (S3C).

The Printer System provides six procedures for users of
the printer device; Ps_Test, Ps_Open, Ps_Close, Ps_Print,
Ps_Form_Feed, and Ps_Title_Page. These are listed again in
Table 3-1IV, The Ps_0Open and‘Ps_Close are used to allocate
and deallocate the use of the device, respectively. While
the printer is in use, all messages from other users, excepF
requests for Ps_Test) are not accepted. The Ps_Write
procedure takes two inputs, Buffer_Access and Puff_Size, and
calls the device driver to write the contents of the buffer
to the attached device., The Ps_Form_Feed requires no inputs
and simply generates the proper control signal for a
formfeed by the device. Likewise, the Ps_Title_Page
procedure generates a control for a formfeed, but, then
creates a title page from information in the message and

generates another formfeed control upon completion. All the

PS procedures return a status value indicating the success

TABLE 3-V

Procedures of the ISIS File System Package
m»

1l Ifs_Open

2 Ifs_Close
3 Ifs_Read

4 Ifs_Write
5 Ifs_Delete
6 Ifs_Rename
7
8

or failure of the operation.

The ISIS File System provides services for file
handling operations. Table V lists the procedures in the
IFS package, These procedures include Ifs_Read, Ifs_Write,
Ifs_Delete, Ifs_Rename, Ifs_Open, and Ifs_Close, All these
procedures require a file name, File_Name and
File_Name_Length, as input and return a status value for the
operation. In addition, the Ifs_Read and Ifs_Write
procedures require a pointer to a data Dbuffer,
Buffer_Access, and an integer length, Buff_Size, for the
data. The Ifs_Rename procedure also requires a pointer to a
second file name, New_Name, and its length, New_Name_Length,
These procedures call ISIS operating system procedures to
access the file device drivers, The Intellec Series III
Microcomputer Development System Programmer's Reference
Manual®™ (Ref 13) gives detailed information on access to

these executive procedures. The IFS package can handle up

3-17

P . i

TABLE 3-VI

Procedures of the Series III Console Package

5.1 S3¢c_Read
5.2 S3c_Write
5.3 S3c_Clear_Screen
5.4 S3c_Test

S — S

to 4 files open simultaneously. The Ifs_Open and Ifs_Close
procedures maintain a table of the files available for
access at any time and the user allocated access to each
file. Thus, commands may be given to transfer data between
files or multiple users may access files simultaneously
(obviously, not necessary for this single-user
implementation of the User Shell system). The Ifs_Reset
procedure closes all files without regard to the user
allocation. Therefore, Caution must be used when requesting
a device reset function,

The Series 1III Console device package contains only
four procedures; S3c_Write, S3c_Read, S3c_Clear_Screen, and
S3c_Test (see Table 3-VI). The S3c_Read and S3c_Write
procedures require buffer information, as with the IFS and
PS packages, and all procedures return status information.
The S3c_Clear_Screen procedure generates the control input
necessary to cause the console CRT screen to be cleared.
All these procedures are implemented by calls to ISIS

operating system procedures.

3-18

Receive Port Address

CBMS
Read
Message

CBMS
Message

Receive
Message
(iMAX)
Function_Args

Device_Name

"perform
device
function®

Status

CBMS
Create
Message

CBMS_Message

Figure 3-6. Typical User Agent Receive Procedure
Data Flow

User Agent Sublayecr.

Each User Agent package may be considered as two
distinct sections. First, the Receive Section contains a
single process which handles the messages sent to the UA,
This process calls upon the services of the device
abstraction to perform the function requested in the
message. The following sequence of steps are performed in a

continuous loop (see Figure 3-6):

l. Wait at the receiving port for a message to arrive.

3-19

the
The
contains

messages

it - e - -

2, Use the MTS sublayer procedures to read the message.
:' 3. Use the User sublayer procedures to perform the
’ function,

4, Use MTS sublayer procedures to create a reply
message depending upon the status returned by the user
or device procedure.

5. Send the reply to the MTS sublayer for routing to

originating UA,
other part of the UA is the Send Section which
the procedures called by the device or user to send

to other devices, These procedures perform the

following sequence of tasks (see Figure 3-7):

1. Use procedures of the MTS sublayer to create
the message.

2,
3.
4.

Send it to the proper UA.

Wait for a reply message indicating the .result,

Return the operation status to the calling

user or device.

In

systens.

the AP, the UAs for each device are single sided

That is, they have only the Receive section of the

User Agent package because they are "passive" users. an

Factive"”

other

user is capable of creating requests for action by

devices in the I/O Interface system, A ‘"passive"

user can only wait to receive messages and act upon the

request.

The User Shell, however, is an active user and its

UA, User Shell Agent (USA), has both the Receive and Send

sections.

There are two communications ports implemented with

each UA,

The first is the receive port where messages for

3-20

Src_Name
Dest_Name Reply Port Address

Function_
Args

AM
Get Full
Name

Receive
Message
(iMAX)

CBMS
Create
Message

Src_Name
Dest_Name CBMS_

Message

CBMS_
Message

CBMS
Read
Message

Figure 3-7. Typical User Agent Send Procedure Data Flow

that device are sent by the MTS. The second is the reply
port where only the reply messages intended for that UA are
sent., This double port system allows a user to send a
message to itself or, in the case of the 1IFS, send
information from one file to another. Without this systenm,
a form of "dead lock" would occur when a user waits for a
reply from itself, The alternative would be a second level

of queues which would mean more processing overhead and

3-21

T LK e e ————,

B K~ s

T-"--------- —

Device Name Receive Procedure

e

AM
Lookup
Address

R

CBMS_Address Port_Address

RM
Set
Route

Port Address
Data Base

Figure 3-8. Typical User Agent Initialization ;

Data Flow !

almost twice the number of port implementations which would
require large memory allocations (Ref 25:COM-2,S1Z-3). !
Each UA package contains an initialization procedure §

which uses iMAX procedures to create the communication ports

necessary for the user. The initialization procedure also

starts the receiver process which handles incoming messages

for the UA. Figure 3-8 shows the data flow in the
initialization procedure for a typical UA. The process of
creating the communications port would need to be done twice

in an active UA having a receive port and a reply port,

3-22

.
sl . . . e e P e

m;:‘.‘_‘.’; m

TABLE 3-VII
Procedures of the User Shell Agent Package
1m o

.1 Usa_Init
6.1.1 Usa_Receive
.2 Usa_Open
.3 Usa_Close
.4 Usa_Read
.5 Usa_Write
.6 Usa_Page
.7 Usa_Title
.8 Usa_Delete
.9 Usa_Rename
.10 Usa_Reset
.11 Usa_Get_Config
.12 Usa_Set_Config
.13 Usa_Test

AN NN O

User Shell Agent. The User Shell Agent package is the

only complete UA implementation in the I/O Interface system
on the 432 Micromainframe, In particular, this means that
it contains the only implementation of the Send section of
the UA. This section of the package contains a procedure
for each 1I/0 Interface function that is available to the
user. All of these procedures require the destination
device be designated by Device_Name and Device_Name_Length
as inputs. The procedures also require inputs corresponding
to the function requested. For example, the Usa_Test
procedure requires no additional inputs, but, the Usa_Write
and Usa_Read procedures needs information about a buffer of
data, Buffer_Access and Buff _Size., Each of these procedures

uses the MTS sublayer functions to send a message to the

3-23

TABLE 3-VIII

I/0 Interface Replies to Function Requests

“P
I/0 Interface Reply Codes
0 1l 2 3 4 5 6 7
I/0 Interface|l Ok Invalid End of Bad - Device -
Function Command File Data Error Closed Off Busy
Open X X X X
Close b 4 X X b 4
Read b4 X X X X X X X
Write b4 X X X X X
Page X X X X X X
Title X X X X X X X
Delete X X X X X
Rename X X X X X X
Reset b4 p 4 X X X
Get Config X X
Set Config x X X X X X b 4
Test X X X

A

device requested and then wait for a reply which indicates
the status of the operation, Table 3-VIII shows the possible
reply indications which can be received for each function
request, The possible replies depend to some extent on the

existence of a device which can perform the function

requested. In the case of the Usa_Set_Config procedure,
none of the devices implemented will actually allow a
modification to their configuration. This is a limitation
of the ISIS operating system and the Series III
configuration (Ref 13:2-1/2-5). However, the Printer System
device and the Series III Console device respond to the

function with a valid status, as if the configuration were

3-24

B i L T TP RS M SOy SR Y - e

.
- TR SR S kst
_ andion 1, Snuiaziba el 2L il Y L PR

e —_———

TABLE 3-IX

Procedures of the Device Agent Packages

Printer System Agent Package
7.1 Psa_lInit
7.1.1 Psa_Receive

ISIS File System Agent Package
8.1 Ifsa_Init
8.1.1 Ifsa_Receive

Series III Console Agent Package
9.1 S3ca_Init
9.1.1 S3ca_Receive

modified. This is done because there is nothing that would

result from a change in configuration of these devices which
would be necessary to the requesting user (User Shell).
Only the device needs to know the actual configuration,
Thus, the possible replies for a configuration request
include "Ok"™ and "invalid command"™ (the file system does not
change configuration). On the other hand, none of the
devices will accept a request for configuration information
(Usa_Get_Configqg). Therefore, the only reply possible is an

indication of an invalid function request.

Device Agents. Device Agents are the UAs for the I/0
Interface system devices, These are implemented on the AP
system. Each device has its own UA or Device Agent,
Therefore, there is a Device Agent for the Printer System,

called the Printer System Agent (PSA), the ISIS File System,

3-25

TABLE 3-X

I/0 Interface Function Mapping to System Devices

W“ “,
I/0 Interface Device Functions
Function Ps IPS S3C
Open Open Open 2
Close Close Close 2
Read 1l Read Read
Write Print Write Write
Page Form Feed 2 Clear Screen
Title Title Page 2 Clear Screen
Delete 1 Delete 1l
Rename 1 Rename 1l
Reset Close Reset 2
Get Config 1 1 1
Set Config 2 1 2
Test Test Test Test

1 - Not Implemented, UA replies "command invalid"
i 2 - Not Used, UA replies "ok"

called the ISIS File System Agent (IFSA), and the Series III ;

Console, called the Series III Console Agent (S3CA). The
procedures in these packages are listed in Table 3-IX.

‘These Device Agents map the I/O Interface functions

into the device functions of each device abstraction. For
example, the I/O Interface "page" function is mapped to the
Printer System procedure Ps_Form_Feed and the Series III
Console procedure S3c_Clear_Screen but has no counterpart in
the ISIS File System and would cause a reply message
indicating an invalid function request for that device.

Table 3-X shows a complete mapping of the I/O Interface

3-26

. e e v B aad i © Al

functions into each device abstraction.

Since the devices are passive users, their UAs contain
only the Receive section of the UA., Each Device Agent has
only one procedure which may be accessed by processes
outside the package. This is the 1Init procedure, The
purpose of this procedure is to initialize the
communications port necessary for the UA to receive messages
and start the Receive procedure which waits at the port for
messages as shown in Figure 3-8 above. The Init procedure
calls iMAX AP executive to create the port and then begin

execution of the Receive process (Ref 25:10I-5/101-7,I0I-

29/101~-35).

The Receive process is not executable by procedures
outside the package. The procedure implements an
abstraction of the device within the domain of the 1I/0
Interface. That is to say, the Receive procedure properly
handles all the functions defined by the I/0O Interface

protocol and generates a reply message indicating the

results of the function. Depending upon the particular

device, the procedure either calls a procedure from the User
Sublayer implementation of the device or replies directly to
the originator of a message requesting a function which
cannot be performed by the device or user at that device

agent.

Message Trangfer Sublaver

The Message Transfer Sublayer is the lowest level of the

3-27

Printer System
Agent

ISIS File
System Agent

Series III
Console Agent

User Shell
Agent

432 Processor System Attached Processor System

~

Figure 3-9. 1I/0 Interface System Organization

I/0 Interface system implementation. The sublayer exists in

both the 432 processor system and the AP system. A
functionally identical set of programs must exist in both
systems, There are four packages which form the Message
Transfer Sublayer; the Message Transfer System (MTS), the
Address Manager (AM), the Route Manager (RM) and the
Computer Based Message System Manager (CBMS). The Message

Transfer System package contains the process for controlling

the message movement among the 1local UAs and passing
messages intended for remote UAs to the proper MTS port (see
FPigure 3-9). The Address Manager package contains the
procedures for mapping the device names to CBMS addresses

and the Route Manager provides the routing function by

3-28

TABLE 3-XI

Procedures of the Message Transfer System Package

J

10.1 Mts_Init
10.1.1 Mts_Receive
10.2 Mts_Send

mapping the CBMS addresses to the communications port where
that device receives messages, The CBMS Manager package
contains procedures for creating and accessing the
information in CBMS messages with the I/0 Interface format
described in Chapter II. Each of the MTS sublayer packages

is described further in the following sections.

Message Transfer System. The MTS package is similar to

the UA packages and contains a send procedure and a receive
procedure (see Table 3-XI). Like the UA initialization
procedures, the MTS_Init procedure creates the port where
the messages will be received and starts the procedure
MTS_Receive (see Figure 3-10). The MTS_Receive procedure
performs the following tasks in a continuous loop:

1. Wait to receive a message at the MTS port.

2. Use CBMS procedures to read the destination device
name,

3. Use AM procedures to look up the address of the
device,

4. Use RM procedures to look up the route for the
device.

5. Send the message to the appropriate UA or MTS port.

3-29

L— - P P

Y T

MTS Port Address

CBMS
Unwrap

Receive
Message
(iMAX)

CBMS_Message

Dest_Name
CBMS_Message

Send
Message
(iMAX)

AM
Lookup
Address

Port
Address

CBMS
Address

Figqure 3-10. Mts_Receive Data Flow

Src_Name
Dest_Name

CBMS_Message
CBMS_Message

Send
Message
(iMAX)

CBMS
Wrap

MTS Port Address

Figure 3-11. Mts_Send Data Flow

3-30

.

BT e

e~

TABLE 3-~XII

Procedures of the Address Manager Package

A b

11.1 Am_Init

11.2 Am_Set_Default
11.3 Am_Lookup_Address
11.4 Am_Get_Full_Name

J* N 4

The send procedure, MTS_Send, requires the source and

b destination device names, Src_Name and Dest_Name, and access
to a message. The procedure creates the CBMS message
envelope, which contains the source and destination device

names, and moves the message to the MTS receiving port (see

Figure 3-11).

Address Manager. The Address Manager package provides |

services necessary to maintain a system for mapping device

names to CBMS addresses. The four procedures in the
Address Manager package are listed in Table 3-XII. The
Am_Init procedure initializes the mapping structure with no

entries, In this initial state, all requests for addresses

would be returned with the status indicating that the device

name 1is invalid. The Am_Lookup_Address procedure requires
the name of the device, Device_Name, and its 1length,
Device_Name_Length, and a pointer to storage for the
CBMS_Address. The procedure returns with CBMS_Address
pointing to the address for the device name given, The

Am_Set_Default procedure accepts a Device_Name and its

3-31

length as input and stores them for use in creating the
complete device name for a given reference by
Am_Lookup_Address.

The Am_Get_Full_Name procedure takes a device name,
entered by the user, and uses the previously defined
Default_Name to determine the "complete" device name. The
complete device name contains four parts; Country, Network,
Host, and Device. 1In addition a file name may be specified
as a fifth part of the source or destination device name.

The Country and Network portions of the name are each
4-character designations which, together, specify a node of
the global network system. The 432 system would be
connected to one port of such a node and, so, the Country
and Network portions of the device name are constant. The
I/0 Interface implementation of the Address Manager package
recognizes only one value for each of these; "RM67" for
Country and "NETO" for Network. If additional systems need
to be identified, the package can be modified, but, only the

Address Manager package needs to be changed.

The Host and Device designators are 3-character names.
The Host name specifies either the 432 processor ("432") or
the Attached Processor ("MDS"). The Device portion of the

name may indicate the User Shell on the 432 processor

e -

("USR") or the Printer System ("PTR"), the Series III
Console ("CON"), or the ISIS File System ("DSK") of the AP

system, Pigure 3-12 shows the relationships among the

3-32

S
Country Network Host Device Eile Name
432 USR
RM67 e=~== NETO PTR
MDS CON tF0: file
bSK
:Fl: file
e ——————— e e——————

Figure 3-12. 1I/0 Interface Device Naming Structure

device names,

The format for the name is also established within the
Address Manager Package. BEach of the major portions of the
name is separated by a slash ("/"). Thus, the complete name
for the I/O Interface Printer System device would be:

"RM67/NET0/MDS/PTR".
When necessary, a file name is separated from the device
name by another slash. The structure of the file name is
defined by the ISIS system user's manuals (Ref 13:2-3). So,
the complete name for a file called "test.txt"™ on drive
"sF0:" of the ISIS File System would be:

"RM67/NET0/MDS/DSK/:F0:TEST.TXT".

More examples of this format are given in the I/0 Interface

Users Manual (Appendix H).

3-33

L R R R L et e L em . Treead e B i

TABLE 3-XIII

Procedures of the Route Manager Package

12.1 Rm_Init
12.2 Rm_Set_Route
12.3 Rm_Lookup_Route

.

The actual implementation of the mapping structure is
not accessable to any procedure outside the AM package.
Thus the package could implement a tree structure to provide
address mapping (in a larger system, this may be more
efficient), however, for the present configuration of the
Intel 432 system, a simple table structure is adequate. The
size of the table is a constant in the package. Therefore,
any increase in the number of entries (system devices)

requires a modification of the code.

Route Manager. The Route Manager package provides
access to the data structure which maps the CBMS address of
a device to the next communications port which should
receive the message, The procedures in the package are
listed in Table 3-XIII. The Rm_Init procedure initializes
the data structure to have no entries, The Rm_Set_Route and
Rm_Lookup_Route procedures must have complete device names
(from the Am_Get_Full_Name procedure) for proper
referencing, The Rm_Set_Route procedure is called by each
UA, during its initialization, with the CBMS address and

3-34

AD-A138 423 DESIGN AND IMPLEMENTATION OF AN INPUT/OUTPUT INTERFACE a/l‘
PROTOCOL FOR THE I..{U} AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB DH SCHOOL OF ENGI. K N COLE

UNCLASSIFIED ODEC 83 AFIT/GE/EE/83D-17 F/G 17/2 NL

ll22

=
Jj.25

FFFTEEEE

EEEE
EEE

rrr
r
rs

_%
N

= ==
il= §=

.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A ﬁ

TABLE 3-XIV

Procedures of the CBMS Manager Package

13.1 Cbms_Create_Message
13.2 Cbms_Read_Message
13.3 Cbms_Wrap_Message
13.4 Cbms_Unwrap_Message

communications port address to be entered into the
structure, The Rm_Lookup_Route procedure is used by the
Mts_Receive procedure to determine the next communications
port for a message.

Like the Address Manager data structure, the Route
Manager structure is not directly accessed by any routines
outside the package. The internal structure of the data is
a simple table of a fixed size, However, unlike the Address
Manager system, the table of routes is not complete, For
any address that represents a device on another host, there

is always the same route, the MTS port of the other machine.

CBMS Manager. The CBMS Manager package provides
procedures necessary to manipulate the I/0 Interface message
structures. The implementation of the CBMS messages, as
described in Chapter II, is known only by the procedures of
this package (see Table 3-XIV). The Cbms_Create_Message
procedure requires input arguments with all the information
to be placed in the message. After using iMAX procedures to

create the message data structure, the message fields are

3-35

e o e e e T T o

il

. s i

created from the input data, The opposite function is
performed by the Cbms_Read_Message procedure which destroys
the message structure and provides the data found in the
message fields to the calling routine. The Cbms_Wrap and
Cbms_Unwrap procedures are used by the MTS package
procedures and place the Message Transfer System "envelope"
on the message. The envelope is simply the source and
destination user names placed at the head of the message
string. To simplify the handling of the message structures,
the space for the envelope data is included in the CBMS

message structure allocated when the message is created.

sSummary

This chapter has presented the design of the 1I/0
Interface for the 432 Micromainframe Computer System, The
three sublayers within the ISO Applications Layer of
protocol create an efficient organization for software
design. The implementation details of the structures
required for each sublayer do not cross protocol layer
boundaries. The object-oriented use of packages within each
sublayer has further protected access to the data
structures. Use of the heirarchial and object~oriented
design techniques has created a system organization that is
maintainable and flexible. With completion of this
interface system, the 432 can communicate with the outside
world in an organized manner, Future designers can build

upon this system of input and output functions.

3-36

Introduction

The first three chapters have presented the objectives,

requirements, and design for the I/0 Interface. The purpose
of this chapter is to define the testing procedures needed
to validate the software developed to meet these objectives,
requirements and design goals of the interface on the 1Intel
432 Micromainframe computer system.

In general, testing proceeds concurrently with the
implementation of the requirements and design. Thus, the
testing sequence follows the top-down approach of the design
method. The CBMS and ISO models, described in Chapters II
and 1III, create a distinct hierarchy within the design,
which provides natural divisions for software validation.
For example, the operation of each CBMS sublayer, within the
ISO Applications Layer, can be tested as it is added to the
system (i.e., first the User Sublayer, then the User Agent

Sublayer, and finally, the Message Transfer Sublayer).

Test Design Structure

The design of the I/O Interface for the 432
Micromainframe implements each of the CBMS sublayers on the
432 processor and the Attached processor system (see Figure
4-1). The 432 processor software is written in Ada language

and its execution, for testing, is controlled by the

4-1

432 Processor Attached Processor

§ystem %ystem
[_User Sublayer I:Uset Sublayer
User Agent Sublayer User Agent Sublayer
Message Transfer Message Transfer
Sublayer Sublayer
iMAX Operating System Facilities

Figure 4-1. 1I/0 Interface Software System Structure

Debugger system (Intel Series III MDS) connected to the 432
processor hardware, The Attached processor software is
written in PLM-86 and executes directly on the Intel Series
IIT MDS. Testing procedures can be used to validate each
processors software individually and then integrate the two
systems to validate the interconnection hardware and
software. Thus, the testing procedures follow the hardware
and software structures of the system.

The testing procedures are structured to validate each
sublayer of the CBMS hierarchy, individually. This is,
essentially, the *black=-box" testing technique (Ref
38:86,311). Each 1level of the hierarchy is tested as a
distinct system which accepts a defined set of inputs and
responds in an expected manner (i.e., each level performs
certain tasks for the system).

Testing at a lower level, within the sublayer, is left

4-2

PIEHEIr VAN Trroos e~ o

i U

[—

to the code development process during the top~down
implementation of the modules. The modular and object-
oriented structure of the system software ensures that the
only coupling occurs at the functional level of the sublayer
boundaries. In other words, invalid code within a sublayer
can only affect the data structures of that sublayer. Thus,
thorough testing of the inputs and outputs of each sublayer
is sufficient to validate the operation of the modules
within the sublayer.

The overall complexity of the 432 system environment
dictates one additional test be performed. As described in
Chapter 1II, the Cross Development System for the 432-Ada
software involves two computer systems in addition to the
432 Micromainframe computer; the VAX 11/780 Host system and
the 1Intel Series III MDS Debugger system. A test to
validate this development environment would increase
confidence in the system. For the 432 CDS environment, the
most direct test involves taking an existing program, known
to be correct, and performing tasks usually done during
software development (i.e., compile the source, 1link the
object modules, and run the program in a test environment).
This environment test is done, before any I/0 Interface
system testing, to validate the interconnection and software
utilities of the 432 Cross Development Systenm,

There are also two other reasons for beginning the the

testing process at this point. Since the original

4-3

et e et e e e < codn 11 n
—_——

y TN
P

TABLE 4-1I

I/0 Interface Testing Procedures

1, Environment Vvalidation Test

2. 432 Processor System Validation
2.1 User Sublayer Test
2.2 User Agent Sublayer Test
2.3 Message Transfer Sublayer Test

3. Attached Processor System Validation
3.1 User Sublayer Test
3.2 User Agent Sublayer Test
3.3 Message Transfer Sublayer Test

4., System Integration Test

<

installation of the 432/670 system, the 432 and both Series
III Development Systems had been physically relocated in the
building. This required re-routing of the hard-wire
connection to the VAX system. Also, a new release of the
hardware (designated Release 2.1) had been received with
improved versions of the software, as well. This new
configuration of both hardware and software had not been
used. Therefore, it is necessary to perform this basic test
of the system to establish confidence in the configuration,
before software development begins,

The remainder of this chapter is organized according to
the testing procedure outline given in Table 4-I, The

methods and expected results for each test are discussed in

the following sections:

TABLE 4-II

Environment Validation Test Procedure

Performed on VAX 11/780:

1) Verify the proper environment file names,
(VMS or UNIX system editor)

2) Compile the source files.
(IDA)

3) Link the resulting object modules
with the iMAX operation system module.
(LINK432)

Performed on Series III MDS:

4) Download the executable file to the
Series III MDS workstation.
(DNLOAD)

5) Verify the hardware configuration
of the 432 Micromainframe Computer.
(DSP432)

Load and execute the PRIME program.
(DEB432)

Envi t validati Test

The method used for this test is to take a program,
that is known to be valid, through the complete development
cycle. The PRIME program is an Ada language program which
computes prime numbers. This program was supplied by Intel
as an example software system which would execute on the 432
system (Ref 21:G~-4/G-7). The test method, then, is to use
the utilities of the development system environment to

compile, 1link, and execute the PRIME program.

4-5

&

Table 4-II lists the steps in the test procedure. The
names of the software utilities are given in parentheses
with a reference to the manual describing its use. The
Intel 432 Cross Development System (CDS), including the
operation of its utilities, is discussed in more detail in
Appendix H.

The expected results are, simply, that the PRIME
program executed properly on the 432 system. This validates
that the 432's program development environment is functional
and produces executable code for the 432/670 computer
system,

To perform this test, the Intel 432/670 system should
be configured as shown in Figure 4-2. This hardware
environment includes only the Debugger and the 432 Processor
systems. The PRIME program uses the system Debugger as the
I/0 device and, therefore, does not require another AP
system. In fact, any unnecessary hardware in the system may
cause the program to fail or act in an unpredictable manner.

The Ada language source files for the PRIME program are
listed in Table 4-III. This list does not include the
operating system packages required to create an executable
code module. Refer to the Intel 432/670 Computer System
lsers Guide for a complete list of the software (Ref
35:Appendix B) and a tutorial on the operation of the PRIME

program (Ref 35:Chapter 11).

4-6

o e ———— ot e e e o

i

- |
Storage Memory iAPX 432 iAPX 432
Arrays Controller General General
Data Data |
Processor Processor
. 1} I} 1} I} R
Intel 432/670
Processor to Memory Interface
Interface
Processor
Link
i 11 Intel 432 ProcLink
! iAPX 432
Interface The Remote Processor
Processor System is not required
¢ for this test.
' Debugger 1I System
Debugger Processor
Multibus
4 8086/12A Peripheral
Debugger Device
Processor Controller

Figure 4-2, Environment Validation Test
Hardware Configuration

8) R RSy
B R G I SRl - v R e ok Sl SR AN st g -k

TABLE 4-III]

{ PRIME Program Software
' (Ref 35:108)

—“

Contents File Name
PRIME Example Program [INTEL2 .ACS.PRIME] directory
TEXTIO routine specification INTIO.MSS
Console prompt routine spec. PROMPT,.MSS
Console prompt routine body PROMPT MBS
Primary program function ISPRIM.MCS
Main program control spec. MAIN.MSS
Main program control body MAIN.MBS
Process initialization spec. PSERP,MBS
Program linker directives ISPRIM.LKD
M

432 P Syst validati

The I/0 Interface software is validated by testing each

. of the three sublayers, in turn. Dummy modules are used for
the procedures that are part of a 1lower sublayer and,
therefore, not included in the test. Each dummy module
writes a message to the Debugger console, indicating that
the module has been called, and returns to the calling
procedure.

The test is performed by executing each of the system
commands (SET, BRELP, and COPY). Table 4-III lists a minimum
set of commands which may be used. In addition to these
commands, a number of invalid commands should be entered to
test the error handling properties of the system.

The hardware configuration for these tests is exactly

the same as for the environment validation test, shown in

4-8

TABLE 4-1IV

432 Processor Software Validation Test
Commands List

HELP

HELP SET

HELP COPY

SET DEFAULT RM67/NETO0

COPY /432/USR /MDS/CON
COPY /MDS/CON /432/USR
COPY /432/USR /432/USR

SET DEFAULT RM67/NET0/MDS
COPY /DSK/:F1:TEST.TXT /PTR

Figure 4-2). The Attached Processor system is not required
for these tests because no messages will be sent to other
hosts in the network.

The following sections describe the software required
and the results expected from the commands in Table 4-IV,

for each sublayer:

User Sublaver Test (432). The first sublayer in the
CBMS hierarchy is the User Sublayer. This sublayer of the

I/0 Interface has only one entity on the 432 processor; the
User Shell. The software files required for this test are
listed in Table 4-V. Source code listings of the test file
(Ustest.mbs) and other 432 processor files can be found 1in
Volume II of this report.

Without any support from the lower sublayers, the shell
can only respond completely to commands which only involve

itself. That is, the HELP command is completely functional,

4-9

TABLE 4-V

User Sublayer Validation Software (432)

Eile Name

Cbms,.mss
Rm.mss
Am.mss
Mts.mss
Usa.mss
User.mss
User .mbs
Syscmd.mss
Syscmd.mbs
Shell.mss
Shell.mbs
Ustest.mbs

Eile Contents

CBMS Manager Specification
Route Manager Specification
Address Manager Specification
Message Transfer System Spec.
User Shell Agent Specification
User Interface Specification
User Interface Body

System Commands Specification
System Commands Body

User Shell Specification

User Shell Body

User Sublayer Test Modules Body

but, the SET and COPY commands cause flag messages to be

printed by the dummy modules they call.

The operations of all the system shell commands

documented

in Appendix H,

command responses.

message indicating that the procedure AM_Set_Default has

The

been called from the Message Transfer Sublayer. The

command causes the following list of dummy procedures to be

called in the User Agent Sublayer:

1.
2.
3.
4.
5.

Usa_Open (open the source)

Usa_Open (open the destination)

Usa_Title (write title to destination)

Usa_Read (read from the source)

Usa_Write (write to the destination)

4-10

including listings of the HELP

SET command responds with a flag

6. Usa_Close (close the destination)

7. Usa_Close (close the source)

The flag messages should appear in this order ¢to indicate
proper operation of the COPY function, Note that the source
file is only read once because the dummy module for the
Usa_Read procedure indicates an end-of-file condition on the
first read action. Proper responses to the commands
validates operation of the User Shell, User Interface, and

System Commands packages of the User Sublayer.

User Agent Sublaver Test (432). The User Agent

Sublayer, 1like the User Sublayer, contains only one entity
on the 432 processor; the User Shell Agent., For this test,
the User Sublayer test file is replaced by the software
modules of the User Agent and a different set of dummy
procedures in the User Agent test file (Uastest.mbs). Table
4-VI 1lists the files containing the User Agent Sublayer
modules. Again, the source code listings are provided in
Volume II of this thesis.

In the previous test, this sublayer generated the flag
messages of the COPY command test. The HELP command
responds completely, as in the test above. The COPY and SET
commands will still not perform completely, however, without
the Message Transfer Sublayer implementation.

The SET command responds exactly as before, calling the

procedure AM_Set_Default. The COPY command, now, causes six

4-11

TABLE 4-VI

User Agent Sublayer Validation Software (432)

Eile Name Eile Contents

Cbms.mss CBMS Manager Specification
Cbms .mbs CBMS Manager Body

Rm.mss Route Manager Specification
Am.mss Address Manager Specification
Mts.mss Message Transfer System Spec.
Usa.mss User Shell Agent Specification
Usa.mbs User Shell Agent Body

User.mss User Interface Specification
User .mbs User Interface Body

Syscmd.mss System Commands Specification
Syscmd.mbs System Commands Body
Shell.mss User Shell Specification
Shell.mbs User Shell Body

Uastest.mbs User Agent Sublayer Test Body

l ML

calls to the dummy procedure MTS_Send, indicated by flag
messages. Each call to this procedure causes a reply
message to be sent to the User Shell Agent reply port,
allowing the calling procedure to continue processing,
Again, a request to read a file will generate only one read-
write operation, because the reply to this request indicates
an end-of-file condition. This level of testing indicates
the successful operation of the communication ports and
message handling procedures on the 432 processor system.
The next test completes validation of the 432 processor
software as a stand-alone system.

The CBMS Manager package, of the Message Transfer
Sublayzr, must be implemented for this test, This package

4-12

o S by

TABLE 4-VII

Message Transfer Sublayer Validation Software (432)

Cbms.mss CBMS Manager Specification
Cbms .mbs CBMS Manager Body
Rm.mss Route Manager Specification
Rm.mbs Route Manager Specification
Am,.mss Address Manager Specification
Mts.mss Message Transfer System Spec.
Mts.mbs Message Transfer System Body
Usa.mss User Shell Agent Specification
Usa.mbs User Shell Agent Body
User.mss User Interface Specification
User .mbs User Interface Body
Syscmd.mss System Commands Specification
Syscmd.mbs System Commands Body
Shell.mss User Shell Specification
Shell.mbs User Shell Body
Mtstest.mbs Message Transfer Sublayer
Test Body

contains

Intarface messages.

These

the procedures for creating and accessing the

functions are also validated

during this test.

Message Transfer Sublaver Test (432). The last

sublayer to be tested on the 432 processor contains the
packages for translating names and addresses determining
routes for message transfer, and moving messages among the
I/0 system agents. For this test, the previous test file is
replaced by the modules of the Message Transfer Sublayer.
There is, however, still a need for a test file of special

software.

4-13

The messages cannot be sent to devices outside the 432
processor without having the Attached Processor system
operational. To allow the Message Transfer Sublayer to be
validated without the AP system, the test file (Mtstest.mbs)
contains a modified version of the Address Manager package

which maps all device names into the User Shell console.

The test file also contains the Mts_init procedure which
initializes the software package without creating\the ports
for communication with the missing AP system, Table 4-VII
lists all the 432 software files necessary for the Message
Transfer Sublayer validation.

The SET and HELP commands are completely functional in
this test. The proper operations of both these commands are
described in Appendix H, The COPY command performs the
complete data transfer when demonstrated using the User
Shell as the source and destination (complete designation
"RM67/NET0/432/USR") . In addition, if any other valid
device name is used for source or destination, it is handled k
as if the User Shell were the device requested. In other

words, all valid device names are mapped into the User Shell

e ———ee e a

by a modified Address Manager Package in the Message

Transfer Sublayer.

This level of testing validates the data transfer,
device naming, device addressing, message format, and
message routing mechanisms of the I/0 Interface on the 432

processor system. The interprocessor communication,

4-14

. A D O I bt s - LB i~ 1 i ikl NEESSREIURIPYRUULSINSNICI T OSSRV L PR L sl £ .

rIIlllllIlllllllllllIlIlIIIIIIIllIlllIIIIIlIlIIIllllIl-----.-..-....-!-________-__"’-

A EE——
y
‘ iAPX 432
Interface
Processor
Series II1 Microcomputer Development
System MULTIBUS
8085 based 8086/12A Disk Disk
IPC RPB System System
Processor Processor Controller Interface
i ——
Figure 4-3. Attached Processor Software Validation Test
Hardware Configuration !

however, cannot be validated until the Attached Processor ;

system is tested and the systems are physically connected.

Attached Procesgor System Validation

Validation of the AP software is more difficult than i

for the 432 processor system, because there is no
controlling source device designed on the AP. The
"commands® to the device abstractions come from messages
sent from the 432 processor. To allow testing on the AP

system, a "test shell" is included in the test software

package, The test shell accepts commands from the Series

III Console and calls procedures in the appropriate

3 TABLE 4-VIII

Attached Processor Test Shell Commands

- ir
Test Shell Device Functions
Command PS IFS S3C
0 Open Open Open 2 i
1 Close Close Close 2
2 Read 1 Read Read
3 Write Print Write Write
, 4 Page Form Feed 2 Clear Screen '
: 5 Title Title Page 2 Clear Screen
6 Delete 1 Delete 1
7 Rename 1 Rename 1
8 Reset Close Reset 2 _
9 Test Test Test Test ;
G Get Config 1 1 1 ?
S Set Config 2 1 2 1
1l - Not Implemented, UA replies "command invalid" i
2 - Not Used, UA replies "ok"
L —] :
sublayer. These commands are shown in Table 4-VIII and the
‘;
modules are listed in Volume II, with the dummy procedure ?
i‘
modules for each sublayer. In general, the dummy procedures
simply write flag messages to the Series III Console and

return.

The hardware for the AP validation tests 1is, simply,
the 1Intel Series III MDS. The configuration of the system
is shown in Figure 4-3. Additional hardware in the system

will, generally, not affect the operation of the AP

software. However, it 1is important to ensure that enough

memory is present to support the software requirements, The

4-16

LR e e e N UG amer T RERRIONRLI N o o "

e iy o= e

TABLE 4-VIII

Attached Processor Test Shell Commands

_f
Test Shell Device Functions
Command Ps IFS 83C
0 Open Open Open 2
1 Close Close Close 2
2 Read 1l Read Read
3 Write Print Write Write
4 Page Form Feed 2 Clear Screen
5 Title Title Page 2 Clear Screen
6 Delete 1l Delete l
7 Rename 1l Rename 1l
8 Reset Close Reset 2
9 Test Test Test Test
G Get Config 1 1 1
S Set Config 2 1 2
1l - Not Implemented, UA replies "command invalid"
2 - Not Used, UA replies "ok"
h _ N

sublayer. These commands are shown in Table 4-VIII and the
modules are listed in Volume II, with the dummy procedure
modules for each sublayer. 1In general, the dummy procedures
simply write flag messages to the Series III Console and
return,

The hardware for the AP validation tests is, simply,
the 1Intel Series III MDS. The configuration of the system
is shown in Figure 4-3, Additional hardware in the system
will, generally, not affect the operation of the AP
software, However, it is important to ensure that enough

memory is present to support the software requirements. The

4-16

TABLE 4-IX

User Sublayer Validation Software (AP)

Eile Name Eile Copntents

Cbms.inc

CBMS Manager Specification

Rm.inc Route Manager Specification
Am,.inc Address Manager Specification
Mts.inc Message Transfer System Spec.
Psa.inc Printer System Agent Spec.

Ifsa.inc ISIS File System Agent Spec.
S3ca.inc Series III Console Agent Spec.

Ps.inc Printer System Specification
Ps.plm Printer System Body

Ifs.inc ISIS File System Specification
Ifs.plm ISIS Pile System Body

S3c.inc Series III Console Specification
S3c.plm Series III Console Body

Ustest.plm User Sublayer Test Body

program space requirements are printed, on the output

listing, by the PL/M-86 compiler.

User Sublayer Test (AP). In the AP, the User Sublayer
contains the device abstractions for the three system
devices; the Series III Console, the Printer System, and the
ISIS File Systenm, The PL/M-86 source files, containing the
implementations of these abstractions, are listed in Table
4-1IX, Source listings of these files and the User Sublayer
test file (Ustest.plm) are provided in Volume II.

For this test, the test shell directly calls the
functions of each device abstraction. The shell accepts
only single characterA commands and performs the device

functions as listed in Table 4-VIII. Each command prompts

4-17

the console operator for a device name (PTR, CON, or DSK)

and, if necessary, for an ISIS compatible file name (Ref
13:2-1) or text data input,

} This test validates the operation of each device and

the performance of the functions which define the device
abstraction used by the I/O Interface, The devices are
expected to respond correctly to each command. 1In Addition,
each command executed by a device generates a flag message

indicating the procedure Send_Reply, in the User Agent

Sublayer, has been called. Refer to Table 4-VIII to
determine the functions applicable to each device, An

invalid command selection for a device is ignored.

User Agent Sublaver Tegt (AP). The validation of the

User Agent Sublayer is accomplished in the same manner,

using the test shell, which, for this test, generates CBMS
messages and sends them to the appropriate User Agent for
the device requested. Table 4-X lists the source files !
required for the User Agent Sublayer Validation Test.
Source code listings appear in Volume II of this thesis. ‘

At this level, all the test shell commands listed in
Table 4-VIII may be used with each device. The User Agent

software handles the requests that are inappropriate for

——

each device, using the CBMS Manager package to read the

message contents., The CBMS Manager package must be

implemented to allow the User Agent software to access the

data in the shell command messages. The other modules of

4-18

e, o e A fogh @ pr s MY e B o o

TABLE 4-X

User Agent Sublayer Validation Software (AP)

Eile Name File Contents

Cbms.inc CBMS Manager Specification
Cbms.plm CBMS Manager Body

Rm.inc Route Manager Specification
Am.inc Address Manager Specification
Mts.inc Message Transfer System Spec.
Psa.inc Printer System Agent Spec.
Psa.plm Printer System Agent Body

Ifsa.inc ISIS File System Agent Spec.
Ifsa.plm ISIS File System Agent Body

S3ca.inc Series III Console Agent Spec.
S3ca.plm Series III Console Agent Body
Ps.inc Printer System Specification
Ps.plm Printer System Body

Ifs.inc ISIS File System Specification
Ifs.plm ISIS File System Body

S3c.inc Series III Console Specification
S3c.plm Series III Console Body

Uastest.plm User Agent Sublayer Test Body

the MTS sublayer, used by the User Agent modules, generate
flag messages for the shell console indicating their use.
Thus, each command from the test shell performs a function
on the device requested. The attempt to send a reply
message, upon function completion, generates a flag message
from the dummy procedure MTS_Send.

This test validates the operation of the User Agent
software for each device and the CBMS Manager software which
allows access to CBMS messages, The format syntax of the
CBMS messages is also tested because the test shell uses the

CBMS Manager software to create messages which are then read

4-19

L e e W et DIl Y ¢ AN e s TR LT A Al

" »

TABLE 4-XI

Message Transfer Sublayer Validation Software (AP)

g SR e e e ~
Eile Name File Coptents
Cbms.inc CBMS Manager Specification
Cbms.plm CBMS Manager Body
Rm. inc Route Manager Specification
Rm.plm Route Manager Body
Am. inc Address Manager Specification
Mts.inc Message Transfer System Spec.
Mts.plm Message Transfer Body
Psa.inc Printer System Agent Spec.
Psa.plm Printer System Agent Body
Ifsa.inc ISIS File System Agent Spec.
Ifsa.plm ISIS File System Agent Body
S3ca.inc Series III Console Agent Spec.
S3ca.plm Series III Console Agent Body
Ps.inc Printer System Specification
Ps.plm Printer System Body
Ifs.inc ISIS File System Specification
Ifs.plm ISIS File System Body
S3c.inc Series III Console Specification
S3c.plm Series III Console Body
Mtstest.plm Message Transfer Sublayer

Test Body

by the User Agents.

Message Transfer Sublaver Test (AP).

the AP system validates the operation of the addressing and

The final test of
routing mechanisms of the Message Transfer Sublayer. Table
4-XI 1lists the files necessary for operation of the Message
Transfer Sublayer Validation Test. These source files are
all listed in Volume II.

The test shell for this level generates messages which

are given to the MTS_Send routine for entry into the MTS

4-20

TABLE 4-XII

System Integration Test Commands

HELP

HELP SET

HELP COPY

SET DEFAULT RM67/NETO

COPY /432/USR /MDS/CON

CorPY /432/USR /MDS/PTR

COPY /432/USR /MDS/DSK/:F0:TEST.TXT
COPY /432/USR /MDS/DSK/:Fl:TEST,.TXT
CoPY /MDS/CON /MDS/DSK/:FQ:TEST2,.TXT
SET DEFAULT RM67/NET0/MDS

COPY /DSK/:Fl:TEST.TXT /PTR

COPY /DSK/:F0:TEST2,.TXT /DSK/:F1:TEST.TXT
COPY /CON /PTR

COPY /CON /DSK/:F0:TEST3.TXT

COPY /DSK/:F0:TEST3,.TXT /CON

COPY /DSK/:F1:TEST,TXT /CON

SET DEFAULT RM67/NETO

COPY /MDS/DSK/:F1l:TEST,.TXT /432/USR

L]

receiving port. As with the 432 processor testing, the

Address Manager package must be modified to send all
messages intended for non-local devices to the local console

(the Series III Console).

System Integration Tegt
The final test of the I/O Interface system is the

System Integration Test, This test is intended to validate
the operation of the complete system as a whole and is
performed with no dummy software modules. The hardware and
software environments, for this test, are described in
Appendix H, with the I/O Interface operating instructions.

The source files are listed in Volume II.

4-21

PR Sy

The test method is by execution of each of the system

commands (SET, HELP, and COPY) with a range of arguments

; that validates the correct operation of each command and the
interface with each device available in the system. Table

4-XII lists a minimum set of commands which may be used. In

addition to this set, a number of invalid commands should be

entered to test the error handling properties of the system,

§ The expected results of each command should be !
L validated before entering the next command., Validation, in]
the case of file manipulations, may require halting the

execution of the program and using the operating system
utilities of the Series III MDS to examine the disk

directories and file contents.

Sunmary

This chapter has presented the test design and
procedures for the I/0 Interface software development (see
Table 4~I) and discussed the methods and objectives for each
test. The System Integration Test validates that the 1I/0
Interface Protocol implementation on the 432 Micromainframe |
computer system meets the objectives described in Chapter ;
II; basically, to provide virtual device operation within a

flexible system design. The next chapter discusses the test ‘

results and, then, presents conclusions and recommendations

for future work with the AFIT/ENG 432/670 Computer System.

4-22

B e i - ’

R ™ R e

Y. RESULTS, CONCLUSIONS AND RECOMMENDATIONS

Introduction

This investigation has been concerned with the
development of an interface protocol for I/O device control
in a distributed multiprocessor environment. The first
three chapters have presented the design and, the fourth
chapter,validation procedures for the software system. This
chapter completes the written development of the 1I/0
Interface. The following sections describe the test results,
discuss the conclusions reached. and present recommendations

for future work with the Intel 432/670 Computer System.

Iest Results

This section presents the results of the test
procedures described in Chapter 1IV. The procedures were
structured to individually test each sublayer of the 1I/0
Interface implementation on the 432 and AP processors. The
following paragraphs discuss the major results of these
tests, which are summarized in Table 5-I. Detailed test

results may be found in Appendix K.

Environment Validation Test. The first test of the
Intel 432/670 Cross Development System was a success. The
PRIME program was compiled, 1linked, and executed according

to the procedures outlined in Chapter 1V, In addition, the

5-1

TABLE 5-I

Summary of Test Results

ST— me————
Iest Result
Environment Validation Test Validated
432 Processor Validation Tests:
User Sublayer Validated
User Agent Sublayer NOT Validated

Message Transfer Sublayer NOT Validated

Attached Processor Validation Tests:

User Sublayer Validated
User Agent Sublayer Validated
Message Transfer Sublayer Validated
System Integration Test NOT Validated
L _ 4

PRIME program was modified to use the full implementation of
the iMAX operating system (see Appendix C) and the resulting
program was, also, successfully tested. Sample output

listings from these tests are provided in Appendix K.

432 Procegsor Testgs. Only the User Sublayer of the 432
processor software was validated by the test procedures of
Chapter 1V. The size of the executable module, containing
more than the uppermost sublayer, exceeds the capacity of
the double-density disk system on the Series III MDS
Debugger System., The largest component of the software
system is the iMAX operating system. The operating system
was provided as a single module that must be 1linked with

user programs to create an executable module for the 432

5-2

processor. The complete module must be moved to a diskette
on the Debugger system before loading into the 432s memory.
Since it was not possible to create a usable (small enough)
module that contained more that the first sublayer of the
I/0 Interface, further testing of the 432 processor software
was not possible.

The User Sublayer, however, demonstrated the operation
of the three system commands on the 432/670 Computer System.
The HELP command provides text information to the Debugger
console and the SET and COPY commands responded with flag
messages indicating calls to the dummy procedures of the
test package. Error checking, on command line syntax, was

also validated by testing.

Attached Processor Tests. The test procedures, for
validating the Series III MDS AP software, were all

successful. The use of a test shell program allowed
validation of all functions of the I/0 Interface software,
The I/0O devices implemented (printer, console and disk
systems) all responded correctly to valid, and invalid,
messages generated by the test shell program. Appendix K

contains listings of the system outputs during each test.

conclusions

The major goal of this investigation was to implement an

interface system on the Intel 432 Micromainframe Computer

System using a message based protocol. The concepts and

=

o,
- eyl

structure of the CBMS and the IS0 Open System
Interconnection Reference model were used to organize the
system into a hierarchy of functional protocols.

The ISO Reference model provided the overall
organization. The I/0 Interface system was designed within
this structure to a large extent. However, the model was
not strictly followed at the lowest level of this design.
The message management functions of the 432's operating
system (iMAX) were used to manipulate the I/0 Interface
messages within the Message Transfer Sublayer. Strict
adherence to the ISO model would have required a Transport
Layer protocol providing a reliable message handling system.
Implementation of the Transport layer would be useful
because it would allow communications with other IsO
standard systems (e.g. DELNET) and it would provide a well-
known standard interface for future system users,

Puture implementation of the lower levels of the 1ISO
model are possible. The object-oriented I/0 Interface
design insures that the only software needing modification
is the Message Transfer Sublayer. Also, the HELP command
implementation was designed to provide information from
fixed memory storage of the data. A more practical approach
would be to use files to store the data and, then, allow the
user to direct the output to any system device. This should
be done using the functions of the I/0 Interface, The

modifications would only affect the System Commands Package

5-4

< ——

of the 432 processor software,

Modifications to the MTS and the HELP command are just
two examples of the system maintainability derived from
object~oriented design methodology. The placing of design
features within software packages created a manageable and
flexible system which may be maintained and improved in a
systematic manner.

} In summary, while the implementation of the 1I/0
Interface cannot be evaluated completely until the entire
system has been tested, the development of the interface as
a CBMS system is a step towards a system that can be
expanded to include many other computer systems and their
devices through interface with a 1local area network
organization. The realization of the DELNET system will
allow continued development along these lines,

The 432 system has a powerful organization, but, it
must become fully operational before a proper evaluation can
be achieved. At the present time, development work with the
432 is very frustrating. The incomplete implementation of
the Ada compiler and the tedious process required for
software development are, perhaps, the worst features of the
system,

Future wusers will still have to contend with the
complexity of the system. Grasping the organization of the
hardware and software, necessary to develop and execute

programs on the 432, can be a formidable task. An effort

5-5

must be made, to reach a point where the interaction of
system components is understood by the designer.

The 432 University User's Group, an organization of 432
system academic users, is aware of these problems (Ref 39).
Efforts are being made to remove the Series III MDS from the
development environment of the 432, When completed, the
Debugger system will be an Attached Processor system
executing iRMX 86 software which is common to the AP
portions of iMAX. In addition, the group is developing a
high-speed communications link from the VAX 11/780 system to
the AP system using iRMX 86. These projects are intended to
simplify the development environment and decrease the time
necessary to move programs among the systems within the
Cross Development System for the 432 (currently, it takes
about an hour for each cycle of source modification,
compile, 1link, download to the debugger and re~testing a

program on the 432).

Recommendations for Future Study

Recommendations for further study related to this
thesis effort are presented in two categories, The first
group contains topics related to inter~process
communications, independent of implementation. The second
category is the recommended projects using the Intel 432/670
Micromainframe computer system. The projects are summarized

in Table 5-II.

TABLE 5-II

{ Summary of Recommendations for Future Study

Network Communications Projects

l. Process Control Protocol f
2, System State Information Protocol :
3. Transport Layer for Delnet Interface

Intel 432/670 Computer System Projects

l. Data Flow Architecture Study

2. Data Base Processor System

3. Distributed Operating System

4. Operating System Shell for iMAX

5. Ada Language Software Test and
Verification Environment

6. Other Compilers for the 432 ?

7. Attached Processor Front-End '

L i |

Inter Process Communicationg Projects. Several projects

are possible in the area of inter-process communications in

a distributed processing environment.

l. Processg Control Protocol. Design, Development

and possible implementation of a protocol for process

control in a distributed multi-processor environment. .
In a distributed processing environment the kernel of ,:
the operating system must provide a method for
creating, starting, stopping, and destroying processes
an execution system which may not be 1local to the
processor executing the function. Ideally this method ?
should be uniform across the entire system. That |is,

the requesting process performs the same action

5-7

—a o e e N

L, ST TR

irrespective of the actual location of the process
being operated upon. This project may begin with the
assumption of an existing message based inter-process

communications system.

2. System State Information Protocol. Distributed

operating systems using a message based system for

inter-processor communication require a method for

‘ passing state information among the systems. There is
a need for a protocol defining the procedures for
heterogeneous multiprocessor systems to relate state
information to each other for a practical distribution

of operating system control decisions.

3. Iransport — Laver = for DELNET Interface.

Implementation of a network transport layer, within the

structure of the I/0O Interface, would allow the 432
system to be interfaced with a local area network, such
as the DELNET systen, Interconnection with other
computers, through a network, would allow future
development of protocol systems within higher levels of

the ISO Interconnection Reference Model.

Intel 432/670 Computer Svstem Projects. Based on the

continued work by Intel Corporation to improve the state of
the Cross Development System for the 432 and fully implement

the Ada language, the following recommendations are

5-8

presented for future work with the iAPX 432 Computer System:

1. Data Flow Architecture Study. The multi-processor

{ organization of the 432/670 Micromainframe system

presents possibilities for design studies in data flow
architecture. Some of the Attached Processors might be
programmed for performance of specific manipulations
and the 432's GDPs could provide ‘the flow control and
processor allocation functions. Alternatively,
specific GDPs might be selectively allocated to |
specific tasks and the Attached Processors restricted

to performing the I/0 (flow control) functions, .

2. Data __ Base Processor System. The Attached

Processors of the 432 System could be programmed to
perform pre-processing as well as input and output
functions for a data base management system using the
Intel 432 Micromainframe computer system, Such an

arrangement might be developed easily using the iMAX

432 executive as the system kernel., Also, various F
arrangements of multiple 432 GDPs could be evaluated to

test different algorithms for use on multiprocessor

data base management systems.

S

3. DRistributed — Operating System. The present
configuration of the iMAX 432 operating system places

the 432 processors at the top of a hierarchical

organization. The processing power of the Attached

5-9

[P L TOSVEN VIR
i\

——

Processors could be used to create a more balanced
system structure., This would encompass many of the
considerations of the design projects 1listed above,

related to inter-process communications.

4. QOperating Svstem Shell for iMAX. The iMAX 432
Multifunction Applications Executive for the Intel 432
Micromainframe computer system provides a functional
interface to the user and is intended to be linked into
the user's software as necessary. Development of a
multiuser operating system shell for the 432 System
using iMAX 432 as the kernel would provide the basis
for a future development system, This work could be
done as a follow-on project to the design of a

multiprogramming operating system by Ross (Ref 34:1).

5. Ada Lapguage Software Testing and Validation
Environment. The 432 Computer System provides an
execution environment for Ada language programs, within
the restrictions of the limited implementation of Ada
in the Cross Development System. Future releases of
the compiler should provide a more complete
implementation of the Ada language. However, even the
existing release gives some capability for testing Ada
softwvare. As more projects are completed using this
system, a software base will be built up. To ensure

this is done efficiently, studies should be made to

5-10

develop configuration management techniques and perhaps
even rules of form for the Ada packages to be added to
this data base. This project would be primarily a

software engineering effort.

6. Qther Compilers for the 432. At present, only the

Ada language is available to programmers of the Intel
432 Computer System. Writing compilers for other
lanquages in Ada, for execution on the 432 system,
would allow software .to be transported from other

systems and re-compiled for execution on the 432,

7. Attached Procesgor Front-Engd. The attached
processor is the I/O processor for the 432 computer
system, Increasing the intelligence of this 1I/O
processor will allow the main system (the 432
processors) to perform their remaining tasks more
efficiently. One possible improvement would be to move
a portion of the operating system shell intelligence to
the attached processor. Por example, while acting as
the terminal handler and file storage system monitor
for the main system, the attached processor could also
intercept requests for text file displays and provide
the requested file data without communicating with the
432 GDPs. Such an arrangement would constitute a small
step towards a distributed operating system and could

be used to evaluate the potential for more cooperative

5-11

PR

e ——

processing among the components of the 432 System.

As indicated by the range of these projects, there are
a large number of uses for the 432 Computer System that are
unexplored. In addition, the 432 University User's Group
(Ref 39) can provide a source of information on the current

directions for research with the 432,

5-12

PPN SRS ST N R e R : 14

W T . W Tam ol

Bibli ;

ANSI/MIL-STD-1815A. .
Washington, D.C.: United States Government, Under
Secretary of Defense, Research and Engineering, 1980.

Coffman, Edward G. Jr. and Peter J. Denning. Operating
. Englewood Cliffs, N.J.: Prentice-
Hall, Inc., 1973.

DARPA Publication RFC: 791. :

ifi , DOD standard.
Arlington, Virginia: Defense Advanced Research Projects
Agency, Department of Defense, 1981,

Hansen, Per Brinch. Qperating System Principles.
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1973.

Hemenway, Jack. "Object-Oriented Design Manages
Software Complexity,"™ EDN, 16:141-145 (August 1981).

Hoare, C. A. R., and R, H, Perrott. Qperating Systems
Techni . P 1] : Semi held at O

University, Belfagt, 1971. London, United Kingdom:

Academic Press Inc., 1972,

Holmes, Victor P., Bruce N, Malm, and Tom H. Little.
"Island Universes: Distributing a Single-User
Operating System," i

i ¢y 319~-321, New York:
Institute of Electrical and Electronics Engineers,
Inc,, 1982,

Institute for Computer Sciences and Technology pubilcation
CBOS-82-1. Eeatures of a Mesgage Transfer Protocol, Draft
Report, Gaithersburg, Maryland: Institute for Computer
Sciences and Technology, National Bureau of Standards,
November, 1981.

Institute for Computer Sciences and Technology publication
CBOS-82-4. i i i

Systems, Draft Report., Gaithersburg, Maryland: Institute
for Computer Sciences and Technology, National Bureau of
Standards, Augqust 1982,

[Ty

. *

10.

11,

12,

13.

14,

15.

16.

17.

18.

19,

20.

21.

Institute for Computer Sciences and Technology publication
CBOS-82-3. gService Specification of 3 Mesgade Transfer
Protocol, Draft Report. Gaithersburg, Maryland: Institute
for Computer Sciences and Technology, National Bureau of
Standards, February 1982,

Institute for Computer Sciences and Technology publication
LANP-80-2, Standards for Local Computer Networks,

Draft Report. Gaithersburg, Maryland: Institute for
Computer Sciences and Technology, National Bureau of
Standards, March, 1980.

Institute for Computer Sciences and Technology
Proposed Federal Information Processing Standard

. Gaithersburg, Maryland: Institute for
Computer Sciences and Technology, National Bureau of
Standards, April 1982,

Intel Publication No. 121618-003. Intellec Series III

Manual. Santa Clara, California: 1Intel, Corp., 198l.

Intel Publication No. 142603-004. jiRMX 80/88
i i i ili ! jde. Santa
Clara, California: Intel Corp., 1981.

Intel Publication No. 143232-002. iRMX 88 Reference
. Santa Clara, California: 1Intel Corp., 1981.

Intel Publication No. 143241-003. JiRMX 88 Installation
Instructions. Santa Clara, California: Intel Corp., 1981.

Intel Publication No. 171858-001 Rev. B.
j i . Santa Clara, California: Intel Corp.,
1981.

Intel Publication No. 171821-001.
iAPX 432 Architecture. Santa Clara, California: 1Intel
Corp., 1981.

Intel Publication No. 171867-001.
Summary: Manaager's Pergpective. Santa Clara,
California: 1Intel Corp., 1981.

Intel Publication No. 171869-002,
. Santa Clara, California:
Intel Corp., 1981.

Intel Publication No. 171870-002;

. Santa Clara,
California: Intel Corp., 1982,

BIB-2

[N

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

Intel Publication No. 171954-002. i
. Santa Clara,
California: 1Intel Corp., 1982.

Intel Publication No. 172097-002. JIntel 432 Cross
i I ! jde. Santa Clara,
Californjia: Intel Corp., 1982,

Intel Publication No. 172098-002.
. Santa Clara, California:
Intel Corp., 1982.

Intel Publication No. 172103-002. iMAX 432 Reference
Manual. Santa Clara, California: 1Intel Corp., 1982.

Intel Publication No. 172174-001.
jcati i ! jde. Santa Clara, California:
Intel Corp., 1981.

Intel Publication No. 172283-001. n
the Ipntel 432 Fxtensjons to Ada. Santa Clara,
California: 1Intel Corp., 1981,

Kahn, Kevin C., and Fred Pollack. "An Extensible

Operating System for the Intel 432," Proceedings of the
—Sac . >

Conference, 398-404., New York: Institute of Electrical
and Electronics Engineers, Inc., February 1981.

Kahn, Kevin C., William M. Corwin, T. Don Dennis,
Herman D'Hooge, David E. Hubka, Linda A. Hutchins, John
T. Montague, and Fred J. Pollack. "iMAX: A
Multiprocessor Operating System for an Object-Based
Computer, " i i i

i r 15 (5):127-136,
Association for Computing Machinery, December 1981,

McNamara, John E. Technical Asiects of Data
Communication. Bedford, Massaciiusetts: Digital
Equipment Corporation, 1977,

Moulton, James. "High Level Protocol Boundaries in the
ISO Model,"” IEEE 1990 Trends and Applications:

r 54-58, New York: Institute
of Electrical and Electronics Engineers, Inc., 1980,

Phister, Paul W., Jr. Protocol Standards and Implementation
{thin the Digital Engi TCRAT : e : Network

(DELNET) { the Uni 1 Net k Interf Devi
{UNID). Unpublished MS thesis. Wright-Patterson AFB,
Ohio: School of Engineering, Air Force Institute of
Technology, October 1983,

33. Rattner, Justin and George Cox. "Object-Based Computer
Architecture,” Computer Architecture News, 8 (6):4-11
(October 1980).

34. Ross, Mitchell S. Desidgn and Development of 3
{oro . : ; =
Microprocessors. MS thesis. Wright-Patterson AFB, Ohio:
School of Engineering, Air Force Institute of Technology,
December 1981,

35. Smith, Lynn M. Intel 432/670 Compyter System User's
Guide. Unpublished text. Wright-Patterson AFB, Ohio:
School of Engineering, Air Force Institute of \
Technology, June 1983.

36. Smith, Lynn M. lInvestigatiop of the Interfacing of the

Avionics Bus. Unpublished MS thesis. Wright-Patterson AFB,
Ohio: School of Engineering, Air Force Institute of
Technology, June 1983.

37. Stankovic, John A,, Andries van Dam. "Research
Directions in (Cooperative) Distributed Processing,"
Research Directions in Software Technology, edited by

Peter Wegner. Cambridge, Mass.: The MIT Press, 1979.

38, Weinberg, Victor. Structured Apnalyvsis. New York, New
York: Yourdon Press, 1979.

39. Weaver, Alfred C., Professor. 432 University User's
Group correspondence. Department of Computer Science,
Thorton Hall, University of Virginia, Charlottesville,
Vva., October 5, 1983,

40, Zeigler, Stephen, Nicole Allegre, Robert Johnson, and
James Morris. "Ada for the Intel 432 Microcomputer,”

Computer, 18:47-56 (June 1981).

41, Zeigler, Stephen, Nicole Allegre, David Coar, Robert
Johnson, and James Morris. "The Intel 432 Ada '
Programming Environment,"” Proceedings of the Twyepty-
Second Computer Societyv International Conference, 405-
410, New York: 1Institute of Electrical and
Electronics Engineers, Inc.,, February 1981.

.

APPENDIX A
Intel 432/670 System Architecture

Introduction

The purpose of this appendix is to provide an overview
of the hardware and software architectures of the Intel
432/670 Micromainframe Computer System. This introduction
presents the major features of the iAPX 432 architecture.
The remaining sections describe the memory organization,
software structures, and component architectures of the
systenm.

Intel claims that "the iAPX 432 represents one of the
most significant advances in computer architectures since
the 1950s" (Ref 18:1-5). The list of features presented to
justify that statement includes the following (Ref 18:1-5/1-

~= The iAPX 432 is the first computer architecture
designed to support software-transparent, multi-processor
operation,

-=— The iAPX 432 is the first commercial computer whose
architecture fully supports the new object-oriented
programming design methodology.

-- The iAPX 432 is designed to be programmed entirely
in high-level languages.

== The iAPX 432 has a large virtual address space

(2**40 bytes) and hardware mechanisms for implementing

virtual memory systems that can use this environment.
-- The 1iAPX 432 hardware can handle fault conditions

in a multiprocess, multiprocessor environment and allow

other system processes and processors to continue running.

The architecture of a 432 "system"” is also described by
its components. The system consists of an interconnected
system of components, which include: one or more General
Data Processors (GDPs), a Main Memory System, and at least
one Interface Processor (IP) connected to an I/O system.
FPigure A-1 shows a minimum system configuration.,

In order to obtain high performance in both general
processing and input/output operations, the iAPX 432 has a
distinct type of processor for each function, The GDP
handles all program decoding, computation, and address
generation. The IP performs all communication with
peripheral devices. Communication among the GDP, IP and
memory is provided by a packed-based interconnect bus, The
IP is also connected to an interrupt-driven 1/0 system bus,
The I/0 system also contains the I/O devices and a E
conventional processor, called the Attached Processor (AP).

These components are discussed in following sections of

this appendix. More information is also available in the
Intel Introduction to the iAPX 432 Architecture (Ref 18).

The memory organization, which is presented first, provides

a basis for the software structures and component

architectures described later.

X A-2

Main iAPX 432
i System General

Memory Data
Processor

<< Processor to Memory Interconnect :>

iAPX 432
Interface
Processor

I/0 System Bus

Peripheral Local Attached Peripheral
Device Memory Processor Device

;—

Figure A-1. iAPX 432 Minimum System Organization

A-3

————— . et e ——

1_ —
'L- ------------
Segment
Descriptor o+
Segment
—fl ACCESS
Selector Descriptor

Access Segment Segment
Segment Table ‘

Figure A-2. Two-Level Mapping (Ref 18:2-11)

Memory Organization
The iAPX 432 system uses segmented memory. However,
Intel uses the term "structured memory" to refer to the
«% organization because it is enhanced in two ways. PFirst, the
| iAPX 432 can address 2**24 memory segments, which may each
specify up to 64K bytes of memory. Thus, the virtual
address space is 2**40 bytes. Second, the 432 uses an
additional step in the address mapping process which is
unique to the iAPX 432, This two-stage mapping separates *
segment relocation from access control and allows
implementation of segment type checking and user-access !
rights in hardware (Ref 18:2-10).
In a 432 system, each program module is supplied, at

run-time, with a collection of segment numbers (i.e., values

A-4

* s S ST i = s, .o s P10 b " da0e AP Nl 2

v

that can be used as indices into the segment table to select
segment descriptors) for only the segments that it may need
to access during execution. This collection is stored in a
set of access segments (tables of access descriptors). This
is illustrated in Figure A-2,

Each logical address consists of two l6-bit components,
the segment selector and the displacement, The segment
selector is an index into the proper access segment. The
access descriptor contains access rights information which
is checked by the domain-protection mechanism during each
memory access, and an index to the segment descriptor
describing the memory segment needed. The segment
descriptor contains the 24-bit base address of the segment
and the 1length of the logical memory object. The base
address is added to the displacement, giving the physical
address of the operand within the segment. The base address
and the displacement create the virtual address space of
2**40 bytes (Ref 25:KEY-1/KEY-4). All addressing within the
main system mnemory is performed with this mechanism. In
particular, each reference ¢to a data structure in main
memory, by the GDP or IP, is done using the two-stage
addressing. The software structures of the GDP and 1IP

programs are described in the next section,

Software Structures

432 system environments, both hardware and software,

have been developed using the object-oriented design

A-5

— rprocoinrtre

methodology. Many of the facilities implemented in the 432
hardware architecture are best utilized by programs designed
using this same methodology. For example, the access-
checking and protection mechanisms are used to enforce the

execution environment of the program module. As explained

in Appendix B, object-oriented design methods lead to data
structures whose use is confined to a single program module.
That is, all the facilities which physically manipulate a
particular data structure are contained in a single module
and thus, no other program module has a need to directly f
access that data structure,

In programnming methods which are structured by :
function, several modules might contain procedures which
would need information from the data structure and so, each
code segment or program module would require access to the
data structure, While the 432 access-checking and
protection facilities would support such an arrangement,
there is 1less protection provided when all the program
modules have legitimate rights to access a data structure
than when the software design specifically limits the need i
for direct access to the data structures,

Software designed with the object-oriented methodology ;
tends to hide detailed design decisions within the program
modules (Ref 5:143). The 1logical view of the data

structure, or object, 1is that of a collection of functions

which provide for manipulation of the data without knowledge

i
;
|
%

of its precise structure, Thus, each software module is a

logical, or virtual, machine providing necessary functions
to other machines.

This "“virtual machine” concept extends to the larger %

view of a complete software system. The basic goal of an
operating system is to provide an easily-used superset of

the actual microprocessor hardware functions (Ref 38:1-3).

Object-oriented software may be built up easily with higher
level modules using the functions provided by other modules
to implement more complex system structures. 1Intel's design
engineers used this methodology in the construction of the

Multifunction Applications Executive for the 432

Micromainframe (iMAX). The iMAX software is provided as a (
set object modules. Appendix C summarizes the features of

the iMAX operating system.

General Data Processor Software Structure. In the 432 !

GDP, the hardware-software interface occurs at a higher ;

level than in conventional systems (Ref 19:15-26). In
conventional microprocessor architectures, the major

facilities include processor registers, various addressing

i
modes, and built-in data types with their associated ;
operations, Very large scale integration (VLSI) technology f
is used in the 432 architecture to implement functions which f

are normally found in operating system software, The

introduction of system objects as hardware recognized

entities is a fundamental step toward a higher 1level of

A-7

e, a1 A > B T Y R e Al o e aiienate S B

interface. Essentially, this means the processor is not
limited to the simple data types normally recognized by a
microprocessor architecture. This is further explained in
the 1Intel iAPX 432 Object Primer (Ref 17:2-5). The
facilities provided by the 432 architecture include the

following features:

-~ Access checking and protection mechanisms for
enforcing program modularity.

-—~ Execution environment for program modules.

-- Scheduling and communication mechanisms for
multiple software tasks.

== Control and dispatching for multiple hardware
processors,

Thus, the system designer is not burdened with creating
an environment of basic operations to manipulate the system
elements; tasks, program modules, and data structures. The
facilities to handle these objects are provided by the
hardware.

The task communication facilities provided by the
hardware are supported by the operating system software and
provide for the management of port and message objects. The
operating system provides for communications between
hardware processors by allowing different processors to
perform the sending and receiving tasks on the same
communications port object. This provides for a consistent

design environment within a multiprocessor system.

~4--------u-u--l-l-n------..-...........,._______,1'___‘

R b A A A

Context
Object

Process
Object

Processor
Object

Instruction
Object

Instruction
Object

—_— — —

Figure A-3., GDP Program Structure

A program which runs on the 432 GDP consists of €five
types of objects; processor objects, process objects,
context objects, instruction objects, and data objects. The
basic GDP program structure is shown in Figure A-3.

Each physical processor has its own processor object
which contains state information (running, halted, etc.),
diagnostics, and references for system objects. The object
references are important because the addressing and
protection mechanisms only allow a processor to access the
memory for which it has object references. One of the
system objects that is referenced by the processor object is
the process object of the currently executing process,

There is at least one process object for every program

A-9

and exactly one process object for every process in the

system, The process object contains the state information
for the process, scheduling information, and a reference for

the context object currently being executed. Each process, j

in a program, consists of one, or more, procedures,

A procedure is a set of instructions logically grouped
together to perform a specific operation. Each procedure is
represented by the third program object type, the context
object. Since many processes may call the same procedure, a
copy, or instance, of the variable parts of the procedure is
created for each reference by a process., Each instance of a |

procedure is given its own context object which contains

references to the instruction and data objects used by the
procedure, This set of references is called the access
f environment of the procedure, The protection mechanism of i
| the iAPX 432 does not allow a procedure to access any area
of memory without the proper reference in its access
environment (Ref 17:3-5/3-17).

All of the necessary instructions and data for a

procedure are stored in instruction and data objects. The

instruction objects contain only instructions and the data

objects contain only data. This separation improves the

i
g system reliability because the protection mechanism can ‘
ensure that only instructions are executed. Also, all [

programs are reentrant since the instruction objects may not

be modified during execution,

A-10

]

o et o 037 1 oS YOO s WV 1 8 St SRS WO f o e wet Do RIS il w- - & o

s TR

Processor Process Context
Object Object Object

t————————————————%

Figure A-4., IP Program Structure

The data objects are the fifth type of object in a GDP
program. They contain only data. The type of data they
contain is defined by the software. Data objects are the
only GDP program objects that cannot be directly manipulated
by the hardware (Ref 17:3-18/3-19).

Interface Procesgor Software Structure. The IP program
structure 1is similar to that of the GDP (see Figure A-4).
The major differences result from the IP having no
capability to fetch its own instructions. The IP is a slave
to the Attached Processor (AP). Basically, the IP gystem
objects contain the same information as their counterparts
in the GDP systenm. However, the context objects do not
contain references to the IP instructions, Instead, the IP
possesses a function request area, where the AP can write

instructions to be executed by the IP, and a status

A-11

- - - - - - -t

————————————————————— o

LGl - T

information area, which the AP can read to determine the
result of the last instruction.

IP objects are, also, protected in the same manner as
the GDP objects, However, the protection mechanism can be
turned off by the AP, This feature is used, during system
initialization and diagnostic support, to permit the AP to
more directly access the memory of the 432 system and is
called physical reference mode, Normal interprocessor
communication is done in logical reference mode, where the
access protections of the GDP are extended to the AP when it
is accessing the 432 system main memory through the
facilities of the IP,

The 1iAPX 432's program architecture is very complex.
Greater detajil 1is provided in the appropriate Intel
reference manuals and user's guides for further

understanding.

Hardware Architecture

The 1Intel iAPX 432 Micromainframe hardware is designed
for multi-processor applications where small physical size,
low power consumption and dependability are essential (Ref
8:1). Intel's engineers used a new approach to computer
technology when designing the VLSI components of the iAPX
432 family. They integrated the hardware and software
design methodologies while aiming to reduce the 1life-cycle
costs of complex microcomputer applications (Ref 19:2). The

result is a computer system incorporating innovations which

A-12

oo . e n oot - v gt

constitute a new computer technology (Ref 19:18).

To accomplish a significant improvement in life-cycle
costs, the designers of the 432 micromainframe incorporated
the software design into the hardware architecture. The
current trend in lower cost hardware and higher cost
software led to considerations for simplifying the software
design task and reviewing the facilities necessary to
software development, testing, and maintenance. Toward this
goal, object-oriented design methods were used while
incorporating operating system functions into the hardware
design (An explaination of object-oriented design is
presented in Appendix B).

Rardware access~checking and protection mechanisms are
also implemented into the 432's VLSI design, which means

that there are software errors that are impossible on the

432 (Ref 17:1-2):
-- A module can not access data beyond the range
of its own environment.

== A module cannot modify a data structure that
it should only read, nor read where it should

only write.
~= A module cannot perform an operation that is

not allowed for the type of data it is using.
(e.g., It cannot execute data for

instructions).

The individual components of the iAPX 432 family have all
been designed with unique features to maximize the system

performance anc provide the system designer with a practical

A-13

[N S-Sl

e .

environment for the development of complex systems.

General Data Proceggor Architecture. The GDP is
responsible for the computational operations of the iAPX 432
system, The architecture of the GDP does not support
interrupts, service requests, or possess user-visible
registers, as do conventional microprocessors. Instead, the
GDP is 1logically organized as a three-~stage microprogram-
cohtrolled pipeline. The iAPX 43201 Instruction Decoding
Unit contains the Instruction Decoder and the
Microinstruction Sequencer. The iAPX 43202 Microinstruction
Execution Unit contains the last stage of the pipeline, the
Execution Unit. Each stage operates independently. This
pipeline organization is designed to efficiently implement
the complex instruction set of the iAPX 432 (Ref 18:3-1/3-
9).

The instruction c¢oding scheme of the iAPX 432 is
designed to minimize the amount of memory necessary for the
instructions while allowing for efficient decoding. The
instruction format consists of an ordered set of variable
length fields; class, format, reference, and opcode. The
class field specifies the number of operands and the data
type of each. The format field is used to specify the
mapping of the required operands to the operand references.
The format field is only included when the class field
indicates that operands are included in the instruction.

The reference field contains the explicit operand references

A-14

r——m—______h

. (when indicated by the format field). The instruction set

is completely symetric, allowing any, of four, addressing
modes with each operand. The last field of the instruction
is the opcode field which specifies the operation to be
performed (Ref 18:3-5/3-7). Details of the instructions and
addressing modes may be found in the Intel Introduction to
the JiAPX 432 Architecture (Ref 18) and the Intel JAPX 432
General Data Proceggor Architecture Reference Mapual.

Interface Procesgor Architecture. The iAPX 43203 j
Interface Processor performs the communication £functions
between the main system memory and the AP system. The 43203
processor chip contains two independent functional units;
the Data Acquisition Unit, which transfers data between the
AP's system memory and the 432's main memory, and the
Microinstruction Execution Unit, which executes the IP
instructions. The AP controls the operations of both these Y
units, The AP requests service from the IP by writing the J
opcode and operands, of a 432 IP macro-operator, into the
IP's control object which is stored in the 432's main
memory. The status of the operation may be read by the AP f

to determine if the desired function has been successfully |

completed. Details of the iAPX 432 IP chip's architecture
and operation can be found in the Intel iAPX 432 Interface
Procegsor Architecture Reference Manual and the Intel JiAPX
432/670 Computer System Dser's Guide (Ref 35).

—_—

iAPX 432 System
Subsystems:
General Data Processors

| Memory
Interface Processor Link fp———

432
Proclink
Attached Processor System Cable

Subsystems:

Interface Processor B c——
Peripheral Devices:

Disk Storage System
Terminal
Printer System

Figure A-5. General 432/670 System Configuration

432/670 Architecture. The 432/670 system is composed

of a processor subsystem, a memory subsystem, and at least
one peripheral subsystem. Figure A-S shows this
configuration.

The Interface Processor (IP) board handles all of the
input/output (I/0) operations, 1linking the 432/670 system
to external Attached Processor (AP) systems. Each AP system
contains its own processor and memory and runs under a
gseparate operating system (Ref 28:1). A 432 Proclink Cable,

connecting an Interface Processor Link (IPL) board with an

A-16

-—.

r ’ B

r - ——— ~
¥ .
Storage Memory iAPX 432 iApPX 432
Arrays Controller General General
Data Data
Processor Processor

U U |

Intel 432/670
Processor to Memory Interface

U U

Interface Interface
Processor Processor
Link Link
I} Intel 432 Proclink II
Cables
iAPX 432 iAPX 432
Interface Interface
Processor Processor
AP #1 {I AP #2 I}
Attached Processor Attached Processor
Multibus Multibus
Attached Peripheral Attached Peripheral
Processor Device Processor Device
Controller

w/memory Controller w/memory

Figure A-6. Intel 432/670 Micromainframe
Multiprocessor Configuration

A-17

P e N L et

[T

IP board, provides the hardware connection to the main
system. Figure A-6 shows the interconnections within a
multiprocessor configuration of the 432/670.

The IP board must be placed on the system bus of AP the
system, This 1limits the systems appropriate for APs to
Intel MULTIBUS configured systems. Implementation of an
interface with the 432 computer system involves software
development on two distinct processor systems; the 432
processor system and the Attached Processor system, The 432
must be programmed to communicate with a particular AP
system through the IP connected to that system. The iMAX
432 Operating System (see Appendix C) provides the basic

functions necessary for this interface.

Summary
This appendix has presented an overview of the iAPX 432

system architecture, The 432 system memory was described to

provide a virtual address space of 2**40 bytes over a
physical address space of 2*%**24 bytes. The GDP and IP
software structures (processor, process, context,
instruction and data objects) were discussed. The
architectures of the GDP and IP components were briefly
described and, finally, the organization of the 432/670
system was described. If more information is required, the
reader should refer to the Intel Introduction to the iAPX
432 Architecture (Ref 18) and other Intel publications.

A-18

e r——— e P e e A —— e —— ——

T —p i e e e et e -

APPENDIX B
Object-Orjiented Systems Design

Introduction

Object-orientation in computer program design was first
proposed by D.L. Parnas in 1972 (Ref 5:141). His technique
offers a step beyond structured programming in the effort to
create maintainable software that can be changed and
expanded to meet future needs. Object~oriented design
provides a system for developing effective data structures
as well as program-control flow. This technique can provide
a consistent design approach to the system architecture,
operating system, and programming language.

This appendix will examine object-oriented design and
its use in the Intel iAPX 432 microcomputer system, which is
the first microcomputer to fully support its use in hardware
and software (Ref 5:141-142). The fundamental concepts
of object-oriented design will be presented and then,
using the 432 system as an example, the application of the
technique will be discussed in the 432's architecture and

operating system design.

Object-Oriented Design

The object-oriented methodology is most unique in its
consistent approach to program flow control and data
structures., An "object" is a collection of procedures which

encapsulate a data structure. It is the characteristics

B-1

DL NPT SPE PV EUNNRUSSRNRRPRISURTW O RIS T P el »

R

(procedural interface) of the the object, rather than their
implementation, that are of primary concern to the
programmer. To demonstrate the important features of the
method it is best to compare it to the more common design
approach.

In conventional design methods each procedure or
process becomes a module. Processes which need to use the
information held in a particular data item will need to know
the structure of that data. For example, if a data item
contains a set of student names and test scores associated

with each student, then a procedure which will get the

scores for “John Doe” must have detailed knowledge of the
organization of the information. The nature of the data
structure is important for proper retrieval of the
information (e.g., whether the names and scores are stored
as records of a tape file or items of distinct arrays to be
indexed by an integer). Generally, any other procedures
which act upon the data must also know the structure of the
data item,

With the conventional approach, functional cohesion is
the goal for a system module (Ref 38:192-195), The function
performed is defined by the collection of procedures
contained in the module.. Each well-structured module
performs a single function. The interface to all other
modules is completely defined by the input and output

requirements, However, the connection between a function

SIURRSRIORYPRIGERT I e ST INTT N PP CIEA WSS REIIETTY T PORRSRGCTSARES P s ’
. ¢

'
Insert Parameters
| VA
' Process Module
Select 1°) Punctions memnge Remove
Function =g 2 Provided Results
3
@

| ’_

Figure B-1. A Module in the Object-Oriented Methodology

and the data items it uses must be of a global nature, that

is, understood at the lowest level without explicitly having

been provided as an input to the procedure.

The object-oriented approach does not require this
global structure information. Object-oriented modules are
built from procedures which provide functions or information
to other modules in the system., The hiding of design
decisions is the criteria for modularization (Ref 5:143).
The exact structure of the data item would be hidden from
procedures outside the object module. Outside procedures
would access the information in the data item by using the

functions provided by the module, Pigure B-1 shows this

concept as a black box which can only perform certain
functions. Those functions may present the appearance of

logically well-defined object but the details of the items

gt i S 0 [P INUES STU. VSRR PR - TSRS P SRR g LA 4 B L

i

in the box and the workings of the functions provided are

hidden from view.

This hiding feature for data items is an extension of
the conventional modularized procedures which hide the
complexities of program control flow in the structured
program module having a single input and a single output.,
In general, an object-oriented module would hide program
control flow ant the structure of the objects it manipulates
whether they are procedures or data items,

This provides a "simple" interface between modules,
There are no complex data structures which must be
implicitly known within a central module, only the
procedures which clearly define the characteristics of the
object represented by the module. Also, the access to data
items is protected by limiting the use of the data item ¢to
the procedures of object module. Thus, it is easier to
understand a module's function and thereby maintain its

usefulness.

Qbject-Orientation in Architecture

An object-oriented computer architecture would hide the
physical structure of the machine and provide functions to
manipulate logical storage containers while not requiring
global knowledge of the hardware configuration, The Intel

432 microcomputer architecture was designed to this goal

(Ref 29:125). It exhibits several important traits and

v et T

powerful features due to this design concept.

The memory of the 432 microcomputer is accessible only
as a collection of objects and not as a single contigucus
segment of storage. This provides for modular structure in
memory use and a protection mechanism based on data
structures (Ref 33:5). Unfortunately, the processing time

used to perform these functions is significant. The real

time, however, is minimized by implementating the procedures
in VLSI hardware.

The objects in memory are classified by their use and ,
structure (Ref 40:406). Instruction objects are clearly L
identified from data objects. This enables the system to :
know when it is accessing data or procedure code and thereby ’
protect itself from incorrect accesses. In addition, there
are two forms of objects for instructions and data; "access
objects" and "simple objects". Access objects contain only
access descriptors which hold the information concerning the
availability of other objects to the current process and the |
structure of the information in those objects. Simple i
objects hold only data (instructions or program data) and
are at the bottom of the memory structure hierarchy.

The hardware of the 432 microcomputer is constructed to

present a modular view to system designers., The functions

provided by the architecture raise the 1level of the |

hardware-to-software interface to logical object !

transformations rather than bit manipulations (Ref 33:4).

T e a8 e R i R - L S

[“ B e S

The penalty for this capability 1is increased hardware
complexity and functional overhead as the operations on the
N bits must be performed at a lower 1level which is not

accessable to the system's programmer,

dbject-Orientation in O tina Svstem Desi

The use of object~oriented structure in a computer

operating system can provide an environment for program
L development which is largely independent of the hardware
implementation upon which the system operates, Modules
which hide the detailed implementation of function and data
structures are necessary in providing useful procedures to
architecture independ~nt systems. The Intel iMAX 432,
Multifunctional Applications Executive, provides basic

system functions as Ada “"packages,"™ the Ada language

A bR e

equivalent of objects (Ref 39:50-51).

The iMAX system provides modular functions to perform
input/output, process control, and memory management. Each
function is presented for use as a part of an operating
system. All the necessary interface data is provided in the

Ada package specification which is provided for the

designer's use. BHowever, the details of the function or the

data it wuses are not available to the user. This is an

extreme example of device independence. The user is unable
to directly access a hardware device without using a pre-
defined function made available by the iMAX package which

manages that device. This simplification may seem ideal to

B-6

-~ . “W

the programmer who is willing to use the device as it is
available through the operating system. However, the
designer who wants to have intimate control over the device
will be frustrated by the system's overhead.

In the case of memory management and protection, the
object-oriented procedures of iMAX simplify the design
process, The user may select from externally identical
object modules which provide the same functions to the
system but are internally different, For example, one
system package may provide for page~swapping memory while
another uses a non-dynamic approach. Whichever object the
user chooses, the functions available and their inputs and
outputs are the same. The user need only select the
implementation which is most efficient for his program (Ref
29:132-133). The modularity of the system will allow the
decision to be modified at a later date and another
implementation of the same function could be used.

The process control for the system is also modular. 1In
the Intel iAPX 432 system process control at the
architecture 1level 1is defined by object modules so that a
process execution is independent of the number of hardware
processors in the system (Ref 28:402). A program that
executes with three processors in parallel will run, without
modification, on the same system with only two processors.

The portion of the operating system that selects the next

available process to be run can also be modified to change

its selection criteria without requiring modifications to

the modules which use the package.

Conclusion

The object-oriented design technique provides a
consistent approach to system organization. The same
modular approach can apply to the hardware architecture as
well as the system software. The object module concept
provides clear function definition while hiding the design
decisions made and implemented at 1lower levels. This
modular interface to lower levels provides flexibility in
design and maintainablity in the system by simplifing the
interconnections among the parts of the system.

The cost of these features is in the complexity of the
hardware itself and the overhead associated with

manipulation with more complex data structures.

APPENDIX C
AMAX 432 Multifunction Applications Executive

Introduction

The iMAX 432 Multifunction Applications Executive
(iMAX) provides executive services to user-supplied software
that calls iMAX procedures. The purpose of this appendix is
to summarize the features of iMAX and describe how the
functions may be used in the creation of a software system
for the Intel 432/670 Micromainframe computer system (432).

The primary source for the information presented in
this appendix is the iMAX 432 Reference Manual (Ref 25).
For a detailed description of the features of iMAX, the
reader should refer to that document. Terminology used in
this appendix matches that in the reference manual to
provide continuity for the reader. The following sections
describe the features of iMAX in five areas: Process
Management, Storage Management, Interprocess Communication,

Input/Output, and System Configuration.

Procegs Management

iMAX recognizes two types of processes; static
processes and dynamic processes. Static processes are
created at system initialization and are relatively
inflexible. Dynamic processes are created during system
execution and may be manipulated through use of the

functions provided in the Basic_Process_Management package

C-1

START PROCESS

SLICE EXPIRES

READY

8
IDLE OR DISPATCHING
PORT OP RUNNING
COMPLETES '
FAULT

IDLE OR

BLOCKED PORT OP
FAULTED

Figqure C-1. Static Process State Transitions
(Ref 25:CON-3)
(BPM) (Ref 25:BPM-1). This section discusses the functions
available for control of each type of process.

Static processes are processes which are defined at
compile time and started at system initialization. iMax
does not provide any control operations on static processes
within the Basic_Process_Management package. The only
operations available on static processes are the
iMAX Definitions.Idle procedure, which causes the process to
be suppended from scheduling for a given time period, and
the port operations, which are described later in this
appendix. Figure C-1 shows the state transitions for static
processes (Ref 25:CON-3, INI-7).

Dynamic process management functions are available in

C-2

TABLE C-~I

Comparison of Ada Tasks and iMAX BPM Processes

Attribute
Scheduling

Hierarchy

Control

Communication

Mutual
Exclusion

Portability

(Ref 25:BPM-2)

Ada tasks

Advisory priorities
fixed at compile-time

Implied by nesting of
declarations., When a
task is aborted, any
dependent tasks are
aborted.

Abort another task,
raise Failure
exception in another
task

A task can wait for
multiple entries
guarded by conditions.
Timeouts can be in~
cluded in the altern-
atives waited for.

Not explicitly pro-
vided, buu can be
constructed using
communication
facilities.

Ada tasks are part of
standard Ada.

iMAX BPM procegses

User can dynamically vary:
priorities, deadlines, time
slice length, and number of
time slices before
rescheduling consideration

Processes can be organized
into trees and process
operations can apply to
entire trees

Start, Stop, Reset, Restart,
and Destroy other processes.
Use guardian ports to
receive and restart
processes suspended by some
condition.

Processes send or receive
messages via explicitly-
identified ports. Surrogate
operations support
prioritized queuing of
messages and waiting for the
occurrence of one of several
different events,

Not explicitly provided, but

can be constructed using
communication facilities,

iMAX processes are not part
of standard Ada.

e e B o L e T

e e T o

two ways; Ada tasking facilities and the imMAx
Basic_Process_Management package (BPM)., The facilities
provided are not the same but, they may be used together or
separately, as the design requires. Table C-I compares the
BPM features with Ada tasking. At the time of this writing,
the Ada compiler does not support tasking. However, when
tasking is supported, design decisions, relating to which
management system should be used, may be based on this
comparison. Details of the Ada tasking facilities can be
found in the Reference Manual for the Ada Programming
Language (Ref 20:9-1/9-16). Note that it is advised pot to
intermix the task control features of Ada and iMAX because
there are minor differences in the task information
structures used in each system. There are cases where the
results of intermixing the operations will cause
unpredictable results.

The Basic_Process_Management package (BPM) provides
the process management functions required to complement the
hardware features of the 1Intel 432, Essentially, BPM
provides the system designer with an interface to processes
and their scheduling at a low level without interfering with
the system objects used by the hardware (Ref 25:BPM-1l),
This interface includes manipulation of multiple processes
in tree organizations, handling processes unable to execute
through special user-defined inter-process communication

ports, process operations for creation, control, and

C-4

destruction of processes, as well as procedures for setting
and examining process attributes and scheduling parameters.
The following paragraphs discuss these significant features
of the BPM package:

iMAX allows processes to be organized into tree

structures which may be controlled or destroyed as a single
unit. The organizational placement of a process is
determined when the process is created. 1In simple terms, if
the process is created from the "local"™ memory heap of
another process, then it is the child of that process. If
the new process is created from the "global"™ memory heap,
then it is not a child of any other process. After
creation, BPM control procedures provide for starting,
stopping and destroying single processes or entire tree
structures. In addition, whenever a process terminates at
completion, is stopped or destroyed by action of another
process, cannot handle an error condition, or needs service |
for any other reason, the process is sent to a special
communications port defined as the guardian for that ;
process.,

The guardian port identified when the process is ;
created. Each dynamic process must have a guardian port,.
Each gquardian port must have an "owner™ process which
receives the processes sent to the guardian and services :
each according to its condition. 1In this way, processes may

be destroyed or error conditions may be corrected after the

RIRC

Process
Creation

Ready_to
Restart

RESTART

RESTART

User_
Restart

Figure C-2. Dynamic Process State Transitions with BPM
(Ref 14 :BPM-12)
process is sent to the guardian, It is the user's
responsibility to identify the guardian port and the owning
process while the system handles moving the process to the
guardian port when its condition cannot be satisfied by
normal processing.

The condition of a process is identified by its
attributes. There are six attributes defined for each
process: process name, identification number, trace
condition (boolean), gquardian port, process globals access

segment (a table of process objects), and the process state,

M oL eri e u W el B g, o e RO

Only the process globals access segment and the process
state can be read by the user after the process has been
created. The process state is changed as the process is
moved through the cycle of scheduling states. Figure C-2
shows the process state transitions for dynamic processes
using the BPM package. In that figure, "RIRC" refers to the
Read_Info_and_Reset_Condition procedure which is the only
way that an existing process may be placed in the READY
state (Ref 25:BPM-15).

Storage Management

This section describes the Storage Management features
of iMAX, Generally, the concepts of Ada storage management
are supported by iMAX (i.e., the access types and allocators
used by the Ada new operator) (Ref 25:STO-1). Table C-II
summarizes the capabilities of iMAX and the limitations of
the current system (Version 2). The major elements of the
Storage Management system are Storage Resource Objects
(SROs), Lifetime Strategies, Fragmentation and Compaction,
and Memory Types. These elements are described briefly in
the following paragraphs:

The SROs are the users access points to the memory of
the system., The SRO coordinates the use of object table
entries and the allocation of physical storage, to provide
the user with an, apparent, unbounded claim to memory. When
the user requests additional storage, and either virtual

address space (an object table entry) or physical space (a

c-7

Yo Sk R L " e

e L Tl T

S — e e o

M —— —
4 L
TABLE C-II
iMAX 432 Storage Management Capabilities
(Ref 25:STO~1/STO~2)
e S S M——— :

iMAX V2 provides a real-memory system with:
l. Dynamic allocation of objects
2. Transparent expansion of object tables

and stack or heap storage blocks, as
required by user processes

3. Storage reclamation transparent to users

4. A range of lifetimes for created objects
iMAX V2 dges not support:

1. Virtual Memory

2. Limits on the amount of memory used by

a particular process or collection of
dynamically allocated objects

physical memory partition) is not available, then iMAX
allocates more resources to the user, transparently. Each
SRO, also, has a particular lifetime strategy and a memory
type for objects allocated from it.

There are three storage lifetime strategies; gtacks,
global heaps, and lacal heaps. The stack lifetime strategy
is the most restrictive. Stack objects are deallocated when
the context, that created them, is no longer active (i.e.,
upon returning from that subprogram). Global heap lifetime
strategy is the least restrictive. Objects created from the

global heap can only be deallocated by the "garbage

COMPACTION
FREE OBJECT CREATION
MEMORY
[
: RETURN
GARBAGE OBJECTS
COLLECTION -- stacks,
local heaps
RETURN
-= local heaps
GARBAGE |
ELIMINATION OF OBJECT REFERENCES

-= local heaps, global heaps

Figure C~3, iMAX Storage Management Transitions
(Ref 25:STO-4)
collector" process, which wanders around memory, searching
for objects that are no longer in use by any context. This
garbage collection process runs concurrently with any other
iMAX and user processes in the system. The third 1lifetime
strategy, local heap, is a combination of the other two. If
a local heap object becomes unreferenced during its 1life,
it may be reclaimed by the garbage collection process.
However, the object is also deallocated on returning £from
the context that created it. Figure C-3 summarizes the

three 1lifetime strategies by showing the transition paths

c-9

FE-"=9
v

of the iMAX storage management system.

The fragmentation of system memory is the division of
free physical storage into small portions as a result of
allocations and deallocations. iMAX runs a transparent
compaction process to reorganize the free memory into larger
contiguous segments. It is important to note that the
compaction process runs asyncronously and may cause delays
accessing objects during its execution. Some parts of iMAX
and user programs cannot tolerate this unpredictable delay.
Therefore, iMAX divides physical memory into two types;
frozen and pnormal memory.

Segments in normal memory may be relocated by the
compaction process. Segments in frozen memory are pot
relocated by the compaction process. iMAX, Version 2,
provides one global heap SRO for frozen memory and one for
normal memory. Users may use frozen memory for time-
critical processing. However, it must be realized that
frequent allocations and deallocations of frozen memory can

cause irreparable fragmentation of that part of memory.

Interprocegss Communication
This section describes the iMAX facilities for

interprocess communication. There are three object types
used in interprocess communication; messages, carriers, and
ports. The basic operations on these objects are gending a
message in a carrier to a port and receiving a message in a
carrier from a port. Either of these operations can cause a

C-10

—
Message AD
in sender's [~
context
any SEND to
a full port any SEND to
empty port
with carrier
waiting
Message AD any SEND to
in sending a NOT-full port
carrier waiting with no carriers
at port waiting
A &
Message AD
—pqd in port message
RECEIVE queue
COND_RECEIVE
SURROGATE_RECEIVE
SURROGATE
_RECEIVE *7
Message AD
RECEIVE in receiving
COND_RECEIVE carrier, which
is forwarded
Message AD
in receiver's
context Get_Carrier_Message
{surrogate process)
or Hardware
_ I 4

Pigure C-4., iMAX Message AD State Transitions

(Ref 25:COM-6)

C-11

s TR TPy

S T A e e AU B TSmO e e ey

third operation, the forwarding of the carrier to a second
port. These objects and operations are described in the
following paragraphs:

Messages are moved by copying access descriptors (ADs)
(like pointers). Figure C-4 shows how the reference to a

message changes as the AD moves between processes. It 1is

important to note that both the sending and receiving

process have access to the message after it has been sent.

In the 432 system, ports are supported by hardware.

They consists of two queues; a fixed length message queue

and an unlimited gax;ig;_gugng. The maximum size of the
message queue is fixed when the port is created. Messages
are placed in the queue according to the port's queuing
dicipline (either PIFO or priority). When a message is sent
to a port who's message gueue is full, the sending process i
is blocked and the carrier must wait in the carrier queue.
When the message queue is empty and the receiving process
attempts to get a message from the port, the receiving

carrier must wait in the carrier queue. At the time a port

is created, the length of the message queue and the queuing 4

dicipline are set, and the queues are initialized as empty.
Carriers move messages to and from the ports. Each

process has a process carrier that transports the process

around the system ports. Porwarding a process carrier to a

dispatching port, allows that process to run. Users can

also create jsurrogate carriers, which are used to move

C-12

messages between processes, Surrogate carriers may, also,

have a priority which determines where the message is placed
in the queue at a port with a priority message queue
dicipline (Ref 25:COM-3).,

There are three operations which may be used to send
messages. Send uses the sending process's carrier to move
the message to the receiving port. Surrogate Send uses an
specified surrogate carrier. Both of these operations will
always result in a message being sent, The third operation,
Cond Send, only moves the message if the receiving port is
not full. That is, Cond_Send will return a false indication
to the sending process if the carrier would have otherwise
been blocked at the receiving port, If the receiving port
is full, Send and Surrogate_Send will cause the carrier to
be placed in the receiving carrier queue and, thus, block
further execution of the carrier's process (Ref 25:COM-4).

Similarly, there are three receiving operations.
Receive and Surrogate Receiye cause their respective process
carriers to receive a message from the specified port. If
no message is waiting at the port, the carrier is placed in
the queue and the process is blocked. The Cond Receive,
however, operation returns a false value if there is no

message waiting at the port (Ref 25:COM-5).

Input/Output
This section describes the iMAX facilities for data

transfer between peripheral devices. There are two general

C~13

L 2

TABLE C-III

Syncronous I/0 Interface Operations and Device Types
(Ref 25:10-4)

netag
Device Types
Operations Source Sink Store
Interface_description X X X
Close X X X
Reset X X X
Transform_interface X X X
Get__asyncronous_
interface X X X
Flush X X
Read X X
Write X X
X = operation is available with device
Sommmsen _‘-L
interfaces provided; a syncronous interface and an

asyncronous interface. The syncronous interface facilities
can be used to "implement higher-level facilities, such as
the Ada TEXTIO package®™ (Ref 25:10-1). The asyncronous
interface facilities are intended to be used only to
implement device drivers or special I/O requirements. The
iMAX I/O model supports both new devices and new types of
devices, The model does pot support the creation or
deletion of devices (or device interfaces) during program
execution, Also, iMAX does pot manage concurrent access to
shared devices (e.g., if two processes writing to a shared
printer, the printer use needs to be coordinated).

The syncronous interface consists of several packages

of software that include a standard procedural interface,

C-14

L3

an extension to that interface to support terminal devices,
and an instance of the standard interface to support the 432
Debugger system. The standard procedural interface includes
definitions of three generic devices in the iMAX I/O0 model;
a source (input-only) device, a gipk (output-only) device,
and a gtore device. Table C-III shows the I/O interface
operations and the generic devices to which they apply. A
detailed description of the operations (and the special
packages for terminal and Debugger I/0) can be found in the
iMAX Reference Manual (Ref 25:I0-1/I0-15). Note that, for
all device interfaces provided by iMAX, Version 2, the Close
and Reset operations perform pno function (Ref 25:I0-~4).

The asyncronous interface facilities define a port-
based connection between the device and the processes
requesting I/0 services from it. A process sends a request
message to the port and, later, receives a reply message
from the device indicating the success or failure of the
operation, iMAX standardizes the interface by defining the
format of both connections and the I1/0 messages. Also, the
command codes and reply codes that are used in the messages,
are defined by the iMAX facilities (Ref 25:I0-16). Table C-
IV shows the relation between the interface commands and the
replies they may receive,

The connection is defined by the data in the connection
record; an access for the receiving port, a printable name

for the connection, an access for the data which describes

12

1 I — L S R T LT, = oG e A A A S AT A SR e

v

A1daa1 39b ued pueuuiod = ¥
X X X X X X pauiIn3}ai 39831 M
X X X X X X X paso1o~adevJIajuy
X X 101197017 pIey :
X X X X X X X 3sanbaxTpyrrAUY
X X 9z18” 1933nq
~e3jep peq
X X X X X puenuod pITRAUT
- -
X X X X X X pa2ainbaiT33sa1 &
X passasoad jo0u
X 3113 JOo pud
X X X X X X X g8900n8
:XIdaY
§0131STI930RIRYD SOTISTIIJoRIRYD
aotaapT3ab 90TA9pP 338 UsSn{3 98070 I3FIM peax 33891 ANYWWOD

(0Z-01:G6Z 3IdY)
20Ua13394-8801) A1day pue purwwo) IdeJIIJUI sSnouoioulsy

AI-D JATAYL

; the device, and an access for the port at which reply

* messages can be received, The reply port access is also a
part of the message format,

An I/0 megsgage is an access for a record containing an

access to a command record for the message and an access to

the reply port, where the mesuage will be returned. The

command record contains the command code, the message

identifier (allows the reply to be matched with the message
sent), the reply code (filled in by the device), and the

buffer descriptions (in iMAX, Version 2, there is only one
buffer permitted with each I/0 message). The command codes
and reply codes are explained in Chapter IO of the iMAX

Reference Manual (Ref 25:10), but, generally, their meaning

is evident from the name (see Table C-IV).

svst Confi £

This section discusses the configuration of the 432

system using the iMAX facilities. The iMAX user can control ?
three aspects of the configuration; the number and i

identification of the system processors, the static user

processes (discussed previously), and the I/0 device

s

interfaces present in the system. The configuration of

E I

static processes was discussed in the first section of this
appendix and the I/0 devices were, also, discussed earlier,
This section will discuss the configuration of processors in
the 432 system.,

The amount and type of memory available in the system

e e e i e > s o A

C-17

Slot No. System Use Default
12 GDP or IP Ip
11 GDP or IP IpP
10 GDP or IP empty

9 GDP or IP GDP
8 GDP or IP GDP
7 MEMORY CONTROLLER MC
6 STORAGE ARRAY SA
5 STORAGE ARRAY SA
4 STORAGE ARRAY ~ sa
3 STORAGE ARRAY SA
2 STORAGE ARRAY SA
1 STORAGE ARRAY 7éA

Figure C-5. 432/670 System Bus Hardware Configuration

is determined by directives to the linker program (LINK432).
The 1linker is described in the Intel 432 Cross Development
System VAX/VMS Hogt User's Guide (Ref 21:3-1/3-41).

There are three types of procesors in the System
432/670; General Data Processors (GDPs) , Interface
Processors (IPs), and Attached Processors (APs). The GDPs
are the primary processing elements of the system, The APs
are the I/0 processors and handle the direct interface with

the system's peripheral devices. The IPs are the

C-18

e e e e o

RPN

communications processors that handle information passing
between the GDPs and APs. Appendix A explains the system
architecture in more detail.

The system configuration information resides in package
bodies which the user may alter. The user can modify,
recompile and then replace the Ada configuration package
body using the 432 Ada Compiler System and LINK432
facilities. The software confiquration package contains
calls to iMAX procedures which create processor objects.
Each functioning processor requires a processor object and
iMAX system initialization processes start all processors
for which there are processor objects. Since, there is only
a small space penalty for configquring more processors than
necessary, the system can be confiqured for the maximum
number of processors possible., Then processor boards may be
added or removed, as necessary, without any change in the
software (Ref 25:CON-1/CON-2).

There are five processor slots in the 432/670 system
chassis. These slots can be used for either GDPs or IPs, as
needed. However, there must be at least one GDP and one IP
present, Thus the maximum number of GDP processors in the
AFPIT/ENG 432/670 system (with a 12 slot system bus
backplané) is four, with one IP. Figure C-5 shows a 12 slot
backplane and the slot allocations (Ref 25:CON-2,RDW-1).

Cc-19

Summary
This appendix has outlined the major features of the

iMAX 432 Multifunction Applications Executive for the Intel
432/670 computer system. The areas discussed included
process management, storage management, interprocess
communication, input/output, and configuration of the system
in hardware and software. The iMAX Reference Manual (Ref

25) should be used if greater detail is required.

Cc-20

APPENDIX D
Message Format for a Computer Bagsed Message System

Introduction
The purpose of this appendix is to provide a reference
document for the specification of the message format for the

1/0 Interface, The format of the messages used in the |

prtstware e =

interface meet the requirements for message format described

in the Proposed Federal Information Processing Standard

"Specification for Message Format for Computer Based Message
Systems®™ published by the National Bureau of Standards

(NBS), Institute for Computer Sciences and Technology (Ref

38). System users should refer to that document for a
complete description of the message NBS standard message

format. i

As described in Chapter II of the body of this thesis, f
an I/0 Interface message contains six fields; FROM, REPLY-
TO, POSTED-DATE, TO, SUBJECT, and TEXT. Each field contains
one, or more, data elements, which contain four parts; the

identifier, length, qualifier, and data contents., Figure D~

1 shows this structure. The purpose of this appendix is to
define the information required in each of these components
for the I/0 Interface messages.

This report presents the structure of the I/0O Interface
messages in three parts., First, the 1/0 message is defined
by describing the fields contained in the message. Second,

D-1

b

FIELD | FIELD
-
Message Structure

T

-+
| FIELD FIELD FIELD | . . .

+

+—+
+—+

T

g

+=- n
DATA ELEMENT DATA ELEMENT e o o | DATA ELEMENT |

<o
R

T

[S

1

Field Structure

IDENTIFIER LENGTH QUALIFIER | DATA CONTENTS

Data Element Structure

Figure D-l. General Message Structure

the 1/Q envelope is described, including its relation to the
I/0 message. Finally, the mapping of I1/Q device names to
CBMS addresses 1is presented, for reference.

In the following discussions, the words "byte" and
"octet" are both used to mean "an 8-bit®™ value, There is no

difference in meaning intended by the use of either word.

1/0 Message Description

The I/0 message is element of communication among the
I/0 Interface system User Agents and Device Agents, as
described in the body of this report. These messages
contain the six fields shown in Table D-I. Messages, and
fields, are constructed from data elements. In fact,

messages and fields are just special types of data elements.

D-2

TABLE D-1
I/0 Message Fields

Bield Description
b
: FROM Identifies the sender
REPLY-TO Identifies where the reply
should be sent ;
POSTED-DATE 1Identifies the date the message
was sent :
TO Identifies the recipient ﬁ
SUBJECT Identifies the message purpose i
TEXT The content of the message
-t
Each data element consists of four components; an h

identifier octet, a length code, a gqualifier, and the data
contents. The identifier octet is a unique 8-bit value that
identifies the data element. The length code indicates the

number of bytes following it in the data element (i.e.,

excluding the identifier octet and the length code itself).
The qualifier is included to provide information necessary

to the interpretation of the data contents. For example, if

the data element is a field, the qualifier could contain the
code identifying the particular kind of field. Finally, the
data contents component of the data element is the actual
data represented by the element. The length of the data
contents is determined by the difference bétween the value
of the 1length code and the 1length of the qualifier

component.

The length code and qualifier are, generally, only one

i s

bit 76543210
e ————— +
]0 x x X x x x x| XXxxxXxXxXx is the value,
+- _—t
+- + This is an example
10600001001} with a value of 9 decimal.
+- +
- + + This example has
11000000111 000010O0] a value of 130
. + ————+ decimal,

ﬁ‘

Figure D-2. Encoding Mechanism for Qualifiers
and Length Codes (Ref 12:40)

byte in length. However, they are encoded to allow extended
lengths to the components. The most significant bit of the
components is used to indicate whether the component is one,
or several, bytes in length. If the most significant bit is
0, then the remaining 7 bits are the actual value of the
length code or qualifier (i.e., in the range 0-127).
However, if the most significant bit is a 1, then the
remaining 7 bits of the first byte are the number of bytes
in the rest of the component. The actual value of the
component begins in the next byte and is interpreted as an
unsigned integer. Pigure D-2 shows examples of this
encoding.

For the remainder of this appendix, the following
notation will be used to show a length code, where the

actual value is unknown: ===/)=t
|Lxxxxxxx |

tmmm) [t

"..l.............l!=!!!!!!!---!!!==;.....................-......-........===;—i—_—m__'

A similar symbology will be used to denote the other
components of the data elements when necessary.
Construction an I/0 message begins with the

identification of the structure as a message. All I/0

messages are identified as NBS standard messages by the

following format:

‘L

identifler 1e7;th qualifie: data contents

T—

|01001101ILxxxxxxxIOOOOOOOlI message 7ontents |

- + + + +

e e 1 0 T T g 77 T e T

The 1length code value is 1 more than the actual length of
the message contents and the "message contents" consists of ;
the fields listed in Table D-I.

The FROM field in the I/O message contains the 1I/0
Interface device name. The device name 1is an ASCII
string of 17 characters. The NBS standard format specifies
the encoding for this field as follows:

'y I 1 ‘L

L v //
1001100|00010100|00000001|00000010|00010001| devici/name

tat
+ -+

The REPLY~-TO field contains similar data, the device
name for the recipient of the reply message. Thus, the
field appears as follows:

length gualifier length data contents
field 20 REPLY-TO ASCII 17

ode N e R oo
-

//
1001100/00010100]00000011]00000010/00010001 | device//name

& dn
T v La r

tat
+—+

D=5

P b e o ¢ -

The POSTED-DATE field contains the date and time of the
message being created. This information is formatted in NBS
standard date structure (Ref 12:51). This 1is, simply,
the "year, month, day" sequence represented by eight ASCII
digits. For example, January 21, 1981, would appear as
"19810121". The NBS format of the POSTED-DATE field is as

follows:
dength qualifier identifier
field 13 POSTED-DATE date 10
L J -—+
I01001100!00001101]00000010|00000010|00010001|
+ + + + —-——t

l.eng.thdmg.qn:sm:a

ASCII
- + + ..-//....-+
l00000010IOOOOlOOOIxxxxxxxxl
- + —-//—--+

The TO field, 1like the FROM and REPLY-TO fields,
contains an I/O Interface device name, So, the structure

is similar to those previous fields:

lsng:hsmaliﬁa:idennfmlsng:h data contents

field ASCII
e an o o = e] + + + // +
|01001100|00010100|00000101|00000010]00010001] device name |
+— T +

T T T 1

In the NBS standard, the SUBJECT field usually contains
comment-like data giving some information about the data in
the message (Ref 12:62). For the I/O Interface, this field
is used to indicate whether the message is an I/0 command or
a reply from a device. The contents of the field are not

used by the 1I/0 Interface system, as it is presently

implemented. However, the CBMS Manager package fills in the

't field with the proper string (either "COMMAND" or "IOREPLY")
and the value may be used, during debugging, to identify
reply messages in the system. The field has the following
structure:

: .] £} 1ifi {dentifi a1 tent
field 10 SUBJECT ASCII 7

+ + + + + + // +
101001100]00010100|00000111{00000010(00010001 | string |
+- + + + + + // +

Finally, the TEXT field contains the data of the 1I/0

message. There are five data elements in this field:; the
command code, the reply code, a file name, a maximum buffer 'z
8ize, and the data of the message. All five elements must

be present in the I/O message, although, their lengths may
be zero.

The command code and reply code are integer values, in
the range from 0 to 128, Thus, they can be encoded in a H
single byte, |

The file name is an ASCII string of not more than 16

characters. When the file name is not required, the data
element's length code is set to 0,

The maximum buffer size is used with the "read"
command, to indicate the maximum amount of information that f

can be returned in the reply message. The buffer size is

given as an unsigned 8-bit integer.

The message text is designated as ASCII, although, any

8~-bit structured information may appear in the message. The

D=7

Y s TR T U i - p———— o

Ay s < RO bl e

length of the text is specifically 1limited. However, the
length of the entire message may not exceed 1024 bytes,
This 1limit is implemented in the I/O Interface to simplify
the message handling procedures with the current Ada
compiler's 1language restrictions.

These five elements can make the complete message range
in size £from 105 bytes to the maximum (1024 bytes). The
NBS format for the TEXT field is:

\tifier lengtl ces
field 12-927 TEXT

o e 4=mm) /==t
l01001100ILxxxxxxxlOOOOOlOOl
+-' ---------- // ‘r ‘r

integer 1 command code
+— -l- .L
IOOlOOOOOIOOOOOOOlIxxxxxxxx
+"‘- -r ‘r

+ =+

dentifier length data
integer 0~-1 reply code
S + + +
100100000]/00000001 | xxxxxxxx |
= + + +

i length data
ASCII 0-16 file name
+=- + + /===t
I00000010ILxxxxxxnyYYYYYYYYYI
drom o o o m e e b= //

i lengih data
integer 0-2 buffer size

+ e —
I00100000l0u000001lxxxxxxxxxxxx[
= + + /) —————t

length data
ASCII 0-914 message text
+ tomn/)mmmt // +
I00000010ILxxﬁ;xxxlyyyyyyyyyyyyyl

[

To summarize the format of the I/O message, an example
is given, The following diagram is a an I/O message from
the User Shell process, to the Printer System device,
written on August 16, 1983, which is a command to open the
printer device for use by the User Shell:

identifi]) s
message 108 NBS std

|01001101!01101100!00000001|
+- ------- L 1 +
I identifier lengtl lifier identifier length dat tent

field 20 FROM ASCII 17

_1__ J L 4 - L L -__+

101001100 l 00010100/00000001]00000010/00010001 IRM67/NETO/432/USRI

L + ol o + + e ———t

ntifier length qualifier identifier length data contents

field 20 REPLY—TO ASCII 17

L L L ‘L _-+

I01001100|00010100|00000011|00000010]00010001|RM67/NETO/432/USAI

‘r _‘r ‘r T T +

. e 1 (} 1ifi identifi] e}
field 13 POSTED-DATE date 10

- + + + + +

101001100[00001101{00000010({00000010|00010001!

b= e
T T *

lsnghh data
ASCII

L) +
|00000010'00001000[19830816

b de
T T -

+—+

length Qnalifigz identifier length data contents

field ASCII 17
 —— t- + + + + —— +
|01001100|00010100|00000101|00000010|00010001|RM67/NETO/MDS/PTR|
L + + + + + +

length gqualifier lsnghh data
field 10 SUBJECT ASCII
l.. 4 _L L -+_

|01001100|00010100|00000111|00000010|00010001|COMMAND

T T T T T 1

+—+

D-9

AD-A138 429 DESIGN AND IMPLEMENTATION OF AN INPUT/OUTPUT INTERFACE
PROTOCOL FOR THE I..{U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. K N COLE

UNCLASSIFIED DEC 83 AFIT/GE/EE/83D-17 F/G 17/2 NL

g O
o s
— E m l:
ol 20
(I
== 1.8

L2 s his

‘4

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAUY Of STANDARDS-1963-2

length qualifier 3
field 12 TEXT

+- + + +
{01001100/00001200{00000100|
+- + + +

r T

integer 1l command integer 0

. .

730100000100000001‘00000000;00100000{00000000

v v L T

+ =+

length identifier length identifier
ASCII 0 integer 0 ASCII 0

s R b R o

|00000010i00000000i00100000|00000000[00000010[00000000]

i W
v

L L L L

This example shows a message of the minimum size. The
message structure is intended to be intrepreted
sequentially. There is no predetermined index to the

position of a field in the message.

I1/Q Envelope Description
The envelope of the I/O message is pot, actually, an

enclosure of the message. Instead, it is the addition of
information required by the Message Transfer System, to
properly handle the CBMS message. For the I/O Interface
system, the additional information is the CBMS address of
the destination device. This 32-bit, binary address is
included in the I/O message, as an additional data element,

of each the device name fields (FROM, TO, and REPLY-TO).

The introduction of the data element requires

modification of several of the length entries. The CBMS

address element is six bytes long (identifier, 1length, and

D-10

TABLE D-II

I/0 Interface Device Names

Dser Process Full Device Name
User Shell Receive RM67/NET0/432/USR
User Shell Reply RM67/NETO0/432/USA
Printer System RM67/NET0/MDS/PTR
ISIS File System RM67/NET0/MDS/DSK
Series III Console RM67/NETO/MDS/CON

I —

four bytes of data) and is included immediately after the

device name string of each address field. The length
entries for each device name field must be increased by six
and the message length, therefore, increases by twelve. The

format of the CBMS address data element is:

identifier length data contents
bit-string 4 32-bit string

101000011(00000100 | XXXXXXXXXXXXXXXXX |

R ms L v v

XI/0 Interface Device Address Mapping

This section identifies the device names to be used in
the I/0 Interface system and defines their mapping to CBMS
addresses. The device naming structure is presented in
Chapter III of the body of the report. The format of the
DELNET addresses (used as CBMS addresses) is explained in
Appendix E. Users should refer to these texts for more
information.

There are five user processes, or devices, in the I/0

D-11

TABLE D-III

CBﬁS Address Field Values

F ﬁ
CBMS Address Pield Name Binary Decimal
Control - 0000 0
Country RM67 0001 1l
Network NETO 0000 0
Host 432 0100 0000 64
MDS 0100 0001 65
Port USR 0000 0000 0000 O
USA 0000 0001 0000 1
PTR 0000 0000 0000 O
DSK 0000 0001 0000 1
CON 0000 001G 0000 2
EEEEEE————— A-

Interface system. Each device name is associated with a
particular user process, The device names and their
processes are listed in Table D-II,

There are five fields in the CBMS address,
corresponding to the four parts of the device name and a
control field (see Appendix E). Table D-III shows the field
values for each of the elements of the CBMS address. Note
that the User field contains a 4-bit filler on the right.
The User Code is contained in the left-most 8 bits of the
field. The fields are combined to form a 32-bit value for
each device process. FPor example, the Printer System device
(RM67/NET0/MDS/PTR) has the address:

0000 0001 0000 0100 0001 0000 0000 0000

D-12

This appendix has presented the format of the 1I/0
Interfaces messages and the mapping of the device names to
CBMS addresses. The message structure used in the 1I/0
Interface system is a direct implementation of the NBS
standard format presented in the Specification for Message

Eormat for Computer Based Message Sygstems (Ref 12). The
CBMS addressing structure is compatible with the DELNET

address format described in Appendix E.

D-13

'

APPENDIX E
DELNET Network Addressing Scheme

Introduction

The purpose of this appendix is to present the details
of the addressing scheme used in the I/O Interface Computer
Based Message System for the 1Intel 432 Micromainframe
Computer System. This is an implementation of the Digital
Electronics Laboratory Network (DELNET) addressing scheme as
discribed in the UNID design documentation (Ref 32). Since
it is intended that the Intel 432 Micromainframe computer
system become a part of the DELNET system, the use a
compatable addressing scheme is required for network
communications (Ref 9:21).

The DELNET addressing structure is primarily an
implementation of CCITT X.121 standard and the Internet
Header Format used by DARPA. The address format is 32 bits
long and contains five fields; Control, Country Code,
ﬁetwork Code, Host Code and User Code.

Note that the DELNET specification refers to the User-
id field as a "Port Code", Either terminology can be used,
the structure of the field is not different, but, the idea
of a "user” is more applicable to the I/O.Interface system
use.

Pigure E-1 shows the address structure and the

following sections will present the domain for each field

HC
0000 0000

uc

0000 0000 0000 0000

+ ——+
2
(g}

+ -+

+——+

.

I

Figure E-1. I/0 Interface Message Address Format

and discuss their use in the I/O Interface.

Control (CTR)

This is a 4 bit code which will establish the
addressing format to be used. The I/0 Interface will only
use one addressing format and, therefore, this field may be
considered constant. The value [0000] in the Control field
indicates that the Country Code field is 4 bits, the Network
Code field is 4 bits, the Host code field is 8 bits and the
User Code field is 12 bits. This format is shown in figure
BE-1.

country Code (CC)

The Country Code is a 4 bit field which gives the first
level of addressing heirarchy. The I/0 Interface system
is located within the same reference area and, again, will
only require a constant value for this field. A Country
Code of [0001] indicates the system resides in the basement
of building 640. If the system is moved or the network is
expanded to include a larger geographic area, the

specification this field may need to be reviewed.

e e 0 G

Network Code (%C)

Within each Country Code area, there may be several
networks. The Network Code specifies the next level in the
addressing heirarchy. The DELNET specification uses the
Network Code to identify a particular UNID in the system, as
if a UNID would be used to attach each network to the
system. It may happen that several local area networks are
attached to a single UNID, due to the limited number of
UNIDs available. In this case, modification of the
addressing scheme will be necessary. However, 1like the
Country Code, it will still remain constant within the Intel

systems implementation of the I/O Interface.

Host Code (HC)

The Host Code specifies a particular computer system
within a network. The I/O Interface system is, in fact, a
local area network from the viewpoint of the DELNET. The 8
bit code for the Intel systems can range from 0 to 63, [0000
0000] to [0011 1111]. In particular, the 432 processor
system is designated Host 0, the Debugger system is Host 1,
and the second AP system is Host 2 for the current
organization of the Intel systems.

According to the DELNET specification, the Host Code
values are dependent upon the hardware port that is used for
interconnection with the UNID. When the UNID becomes
operational and the systems are interconnected, it may be

necessary to modify these values.

E-3

F oy
- v

User Code (UC)

The User Code is the identification of the particular

device or user process which is to be addressed. It is the
lowest 1level in the addressing heirarchy. These 12 bit
values may be assigned as fixed values for particular system
devices or processes, or they may be allocated during
execution and deallocated when not required by the using
process or device, Within the I/O Interface system, fixed
values will be assigned to each User Agent process. Future

implementations of the CBMS may provide other methods.

Sunmary
This appendix has presented the details of the 1I/0

Interface message addressing scheme. The organization
provides for an address space which should be adequate well
into the future. The important fields for the I/0 Interface
will be only the Host Code and the User Code. Constants
should be supplied for the upper field values which may be
modified at the time the system in connected to the DELNET
devices. FPurther information about DELNET organization and
operation can be found in "Protocol Standards and

Implementation within the DELNET using the Universal Network

Interface Device (UNID)" (Ref 32).

APPENDIX F

Intel 432 Cross Development System
Hardware and Software Compatibility Guide

This appendix contains a table of the software and

hardware which are ccmpatable for use in the Intel 432 Cross

Development System. The confiquration presented is for the

Release 2 hardware and software which was used during the
I/0 Interface system development. This is pot the 1latest
release of 432 hardware and software from Intel Corporation.
Use of the I/0 Interface software with a later version of
the 432 development environment may require modifications to
the interface code modules. Refer to the appropriate Intel
lé documentation for each development system component or
utility regarding system upgrades.

All of the information presented here comes directly

R Ao e R Vnags

from 1Intel publication number 172547-003 "Intel 432 Cross
Development System Hardware and Software Compatibility

Guide." For more information the reader should refer to

P e v

that document and the "Intel 432 Cross Development System

%} VAX Host User's Guide"™ (Ref 21).

TABLE P-I1

Hardware and Software Compatibility Guide
for Release 2 Components

Broduct Broduct Code = VYersion

ACS 432 (VAaX/VMs) CDs432-11 Vi.ol*
(VAX/Unix) CDS432-21 V1.01*

LINK-432 (VAX/VMS) CDs432-12 V1i.01l*
(VAX/Unix) CDS432-22 V1.01l*

DEBUG-432 CDS432-30 T/U V1.0l
UPDATE-432 CDS432-30 T/U V1.00

iMAX 432 (VAX/VMS) MAX432 T/U
=432 Code v2.01*
-AP Code V1.00%*
(VAX/Unix) MAX432 20 T/U
=432 Code v2,01*
-AP Code _ V1.00%*

DSP 432 DSP432-6 A/B v2,00

iAPX 432 GDP Release 2.1 Release
Release

iAPX 432 IP Release 2.1 Release
Release

* Compatable VAX Host Operating Systems:

VAX/VMS : Version 2.4
VAX/Unix : Fourth Berkeley distribution of Unix/32V

** Compatible with iRMX 88 V2.0

;d

APPENDIX G

432 Ada Compiler System
Yergion 1.01

Unimplemented Pacilities

Introduction

The purpose of this appendix is to present a concise
listing of the facilities which are not supported by the
current cross compiler system, version 1.01, The
information presented here comes directly from Intel
Publication Number 172250-005, "432 Ada Compiler System
Version 1.01, VAX/VMS Release Unimplemented Facilities,”
dated 6 August 1982, Additional information on these
restrictions may be found in the first appendix to the Intel
publication %"432 Cross Development System VAX Host User's
Guide" (Ref 21:A-1/A-4).

Unimp] red Paciliti
The following facilities are not supported in the
version 1.01 release of the Ada language cross compiler:
1. Approximate numbers (fixed and floating).
2, Tasking.

3. I/0 facilities except the ones specified in the 432
TEXT_I0 package.

4, Array operations, notably concatenation and bocolean
operations.

5. Arrays (including strings) whose bounds are not
static,

6. Packed arrays of non-byte-length elements.

7. Arrays of mixed records (records that include
access and data values).

8. Arrays longer than 64K bytes.

9. The following pragmas
(Ada language compiler controls):

controlled,
extension,
include,
interface,
list,
memory_size,
optimize,
priority,
rights (for instruction segments),
storage_unit,
suppress,
system.

The "pack" pragma is partially implemented.
"Pack"” has effect only on new scalar types. For "type
s is range 1..10" and "pragma pack (s)" instances of s
will be represented by four bits. Without the pragma
instances will be represented by 32 bits, the default
for universal integers.

10. The following attributes:

address,

constrained,

first_bit,

image,

last_bit,

position,

range,

size,

storage_size,

value ’

all fixed and floating attributes,
all tasking attributes.

11. Type conversion involving structural
representation changes,

12, Packages with no package body declarations.

13. Run-time checks.

14, The constraint_errors Access_check and
Length_check,

15. The following pre-defined exceptions:
Constraint_error,
Numeric_error,
Select_error,
Storage_error,
Tasking_error.
16. User-defined exceptions.

17. Dynamic typing as described in Appendix F of the
Intel Edition Ada Language Reference Manual (Ref 20).

18. Representations over access types.

19. Record representation "at mod”.

20, Address specification.

21, Interrupts.

22, Static packages (i.e., packages not local to a
subprogram or block) requiring any executable code for
their initialization. Thus, package initialization,
initialization of package variables, constants, and
separate packages are not supported by the first
release of the 432 CDS.

23. Generic Pormal types that have discriminates are
not checked at instantiation.

24. Access before elaboration checks are not

implemented. Recent language discussions suggest that
these checks may not be required in the future.

Summary

The facilites which are not implemented or are
restricted in use are summarized in Table G-1. While these
limitations on the use of the Ada language impose a large
burden on the software designer, this was the only compiler
available for the 432 system. The latest release of the
comipiler, Version 2.0, has many of these problems corrected

including arrays and limited tasking facilities. Intel |is

G-3

e e e e oo

.

e

TABLE G-I

Ada Compiler System
Implementation Restrictions

(Ref 21:A-1)

jee— masnae——
Pacility Status
Approximate Numbers Not Implemented
Tasking Not Implemented
Packages without bodies Restricted
Address specifications Not Implemented
Interrupts Not Implemented
Change of representation Restricted
Arrays Restricted
Run-time checks Not Implemented
Exceptions Not Implemented
Representations Restricted
I/0 facilities Restricted
!
A Y

currently working to complete Version 3.0 which will

implement the complete Ada language.

G-4

'-IIllIIIIIllIllIIIIIII---------—f* . - .
.

APPENDIX H

1/Q0 Interface Uger's Manual

i

Iable of Contents

Table of Contents . « ¢« « ¢« + &

Introduction

. L] ® ® L4 [J L] L] L

APIT/ENG 432/670 Development 5ystem

Hardware Systems . ., . .
Hardware Interfaces . . .
Software Utilities

I/0 Interface Configuration . .
Hardware . o o« o o o o o o
Software . « ¢ ¢ ¢ ¢ o o o

Operation of the I/0O Interface
1/0 Interface Devices

Using the I/0 Interface Devices
Printer System Device . .
ISIS FPile System Device .
Series III Console Device

Adding New Devices . . . « + «

Operation of the User Shell
Configuration
Shell Commands . .

Help Command
Set Command .
Copy Command

e & ¢ o ¢ 9
® & o o 0 0

smry L L] L . L] L] L L J L[] o L] .

Bibliography

* o 9 o

Page
H-1
H-2

H-3
H-4
H=7
H-9

H-11
B-12
H=-15

H-20
H=-25

H=-27
B-27
H-29
H=-31

H-32

H-35
B-35
H-38
H-40
H-43
H-45

H-46
B-47

—ry

Iptroduction

The purpose of this thesis (Ref 2) appendix is to
provide a structured guide to the use of the I/O Interface
for the AFIT/ENG 432/670 Micromainframe Computer System.
The following sections describe the operation and use of the
I/0 Interface, itself, and then the operation of the User
Shell software which is an example of an application of the
interface.,

This document is intended to be used as a user's guide
for the I/0 Interface., Therefore, there is some duplication
of information with other sections of the thesis Degign _and
Inplementation of an Input/Qutput Interface Protocol for the
Intel 432/670 Computer Svstem (Ref 2), of which this manual

is an appendix. The reader should refer to that document

for further information,

AFIT/ENG 432/670 Development System

This section describes the hardware and software
environments of the Intel 432 Cross Development System
(CDS) . The CDS is an interconnection of three computer
systems; a VAX 11/780 CDS Host System, an Intel Series III
Microcomputer Development System (MDS), and the Intel
432/670 Micromainframe Computer System. Figure H~I shows
this organization. The following paragraphs will describe
the system hardware, the interconnections, and the software

utilities used in each part of the CDS. Users of CDS should

H=-3

VAX 11/780 -t —r Multiple
Host System e - Host System
Asyncronous
Serial Link
| T 1 ,
Intellec
Series III
Microcomputer frn—— Debugger
Development System User
System -

Intel 432/670
ProcLink

e
Intel 432/670

Micromainframe
System

 E—

Figure H~1. Intel 432 Cross Development System
Hardware Environment

refer to the lInkroduction to the Intel 432 Crogs Development
System for (Ref
13).

Hardware Syatems. The major components of the CDS are
the VAX-11/780 Host system, III MDS Debug
and the 432/670 System (see Figure H-1)., The
link

a more detailed description of the system

a Series

Workstation,

other necessary hardware includes the communications

H~4

SV A

-

™

for downloading programs from the host to the Debug
workstation, and a 432 Interconnect Kit to connect the
Series III MDS to the 432/670 System., The communications
link and the Interconnect Kit will be discussed in the next
section,

The VAX Host system provides an environment for the
software development tools of the Ada Compiler System (ACS)

and the 432 linker program., The system also provides access

to standard text editors and large data storage systems

which can be accessed by multiple users to speed the

software development tasks.
The Debug Workstation consists of an Intellec Series
III Microcomputer Development System (MDS) connected to
both the VAX Host system and the 432/670 computer. The
required configquration for the Series III MDS consists of
the following hardware:
— 192K bytes of RAM (minimum)
-- 8ingle- or double-~density diskette drives
-~ one hard disk drive (minimum)

-~ an interface to the System 432/670.

The System 432/670 is a flexible computer system that
can be configured to meet the processing needs of the user.
The maximum configuration includes up to four General Data
Processor (GDPs) boards, at least one Interface Processor
(Ié) system, a Memory Controller (MC) board, and up to six
Storage Array (SA) boards providing 1.5 megabytes of memory.

H-5

L MW e e s a

-

Central System
(System Bus Backplane)

I-;Ssx-byte SA board
[-zssx-byte SA board

Memory Controller /
S 1
GDP board /

Iﬁ GDP board ' /

IPL board /

IPL board /

Attached Processor

IP board

)| /

/ Peripheral Subsystem
(MULTIBUS Backplane)

Figure H-2,

includes (Ref 13:1-5):

1, One iSBC

e ——

System 432/670 Standard Configuration

(Ref 13:1-6)

432/630

supply and card cage

2., One 1iSBC
and one iSBC

3. Two iSBC

4., One iSBC
(IPL) board

5. One 1iSBC
and two iSBC
boards

6. One iSBC
board

432/611
432/615

432/601
432/603

432/604
432/607

432/602

The original (factory shipped) configuration of the system

Enclosed Chassis with a power

12-slot System bus backplane
6~-slot MULTIBUS backplane

General Data Processor boards

Interface Processor Link

Memory Controller (MC) board
256K-byte Storage Array (SA)

Interface Processor (IP)

Y

7. One Attached Processor (AP) board (properly
configured iSBC 86/12A board) with 32K-bytes of
EPROM and 64K-bytes of RAM.

The arrangement of these boards in the 432 system chassis is

shown in Figure H-2 (Ref 13:1-6).

Hardware Interconnections. As shown in PFPigure BH-1,
there are two major system interconnection in the Cross
Development System hardware, The first is the VAX-Series
IIT serial 1link. The second is the Series 1III/432
Interconnection, also called the Intel 432 ProcLink.

The VAX-11/780 system is connected to the Intel Series
III MDS by an asyncronous serial link. The operation of the
serial 1link is described, in detail, in the Intel manual
Asyncronous Communjcation Link Users Guide (Ref 17). The
existing 5-wire unshielded connection runs from the Intel
systems, in the basement of building 640, room 67, up to the
second floor, room 245, where it ié'éonnected to the VAX
system. While this connection far exceeds the 50-foot
maximum £for EIA Standard RS-232-C Type E interfaces (Ref
21:56), the 1link is sufficient for data tranafers at 9600
baud.

The Series III MDS is connected to the 432/670
Micromainframe by the Intel ProcLink cable which provides
the data path for the 432 Interface Processor (IP) and the
Interface Processor Link (IPL) communication system. This
hardware is called the "Intel Series III/432 Interconnect
Kit®* and is described in the manual Infroduction to the

H=-7

S SR SRR — *

o

. | R A
Storage Memory iAPX 432 iAPX 432
Arrays Controller General General :
Data Data
Processor Processor
Intel 432/670
Processor to Memory Interface
1} (System 432/670 System Bus)
Interface
Processor
Link

{I Intel 432/670 ProcLink

! iAPX 432
Interface
Processor

v

Debugger 1} System

A\

Debugger Processor :> (Series III MDS Bus)

'; MULTIBUS
8086/12A Peripheral
Debugger Device
Processor Controller

Pigure H-3. 432/670 Cross Development System
(Bardware Configuration

TABLE

H-I

432 Cross Development System
VAX/VMS Directories

Contents

Ada Compiler System
(Version 1.01)

iMAX 432 Operating System
(Version 2.01)

432 Link System
(Version 1.01)

Asyncronous Link Software
Jf (Version 1.02)

VAX/VMS Directory Name

[INTEL2.ACS]

[INTEL2.IMAX]

[INTEL2.LINK432]

[INTEL2]

—

Intel 432 Crogs Development System (Ref 13:1-7). Figure H-3
shows the ProcLink connection between the IP board on the

Attached Processor system bus and the IPL board on the

432/670 system bus,

Software Utilities. The

performed on the VAX host system under the VMS operating

system, Software development includes: compiling and

revising Ada source programs,
combined specification files,
and 1linking compiled programs.

systems are used ¢to create source files. The CDS host
resident software includes the Ada Compiler System (ACS) and
the 432 program linker (LINK432) (Ref 13:1-7).

Ada language programming is

compiling programs, creating
generating program listings,
Standard VAX text editor

Table H-I shows the directories which contain the (DS
software on the VAX/VMS Host system. The files in these
directories were supplied by Intel Corporation on 9-track
tapes and copied to the VAX/VMS system disk storage
according to the instructions in the 432 CDS VAX Host User's
Guide (Ref 12:G2-G3). This software is on the "INTEL"
labeled disk for the VAX/VMS system in room 245 of building
640.

The Debugger Workstation software tools permit users
to handle executable files for the 432/670, 1load and debug
programs on the 432/670 system, and develop device drivers
for the 432 Attached Processor. The files necessary for the
Debugger Workstation are 1listed in Table B-II. These
program files were supplied by Intel on single-density 8-
inch floppy disks in ISIS readable format. For detailed
instructions on the operation of the Series III utilities,

refer to the Series III MDS Congole Operating Instructions

(Ref 4) and the Series III MDS Programmer's Refercence Manual
(Ref 3). Operating instructions for the Debugger, Update

and Diagnostic programs can be found in the 432 CDS
HWorkstation User's Guide (Ref 14). These manuals and disk
files are maintained, with the Intel systems, in room 67,
building 640.

It must be noted that the proper hardware configuration
for the Series III Workstation requires a hard disk storage

device (Ref 13:1-6). Lack of the larger mass storage device

H-10

e 1 bt Ml

TABLE H-II

432 Cross Development System
Series I1I Workstation Software

A

Contents File Name

Series III Operating System (Version 4.3)
Executable Debugger Program DEB432.86
Intel-supplied Templates DEB432,TEM
Executable Updater Program UPDATE.86
Asyncronous Link Software

Configuration Program CONFIG

Terminal Emulation
Program ONLINE

One-Way Communication
Program SEND

VAX-to-Series III Pile
Transfer Program DNLOAD

Series III-to-VAX Pile
Transfer Program UPLOAD I

limits the size of the executable file which may stored on a
double—-density floppy diskette, 3895 blocks (498,560 bytes).
The operation of the system utilities is not affected by
this limitation.

I/0 Interface Configuration

This section describes the minimum confiquration of

hardware and software necessary for operation of the 1I/0

H-11

Interface on the AFIT/ENG 432/670 computer system., These
configurations do not include the requirem&énts of any
applications, which would use the interface, or the Debugger
system which may be required for loading and executing the
software on the Intel 432/670.

Bardware. The hardware configuration for the 1/0
Interface operation is an interconnected system of, at
least, four distinct microprocessors; the iAPX 432 General
Data Processor (GDP), the iAPX 432 Interface Processor (IP),
the Intel 8085-based Integrated Processor Card (IPC), and
the Intel 8086-based Resident Processor Board (RPB). These
processors, and their associated system hardware, are
placed on two system bus structures; the Processor and
Memory Interface bus of the Intel 432/670 Micromainframe
Computer System and the MULTIBUS structure of the Series III
Microcomputer Development System (MDS). These two main
chassis are interconnected by the Intel ProcLink cable as
shown in Pigure H-4.

The Processor to Memory Interface bus is the main
system bus of the Intel 432/670 Micromainframe Computer
System. The 432/670 chassis contains a 12 slot system bus,
There are five slots available for processor boards (Ref
13:3-1/3~16). Those slots may contain any combination of
GDP and Interface Processor Link (IPL) boards., However, at
least one GDP board and one IP Link must be included in the

system configuration. The execution environment is defined

H-12

e @ . e

o e e

-

li_—-
Storage Memory
Arrays Controller

[U

iAPX 432
General General
Data Data
Processor Processor

iAPX 432

U

U

Intel 432/670

Processor to Memory Interface

U

Interface
Processor
Link

1} Intel 432 Proc Link Cable

iAPX 432
Interface
Processor

[

IPC
8085
Board

U

Intel Series III Microcomputer Development

System Bus
RPB iSBC 64 Disk Disk
8086/12A Memory System System
Board Board Interface Controller

Figure H-4,

H-13

AFIT/ENG 432/670 Computer System
Hardware Configuration

in the Processors package of the iMAX operating system,
which must be modified to reflect the current system
confiquration (Ref 16:CON-2). The minimum configuration of
the Processor to Memory bus for operation of the 1I1/0
Interface is exactly the configuration of the System 432/670
described with the Cross Development System (see Figure B-
2). Additional memory or processors may be required by the
application program.

The minimum configuration is also shown in Figure H-4,
where the 1Intel ProcLink cable is shown between the
Interface Processor Link board, on the 432/670 system bus,
and the Interface Processor board, on the Series III MDS
system bus. Figure H-5 also shows the minimum configuration
of the Series III MDS. Note that this need not be the same
Series 1III MDS as was used for the Debugger in Figure BH-3.
In fact, if the Debugger system is required, the I/0
Interface AP musgt be a second Series III system.

The configuration of the MULTIBUS boards in the Series
IIT system depends upon the particular chassis and the
optional boards that are included. In general, the IPC-8S
processor board is in the top-most slot of the main system
chassis and the disk controller/interface boards are placed
in the lowest priority slots of the system. For the exact
configuration, users should refer to the Intellec Serieg III
Microcomputer Development System Hardware Reference Manual
and the System 432/670 Svstem Reference Manual (Ref 15).

H-14

Tt

S ———. o ———— I A s

Softwarr. The software of the 1/0 Interface

implementation for the AFIT/ENG 432/670 Computer system is
organized into packages, or modules, that provide functional
implementation of each mechanism of the interface protocol.
The following paragraphs describe the software for each
system of the 432/670 I/O Interface implementation:

The 432 software packages are written in the Ada
language and must be compiled and linked, with the operating
system, using the facilities of the 432 Cross Development
Systen, The VAX Host Users Guide provides operating
instructions for the Ada Compiler System (ACS) and the 432
system linker (LINK432) (Ref 12:3-1/3-40).

When compiling the source modules, it is important to
note the interaction among the packages. Each package must
begin with an Environment Pragma which 1lists the source
files which have specifications of modules that are
called by the procedures of the package. The source files
must be compiled in a sequence that ensures all referenced
specifications have already been compiled, Table H-III
lists the I/0 Interface Ada language files in the order in
which they may be compiled. However, several modifications
must be made to these files and changes in this sequence may
be required.

The processor initialization procedures file

(Pserp.mbs) must be modified to properly start the program
written to use the I/0 Interface. The iMAX 432 Reference

e

TABLE H-I1I
I/0 Interface 432 Software Packages

e
Eile Name Rescription
Am.mss Address Manager Specification
Am.mbs Address Manager Body
Rm.mss Route Manager Specification
Rm.mbs Route Manager Body
Cbms .mss CBMS Message Manager Spec.
Cbms .mbs CBMS Message Manager Body
Mts.mss Message Transfer System Spec.
Mts.mbs Message Transfer System Body
Usa.mss User Agent Specification
Usa.mbs User Agent Body
Pserp.mbs Processor Initialization Body
Ioface.lkd Linker Command File
| b

Manual explains the system initialization procedures in
detail (Ref 16:INI-1)., The tasks of the I/O Interface are
"static® processes which started at the time of system
initialization (Ref 16:CON-3).

The User Agent package was written for use with a
particular user/device package; the User Shell process,
which is explained later. To use the I/0 Interface with
another process, the receive procedure (Usa_receive) of the
User Agent package must be modified to work with the
functions of that process. In addition, similar User Agent
packages must be written for each user/device process which
is added to the 432 processor program and requires the
services of the I/O Interface. The function of the User

Agent is explained in the following section.

H-16

When all Ada language modules have been successfully
compiled, the resulting 432 object code files must be linked
with the operating system module (Imax.eod) using LINK432.
The JiMAX 432 Reference Manual (Ref 16) contains a complete
description of the facilities of the operating system.

The commands for the linker program have been provided
in a file (Ioface.lkd). This file must be modified to
include the object files containing the program which will
use the interface. The linker commands are explained in the
Intel 432 CDS VAX Host Users Guide (Ref 12:3-1/3-40).

The 8086 software for the Series III MDS contains a
similar set of files. These are listed in Table BH-IV.

The Series III MDS software is written in PL/M-86 and
utilizes the facilities iMAX provides for process control
and memory management. The order in which files are
compiled is not important in this environment. Also, the
specifications for each package are simply text files which
are "included"™ in the PL/M-86 source files that need to
reference procedure? in the package. The specification
files are designated by the ".inc" extension. The source
files (package bodies) have the ".plm" extension. The list
includes *system.1lib®™ which is the Series III/ISIS-II
operating system library of routines.

These files are compiled using the PLM86 compiler
program. Then the iRMX-88 Interactive Confiquration Utility
(ICU88) is wused to identify the operating system modules

H~17

o~ —— e g

e e e

TABLE H-1IV

I/0 Interface 8086 Software Packages

Rile Name

Am.inc
Am.plm
Rm.inc
Rm.plm
Cbms.inc
Cbms.plm
Mts.inc
Mts.plm
Psa.inc
Psa.plm
Ifsa.inc
Ifsa.plm
S3ca.inc
S3ca.plm
Ps.inc
Ps.plm
Ifs.inc
Ifs.plm
S3c.inc
S3c.plm
Init.plm

Description

Address Manager Specification
Address Manager Body

Route Manager Specification
Route Manager Body

CBMS Measage Manager Spec.
CBMS Message Manager Body
Message Transfer System Spec.
Message Transfer System Body
Printer System Specification
Printer System Body

ISIS File System Agent Spec,
ISIS File System Agent Body
Series III Console Agent Spec.
Series III Console Agent Body
Printer System Specification
Printer System Body

ISIS File System Specification
ISIS File System Body

Series III Console Specification

Series III Console Body
Processor Initialization Body

Ioface.lkd Linker Command File

operating
(LINK86)

that need to be included,

and an executable file is created.,

appropriate Intel manuals;

Instructions

(Ref

Configuration Utility User's Guide (Ref 5),
86,88 Pamily Utilitiesg Uger's Guide (Ref 6).

20) ,

Finally,

system modules are combined by the system 1linker

instructions for each of these utilities are provided in the
the PL/M-86 Compiler QOperating
the iRMX 80/88 Interactive
and the JAPX

all the program and

The operating

432 Processor
System

Message
Transfer
System 1

Attached
Processor
System

Printer
User
Agent

Printer
System
Device

Message
Transfer
System 2

Console
User
Agent

MDS
Console
Device

S —

Figure H-5. AFIT/ENG 432/670 I/O Interface System

H-19

T —————

Qperation of the Interface
This section describes the operation of the I/0

Interface. The following paragraphs will present the
general topology of the system and discuss the user
interaction with the interface:

The I/0O Interface contains three basic parts; the
application program (hereatter, referred to as the User),
the User Agent, and the Message Transfer System. The User
is, simply, the applications program which requires access
to I/0 devices. The User Agent (UA) is the element which
defines the way in which the User can interface with the I/0
devices, Finally, the Message Transfer System (MTS) is the
system that moves the I/0 commands and replies between the
User Agents and Device Agents (User Agents for the 1I/0
devices).

Pigure H~5 shows the organization of Users, UAs, MTS,
and devices in the AFIT/ENG 432/670 System. This view is
overly complex. The User process only interacts with the
User Agent and, therefore, the system shown in Figure H-6 is
more appropriate. The User can access any I/0 device in the
system through the User Agent.

The User Agent has two major parts; the gend section
and the recejve section, Each section may be tailored to
the needs of the User. The User Agent also has two

communication ports; a recejve port, and a reply port.
These ports are created during the system initialization.

A-20

£

N ¢
i AR T LA e e

T ——

MDS
Console

Printer

System ISIs Device
Device File Sys
Device

A——

Figure H-6. User View of I/O Interface System

The reply port is used by the send section, which waits at
that port for a response after sending a request to another
User Agent. All request messages are sent, by the MTS, to
the receive port.

The receive section is a static process that waits at
the User Agent's receive port for a request message from
another User Agent. The process then determines the 1I/0
command and calls the User-supplied function appropriate for
that request, The User function returns a status value
which is then sent back to the requesting User Agent, as a

reply message. Figure H-7 shows this process as a data

H=-21

MDS
Console

Printer

System ISIS Device
Device File Sys
Device

A EE——

Pigure H-6. User View of I/O Interface System

The reply port is used by the send section, which waits at
that port for a response after sending a request to another
User Agent. All request messages are sent, by the MTS, to
the receive port,

The receive section is a static process that waits at
the User Agent's receive port for a request message from
another User Agent. The process then determines the I/0
command and calls the User~-supplied function appropriate for
that request. The User function returns a status value
which is then sent back to the requesting User Agent, as a

reply message, Figure H-7 shows this process as a data

H=-21

SRR 9 st ot rrr v TRt

o~

e

Receive Port Address

CBMS
Message

Receive
Message
(iMAX)

Function_Args
Device_Name
"perform

device
function®

Src_Name
Dest__Name

Status

CBMS_Message

Figure H~7, User Agent Receive Process Data Flow

flow.

The receive section of the User Agent is written to
work with a particular User. Each User is unique and
performs a different set of functions in response to the I/0
Interface commands. Whether the User is a peripheral device
or a system process, the User Agent receive section must be
tailored to call the functions of the User properly. The
send section, however, may be the same for all users.

The send section, of the User Agent, contains a set of

procedures which perform input and output functions using

B-22

ﬁ-————z‘.

1 TABLE H-V

I/0 Interface Replies to Function Requests

| I/0 Interface Reply Codes
0 1 2 3 4 5 6 7
f I/0 Interface] Ok Invalid End of Bad - Device -
: Punction Command File Data Error Closed Off Busy
3 Open b X x X
Close X X X X
Read x X X x X X b x
: Write x X x X X X 1
: Page X x X b4 X X i
; Title x X x X X X X
; Delete X X p 4 X X
i Rename X X X x X X
' Reset X x x X X ;
Get Config X b 1
Set Config | x x X x x X x ’
Test X b 4 x

the I/O Interface. Each procedure returns a reply code as

an indication of the success or failure of the request,

Table H-V shows the procedures of the send section and the I
reply codes they can return. The User Agent may contain all 5

the procedures 1listed in the table (as in the case of the

User Shell Agent, discussed later). However, to conserve
memory, the send section only needs to contain the
procedures that are required by that particular User.

The procedures of the send section generally perform

\ the same steps. The send procedures use the facilities of

the MTS to create a message containing the command and any
| data required. The message is sent to the User Agent for

the device requested. That device's User Agent returns a

H-23

o

Src_Name

Reply Port Address

Dest__Name
Function_
Args
AM
Get Full
Name
CBMS
Src_Name Create
Dest_Name Message

CBMS_
Message

Receive
Message
(iMAX)

CBMS_
Message

CBMS
Read
Message

Status

e

Figure H-8., Typical User Agent Send Procedure Data Flow

message containing the reply code that indicates the result

of the operation.

status indication to the calling user process.

The send procedure, then, returns the

Pigure H-8

shows a typical send procedure as a data flow.

Each device has a User Agent similar to that described

for the User.

The devices that are currently implemented

with the I/0 Interface, on the AFIT/ENG 432/670 System, are

described in the next section.

H-24

There are three I/O devices implemented in the current
software of the I/0O Interface. Each device is defined by
two software packages; the device abstraction and the
device agenk.

The device abstraction package contains the functions
which control the device and, thus, define the capabilities
of the device for the system. For example, the Printer
System package contains the procedures Ps_Open, Ps_Close,
Ps_Print, Ps_Form_Feed, Ps_Title_Page, and Ps_Test. To the
I/0 Interface, the Printer System is a device which can
perform only these functions. The implementations of these
functions or the operation of the device driver routines
which might be used to perform the functions are not
important to the I/0 Interface. The interface only requires
knowledge of the arguments required by these functions and
the status indications they provide in return.

The device agent package contains the procedures for
mapping the interface commands to :he device functions of
the abstraction, The device agent may have two sections;
one for sending interface commands to other devices and the
other for receiving commands.

The receiving portion of the device agent is a process
which accepts command messages from the interface and calls
the neceﬁsary procedures of the device abstraction, Table

H-VI shows the mapping of the I/O Interface functions onto

H-25

P L T

.W'IL‘ o

™

TABLE H~-VI

L Mapping of I/O Interface Commands to Device Functions
I/0 Interface Device Functions

Command PS IFS S3cC
Open Open Open 2
Close Close Close 2
Read 1 Read Read
Write Print Write Write
Page Form Feed 2 Clear Screen
Title Title Page 2 Clear Screen
Delete 1 Delete 1l
Rename 1 Rename 1
Reset Close Reset 2 !
Test Test Test Test !
Get Config , 1 1 1 i
Set Config 2 1 2 !

i

1 - Not Implemented, UA replies "command invalid" ’
2 - Not Used, UA replies "ok" AtL

each device. When the device function is complete and é
returns a status value, the receive process calls procedures
of the Message Transfer System to send a reply message to
the requesting user of the I/O Interface. Thus, the receive

|
|
|
z
[
process syncronizes the operation of the device with the !
command/reply sequence. :

t

f

The send section of the device agent is only required
when the device is capable of originating I/0 Interface |

commands for other devices. None of the devices implemented

for the Series III MDS have this capability. However, the

send section of the package is simply a collection of

H-26

procedures, each of which implements an I/0 1Interface

command, as discussed in the previous section.

Using the I/0 Interface Deviceg

This section describes the operation of the current
devices of the I/0 Interface systenm, Each device has
characteristics which must be known by the user for
efficient operation. There are several characteristics that
are common to all three devices:

== The maximum buffer size (read or write) is 256
bytes in length,

~- The reply codes are 8-bit integers with values
as given in Table H-VI, above,

-- The reply to the "test" command will be one of
the following:

~-=~ Ok - device ready to accept a
command.

--= Device Busy - device is active and
in use by another process.

--~ Device Off - device did not receive
the message or the User Agent did
not respond to the request message.
The following sections describe the abstraction of each
device and the operation of the procedures in the device

software package:

Printer Svstem Device. The Printer System is an

implementation of a minimum number of procedures to provide
printer services to the system. The functions are listed in
Table B-VII. The functions define a device that is "output

only® and can only be accessed by one user at a time,

B-27

TABLE H-VII

Printer System Functions

——

Function Description J
OPEN open device to a user !
CLOSE close device to a user
PRINT write a buffer to the printer
FORM_FEED eject a page on the printer
TITLE_PAGE print a title and eject a page
TEST check printer status

— l

The OPEN and CLOSE functions are used to ensure that
the printer is allocated to only one user until that user is
finished. The CLOSE function also performs the reset

function, clearing any error condition in the device. The

PRINT function allows the user to write a variable size i
buffer (0 to 256 bytes) of data to the printer. The ?
FORM_FEED function requires no data and, simply, sends an |
ASCII form feed byte (0C hex) to the printer to eject a
single page. The TITLE_PAGE function uses the data provided
as a header, or title, and prints a formatted page, then
moves to the top of the next page to prepare for printing
% again.

The software implementation of the printer assumes that
the device is installed on SERIAL CHANNEL 2 of the Series
III MDS. The ISIS operating system utilities are used to
send the data to this port of the system. Obviously, if the

device is not connected to this port, the system will not

H-28

TABLE H-VIII

ISIS File System Functions

J—
Eunction Description
OPEN open file to a user
CLOSE close file to a user
READ read a buffer from an open file
WRITE write a buffer to an open file
DELETE delete a file from the disk
RENAME rename a file on the disk
RESET close all open files
TEST check existence of a file

| &

work. The TEST command will return a "Device Off" reply in
this case. If the device is operating, the TEST procedure
returns an indication of whether or not the printer has been
opened by another user (and not yet closed).

The Printer System functions do not do any data
transformations in this implementation. If necessary, the
software could be modified to handle special requirements of

the printer by modifying the data written to the device.

ISIs Pile System Device. The ISIS File System provides

access to the ISIS operating system's disk storage
facilities. The procedures implemented are listed in Table
BR-VIII, The procedures use ISIS operating system utilities
to perform file operations and require valid ISIS format
file names (Ref 3,4:2-1). All procedures of the ISIS File
System require a valid file name as data in the message.

Note that the use of these file operation does not require

H-29

[P

any verification by the requesting process, All wvalid
operations are performed when requested with no recourse.

The OPEN and CLOSE procedures are used to control the
file access. There may be four files open, simultaneously,
and each request message is checked to ensure that the
requesting user is the same user that opened the file. The
system will respond "Device Busy"™ to any other user
requesting access to that file. If there are, already, four
files open, then the system is busy to all other users.

The READ and WRITE procedures will only operate on
files previously opened by that user. They each provide for
buffer transfers of data (0 to 256 bytes) and the READ
function returns an “end-of-file" indication when the last
record of the file has been sent. A file that has been
opened for a WRITE operation must be closed before a READ
function will be accepted (likewise, for reading then
writing).,

The DELETE operation removes a file from the disk. The
operation may not be requested on an open file. The system
will indicate "device busy”, if this is attempted. Also,
the reply will indicate "invalid data"™ if the file does not
exist on that disk. Generally, once a file has been
deleted, it cannot be restored. Use of this function
requires some caution,

The RENAME function required two valid file names and,
like the DELETE function, cannot be performed on a file that

H=-30

PSP ISP T

TABLE H-IX

Series III Console Device Functions

Function = Description

READ read a buffer from keyboard
WRITE write a buffer to the display
CLEAR_SCREEN clear the console display
TEST check console device

is open or does not exist. If the file names do not have
identical drive numbers, the procedure indicates "bad data"
and does not perform the function.,

The RESET procedure, simply, closes all files opened by
the requesting user. No other user's files are affected by
this operation. No user may close another user's active
files, This 1is the only command that does not require a
file name as data, The RESET command always responds "Ok"
if the system is operating.

The TEST command checks for the existence of the file
given. If the file is not in the directory of the disk

named, the procedure returns a "error" indication.

Series II1 Console Device., The Series III Console

device is the implementation of a simple terminal source and
sink systen. There is no device allocation procedure for
this device (i.e., OPEN and CLOSE procedures). Thus, input
from several users can become intermixed on the display.

Also, extended output from the keyboard may be sent to

H-31

different users, as well. The available procedures are
listed in Table H-IX. As with the other devices, the

maximum buffer size is 256 bytes.

The READ function accepts input from the Series III MDS
console keyboard. The end of the input is signaled by

entering a <RETURN>. The WRITE function displays the
information in the message on the console display. The data
will begin at the current cursor location. The eighth bit
of the data characters is not changed by the procedure,
Thus, any special control characters will be sent to the
display without modification. .

The CLEAR_SCREEN procedure requires no input. It,
simply, writes an escape sequence to the console display ;
(the two character sequence is 1B45 hex, the "Clear Display"
code for the Heath H-19 terminal). This code may need to be
modified, if the console terminal is changed, in the future.

The TEST function, for this device, does not actually
check the device, Only the User Agent package and the
existence of the device abstraction software is verified by
this function. The procedure always returns "Ok" when

called.

Adding New Devices

Puture users of the AFIT/ENG 432/670 Computer System
may wish to implement additional devices within the 1I/0
Interface system. This IT/ENG 432/670 Computer System
may wish to implement additional devices within the 1I/0

H-32

’—————————_————_——T

TABLE H-X

Guidelines for Adding New Devices to the I/0 Interface

1. Define the device abstraction.

2. Define the command mapping onto the
device abstraction.

3. Implement all I/0 Interface commands
in the device agent,

4. Provide procedures for device and
device agent initialization.

5. Thoroughly test the procedures

o

Interface system. This section is intended to provide

guidelines for adding new devices, In addition, these

guidelines may be applied when modifying the existing device
software packages.

There are two software packages that must be created
for each device. The device abstraction package is the set
of procedures which define the possible actions of the
device. The other package is the device agent, the User
Agent for the device, which defines the mapping of the I/0
Interface commands onto the device functions and provides
the device with access to procedures which can create 1I/0

Interface messages.

In general, the best approach is to first examine the

software of an existing device with similar functions. It

may be possible to, simply, duplicate the procedures of the

H~33

existing packages. In any case, the structure of the
software will provide an example of procedures which use the
I/0 Interface facilities.

If no existing software satisfies the requirements,

then an organized approach may be taken to implement new
devices. There are six steps (see Table H-X) which form an

outline of a device development process.

Pirst, create the abstraction. Determine the functions

of the device and program those functions. The inputs and

outputs should be clearly defined. Refer to Table H-V for “
the proper use of the reply codes to indicate the status of
the function.

Second, define the mapping of the I/0 Interface b

commands to the functions of the device. If a device
function has no corresponding I/0 command, it cannot be used
by the system. Ensure that the arguments of the device
function are properly retreived from the message format.

Refer to Appendix D of the I/O Interface thesis for

details of the message structure, Implement the mapping as
function calls from the receive procedure of a new device
agent package.

Next, ensure that all I/0 Interface commands are
handled by the device agent receive process. If there are
any commands that do not apply to the new device, the device
agent must return an appropriate reply code to the

requesting user. Also, the initialization section of the

device agent should be implemented. This should be modeled
from the software of an existing device. Any hardware
initialization sequence should be included in this section.
The send section of the device agent should, then, be
added. If the new device requires access to other system
devices, the procedures which create and send I/0 Interface
messages should be included in the device agent. These
procedures should be modeled after those of the User Shell
Agent package implemented on the 432 processor system.
Finally, the device should be tested, If possible, the
new software packages should be tested without other system
devices active. The new software should be validated by
thorough testing to ensure there is no wundesired results,
Stepwise, top-down, testing may be performed in the same

sequence as followed in this design procedure.

Qperation of the lser Shell

The User Shell 1is a single user system interface,
implemented as to demonstrate the use of the I/0O Interface
facilities, This section describes the configuration of the
system and the operating commands available with the User

Shell program.

Configuration. The User Shell provides for operator
interface with the Intel 432/670 Computer System. The
Debugger console is the operator station for command input

to the Shell. This means that, during system operation, the

B-35

e

Jnsn—
Storage Memory iAPX 432 iapx 432
Arrays Controller General General
Data Data
Processor Processor

U U

0

U

Intel 432/670
Processor to Memory Interface

0

Debugger 1} System

Debugger Processor

<

><

U

Interface Interface
Processor Processor
Link Link
1} Intel 432 Proc Link 1}
iAPX 432 iAPX 432
Interface Interface
Processor Processor
Remote System

Attached Processor

Multibus Multibus
‘ 11
8086/12A Peripheral 8086/12A Peripheral
Debugger Device Attached Device
Processor Controller Processor Controller

—

Figure H-9,

H-36

User Shell Operating Rardware Configuration

o2 i cosaciciisudiibtin e . ..

NP PRI DAV ap VS S SHBEL N b

Fﬁf’ A “”"""'"'“'“5!!!!IIllIIllllllllllllIII-----......__,____‘

TABLE H-XI
User Shell System Files

t

Eile Name Eile Contents

Usa.mss User Shell Agent Specification

Usa.mbs User Shell Agent Body

User.mss User Interface Specification

User.mbs User Interface Body

Syscmd.mss System Commands Specification

Syscmd .mbs System Commands Body

Shell.mss User Shell Specification

Shell.mbs User Shell Body ;
i

Debugger system must remain as an Attached Processor to the

432/670 system, Figure H-9 shows this arrangement.

After the 432 Processor program is loaded and started,

the Debugger workstation must be set to a mode which allows
I/0 with the 432, There are three commands which control
the Debugger I/0 mode:

CONTROL~C Place the debugger in Debugging Only mode

CONTROL~O Place the debugger in I/O Only mode

CONTROL~-B Place the debugger in Debugging + I/0 mode
A complete description of the Debugger commands, and their
functions, can be found in the Intel 432 CDS Workatation
Dsera Guide (Ref 14).

The software of the User Shell must be compiled and
linked with the I/0 Interface packages, using the facilities
of the 432 CDS on the VAX-11/780. The Ada source files are
listed in Table H-XI. Note that the User Shell Agent is

B-37

A

included for use with the User Shell.

This file must be used with the User Shell system
because it provides access to the I/0 Interface functions,
If another User Agent package is being used with the 432
system software, then insure that there is no conflict with
file names or package specifications. Generally, more than
one process cannot use the same agent package.

It is also important to modify the process
initialization package body (Pserp.mbs) to include the main
procedure of the User Shell package (Shell.main). If this
is not done, the User Shell process will not execute.

The Debugger console I/0 facilities are very 1limited.
There is no queueing of messages to be written to the
console by the 432 processor. If two processes on the 432
attempt to write to the Debugger at the same time, one will
write and the other process will be halted until the first
process's I/0 function is complete. Generally, this will
cause the two processes to intermix their text on the
Debugger console. The important corollary to this feature

is that while the User Shell is waiting for a command from

the operator, no other process can read or write at the
Debugger congole.

Shell Commands. The User Shell commands are provided
to allow user interaction with the system while
demonstrating the operation of the I/0 Interface. The
User Shell will prompt the operator for a command by

H-38

TABLE H-XII

Logical Operands for Command Syntax Definition
(Ref 24:163)

Symbol Meaning
= "is composed of"
+ *and"”
[1] "choose one of (exclusive or)
<> "at least one of (inclusive or)"
() “"optional”
{} "iterations of"
* % "comment”™
Delim "one or more blanks"
R

writing the "prompt character"™ to the Debugger system
console, The prompt character is ">", The command syntax
is the following:

Command-Name Argument-l Argument-2 ... Argument-n
where Command-Name is the name of the command (or an allowed
abbreviation). The number "n"™ of required arguments depends
on the command used. The Command-Name and arguments are
separated by one, or more, blanks. The maximum length of a
command 1line input is 79 characters. The syntax of each
command is shown in a figure using the 1logical operands
listed in Table H-XII.

There are three commands implemented in the User Shell;
Help, Set, and Copy. The HELP command is provided simply
for conven. uce of the user, The SET command allows the
user to abbreviate the device names used in commands. The

COPY command uses the functions of the I/0 1Interface to

B-39

{3

Command-Name = Argument-1l

HELP HELP
H + Delim + SET
? COPY
;ﬁ — :A

Figure H-10. Help Command Syntax

allow the user to transfer information from one device ¢to
another,

Eelp Command. The HELP command gives the user
limited descriptions of the commands available and their
syntax. There are three accepted Command-Name values for
the HELP command; the full name, "HELP", the first letter,
"H", or a question mark, "?",

There is only one argument allowed in the current
implementation of the HELP command. Argqument-1 may be the
name of a system command; "HELP®*, "SET", or “COPY". If no
argument is given after the Command-Name, then a list of the
available commands is written to the console. Any incorrect
value for Argument-1 will, also, get the list of commands.
Pigure H-10 summarizes the syntax of the HELP command.

The information provided for each valid HRELP command is
shown in Tables H-XIII through H-XVI, This information is
stored as constant data in memory and modification requires
rewriting the System_Commands package of the Ada source

code. There are no references to this data from outside the

P e DO et

TABLE H-XIII

Help Command Response (Default)

umsmeensem—" —— —
COMMAND HELP RESPONSE
RELP User Shell Commands: HELP - Command Query
SET - Default Naming
COPY - Data Transfer

| I —_—d

TABLE H-XIV

Help Command Response (Set Command Query)

D e L M'
COMMAND HELP RESPONSE
HELP SET SET Command Use: Default Device Naming

Argument may be appended
to the left side of
abbreviated device

name string

SET Command Syntax:

Command Arguments
SET DEFAULT Device-Name
S

Valid Device Name:
<Country>/<Network>/<Host>/<Device>

where <Country> must be RM67
<Network> must be NETO
<Host> is one of 432, MDS
<Device> is one of
[USR] on 432
[PTR, CON, or DSK] on MDS

H-41

TABLE H-XV

Help Command Response (Help Command Query)

COMMAND HELP RESPONSE

HELP HELP HELP Command Use: Command Query
Response displays on
Debugger console

HELP Command Syntax: Command Argument
HELP HELP
H SET
? COPY

TABLE H-XVI

Help Command Response (Copy Command Query)

-
COMMAND HELP RESPONSE
HELP COPY COPY Command Use: Data Transfer from one
system device to
another
COPY Command Syntax:
Command Arguments
COPY Device-Name-1 Device-Name=-1
C
Valid Device Name:
<Country>/<Network>/<Host>/<Device>
where <Country> must be RM67
<Network> must be NETO
<Host> is one of 432, MDS
<Device> is one of
[USR] on 432
[PTR, CON, or DSK] on MDS
—

H-42

rl
Conmand-Name Argument-1 Argument-2

SET
['s] + (Delim + DEFAULT + (Delim + "Device Name"))

where

"Device Name®™ = (/) + "Element® + ({/ + "Element"})

FPigure H-11l. Set Command Syntax

package. Therefore, future implementations of this command
software may use other data structures for this information

storage.

Set Command. The SET command permits the user to

set the value of a default device name string. Device names ;

may, then, be entered as if the default string were added to

the 1left side. The syntax for the SET command is shown in

T ST

e

Figure BH-1ll.

The format for the device name string is presented

graphically in Figure H-12, A complete, or full, device
name has four parts, separated by a slash (/); country,
network, host, and device codes, When it is user, the file
name follows the device name (e.g., "/DSK/filename.ext").
The format for file names (under ISIS operating system) is
explained in the 1Intel publication Intellec Series III
Microcomputer _ Development System Console _ QOperating
Inatructions (Ref 4).

The SET command can make references, to the system

H-43

- AP e T Savm st mae o T

_ . _ *
. i
ikl o s T .

F. D T

—
Country Network Host Device Eile Name
ﬂ 432 wemsmeem USR
RM67 emeseee NETO —-< PTR
MDS —< CON :FO:file
DSK
:Fl:file
—_— S—

Figure H-12. 1I/0 Interface Device Naming Structure

devices, much easier. Por example, the full device name of
the Printer System is "RM67/NETO0/MDS/PTR”. If the default
name string is set to "RM67/NET0/MDS", then the Printer
System may be referenced by the name "/PTR", The slash
("/%) on the left indicates that the default should be added
to the device name before the system reference is made.
Similarly, entering the this command:
SET DEFAULT RM67/NET0/MDS/DSK
would allow the following COPY command to be used:
COPY /:FPO:OLDFILE.TXT /:Fl:NEWFILE,TXT
to copy one file to another. Without using the SET command,
the COPY command line can become excessively long.
It 1is important to note that the SET command does not

check for a valid device name when the default name string

H-44

-

L A

wT———-
Command-Nage Arxgument-l drgument-2
g
C | + (Delim +"Device Name" +(Delim +"Device Name”))
where
"Device Name" = (/) + "Element™ + ({/ + "Element"})

Seemen— j

Figure H-13. Copy Command Syntax

is entered. This can result in invalid device name errors

when using other system command.

Copy Command. The COPY command is used to move
data from one device to another, The syntax for this
command is shown in Figure H-13. The command accepts two
arguments; the source and destination device names. If
either of the arguments is missing, the console operator
will be prompted to enter the missing element. Note that if
only one device name is given in the command 1line, it is
assumed to be the source device name and the operator will
be asked for a destination name,

The COPY command performs a file transfer. That is,
the system continues to transfer data, from the source to
destination, until an end-of-file condition is found. Each
system source device has a logical end-of~file indication to
allow the device to function as a source for the COPY
procedure,

When reading from a disk file (DSK device), an end-of-

H-45

file occurs when the end of the file data is reached. From
either console device (USR or CON), use <CTRL>-Z to enter an
end-of-file (i.e., press the "CTRL" key and the "Z" Kkey
simultaneously) . The Printer System does not accept “read"

commands, so, it has no need to generate an end-of-file.

Sunmary
The I/0 Interface implementation on the AFIT/ENG

432/670 Computer System is an extensible and maintainable
system. This manual has provided guidelines for using and
maintaining the software system. Users should refer to the
design thesis for the Interface (Ref 2), if more detail is
required.

The attached bibliography includes the Intel
publications that are necessary for operation of the Intel
432/670 Micromainframe Computer System. This documentation
is extensive. It is hoped that this manual provides a
concise presentation of the fundamental knowledge required

to operate the I/0O Interface system.

H-46

Bibliography

1.

2.

3.

5.

9.

10.

11,

12,

ANSI/MIL-STD-1815A. .
Washington, D.C.: United States Government, Under

Secretary of Defense, Research and Engineering, 1980.

Cole, Kenneth N. Design _and Implementation of an

Computer System, Unpublished MS Thesis, Wright-
Patterson AFB, Ohio: School of Engineering, Air Force
Institute of Technology, December 1983,

Intel Publication No. 121618-003. Intellec Serijes III

Manpal. Santa Clara, California: Intel, Corp., 1981.

Intel Publication No. 121609-003. Intellec Serjes III
jons. Santa Clara, California: 1Intel, Corp.,

1981.

Intel Publication No. 142603-004. iRMX 80/88
i i ' . Santa
Clara, California: 1Intel Corp., 1981.

Intel Publication No. 143232-002. iRMX 88 Reference
Manual. Santa Clara, California: Intel Corp., 1981.

Intel Publication No. 143241-003. iRMX 88 Installation
. Santa Clara, California: 1Intel Corp., 1981.

Intel Publication No., 171858-001 Rev. B. JiAPX 432
. Santa Clara, California: Intel Corp.,
1981,

Intel Publication No. 171821-001. Introduction to the
. Santa Clara, California: 1Intel

Corp., 1981.

Intel Publication No, 171867-001,
H ' . Santa Clara,
California: 1Intel Corp., 1981.

Intel Publication No. 171869-002. Reference Manual for
o Santa Clara, California:
Intel Corp., 198l.

Intel Publication No., 171870-002.
' . Santa Clara,

California: 1Intel Corp., 1982.

B-47

O e e ol

13,

14.

15,

16.

17.

18.

19.

20.

21.

22,

23,

24,

Intel Publication No. 171954-002, i
. Santa Clara,
California: 1Intel Corp., 1982.

Intel Publication No. 172097-002.
i . Santa Clara,
California: Intel Corp., 1982,

Intel Publication No., 172098-002. Sxa:sm.ilZ[ﬁﬂn
System Reference Manual. Santa Clara, California:
Intel Corp., 1982,

Intel Publication No. 172103-002, iMAX 432 Reference
Manual. Santa Clara, California: Intel Corp., 1982.

Intel Publication No. 172174-001. Asynchronous
! jde. Santa Clara, California:

Intel Corp., 1981.

Intel Publication No. 172283-001.
the Intel 432 Extensions to Ada. Santa Clara,
California: 1Intel Corp., 198l.

Intel Publication No. 9800466,rev C. PL/M—-86
Systems. Santa Clara, California: Intel, Corp., 1981,

Intel Publication No. 9800478,rev D, PL/M-86
i . Santa Clara,

compiler Operating Instructions
California: 1Intel, Corp., 1981.

McNamara, John E. Iechnical Aspects of Data
. Bedford, Massachusetts: Digital
Equipment Corporation, 1977.

Phister, Paul W., Jr. Protocol Standards and Implementation
within the Digital Engineering Laboratory Computer Network

(UNID). Unpublished MS thesis. Wright-Patterson AFB,
Ohio: School of Engineering, Air Force Institute of
Technology, October 1983,

Smith, Lynn M. Intel 432/670 Computer System liser's
Guide. Unpublished text, Wright-Patterson AFB, Ohio:
School of Engineering, Air Porce Institute of
Technology, June 1983,

Weinberg, Victor. Structured Analvsis. New York, New
York: Yourdon Press, 1979.

H~-48

R R TIRT WP

aaaiitindioniaitl .l uniiitiibiinesnt,

P ————

% APPENDIX I

1/0 Interface Data Ploy Diagrams

This appendix contains the data flow diagrams for the
I/0 1Interface. These diagrams have been extracted exactly
as they appear in Chapter III and are collected here for

T reference. The full discussion of the logic development for

these diagrams can be found in the main body of this report.

ey e e

Printer

Request

I/0
Interface

Disk Files

L 1

Figure 3-1. I/0 Interface Context Diagram

s ﬁ'
User Command Response User
Input Line Line Output
Device Device
User Shel
Process
h— e— i

Pigure 3-3, User Shell Context Diagram

I-2

REOVIV I N A

Response
Line
Respond
to User

Command, Arg_String
Arg_String_Length

Response

Figure 3-4, User Shell Main Program Data Flow

"function"
SET, HELP
or COPY

Command
Arg_String
Arg_sString_Length

Arg_String
Arg_sString_Length

Status

Response,

Response_Length

Figure 3-5, Perform_System_Command Data Flow

I-3

Receive Port Address

CBMS
Message

Receive
Message
(iMAX)

Punction_Args

Device_Name

perform
device

CBMS
Create
Message

CBMS_Message

Figure 3-6. Typical User Agent Receive Procedure
Data Flow

) &

e —— e o e W .

=
Src_Name
Dest_Name Reply Port Address
Function_
Args
AM
Get Full Receive
Name Message
(iMAX)
CBMS
Src_Name Create
Dest_Name Message CBMsS_
Message
CBMS__
Message CBMS
Read
Message
Status
Boon —

Figure 3-7, Typical User Agent Send Procedure Data Flow

Ly

[]
o __—‘,,.m.;,zmm._m,.,_.J

Device Name Receive Procedure

AM
Lookup
Address

CBMS_Address Port_Address

Port Address
Data Base

_[

FPigure 3-8. Typical User Agent Initialization
Data Plow

I-6

e TR T S e

-— e

MTS Port Address

CBMS
Unwrap

Receive
Message
(iMAX)

CBMS_Message

Dest_Name
CBMS_Message

Send
Message
{iMAX)

AM
Lookup
Address

Port

CBMS
Address

Address

Figure 3-10., Mts_Receive Data Flow

Src_Name
Dest_Name

CBMS_Message
CBMS_Message

Send
Message
{iMAX)

CBMS
Wrap

MTS Port Address

e —

Figure 3-11. Mts_Send Data Flow

I-7

—

e e o s e — e o s o

'IF;;;EiﬁiIiIIlllllllll-lIllIIlIlIIIIIllllllIIIIIIIIIIII-----t~f

APPENDIX J

1/0 Interface Software Structure Charts

This appendix contains the structure charts for the
I/0 Interface. These diagrams reflect the design of the I/0
Interface software modules described in Chapter III, Code
listings for these modules can be found in Volume II of this
thesis.

Note that there are identical modules on the 432
Processor system and the Attached Processor system., In the
case where the modules are named and numbered the same, the
only difference is the 1language of the implementation
program (see Appendix H). The data dictionary, included in
Volume 1II, provides a cross reference for the module and
variable names used in these charts.

In general, a single structure chart is sufficient to
show the organization of each systenm. However, when there
is a difference in the structure of the modules a separate
chart 1is presented for each system. The following page

contains a list of the charts provided.

et 4140 il b A B A i

1/0 Interface Structure Charts

System/Module

432 System
0.1 432 System Initialization

User Shell
0.2 Main

System Commands
2.1 Perform System Command
2.1.1 Determine Command
2.1.1.1 Set
2,1.1.2 BHelp
2.1.1.3 Copy

User Shell Agent

6.1.1 USA_Receive
USA_Open
USA_Close
USA_Read
USA_Write
USA_Page
Usa_Title
USA_Delete
USA_Rename
USA_Reset
USA_Get_Config
USA_Set_Config
USA_Test

bd pd b s O DI NN

ONANARAARATRARNANNNANARNO
woH+Ho

Message Transfer System
10.1.1 MTS_Receive

Attached Processor System
0.1 Attached Processor Initialization

Printer s¥stem Agent
7.1. PSA_Receive

ISIS File System Agent
8.,1.1 IFSA_Receive

Series III Console Agent
9.1.1 S3CA_Receive

Message Transfer System
10.1.1 MTS_Receive

J=-3

J-4
J=5
J-6
J=7
J-8

J=-21
J-9

J-10
J-11
J-12
J-13
J=-14
J=-15
J-16
J=17
J-18
J-19
J-20

J-25

J-2

J-22

J-23

J-24

J-25

(1°0) 3reyD 31IN3DNIIS uoTIRZTTeTITUI wasis zey °TI-r 2anbig
I°1°9 I°1°01
AATI03Y ™ BATS09Y™
v¥sn SINW
1°9 1°01 1°CT T°1t
ITUI"VYSn ITUITSIH ITUI" WY ITUI™ WY
1°0

ITUITWIISAS

e

(1°0) 33°YD 23N30NI3S UOFILZITRIITUI Wa3ISAS 108880013 poYsIeLIIV

*Z-r 2Inbig

I°1°6 °'1°8 I°1°L I°1°01
YN 51 CYN CEE N IATIDY 9ATa09Y
YOES VSdl ¥sd SIW
1°6 1°s 1°L 1°01 1°C1 I°1T

ITUITVYDES

ATUITVSAI

ITUI ¥Sd

ITUI”SIN

1°0
ITuUITwaasis

—

J-4

SRR TR L e e 2

P

B

(Z°0) 3IeyD a1n3oni13s (TT3YS 2980) UfeW °*¢~r ainbra

1°C
S°T puewwo)™ 1°1
assn o3 walsis— puewwod ™
puodsay wio3aad 1381 peay 1
y3abua1™ » 4»
butrajys—bay buta3asThbay
wu:&mmwfo asuodsay » ° puewuod n
pueuwo) !

\\o butizs—bHay

2° yaybuoT DutIa3sThay

T

(T°2) 3aeyd ainlxonijzs (spuewwo) walIsAg) pueuwo) waIsds wiojiag °*p-r 3inbig

2°1°2
asuodsay
93e91)

asuodgay f(d snje3s

°1°¢
puewwo)™
JuTwiIajag

y3buaT"
But135—BIV O oPbur135—Hay

\b snjeas

T°¢

pueuwod™
wayslks—
wi031ad

R s S tipntesmiliny, vy S35

e e T Yoy

(T°T°2) 3aeyD 2in3onils (spueuwwo) walsks) puewwo) auTwiIaldd °*G-f 2Inbia

€°1°1°2 FA Ol Sk 4 °'t°1°¢
Kdo) disH 398
yabua1 snje3s 1 yabua1—
m::uwlmutlo P' buri3s~bay » w putays—bay

snje3s snjelis
but uumlm..:wd «

Q\ yaibuat HburaysTbay

B VT S P

J=17

o\mcﬁ 138~ bay

il

1°1°2 _
puewuwo)
autwialaqg

L N

(I*T°1°2) 33ey) 21n3oniys (spuewwo) waisis) 3as °*9-rL 3inbyg

¢ 11 (A ¢
IIneyaqd juauwnbay™
39S WY 330
mumﬂo yabuag buyiyzsTbay x \b bay ‘
psmsumum
.ﬁm:mqlm.zld butazs—bay \b yabuar bay ©
(0

T°1°1°e

398

(2°T°1°2) 3ITeyD 2injoniys (spuewwo) walsAs) diaH °*L-r aInbig
a

(AN 8
Juaunbay—
39D
o.u.cul.mavmld yabuaT buralzs—bay k \b bay
osmsuuuw b b [6
utTI3s bay yabuag bay
»° i

zum=04|ouculmaomla

¢°1°1°¢
dreg

v

(E°T°1°2) 3zeyd 21n30Nn138 (spuenwo) waisls) Adod

*g-L ?ainbyg

yabua aweNT907A3Q

SWeNT90TA3Q :ejep HuTiIlsS asweu IDTAIP ST <AIQE> 930N

£°9 G*9 v'9 L9 rA} FA |
juaunbay—
980TD7 VSN 93TIM VSN peay vsn 9T3TL VSN uadoTv¥sn 39D
9ZYS™ snjels snjels snjejls
<aoq> Yo 193309 ﬂ <A3Q@> % % \u

snje3s f

fm:umum W

Jv <A93@> \
13z3ng <A 9215~ \b bay
A>wanv 19j33ng ﬂ ﬁ 1233nd

\o yabuay bay

\.v\ buta3sTbay

\%\ YibuaT bur13ysTbay

g°1°1°¢
Adop

J=10

e 2

(2°9) 310y BIn3oni13s (3uaby yrays 1sspn) uadpo vsSn °*6-r 2InbBTJ

apod A1day ‘yabuagTezeq ‘ejeq
YibuaT oweN 9TId ‘oweN"aTTd
9po) puruwo) ‘dwWeN 90TA3d 3ISOq

aweN 907ASQ 901In0S :sjudunbie proTJ abessaw Y3 aie <8bay> :FION

[AS A ¢

abevssaW™
peay—
SWdD

snje3s P'

mmmmmo:lmsmmlf

¢°0t
puas™ SIW

T

‘tl | AR

obesgoN aweN"
ajeard™ Tina
399 WY

\ <sbay> sweN"
adtae(Q
yaybuatT
SWUN 92JFAdQ

A

uado™vsn

J=-11

e e e -

e -

- oo

EPRY 3

S ALRRIANE O T A ARA 1 Le s

PR O L e 1 . Ty

i
i
¢
;
|

(€°9) 31eYd 2an3onixs (Juaby T1aUs 1980) 8s0TD"¥WSN °*0T-L 2inbia

apo)—A1deoy ‘y3bua e3leq ‘ejed
YibuaT oweN @TTd ‘SweN oTTd
apo) pueuio) ‘suweNT20oT1AdQ 3894
dWEeN 90T7AdQ 201n0S :sjuaunbie praty 2bessou ayjz aie <sbay> FALON

AR A T°¢T veit
abessay— 2°01 obessay aweN
peay™ ?3eaxd” Tina
SWHD puUas™ SiIKW SHYO 329 WV

abessal ™
SWYD “

o—

abessay \\. aweN™

SWHD 201A9(Q
o¥y3busT

awWeN"90FA3Q

SN3LIS O

mwmwwm:lm:mmld

€9

980107 V¥sSN

(v°9) 3aeyD 21n3dNI3IS (Juaby [TSUS 198n) pesy ¥sn °*TTI-L 9Inb1d

apoDd~A1dsy ‘y3zbuaTeieqg ‘ejeq

yjbudr 2weN"STTd ‘SweN 9TTd
9po) puewWo) ‘IurN 90TA3Q” 389(Q
BWeN 90TA3(J 901Ino§ :sjuawunbie prat3y obessaw ayly aie <sbayd> JLON

(AN ! TI°¢T P11
abessay™ 2°01 abessal™ aweN—
peay™ ?jedxd™ Tnd
SHED PuUas SIKW SK4D I WY

abessay— %
sn3jeas P’ abegsgsay™ m:mo\v <sbay) &m&czl
SHED 9DTARQ
abessoN—SHED Y0 ¥yabuat

aweN 30fA3(Q
yjybuaT 1933089 PI

1933nd P’

9
peay vsn

e R i

J=-13

s adnlls T de M v S o g A s

=X PU

}
i

(¥°9) 37eYD 2In30ni3s (juaby [I3YS 19sn) pesay vsn °*I1-r 3Inbia

apo)~Atday ‘yabuaTeazeqg ‘eized
YibuaT oweNTITTd ‘oweN 91Td
9po)~ purwWWoO) ‘IuweN 90TA9dQ 3I83d
BWeN 90TAdQJ 9201n0S ssjuswnbie pyrar3y sbessaw ayj aie <sbay> AION

e

[8 I°tT | AN Y
abessay— Z2°01 sbessanW— sweN"
peay™ ajeaad” TN
SHWHD PUas™ SLW SWED 39D UV

abessay .\
snje3s P’ obesson™ mzmo% <sbay> Xo___czl .
SHED ao1A9Q pat
sbeagan—sHa) Yo ¥yabusT g
sweN"30FA3Q

ysybuaT 1933Nng oz'

19j3nd P’

v°9
peay vsn

(S°9) 3aeyd ain3zdoniys (Juaby [T9YS 138(1) 93TIM VSN *TT-C 9InbT4d

—

apod—Atday ‘yabuaTezeq ‘ejeq

yjbuaT sweN OTTd ‘SWeN 2TTJd

9po) puruwo) ‘aweNTa0TAdQ 3IS9d
oWEN 90TADdQ 901INn0g :sjuawunbie pyoy3 o2bessauw ayjz aie <sbiy> 3IFILON

N . m.ﬂ : .H ¢ ﬂ.ﬂ Q * .H.H
abessay— 2°0T1 abegsay™ aweN"
peay— 93ea1y™ TInd™
SWED pPuads” SIH SWLD 399 WY
snje3s P’ abessoy % <sbiy)> X aweN—
SWdO 90TA9Q
mmmwuwzlmzmuﬂo ! yabuay—

aweN—201A3Q

S*9

93TIM VSN

(9°9) 3aeyd aan3joniis

apo)—A1day ‘yzbusT eleq ‘eizeq
YyjbuaT sweNTOTTJd ‘SweN ITTJ

9poD puewwo) ‘aweN 99TAQ3ISAQ

SWRN 30 TA3Q 901In0g

A §

abessay
pesy
SWHO

snje3ls o’

abessan—suas Yo

(3uaby TTays a9sn) abea vsn

(A1)

puUas™ SIW

T

abessay™
SKYD

I°¢T
abessay—
ajeai1d”
SW4ED

dbwssaW™
SWdD

4

*€I-r 2anbya

tsjuawunbie pIaTJ obessaw ay3 aie <sbay> :IION

veIt

aweN—
TInd™
399 WV

sweN—
8ot1A8Q
yjbust

SweN 90t1A3Q

J=15

S T S R

BPatn (PPl 1~

E

(L*9) 3xeyd ainjoniys (3uaby TT2YS 198n) STITL VSN

apo)—A1day ‘y3zpbuaexeqg ‘ejeq
YibuaT sweN 9[Td ‘SueN 91Td
9poD T puRWWO) ‘aueN 30FAdQ 3I82Q
SWEeN 90F7A3(Q 901In0s :sjudunbie pyaty obessaw ay3z aae <sbay> ILON

AN |
abessay—
peay—
SWgD

sn3je3s n/

abessonSHaD YO

¢ot1
pPusas™ SIKW

obegsan—
SWdD Jq

‘y1-r @2Ianbig

T1°¢T
abesson—
ajes1dy
SWdD

2
SWeN
TIng”

ELC L

abessoy
SWHD N

L

9

3T3ITL ¥SN

aweN"
90742Q
qabua1
SWeNT3IDFARQ

et o R AT R 1

J-16

(8°9) 31ey) 21n30oni3s (usby TTaYS 138Q) 239T3Q VS

wmmmmmzlmzmm16

spop~ATday ‘yjbuaTezeq ‘ejeq
yjbud7 oweN OTTd ‘OweN oTTd
8po) puewWo) ‘sweN 20T7A3Q 383Q
SWeN"90TA9Q 901n0§ :sjusunbie piary obesssw ay3 aie <sbiy> FAION

rA N |
abessoy™
peay—
SWYD

sn3je3ls f

obvsson—

ot

puss SiIH

*Gg1-r InbT4a

SKED

T°€T
obessan—
?jea1d
SW8D
abessa
SWdD %

8°9

939T12q VSN

1 AN
weN"
TInd™

IO WY

\mw\oauZl
801A9Q

o¥y36usT

sweN"20TA9Q

J-17

e

b e e B o e

R

e

R

(6°9) 3zeyd ainjzonizs (Juabv [TaYS 19sn) Bweudy vsn

apop—At1day ‘yabuag ejzeqg ‘exeq
yzbuaT oweN 9TTd ‘sweN 9TTd
9po) puruiio) ‘SueN 90TASQ 3Is3d

SWeN 90FA3(Q 901n0S :sjuaunbie proayJ obessau ay3z aiae <sbay> :FION

obegsal
SHdD

sn3jeis P’

ommmmwzlmzmmﬂd

(A T°ET

abessal— Z°01 abessonN—
peay ajea1)y”
SW4D PuUdsS™ SLH SWaD

*9T-r 2anbig

abesgoWN™

SWED “

a.

9

aweuay~ysn

velt

aweN
TN~
IO WY

oweN—

20t1A3Q
y3buay
sweN 90TAdQ

PO S —.

J-18

W
!
i

@,

PRUEY RVRE W AN 2 PN T Rk i

R B

o . B ke Y-

1

(01°9) 3reyd sIn3zonils (3Jusby TTI3Ys 19sn) 3989y ¥sn °LI-C 2Inbja

apoD—At1day ‘yybuaT e3zeg ‘ejed

YibuaT aweNTI[Td ‘OweN ITTd
apo)_puewwo) ‘3weN 90TAII 3I83Q
SUWEN~90TASQ 201In0S :sjudunbie pIdT3 abevssauw ayyz aiev <sbiyd> SALON

¢°eT 1°¢T P It

abesson™ 201 abessanW sweN—
peay aje’axad” g
SWYD PU9S™ SIKW SRED 3199 WY

abessal
gsn3jels P’ abeggoN™ SHED % \w“ WeN—
SWED 207149(Q
ommmum:lmzmmlw o{rumcoql

SuIeN 90TA9Q

0t°9
39893y ¥sn

J-19

j
i
m

(TT°9) 31RYD 21njonias (juaby TTaYs 19sn) bHrjuod™ ™399~ ysn °*Q1-rL 2Inbra

apo)—A1day ‘y3buaT ejeq ‘ezeq
y3jbudT oweN OTFd ‘SuweN 9Ttd
9po) T puRwWO) ‘dWRNTIO0TAIQ 3ISDQ
SWEeN 901AdQ 201In0S :sjuawnbHae playl dbessaw ayjz aiae <sbay> :IALON

(AN | T°¢T POTT
abessay 2°01 abevssaw—
peay™ ?3ed1d~
SKED pua2s~ SIH SWYD

obesson—
snjels of omnmwm:lﬂ mzmo% &mswzl
ao01A9a

SK4D
mmwmmozlmzmo(d Q\summqul
sueN"a0T1A3Q

yibuaT 1333ng %

1333jnd P’

J=-20

b SO e e i

AT . Ik RN Lo s Sy

Bt e

Vi s T et e WA

(TT1°9) 3aeyD 31n30n13s (3Jusbv TIaYS 13sp) HIJuod ™ 388" Wsn °*6I-r ainbig

9po)~A1day ‘yjzbuaTezeq ‘ejzeq
YyjbuaT aweNTOTTd ‘OweN OTTJ
apo) purwMO) ‘IueNT30TAQ IS3AQ
dWRN 90TA3Q 901In0g :sjusaunbie py313J obesgow ay3z aaev <s8biy> JION

T TI°¢1 | ANt
apbesgay™ Z°01 abessaW SweN
peay” Ijzwaidy g
SW4D pus3sS™ SIH SHED 399 WV

A A, i, Lt s ARk -t mimmmr st i - m

abessay™

snije3ls 9’ abessay™ SKED “ n\ <sbay> x sweN—

?oTA9q
o§3busT
aueN 901A3Q

SWaD
mmmummzlmsmu/o

s i T S

ommmmm:lmzmmaf

(€1°9) 31eYD 2In3onias (Iusby TTauUs 1asn) 3s3L VSN

*0z-r 2anb1a

2°tl
abegsaW
peay
SHED

apop—A1dsy ‘y3zbuaiezeq ‘eied

yibuaT oweN 9TTd ‘oweN 9T11d
9poo~ purwmuo) {3weNT20TADQ 3I89Q
awleN—30TA9Q 901IN0S

R

SNILIS O

¢°ot

PuasST SIN

1°€1
obessan
ajeard
SWED

obvssoW
SWdD

4

1

3831 ¥Sh

% <8bay>

:gjuaunbie proy3 abessau 3ayy 3ie <8bay> 13ILON

2R 1
aweN"
TIng

39O WY

\m“‘memzl
207A3Q

o¥y3busT
aweN 90TA3Q

J-22

ik SR 10T ARG T Bt 4 SR IER \m BnBN ok b S L2

T e L TR T T e I, Yo

(1°1°9) 31eyd 2in3onials (Jusby [T9YS 19sn) 9AT3DAY WSN *1Z~L 9Inbi4

apo)~4At1dayg ‘y3zbuag ejzeqg ‘eieq
yibuaT oweN OTTd ‘sweN 9114
9po) puewWo) ‘auweN 0TAId 1S3 ;
aUWeN 30FA3Q 901In0g :sjuaunbae pray3 obessow ayjz aie (sbiv> JION ¢

1°¢t1 £°T (AN A |
z2°01 abessoW— 180" v°T1 obesgow
ajea1d i leD & 19801 03 pesay
puas” SIH SWEO pead 93TIM SWHED
abesgsay, A Awmucvaw 1agy3ng ﬂ 1333ng m\ Ammucw\b
SKa)D abessaW yabuag™ « sumchIMK \% snijels Qlwmmumwtl
SHED

iszjund « 193304
« snjels

T°1°9

3AT203¢ VSN

. s A AT S TR 1, AT - NG S PPN TN P A Al ISt s " S " . s C e P - J e

(T°1°L) 3zeyd 21n30oni13s (jusaby wayshg 193uTiad) 2479099~ ¥Sd °ZZ-r 2inbig

o

apod~A1day ‘yabuaT ezeq ‘ejeq
YyibuoT sweN OTTd ‘sueN 3TTd
2P0 puruWoO) ‘duweN” 9dTAdQ 3Isag
aueN 921430 201IN0g :83juduNbiIv pTorJ Sbesssw ayl aiv <sbIyY> ILON

e 4 TI°¢T [% ¢ 3
Z2°0T1 abessay— I°T1°1°L abesgan—
93e91d)” uoiloung” peay— .
puas~ SINW SKHHD ¥Ssd SHYD Co A
Pr 4
abesgay Awm.:uvlu {sbiy>
swao %o abesson ~ osoesson— 3
SwdD ._u

I°1°L

IATIOIY " YSd

(T°1°8) 33eyd °2In3oni3ls (Juaby we3sks oTTJ SISI) SAFI VSAI

‘gg-r 2anb1y

[

apo)y—Atdey ‘yzbuaiejeqg ‘ejeq
yibuar aweNT9[Td ‘sweN oTTd
apo) purwWo) ‘SwWeN 90743Q 3ISOQ

SWeN"9DFAQ201IN0S isjuaunbie prafJ obessauw 3yl aie <sbiy> SILON

T°¢T
¢°0T abessaw
aj3eai1d”
puas~ SIW SWYD

1°1°1°8
uoyoUNg”
¥SdI

A N

abesgay™
pesy™
SHWED

abessoy Ammucvzw

apbessoN”

% <sbaiy> Ammucv\\n Q\ 6 -
abessd
SWdD

1°1°8
SAT03Y™
¥SdI

J=25

AD-A138 429 DESIGN AND IMPLEMENTATION OF AN INPUT/OUTPUT INTERFACE ‘I/‘,
PROTOCOL FOR THE I..{U} AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. K N COLE

UNCLASSIFIED DEC 83 AFIT/GE/EE/83D-17 F/G 17/2 NL

END
bate
FILNED.

[

| =)

— I:’ m
I
L
L™

IFEEFE

-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

BE o,

Ay L are A

(1°1°6) 3Teyd 2In30n13S (JuUsby ITOSUO) III SITIAS) IATEDAY WIES ‘I~ IInBYJ

apo)—At1day ‘yzbuaT wzeq ‘eieq
YyrbuaT oweNTSTFd ‘SweN 9114
9poD T purwWO) ‘aWeN"90FASQ ISaQ
AWeN 90TA(Q 90In0S :sjudunbie plat3d abessau ayy aie <sbIy> :IILON

T°¢T 2°¢eT

2°01 abevsgan ™ T°T°1°6 abesgay”
ajwai1y— uoyIdUNg ™ pueay ™
PuUss” SLH SWHD VOES SWeO

Ammucvlv
abvsgay

J=-26

~ (T°T°0T) 33IvYD 91n3dniys (washs 193jsuvl] dbes8ay) S9ATA03Y SIN °GZ-L @inbya

832ppY” SHED 4 SWERN 20TA2Q
wum...vv(.l Jd 8891ppY SHED « » dWeN 90TAdq \o &maunoﬂl

3104 o

J=-27

T°T°0T
9AT903W SIN

APPENDIX K
leat Results

This appendix contains the results of the tests,
described in Chapter IV, for the I/O Interface. These
results are presented as a listing of the test command and

the system response for each step of the procedure. The

test procedures appear in the following sequence:
I. 432 Processor Validation
User Sublayer Validation Test (432)
User Agent Sublayer Validation Test (432)
Message Transfer Sublayer validation Test (432)
II. Attached Processor Validation
User Sublayer Validation Test (AP)
User Agent Sublayer Validation Test (AP)
Message Transfer Sublayer Validation Test (AP)
III. System Integration Test

é; The description of the 432 Processor Validation Tests
can be found in the body of this report (Chapter 1IV).

Oser Sublayer Validation Test (432)

The following is a listing of the information displayed
on the Debugger console during the User Sublayer Validation
Test, The system prompt (>) is followed by the operator's
command entry. All command entries are under-lined.

>HELP

User Shell Commands: BELP - Command Query
SET - Default Naming
COPY - Data Transfer

>HELP SET
SET Command Use: Default Device Naming
Argument may be appended to the left side
of abbreviated device name string

SET Command Syntax: Command Arguments
SET DEFAULT Device~Name
S

Valid Device Name: <Country>/<Network>/<Host>/<Device>

where <Country> must be RMé67
<Network> must be NETO
<Host> is one of [432, MDS]
3 <Device> is one of [USR] on 432
[PTR, CON, DSK] on MDS

>HELP _COPX
COPY Command Use: Data Transfer from one system device
to another

COPY Command Syntax: Command Arguments
COPY Device-Name-1 Device-Name-2
C

Valid Device Name: <Country>/<Network>/<Host>/<{Device>

where <Country> muat be RME7
<{Network> must be NETO
<Host> is one of [432, MDS]
<Device)> is one of [USR] on 432
[PTR, CON, DSK] on MDS

K-2

User Sublayer Validation Test (432) (continued)

>SET _DEFAULT BM&ILNE;Q
RM_SET_DEFAULT: RM67/NETO

5SA_SEND:
USA_SEND:
USA_SEND:
USA_SEND:
USA_SEND:
USA_SEND:

USA_SEND:

USA_SEND:
USA_SEND:
USA_SEND:
USA_SEND:
USA_SEND:
USA_SEND:

USA_SEND:

DEVICE: RM67/NET0/432/USR
FUNCTION: OPEN

DATA:

DEVICE: RM67/NETO/MDS/CON
FUNCTION: OPEN

DATA:

DEVICE: RM67/NETO/MDS/CON
FUNCTION: TITLE

DATA: RM67/NET0/432/USR
DEVICE: RM67/NET0/432/USR
FUNCTION: READ

DATA:

DEVICE: RM67/NET0/MDS/CON
FUNCTION: WRITE

DATA: THIS IS DUMMY TEST DATA
DEVICE: RM67/NET0/432/USR
FUNCTION: CLOSE

DATA:

DEVICE: RM67/NET0/MDS/CON
FUNCTION: CLOSE

DATA:

DEVICE: RM67/NETO/MDS/CON
FUONCTION: OPEN

DATA:

DEVICE: RM67/NET0/432/USR
PUNCTION: OPEN

DATA:

DEVICE: RM67/NET0/432/USR
FUNCTION: TITLE

DATA: RM67/NET0/432/USR
DEVICE: RM67/NET0/MDS/CON
FUNCTION: READ

DATA:

DEVICE: RM67/NETO0/432/USR
FUNCTION: WRITE

DATA: TRIS IS DUMMY TEST DATA
DEVICE: RM67/NET0/MDS/CON
FUNCTION: CLOSE

DATA:

DEVICE: RM67/NETO0/432/USR
FUNCTION: CLOSE

DATA:

K-3

St S S Redet

User Sublayer Validation Test (432) (continued)

>COPY /432/USR [A}Z[ﬂﬁ?
USA_SEND: DEVICE: RM67/NET0/432/USR

USA_SEND:

USA_SEND:

USA_SEND:

USA_SEND:

USA_SEND:

USA_SEND:

FUNCTION: OPEN

DATA:

DEVICE: RM67/NET0/432/USR
FUNCTION: OPEN

DATA:

DEVICE: RM67/NET0/432/USR
PUNCTION: TITLE

DATA: RM67/NETO0/432/USR
DEVICE: RH67/NETO/432/USR
FUNCTION: READ '
DATA:

DEVICE: RM67/NET0/432/USR
FUONCTION: WRITE

DATA: THIS IS DUMMY TEST DATA
DEVICE: RM67/NETO0/432/USR
FUONCTION: CLOSE

DATA:

DEVICE: RM67/NETO0/432/USR
FUNCTION: CLOSE

DATA:

>SET_DEFAULT RM67/NET0/MDS
RM_SET_DEFAULT: RM67/NET0/MDS

;SA_SEND:
USA_SEND:
USA_SEND:
USA_SEND:
USA_SEND:
USA_SEND:

USA_SEND:

DEVICE: RM67/NET0/MDS/DSK/:F1l:TEST,TXT
PUNCTION: OPEN

DATA:

DEVICE: RM67/NET0/MDS/PTR

FUNCTION: OPEN

DATA:

DEVICE: RM67/NETO0/MDS/PTR

FUNCTION: TITLE

DATA: RM67/NET0/MDS/DSK/:Fl:TEST.TXT
DEVICE: RM67/NET0/MDS/DSK/:Fl:TEST,TXT
FUNCTION: READ

DATA:

DEVICE: RM67/NET0/MDS/PTR

FUNCTION: WRITE

DATA: THIS IS DUMMY TEST DATA

DEVICE: RM67/NET0/MDS/DSK/sF1:TEST,.TXT
FUNCTION: CLOSE

DATA:

DEVICE: RM67/NET0/MDS/PTR

FUNCTION: CLOSE

DATA:

> (End of User Sublayer Validation Test (432))

K-4

{

432 Processor Validation (continued)

User Agent Sublaver Validation Test (432)

This test was pnot performed due to the lack of
sufficient disk storage on the Debugger system. The size of

the executable code module exceeded the storage of a double
density diskette.

Mesgage Transfer Suyblaver Valjdation Test (432)
This test was pnot performed due to the 1lack of
sufficient disk storage on the Debugger system. The size of

the executable code module exceeded the storage of a double
density diskette.

II. Attached Processor Validation
The description of the Attached Processor Validation
Tests can be found in the body of this report (Chapter 1IV).

User Sublayer Valjdation Test (AP)

The following is a listing of the test results of the
Attached Processor system User Sublayer Validation Test.
The operator inputs are under-lined. The name of the
device, on which the output appears, is shown on the right
(in brackets). Comments are in parentheses.

(Printer System Test)

>0 (open) [CON]
Device: PTIR
Device Indicates: OK

>3 (write)

Device: PTR

Data: IHIS IS A TEST OF THE PRINTER

THIS IS A TEST OF THE PRINTER [PTR]
Device Indicates: OK [CON]

>4 (page)

Device: PTR

<form feed> [PTR]
Device Indicates: OK [CON]

K-5

T ST e —

User Sublayer Validation Test - Printer System (continued)

>5 (title)

Device: PTR

Data: RPRINIER TITLE PAGE TEST

<form feed> [PTR]
PRINTER TITLE PAGE TEST (centered on tenth line of the page)
<form feed> '
Device Indicates: OK [CON]

>9 (test)
Device: PTR
Device Indicates: OK

>l (close)

Device: PIR
Device Indicates: OK

(ISIS File System Test) --

>0 (open) [CON]

Device: iPl:

Device Indicates: OK

>3 (write)

Device: DSK/:F1:TEST,.TXT

Data: THIS IS A TEST OF THE ISIS FILE SYSTIEM

THIS IS A TEST OF THE ISIS FILE SYSTEM [DSK/:F1:TEST.TXT]
(verified by using ISIS utilities)

Device Indicates: OK : [CON]

>l (close)

Device: DSK/:Pl1:TEST.TXT
Device Indicates: OK

>0 (open)

Device: H

Device Indicates: OK
>2 (read)

Device:

Data: P ("<ctrl>-@ P" was the two character sequence
entered to indicated a buffer length of 80)

THIS IS A TEST OF THE 1SIS FILE SYSTEM

Device Indicates: END-OF-FILE

>2 (read)

Device:

Data: P ("<ctrl>-@ P" was the two character sequence
entered to indicated a buffer length of 80)

Device Indicates: END-OF-PILE

K-6

User Sublayer Validation Test - ISIS File System (continued)
8 >l (close)

Device: iFl:
Device Indicates: OK

>71 (rename)

Device: :1Fls
Data: :Fl:

Device Indicates: OK

>§ (delete)

Device: DSK/:F1;:NEW,TXT
Device Indicates: OK

>8 (reset)
Device: DSK
Device Indicates: OK

>9 (test)
Device: DSK
Device Indicates: OK

(Series III Console Test)

>2 (read) [CON]

Device: CON

Data: P ("<ctrl>-@ P" was the two character sequence
entered to indicated a buffer length of 80)

e e e st~ eyt = s et e e

THIS IS A TEST QF READING THE CONSOLE
THIS IS A TEST OF READING THE CONSOLE
Device Indicates: OK

>3 (write)

Device: CON

Data:

THIS IS A TEST OF WRITING TO THE CONSOLE
Device Indicates: OK

——— e

>4 (page)

Device: CON

(the screen cleared and the cursor appeared in the upper left)
Device Indicates: OK

>5 (title)

Device: CON
(the screen cleared and the cursor appeared in the upper left)
Device Indicates: OK

R - L L L

X R N
; M T T

8

User Sublayer Validation Test - Series III Console (continued)

>9 (test)
Device: CON -
Device Indicates: OK

(End of User Sublayer Validation Test)

User Agent Sublaver Validation Test (AP)

The following is a listing of the test results of the
Attached Processor system User Agent Sublayer Validation
Test. The operator inputs are under-lined. The name of the
device, on which the output appears, is shown on the right
(in brackets). Comments are in parentheses.

(Printer System Test) --

>0 (open) [CON]
Device: PTR
Device Indicates: OK

>2 (read)

Device: PTR

Data: P ("<ctrl>-@ P" was the two character sequence
entered to indicated a buffer length of 80)

Device Indicates: Invalid Command

>3 (write)

Device: PTR

Data: THIS 1S A TEST OF THE PRINIER

THIS IS A TEST OF THE PRINTER [PTR]
Device Indicates: OK {CON]

>4 (page)

Device: PTR

<form feed> [PTR]
Device Indicates: OK [CON]

>5 (title)

Device: PTR

Data: PRINTER TITLE PAGE TEST

{form feed> [PTR]
PRINTER TITLE PAGE TEST (centered on tenth line of the page)
{form feed>

Device Indicates: OK [CON]

>1 (close)

Device: PTR
Device Indicates: OK

User Agent Sublayer Validation Test - Printer System (continued)

" >8 (delete)
Device: PTR
Device Indicates: Invalid Command

>1 (rename)

Device: PTR

Data: PPP

Device Indicates: Invalid Command

>9 (test)
Device: PTR
Device Indicates: 0K

>G (get config)
Device: PTR
Device Indicates: Invalid Command

>8 (set confiq)
Device: PTR

Data: 00000000
Device Indicates: OK

(ISIS Pile System Test)

! >0 (open) [CON]
Device: DSK/:F1:TEST.TXT ;
Device Indicates: OK

|
>4 (page) {
Device: 2 i
Device Indicates: OK ;
‘)

i

>8 (title)

Device: H
Data:

Device Indicates: OK

>3 (write)

Device:

Data: THIS IS A TEST QF THE ISIS FILE SYSTEM

THIS IS A TEST OF THE ISIS FILE SYSTEM [DSK/:Fl:TEST.TXT]
(verified by using ISIS utilities)

Device Indicates: OK [CON]

>1 (close)
Device:
Device Indicates: OK

K-9

User Agent Sublayer Validation Test - ISIS File System (continued)

>0 (open) »
Device: :Fl:
Device Indicates: OK
>2 (read)

Device: H

Data: P ("<ctrl>-@ P" was the two character sequence
entered to indicated a buffer length of 80)

THIS IS A TEST OF THE ISIS FILE SYSTEM

Device Indicates: END-OF-FILE

>2 (read)

Device: :P1:

Data: P ("<ctrl>-@ P" was the two character sequence
entered to indicated a buffer length of 80)

Device Indicates: END-OF-FILE

>1 (close)

Device: DSK/:F1:TEST.TXT
Device Indicates: OK

>1 (rename)

Device: :Fl:
Data: :Pl:NEW,TXT
Device Indicates: OK

>6 (delete)
Device: :F1l:
Device Indicates: OK

>8 (reset)
Device: DSK
Device Indicates: OK

>9 (test)
Device: DSK
Device Indicates: OK

>G (get config)
Device: DSK
Device Indicates: Invalid Command

>8 (set config)

Device: DSK

Data: 00000000 .
Device Indicates: Invalid Command

K-lo 1

User Agent Sublayer Validation Test (continued)

(Series III Console ‘fest) =--

L

>0 (open) [CON]
Device: CON
Device Indicates: OK

>1 (close)
Device: CON
Device Indicates: OK

>2 (read)

Device: CON

Data: P ("<ctrl>-@ P" was the two character sequence
entered to indicated a buffer length of 80)

THIS IS A TEST OF READING THE CONSOLE
THIS IS A TEST OF READING THE CONSOLE
Device Indicates: OK

>3 (write)

Device: CON

Data:

: THIS IS A TEST OF WRITING TO THE CONSOLE
Device Indicates: OK

>4 (page)

Device: CON

(the screen cleared and the cursor appeared in the upper left)
Device Indicates: OK

>5 (title)

Device: CON

(the screen cleared and the cursor appeared in the upper left)
¢ Device Indicates: OK

>6 (delete)
Device: CON
Device Indicates: Invalid Command

>71 (rename)

Device: CON

Data: PPP

Device Indicates: Invalid Command

>8 (reset)
Device: CON
Device Indicates: OK

>9 (test)
Device: CON
3 Device Indicates: OK

K-11

User Agent Sublayer Validation Test - Series III Console (continued)

>G (get configq)
Device: CON
Device Indicates: Invalid Command

>8 (set config)
Device: CON

Data:

Device Indicates: OK

(End of User Agent Sublayer Validation Test)

Message Transfer Sublaver Validation Test (AR)

The following is a listing of the test results of the
Attached Processor system Message Transfer Sublayer
validation Test. The operator inputs are under-lined. The
name of the device, on which the output appears, is shown on
the right (in brackets). Comments are in parentheses.

Note that these results are exactly the same as for the
User Agent Sublayer Validation test (above). There is no
apparent change in the operation of the system. The
difference 1is in the fact that the commands are now sent
through the Message Transfer Sublayer routing mechanism
to reach the appropriate device. In the previous test, the
test shell gave the command message directly to the User
Agent for the device requested.

(Printer System Test)

>0 (open) [CON]
Device: PTR
Device Indicates: OK

>2 (read)

Device: PTIR

Data: P ("<ctrl>-@ P" was the two character sequence
entered to indicated a buffer length of 80)

Device Indicates: Invalid Command

>3 (write)

Device: PTR

Data: THIS IS A TEST OF THE PRINTER

THIS IS A TEST OF THE PRINTER [PTR]
Device Indicates: OK [CON]

K-12

b ¢

Message Transfer Sublayer Validation Test - Printer System

(continued)
>4 (page)
Device: PTR
<form feed> [PTR]
Device Indicates: OK [CON]
>5 (title)
Device: PTR
Data: PRINTER TITLE PAGE TEST
<form feed> [PTR]

PRINTER TITLE PAGE TEST (centered on tenth line of the page)
<form feed>
Device Indicates: OK [CON]

>l (close)
Device: PTR
Device Indicates: OK

>8 (delete)
Device: PTR
Device Indicates: Invalid Command

>1 (rename)

Device: PTR

Data: PPP

Device Indicates: Invalid Command

>9 (test)
Device: PTR
Device Indicates: OK

>G (get config)
Device: PTR
Device Indicates: Invalid Command

>S (set config)
Device: PTR

Data: 00000000
Device Indicates: OK

(ISIS Pile System Test)
>Q (open) [CON]

Device:
Device Indicates: OK

>4 (page)
Device:
Device Indicates: OK

K-13

Message Transfer Sublayer Validation Test -~ ISIS File System
(continued)

>5 (title)

Device: DSK/:P1:TEST.TXT
Data:

Device Indicates: OK

>3 (write)

Device:

Data: THIS IS A TEST OF THE ISIS FILE SYSTEM

THIS IS A TEST OF THE ISIS FILE SYSTEM [DSK/:Fl:TEST.TXT]
(verified by using ISIS utilities)

Device Indicates: OK [CON]
>1 (close)
Device: :

Device Indicates: OK

>0 (open)
Device: :Fl:
Device Indicates: OK

>2 (read)
Device: :F1:
Data: P ("<ctrl>-@ P" was the two character sequence
1 entered to indicated a buffer length of 80)
THIS IS A TEST OF TRE ISIS FILE SYSTEM
Device Indicates: END-OF-FILE

>2 (read)

Device: DSK/:F1:TEST.TXT

Data: P ("<ctrl>-@ P" was the two character sequence
entered to indicated a buffer length of 80)

Device Indicates: END=-OF-FPILE

>]1 (close)
Device: DSK/:F1:TEST.TXT
Device Indicates: OK

>1 (renanme)

Device: 2
Data: :FI1:NEW.TXT
Device Indicates: OK

>8 (delete)
Device:
Device Indicates: OK

>8 (reset)
Device: DSK
Device Indicates: OK

K-14

Message Transfer Sublayer Validation Test - ISIS File System
(continued)

>9 (test)
Device: DSK
Device Indicates: OK

>G (get config)
Device: DSK
Device Indicates: Invalid Command

>S (set configqg)
Device: DSK

Data: 00000000
Device Indicates: Invalid Command

(Series IXI Console Test)

> (open) [CON]
Device: CON
Device Indicates: OK

>1 (close)
Device: CON
Device Indicates: OK

>2 (read)

Device: CON

Data: P ("<ctrl>-@ P" was the two character sequence
entered to indicated a buffer length of 80)

IBIS IS A TEST OF READING THE CONSOLE
THIS IS A TEST OF READING THE CONSOLE
Device Indicates: 0K

>3 (write)

Device: CON

Data:

THBIS IS A TEST OF WRITING TO THE CONSOLE
Device Indicates: OK

>4 (page)

Device: CON

(the screen cleared and the cursor appeared in the upper left)
Device Indicates: OK

>8 (title)

Device: CON
(the screen cleared and the cursor appeared in the upper left)
Device Indicates: OK

B

Message Transfer Sublayer Validation Test - Series III Console
(continued)

>8 (delete)
Device: CON
Device Indicates: Invalid Command

>1 (rename)
Device: CON

Data: PPP
Device Indicates: Invalid Command

>8 (reset)
Device: CON
Device Indicates: OK

>9 (test)
Device: CON
Device Indicates: OK

>G (get config)
Device: CON
Device Indicates: Invalid Command

>8 (set confiq)
Device: CON

Data: 00000000
Device Indicates: OK

(End of User Agent Sublayer Validation Test)

11l. Systen Integration Test

This test was not performed due to the lack of an
Interface Processor Board for the second Series III MDS AP
system. Also, without a hard disk system, there is not
sufficient storage on the Debugger system for the executable

code module,

vita

First Lieutenant Kenneth N. Cole was born on 21
September 1949 in Highland Park, Michigan. He graduated
from Kimball High School in Royal Oak, Michigan, in 1967 and
entered an engineering program at the University of
Michigan. In 1970, he enlisted in the U.S. Air Force and
served as an Automatic Flight Control Systems Technician
(AFSC 32570) at R.A.F Bentwaters, England. During that
time, he earned a Bachelor of Science degree in Business
Management from the University of Maryland overseas program.

In 1977, then staff Sergeant Cole was assigned to
Myrtle Beach A.F.B., South Carolina, and in 1978 he was
selected to attend the University of Florida under the
Airman Education and Commissioning Program (AECP). He
received a Bachelor of Science degree in Electrical
Engineering in 1980 and was commissioned later that vyear.
His initial assignment was to the Aeronautical Systems
Division, APSC, at Wright-Patterson A.F.B, Ohio.

Lieutenant Cole entered the Air Force 1Institute of

Technology in June 1982,

Permanent Address: 1009 Middy Drive
Wright-Patterson A,F.B, Ohio 45433

SECUMTY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

{ ~EPORT SECURITY CLASSIFICATION

UNCLASSIFIED

1b. RESTARICTIVE MARKINGS)
3

20 SECURITY CLASBIFICATION AUTHORITY

25. OECLASSIFICATION/OOWNGRADING SCHEDULE

3. DISTRISUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION AEPORT NUMBER(S)

AFIT/GE/EE/83D-17

8. MONITORING ORGANIZATION REPORT NUMBER(S)

Ga. NAME OF PERFORMING ORGANIZATION

School of Engineering

OFFICE SYMBOL
(If spplicedie)

AFIT/ENG

7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, State and ZIP Code)

Air Porce Institute of Technology
Wright-Patterson AFB, Ohio 45433 -

7o, ADORESS (City, Stete end ZIP Code)

8. NAME OF FUNDING/SPONSORING

8. OFFICE SYMBOL
ORGANIZATION (1f spplicabie)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMABER

8c. ADODRESS (City, State and ZIP Code)

-

10. SOURCE OF FUNDING NOS.

11. TITLE (Inclugde Security Cisssification)
See Box 19

PROGRAM PROJECT TASK WOAK UNIT
ELEMENT NO. NO. NO. NO.

{ EASONAL AUTHON(S)

- .eﬂmth N. COle, BQSQE.B' 18t I‘t' m
196 TYPE OF REPORT 130, TIME COVERRD
MS Thesis £AOM T0

16. SUPPLEMENTARY NOTATION

14. OATE OF AEPONT (Yr.,. Ma., Day) 18, PAGE COUNY

1983 December 303

e

$7. COSATI CODES
[d] 1X- ROUP SUS. GR.

18. SUBJECT TEAMS (Continue on reverse if necessery end identify by block number)
Commnications Networks, Input Output Processing,
Multiprocessors, Microprocessors

19. ABBTRACT (Continue on reverse If nacemary and identify by block number)

Title:

Thesis Chairman: Dr. Gary B, Lamont

DESIGN AND IMPLEMENTATION OF AN INPUT/OUTPUT INTERFACE PROTOOOL
FOR THE INTEL 432/670 COMPUTER SYSTEM

SR

ganieyh 1Y

v MO BTV et Y
, e

t LAl

e

Lhhc release: AW AFR 190-17.

Wi

A ved l:Q
;% JLaveR

Dean tos Eatcarch ond Prolessional Developmeat
Alr Fesce lustitute of Techuolog? (ATG)

Pagtefatiamen AFS QU 53

2 "i"l’hl.ﬁ'm“AVAlu.".lTV OF ABSTRACT

\

URCLASSIPISO/UNLIMITED B sams as aer, O oric vssns O

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

220 NAME OF RESPONSIBLE INDIVIDUAL

Dr. Gary B, Lamont

o

DD FORM 1473, 83 APR

220. TELEPHONE NUMBER 22¢c. OFFICE SYMAOL

s{¥-fE3578 AFTT/ENG

GOITION OF 1 JAN 7] IS OSSOLETE.

SECURITY CLASSIFICATION OFf THIS PAGE

P, ; Rl i N g

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Block 19 (continued):

wd

J

Distributed computer systems have many advantages to offer in terms of simplic’ty,
efficiency, protection, and security as well as improved performance from the
concurrency in such a system, Commmnication among distributed processors is a key issue
in the design of a distributed system., While the lower levels of a coomunication system
are generally defined by the hardware configuration and thus, implementation dependent,
protocols for commmnication may be developed at higher levels that are independent of
the hardware implementation. Using the Computer Based Message System under development
for the National Bureau of Standards, this thesis investigation is an attempt to develop
a usable 1/0 interface for a distributed computer system,

The Intel 432 Micramainframe computer system is a functionally distributed multi-
processor system., The hardware organization and operating system features lend themselves
to the development of a message based commmnication system among users and devices on
distinct processors,

This specific research effort involves defining the protocol requirements, as well
as designing, implementing, and testing a distributed I/O system commmication
interface on the 432 computer system,

Abstract:

