
AD-A138 429 DESIGN AND IMPLEMENTATION OF AN INPUT/OUTPUT INTERFACE I
PROTOCOL FOR THE I.U) AIR FORCE INST OF TECH
WRIOHT-PATTERSON AFB OH SCHOOL 0F ENDI. EN COL

UCSE EC3hF/EEE EEEEEEFG 7/ N
I EEEEmhEmhEshEE

11111 1.0 11 2 5
11111 - I

L'M'__o , .2

11IL 125 -411 '.4L-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-193-A

23"
--

ac~

~OF

DESIGN AND IMPLE.ENTATION
OF AN

INPUT/OUTPUT INTERFACE PROTOCOL
FOR THE INTEL 432/670 COMPUTER SYSTEM

THESIS

AFIT/GE/EE/83D-17 Kenneth N. Cole
ILt USAF

[Diii±~FION STATEMENT ALET
Appoed lm public i el EB 2 9 1984

Izinu talm Unlimited F 219

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY (ATC)

B AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

84 O, 29 049

AFIT/GE/EE/83D-17

DESIGN AND IMPLEMENTATION
OF AN

INPUT/OUTPUT INTERFACE PROTOCOL
FOR THE INTEL 432/670 COMPUTER SYSTEM

THESIS

AFIT/GE/EE/83D-17 Kenneth N. Cole
iLt USAF

Approved for public release; distribution unlimited.

DTIC
I. Sll ELECTE3FipEB 29l 8

B .

AFIT/GE/EE/83D-17

DESIGN AND IMPLEMENTATION

OF AN

INPUT/OUTPUT INTERFACE PROTOCOL

FOR THE INTEL 432/670 COMPUTER SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in

Electrical Engineering

by

Kenneth N. Cole, B.S., B.S.E°E.

First Lieutenant USAF

Graduate Electrical Engineering

December 1983

Approved for public release; distribution unlimited.

6.

Pref ace

This thesis presents the design and development of an

I/O Interface for a multiprocessor system, using a Computer

Based Message System. This is only the beginning of the

work to be done with the Intel 432 Computer System. The

unique environment provided by the 432's architecture will

entice systems designers to work towards realizing the

system's full potential. I hope the I/O Interface system

can provide a "stepping stone" towards development of

greater things with the 432 system.

I would like to thank my thesis advisor, Dr. Gary B.

Lamont, for his guidance and, especially, for the freedom he

gave me in this work. I must, also, thank Lt. Col. Hal

Carter for his simple nods, as I tried to explain what I was

doing. They caused me to re-examine my work, more than

once,

Most of all, I would like to express my love and

appreciation to my wife, Mary Anne, and my daughter,

Christina. Their patience and understanding made this

possible. What can I say to someone who smiles, when I tell

her that I won't take anymore classes?

Kenneth N. Cole

ii

" -:, A -- " : [" II an Ilii|"' -,i ,, . - 9

Table of Contents

Page

Preface . ii
List of Figures vi
ListofTables xi
Abstract i
Glossary ofTe xv

1. INTRODUCTION 1-1
Background o . . . 1-1
ProblemlStatement 1-7
Scope andLimitations 1-7
General Approach 1-9

Sequence of Presentation 1-11

II. REQUIREMENTS 2-1
Introduction 2-1
Conceptual Requirements of the I/

Interface Protocol 2-1
Virtual Operation 2-2
Flexibility . o 2-3
Conceptual Standards 2-4

Functional Requirements for the I/0
Interface Protocol 2-7

Relation to the System 2-8
Model of operation 2-8
Functional Description 2-11

Address Mechanism 2-12
Format Mechanism 2-13
Control Mechanism 2-14
Reply Mechanism o . . . 2-15

Functional Standards 2-16
User Address .9.99.9..9995. 2-17
MessageFormat 2-17

Implementation Constraints 2-20
Hardware Fet2e 2-20

432 Micromainframe 2-22
432 Cross Development System .. 2-23

Software *.... *. 2-25
432 Software 2-25
Attached Processor Software . . . 2-26

Summary* .. 2-27

III. SYSTEM DESIGN a * * e o * 3-1
Introduction 3-1
General Design Features . , . * . . * 0 . . 3-2

System Processes9. 3-2
Virtual Devices . .3-3

System Flexibility 3-4

iii

.. ~ ______________ - --
9)'l ~ - ,,

7 ,-
...

Table of Contents (continued)

Page

Functional Mechanism Implementation 3-6
Address Mechanism 3-6
Format Mechanism. 3-7
Device Control Mechanism 3-8
Device Reply Mechanism 3-8

User Sublayer 3-8
User Shell.. 3-9

Shell 3-10
User Interface 3-11
System Commands 3-12

Device Abstraction 3-15
User Agent Sublayer 3-19

User Shell Agent. 3-23
Device Agents 3-25

Message Transfer Sublayer 3-27
Message Transfer System 3-29
Address Manager 3-31
Route Manager 3-34
CBMS Manager 3-35

Summary a 3-36

IV. SYSTEM TESTING 4-1
Introduction 4-1
Environment Validation Test 4-5
432 Processor System Validation 4-8

User Sublayer Test (432) 4-9
User Agent Sublayer Test (432) 4-11
Message Transfer Sublayer Test (432) . 4-13

Attached Processor System Validation . . . 4-15
User Sublayer Test (AP) 4-17
User Agent Sublayer Test (AP) 4-18
Message Transfer Sublayer Test (AP) 4-20

System Integration Test 4-21
Summary . . 0 0 0 . 0 & 0 * & 0 0 0 . * . 4-22

V. RESULTS, CONCLUSIONS AND RECOMMENDATIONS 5-1
Introduction 5-1
Test Results 5-1

Environment Validation Test . 0 5-1
432 Processor Tests 5-2
Attached Processor Tests 5-3

Recommendations for Future Study . 5-6
Inter-Process Communications

Projects 5-7
Intel 432/670 Computer System

Projects 5-8

iv

Table of Contents (continued)

Page

Bibliography . BIB-i

Appendix A: Intel 432/670 System Architecture A-1

Appendix B: Object Oriented Systems Design B-i

Appendix C: iMAX 432 Multifunction Applications
Executive C-1

,Appendix D: I/O Interface Message Format . . . * a 0 D-1

Appendix E: DELNET Network Addressing Scheme E-l

Appendix F: Intel 432 Cross Development System
Hardware and Software
Compatibility Guide F-1

Appendix G: Ada Compiler Unimplemented Facilities . . G-1

Appendix H: I/O Interface User's Manual H-i

* Appendix I: I/O Interface Data Flow Diagrams I-i

Appendix J: I/O Interface Software Structure Charts . J-1

Appendix K: Test Results K-1

V i t a V

Accession For

NTIS GRA&IDTIC TAB
[3

Unannounced 0
3ustificatiO

ByDistribution/[~iail cDa=._

go"CE AVi~ity Codes
Avail Bnd/or

Dist speolal

v

"I"

*
r

- - ,, , . - ,€ L o i : :

List of Figures
Figure Page

1-1 Intel 432/670 System Processors 1-2

1-2 AFIT/ENG 432/670 System
I/O Hardware Organization 1-3

1-3 ISO Reference Model Organization 1-4

1-4 Logical Model of a Computer Based
Message System 1-5

2-1 I30 Open Systems Interconnection
Reference Model 2-4

2-2 Message Transfer Protocols in the ISO
Reference Model 2-5

2-3 CBMS within the I/O Interface Protocol . . 2-6

2-4 I/O Interface Protocol Relationship
to the Other Protocols 2-7

2-5 Model of I/O Interface Protocol Organization
within the ISO Reference Model 2-9

2-6 CBMS Message Structure 2-19

2-7 Intel 432/670 Micromainframe
Hardware Configuration 2-21

2-8 The Intel 432 Cross Development System . . 2-23

3-1 I/O Interface Context Diagram 3-5

3-2 I/O Interface Sublayers within the ISO
Applications Layer 3-6

3-3 User Shell Context Diagram 3-9

3-4 User Shell Main Program Data Flow 3-10

3-5 PerformSystemCommand Data Flow 3-14

3-6 Typical User Agent Receive Procedure
Data Flow 3-19

3-7 Typical User Agent Send Procedure
Data Flow 3-21

vi

,e

-~ ~ ~~ ~~~~~ ~~ ~~ ~~~~~~llll :

List of Piaures (continued)

Figure Page

3-8 Typical User Agent Initialization
Data Flow 3-22

3-9 I/O Interface System Organization 3-28

3-10 MtsReceive Data Flow 3-30

3-11 Mts_Send Data Flow 3-30

3-12 I/O Interface Device Naming Structure . . . 3-33

4-1 I/O Interface Software System Structure . . 4-2

4-2 Environment Validation Test
Hardware Configuration o 4-7

4-3 Attached Processor Validation Test
Hardware Configuration. 4-15

A-1 iAPX 432 Minimum System Organization . . . A-3

A-2 Two-Level Mapping A-4

A-3 GDP Program Structure . . o A-9

A-4 IP Program Structure A-li

A-5 General 432/670 System Configuration . . . A-16

A-6 Intel 432/670 Micromainframe
Multiprocessor Configuration A-17

B-1 A Module in the Object-Oriented
Methodology............ o B-3

C-1 Static Process State Transitions C-2

C-2 Dynamic Process State Transitions
with BPM o & a o . o o * . . 0 & 0 0 . . C-6

C-3 iMAX Storage Management Transitions C-9

C-4 iMAX Message AD State Transitions C-il

C-5 432/670 System Bus Hardware Configuration . C-18

D-1 General Message Structure D-2

vii

L4

List of Figures (continued1

Figure Page

D-2 Encoding Mechanism for Qualifiers and
Length Codes . . D-4

E-1 I/O Interface Message Address Format . . . E-2

H-1 Intel 432 Cross Development System
Hardware Environment H-4

H-2 System 432/670 Standard Configuration . . . H-6

H-3 432/670 Cross Development System
Hardware Configurationa H-8

H-4 AFIT/ENG 432/670 Computer System
Hardware Configuration H-13

H-5 AFIT/ENG 432/670 I/O Interface System . . . H-19

H-6 User View of the I/O Interface System . . . H-21

H-7 User Agent Receive Process Data Flow . . . H-22

H-8 Typical User Agent Send Procedure
Data Flow H-24

H-9 User Shell Operating Hardware
Configuration H-36

H-10 Help Command Syntax. H-40

H-11 Set Command Syntax H-43

H-12 I/O Interface Device Naming Structure . . . H-44

H-13 Copy Command Syntax H-45

J-1 432 System Initialization
Structure Chart (0.1) J-3

J-2 Attached Processor System Initialization
Structure Chart (0.1) J-4

J-3 Main (User Shell) Structure Chart (0.2) J-5

J-4 Perform System Command (System Commands)
Structure Chart (2.1) J-6

viii

.op

,. .. ,.- -, ., , . .. _ _ ' -" = _- ,,- .. ., p

List of Figures (continued)

Figure Page

J-5 Determine System Command (System Commands)
Structure Chart (2.1.1) J-7

J-6 Set (System Commands)
Structure Chart (2.1.1.1) J-8

J-7 Help (System Commands)
Structure Chart (2.1.1.2) J-9

J-8 Copy (System Commands)
Structure Chart (2.1.1.3) J-10

J-9 USA-Open (User Shell Agent)
Structure Chart (6.2) J-11

J-10 USAClose (User Shell Agent)
Structure Chart (6.3) J-12

J-11 USARead (User Shell Agent)
Structure Chart (6.4) J-13

J-12 USAWrite (User Shell Agent)
Structure Chart (6.5) J-14

J-13 USA-Page (User Shell Agent)
Structure Chart (6.6) J-15

J-14 USA_Title (User Shell Agent)
Structure Chart (6.7)...... J-16

J-15 USADelete (User Shell Agent)
Structure Chart (6.8) J-17

J-16 USA-Rename (User Shell Agent)
Structure Chart (6.9) J-18

J-17 USAReset (User Shell Agent)
Structure Chart (6.10) J-19

J-18 USA_GetConfig (User Shell Agent)
Structure Chart (6.11) J-20

J-19 USA_SetConfig (User Shell Agent)
Structure Chart (6.12) J-21

J-20 USA_Test (User Shell Agent)
Structure Chart (6.13) J-22

ix

'9i

List of Figures (continued)

9Figure Page

J-21 USA-Receive (User Shell Agent)
Structure Chart (6.1.1) J-23

J-22 PSAReceive (Printer System Agent)
Structure Chart (7.1.1) . * . . * . . . * 0 J-24

J-23 IFSAReceive (ISIS File System Agent)
Structure Chart (8.1.1) J-25

J-24 S3CA-..Receive (Series III Console Agent)
Structure Chart (9.1.1) J-26

J-25 MTS...Receive (Message Transfer SystemT)
Structure Chart (10.1.1) o J-27

x

List of Tables

Table Page

2-I I/O Interface Message Fields 2-18

2-II Summary of I/O Interface Requirements . . . 2-28

3-I I/O Interface Functions and Reply Codes . . 3-3

3-II Procedures of the User Interface Package . . 3-11

3-11 Procedures of the System Commands Package . 3-13

3-IV Procedures of the Printer System Package . . 3-16

3-V Procedures of the ISIS File System Package . 3-17

3-VI Procedures of the Series III
Console Package 3-18

3-VII Procedures of the User Shell Agent Package . 3-23

3-VIII I/O Interface Replies to Function Requests . 3-24

3-IX Procedures of the Device Agent Packages . . 3-25

3-X I/O Interface Function Mapping to
System Devices 3-26

3-XI Procedures of the Message Transfer
System Package 3-29

3-XII Procedures of the Address Manager Package . 3-31

3-XIII Procedures of the Route Manager Package . . 3-34

3-XIV Procedures of the CBMS Manager Package . . . 3-35

4-I I/O Interface Testing Procedures 4-4

4-II Environment Verification Test Procedure . . 4-5

4-11 PRIME Program Software 4-8

4-IV 432 Processor Software Validation Test
Command List 4-9

4-V User Sublayer Validation Software (432) . . 4-10

4-VI User Agent Sublayer
Validation Software (432) 4-12

xi

List of Tables (continued)

Table Page

4-VII Message Transfer Sublayer
Validation Software (432) 4-13

4-VIII Attached Processor Test Shell Commands . . . 4-16

4-IX User Sublayer Validation Software (AP) . . . 4-17

4-X User Agent Sublayer
Validation Software (AP) 4-19

4-XI Message Transfer Sublayer
Validation Software (AP) 4-20

4-XII System Integration Test Commands 4-21

5-1 Summary of Test Results 5-2

5-11 Summary of Recommendations
for Future Stu dy.. 5-7

C-I Comparison of Ada Tasks and
iMAX BPM Processes C-3

C-Il iMAX 432 Storage Management Capabilities .. C-8

C-Ill Syncronous I/O Interface Operations and
Device Types C-14

C-IV Asyncronous Interf ace Command and
Reply Cross-Reference C-16

D-I 1/OMessage Fies d.. D-3

D-II 1/O Interface Device Names D-11

D-III CBMS Address Field Values D-12

F-I Hardware and Software Compatibility Guide . F-2

G-I Ada Compiler System Implementation
Restrictis G-4

H-I 432 Cross Development System
VAX/VMS Directories H-9

H-Il 432 Cross Development System
Series III Workstation Software* H-il

xii

List of Tables (continued)

Table Page

H-III I/O Interface 432 Software Packages H-16

H-IV I/O Interface 8086 Software Packages H-18

H-V I/O Interface Replies to Function Requests . H-23

H-VI Mapping of I/O Interface Commands to
Device Functions .n........ . H-26

H-VII Printer System Functions H-28

H-VIII ISIS File System Functions H-29

H-IX Series III Console Device Functions H-31

H-X Guidelines for Adding New Devices to
the 1/O Interface H-33

H-XI User Shell System Files H-37

H-XII Logical Operands for CommandSyntax Definition H-39

H-XIII Help Command Response (Default) H-41

H-XIV Help Command Response (Set Command Query) . H-41

H-XV Help Command Response (Help Command Query) . H-42

H-XV . Help Command Response (Copy Command Query) . H-42

xiii

A

E d

Distributed computer systems have many advantages to

offer in terms of simplicity, efficiency, protection, and

security as well as improved performance from the

concurrency in such a system. Communication among

distributed processors is a key issue in the design of a

distributed system. While the lower levels of a

communication system are generally defined by the hardware

configuration and thus, implementation dependent, protocols

for communication may be developed at higher levels that

are independent of the hardware implementation. Using the

Computer Based Message System under development for the

National Bureau of Standards, this thesis investigation is

an attempt to develop a usable I/O interface for a

distributed computer system.

The Intel 432 Micromainframe computer system is a

functionally distributed multiprocessor system. The

hardware organization and operating system features lend

themselves to the implementation of a message based

communication system among users and devices on distinct

processor.

This specific research effort involves defining the

protocol requirements, as well as designing, implementing

and testing a distributed I/O system communication interface

on the 432 computer system.

xiv

-- i-21L -;i

ACS: Ada Compiler System.

Ada: A registered trademark of the United States Department
of Defense, Under Secretary for Research and Engineering.
The programming language defined by the document ANSI/MIL-
STD-1815A, dated 22 January 1983.

Ada Compiler System: The Intel Ada language cross compiler
which executes on the VAX-11/780 computer system and produces
object code for the iAPX 432 processor hardware.

Address Manager: The software package containing procedures
which define the mapping of I/O Interface device names to
their unique CBMS addresses.

Address Mechanism: The method of uniquely designating
entities of the system which may be source or destination
points for messages.

AFIT: Air Porce Institute of Technology, at Wright-Patterson
A.F.B, Ohio.

AM: Address Manager.

AP: Attached Processor.

Applications Layer: The seventh (highest) layer of the ISO
Reference Model for Open Systems Interconnection.

ASM-86: An assembler for the 8086 microprocessor. Produces
machine executable code from mnemonic assembly language
instructions.

Attached Processor: A processor element of the Intel 432/670
Micromainframe Computer System. A computer system containing
an Interface Processor board which is connected to the
Interface Processor Link board on the system bus of the
432/670 chassis.

CBMS: Computer Based Message System.

CBMS Address: A unique 32-bit designation for the device
abstraction or user process.

Complete Device Name: An I/O Interface User Shell device
name containing identifiers for all four parts; country code,
network code, host code, and user-id.

xv

t--,-~'- . v~-.-.-- *~-*'-"-

Glossary (continued)

Computer Based Message System: A system of protocols being
developed by the National Bureau of Standards, Institute for
Computer Sciences and Technology.

CON: The I/O Interface User Shell device name for the Series
III MDS console using the ISIS operating system.

Control Mechanism: The method of causing the system devices
to perform specific actions.

Country-Code: The designation for the most significant part
of the DELNET network user naming scheme.

Cross Compiler: A language compiler program that executes on
one computer system and produces machine code for another
computer.

Data Element: A part of a field (in a message). A data
element contains four parts: the identifier, the length, the
qualifier, and the data contents.

Data Flow Diagram: A schematic representation of the
information movement within a portion of a computer program.

Data Link: The second layer of the ISO Reference Model for
Open Systems Interconnection.

Dead Lock: The state of a system when further processing is
not possible, due to interaction between concurrent
processes. (e.g., each of two processes has control of an
asset that the other is waiting for).

Debugger: The designation for the Intel Series III MDS which
is an Attached Processor to the Intel 432/670 system and is
executing the DEB432 software to act as the software
debugging workstation during 432 software development.

Debug Workstation: The console of the Debugger system (Intel

Series III MDS).

DELNET: Digital Electronics Laboratory NETwork.

Device Abstraction: The logical definition of a device by
description of its functions. Also, a set of functions which
define the perception of a device.

DFD: Data Flow Diagram.

xvi

Glossary (continued)

Digital Engineering Laboratory Network: A network system,
currently under development at AFIT, that includes system
nodes implementing the lower three levels of the ISO
Reference Model.

DOD: Department of Defense. A bureaucratic organization of
the United States Government.

DSK: The I/O Interface User Shell device name for the Series
III MDS disk system using the ISIS operating system.

Dummy Module: A procedure used during testing, to simulate a
procedure that has not been coded. In general, dummy
procedures perform only those actions essential to let the
execution of the test code continue.

Field: A part of a message. A field consists of one or more
data elements.

Flexibility: The ability of a system design to be gracefully
modified to incorporate new elements.

Format Mechanism: The definition of organization for the
message data structure.

GDP: General Data Processor.

General Data Processor: A processor element of the Intel
432/670 Micromainframe Computer System. A 2-chip
microprocessor in the iAPX 432 microprocessor hardware
family.

Host-Code: The third part of the DELNET network user naming

scheme.

iAPX: Intel Advanced Processor System.

iAPX 432: A family of microprocessor elements, designed and
manufactured by the Intel Corporation, of Santa Clara,
California.

IDA: The command name, used in Intel documentation, for the
Ada language compiler of the ACS.

IFS: ISIS File System.

IFSA: ISIS File System Agent.

MIHX: Intel Multifunction Applications Executive.

xvii

alossary (continued)

Interface Processor: A processor in the Intel 432/670
Micromainframe Computer System that acts as a communication
system between the system bus of the 432/670 and the Attached
Processor system.

I/O: Input and Output.

IP: Interface Processor.

IPC-85: The Integrated Processor Card for the Intel Series
III MDS system, based on the 8085 microprocessor.

ISIS: Intel System Implementation Supervisor. The
operating system designed for the Intel Development Systems.

ISIS File System: The I/O Interface device abstraction
providing access to the disk file system of the Intel Series
III MDS using the ISIS operating system facilities.

ISIS File System Agent: The CBMS User Agent for the ISIS
File System entity.

ISO: International Standards Organization.

LINK432: The command name of the linker program of the Intel
432 Cross Development System.

LINK-86: A linker program for the 8086 microprocessor which
creates an executable code module from several related object
code modules.

MDS: Microcomputer Development System. Generally used in
connection with the Intel Series III Microcomputer
Development System.

Message: A string of bytes (8-bit data) representing data to
be communicated from one entity to another.

Message Transfer System: The CBMS entity which is
responsible for moving messages between User Agents.

Message Transfer Sublayer: The first (lowest) layer of the
CBMS model. A sublayer of the Applications layer of the ISO
model.

Micromainframe: A registered trademark of the Intel
Corporation. Refers to mainframe-like features of the
microprocessor based 432/670 system architecture.

xviii

Glossary (continued)

NULTIBUS: A registered trademark of the Intel Corporation,
referring to the bus structure defined by the IEEE 796
standard.

BTS: Message Transfer System.

NBS: National Bureau of Standards.

NETO: DELNET Network Code designation for the original
network containing the Intel system.

Network-Code: The second part of the DELNET network user
naming scheme.

Network Layer: The third layer of the ISO Reference Model
for Open Systems Interconnection.

Object-Oriented: A system design methodology that is focused
on using the implementation of system structures as the basic
entity for building complex organizations. Generally
contrasted with methodologies based upon the implementation
of system functions.

PL/M-86: A high-order language for the 8086 microprocessor.
Similar in organization to the PL/I language.

Physical Layer: The first (lowest) layer of the ISO
Reference Model for Open Systems Interconnection.

Port: In hardware or software, a point of communications
interface where a device or process expects to receive
information.

Port-Code: The fourth (and least significant) part of the
DELNET network user naming scheme.

Pragma: A compiler command for the Ada language.

Presentation Layer: The sixth layer of the ISO Reference
Model for Open Systems Interconnection.

PRIME: Program name for the prime number computing program,
an example Ada language program, supplied by Intel, for the
432/670 system.

Printer System: The I/O Interface device abstraction
providing access to the TTY serial port of the Intel Series
III MDS through the ISIS operating system.

xix

Glossary (continued)

Printer System Agent: The CBMS User Agent for the Printer
System.

Property List: A field within the CBMS message structure.
The Property List field is not used in the I/O Interface
message structure.

Protocol: The definition of a systematic structure of
communication.

PRT: The I/O Interface User Shell device name for the

Printer System device.

PS: Printer System.

PSA: Printer System Agent.

Remote System: The outer-most system in a star network of
computer systems or the Attached Processor system of the
Intel 432/670 system organization.

Reply Code: An 8-bit element of the Reply Message set by the
User Agent of the destination device and returned, by the
CBMS system, to the source user process.

Reply Mechanism: The method of providing device status
information in response to a request for action.

RM: Route Manager.

RM67: DELNET Country Code designation for Room 67 of
Building 640 where the Intel systems are located.

RPB-86: The Remote Processor Board of the Intel Series III
MDS. A special configuration of the Intel iSBC 86/12A
processor board.

Route Manager: A software package containing procedures
which define the mapping of CBMS addresses to the ports where
the user, or device, expects to receive messages.

Series III Console: The I/O Interface device abstraction
providing access to the console of the Intel Series III MDS
Attached Processor using the ISIS operating system
facilities.

Series III Console Agent: The CBMS User Agent for the Series
III Console entity.

xx

Glossary (continuedi

Session Layer: The fifth layer of the ISO Reference Model
for Open Systems Interconnection.

Static Task: A task that is started at the time of system
initialization and cannot be destroyed.

S3C: Series III Console.

S3CA: Series III Console Agent.

Task: A single process entity within a computer program.

Top-Down: The sequence of system development beginning with
the most general (highest) concepts and ending with the most
specific (lowest) features.

Transport Layer: The fourth layer of the ISO Reference Model
for Open Systems Interconnection.

UA: User Agent.

UNID: the Universal Network Interface Device. The network
node hardware device of the DELNET system.

US: User Shell.

USA: User Shell Agent.

User Agent: The CBMS entity which provides access to the
message system for the using process.

User Agent Sublayer: The second layer of the CBMS model. A
sublayer of the Applications layer of the ISO model.

User-Id: The least significant part of the I/O Interface
device name. Also known as the Port-Code of the DELNET
naming scheme.

User Shell: The using process developed to demonstrate the
I/O Interface.

User Sublayer: The third (highest) layer of the CBMS model.
A sublayer of the Applications layer of the ISO model.

USR: The I/O Interface User Shell device name for the User
Shell process (i.e., the Series III MDS Debugger console).

Virtual Machine: A set of functions which define the
apparent operation of a system.

xxi

.. °

Background

Since the development of the digital computer,

researchers in government and private industry have been

trying to improve the capabilities of their systems.

Computers of smaller size and greater power are now

available to the general public. The Intel iAPX 432 family

is an extension of the current state of these developments.

The Intel 432/670 Micromainframe Computer System is a

multiprocessor system containing three distinct processor

types; General Data Processors (GDPs), Interface Processors

(IPs), and Attached Processors (APs). The physical

relationship between these three processors is shown in

Figure 1-1. The system architecture forms a network of

processors. Within this network, the GDPs are the central

processors of the system; the APE are the input/output (1/0)

processors for the system? and theIPs provide communication

facilities between the GDPs and APs. All system I/O is

handled by the APs, which are the external nodes of the

network arrangement. Appendix A, included with this report,

gives a more detailed description of the 432/670 System.

The Attached Processors may be any 8/16-bit processor

system that is capable of MULTIBUS connection with the

Interface Processor (see Appendix A). Different processors

may be used to add nodes with a wide range of intelligence.

1-1

9 * d

General
Data
Processors(GDPs)

Intel 432 Processor to Memory interface

' 1
Interface Interface
Processor Processor{IP} (IP}

Attached Attached
Processor Processor

II-

Figure 1-1. Intel 432/670 System Processors

One approach to providing I/O facilities for the 432 system,

would be use of a commercial computer system as an AP. An

appropriate system would be the Intel Series III

Microcomputer Development System (MDS) which has a

compatible bus structure and been designed for development

of hardware and software systems.

The Series III NDS has a number of peripheral devices

1-2

mm~-.....

System Process1s

Printer

0

Figure 1-2. AFIT/ENG 432/6'10 System
1/O Hardware Organization

which may be accessed through its operating system (ISIS)

driver routines. Software can be developed on this system to

allow the 432 processor to access the existing I/O

facilities of the Series III MDS through the IP. Figure 1-2

shows this basic organization of hardware. This type of

resource sharing is one of the primary functions of computer

networks (Ref 31:1-2). It follows, then, that the software

structure, of the 432 system 1/O interface software, should

follow the general software organization for computer

network systems, in order to effectively apply the concepts

of network organization to the 432 computer system.

The International Standards Organization (ISO) has

developed a Reference Model for open Systems Interconnection

1-3

Op

o4

Communications

Applications Layer - -System User

Presentation Layer

Sessnion Layer

Transport Layer - Host to Host

Network Layer

Data Link Layer - w System
, Interconnection

Physical Layer

Figure 1-3. ISO Reference Model Organization

which has been used as a standard for network system

functional organization (Ref 11,30,32). Figure 1-3 shows

the hierarchy of layers in the ISO model. The lowest three

layers (Physical, Data Link, and Network) establish the

interconnection of network nodes. The Transport layer uses

the interconnection facilities of the Network layer to

provide reliable host-to-host communication facilities to

the layers above. The protocol of the Transport layer

defines the mechanism for message based communications

between distinct processors of a network system. The

Session and Presentation layers are, often, grouped with the

Applications layer, as providing services only required for

specific user functions. The Presentation layer provides

data manipulations necessary for interpretation of the

1-4

II I I I I I II - ' '
•

d

Ft

I I
I I

Agent Protocol Transfer Protocol AgentSystem

Posting Delivery
Slot Slot

Message Flow
Originator Recipient

Figure 1-4. Logical Model of a Computer Based
Message System (Ref 8:3)

information (e.g., coding or character set transformations).

The Session layer provides for process to process

communication, generally, of longer duration that a simple

message and response system. A minimum communications

system does not require these services. The tasks that u=

the communications system, then, are placed in the highest

layer (Applications layer).

One such application of the communication facilities is

a message transfer system. The U.S. National Bureau of

Standards is working to develop Computer Based Message

System (CBMS) as a part of a family of computer network

protocols (Ref 8:1-5). Figure 1-4 shows the logical model

of the CBMS. The 'User Agent" is a functional entity, that

acts on behalf of a user, helping to create and handle

~1-5

messages and communicate with the Message Transfer System.

The Message Transfer System (MTS) is a process that accepts

messages from an originating User Agent and passes them to

the receiving User Agent. The MTS may use the

communication facilities of the lower layers to move

messages from one computer system to another (Ref 8:2-3).

There is a similarity of structure between the CBMS

organization, shown in Figure 1-4, and the physical

interconnection of the processors of the 432/670 computer

system. The ISO and NBS standards define an organization of

users which are interconnected by lines of communication.

The architecture of the 432 system is a network of

processors (432 central processor and multiple APs) where

there is a need for communication between system users on

the 432 processor and I/O devices on the APs. This suggests

that the development of an interface protocol for I/O for

this configuration. Using the CBMS satisfies the need for

an I/O communication system and meets the requirements of

the ISO Reference Models structure. Implementation of the

protocol on the AFIT/ENG 432/670 Computer System allows

future users of the system to build on this interface. This

protocol should also provide access to the I/O systems of

the Series III Microcomputer Development System (a 432

system AP).

1-6

A
.. lli , l, , .i . . . 111 _

Problem Statement

The purpose of this study is to design, implement and

test a message-based input/output interface for the Intel

432/670 Micromainframe Computer System, which provides

access to the I/O devices of the Intel Series III

Microcomputer Development System.

Scooe and Limitations

The Series III Microcomputer Development System is used

as the I/O processor system because it is an available

system which uses the MULTIBUS (IEEE Standard 796)

structured system bus (see Intel System 432/600 System

Reference Manual (Ref 24) for system hardware interface

requirements). The Series III MDS also provides a software

development environment which is compatible with the 432

operating system modules that must execute in the AP (see

Appendix C). Other MULTIBUS-based systems (Ref 18,19) are

not available at the APIT Digital Engineering lab or cannot

provide an established software development environment with

I/O devices already implemented.

The design of the I/O Interface protocol includes the

specification of device abstractions which define each I/O

device as a set of operations. Also, the functions

available to users of the interface and the mapping of those

functions onto the operations of each I/O device must be

defined. These definitions create a logical specification

of the I/O Interface.

1-7

j@

The system design follows the hierarchial structure of

the ISO Reference Model and the NBS Computer Based Message

System to maintain agreement with accepted standards and the

DELNET system (Ref 32). Structure charts provide for all

I/O Interface software and test procedures allow for

validation of each level of the interface program structure.

An I/O Interface Users Guide is provided (Appendix H),

which includes instructions on the use and operation of the

interface. Also, a procedure is given for implementation of

new devices into the I/O Interface system. The Users Guide

is intended to be a complete reference for use of the

AFIT/ENG 432/670 Computer System implementation of the I/O

Interface.

This implementation provides for only three devices;

the Printer System, the Series III MDS console, and the ISIS

File System. These were selected as the devices most often

connected to the Series III MDS. Therefore, the devices

most likely to be required for 432 system I/O operations.

However, the common device access structure presented by the

ISIS operating system allows any system I/O device to be

used in a similar manner (Ref 13:1-1/1-5). Alternatives to

using the ISIS device drivers would include using another

operation system which provides device drivers or designing

special device drivers within iRMX 86 operating system

structure. These approaches may be used to make

improvements to the system.

1

1-8

The device driver routines of the ISIS operating system

are used by the I/0 Interface software to simplify the

implementation. Also, the 432 operating system (iMAX)

functions to create and handle messages and communication

ports are used by the lower level modules of the I/O

Interface implementation. This is a divergence from the ISO

Reference Model which specifies the services provided by the

Transport Layer. This decision does not disrupt the

structure of the entire design because the use of these

procedures is restricted to the Message Transfer System

modules which may be modified to use proper Transport Layer

routines. However, the implementation of the Transport

Layer on the 432 system is not necessary for validation of

the I/O Interface Protocol design or use of the interface

system.

General A~proach

The initial approach is to perform a literature search

for information on the design of related systems.

Familiarization with the Intel 432 Micromainframe system

is emphasized. Past AFIT theses and Intel publications on

the 432 computer system is the starting point for this

study.

It is the objective of this investigation to create an

interface system which may be used in future development

work with the 432. To this end, system flexibility and

complete documentation is emphasized. The interface

1-9

protocol is designed to be practical for communication with

the Series III lDS and ISIS operating system functions for

purposes of this study. In addition, considerations are

made for expansion of the protocol to handle future system

needs. Users operating instructions are provided in

Appendix H for both the I/O Interface and the user

interface demonstrating the implementation.

The top-down design philosophy (Ref 38:32,50-176) is

followed in the software development to create a

maintainable system for future users. Also, Object-oriented

design techniques, as described in Appendix B, are used to

create a software organization consistent with the hardware

and software architectures of the 432 (Appendix A) and its

operating system, iMAX 432 (Appendix C).

Testing procedures are also emphasized to provide a

secure foundation upon which new 432 System software

projects may be developed. The testing procedures

documented with this study (Chapter IV) are designed to be

usable by future system implementors to test hardware and

software configurations of the 432 System. These tests are

used throughout the stepwise development of system software.

The first test is validation of the 432 Development System

environment. Next, validation tests are performed on the

432 processor and the AP, separately, to validate each

system's hierarchy of software. Finally, the system is

tested in a complete configuration. All the testing

1-10

i

procedures are documented with sufficient detail to enable

the procedures to be duplicated.

The hardware and software used in this thesis effort

are listed in Appendix H of this report. It is available in

the Digital Engineering Lab in building 640 of the Air Force

Institute of Technology (AFIT).

Intel Corporation is working to improve the 432/670

System. Updates to the software and hardware of the system

are provided to AFIT as they become available and future

users of the 432 will probably find the development

environment much improved over the current release of the

system. However, to enable this thesis effort to progress

smoothly, the software and hardware systems are 'frozen' to

the configuration described in the I/O Interface Users Guide

(Appendix H).

S~au~nc. of Preuntation

This chapter presents an introduction to the work to be

accomplished. Chapter II defines the requirements for the

I/O Interface Protocol and system implementation. The

system design and implementation are presented in Chapter

III and the testing procedures are described in Chapter IV.

Finally, the test results, conclusions and recommendations

are given in Chapter V.

1-11

I

II. REOUIRRENNTR

Introduction

The purpose of this chapter is to define the

requirements for the I/O Interface Protocol for message

based communication within a multiprocessor computer system

and the implementation of the interface on the Intel 432/670

Micromainframe computer system (432/670). The requirements

for the I/O Interface are presented in three parts. The

conceptual requirements for the I/O Interface are described,

first. Next, the functional requirements are defined

independent of the implementation environment. The

standards which apply are presented at the end of each

section. Finally, the implementation constraints are

described for the hardware and software environment of the

AFIT/ENG 432/670 computer system.

Conceptual Reauirements of the I/O Interface Protocol

The conceptual requirements deal with the

characteristics of an ideal system. The input/output

functions of a system are generally device specific

procedures which are provided by the operating system to

enable the user to perform I/O functions with simple

commands (Ref 4:2-3). One possible idealization of an I/O

device is a functional view where the device is defined by

the user services. For example, an ideal printer might

2-1

consist of a set of printer-type functions (i.e.,

printfile, print-character, formfeed, etc.) which perform

actions a user would require. The details of how the

printer performs the functions are hidden from the user.

The interface, with the printer functions, is free from

dependency on the characteristics of a particular device.

This virtual operation concept can be extended to the level

above the devices. If all system devices respond to the

same set of functions, then this common interface appears to

the user as a simple set of general I/O functions. Vitil

operation is thus, one requirement of the I/O Interface.

An operational system does not, generally, remain

fixed. As the needs of the users change, the system is

modified to meet those needs. The I/O configuration of the

system may change significantly as new devices are added and

old devices are modified or removed. The interface must be

able to accept changes gracefully and not hinder the efforts

to improve the system. Therefore, f1zibi2it± is a

requirement of the I/O Interface.

Virtual Opratton. Virtual operation implies that the

user can communicate with any peripheral device in the

system at the same level and in the same manner. For

example, the user may read a line from a file structured

device as easily as the keyboard input from a terminal. The

characteristic differences of the operations, which depend

on the particular devices, are hidden from the user. While,

2-2

- - --
... . . ! lin nml nnnlm ' " r m

'

.. . "' '" ii, . . . , ! _ •d

servicing each request, on a various system devices, may

require greatly different functions, the user issues a

command that differs only in the device name. This

transparency is essential to realizing efficiency and

effectiveness in the I/O interface. Tradeoffs may be made

to develop workable implementations within the limitations

of the system environment discussed later in this chapter.

Llaxiblita. Flexibility in system design means

planning for unforseeable events. The increasingly high

costs of system design and development have forced engineers

to consider the life-cycle of new designs more closely. New

systems must be maintainable in their present condition and

be able to grow with the needs of the user. It has become

necessary to build in "flexibility" so that a product can be

used for a variety of tasks with little or no modification.

On the other hand, care must be taken not to over-design a

new system or it will become too awkward and unwieldy for

the user. Too comprehensive a system may not function

efficiently in any application. Therefore, the application

of Oflexibilitym is more art than science.

The I/O interface protocol must fulfill the needs of

the system with regard to existing or predictable device

interconnections and be flexible enough to allow for

expansion and reconfiguration. While any new system's I/O

needs are minimal at first, the protocol must be capable of

handling peripheral devices whose structure or use is not

2-3

-.- e 41

7 APPLICATIONS

6 PRESENTATION

5 SESSION

4 TRANSPORT

3 NETWORK

2 LINK

1 PHYSICAL

Figure 2-1. ISO Open Systems Interconnection Reference
Model (Ref 11:8)

foreseen. Flexibility, as it applies to the I/O interface,

specifically addresses the ease with which new devices or

new configurations can be adapted to the structure of the

interface. This is especially true in relation to the

installation of different processors or peripheral devices

into the system. The protocol must be completely

independent of the type, number, or organization of the

processors on which it operates. However, it must be

capable of working in all future processor configurations.

Conceptual Standards. Communication among

interconnected computer systems can be viewed as seven

levels. The International Standards Organization (ISO) Open

Systems Interconnection Reference Model identifies these

layers of communication protocol (see Figure 2-1). The

2-4

d

(information
exchange)

User Agent e User Agent
Sublayer Sublayer

(message
Message Transfer transfer) Message Transfer
System Sublayer -- 4 System Sublayer

Presentation Presentation

Session Session

Transport Transport

Network Network

Link Link

Physical Physical

Figure 2-2. Message Transfer Protocols in the ISO
Reference Model

lowest levels (Network, Link, and Physical), are generally

the concern of local area networking. There are existing

standards for system interconnection at these levels (e.g.,

EIA's RS-449, CCITT's X.25). Higher levels are not as well

defined, however, some work is being done in this area by

the Institute for Computer Sciences and Technology of the

National Bureau of Standards (Ref 11:8-9). This work

includes several reports on the features and specification

of a computer based message system (CBMS) (Ref 11,10,9,8).

A CBMS is an application level system which allows its

users to prepare, manage, send, and receive messages (Ref

8:2-5, 10:2-4). Message transfer protocols are used

2-5

41

I/O Interface System

Responses Sau

Computer Based Message System

CBMS CBMS
Messages Messages

Figure 2-3. CBMS Within the I/O Interface Protocol

when a message is moved from one CBMS to another. The model

for a CBMS divides the components of the system into two

classes, User Agents (UAs) and the Message Transfer System

(MTS). The UAs provide the message creation, display and

management services to the CBMS users. The MTS provides the

functions necessary to transfer messages between different

UAs. Figure 2-2 shows the CBMS classes with respect to the

ISO reference model. (Ref 8:1-6). The use of the CBMS

within the I/O Interface is shown in Figure 2-3.

2-6

,_ • 9

I ~ Interfacem
ProoclI

I e nt a Process or Per ph ra

Operating System Protocol

•~~
f

I I I l -- I

10Interface .. .
Protocol

Remote Processor Prpea
operating System Dvc

Protocol

Figure 2-4. I/O Interface Protocol Relationship
to the Other Protocols

Depending upon the size, complexity, and specific

purpose of the network, the three top levels of the ISO

reference model (applications, presentation, and session)

may be blurred as to their specific definitions. However,

the CBMS protocols clearly belong above the transport layer

and depend upon the services of that layer to function. A

strict presentation layer, however, is not required (Ref

8:6-7).

Punctional Roguiramenta for the 1/0 Interface Protocnl

The functional requirements for the I/O Interface

protocol are presented from several viewpoints for clarity.

These views include the protocol in relation to the entire

2-7

r8

system, a model of the protocol operation and the functional

description of the protocol.

Relation to the System. As shown in Figure 2-4, the

I/O Interface protocol communicates with the operating

system protocols of the central processor and remote

processor. The remote system communicates directly with the

peripheral devices.

Model of Operation. The model of operation for

performing an I/O function through the remote processor is

illustrated by the following (see Figure 2-5):

1. The user's application program prepares the data and

calls the I/O Interface to create and transfer the

message to the appropriate remote system which controls

the desired peripheral device. The data, destination

address, and other parameters are passed as arguments

of the call.

2. The UA module of the I/O Interface prepares the

message format. The NTS module then determines the

inter-processor port for the given system address, in

this case, assume it is the address of a printer.

3. The 14TS then sends the message to the I/O port

connected with the remote system controlling the

requested printer. Operating system functions are used

for this transfer.

2-8

~ k i ______________~ r• . 1

E Central _Remote . Peripheral

SystemSystem Dvice

Applications Layer
User Sublayer

User's Virtual
Programs Device

I Functions I

User Agent Die
Sublayer I

UAI

Message Transfer I
Sublayer

MTSI

Operating System IDevice
Support Drivers
Sub layer

IP
Port I

DriversI

----- ------- ----------- --- ---------
Presentation Layer o
Session LayerIS R
Transport Layer I
Network Layer II Device
Data Link Layer I Hardware

---------------- -------------- ---------

Physical Layer I

IP Por 1/O Port

Figure 2-5. Model of 1/O Interface Protocol Organization
Within ISO Reference Model

2-9

4. The remote system interface reads the control

parameters of the message (MTS level examining the

message envelope) and sends the message to the UA

servicing the process which handles the printer

operation.

5. Upon completion of the task by the peripheral

device, the status of the operation is returned as a

reply message created by the UA. This reply message is

then sent back to the originating process.

6. The User Application Program then receives the

reply and determines if further action is necessary

based on the status of the operation as indicated in

the message. The status information is mapped into the

appropriate error message or status code for the

applications program or operating system.

Figure 2-5 shows this process as a data flow among system

modules. The physical system boundaries are indicated by

vertical dotted lines in the figure. The ISO Reference

Model layers are shown by horizontal divisions. The

interface to another network would be done at the Transport

Layer of the ISO model. For example, the Digital

Engineering Laboratory's Network (DELNET) provides the

services of the lower three layers of the ISO model.

Interconnection to this subnetwork implementation would

require a Transport Layer protocol be provided within one

processor system and a I/O Interface system user entity

2-10

", " pI

4 4

created to communicate with the protocol functions.

Functional DeCription. The functional requirements

for the I/O Interface are presented as a set of features, or

mechanisms. Structured Analysis and Design Technique

diagrams (SADTs) and Data Flow Diagrams (DFDs) will not be

used because these requirements are not necessarily

functional in nature. The I/O Interface functional

requirements are characteristic features of the interface

system and may be defined within one physical system or

several, and within one software module or several. The

next chapter will use DFDs to describe the design of the I/O

interface for the Intel 432 Micromainframe computer system.

The overall purpose of the I/O Interface protocol is to

move data from a central system to a peripheral device.

This is done using a CBMS between the device user process

and the device driver process. The interface function

modules reside in the central and remote processors of the

system. The data is routed from one module to another until

the device driver is reached. The reply, giving the status

of the operation, is then transmitted back along the same

path. Thus, one important mechanism of the I/O Interface

protocol is the I/O device addressing.

To have effective communication between a sender and a

receiver, it is necessary to have a well-defined message

system. The structure of the message must be clearly

understood by both the originator and the recipient of the

2-11

- - -,- -- -

message. The sender must be able to create a structured

message so that the receiver can extract the meaning. The

formatting of messages is a necessary mechanism of the I/O

Interface protocol.

The receiver of a message may be given control

information indicating the purpose of the data in the

message. This can extend the usefulness of the of the

message system by allowing multiple formats for data

transfer. When the message arrives at the UA, the receiving

process may use the control information to determine the

format of the remainder of the message and even the function

to be performed by the user process. Thus, a control

mechanism is important in defining the functions available

to users of the interface.

Likewise, the success or failure of the operation is

important to the process which originated it. The receiving

process must have a method of communicating the status of

the operation to the requesting process. The protocol

provides a mechanism for reply, defining the responses which

may be made by a device serving the interface.

The following paragraphs discuss these mechanisms

required for the interface protocol; address, format,

control, and reply.

Address Mechanism. A distinction is made in the

address mechanism between names, addresses, and routes (Ref

2-12

WIN

9:9). A name is an identifier of a resource. An address is

the specific location of that resource. A route is a path

between two resources. The I/O Interface implements a

mapping from names to addresses.

The mapping function can be performed by the

originating UAs or by their associated MTS agents. The

information relating the name to its address is stored in a

CBMS directory. This directory is logically a single,

centralized database. However, it may be distributed and

partially redundant. That is, the process of looking up a

name may be done in a distributed manner. In that way, each

MTS only determines enough of the address to know the next

destination in the route (i.e., the next MTS or the

destination UA).

Pormnt M~chanim. The message format

specification describes the form and meaning of messages as

they are sent by one CBMS and received by another. Messages

are generally composed of afields" (segments of a message),

containing different types of information. These types

include names of the originator and receiver, subject data,

security classification, references to previous messages, as

well as the text of the message. Standard syntax for

messages provides a means for the contents of messages from

one CBMS to be retrieved by another CBMS. Standard

semantics for the different types of information allows

consistent interpretation of the message by the receiver. A

2-13

____ ____ ____ ___ ____ ____ ___ ____ ___,___

definition of the message syntax and semantics is required

for the I/O Interface.

Control Mechanism. The control mechanism is the

highest definition of function in the interface. It may be

used to indicate the active fields within the message, the

particular function requested of the receiver, or the type

of handling required. This control mechanism may be

implemented as a field of the message (UA level) or the

message envelope (MTS level).

If the control is placed on the envelope, then the

information would not generally be available to the UA

receiving the message. The MTS would place the message at

a particular UA depending upon the control field contents.

Where messages were extremely complex, such a system would

allow the UAs to be simplified, each handling only a single

message format or function.

Placing the control field in the message would allow

the control data to be used as a function control for the

user, thus, the message might only consist of the control

field. For example, a request for a "form feed" on a

printer device requires no additional data in the request

message. However, each UA must able to process messages of

all types. While many may not apply to a particular user,

all control values must be handled properly, generating the

appropriate response. This requires greater attention to

generating responses for improper requests.

2-14

M --- d

The control mechanism must allow for expansion. It

4 must be defined to allow new functions or message types to

be incorporated within the existing organization. New

formats or functions may be required by future users of the

interface.

RePly Mechanism. The reply mechanism is the

method by which a receiver reports the status of the

requested function to the sending process. A distinction

must be made between the response message, which may be

generated by a receiver as a result of a particular

function, and the status reply message. A "read" request,

for example, will result in a message containing the input

data being sent to the requester. This is only a reply if

the message also contains status information on the

condition of the read operation.

The status information may be provided to the user by

the UAs or their associated MTS agents. The status

information should be encoded to reduce the length of the

message necessary for the reply. The meaning of the code

should be available to all users from a common "error

message directory". This directory is logically a single

database, as with the addressing information, and may be

distributed. Each system may then have its own directory of

error messages which apply to those users or devices with

which the system interfaces. Generally, this will require

duplication of most of the directory from one system, to the

2-15

next, to allow freedom of communication among the systems.

As with the control mechanism, flexibility in the reply

mechanism is necessary. New uses may require additional

status information to indicate the condition of their

functions. The reply mechanism must be able to expand to

meet future needs.

Functionally, the I/O Interface protocol provides for

addressing, formatting, control, and reply, among the user

processes or devices using the interface. Implementation of

the protocol is restricted by the limitations of the current

432 system at AFIT.

Functional Standards. Standards for the functions of

the I/O Interface are those which apply to Computer Based

Message Systems (CBMSs) in general. The National Bureau of

Standards (NBS) is preparing standards for CBMS systems at

this time. Their work includes a proposed standard for

message formats (Ref 12) and a report on naming and

addressing in CBMS systems (Ref 9). In addition, standards

have been adapted for network addressing using the AFIT

Universal Network Interface Device (UNID) developed here at

AFIT (Ref 32). This latter work is important because it is

proposed that most of the small computers at AFIT will be

connected to a subnetwork of UNIDs in the near future. In

general, these proposed standards for interfacing message

systems place functional requirements on the I/O Interface

design in two areas; user address, and message format.

2-16

-

user Address. An address consists of a series of

attributes defining a location relative to the MTS layer. A

general discussion of the attributes which can be used in

addressing and their representation is presented in the

report "Naming and Addressing in Computer Based Message

Systems," written for the National Bureau of Standards

(NBS), Institute for Computer Sciences and Technology (Ref

9:30-33). The general structure of the addressing

mechanism presented in this document suggests an address

with four attributes to indicate the specific address of a

UA relative to the system; country, network, host, and user-

id. In addition, to have compatibility with the DELNET

subnetwork system proposed for AFIT computer systems, the

addresses structure must match that expected by the

Universal Network Interface Devices (UNIDs).

The addressing system used in the UNIDs is compatible

with the proposed NBS system using country, network, host,

and user-id attributes (Ref 9:33-34, 32:3-5/3-9). In the

UNID system, the user-id is called the "port-code" as a

designation of a particular I/O port address on a

microprocessor. Details of this addressing scheme are

presented in Appendix E.

eMa~aa. format, A general description of the

syntax and semantics for CBMS messages is presented in the

Proposed Federal Information Processing Standard

*Specification for Message Format for Computer Based Message

2-17

TABLE 2-I

I/O Interface Message Fields

Originator Fields
FROM Required
REPLY-TO Basic

Date Field
POSTED-DATE Required

Recipient Field
TO Required

Message Content Fields
SUBJECT Basic
TEXT Basic

Systems" (Ref 12:20-56). This section presents the

requirements for the I/O Interface system message format.

The message fields required for the I/O Interface are

listed in Table 2-I. These fields include those which are

required by the CBMS format specification and those optional

fields which are necessary or basic to the functioning of

the I/O Interface. Many other fields are possible within

the CBMS format as defined by the NBS proposed standard (Ref

12:15-34) and may be required by a CBMS with a larger scope

of action that of the I/O interface system developed here.

The CBMS message consists of two types of components,

fields and messages. Fields correspond to the semantic

components described above. A message is simply another

message. The type of field determines its meaning and

organization of its contents. The fields are composed of

2-18

i

Message Structure

Mesg uture

Field Structure

IDENTIFIER LENGTH QUALIFIER DATA CONTENTS

Data Element Structure

Figure 2-6. CBMS Message Structure

data elements which have, at most, four components;

Identifier, Length, Qualifier, and Data Contents. Figure 2-

6 shows the organization of the components of a data

element.

The standard syntax also includes an optional "Property

List" component, which may contain a printing name (label)

for the data element or one, or more, comments. This

information is not necessary for the operation of the I/O

Interface and, therefore, use of the "Property List" element

is not required for the implementation.

The Identifier is always the first byte of the data

element. It is one octet (8 bits) in length and indicates

the type of the data element. The next component is the

2-19

* T-

Length. This is an unsigned integer giving the number of

octets that appear following it in the data element. The

Qualifier component supplies additional information to

identify the element and, finally, the Data Contents contain

the actual data of the element. Details of the structure

are presented in Appendix D.

Implementation Constraints

The constraints on the implementation of I/O interface

on the Intel 432 Micromainframe computer system are

primarily due to its immature state of development of the

system. The 432 system design is continually being updated

as improvements are made to the hardware and software. To

allow implementation design work to be completed, the

configuration of the 432 system must be frozen at some

point. For purposes of this thesis effort, the fixed

environment is the hardware and software compatible with the

"Release 2.1" hardware components (see Appendix F). The

following sections will discuss the limitations of the

hardware and software in this environment.

Hardware. There are two hardware systems to consider

with the Intel 432 system. These are the configuration of

the 432/670 Micromainframe computer system (432) and the

components of the Cross Development System (CDS). The

limitations of each)lace constraints on the development of

the I/0 Interface implementation.

2-20

!d

Storage Memory iAPX 432 iAPX 432
Arrays Controller General General

Data Data
Processor Processor

Intel 432/670
Processor to Memory Interface

Interface 1nefc
Processor I rocessor
Link L ink

Intel 432 Proc Link

iAPX 432 iAPX 432
Interface EInterface
Processor Processor

Debugger I System Remote f System

Debuger rocesorAttached Processor
Multibus Mliu

8086/12A Peripheral 80 12A] Peripheral
Debugger Device Attached Device
Processor Controller Processor Controller

Figure 2-7. Intel 432/670 Micromainframe

Hardware Configuration

2-21

432 Micromainframe. The 432 is complex

multiprocessor system. As explained in Appendix A, the

system contains multiple General Data Processors (GDPs) and

communicates with the outside world through Interface

Processor (IP) communication links with Attached Processor

subsystems (APs), which may be any 8 or 16 bit

microprocessor systems using MULTIBUS, IEEE standard 796,

interface (Ref 24:1-3).

These AP subsystems perform all the input and output

functions for the 432 computer system. One of the I/O

subsystems is the debugger, or Debug Workstation (Ref 22:1-

2/1-4). This Debug Workstation processor system is not

usable for any other purpose with the 432 while it acts as

the system debugger. Therefore, implementation of an I/O

Interface to a functioning device requires a second AP

subsystem with its own IP system (see Figure 2-7).

Currently, only one IP board has been modified to be

compatible with the Release 2.1 configuration (Ref 35:A-2/A-

4). Until the second IP board is upgraded, the system is

constrained to only a single AP system which must be the

debugger. This means that it is impossible to fully test the

interface. There is no way to communicate between the 432

processor and an AP system running the I/O Interface

software. Limited testing of the software is still possible

without system interconnection.

2-22

*

IVAX 11/780
Cross
Development
System

f Asyncronous Serial
Link

IntelSeries IIIDebug Workstation

}Interface Processor
Link

I Intel 432/670
Micromainframe

Figure 2-8. The Intel 432 Cross Development System

432 Cross Develooment System. The cross

development system for the 432 involves three distinct

computer systems. First, the compiler and linker for the

Intel 432 execute on a VAX 11/780 computer system. Second,

executable code must be transmitted to a debugger system (an

8086-based Intel Series III Microcomputer Development

System) for loading into the third system, the 432/670

Micromainframe (Ref 22:1-3/1-6). Figure 2-8 shows this

organization. Limitations in the operational condition of

any of these systems constrains the software development

process for the 432.

2-23

J O x..

Specifically, the Intel Series III, Debug Workstation,

is required to have at least one hard disk system for full

operation. The available systems at AFIT currently do not

have a hard disk. This limits the maximum size of the

executable code file to the space available on an ISIS

double density floppy disk (3895 blocks of 128 bytes each).

This limits the development of 432 processor software. The

iMAX operating system run-time environment is nearly 3000

blocks alone. The AP environment is not a problem because

the iRMX 88 run-time system is configurable and need only

contain the modules necessary to support system calls that

are made. Until a hard disk system becomes available, it

will be necessary to minimize the size of the modules which

must be linked together for execution on the 432. The 432

processor software must be designed to be tested in this

limited environment.

These hardware restrictions will eventually be overcome

and, thus, do not permanently negate the value of this

design effort. The hard-disk system has been promised by

Intel Corporation as a part of the 432 system package which

will provide an environment for development of productive

software systems. The Interface Processor board is being

upgraded by Intel technicians and will be returned as soon

as possible. As larger projects require more hardware, the

432 configuration may be expanded to include several

additional IPs providing interface with a large variety of

2-24

AP systems.

Software. Software development for the 432 system is

highly constrained. There is only one programming language

available for the 432 processor (Ada). Selection of the

language used with the AP (8086-based system) is limited by

the 432s operating system (iMAX), which is provided as a set

of PL/M-86 source code programs. In addition, compatibility

must be maintained among the utility programs (compiler,

linker, debugger, and operating system) of the 432 Cross

Development System (see Appendix F). These facts leave

little room for discussion of the optimum programming

language for this work.

432 Software. A cross compiler for the Ada

programming language is the only compiler available for the

Intel 432 computer. The current version of the compiler

does not implement the full Ada language as defined by MIL-

STD-1815A (Ref 1). The restrictions on the Ada language for

the current compiler are listed in the "Intel 432 VAX Host

Users Guide" (Ref 21:A-l/A-4) and summarized in Appendix G.

Extensions to the Ada language which permit more

efficient use of the features of the iAPX 432's instruction

set have been included in the compiler implementation. The

extensions to Ada are detailed in the Intel Reference Manual

for the Intel 432 Extensions to Ada (Ref 27). Generally, it

would be advisable not to use extensions to an established

2-25

language for the software development to avoid problems with

portability and the non-standard aspects of these

extensions. However, since the compiler is not fully

implemented and the system structure is unusual, use of the

language extensions could allow more efficient

implementation of the software. The software is clearly

annotated where these extended features have been used.

Future implementations and modifications to the software

will make use of compiler features then available and use

proper Ada language constructs to perform these functions.

Attached Processor Software. The languages

available for the 8086 Attached Processor system are also

limited. While several compiler systems are available which

create 8086 executable code, the program modules which

provide for control of the Interface Processor are written

in PL/M-86. Also, the I/O functions of the iMAX operating

system are implemented on the AP using the executive

features of iRMX 88 Real-Time Multiprogramming Executive

(Ref 25:101-1). The software provided by Intel for linking

with these operating system functions is written in PLM-86.

A compiler system for PLM-86 language is available on the

Intel Series III Development System and programs may be

written which are compatible with modules written in

assembly language (ASM-86). A linker (LINK-86) is provided

to combine assembled or compiled program modules and library

functions into executable files.

2-26

* * a _________,,___

Two program languages are used in this thesis effort;

Ada, for the 432 processor, and PL/M-86 for the 8086-based

AP. The top-down approach was used in the development and

testing of the Ada software to permit the greatest possible

progress towards a fully functioning interface system (i.e.,

largest possible executable module that can be transferred

to the Debuggers disk system). Where a choice existed, Ada

language facilities are used, in favor of iMAX operating

system structures, to provide compatibility with future

software developments, using improved Ada compilers. Also,

the structuring of the PL/M-86 software, for the AP, is

similar to the Ada language software (object-oriented) to

maintain system continuity.

This chapter has defined the requirements for the I/O

Interface protocol and the implementation of the protocol on

the Intel 432 Micromainframe computer system from the

conceptual and functional viewpoints. These requirements

are summarized in Table 2-II. The conceptual requirements

focused on the virtual operation and system flexibility.

The functional requirements were defined for the I/O

Interface protocol including mechanisms for addressing,

formatting, device control, and reply. Finally, the

constraints on implementing the protocol using the Intel 432

Micromainframe were discussed. The next chapter presents

the design for the I/O Interface protocol.

2-27

TABLE 2-II

Summary of I/O Interface Requirements

Concepts

Virtual Device Operation
System Flexibility

Structural Models

ISO Open Systems Interconnection
Reference Model

NBS Computer Based Message
System Model

Functional Mechanisms

Addressing
Formatting
Device Control
Device Reply

Implementation Constraints

Lack of Interface Processor
for Attached Processor System

Lack of Hard Disk for Program
storage in Debugger System

Incomplete Ada Language Compiler

2-28

.. d

III. SYSTEM DESIGN/TMPLEMENTATION

Introduction

The first two chapters have presented the objectives

and requirements for the I/O Interface on the Intel 432

Micromainframe computer system. Chapter I made reference to

two tools for a successful design effort with the 432

system. These are the use of top-down structured

implementation and the object-oriented design methodology.

This chapter deals with the actual design of the

interface functions as implemented in 432 software. The

design is approached from the user's viewpoint, dealing

initially with the highest level of functionality which must

be provided to the using process or device. These functions

are referred to as the "services" provided by that level.

The design proceeds to the lowest level where iMAX operating

system services are used to perform the required services.

Before discussing the top-down development of the I/O

Interface, it is important to look, again, at the concepts

and functions required for the interface. The next section

describes the general features of the system design, which

implement the conceptual requirements. The following

sections, then, present the implementation of the functional

mechanisms of the I/O Interface and finally, the design of

the system within the structure of the ISO Reference Model.

3-1

1i

General Design Features

The general design features of the I/O Interface

include the structure of the system processes and the

conceptual requirements presented in Chapter II; virtual

devices, and system flexibility. The method of

implementation for each of these features is presented in

the following paragraphs:

System Processes. The processes implemented on the 432

processor are created as "static" tasks under the iMAX

operating system. This means that the task cannot be

created or destroyed during system operation (refer to

Appendix C for more information on tasks). This was done

because the Ada language compiler (Version 2.0) does not

support the tasking facilities of the language defined by

the DOD manual (Ref 21:A-l/A-4). The use of the tasking

facilities provided by iMAX (Ref 25:BPM-1/BPM-19) would

create a more powerful environment, but, restrict the system

to using the iMAX process management system with all future

modifications. This is because, in general, it is advised

not to use the tasking facilities of Ada and iMAX together

due to the differences in process data structures (Ref

25:BPM-I)

For the I/O Interface system, this means that users may

not be added or removed while the system is executing. In a

multiuser environment, it would be necessary to start a

shell process for each user. This was unnecessary for

3-2

- - . .- - ' '- p

TABLE 3-I

I/O Interface Functions and Reply Codes

I/O Interface I/O Interface
Functions Reply Codes

0 Open 0 Ok
1 Close 1 Invalid Command
2 Read 2 End of File
3 Write 3 Bad Data
4 Page 4 Device Error
5 Title 5 Device Closed
6 Delete 6 Device Offline
7 Rename 7 Device Busy
8 Reset 8-255 Reserved for
9 Get Config Future Use

10 Set Config
11 Test

12-255 Reserved for
Future Use

simply testing the I/O Interface. The result is that the

system is strictly single-user. However, on the AP system

there is dynamic creation of the tasks for each device.

This would allow new devices to be added to the system

during execution. This function may be implemented by

future designers.

Virtual Devices. The implementation of the I/O

Interface protocol presents a set of virtual devices to the

user. These devices are designated by a name and address

which uniquely specify the location of that device within

the complete system. The user's view of the interface is a

set of procedures which perform I/O functions. The user

provides the name of the device as an argument in the

3-3

.

procedure call. Thus, the set of procedures forms an

abstraction, or virtual mechanism, of the system I/O

devices.

Each of these procedures also requires a reference to

an integer variable which may be modified by the routine.

This variable is set to a *reply code" which is a status

indication from the device. Table 3-I shows the available

functions and the reply codes which may be returned. The

virtual device created by the I/O Interface will, therefore,

respond to a known set of requests with a status indication

from a known set of values.

This virtual device representation is implemented in

the User Agent level of the CB14S structure presented in

Chapter II. This is the point at which the user applications

programs would have access to the CBMS communications

system. This organization makes the CBMS system a tool of

the I/O Interface and allows the user access to only the

functions of the I/O Interface. The use of the CBMS is

effectively hidden from the user's view. The details of the

implementation are presented later in this chapter.

System Flexibility. Flexibility of the system design

is provided on two levels. First, flexibility is provided

in the software design by using the object-oriented design

methodology described in Appendix B. This modular design

approach protects information about the implementation of

data structures within software modules. This allows the

3-4

Printer

Request

User 10Disk Files
Program I__ Interface

~Reply

CRT

Figure 3-1. 1/0 Interface Context Diagram

system designer to modify the implementation with minimum

effects on other parts of the software system (Ref 17:6-23).

The second level of flexibility is in the implementation of

the control and reply mechanisms for the I/O Interface.

Essentially, the user's view of the interface is the

representation of several copies of a single type of device

which accepts a known set of commands and responds with one

of a known set of replies. Any new device would be used in

the same manner, and thus, be made immediately available to

all users through the same interface. Figure 3-1 shows this

in a context diagram. The I/O Interface appears to the user

as a single set of functions which allow access to all the

devices in the system.

3-5

User Sublayer

Applications Layer User Agent Sublayer

Message Transfer Sublayer

Figure 3-2. I/O Interface Sublayers within the ISO
Applications Layer

Functional Mechanism Tmplementation

Chapter II presented four mechanisms required for the

I/O Interface; addressing, formatting, device control and

device reply. This section describes the location of these

mechanisms within the organization of the I/O Interface and

the ISO Open System Interconnection Reference Model.

The I/O Interface is implemented within the

Applications layer of the ISO Reference Model. The

requirements for the interface have divided this ISO layer

into sublayers. These sublayers are shown in Figure 3-2.

Address Moechanism. The addressing mechanism is

implemented in the Message Transfer Sublayer. The mapping

of device names to device addresses, referred to as "CBMS

addresses", must be used by the MTS procedures to determine

the correct route for the destination requested. The CBMS

address may also be included as a part of the device name

itself according to the NBS report describing naming and

addressing in CBMS systems (Ref 9:23-36). However, the I/O

3-6

Interface only uses the CBMS address to determine the

appropriate route for the message.

The Message Transfer Sublayer is given the destination

of the message in the form of a device name which it maps to

a CBMS address. But the CBMS address is only a binary code

for the precise location of the device and the MTS process

requires the local system address of a communications port

where the message should be sent. So there is a second

mapping function which takes the address of the device and

determines the communications port to use for that device

relative to the current location. Both these mapping

functions are presented in detail in the section describing

the Message Transfer Sublayer.

Format Mechanism. The procedures which handle the

format of the CBMS messages are all contained in one

software package in the Message Transfer Sublayer. The

message structure is not available to direct access by any

other procedures. This effectively hides the CBMS structure

from the rest of the system. Message information may only

be accessed by the procedures provided in the package and

any changes to the structure of the messages does not affect

any software outside the package. This is an example of the

object-hiding feature of object-oriented design (see

Appendix B).

Implementation of the format mechanism is presented

with the Message Transfer Sublayer later in this chapter.

3-7

a

The details of the message structure, the CBMS message

format, are presented in Appendix D.

Device Control Mechanism. The device control mechani-',m

is half of the implementation of the virtual device feature

described above. The device control procedures available

have been listed in Table 3-I above. These procedures are

found in the implementation of the User Agent Sublayer of

the I/O Interface.

Device Rely Mechanism. The device reply mechanism

completes the virtual device implementation of the IO

Interface and is also located in the User Agent Sublayer.

The reply codes returned by the control procedures are also

listed in Table 3-I.

The following sections discuss the design of each

sublayer and the software packages which implement these

mechanisms described above.

User Sublayer

The User Sublayer is the highest level of software in

the I/O Interface implementation. In fact, this layer is

not actually a part of the interface proper. The User

Sublayer contains the processes and devices which use the

interface for communication. This level is implemented as a

part of this thesis effort to demonstrate the functioning of

the I/O Interface and show, by example, how processes and

3-8

_ _ _ _ _ _ _ _ _ _ _ _S-.- .---- w p
... .. " -' 2 t

Figure 3-3. User Shell Context Diagram

devices interact with the interface. On the 432 processor,

within the User Sublayer, a minimal "shell' process is

implemented which accepts user commands and communicates

with other system devices using the I/O Interface. On the

AP system, the User Sublayer contains the device

abstractions with which the User Shell can communicate.

Ue Shel. The User Shell is a process which executes

on the 432 processor. There are two significant data

structures in the implementation of the shell. First, the

syntax of the command line is defined and managed by the

procedures of the User Interface package. Second-, the

system commands available to the user are defined and

controlled by the procedures of the System Commands package.

The third software package of the User Shell is simply

called Shell and contains the procedure Main which controls

the sequencing of action in the Shell. The Shell package is

3-9

ResponseLine s

Command

Line Command, Arg_String
ArgStringLength Response

Read User System
Command Command

Figure 3-4. User Shell Main Program Data Flow

presented first, followed by the User Interface and System

Commands packages.

she1ll. The shell is implemented as a simple

command processing loop. The Shell package of the User

Shell contains only one procedure, Main, which is the

primary control loop calling functions provided by other

packages to perform the requested commands.

Figure 3-4 shows the data flow within the Main program

loop. The ReadUserCommand and Respond_to_User procedures

are part of the User Interface package. The

PerformSystemCommand procedure in the System Commands

package.

3-10

p

TABLE 3-II

Procedures of the User Interface Package

1.1 ReadUserCommand
1.2 GetArgument
1.3 ReadfromUser
1.4 WritetojUser
1.5 Respond-to-User

User Interface. All interface with the system

operator or user is done through the User Interface package.

The package contains several procedures which create an

abstraction of the user (see Table 3-II); ReadUserCommand,

Get_Argument, ReadfromUser, Write_to_User, and

Respond.toUser. These procedures hide the method of access

to the user and the syntax of communication with the user.

The Read_UserCommand procedure reads a single line of

text from the Debugger console of the 432 system and returns

pointers to two string variables and their respective

lengths; the Command, Command_Length, Arg-string, and

Arg-stringLength. The command word, Command, is the first

word of the input line delimited by a blank space. The

remainder of the input line is placed in the Argstring.

Generally, this will contain the command arguments and

options requested by the user. The lengths of these

variables are provided to make processing the input easier.

The procedure Get-Argument takes Arg-string and

Arg-stringLength as inputs and returns Argument and

3-11

p

ArgumentLength to the calling program. The values of

Arg-string and Arg-stringLength are modified to reflect

that the Argument has been removed from the left end of the

string. Get-Argument is used by the procedures within the

System Commands package which require access to the

individual arguments from the input line.

The procedures Readfrom-User and WritetoUser are

provided to allow access to the system operator by functions

executing as a result of a previous command. Both

procedures require a pointer to a string variable,

Textstring, and an integer, Textstring_Length, as input

and return the same variables modified by the operation

performed.

The procedure Respond.toUser is a simple modification

of Write-to_User. In addition to writing Textstring to the

user console, the procedure also writes a line-feed

character and a command prompt. The procedure is intended

to be used upon completion of all shell commands, to write

the response message to the console and prompt for the next

command.

System Commands. The System Commands package

contains the procedures which perform the requested

commands. The package hides the implementation of the

commands and even their names, which means, all

modifications to the commands will affect only this package.

Table 3-II lists the procedures found in the System

3-12

TABLE 3-III

Procedures of the System Commands Package

2.1 Perform_Systen._Command
2.1.1 DetermineCommand

2.1.1.1 Set
2.1.1.2 Help
2.1.1.3 Copy

2.1.2 Create_Response

Commands package. The only System Commands procedure which

may be called from outside the package is

PerformSystemCommand.

PerformSystemCommand uses the procedure

DetermineCommand to select the command to be executed and

call the command procedure to perform the function (see

Figure 3-5). The output, from the command procedure, is a

pointer to a text string, Response, and an integer value,

Response-Length. A null pointer and length of zero are

returned if the operation is successful. Otherwise, the

string contains an error message. The exact message is

determined from the status returned from the command

procedure execution. The CreateResponse procedure takes

the status value as an input and returns Response and

Response-Length. There are three commands implemented to

demonstrate the I/O Interface. These are SET, HELP, and

COPY.

3-13

-- -. a. *'a,..a~k...I

Command ResonsArgString SET, HELP
Arg_String-Length or COPY

Arg_StringeLength

Determine Status
Command

CreateRepneResponseLnt

ReposeResponseLnt

Figure 3-5. Perform_SystemCommand Data Flow

The SET command allows the user to modify system

parameters during execution. The primary uses affecting the

I/O Interface system are setting the time (used by the UAs

to time stamp the messages) and setting default device

naming for source and destination arguments. The latter

allows the user to give the only the local device name and

the system will attach the more significant members of the

device name from the default selected.

The HELP command is implemented in a minimal form to

remind the user of the commands available and their

respective syntax and semantic requirements. The procedure

implementing the command contains the text responses as

constant values and returns a pointer to the proper text

3-14

string when that information is requested.

The COPY command demonstrates the use of the I/O

Interface. This command calls the services of the User

Shell Agent package to perform the information transfer

requested. First, the source and destination files are

opened. Then the source is read and the data is written to

the destination. Finally, the source and destination

devices are closed and a status is returned to the

Perform-SystemCommand procedure. After each step (which is

actually generating a CBMS message) the procedure waits for

a reply message indicating the status of the operation. If

an error is indicated the process performs the necessary

operations to close any files and return an error status.

Device Abstraction. System devices are also users of

the I/O Interface system. Unlike the User Shell, they will

only respond when they receive messages from other system

users. These devices are provided as a package of functions

which establish the characteristics of the device. This

abstraction of each device is a functional view of the

services provided by the implementation of the device.

Thus, the I/O Interface devices are implemented as a package

of device procedures which call upon the device, driver

routines of the operating system to perform the function.

Each device package also provides a test procedure which

simply returns a valid status if the device is active and

ready to receive messages. The device packages include a

3-15

TI @ I

TABLE 3-IV

Procedures of the Printer System Package

3.1 PsOpen
3.2 PsClose
3.3 Ps-Print
3.4 PsFormFeed
3.5 PsTitlePage
3.6 PsTest

Printer System (PS), the ISIS File System (IFS), and the

Series III Console (S3C).

The Printer System provides six procedures for users of

the printer device; PsTest, PsOpen, PsClose, Ps_Print,

Ps.FormFeed, and PsTitle_Page. These are listed again in

Table 3-IV. The PsOpen and PsClose are used to allocate

and deallocate the use of the device, respectively. While

the printer is in use, all messages from other users, except

requests for Ps-Test) are not accepted. The PsWrite

procedure takes two inputs, BufferAccess and Ptff_Size, and

calls the device driver to write the contents of the buffer

to the attached device. The PsPormFeed requires no inputs

and simply generates the proper control signal for a

formfeed by the device. Likewise, the PsTitlePage

procedure generates a control for a formfeed, but, then

creates a title page from information in the message and

generates another formfeed control upon completion. All the

PS procedures return a status value indicating the success

3-16

1p

TABLE 3-V

Procedures of the ISIS File System Package

4.1 If sOpen
4.2 IfsClose
4.3 IfsRead
4.4 Ifs-Write
4.5 If s-.Delete
4.6 IfsRename
4.7 Ifs-Reset
4.8 Ifs-Test i'1

or failure of the operation.

The ISIS File System provides services for file

handling operations. Table V lists the procedures in the

IFS package. These procedures include Ifs_Read, IfsWrite,

IfsDelete, IfsRename, Ifs_Open, and IfsClose. All these

procedures require a file name, File_Name and

File_NameLength, as input and return a status value for the

operation. In addition, the Ifs_Read and IfsWrite

procedures require a pointer to a data buffer,

BufferAccess, and an integer length, BuffSize, for the

data. The IfsRename procedure also requires a pointer to a

second file name, New_Name, and its length, NewNameLength.

These procedures call ISIS operating system procedures to

access the file device drivers. The Intellec Series III

Microcomputer Development System Programmer's Reference

Manual" (Ref 13) gives detailed information on access to

these executive procedures. The IFS package can handle up

3-17

TABLE 3-VI

Procedures of the Series III Console Package

5.1 S3c_Read
5.2 S3c_Write
5.3 S3c_Clear_Screen
5.4 S3cTest

to 4 files open simultaneously. The IfsOpen and Ifs_Close

procedures maintain a table of the files available for

access at any time and the user allocated access to each

file. Thus, commands may be given to transfer data between

files or multiple users may access files simultaneously

(obviously, not necessary for this single-user

implementation of the User Shell system). The Ifs_Reset

procedure closes all files without regard to the user

allocation. Therefore, Caution must be used when requesting

a device reset function.

The Series III Console device package contains only

four procedures; S3cWrite, S3c_Read, S3c_Clear_Screen, and

S3c_Test (see Table 3-VI). The S3c_Read and S3c_Write

procedures require buffer information, as with the IFS and

PS packages, and all procedures return status information.

The S3cClear_Screen procedure generates the control input

necessary to cause the console CRT screen to be cleared.

All these procedures are implemented by calls to ISIS

operating system procedures.

3-18

"'4

Receive Port Address

FnctionArgs

Figure 3-6. Typical User Agent Receive Procedure
Data Flow

User Agant Sublayer.

Each User Agent package may be considered as two

distinct sections. First, the Receive Section contains a

single process which handles the messages sent to the UA.

This process calls upon the services of the device

abstraction to perform the function requested in the

message. The following sequence of steps are performed in a

continuous loop (see Figure 3-6):

1. Wait at the receiving port for a message to arrive.

3-19

;i

2. Use the MTS sublayer procedures to read the message.

3. Use the User sublayer procedures to perform the
function.

4. Use MTS sublayer procedures to create a reply
message depending upon the status returned by the user
or device procedure.

5. Send the reply to the MTS sublayer for routing to
the originating UA.

The other part of the UA is the Send Section which

contains the procedures called by the device or user to send

messages to other devices. These procedures perform the

following sequence of tasks (see Figure 3-7):

1. Use procedures of the MTS sublayer to create
the message.

2. Send it to the proper UA.

3. Wait for a reply message indicating the result.

4. Return the operation status to the calling
user or device.

In the AP, the UAs for each device are single sided

systems. That is, they have only the Receive section of the

User Agent package because they are "passive" users. An

"active" user is capable of creating requests for action by

other devices in the I/O Interface system. A "passive"

user can only wait to receive messages and act upon the

request. The User Shell, however, is an active user and its

UA, User Shell Agent (USA), has both the Receive and Send

sections.

There are two communications ports implemented with

each UA. The first is the receive port where messages for

3-20

Src_Name
Dest_Name Reply Port Address

Function_
Args

AM
Get Full Receive

Name Message
SMAX)

CBMS
Src..Name Create
DestNsame Message CBM s

Message

CEMS..
Message CMS

Read
MTS Message
Send

Status

Figure 3-7. Typical User Agent Send Procedure Data Flow

that device are sent by the MTS. The second is the reply

port where only the reply messages intended for that UA are

sent. This double port system allows a user to send a

message to itself or, in the case of the IFS, send

information from one file to another. Without this system,

a form of "dead lock" would occur when a user waits for a

reply from itself. The alternative would be a second level

of queues which would mean more processing overhead and

3-21

Device Name Receive Procedure

Create
AM Port Create

Lookup (iMAX) Task
Address (iMAX)

CBMSAddress Port_Address

Port Address
Data BaseRot

Figure 3-8. Typical User Agent Initialization
Data Flow

almost twice the number of port implementations which would

require large memory allocations (Ref 25:COM-2,SIZ-3).

Each UA package contains an initialization procedure

which uses iMAX procedures to create the communication ports

necessary for the user. The initialization procedure also

starts the receiver process which handles incoming messages

for the UA. Figure 3-8 shows the data flow in the

initialization procedure for a typical UA. The process of

creating the communications port would need to be done twice

in an active UA having a receive port and a reply port.

3-22

9 * I

TABLE 3-VII

Procedures of the User Shell Agent Package

6.1 UsaInit
6.1.1 Usa_Receive

6.2 UsaOpen
6.3 UsaClose
6.4 UsaRead
6.5 UsaWrite
6.6 UsaPage
6.7 UsaTitle
6.8 UsaDelete
6.9 Usa_Rename
6.10 UsaReset
6.11 UsaGetConfig
6.12 Usa_Set_Config
6.13 UsaTest

User Shell Agent. The User Shell Agent package is the

only complete UA implementation in the I/O Interface system

on the 432 Micromainframe. In particular, this means that

it contains the only implementation of the Send section of

the UA. This section of the package contains a procedure

for each I/O Interface function that is available to the

user. All of these procedures require the destination

device be designated by Device-Name and DeviceNameLength

as inputs. The procedures also require inputs corresponding

to the function requested. Por example, the Usa_Test

procedure requires no additional inputs, but, the UsaWrite

and UsaRead procedures needs information about a buffer of

data, BufferAccess and Buff_Size. Each of these procedures

uses the MTS sublayer functions to send a message to the

3-23

TABLE 3-VIII

I/O Interface Replies to Function Requests

I/O Interface Reply Codes

0 1 2 3 4 5 6 7

I/O Interface Ok Invalid End of Bad - Device -
Function Command File Data Error Closed Off Busy

Open x x X x
Close x x x x
Read x x X x x x x x
Write x x x x x x
Page x x x x x x
Title x x x x x x x
Delete x x x x x
Rename x x x x x x
Reset x x x x x
Get Config x x
Set Config x x x x x x x
Test x x x

device requested and then wait for a reply which indicates

the status of the operation. Table 3-VIII shows the possible

reply indications which can be received for each function

request. The possible replies depend to some extent on the

existence of a device which can perform the function

requested. In the case of the Usa_Set_Config procedure,

none of the devices implemented will actually allow a

modification to their configuration. This is a limitation

of the ISIS operating system and the Series III

configuration (Ref 13:2-1/2-5). However, the Printer System

device and the Series III Console device respond to the

function with a valid status, as if the configuration were

3-24

TABLE 3-IX

Procedures of the Device Agent Packages

Printer System Agent Package
7.1 PsaInit

7.1.1 PsaReceive

ISIS File System Agent Package
8.1 IfsaInit

8.1.1 Ifsa_Receive

Series III Console Agent Package
9.1 S3caInit

9.1.1 S3caReceive

modified. This is done because there is nothing that would

result from a change in configuration of these devices which

would be necessary to the requesting user (User Shell).

Only the device needs to know the actual configuration.

Thus, the possible replies for a configuration request

include "Ok" and "invalid command" (the file system does not

change configuration). On the other hand, none of the

devices will accept a request for configuration information

(UsaGet_Config). Therefore, the only reply possible is an

indication of an invalid function request.

Device Agents. Device Agents are the UAs for the I/O

Interface system devices. These are implemented on the AP

system. Each device has its own UA or Device Agent.

Therefore, there is a Device Agent for the Printer System,

called the Printer System Agent (PSA), the ISIS File System,

3-25

TABLE 3-X

I/O Interface Function Mapping to System Devices

I/O Interface
Device Functions

Function PS IFS S3C

Open Open Open 2
Close Close Close 2
Read 1 Read Read
Write Print Write Write
Page Form Feed 2 Clear Screen
Title Title Page 2 Clear Screen
Delete 1 Delete 1
Rename 1 Rename 1
Reset Close Reset 2
Get Config 1 1 1
Set Config 2 1 2
Test Test Test Test

1 - Not Implemented, UA replies "command invalid"
2 - Not Used, UA replies "ok"

called the ISIS File System Agent (IPSA), and the Series III

Console, called the Series III Console Agent (S3CA). The

procedures in these packages are listed in Table 3-IX.

These Device Agents map the I/O Interface functions

into the device functions of each device abstraction. For

example, the I/O Interface "page" function is mapped to the

Printer System procedure PsFormFeed and the Series III

Console procedure S3c_Clear_Screen but has no counterpart in

the ISIS File System and would cause a reply message

indicating an invalid function request for that device.

Table 3-X shows a complete mapping of the I/O Interface

3-26

functions into each device abstraction.

Since the devices are passive users, their UAs contain

only the Receive section of the UA. Each Device Agent has

only one procedure which may be accessed by processes

outside the package. This is the Init procedure. The

purpose of this procedure is to initialize the

communications port necessary for the UA to receive messages

and start the Receive procedure which waits at the port for

messages as shown in Figure 3-8 above. The Init procedure

calls iMAX AP executive to create the port and then begin

execution of the Receive process (Ref 25:IOI-5/IOI-7,IOI-

29/101-35).

The Receive process is not executable by procedures

outside the package. The procedure implements an

abstraction of the device within the domain of the I/O

Interface. That is to say, the Receive procedure properly

handles all the functions defined by the I/O Interface

protocol and generates a reply message indicating the

results of the function. Depending upon the particular

device, the procedure either calls a procedure from the User

Sublayer implementation of the device or replies directly to

the originator of a message requesting a function which

cannot be performed by the device or user at that device

agent.

M~nsaa Transfer Sublayer

The Message Transfer Sublayer is the lowest level of the

3-27

a

User Shell Printer System
Agent AgOItfe smrn int

-- N ISIS File

ytem AgentMTS ,MTS

][SeriesrI

Cnole Agent

432 Processor System Attached Processor System

Figure 3-9. 1/0 Interface System Organization

1/0 Interface system implementation. The sublayer exists in

both the 432 processor system and the AP system. A

functionally identical set of programs must exist in both

systems. There are four packages which form the Message

Transfer Sublayer; the Message Transfer System (MTS), the

Address Manager (AM), the Route Manager (RM) and the

Computer Based Message System Manager (CBMS). The Message

Transfer System package contains the process for controlling

the message movement among the local UAs and passing

messages intended for remote UAs to the proper MTS port (see

Figure 3-9). The Address Manager package contains the

procedures for mapping the device names to CBMS addresses

and the Route Manager provides the routing function by

3-28

TABLE 3-XI

Procedures of the Message Transfer System Package

10.1 MtsInit
10.1.1 MtsReceive

10.2 MtsSend

mapping the CBMS addresses to the communications port where

that device receives messages. The CBMS Manager package

contains procedures for creating and accessing the

information in CBMS messages with the I/O Interface format

described in Chapter II. Each of the MTS sublayer packages

is described further in the following sections.

Massage Transfer System. The MTS package is similar to

the UA packages and contains a send procedure and a receive

procedure (see Table 3-XI). Like the UA initialization

procedures, the MTSInit procedure creates the port where

the messages will be received and starts the procedure

MTSReceive (see Figure 3-10). The MTSReceive procedure

performs the following tasks in a continuous loop:

1. Wait to receive a message at the MTS port.

2. Use CBMS procedures to read the destination device
name.

3. Use AM procedures to look up the address of the
device.

4. Use RM procedures to look up the route for the
device.

5. Send the message to the appropriate UA or MTS port.

3-29

r- 9

MTS Port Address

Message BMSCBMSMessagea

Des t...Nam
C~CBMS-Kessage

Loo u CBMSLo MTS Port ddress

c Figure 3-21. Mts....eceiv Data Flow

Src_3-30

DestNat

TABLE 3-XII

Procedures of the Address Manager Package

11.1 Am_Init
11.2 Am_SetDefault
11.3 Am_LookupAddress
11.4 AmGetFullName

The send procedure, MTSSend, requires the source and

destination device names, SrcName and DestName, and access

to a message. The procedure creates the CBMS message

envelope, which contains the source and destination device

names, and moves the message to the MTS receiving port (see

Figure 3-11).

Address Mnager. The Address Manager package provides

services necessary to maintain a system for mapping device

names to CBMS addresses. The four procedures in the

Address Manager package are listed in Table 3-XII. The

AmInit procedure initializes the mapping structure with no

entries. In this initial state, all requests for addresses

would be returned with the status indicating that the device

name is invalid. The AmLookupAddress procedure requires

the name of the device, DeviceName, and its length,

DeviceNameLength, and a pointer to storage for the

CBMSAddress. The procedure returns with CBMSAddress

pointing to the address for the device name given. The

AmSetDefault procedure accepts a Device_Name and its

3-31

~t

length as input and stores them for use in creating the

complete device name for a given reference by

AmLookupAddress.

The AmGetFullName procedure takes a device name,

entered by the user, and uses the previously defined

Default_Name to determine the "complete" device name. The

complete device name contains four parts; Country, Network,

Host, and Device. In addition a file name may be specified

as a fifth part of the source or destination device name.

The Country and Network portions of the name are each

4-character designations which, together, specify a node of

the global network system. The 432 system would be

connected to one port of such a node and, so, the Country

and Network portions of the device name are constant. The

I/O Interface implementation of the Address Manager package

recognizes only one value for each of these; "RM67" for

Country and "NETO" for Network. If additional systems need

to be identified, the package can be modified, but, only the

Address Manager package needs to be changed.

The Host and Device designators are 3-character names.

The Host name specifies either the 432 processor ("432") or

the Attached Processor ("MDS"). The Device portion of the

name may indicate the User Shell on the 432 processor

("USR") or the Printer System ("PTR"), the Series III

Console ("CON"), or the ISIS File System ("DSK") of the AP

system. Figure 3-12 shows the relationships among the

3-32

Country Network Host Device Filame

432 - USR

RM67 - NETO PTR

MDS CON :FO: file

DSK

:Fl: file

Figure 3-12. I/O Interface Device Naming Structure

device names.

The format for the name is also established within the

Address Manager Package. Each of the major portions of the

name is separated by a slash ("/"). Thus, the complete name

for the I/O Interface Printer System device would be:

"RM67/NETO/MDS/PTR".

When necessary, a file name is separated from the device

name by another slash. The structure of the file name is

defined by the ISIS system user's manuals (Ref 13:2-3). So,

the complete name for a file called "test.txt" on drive

H:FO:u of the ISIS File System would be:

"RM67/NETO/MDS/DSK/:FO:TEST.TXT".

More examples of this format are given in the I/O Interface

Users Manual (Appendix H).

3-33

TABLE 3-XIII

Procedures of the Route Manager Package

12.1 Rm_Init
12.2 RmSetRoute
12.3 RmLookupRoute

The actual implementation of the mapping structure is

not accessable to any procedure outside the AM package.

Thus the package could implement a tree structure to provide

address mapping (in a larger system, this may be more

efficient), however, for the present configuration of the

Intel 432 system, a simple table structure is adequate. The

size of the table is a constant in the package. Therefore,

any increase in the number of entries (system devices)

requires a modification of the code.

Route Manager. The Route Manager package provides

access to the data structure which maps the CBMS address of

a device to the next communications port which should

receive the message. The procedures in the package are

listed in Table 3-XIII. The Rm_Init procedure initializes

the data structure to have no entries. The Rm_Set_Route and

Rm_LookupRoute procedures must have complete device names

(from the AmGetFullName procedure) for proper

referencing. The RmSetRoute procedure is called by each

UA, during its initialization, with the CBMS address and

3-34

AD-A138 429 DESIGN AND IMPLEMENTATION OF AN INPUT/OUTPUT INTER FACE
PROTOCOL FOR THE I. (U) A IR FORCE INST OF TEC
WRIGHT-PATTERSON AFR OH SCHOOL OF ENGI K N COLE

UNCLASSIFIED DEC 83 AFIT/GE/EE/83D-1 FIG 17/2 NL

EEEEEmhEEEohE
mEEEEEEomhEEEEI
smEohhEmhEmhh

&.8

W o a 340

1111 1.2 IUU.~41.

1.4 11 .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

TABLE 3-XIV

Procedures of the CBMS Manager Package

13.1 CbmsCreateMessage
13.2 CbmsReadjMessage
13.3 CbmsWrapMessage
13.4 CbmsUnwrapjMessage

communications port address to be entered into the

structure. The RmLookupRoute procedure is used by the

Mts_Receive procedure to determine the next communications

port for a message.

Like the Address Manager data structure, the Route

Manager structure is not directly accessed by any routines

outside the package. The internal structure of the data is

a simple table of a fixed size. However, unlike the Address

Manager system, the table of routes is not complete. For

any address that represents a device on another host, there

is always the same route, the MTS port of the other machine.

CaMS Manager. The CBMS Manager package provides

procedures necessary to manipulate the I/O Interface message

structures. The implementation of the CBMS messages, as

described in Chapter II, is known only by the procedures of

this package (see Table 3-XIV). The CbmsCreateMessage

procedure requires input arguments with all the information

to be placed in the message. After using iMAX procedures to

create the message data structure, the message fields are

3-35

created from the input data. The opposite function is

performed by the Cbms_Read_Message procedure which destroys

the message structure and provides the data found in the

message fields to the calling routine. The CbmsWrap and

CbmsUnwrap procedures are used by the MTS package

procedures and place the Message Transfer System "envelope"

on the message. The envelope is simply the source and

destination user names placed at the head of the message

string. To simplify the handling of the message structures,

the space for the envelope data is included in the CBMS

message structure allocated when the message is created.

Summary

This chapter has presented the design of the I/O

Interface for the 432 Micromainframe Computer System. The

three sublayers within the ISO Applications Layer of

protocol create an efficient organization for software

design. The implementation details of the structures

required for each sublayer do not cross protocol layer

boundaries. The object-oriented use of packages within each

sublayer has further protected access to the data

structures. Use of the heirarchial and object-oriented

design techniques has created a system organization that is

maintainable and flexible. With completion of this

interface system, the 432 can communicate with the outside

world in an organized manner. Future designers can build

upon this system of input and output functions.

3-36

__._ ___

IV. SYSTEM TESTING

Introduction

The first three chapters have presented the objectives,

requirements, and design for the I/O Interface. The purpose

of this chapter is to define the testing procedures needed

to validate the software developed to meet these objectives,

requirements and design goals of the interface on the Intel

432 Micromainframe computer system.

In general, testing proceeds concurrently with the

implementation of the requirements and design. Thus, the

testing sequence follows the top-down approach of the design

method. The CBMS and ISO models, described in Chapters II

and III, create a distinct hierarchy within the design,

which provides natural divisions for software validation.

For example, the operation of each CBMS sublayer, within the

ISO Applications Layer, can be tested as it is added to the

system (i.e., first the User Sublayer, then the User Agent

Sublayer, and finally, the Message Transfer Sublayer).

Test Desian Structure

The design of the I/O Interface for the 432

Micromainframe implements each of the CBMS sublayers on the

432 processor and the Attached processor system (see Figure

4-1). The 432 processor software is written in Ada language

and its execution, for testing, is controlled by the

4-1

- IP

432 Processor Attached Processor

System .4ystem

User Sublayer User Sublayer

User Agent Sublayer User Agent Sublayer

Message Transfer Message Transfer
Sublayer Sublayer

iMAX Operating System Facilities

Figure 4-1. I/O Interface Software System Structure

Debugger system (Intel Series III MDS) connected to the 432

processor hardware. The Attached processor software is

written in PLM-86 and executes directly on the Intel Series

III MDS. Testing procedures can be used to validate each

processors software individually and then integrate the two

systems to validate the interconnection hardware and

software. Thus, the testing procedures follow the hardware

and software structures of the system.

The testing procedures are structured to validate each

sublayer of the CBMS hierarchy, individually. This is,

essentially, the *black-box* testing technique (Ref

38:86,311). Each level of the hierarchy is tested as a

distinct system which accepts a defined set of inputs and

responds in an expected manner (i.e., each level performs

certain tasks for the system).

Testing at a lower level, within the sublayer, is left

4-2

to the code development process during the top-down

implementation of the modules. The modular and object-

oriented structure of the system software ensures that the

only coupling occurs at the functional level of the sublayer

boundaries. In other words, invalid code within a sublayer

can only affect the data structures of that sublayer. Thus,

thorough testing of the inputs and outputs of each sublayer

is sufficient to validate the operation of the modules

within the sublayer.

The overall complexity of the 432 system environment

dictates one additional test be performed. As described in

Chapter II, the Cross Development System for the 432-Ada

software involves two computer systems in addition to the

432 Micromainframe computer; the VAX 11/780 Host system and

the Intel Series III MDS Debugger system. A test to

validate this development environment would increase

confidence in the system. For the 432 CDS environment, the

most direct test involves taking an existing program, known

to be correct, and performing tasks usually done during

software development (i.e., compile the source, link the

object modules, and run the program in a test environment).

This environment test is done, before any I/O Interface

system testing, to validate the interconnection and software

utilities of the 432 Cross Development System.

There are also two other reasons for beginning the the

testing process at this point. Since the original

* J4-3

TABLE 4-I

I/0 Interface Testing Procedures

1. Environment Validation Test

2. 432 Processor System Validation
2.1 User Sublayer Test
2.2 User Agent Sublayer Test
2.3 Message Transfer Sublayer Test

3. Attached Processor System Validation
3.1 User Sublayer Test
3.2 User Agent Sublayer Test
3.3 Message Transfer Sublayer Test

4. System Integration Test

installation of the 432/670 system, the 432 and both Series

III Development Systems had been physically relocated in the

building. This required re-routing of the hard-wire

connection to the VAX system. Also, a new release of the

hardware (designated Release 2.1) had been received with

improved versions of the software, as well. This new [
configuration of both hardware and software had not been

used. Therefore, it is necessary to perform this basic test

of the system to establish confidence in the configuration,

before software development begins.

The remainder of this chapter is organized according to

the testing procedure outline given in Table 4-I. The

methods and expected results for each test are discussed in

the following sections:

4-4

TABLE 4-II

Environment Validation Test Procedure

Performed on VAX 11/780:

1) Verify the proper environment file names.
(VMS or UNIX system editor)

2) Compile the source files.
(IDA)

3) Link the resulting object modules
with the iMAX operation system module.
(LINK432)

Performed on Series III MDS:

4) Download the executable file to the
Series III MDS workstation.
(DNLOAD)

5) Verify the hardware configuration
of the 432 Micromainframe Computer.
(DSP432)

6) Load and execute the PRIME program.
(DEB432)

Environment Validation T~at

The method used for this test is to take a program,

that is known to be valid, through the complete development

cycle. The PRIME program is an Ada language program which

computes prime numbers. This program was supplied by Intel

as an example software system which would execute on the 432

system (Ref 21:G-4/G-7). The test method, then, is to use

the utilities of the development system environment to

compile, link, and execute the PRIME program.

4-5

am

, -,

Table 4-11 lists the steps in the test procedure. The

Znames of the software utilities are given in parentheses

with a reference to the manual describing its use. The

Intel 432 Cross Development System (CDS), including the

operation of its utilities, is discussed in more detail in

Appendix H.

The expected results are, simply, that the PRIME

program executed properly on the 432 system. This validates

that the 432's program development environment is functional

and produces executable code for the 432/670 computer

system.

To perform this test, the Intel 432/670 system should

be configured as shown in Figure 4-2. This hardware

environment includes only the Debugger and the 432 Processor

systems. The PRIME program uses the system Debugger as the

I/O device and, therefore, does not require another AP

system. In fact, any unnecessary hardware in the system may

cause the program to fail or act in an unpredictable manner.

The Ada language source files for the PRIME program are

listed in Table 4-II. This list does not include the

operating system packages required to create an executable

code module. Refer to the Intel 432/670 Computer System

Useru Guide for a complete list of the software (Ref

35:Appendix B) and a tutorial on the operation of the PRIME

program (Ref 35:Chapter 11).

4-6

i,9

Storage Memory iAPX 432 iAPX 432
Arrays Controller General General

Data Data
Processor Processor

Intel 432/670
Processor to Memory Interface

Interface
Processor
Link

{ ~ Intel 432 ProcLink

iAPX 432
Interface The Remote Processor
Processor System is not required

for this test.

Debugger 1 System

KDebugger Processor
Multibus

8086/12A Peripheral
Debugger Device
Processor Controller

Figure 4-2. Environment Validation Test
Hardware Configuration

4-7

- - -''.

TABLE 4-III

PRIME Program Software
(Ref 35:108)

Contents File Name

PRIME Example Program [INTEL2.ACS.PRIME] directory
TEXTIO routine specification INTIO.MSS
Console prompt routine spec. PROMPT.MSS
Console prompt routine body PROMPT.MBS
Primary program function ISPRIM.MCS
Main program control spec. MAIN.MSS
Main program control body MAIN.MBS
Process initialization spec. PSERP.MBS
Program linker directives ISPRIM.LKD

432 Processor System Validation

The I/O Interface software is validated by testing each

of the three sublayers, in turn. Dummy modules are used for

the procedures that are part of a lower sublayer and,

therefore, not included in the test. Each dummy module

writes a message to the Debugger console, indicating that

the module has been called, and returns to the calling

procedure.

The test is performed by executing each of the system

commands (SET, HELP, and COPY). Table 4-III lists a minimum

set of commands which may be used. In addition to these

commands, a number of invalid commands should be entered to

test the error handling properties of the system.

The hardware configuration for these tests is exactly

the same as for the environment validation test, shown in

4-8

TABLE 4-IV

432 Processor Software Validation Test
Commands List

HELP
HELP SET
HELP COPY
SET DEFAULT RM67/NETO
COPY /432/USR /MDS/CON
COPY /MDS/CON /432/USR
COPY /432/USR /432/USR
SET DEFAULT RM67/NETO/MDS
COPY /DSK/:FI:TEST.TXT /PTR

Figure 4-2). The Attached Processor system is not required

for these tests because no messages will be sent to other

hosts in the network.

The following sections describe the software required

and the results expected from the commands in Table 4-IV,

for each sublayer:

User Sublayer Tast (432). The first sublayer in the

CBMS hierarchy is the User Sublayer. This sublayer of the

I/O Interface has only one entity on the 432 processor; the

User Shell. The software files required for this test are

listed in Table 4-V. Source code listings of the test file

(Ustest.mbs) and other 432 processor files can be found in

Volume II of this report.

Without any support from the lower sublayers, the shell

can only respond completely to commands which only involve

itself. That is, the HELP command is completely functional,

4-9

- ~ ~ - ~

TABLE 4-V

User Sublayer Validation Software (432)

S File Contents

Cbms.mss CBMS Manager Specification
Rm.mss Route Manager Specification
Am.mss Address Manager Specification
Mts.mss Message Transfer System Spec.
Usa.mss User Shell Agent Specification
User.mss User Interface Specification
User.mbs User Interface Body
Syscmd.mss System Commands Specification
Syscmd.mbs System Commands Body
Shell.mss User Shell Specification
Shell.mbs User Shell Body
Ustest.mbs User Sublayer Test Modules Body

but, the SET and COPY commands cause flag messages to be

printed by the dummy modules they call.

The operations of all the system shell commands are

documented in Appendix H, including listings of the HELP

command responses. The SET command responds with a flag

message indicating that the procedure AM_Set_Default has

been called from the Message Transfer Sublayer. The COPY

command causes the following list of dummy procedures to be

called in the User Agent Sublayer:

1. UsaOpen (open the source)

2. UsaOpen (open the destination)

3. Usa-Title (write title to destination)

4. UsaRead (read from the source)

5. Usa_Write (write to the destination)

4-10

6. UsaClose (close the destination)

7. Usa_Close (close the source)

The flag messages should appear in this order to indicate

proper operation of the COPY function. Note that the source

file is only read once because the dummy module for the

UsaRead procedure indicates an end-of-file condition on the

first read action. Proper responses to the commands

validates operation of the User Shell, User Interface, and

System Commands packages of the User Sublayer.

User Acent Sublaver Test f4321. The User Agent

Sublayer, like the User Sublayer, contains only one entity

on the 432 processor; the User Shell Agent. For this test,

the User Sublayer test file is replaced by the software

modules of the User Agent and a different set of dummy

procedures in the User Agent test file (Uastest.mbs). Table

4-VI lists the files containing the User Agent Sublayer

modules. Again, the source code listings are provided in

Volume II of this thesis.

In the previous test, this sublayer generated the flag

messages of the COPY command test. The HELP command

responds completely, as in the test above. The COPY and SET

commands will still not perform completely, however, without

the Message Transfer Sublayer implementation.

The SET command responds exactly as before, calling the

procedure AMSetDefault. The COPY command, now, causes six

4-11

8d

TABLE 4-VI

User Agent Sublayer Validation Software (432)

File Name File Contents

Cbms.mss CBMS Manager Specification
Cbms.mbs CBMS Manager Body
Rm.mss Route Manager Specification
Am.mss Address Manager Specification
Mts.mss Message Transfer System Spec.
Usa.mss User Shell Agent Specification
Usa.mbs User Shell Agent Body
User.mss User Interface Specification
User.mbs User Interface Body
Syscmd.mss System Commands Specification
Syscmd.mbs System Commands Body
Shell.mss User Shell Specification
Shell.mbs User Shell Body
Uastest.mbs User Agent Sublayer Test Body

calls to the dummy procedure MTSSend, indicated by flag

messages. Each call to this procedure causes a reply

message to be sent to the User Shell Agent reply port,

allowing the calling procedure to continue processing.

Again, a request to read a file will generate only one read-

write operation, because the reply to this request indicates

an end-of-file condition. This level of testing indicates

the successful operation of the communication ports and

message handling procedures on the 432 processor system.

The next test completes validation of the 432 processor

software as a stand-alone system.

The CBMB Manager package, of the Message Transfer

Sublayer, must be implemented for this test. This package

4-12

-- " III l - | - " ,..

j4

TABLE 4-VII

Message Transfer Sublayer Validation Software (432)

ile Name File Contents

Cbms.mss CBMS Manager Specification
Cbms.mbs CBMS Manager Body
Rm.mss Route Manager Specification
Rm.mbs Route Manager Specification
Am.mss Address Manager Specification
Mts.mss Message Transfer System Spec.
Mts.mbs Message Transfer System Body
Usa.mss User Shell Agent Specification
Usa.mbs User Shell Agent Body
User.mss User Interface Specification
User.mbs User Interface Body
Syscmd.mss System Commands Specification
Syscmd.mbs System Commands Body
Shell.mss User Shell Specification
Shell.mbs User Shell Body
Mtstest.mbs Message Transfer Sublayer

Test Body

contains the procedures for creating and accessing the I/O

Interface messages. These functions are also validated

during this test.

Mesagae Transfer Sublaver Test (432). The last

sublayer to be tested on the 432 processor contains the

packages for translating names and addresses determining

routes for message transfer, and moving messages among the

I/O system agents. For this test, the previous test file is

replaced by the modules of the Message Transfer Sublayer.

There is, however, still a need for a test file of special

software.

4-13

The messages cannot be sent to devices outside the 432

processor without having the Attached Processor system

operational. To allow the Message Transfer Sublayer to be

validated without the AP system, the test file (Mtstest.mbs)

contains a modified version of the Address Manager package

which maps all device names into the User Shell console.

The test file also contains the Mtsinit procedure which

initializes the software package without creating the ports

for communication with the missing AP system. Table 4-ViI

lists all the 432 software files necessary for the Message

Transfer Sublayer validation.

The SET and HELP commands are completely functional in

this test. The proper operations of both these commands are

described in Appendix H. The COPY command performs the

complete data transfer when demonstrated using the User

Shell as the source and destination (complete designation

"RM67/NET0/432/USR"). In addition, if any other valid

device name is used for source or destination, it is handled

as if the User Shell were the device requested. In other

words, all valid device names are mapped into the User Shell

by a modified Address Manager Package in the Message

Transfer Sublayer.

This level of testing validates the data transfer,

device naming, device addressing, message format, and

message routing mechanisms of the I/O Interface on the 432

processor system. The interprocessor communication,

4-14

iAPX 432
Interface
Processor

Series III Microcomputer Development
System MULTIBUS

8085 based 8086/12A Disk Disk
IPC RPB System System
Processor Processor Controller Interface

Figure 4-3. Attached Processor Software Validation Test
Hardware Configuration

however, cannot be validated until the Attached Processor

system is tested and the systems are physically connected.

Attach d Processor System Validation

Validation of the AP software is more difficult than

for the 432 processor system, because there is no

controlling source device designed on the AP. The

"commands" to the device abstractions come from messages

sent from the 432 processor. To allow testing on the AP

system, a "test shell" is included in the test software

package. The test shell accepts commands from the Series

III Console and calls procedures in the appropriate

4-15

- - p

TABLE 4-VIII

Attached Processor Test Shell Commands

Test Shell Device Functions
Command PS IFS S3C

0 Open Open Open 2
1 Close Close Close 2
2 Read 1 Read Read
3 Write Print Write Write
4 Page Form Feed 2 Clear Screen
5 Title Title Page 2 Clear Screen
6 Delete 1 Delete 1
7 Rename 1 Rename 1
8 Reset Close Reset 2
9 Test Test Test Test
G Get Config 1 1 1
S Set Config 2 1 2

1 - Not Implemented, UA replies "command invalid"
2 - Not Used, UA replies "ok"

sublayer. These commands are shown in Table 4-VIII and the

modules are listed in Volume II, with the dummy procedure

modules for each sublayer. In general, the dummy procedures

simply write flag messages to the Series III Console and

return.

The hardware for the AP validation tests is, simply,

the Intel Series III MDS. The configuration of the system

is shown in Figure 4-3. Additional hardware in the system

will, generally, not affect the operation of the AP

software. However, it is important to ensure that enough

memory is present to support the software requirements. The

4-16

TABLE 4-VIII

Attached Processor Test Shell Commands

Test Shell Device Functions
Command PS IFS $3C

0 Open Open Open 2
1 Close Close Close 2
2 Read 1 Read Read
3 Write Print Write Write
4 Page Form Feed 2 Clear Screen
5 Title Title Page 2 Clear Screen
6 Delete 1 Delete 1
7 Rename 1 Rename 1
8 Reset Close Reset 2
9 Test Test Test Test
G Get Config 1 1 1
S Set Config 2 1 2

1 - Not Implemented, UA replies "command invalid"
2 - Not Used, UA replies wok"

sublayer. These commands are shown in Table 4-VIII and the

modules are listed in Volume II, with the dummy procedure

modules for each sublayer. In general, the dummy procedures

simply write flag messages to the Series III Console and

return.

The hardware for the AP validation tests is, simply,

the Intel Series III MDS. The configuration of the system

is shown in Figure 4-3. Additional hardware in the system

will, generally, not affect the operation of the AP

software. However, it is important to ensure that enough

memory is present to support the software requirements. The

4-16

.

TABLE 4-IX

User Sublayer Validation Software (AP)

ePName File Contents

Cbms.inc CBMS Manager Specification
Rm.inc Route Manager Specification
Am.inc Address Manager Specification
Mts.inc Message Transfer System Spec.
Psa.inc Printer System Agent Spec.
Ifsa.inc ISIS File System Agent Spec.
S3ca.inc Series III Console Agent Spec.
Ps.inc Printer System Specification
Ps.plm Printer System Body
Ifs.inc ISIS File System Specification
Ifs.plm ISIS File System Body
S3c.inc Series III Console Specification
S3c.plm Series III Console Body
Ustest.plm User Sublayer Test Body

program space requirements are printed, on the output

listing, by the PL/M-86 compiler.

User Sublayer Tost (API. In the AP, the User Sublayer

contains the device abstractions for the three system

devices; the Series III Console, the Printer System, and the

ISIS Pile System. The PL/M-86 source files, containing the

implementations of these abstractions, are listed in Table

4-IX. Source listings of these files and the User Sublayer

test file (Ustest.plm) are provided in Volume II.

For this test, the test shell directly calls the

functions of each device abstraction. The shell accepts

only single character commands and performs the device

functions as listed in Table 4-VIII. Each command prompts

4
4-17

i,
__

the console operator for a device name (PTR, CON, or DSK)

and, if necessary, for an ISIS compatible file name (Ref

13:2-1) or text data input.

This test validates the operation of each device and

the performance of the functions which define the device

abstraction used by the I/O Interface. The devices are

expected to respond correctly to each command. In Addition,

each command executed by a device generates a flag message

indicating the procedure SendReply, in the User Agent

Sublayer, has been called. Refer to Table 4-VIII to

determine the functions applicable to each device. An

invalid command selection for a device is ignored.

User Agent Sublayer Test (APi. The validation of the

User Agent Sublayer is accomplished in the same manner,

using the test shell, which, for this test, generates CBMS

messages and sends them to the appropriate User Agent for

the device requested. Table 4-X lists the source files

required for the User Agent Sublayer Validation Test.

Source code listings appear in Volume II of this thesis.

At this level, all the test shell commands listed in

Table 4-VIII may be used with each device. The User Agent

software handles the requests that are inappropriate for

each device, using the CBMS Manager package to read the

message contents. The CBMS Manager package must be

implemented to allow the User Agent software to access the

data in the shell command messages. The other modules of

4-18

6 .

TABLE 4-X

User Agent Sublayer Validation Software (AP)

File Name Pile Contents

Cbms.inc CBMS Manager Specification
Cbms.plm CBMS Manager Body
Rm. inc Route Manager Specification
Am.inc Address Manager Specification
Mts.inc Message Transfer System Spec.
Psa.inc Printer System Agent Spec.
Psa.plm Printer System Agent Body
Ifsa.inc ISIS File System Agent Spec.
Ifsa.plm ISIS File System Agent Body
S3ca.inc Series III Console Agent Spec.
S3ca.plm Series III Console Agent Body
Ps.inc Printer System Specification
Ps.plm Printer System Body
Ifs.inc ISIS File System Specification
Ifs.plm ISIS File System Body
S3c.inc Series III Console Specification
S3c.plm Series III Console Body
Uastest.plm User Agent Sublayer Test Body

the MTS sublayer, used by the User Agent modules, generate

flag messages for the shell console indicating their use.

Thus, each command from the test shell performs a function

on the device requested. The attempt to send a reply

message, upon function completion, generates a flag message

from the dummy procedure MTSSend.

This test validates the operation of the User Agent

software for each device and the CBMS Manager software which

allows access to CBMS messages. The format syntax of the

CBMS messages is also tested because the test shell uses the

CBMS Manager software to create messages which are then read

4-19

- d

TABLE 4-XI

Message Transfer Sublayer Validation Software (AP)

S File Contents

Cbms.inc CBMS Manager Specification
Cbms.plm CBMS Manager Body
Rm.inc Route Manager Specification
Rm.plm Route Manager Body
Am. inc Address Manager Specification
Mts.inc Message Transfer System Spec.
Mts.plm Message Transfer Body
Psa.inc Printer System Agent Spec.
Psa.plm Printer System Agent Body
Ifsa.inc ISIS File System Agent Spec.
Ifsa.plm ISIS File System Agent Body
S3ca.inc Series III Console Agent Spec.
S3ca.plm Series III Console Agent Body
Ps.inc Printer System Specification
Ps.plm Printer System Body
Ifs.inc ISIS File System Specification
Ifs.plm ISIS File System Body
S3c.inc Series III Console Specification
S3c.plm Series III Console Body
Mtstest.plm Message Transfer Sublayer

Test Body

by the User Agents.

Message Transfer Sublayer Test (AP). The final test of

the AP system validates the operation of the addressing and

routing mechanisms of the Message Transfer Sublayer. Table

4-XI lists the files necessary for operation of the Message

Transfer Sublayer Validation Test. These source files are

all listed in Volume II.

The test shell for this level generates messages which

are given to the MTSSend routine for entry into the MTS

4-20

.

TABLE 4-XII

System Integration Test Commands

HELP
HELP SET
HELP COPY
SET DEFAULT RM67/NETO
COPY /432/USR /MDS/CON
COPY /432/USR /MDS/PTR
COPY /432/USR /MDS/DSK/:FO:TEST.TXT
COPY /432/USR /MDS/DSK/:Fl:TEST.TXT
COPY /MDS/CON /MDS/DSK/:FO:TEST2.TXT
SET DEFAULT RM67/NETO/MDS
COPY /DSK/:Fl:TEST.TXT /PTR
COPY /DSK/:FO:TEST2.TXT /DSK/:Fl:TEST.TXT
COPY ICON /PTR
COPY /CON /DSK/:FO:TEST3.TXT
COPY /DSK/:FO:TEST3.TXT /CON
COPY /DSK/:Fl:TEST.TXT /CON
SET DEFAULT RM67/NETO
COPY /MDS/DSK/:Fl:TEST.TXT /432/USR

receiving port. As with the 432 processor testing, the

Address Manager package must be modified to send all

messages intended for non-local devices to the local console

(the Series III Console).

System Intearation Test

The final test of the I/O Interface system is the

System Integration Test. This test is intended to validate

the operation of the complete system as a whole and is

performed with no dummy software modules. The hardware and

software environments, for this test, are described in

Appendix H, with the I/O Interface operating instructions.

The source files are listed in Volume II.

4-21

The test method is by execution of each of the system

commands (SET, HELP, and COPY) with a range of arguments

that validates the correct operation of each command and the

interface with each device available in the system. Table

4-XII lists a minimum set of commands which may be used. In

addition to this set, a number of invalid commands should be

entered to test the error handling properties of the system.

The expected results of each command should be

validated before entering the next command. Validation, in

the case of file manipulations, may require halting the

execution of the program and using the operating system

utilities of the Series III MDS to examine the disk

directories and file contents.

This chapter has presented the test design and

procedures for the I/O Interface software development (see

Table 4-I) and discussed the methods and objectives for each

test. The System Integration Test validates that the I/O

Interface Protocol implementation on the 432 Micromainframe

computer system meets the objectives described in Chapter

II; basically, to provide virtual device operation within a

flexible system design. The next chapter discusses the test

results and, then, presents conclusions and recommendations

for future work with the AFIT/ENG 432/670 Computer System.

4-22

p

.. ,,

V. RRSULTS. CONCLUSIONS AND RRCOMMENDATIONS

Introduction

This investigation has been concerned with the

development of an interface protocol for I/O device control

in a distributed multiprocessor environment. The first

three chapters have presented the design ands the fourth

chapter, validation procedures for the software system. This

chapter completes the written development of the I/O

Interface. The following sections describe the test results,

discuss the conclusions reached. and present recommendations

for future work with the Intel 432/670 Computer System.

Test Results

This section presents the results of the test

procedures described in Chapter IV. The procedures were

structured to individually test each sublayer of the I/O

Interface implementation on the 432 and AP processors. The

following paragraphs discuss the major results of these

tests, which are summarized in Table 5-I. Detailed test

results may be found in Appendix K.

Environment Validation Tesh. The first test of the

Intel 432/670 Cross Development System was a success. The

PRIME program was compiled, linked, and executed according

to the procedures outlined in Chapter IV. In addition, the

5-1

Ip

TABLE 5-I

Summary of Test Results

Test Result

Environment Validation Test Validated

432 Processor Validation Tests:
User Sublayer Validated
User Agent Sublayer NOT Validated
Message Transfer Sublayer NOT Validated

Attached Processor Validation Tests:
User Sublayer Validated
User Agent Sublayer Validated
Message Transfer Sublayer Validated

System Integration Test NOT Validated

PRIME program was modified to use the full implementation of

the iMAX operating system (see Appendix C) and the resulting

program was, also, successfully tested. Sample output

listings from these tests are provided in Appendix K.

432 Processor Tests. Only the User Sublayer of the 432

processor software was validated by the test procedures ot

Chapter IV. The size of the executable module, containing

more than the uppermost sublayer, exceeds the capacity of

the double-density disk system on the Series III MDS

Debugger System. The largest component of the software

system is the IMAX operating system. The operating system

was provided as a single module that must be linked with

user programs to create an executable module for the 432

5-2

d

processor. The complete module must be moved to a diskette

on the Debugger system before loading into the 432s memory.

Since it was not possible to create a usable (small enough)

module that contained more that the first sublayer of the

I/O Interface, further testing of the 432 processor software

was not possible.

The User Sublayer, however, demonstrated the operation

of the three system commands on the 432/670 Computer System.

The HELP command provides text information to the Debugger

console and the SET and COPY commands responded with flag

messages indicating calls to the dummy procedures of the

test package. Error checking, on command line syntax, was

also validated by testing.

Attached ProcAsor Tests. The test procedures, for

validating the Series III NDS AP software, were all

successful. The use of a test shell program allowed

validation of all functions of the I/O Interface software.

The I/O devices implemented (printer, console and disk

systems) all responded correctly to valid, and invalid,

messages generated by the test shell program. Appendix K

contains listings of the system outputs during each test.

The major goal of this investigation was to implement an

interface system on the Intel 432 Micromainframe Computer

System using a message based protocol. The concepts and

5-3

a

structure of the CBMS and the ISO Open System

Interconnection Reference model were used to organize the

system into a hierarchy of functional protocols.

The ISO Reference model provided the overall

organization. The I/O Interface system was designed within

this structure to a large extent. However, the model was

not strictly followed at the lowest level of this design.

The message management functions of the 432's operating

system (iMAX) were used to manipulate the I/O Interface

messages within the Message Transfer Sublayer. Strict

adherence to the ISO model would have required a Transport

Layer protocol providing a reliable message handling system.

Implementation of the Transport layer would be useful

because it would allow communications with other ISO

standard systems (e.g. DELNET) and it would provide a well-

known standard interface for future system users.

Future implementation of the lower levels of the ISO

model are possible. The object-oriented I/O Interface

design insures that the only software needing modification

is the Message Transfer Sublayer. Also, the HELP command

implementation was designed to provide information from

fixed memory storage of the data. A more practical approach

would be to use files to store the data and, then, allow the

user to direct the output to any system device. This should

be done using the functions of the I/O Interface. The

modifications would only affect the System Commands Package

5-4

of the 432 processor software.

Modifications to the MTS and the HELP command are just

two examples of the system maintainability derived from

object-oriented design methodology. The placing of design

features within software packages created a manageable and

flexible system which may be maintained and improved in a

systematic manner.

In summary, while the implementation of the I/O

Interface cannot be evaluated completely until the entire

system has been tested, the development of the interface as

a CBMS system is a step towards a system that can be

expanded to include many other computer systems and their

devices through interface with a local area network

organization. The realization of the DELNET system will

allow continued development along these lines.

The 432 system has a powerful organization, but, it

must become fully operational before a proper evaluation can

be achieved. At the present time, development work with the

432 is very frustrating. The incomplete implementation of

the Ada compiler and the tedious process required for

software development are, perhaps, the worst features of the

system.

Future users will still have to contend with the

complexity of the system. Grasping the organization of the

hardware and software, necessary to develop and execute

programs on the 432, can be a formidable task. An effort

5-5

must be made, to reach a point where the interaction of

system components is understood by the designer.

The 432 University User's Group, an organization of 432

system academic users, is aware of these problems (Ref 39).

Efforts are being made to remove the Series III MDS from the

development environment of the 432. When completed, the

Debugger system will be an Attached Processor system

executing iRMX 86 software which is common to the AP

portions of iMAX. In addition, the group is developing a

high-speed communications link from the VAX 11/780 system to

the AP system using iRMX 86. These projects are intended to

simplify the development environment and decrease the time

necessary to move programs among the systems within the

Cross Development System for the 432 (currently, it takes

about an hour for each cycle of source modification,

compile, link, download to the debugger and re-testing a

program on the 432).

Recommendations for Future Study

Recommendations for further study related to this

thesis effort are presented in two categories. The first

group contains topics related to inter-process

communications, independent of implementation. The second

category is the recommended projects using the Intel 432/670

Micromainframe computer system. The projects are summarized

in Table 5-II.

5-6

d

TABLE 5-II

Summary of Recommendations for Future Study

Network Communications Projects

1. Process Control Protocol
2. System State Information Protocol
3. Transport Layer for Delnet Interface

Intel 432/670 Computer System Projects

1. Data Flow Architecture Study
2. Data Base Processor System
3. Distributed Operating System
4. Operating System Shell for iMAX
5. Ada Language Software Test and

Verification Environment
6. Other Compilers for the 432
7. Attached Processor Front-End

Inter Process Communications Projects. Several projects

are possible in the area of inter-process communications in

a distributed processing environment.

1. Process Control Protocol. Design, Development

and possible implementation of a protocol for process

control in a distributed multi-processor environment.

In a distributed processing environment the kernel of

the operating system must provide a method for

creating, starting, stopping, and destroying processes

an execution system which may not be local to the

processor executing the function. Ideally this method

should be uniform across the entire system. That is,

the requesting process performs the same action

5-7

irrespective of the actual location of the process

being operated upon. This project may begin with the

assumption of an existing message based inter-process

communications system.

2. System State Information Protocol. Distributed

operating systems using a message based system for

inter-processor communication require a method for

passing state information among the systems. There is

a need for a protocol defining the procedures for

heterogeneous multiprocessor systems to relate state

information to each other for a practical distribution

of operating system control decisions.

3. Transport Layer for DRLNET Interface.

Implementation of a network transport layer, within the

structure of the I/O Interface, would allow the 432

system to be interfaced with a local area network, such

as the DELNET system. Interconnection with other

computers, through a network, would allow future

development of protocol systems within higher levels of

the ISO Interconnection Reference Model.

Intel 432/670 Computer System Projects. Based on the

continued work by Intel Corporation to improve the state of

the Cross Development System for the 432 and fully implement

the Ada language, the following recommendations are

5-8

• a 6

presented for future work with the iAPX 432 Computer System:

1. Data Plow Architecture Study. The multi-processor

organization of the 432/670 Micromainframe system

presents possibilities for design studies in data flow

architecture. Some of the Attached Processors might be

programmed for performance of specific manipulations

and the 432's GDPs could provide'the flow control and

processor allocation functions. Alternatively,

specific GDPs might be selectively allocated to

specific tasks and the Attached Processors restricted

to performing the I/O (flow control) functions.

2. Data Base Processor System. The Attached

Processors of the 432 System could be programmed to

perform pre-processing as well as input and output

functions for a data base management system using the

Intel 432 Micromainframe computer system. Such an

arrangement might be developed easily using the iMAX

432 executive as the system kernel. Also, various

arrangements of multiple 432 GDPs could be evaluated to

test different algorithms for use on multiprocessor

data base management systems.

3. DitributAd Overatina System, The present

configuration of the iMAX 432 operating system places

the 432 processors at the top of a hierarchical

organization. The processing power of the Attached

S-9

" "' ' -- ' r 0

Processors could be used to create a more balanced

system structure. This would encompass many of the

considerations of the design projects listed above,

related to inter-process communications.

4. O90ratina System Shell for iMAX. The iMAX 432

Multifunction Applications Executive for the Intel 432

Micromainframe computer system provides a functional

interface to the user and is intended to be linked into

the user's software as necessary. Development of a

multiuser operating system shell for the 432 System

using iMAX 432 as the kernel would provide the basis

for a future development system. This work could be

done as a follow-on project to the design of a

multiprogramming operating system by Ross (Ref 34:1).

5. Ada Lanauaae Software Testing and Validation

Enironment. The 432 Computer System provides an

execution environment for Ada language programs, within

the restrictions of the limited implementation of Ada

in the Cross Development System. Future releases of

the compiler should provide a more complete

implementation of the Ada language. However, even the

existing release gives some capability for testing Ada

software. As more projects are completed using this

system, a software base will be built up. To ensure

this is done efficiently, studies should be made to

5-10MAW-

develop configuration management techniques and perhaps

even rules of form for the Ada packages to be added to

this data base. This project would be primarily a

software engineering effort.

6. Other Compilers for the 432. At present, only the

Ada language is available to programmers of the Intel

432 Computer System. Writing compilers for other

languages in Ada, for execution on the 432 system,

would allow software to be transported from other

systems and re-compiled for execution on the 432.

7. Attached Processor Front-End. The attached

processor is the I/O processor for the 432 computer

system. Increasing the intelligence of this I/O

processor will allow the main system (the 432

processors) to perform their remaining tasks more

efficiently. One possible improvement would be to move

a portion of the operating system shell intelligence to

the attached processor. For example, while acting as

the terminal handler and file storage system monitor

for the main system, the attached processor could also

intercept requests for text file displays and provide

the requested file data without communicating with the

432 GDPs. Such an arrangement would constitute a small

step towards a distributed operating system and could

be used to evaluate the potential for more cooperative

5-11

t 9

I | -

processing among the components of the 432 System.

As indicated by the range of these projects, there are

a large number of uses for the 432 Computer System that are

unexplored. In addition, the 432 University User's Group

(Ref 39) can provide a source of information on the current

directions for research with the 432.

5-12

L • 4

Bibliography

1. ANSI/MIL-STD-1815A. Ada Programming Lanauaae.
Washington, D.C.: United States Government, Under
Secretary of Defense, Research and Engineering, 1980.

2. Coffman, Edward G. Jr. and Peter J. Denning. 0 ina
Systems Theory. Englewood Cliffs, N.J.: Prentice-
Hall, Inc., 1973.

3. DARPA Publication RFC: 791. Internet Protocol: DARPA
Internet Proaram Protocol Snecification, DOD Standard.
Arlington, Virginia: Defense Advanced Research Projects
Agency, Department of Defense, 1981.

4. Hansen, Per Brinch. Operating System PrinciDles.
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1973.

5. Hemenway, Jack. "Object-Oriented Design Manages
Software Complexity," =D, li:141-145 (August 1981).

6. Hoare, C. A. R., and R. H. Perrott. Operating Systems
Technigues: Proceedings of a Seminar held at Oueen's
University. Belfast. 1971. London, United Kingdom:
Academic Press Inc., 1972.

7. Holmes, Victor P., Bruce N. Malm, and Tom H. Little.
"Island Universes: Distributing a Single-User
Operating System," Proceedings of the Conference on
Parallel Processino. 1982, 319-321. New York:
Institute of Electrical and Electronics Engineers,
Inc., 1982.

8. Institute for Computer Sciences and Technology pubilcation
CBOS-82-1. Features of a Messaae Transfer Protocol, Draft
Report. Gaithersburg, Maryland: Institute for Computer
Sciences and Technology, National Bureau of Standards,
November, 1981.

9. Institute for Computer Sciences and Technology publication
CBOS-82-4. Naminga and Addressing in Comnuter Based Messaae
Systems, Draft Report. Gaithersburg, Maryland: Institute
for Computer Sciences and Technology, National Bureau of
Standards, August 1982.

BIB-1

10. Institute for Computer Sciences and Technology publication
CBOS-82-3. Service Specification of a Message Transfer
Protocol, Draft Report. Gaithersburg, Maryland: Institute
for Computer Sciences and Technology, National Bureau of
Standards, February 1982.

11. Institute for Computer Sciences and Technology publication
LANP-80-2. Standards for Local Computer Networks,
Draft Report. Gaithersburg, Maryland: Institute for
Computer Sciences and Technology, National Bureau of
Standards, March, 1980.

12. Institute for Computer Sciences and Technology
Proposed Federal Information Processing Standard
Specification for Messace Format for Computer Based
Message Systems. Gaithersburg, Maryland: Institute for
Computer Sciences and Technology, National Bureau of
Standards, April 1982.

13. Intel Publication No. 121618-003. Intellec Series III
Microcomputer Development System Procrammer's Reference
Manual. Santa Clara, California: Intel, Corp., 1981.

14. Intel Publication No. 142603-004. iRMX B..a
Interactive Confiauration Utility User's Guide. Santa
Clara, California: Intel Corp., 1981.

15. Intel Publication No. 143232-002. iRMX 88 Reference
Manual. Santa Clara, California: Intel Corp., 1981.

16. Intel Publication No. 143241-003. iRMX 88 Installation
Instructions. Santa Clara, California: Intel Corp., 1981.

17. Intel Publication No. 171858-001 Rev. B. iAPX 432
Object Primer. Santa Clara, California: Intel Corp.,
1981.

18. Intel Publication No. 171821-001. Introduction to the
iAPX 432 Architecture. Santa Clara, California: Intel
Corp., 1981.

19. Intel Publication No. 171867-001. Intel 432 System
Summary| Manager's Perspective. Santa Clara,
California: Intel Corp., 1981.

20. Intel Publication No. 171869-002. Reference Manual for
the Ada Proarammina Languaae. Santa Clara, California:
Intel Corp., 1981.

21. Intel Publication No. 171870-002. Intel 432 Cross
Development System VAX Rost User's Guide. Santa Clara,
California: Intel Corp., 1982.

BIB-2

22. Intel Publication No. 171954-002. Introduction to the
Intel 432 Cross Development System. Santa Clara,
California: Intel Corp., 1982.

23. Intel Publication No. 172097-002. Intel 432 Cross
Development System Workstation User's Guide. Santa Clara,
California: Intel Corp., 1982.

24. Intel Publication No. 172098-002. System 432/600
System Reference Manual. Santa Clara, California:
Intel Corp., 1982.

25. Intel Publication No. 172103-002. iMAX 432 Reference
Manual. Santa Clara, California: Intel Corp., 1982.

26. Intel Publication No. 172174-001. Asynchronous
Communication Link User's Guide. Santa Clara, California:
Intel Corp., 1981.

27. Intel Publication No. 172283-001. Reference Manual for
the Intel 432 Extensions to Ada. Santa Clara,
California: Intel Corp., 1981.

28. Kahn, Kevin C. and Fred Pollack. "An Extensible
Operating System for the Intel 432," Proceedings of the
Twenty-Second Computer Society International
Conference, 398-404. New York: Institute of Electrical
and Electronics Engineers, Inc., February 1981.

29. Kahn, Kevin C., William M. Corwin, T. Don Dennis,
Herman D'Hooge, David E. Hubka, Linda A. Hutchins, John
T. Montague, and Fred J. Pollack. "iMAX: A
Multiprocessor Operating System for an Object-Based
Computer, "Proceedings of the Eighth Symposium on
Operating Systems Principles, 15 (5):127-136,
Association for Computing Machinery, December 1981.

30. McNamara, John E. Technical Asiects of Data
Communication. Bedford, Massachusetts: Digital
Equipment Corporation, 1977.

31. Moulton, James. "High Level Protocol Boundaries in the
ISO Model," IEEE 19R0 Trends and AmDlications;
Computer Network Protocols, 54-58. New York: Institute
of Electrical and Electronics Engineers, Inc., 1980.

32. Phister, Paul W., Jr. Protocol Standards and Implementation
within the Dicital Engineering Laboratory Computer Network
(DELNET) using the Universal Network Interface Device
IUNID). Unpublished MS thesis. Wright-Patterson AFB,
Ohio: School of Engineering, Air Force Institute of
Technology, October 1983.

BIB-3
41

33. Rattner, Justin and George Cox. "Object-Based Computer
Architecture," Computer Architecture News, a (6):4-11
(October 1980).

34. Ross, Mitchell S. Desian and Development of a
MultiDrogrammina Operatina System for Sixteen Sit
Microprocessors. MS thesis. Wright-Patterson AFB, Ohio:
School of Engineering, Air Force Institute of Technology,
December 1981.

35. Smith, Lynn M. Intel 432/670 Computer System User's
Guide. Unpublished text. Wright-Patterson AFB, Ohio:
School of Engineering, Air Force Institute of
Technology, June 1983.

36. Smith, Lynn M. Investigation of the Interfacina of the
Intel 432/670 Computer System to the MIL-STD-1553B Serial
Avionics Bus. Unpublished MS thesis. Wright-Patterson AFB,
Ohio: School of Engineering, Air Force Institute of
Technology, June 1983.

37. Stankovic, John A., Andries van Dam. "Research
Directions in (Cooperative) Distributed Processing,"
Research Directions in Software Technology, edited by
Peter Wegner. Cambridge, Mass.: The MIT Press, 1979.

38. Weinberg, Victor. Structured Analysis. New York, New
York: Yourdon Press, 1979.

39. Weaver, Alfred C., Professor. 432 University User's
Group correspondence. Department of Computer Science,
Thorton Hall, University of Virginia, Charlottesville,
Va., October 5, 1983.

40. Zeigler, Stephen, Nicole Allegre, Robert Johnson, and
James Morris. "Ada for the Intel 432 Microcomputer,"
Com~utgr, 11:47-56 (June 1981).

41. Zeigler, Stephen, Nicole Allegre, David Coar, Robert
Johnson, and James Morris. "The Intel 432 Ada
Programming Environment," Proceedings of the Twenty-
Second Computer Society International Conference, 405-
410. New York: Institute of Electrical and
Electronics Engineers, Inc., February 1981.

BIB-4

APPENDIX A

Intel 432/670 System Architecture

Introduction

The purpose of this appendix is to provide an overview

of the hardware and software architectures of the Intel

432/670 Micromainframe Computer System. This introduction

presents the major features of the iAPX 432 architecture.

The remaining sections describe the memory organization,

software structures, and component architectures of the

system.

Intel claims that "the iAPX 432 represents one of the

Imost significant advances in computer architectures since

the 1950sm (Ref 18:1-5). The list of features presented to

justify that statement includes the following (Ref 18:1-5/1-

7):

-- The iAPX 432 is the first computer architecture

designed to support software-transparent, multi-processor

operation.

-- The iAPX 432 is the first commercial computer whose

architecture fully supports the new object-oriented

programming design methodology.

-- The iAPX 432 is designed to be programmed entirely

in high-level languages.

-- The iAPX 432 has a large virtual address space

(2**40 bytes) and hardware mechanisms for implementing

A-1

... i mi l - . ; _ i I I I--

virtual memory systems that can use this environment.

-- The iAPX 432 hardware can handle fault conditions

in a multiprocess, multiprocessor environment and allow

other system processes and processors to continue running.

The architecture of a 432 "system" is also described by

its components. The system consists of an interconnected

system of components, which include: one or more General

Data Processors (GDPs), a Main Memory System, and at least

one Interface Processor (IP) connected to an I/O system.

Figure A-i shows a minimum system configuration.

In order to obtain high performance in both general

processing and input/output operations, the iAPX 432 has a

distinct type of processor for each function. The GDP

handles all program decoding, computation, and address

generation. The IP performs all communication with

peripheral devices. Communication among the GDP, IP and

memory is provided by a packed-based interconnect bus. The

IP is also connected to an interrupt-driven I/O system bus.

The I/O system also contains the I/O devices and a

conventional processor, called the Attached Processor (AP).

These components are discussed in following sections of

this appendix. More information is also available in the

Intel Introduction to the iAPX 432 Architecture (Ref 18).

The memory organization, which is presented first, provides

a basis for the software structures and component

architectures described later.

A-2

. .. .- " I I II I

Main iAPX 432
System General
Memory Data

Processor

Processor to Memory Interconnect

iAPX 43 2
Interface
Processor

ft
(/0 System Bus

Peripheral Local Attached Peripheral
Device Memory Processor Device

Figure A-1. IAPX 432 Minimum System Organization

A-3

OSegment
Descriptor a

Segment
Access

Selector Descriptor-

_IP2

Access Segment SegmentSegment Table

Figure A-2. Two-Level Mapping (Ref 18:2-11)

Memory Organization

The iAPX 432 system uses segmented memory. However,

Intel uses the term "structured memory' to refer to the

organization because it is enhanced in two ways. First, the

iAPX 432 can address 2**24 memory segments, which may each

specify up to 64K bytes of memory. Thus, the virtual

address space is 2**40 bytes. Second, the 432 uses an

additional step in the address mapping process which is

unique to the iAPX 432. This two-stage mapping separates

segment relocation from access control and allows

implementation of segment type checking and user-access

rights in hardware (Ref 18:2-10).

In a 432 system, each program module is supplied, at

run-time, with a collection of segment numbers (i.e., values

A-4

ld

t

that can be used as indices into the segment table to select

segment descriptors) for only the segments that it may need

to access during execution. This collection is stored in a

set of access segments (tables of access descriptors). This

is illustrated in Figure A-2.

Each logical address consists of two 16-bit components,

the segment selector and the displacement. The segment

selector is an index into the proper access segment. The

access descriptor contains access rights information which

is checked by the domain-protection mechanism during each

memory access, and an index to the segment descriptor

describing the memory segment needed. The segment

descriptor contains the 24-bit base address of the segment

and the length of the logical memory object. The base

address is added to the displacement, giving the physical

address of the operand within the segment. The base address

and the displacement create the virtual address space of

2**40 bytes (Ref 25:KEY-I/KEY-4). All addressing within the

main system memory is performed with this mechanism. In
particular, each reference to a data structure in main

memory by the GDP or IP, is done using the two-stage

addressing. The software structures of the GDP and IP

programs are described in the next section.

Softvare Structuren

432 system environments, both hardware and software,

have been developed using the object-oriented design

A-5

methodology. Many of the facilities implemented in the 432

hardware architecture are best utilized by programs designed

using this same methodology. For example, the access-

checking and protection mechanisms are used to enforce the

execution environment of the program module. As explained

in Appendix B, object-oriented design methods lead to data

structures whose use is confined to a single program module.

That is, all the facilities which physically manipulate a

particular data structure are contained in a single module

and thus, no other program module has a need to directly

access that data structure.

In programming methods which are structured by

function, several modules might contain procedures which

would need information from the data structure and so, each

code segment or program module would require access to the

data structure. While the 432 access-checking and

protection facilities would support such an arrangement,

there is less protection provided when all the program

modules have legitimate rights to access a data structure

than when the software design specifically limits the need

for direct access to the data structures.

Software designed with the object-oriented methodology

tends to hide detailed design decisions within the program

modules (Ref 5:143). The logical view of the data

structure, or object, is that of a collection of functions

which provide for manipulation of the data without knowledge

A-6

of its precise structure. Thus, each software module is a

logical, or virtual, machine providing necessary functions

to other machines.

This *virtual machine" concept extends to the larger

view of a complete software system. The basic goal of an

operating system is to provide an easily-used superset of

the actual microprocessor hardware functions (Ref 38:1-3).

Object-oriented software may be built up easily with higher

level modules using the functions provided by other modules

to implement more complex system structures. Intel's design

engineers used this methodology in the construction of the

Multifunction Applications Executive for the 432

Micromainframe (iMAX). The iMAX software is provided as a

set object modules. Appendix C summarizes the features of

the iMAX operating system.

General Data Processor Software Structure. In the 432

GDP, the hardware-software interface occurs at a higher

level than in conventional systems (Ref 19:15-26). In

conventional microprocessor architectures, the major

facilities include processor registers, various addressing

modes, and built-in data types with their associated

operations. Very large scale integration (VLSI) technology

is used in the 432 architecture to implement functions which

are normally found in operating system software. The

introduction of system objects as hardware recognized

entities is a fundamental step toward a higher level of

A-7

i i i IIIi I ll II II II - - B ~l...

interface. Essentially, this means the processor is not

limited to the simple data types normally recognized by a

microprocessor architecture. This is further explained in

the Intel iAPX 432 Object Primer (Ref 17:2-5). The

facilities provided by the 432 architecture include the

following features:

-- Access checking and protection mechanisms for

enforcing program modularity.

-- Execution environment for program modules.

-- Scheduling and communication mechanisms for
multiple software tasks.

-- Control and dispatching for multiple hardware
processors.

Thus, the system designer is not burdened with creating

an environment of basic operations to manipulate the system

elements; tasks, program modules, and data structures. The

facilities to handle these objects are provided by the

hardware.

The task communication facilities provided by the

hardware are supported by the operating system software and

provide for the management of port and message objects. The

operating system provides for communications between

hardware processors by allowing different processors to

perform the sending and receiving tasks on the same

communications port object. This provides for a consistent

design environment within a multiprocessor system.

A-8

* .--. *~e- *.
* d

F roessAProcess c otu e xt
Object pr Object o Object ess oDets

Instruction Instructionobject / Object

Figure A-3. GDP Program Structure

A program which runs on the 432 GDP consists of five

types of objects; processor objects, process objects,

context objects, instruction objects, and data objects. The i

basic GDP program structure is shown in Figure A-3.

Each physical processor has its own processor object

which contains state information (running, halted, etc.),

diagnostics, and references for system objects. The object

references are important because the addressing and

protection mechanisms only allow a processor to access the I
memory for which it has object references. One of the

system objects that is referenced by the processor object is

the process object of the currently executing process.

There is at least one process object for every program

A-9

and exactly one process object for every process in the

system. The process object contains the state information

for the process, scheduling information, and a reference for

the context object currently being executed. Each process,

in a program, consists of one, or more, procedures.

A procedure is a set of instructions logically grouped

together to perform a specific operation. Each procedure is

represented by the third program object type, the context

object. Since many processes may call the same procedure, a

copy, or instance, of the variable parts of the procedure is

created for each reference by a process. Each instance of a

procedure is given its own context object which contains

references to the instruction and data objects used by the

procedure. This set of references is called the access

environment of the procedure. The protection mechanism of

the iAPX 432 does not allow a procedure to access any area

of memory without the proper reference in its access

environment (Ref 17:3-5/3-17).

All of the necessary instructions and data for a

procedure are stored in instruction and data objects. The

instruction objects contain only instructions and the data

objects contain only data. This separation improves the

system reliability because the protection mechanism can

ensure that only instructions are executed. Also, all

programs are reentrant since the instruction objects may not

be modified during execution.

A-10

Processor Process Context
Object Object Object Data~Object

Figure A-4. IP Program Structure

The data objects are the fifth type of object in a GDP

program. They contain only data. The type of data they

contain is defined by the software. Data objects are the

only GDP program objects that cannot be directly manipulated

by the hardware (Ref 17:3-18/3-19).

Interface Processor Software Structure,. The IP program

structure is similar to that of the GDP (see Figure A-4).

The major differences result from the IP having no

capability to fetch its own instructions. The IP is a slave

to the Attached Processor (AP). Basically, the IP system

objects contain the same information as their counterparts

in the GDP system. However, the context objects do not

contain references to the IP instructions. Instead, the IP

possesses a function request area? where the AP can write

instructions to be executed by the IP, and a status

A-11

. I-- [1 II t - . . . i in t li

information area, which the AP can read to determine the

result of the last instruction.

IP objects are, also, protected in the same manner as

the GDP objects. However, the protection mechanism can be

turned off by the AP. This feature is used, during system

initialization and diagnostic support, to permit the AP to

more directly access the memory of the 432 system and is

called physical reference mode. Normal interprocessor

communication is done in logical reference mode, where the

access protections of the GDP are extended to the AP when it

is accessing the 432 system main memory through the

facilities of the IP.

The iAPX 432's program architecture is very complex.

Greater detail is provided in the appropriate Intel

reference manuals and user's guides for further

understanding.

Hardware Architecture

The Intel iAPX 432 Micromainframe hardware is designed

for multi-processor applications where small physical size,

low power consumption and dependability are essential (Ref

8:1). Intel's engineers used a new approach to computer

technology when designing the VLSI components of the iAPX

432 family. They integrated the hardware and software

design methodologies while aiming to reduce the life-cycle

costs of complex microcomputer applications (Ref 19:2). The

result is a computer system incorporating innovations which

A-12

I#

constitute a new computer technology (Ref 19:18).

To accomplish a significant improvement in life-cycle

costs, the designers of the 432 micromainframe incorporated

the software design into the hardware architecture. The

current trend in lower cost hardware and higher cost

software led to considerations for simplifying the software

design task and reviewing the facilities necessary to

software development, testing, and maintenance. Toward this

goal, object-oriented design methods were used while

incorporating operating system functions into the hardware

design (An explaination of object-oriented design is

presented in Appendix B).

Hardware access-checking and protection mechanisms are

also implemented into the 432's VLSI design, which means

that there are software errors that are impossible on the

432 (Ref 17:1-2):

A module can not access data beyond the range
of its own environment.

A module cannot modify a data structure that
it should only read, nor read where it should
only write.

A module cannot perform an operation that isnot allowed for the type of data it is using.

(e.g., It cannot execute data for
instructions).

The individual components of the iAPX 432 family have all

been designed with unique features to maximize the system

performance an. Orovide the system designer with a practical

A-13

environment for the development of complex systems.

General Data Processor Architecture. The GDP is

responsible for the computational operations of the iAPX 432

system. The architecture of the GDP does not support

interrupts, service requests, or possess user-visible

registers, as do conventional microprocessors. Instead, the

GDP is logically organized as a three-stage microprogram-

controlled pipeline. The iAPX 43201 Instruction Decoding

Unit contains the Instruction Decoder and the

Microinstruction Sequencer. The iAPX 43202 Microinstruction

Execution Unit contains the last stage of the pipeline, the

Execution Unit. Each stage operates independently. This

pipeline organization is designed to efficiently implement

the complex instruction set of the iAPX 432 (Ref 18:3-1/3-

9).

The instruction coding scheme of the iAPX 432 is

designed to minimize the amount of memory necessary for the

instructions while allowing for efficient decoding. The

instruction format consists of an ordered set of variable

length fields; class, format, reference, and opcode. The

class field specifies the number of operands and the data

type of each. The format field is used to specify the

mapping of the required operands to the operand references.

The format field is only included when the class field

indicates that operands are included in the instruction.

The reference field contains the explicit operand references

A-14

• • d

(when indicated by the format field). The instruction set

is completely symetric, allowing any, of four, addressing

modes with each operand. The last field of the instruction

is the opcode field which specifies the operation to be

performed (Ref 18:3-5/3-7). Details of the instructions and

addressing modes may be found in the Intel Tntroduction to

the IAPX 432 Architecture (Ref 18) and the Intel iAPL.43.Z

General Data Processor Architecture Reference Manual.

Interface Processor Architecture. The iAPX 43203

Interface Processor performs the communication functions

between the main system memory and the AP system. The 43203

processor chip contains two independent functional units;

the Data Acquisition Unit, which transfers data between the

AP's system memory and the 432's main memory, and the

Microinstruction Execution Unit, which executes the IP

instructions. The AP controls the operations of both these

units. The AP requests service from the IP by writing the

opcode and operands, of a 432 IP macro-operator, into the

IP's control object which is stored in the 432's main

memory. The status of the operation may be read by the AP

to determine if the desired function has been successfully

completed. Details of the iAPX 432 IP chip's architecture

and operation can be found in the Intel IAPX 432 Interface

Processor Architecture Reference Manual and the Intel±APX

432/67n Comuter System liner's Quide (Ref 35).

A-15

i- -
.... " . . .I i . . .

iAPX 432 System

Subsystems:

General Data Processors
Memory
Interface Processor Link

432
Proclink

Attached Processor System Cable

Subsystems:

Interface Processor
Peripheral Devices:

Disk Storage System
Terminal
Printer System

Figure A-5. General 432/670 System Configuration

432/670 Architecture. The 432/670 system is composed

of a processor subsystem, a memory subsystem, and at least

one peripheral subsystem. Figure A-5 shows this

configuration.

The Interface Processor (IP) board handles all of the

input/output (I/O) operations, linking the 432/670 system

to external Attached Processor (AP) systems. Each AP system

contains its own processor and memory and runs under a

separate operating system (Ref 28:1). A 432 Proclink Cable,

connecting an Interface Processor Link (IPL) board with an

A-16

Storage Memory IAPX 432 ii4]
Arrays Controller General General

Data Data
Processor Processor

Intel 432/670
Processor to Memory Interface

Interface Interface
Processor Processor
Link Link

Intel 432 Proclink

Cables

iAPX 432 iAPX 432
Interface Interface
Processor Processor

AP #1f AP #2 f
Attached Processor Attached Processor

Multibus /Multibus

Attached Peripheral Attached Peripheral
Processor Device Processor Device
w/memory Controller w/memory Controller

Figure A-6. Intel 432/670 Micromainframe
Multiprocessor Configuration

A-17

'p

IP board, provides the hardware connection to the main

system. Figure A-6 shows the interconnections within a

multiprocessor configuration of the 432/670.

The IP board must be placed on the system bus of AP the

system. This limits the systems appropriate for APs to

Intel HULTIBUS configured systems. Implementation of an

interface with the 432 computer system involves software

development on two distinct processor systems; the 432

processor system and the Attached Processor system. The 432

must be programmed to communicate with a particular AP

system through the IP connected to that system. The iMAX

432 Operating System (see Appendix C) provides the basic

functions necessary for this interface.

This appendix has presented an overview of the iAPX 432

system architecture. The 432 system memory was described to

provide a virtual address space of 2**40 bytes over a

physical address space of 2**24 bytes. The GDP and IP

software structures (processor, process, context,

instruction and data objects) were discussed. The

architectures of the GDP and IP components were briefly

described and, finally, the organization of the 432/670

system was described. If more information is required, the

reader should refer to the Intel Introduction to the IAPX

432 Architecture (Ref 18) and other Intel publications.

A-18

.. 4

APPENDIX B

Object-Oriented Systems Design

Introduction

Object-orientation in computer program design was first

proposed by D.L. Parnas in 1972 (Ref 5:141). His technique

offers a step beyond structured programming in the effort to

create maintainable software that can be changed and

expanded to meet future needs. Object-oriented design

provides a system for developing effective data structures

as well as program-control flow. This technique can provide

a consistent design approach to the system architecture,

operating system, and programming language.

This appendix will examine object-oriented design and

its use in the Intel iAPX 432 microcomputer system, which is

the first microcomputer to fully support its use in hardware

and software (Ref 5:141-142). The fundamental concepts

of object-oriented design will be presented and then,

using the 432 system as an example, the application of the

technique will be discussed in the 432's architecture and

operating system design.

Object-Oriented DebLan

The object-oriented methodology is most unique in its

consistent approach to program flow control and data

structures. An "object* is a collection of procedures which

encapsulate a data structure. It is the characteristics

B-1

&to*

(procedural interface) of the the object, rather than their

implementation, that are of primary concern to the

programmer. To demonstrate the important features of the

method it is best to compare it to the more common design

approach.

In conventional design methods each procedure or

process becomes a module. Processes which need to use the

information held in a particular data item will need to know

the structure of that data. For example, if a data item

contains a set of student names and test scores associated

with each student, then a procedure which will get the

scores for "John Doe' must have detailed knowledge of the

organization of the information. The nature of the data

structure is important for proper retrieval of the

information (e.g., whether the names and scores are stored

as records of a tape file or items of distinct arrays to be

indexed by an integer). Generally, any other procedures

which act upon the data must also know the structure of the

data item.

With the conventional approach, functional cohesion is

the goal for a system module (Ref 38:192-195). The function

performed is defined by the collection of procedures

contained in the module. Each well-structured module

performs a single function. The interface to all other

modules is completely defined by the input and output

requirements. However, the connection between a function

B-2

• • e4

Insert Parameters

Process ModuleA

Select 13 Functions ~ Remove
Function 3 Provided Results

Figure B-1. A Module in the Object-Oriented Methodology

and the data items it uses must be of a global nature, that

is, understood at the lowest level without explicitly having

been provided as an input to the procedure.

The object-oriented approach does not require this

global structure information. Object-oriented modules are

built from procedures which provide functions or information

to other modules in the system. The hiding of design

decisions is the criteria for modularization (Ref 5:143).

The exact structure of the data item would be hidden from

procedures outside the object module. Outside procedures

would access the information in the data item by using the

functions provided by the module. Figure B-1 shows this

concept as a black box which can only perform certain

functions. Those functions may present the appearance of

logically well-defined object but the details of the items

B-3

in the box and the workings of the functions provided are

hidden from view.

This hiding feature for data items is an extension of

the conventional modularized procedures which hide the

complexities of program control flow in the structured

program module having a single input and a single output.

In general, an object-oriented module would hide program

control flow ant the structure of the objects it manipulates

whether they are procedures or data items.

This provides a "simple" interface between modules.

There are no complex data structures which must be

implicitly known within a central module, only the

procedures which clearly define the characteristics of the

object represented by the module. Also, the access to data

items is protected by limiting the use of the data item to

the procedures of object module. Thus, it is easier to

understand a module's function and thereby maintain its

usefulness.

Obiect-Orientation in Architecture

An object-oriented computer architecture would hide the

physical structure of the machine and provide functions to

manipulate logical storage containers while not requiring

global knowledge of the hardware configuration. The Intel

432 microcomputer architecture was designed to this goal

(Ref 29:125). It exhibits several important traits and

B-4

.. 0, 4 -' ,' , - - '%

powerful features due to this design concept.

The memory of the 432 microcomputer is accessible only

as a collection of objects and not as a single contiguous

segment of storage. This provides for modular structure in

memory use and a protection mechanism based on data

structures (Ref 33:5). Unfortunately, the processing time

used to perform these functions is significant. The real

time, however, is minimized by implementating the procedures

in VLSI hardware.

The objects in memory are classified by their use and

structure (Ref 40:406). Instruction objects are clearly

identified from data objects. This enables the system to

know when it is accessing data or procedure code and thereby

protect itself from incorrect accesses. In addition, there

are two forms of objects for instructions and data; "access

objects' and "simple objects". Access objects contain only

access descriptors which hold the information concerning the

availability of other objects to the current process and the

structure of the information in those objects. Simple

objects hold only data (instructions or program data) and

are at the bottom of the memory structure hierarchy.

The hardware of the 432 microcomputer is constructed to

present a modular view to system designers. The functions

provided by the architecture raise the level of the

hardware-to-software interface to logical object

transformations rather than bit manipulations (Ref 33:4).

B-S

- - 4.- -

The penalty for this capability is increased hardware

complexity and functional overhead as the operations on the

bits must be performed at a lower level which is not

accessable to the system's programmer.

Object-Orientation in Operating System Design

The use of object-oriented structure in a computer

operating system can provide an environment for program

development which is largely independent of the hardware

implementation upon which the system operates. Modules

which hide the detailed implementation of function and data

structures are necessary in providing useful procedures to

architecture independsnt systems. The Intel iMAX 432,

Multifunctional Applications Executive, provides basic

system functions as Ada "packages," the Ada language

equivalent of objects (Ref 39:50-51).

The iMAX system provides modular functions to perform

input/output, process control, and memory management. Each

function is presented for use as a part of an operating

system. All the necessary interface data is provided in the

Ada package specification which is provided for the

designer's use. However, the details of the function or the

data it uses are not available to the user. This is an

extreme example of device independence. The user is unable

to directly access a hardware device without using a pre-

defined function made available by the iMAX package which

manages that device. This simplification may seem ideal to

B-6

I I II -, , V :. ., i

the programmer who is willing to use the device as it is

available through the operating system. However, the

designer who wants to have intimate control over the device

will be frustrated by the system's overhead.

In the case of memory management and protection, the

object-oriented procedures of iMAX simplify the design

process. The user may select from externally identical

object modules which provide the same functions to the

system but are internally different. For example, one

system package may provide for page-swapping memory while

another uses a non-dynamic approach. Whichever object the

user chooses, the functions available and their inputs and

outputs are the same. The user need only select the

implementation which is most efficient for his program (Ref

29:132-133). The modularity of the system will allow the

decision to be modified at a later date and another

implementation of the same function could be used.

The process control for the system is also modular. In

the Intel iAPX 432 system process control at the

architecture level is defined by object modules so that a

process execution is independent of the number of hardware

processors in the system (Ref 28:402). A program that

executes with three processors in parallel will run, without

modification, on the same system with only two processors.

The portion of the operating system that selects the next

available process to be run can also be modified to change

B-7

h.d

its selection criteria without requiring modifications to

the modules which use the package.

The object-oriented design technique provides a

consistent approach to system organization. The same

modular approach can apply to the hardware architecture as

well as the system software. The object module concept

provides clear function definition while hiding the design

decisions made and implemented at lower levels. This

modular interface to lower levels provides flexibility in

design and maintainablity in the system by simplifing the

interconnections among the parts of the system.

The cost of these features is in the complexity of the

hardware itself and the overhead associated with

manipulation with more complex data structures.

B-8

.1

APPENDIX C

iMAX 432 Multifunction ADlications Executive

Introduction

The iMAX 432 Multifunction Applications Executive

(iMAX) provides executive services to user-supplied software

that calls iMAX procedures. The purpose of this appendix is

to summarize the features of iMAX and describe how the

functions may be used in the creation of a software system

for the Intel 432/670 Micromainframe computer system (432).

The primary source for the information presented in

this appendix is the iMAX 432 Reference Manual (Ref 25).

For a detailed description of the features of iMAX, the

reader should refer to that document. Terminology used in

this appendix matches that in the reference manual to

provide continuity for the reader. The following sections

describe the features of iMAX in five areas: Process

Management, Storage Management, Interprocess Communication,

Input/Output, and System Configuration.

Process Management

iMAX recognizes two types of processes; static

processes and dnamic processes. Static processes are

created at system initialization and are relatively

inflexible. Dynamic processes are created during system

execution and may be manipulated through use of the

functions provided in the BasicProcessManagement package

C-1

START PROCESS

IDLE OR DISPATCHINGPORT S OP RUNNING

FAULT
I IDLE OR .

BLOCKED PORT OP AUTD

Figure C-i. Static Process State Transitions
(Ref 25:CON-3)

(BPM) (Ref 25:BPM-1). This section discusses the functions

available for control of each type of process.

Static processes are processes which are defined at

compile time and started at system initialization. iMAX

does not provide any control operations on static processes

within the BasicProcessManagement package. The only

operations available on static processes are the

iMAXDefinitions.Idle procedure, which causes the process to

be suppended from scheduling for a given time period, and

the port operations, which are described later in this

appendix. Figure C-1 shows the state transitions for static

processes (Ref 25:CON-3, INI-7).

Dynamic process management functions are available in

C-2

TABLE C-I

Comparison of Ada Tasks and iMAX BPM Processes
(Ref 25:BPM-2)

A td a iMAX BPM processes

Scheduling Advisory priorities User can dynamically vary:
fixed at compile-time priorities, deadlines, time

slice length, and number of
time slices before
rescheduling consideration

Hierarchy Implied by nesting of Processes can be organized
declarations. When a into trees and process
task is aborted, any operations can apply to
dependent tasks are entire trees
aborted.

Control Abort another task, Start, Stop, Reset, Restart,
raise Failure and Destroy other processes.
exception in another Use guardian ports to
task receive and restart

processes suspended by some
condition.

Communication A task can wait for Processes send or receive
multiple entries messages via explicitly-
guarded by conditions, identified ports. Surrogate
Timeouts can be in- operations support
cluded in the altern- prioritized queuing of
atives waited for. messages and waiting for the

occurrence of one of several
different events.

Mutual Not explicitly pro- Not explicitly provided, but
Exclusion vided, buv can be can be constructed using

constructed using communication facilities.
communication
facilities.

Portability Ada tasks are part of iMAX processes are not part
standard Ada. of standard Ada.

C-3

- - . -, - . ' *

two ways; Ada tasking facilities and the iMAX

BasicProcessManagement package (BPM). The facilities

provided are not the same but, they may be used together or

separately, as the design requires. Table C-I compares the

BPM features with Ada tasking. At the time of this writing,

the Ada compiler doa =ot support tasking. However, when

tasking is supported, design decisions, relating to which

management system should be used, may be based on this

comparison. Details of the Ada tasking facilities can be

found in the Reference Manual for the Ada Programming

Language (Ref 20:9-1/9-16). Note that it is advised n= to

intermix the task control features of Ada and iMAX because

there are minor differences in the task information

structures used in each system. There are cases where the

results of intermixing the operations will cause

unpredictable results.

The Basic_Process_Management package (BPM) provides

the process management functions required to complement the

hardware features of the Intel 432. Essentially, BPM

provides the system designer with an interface to processes

and their scheduling at a low level without interfering with

the system objects used by the hardware (Ref 25:BPM-1).

This interface includes manipulation of multiple processes

in tree organizations, handling processes unable to execute

through special user-defined inter-process communication

ports, process operations for creation, control, and

C-4

destruction of processes, as well as procedures for setting

and examining process attributes and scheduling parameters.

The following paragraphs discuss these significant features

of the BPM package:

iMAX allows processes to be organized into tree

structures which may be controlled or destroyed as a single

unit. The organizational placement of a process is

determined when the process is created. In simple terms, if

the process is created from the "local" memory heap of

another process, then it is the child of that process. If

the new process is created from the "global" memory heap,

then it is not a child of any other process. After

creation, BPM control procedures provide for starting,

stopping and destroying single processes or entire tree

structures. In addition, whenever a process terminates at

completion, is stopped or destroyed by action of another

process, cannot handle an error condition, or needs service

for any other reason, the process is sent to a special

communications port defined as the gjaadiAn for that

process.

The guardian port identified when the process is

created. Each dynamic process must have a guardian port.

Each guardian port must have an *owner" process which

receives the processes sent to the guardian and services

each according to its condition. In this way, processes may

be destroyed or error conditions may be corrected after the

C-5

" I . . .rI 1 I ,. . .

User_

START S RIRC
Process
Creation

Ready- Ready-to
StoppedRestart

RIRC RESTART

User- RESTART UsrSTPRay
Restart Stop In-Mix

Figure C-2. Dynamic Process State Transitions with BPM
(Ref 14:BPM-12)

process is sent to the guardian. It is the user's

responsibility to identify the guardian port and the owning

process while the system handles moving the process to the

guardian port when its condition cannot be satisfied by

normal processing.

The condition of a process is identified by its

attributes. There are six attributes defined for each

process: process name, identification number, trace

condition (boolean), guardian port, process globals access

segment (a table of process objects), and the process state.

C-6

- -..--- - -- ~ -i

Only the process globals access segment and the process

state can be read by the user after the process has been

created. The process state is changed as the process is

moved through the cycle of scheduling states. Figure C-2

shows the process state transitions for dynamic processes

using the BPM package. In that figure, URIRCw refers to the

Read_Info_and_ResetCondition procedure which is the only

way that an existing process may be placed in the READY

state (Ref 25:BPM-15).

Storage Management

This section describes the Storage Management features

of iMAX. Generally, the concepts of Ada storage management

are supported by iMAX (i.e., the access types and allocators

used by the Ada n= operator) (Ref 25:STO-1). Table C-II

summarizes the capabilities of iMAX and the limitations of

the current system (Version 2). The major elements of the

Storage Management system are Storage Resource Objects

(SROs), Lifetime Strategies, Fragmentation and Compaction,

and Memory Types. These elements are described briefly in

the following paragraphs:

The SROs are the users access points to the memory of

the system. The SRO coordinates the use of object table

entries and the allocation of physical storage, to provide

the user with an, apparent, unbounded claim to memory. When

the user requests additional storage, and either virtual

address space (an object table entry) or physical space (a

C-7

- - - - ad Afisfin

TABLE C-II

iMAX 432 Storage Management Capabilities
(Ref 25:STO-I/STO-2)

IMAX V2 provides a real-memory system with:

1. Dynamic allocation of objects

2. Transparent expansion of object tables
and stack or heap storage blocks, as
required by user processes

3. Storage reclamation transparent to users

4. A range of lifetimes for created objects

iMAX V2 does not support:

1. Virtual Memory

2. Limits on the amount of memory used by
a particular process or collection of
dynamically allocated objects

physical memory partition) is not available, then iMAX

allocates more resources to the user, transparently. Each

SRO, also, has a particular lifetime strategy and a memory

type for objects allocated from it.

There are three storage lifetime strategies; stacks,

clobal heads, and l . The stack lifetime strategy

is the most restrictive. Stack objects are deallocated when

the context, that created them, is no longer active (i.e.,

upon returning from that subprogram). Global heap lifetime

strategy is the least restrictive. Objects created from the

global heap can only be deallocated by the Ogarbage

C-8

o -

COMPACTION

FREE OBJECT CREATIONMEMORY

RETURN
GARBAGE OBJECTSCOLLECTION -- stacks,

-- ocal hps
RETURN

GARBAGE
ELIMINATION OF OBJECT REFERENCES
-- local heaps, global heaps

Figure C-3. iMAX Storage Management Transitions
(Ref 25:STO-4)

collector" process, which wanders around memory, searching

for objects that are no longer in use by any context. This

garbage collection process runs concurrently with any other

iMAX and user processes in the system. The third lifetime

strategy, local heap, is a combination of the other two. If

a local heap object becomes unreferenced during its life,

it may be reclaimed by the garbage collection process.

However, the object is also deallocated on returning from

the context that created it. Figure C-3 summarizes the

three lifetime strategies by showing the transition paths

C-9

d'

of the iMAX storage management system.

The fragmentation of system memory is the division of

free physical storage into small portions as a result of

allocations and deallocations. iMAX runs a transparent

compaction process to reorganize the free memory into larger

contiguous segments. It is important to note that the

compaction process runs asyncronously and may cause delays

accessing objects during its execution. Some parts of iMAX

and user programs cannot tolerate this unpredictable delay.

Therefore, iMAX divides physical memory into two types;

fr. zn and normal memory.

Segments in normal memory may be relocated by the

compaction process. Segments in frozen memory are nMt

relocated by the compaction process. iMAX, Version 2,

provides one global heap SRO for frozen memory and one for

normal memory. Users may use frozen memory for time-

critical processing. However, it must be realized that

frequent allocations and deallocations of frozen memory can

cause irreparable fragmentation of that part of memory.

Intergrocess Communication

This section describes the iMAX facilities for

interprocess communication. There are three object types

used in interprocess communication; M&MSAu , carriers, and

RLta. The basic operations on these objects are sending a

meenag. in a carrier to a port and receivina a message in a

carrier from a port. Either of these operations can cause a

C-10

I

Message AD
~~in sender's "

context

any SEND toa full port any SEND to

empty port
with carrier

f waiting
I Message AD any SEND to

in sending a NOT-full port
carrier waiting with no carriers& at port waiting

Message AD

in port message
RECEIVE queue
CONDRECE IVE
SURROGATE_RECEIVESURROGATE

-RECEIVE

I Message AD
RECEIVE [in receiving

COND_RECEIVE |carrier, which
is forwarded

SMessage AD

|in receiver's
context GetCarrierMessage

ta (surrogate process)
or Hardware

Figure C-4. IMAX Message AD State Transitions
(Ref 25:COM-6)

C-11

E

third operation, the forwarding of the carrier to a second

qg;. These objects and operations are described in the

following paragraphs:

Messages are moved by copying access descriptors (ADs)

(like pointers). Figure C-4 shows how the reference to a

message changes as the AD moves between processes. It is

important to note that both the sending and receiving

process have access to the message after it has been sent.

In the 432 system, ports are supported by hardware.

They consists of two queues; a fixed length message queue

and an unlimited carrier queue. The maximum size of the

message queue is fixed when the port is created. Messages

are placed in the queue according to the port's queuing

dicipline (either FIFO or priority). When a message is sent

to a port who's message queue is full, the sending process

is blocked and the carrier must wait in the carrier queue.

When the message queue is empty and the receiving process

attempts to get a message from the port, the receiving

carrier must wait in the carrier queue. At the time a port

is created, the length of the message queue and the queuing

dicipline are set, and the queues are initialized as empty.

Carriers move messages to and from the ports. Each

process has a 2rocess carrier that transports the process

around the system ports. Forwarding a process carrier to a

dispatching port, allows that process to run. Users can

also create surrooate carriers, which are used to move

C-12

QI

messages between processes. Surrogate carriers may, also,

have a priority which determines where the message is placed

in the queue at a port with a priority message queue

dicipline (Ref 25:COM-3).

There are three operations which may be used to send

messages. Send uses the sending process's carrier to move

the message to the receiving port. Surrocate Send uses an

specified surrogate carrier. Both of these operations will

always result in a message being sent. The third operation,

Cod Send, only moves the message if the receiving port is

not full. That is, Cond_Send will return a false indication

to the sending process if the carrier would have otherwise

been blocked at the receiving port. If the receiving port

is full, Send and Surrogate-Send will cause the carrier to

be placed in the receiving carrier queue and, thus, block

further execution of the carrier's process (Ref 25:COM-4).

Similarly, there are three receiving operations.

Receive and Surrogate Receive cause their respective process

carriers to receive a message from the specified port. If

no message is waiting at the port, the carrier is placed in

the queue and the process is blocked. The Cond Receive,

however, operation returns a false value if there is no

message waiting at the port (Ref 25:COM-5).

Input /Out~ut

This section describes the iMAX facilities for data

transfer between peripheral devices. There are two general

C-13

TABLE C-I1

Syncronous I/O Interface Operations and Device Types
(Ref 25:10-4)

Device Types
QRDLLions Source Sink Store

Interfacedescription X X X
Close X X X
Reset X X X
Transforminterface X X X
Get_asyncronous_

interface X X X
Flush X X
Read X X
Write X X

X - operation is available with device

interfaces provided; a syncronous interface and an

asyncronous interface. The syncronous interface facilities

can be used to *implement higher-level facilities, such as

the Ada TEXTIO package" (Ref 25:I0-I). The asyncronous

interface facilities are intended to be used only to

implement device drivers or special I/O requirements. The

iMAX I/O model supports both new devices and new types of

devices. The model does nt support the creation or

deletion of devices (or device interfaces) during program

execution. Also, iNAX does n=t manage concurrent access to

shared devices (e.g., if two processes writing to a shared

printer, the printer use needs to be coordinated).

The syncronous interface consists of several packages

of software that include a standard procedural interface,

C-14

an extension to that interface to support terminal devices,

and an instance of the standard interface to support the 432

Debugger system. The standard procedural interface includes

definitions of three generic devices in the iMAX I/O model;

a sorc (input-only) device, a sink (output-only) device,

and a store device. Table C-III shows the I/O interface

operations and the generic devices to which they apply. A

detailed description of the operations (and the special

packages for terminal and Debugger I/O) can be found in the

iMAX Reference Manual (Ref 25:10-1/10-15). Note that, for

all device interfaces provided by iMAX, Version 2, the Close

and Reset operations perform =o function (Ref 25:10-4).

The asyncronous interface facilities define a port-

based connection between the device and the processes

requesting I/O services from it. A process sends a request

message to the port and, later, receives a reply message

from the device indicating the success or failure of the

operation. iMAX standardizes the interface by defining the

format of both connections and the i/0 messae. Also, the

command codes and reply codes that are used in the messages,

are defined by the iMAX facilities (Ref 25:10-16). Table C-

IV shows the relation between the interface commands and the

replies they may receive.

The connection is defined by the data in the connection

record; an access for the receiving port, a printable name

for the connection, an access for the data which describes

C-15

{t

r4

~.x x x x x

Ica'

LA0
0

0 > 1xx

to Xi 6

r_. N -4
to1 4 1.

0 a

0 as

4 a) x x x x x x x Q
E-4 U

010

0 (U
0 4aa 1

~0-

0 0 r 145
0. 1 0 wX oX X

W 44 w I - d44V4H 4
0 0 1 1- ra 0 r4 I l 0

C-16

the device, and an access for the port at which reply

messages can be received. The reply port access is also a

part of the message format.

An 1/0 mespa is an access for a record containing an

access to a command record for the message and an access to

the reply port, where the mesuage will be returned. The

command record contains the command code, the message

identifier (allows the reply to be matched with the message

sent), the reply code (filled in by the device), and the

buffer descriptions (in iMAX, Version 2, there is only one

buffer permitted with each I/O message). The command codes

and reply codes are explained in Chapter IO of the iMAX

Reference Manual (Ref 25:10), but, generally, their meaning

is evident from the name (see Table C-IV).

System Configuration

This section discusses the configuration of the 432

system using the iMAX facilities. The iMAX user can control

three aspects of the configuration; the number and

identification of the system processors, the static user

processes (discussed previously), and the I/O device

interfaces present in the system. The configuration of

static processes was discussed in the first section of this

appendix and the I/O devices were, also, discussed earlier.

This section will discuss the configuration of processors in

the 432 system.

The amount and type of memory available in the system

C-17

P L9

Slot No. System Use Default

12 GDP or IP IP

11 GDP or IP IP

10 GDP or IP empty

9 GDP or IP GDP

8 GDP or IP GDP

7 MEMORY CONTROLLER MC

6 STORAGE ARRAY SA

5 STORAGE ARRAY SA

4 STORAGE ARRAY SA

3 STORAGE ARRAY SA

2 STORAGE ARRAY SA

1 STORAGE ARRAY SA

Figure C-5. 432/670 System Bus Hardware Configuration

is determined by directives to the linker program (L1NK432).

The linker is described in the Intel 43i2 Cross nlvPlopment

System VAX/VMS Hoat user's Guidg (Ref 21:3-1/3-41).t There are three types of procesors in the System

432/670; General Data Processors (GDPs), Interface

Processors (IPs), and Attached Processors (APs). The GDPs

are the primary processing elements of the system. The APs

are the I/O processors and handle the direct interface with

the system's peripheral devices. The IPs are the

C-1 8

I
-

The inkr isdesribe inthe nt~ 432Cras Deelomen

communications processors that handle information passing

between the GDPs and APs. Appendix A explains the system

architecture in more detail.

The system configuration information resides in package

bodies which the user may alter. The user can modify,

recompile and then replace the Ada configuration package

body using the 432 Ada Compiler System and LINK432

facilities. The software configuration package contains

calls to iMAX procedures which create processor objects.

Each functioning processor requires a processor object and

iMAX system initialization processes start all processors

for which there are processor objects. Since, there is only

a small space penalty for configuring more processors than

necessary, the system can be configured for the maximum

number of processors possible. Then processor boards may be

added or removed, as necessary, without any change in the

software (Ref 25:CON-1/CON-2).

There are five processor slots in the 432/670 system

chassis. These slots can be used for either GDPs or IPs, as

needed. However, there must be at least one GDP and one IP

present. Thus the maximum number of GDP processors in the

AFIT/ENG 432/670 system (with a 12 slot system bus

backplane) is four, with one IP. Figure C-5 shows a 12 slot

backplane and the slot allocations (Ref 25:CON-2,HDW-I).

I

~C-19

This appendix has outlined the major features of the

iMAX 432 Multifunction Applications Executive for the Intel

432/670 computer system. The areas discussed included

process management, storage management, interprocess

communication, input/output, and configuration of the system

in hardware and software. The iMAX Reference Manual (Ref

25) should be used if greater detail is required.

C-20

APPENDIX D

Memsage Format for a Compnter Based Meuuaae nystem

Introduction

The purpose of this appendix is to provide a reference

document for the specification of the message format for the

I/O Interface. The format of the messages used in the

interface meet the requirements for message format described

in the Proposed Federal Information Processing Standard

"Specification for Message Format for Computer Based Message

Systems" published by the National Bureau of Standards

(NBS), Institute for Computer Sciences and Technology (Ref

38). System users should refer to that document for a

complete description of the message NBS standard message

format.

As described in Chapter II of the body of this thesis,

an I/O Interface message contains six fields; FROM, REPLY-

TO, POSTED-DATE, TO, SUBJECT, and TEXT. Each field contains

one, or more, data elements, which contain four parts; the

identifier, length, qualifier, and data contents. Figure D-

1 shows this structure. The purpose of this appendix is to

define the information required in each of these components

for the I/O Interface messages.

This report presents the structure of the I/O Interface

messages in three parts. First, the 1/0 ea.aan is defined

by describing the fields contained in the message. Second,

D-1

FIELD IFIELDFIELD I . I I FIELD I FIELD
4.------------ +----------------

Message Structure

*--------- -----. - .+--------+
IDATA ELEMENT I DATA ELEMENTM .J DATA ELEMENTI

4.----------.---------- +----------------
Field Structure

IDENTIFIER ILENGTH QUALIFIER] DATA CONTENTS
Data Element Structuref

Figure D-1. General Message Structure

the 1/0 envIlope is described, including its relation to the

I/O message. Finally, the mapping of I/o device names to

CBMR addresseg is presented, for reference.

In the following discussions, the words "byte" and

"octet' are both used to mean "an 8-bit" value. There is no

difference in meaning intended by the use of either word.

I/O Messaae Description

The I/O message is element of communication among the

I/O Interface system User Agents and Device Agents, as

described in the body of this report. These messages

contain the six fields shown in Table D-I. Messages, and

fields, are constructed from data elements. In fact,

messages and fields are just special types of data elements.

D-2

r "

TABLE D-I

I/O Message Fields

FROM Identifies the sender
REPLY-TO Identifies where the reply

should be sent
POSTED-DATE Identifies the date the message

was sent
TO Identifies the recipient
SUBJECT Identifies the message purpose
TEXT The content of the message

Fi

Each data element consists of four components; an

identifier octet, a lengthJlFd, a gli, and the data

cntnts. The identifier octet is a unique 8-bit value that

identifies the data element. The length code indicates the

number of bytes following it in the data element (i.e.,

excluding the identifier octet and the length code itself).

The qualifier is included to provide information necessary

to the interpretation of the data contents. For example, if

the data element is a field, the qualifier could contain the

code identifying the particular kind of field. Finally, the

data contents component of the data element is the actual

data represented by the element. The length of the data

contents is determined by the difference between the value

of the length code and the length of the qualifier

component.

The length code and qualifier are, generally, only one

D-3

bit 7 6 5 4 3 2 1 0

10 x x x x x x X1 xxxxxxx is the value.

----------- This is an example
10 0 0 0 1 0 0 11 with a value of 9 decimal.
4-----------------

- -------------------------- This example has
11 0 0 0 0 0 0 111 0 0 0 0 1 01 a value of 130

------------------------- decimal.

Figure D-2. Encoding Mechanism for Qualifiers
and Length Codes (Ref 12:40)

byte in length. However, they are encoded to allow extended

lengths to the components. The most significant bit of the

components is used to indicate whether the component is one,

or several, bytes in length. If the most significant bit is

0, then the remaining 7 bits are the actual value of the

length code or qualifier (i.e., in the range 0-127).

However, if the most significant bit is a 1, then the

remaining 7 bits of the first byte are the number of bytes

in the rest of the component. The actual value of the

component begins in the next byte and is interpreted as an

unsigned integer. Figure D-2 shows examples of this

encoding.

For the remainder of this appendix, the following

notation will be used to show a length code, where the

actual value is unknown:
ILxxxxxxxl

D-4

A similar symbology will be used to denote the other

components of the data elements when necessary.

Construction an I/O message begins with the

identification of the structure as a message. All I/O

messages are identified as NBS standard messages by the

following format:

identifier length qualifier data contents
------------ //--------------------- ------
101001101ILxxxxxxxIO00000011 message contents I
4.--------+---//-------------------- /.------+

The length code value is 1 more than the actual length of

the message contents and the "message contents" consists of

the fields listed in Table D-I.

The FROM field in the I/O message contains the I/O

Interface device name. The device name is an ASCII

string of 17 characters. The NBS standard format specifies

the encoding for this field as follows:

field 20 FROM ASCII 17
4/-- // -----
I0100110010001010010000000110000001010000100lI device name I
+--------+--------+--------+--------+-------------- / ---- +

The REPLY-TO field contains similar data, the device

name for the recipient of the reply message. Thus, the

field appears as follows:

idenifie length gualiftr identifier length AAA contanta
field 20 REPLY-TO ASCII 17

4---------+nnnnnn---------------------------------- // ---- +
I01001100100010100100000011100000010100010001I device name I
4----..-- ---- +

D-5

n

The POSTED-DATE field contains the date and time of the

message being created. This information is formatted in NBS

standard date structure (Ref 12:51). This is, simply,

the "year, month, day" sequence represented by eight ASCII

digits. For example, January 21, 1981, would appear as

0198101210. The NBS format of the POSTED-DATE field is as

follows:

idnife legt gulifier dnte lm tength
field 13 POSTED-DATE date 10

------ +--
101001100100001101100000010100000010100010001I
--

idi fielengt d= caaontents
ASCII 8

+---------------------
1000000101000010001xxxxxxxxi
-------------------- --

The TO field, like the FROM and REPLY-TO fields,

contains an I/O Interface device name. So, the structure

is similar to those previous fields:

idetiliezt length guaiifier ' leg zignth data contents
field 20 TO ASCII 17

------ +-- // ---- +
10100110010001010010000010110000001010000100lI device name 1
--- / ---- +

In the NBS standard, the SUBJECT field usually contains

comment-like data giving some information about the data in

the message (Ref 12:62). For the I/O Interface, this field

is used to indicate whether the message is an I/O command or

a reply from a device. The contents of the field are not

used by the I/O Interface system, as it is presently

D-6

i p

implemented. However, the CBMS Manager package fills in the

field with the proper string (either "COMMAND" or "IOREPLY")

and the value may be used, during debugging, to identify

reply messages in the system. The field has the following

structure:

idaztifi;= leth qualifir.gidantigi f z length data contents
field 10 SUBJECT ASCII 7

--- ---------- +----------+---------------------------- //-----
I010011001000101001000001111000000101000100OlI string I
4-------+---/1/----

Finally, the TEXT field contains the data of the IO

message. There are five data elements in this field; the

command code, the Z lycod, a f.lame, a maximum buffer

Aize, and the data of the message. All five elements must

be present in the I/O message, although, their lengths may

be zero.

The command code and reply code are integer values, in

the range from 0 to 128. Thus, they can be encoded in a

single byte.

The file name is an ASCII string of not more than 16

characters. When the file name is not required, the data

element's length code is set to 0.

The maximum buffer size is used with the "read"

command, to indicate the maximum amount of information that

can be returned in the reply message. The buffer size is

given as an unsigned 8-bit integer.

The message text is designated as ASCII, although, any

8-bit structured information may appear in the message. The

D-7

length of the text is specifically limited. However, the

length of the entire message may n=t exceed 1024 bytes.

This limit is implemented in the I/O Interface to simplify

the message handling procedures with the current Ada

compiler's language restrictions.

These five elements can make the complete message range

in size from 105 bytes to the maximum (1024 bytes). The

NBS format for the TEXT field is:

field 12-927 TEXT
+----------+---// ------------- +
1010011001Lxxxxxxxl1000001001
------- --- //---+ ------------ +

identifie length
integer 1 command code

I001000001000000011xxxxxxxxl
4------------------------+-

integer 0-1 reply code
4------------------------+-
1001000001000000011xxxxxxxxI
4------------------------+-

idetfie length -d=t
ASCII 0-16 file name

+--------+-------- +

l000000101Lxxxxxxxlyyyyyyyyyyl
-------- /--------/ +

integer 0-2 buffer size
-----------------------/------
I -001000001-C00- - / -xxxxxxxxxxxx

+.----- l+--------+-- ---A=---+
ASCII 0-914 message text

------------- // ---+-------//1-----+
1000000101Lxxxxxxxlyyyyyyyyyyyyy
-------- +---//---+------- -I----+

D-8

I | "- --. I , I.- --- -

To summarize the format of the I/O message, an example

is given. The following diagram is a an I/O message from

the User Shell process, to the Printer System device,

written on August 16, 1983, which is a command to open the

printer device for use by the User Shell:

message 108 NBS std
+----------------------------
1010011011011011001000000011
4----------------------------

ideuifier lgth gujjfierjidfntij jf lgtJJh data contents
field 20 FROM ASCII 17

-- ----------------------
1010011001000101001000000011000000101000100011RM67/NETO/432/USRI

4----------------+----------+----------+--------------------------------

idetiehr l ngthng data contents
field 20 REPLY-TO ASCII 17

-------------------- +---------------------- ----------------------
101001100100010100100000011100000010100010001IRM67/NETO/432/USAI
4----------------+----------+----------4--------------------------------

field 13 POSTED-DATE date 10
4-------+------------------------------+----------
1010011001000011011000000101000000101000100011
--

ietfe length data
ASCII 8

--------- +----------+---------
1000000101000010001198308161
4------------------+----------

identifier length qifier ' i data contents
field 20 TO ASCII 17

-- ----------------------
1010011001000101001000001011000000101000100011RM67/NETO/MDS/PTRI
4----+----------+----------+----------+----------+-----------------------

antiftr length qualifir i.nti.... ength A.ta
field 10 SUBJECT ASCII 7

4 --
1010011001000101001000001111000000101000100011COMMANDI
4.------+--+---------

D-9

AD-A138 429 DESIGN AND IMPLEMENTATION 0F AN INPUT/OUTPUT INTENFACE
PROTOCOL FON THE I.U) AIR FONCE INST OF TECH
WRIOHT-PATTERSON AFB OH SCHOOL OF ENDI. K N COLE

UASSIFIED DEC 83 AF /E E /830-7FG 72 N

N EE EEEEEEEEEE
mEmhEshEEEEmhE
* EEEohEEEEmhEE
EhEEEEEmhohEEE

IIIIo ~

22

II. l no

1ii.25 111.4 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARGS 1963-A

i±ftfig*L lengh QuaUiffor
field 12 TEXT

1010011001000011001000001001

idantifta langh 8AtA Idkntilef lengh
integer 1 command integer 0

------------------------ ------------- ---------

1001000001000000011000000001001000001000000001
---- -- -----------------------------------

idantiffer langth tdantifter length idontiffer langth
ASCII 0 integer 0 ASCII 0

4------4----------+--
1000000101000000001001000001000000001000000101000000001
4------+----------+--

This example shows a message of the minimum size. The

message structure is intended to be intrepreted

sequentially. There is no predetermined index to the

position of a field in the message.

I/O Envelope Description

The envelope of the I/O message is no±, actually, an

enclosure of the message. Instead, it is the addition of

information required by the Message Transfer System, to

properly handle the CBMS message. For the I/O Interface

system, the additional information is the CBMS address of

the destination device. This 32-bit, binary address is

included in the I/O message, as an additional data element,

of each the device name fields (FROM, TO, and REPLY-TO).

The introduction of the data element requires

modification of several of the length entries. The CBS

address element is six bytes long (identifier, length, and

D-lo

rll lii i-i• , : -l l - P I- " --- ! i_ .i i j. i l

TABLE D-II

I/O Interface Device Names

User Process Pull Device Name

User Shell Receive RM67/NETO/432/USR
User Shell Reply PR67/NET0/432/USA
Printer System RM67/NET0/MDS/PTR
ISIS File System RM67/NETO/MDS/DSK
Series III Console RM67/NET/MDS/CON

four bytes of data) and is included immediately after the

device name string of each address field. The length

entries for each device name field must be increased by six

and the message length, therefore, increases by twelve. The

format of the CBMS address data element is:

dantjifia legth data contents
bit-string 4 32-bit string

- ---------------// ...----- +
I010000111000001001xxxxxxxxxxxxxxxxx

- --------------- // ------ +

1/O Interface Device Address MapDins

This section identifies the device names to be used in

the I/O Interface system and defines their mapping to CBMS

addresses. The device naming structure is presented in

Chapter III of the body of the report. The format of the

DELNET addresses (used as CBMS addresses) is explained in

Appendix E. Users should refer to these texts for more

information.

There are five user processes, or devices, in the I/O

D-11

TABLE D-III

CBMS Address Field Values

CBMR Address Field HA Binar Dlia

Control - 0000 0

Country RM67 0001 1

Network NETO 0000 0

Host 432 0100 0000 64
MDS 0100 0001 65

Port USR 0000 0000 0000 0
USA 0000 0001 0000 1
PTR 0000 0000 0000 0
DSK 0000 0001 0000 1
CON 0000 0010 0000 2

Interface system. Each device name is associated with a

particular user process. The device names and their

processes are listed in Table D-II.

There are five fields in the CBMS address,

corresponding to the four parts of the device name and a

control field (see Appendix E). Table D-III shows the field

values for each of the elements of the CBMS address. Note

that the User field contains a 4-bit filler on the right.

The User Code is contained in the left-most 8 bits of the

field. The fields are combined to form a 32-bit value for

each device process. For example, the Printer System device

(RN67/NETO/MDS/PTR) has the address:

0000 0001 0000 0100 0001 0000 0000 0000

D-12

(This appendix has presented the format of the I/O

Interfaces messages and the mapping of the device names to

CBS addresses. The message structure used in the I/O

Interface system is a direct implementation of the NBS

standard format presented in the SR cification for Message

Format for Computer named Massage Systemg (Ref 12). The

CBMS addressing structure is compatible with the DELNET

address format described in Appendix E.

D-13

- -o, ,

APPENDIX E

DELNET Natwork Addressing Scheme

Introduction

The purpose of this appendix is to present the details

of the addressing scheme used in the I/O Interface Computer

Based Message System for the Intel 432 Micromainframe

Computer System. This is an implementation of the Digital

Electronics Laboratory Network (DELNET) addressing scheme as

discribed in the UNID design documentation (Ref 32). Since

it is intended that the Intel 432 Micromainframe computer

system become a part of the DELNET system, the use a

compatable addressing scheme is required for network

communications (Ref 9:21).

The DELNET addressing structure is primarily an

implementation of CCITT X.121 standard and the Internet

Header Format used by DARPA. The address format is 32 bits

long and contains five fields; Control, Country Code,

Network Code, Host Code and User Code.

Note that the DELNET specification refers to the User-

id field as a OPort Code". Either terminology can be used,

the structure of the field is not different, but, the idea

of a "user" is more applicable to the I/O Interface system

use.

Figure E-1 shows the address structure and the

following sections will present the domain for each field

E-1

'p

I CTR I CC ! NC I BC I UC
I 0000 I 0000 I 0000 I 0000 0000 I 0000 0000 0000 I

4+-- ... 4

Figure E-l. I/O Interface Message Address Format

and discuss their use in the I/O Interface.

Control (CTR)

This is a 4 bit code which will establish the

addressing format to be used. The I/O Interface will only

use one addressing format and, therefore, this field may be

considered constant. The value [00001 in the Control field

indicates that the Country Code field is 4 bits, the Network

Code field is 4 bits, the Host code field is 8 bits and the

User Code field is 12 bits. This format is shown in figure

E-1.

Country Code (CCI

The Country Code is a 4 bit field which gives the first

level of addressing heirarchy. The I/O Interface system

is located within the same reference area and, again, will

only require a constant value for this field. A Country

Code of [0001) indicates the system resides in the basement

of building 640. If the system is moved or the network is

expanded to include a larger geographic area, the

specification this field may need to be reviewed.

E-2

Network Code (14C)

Within each Country Code area, there may be several

networks. The Network Code specifies the next level in the

addressing heirarchy. The DELNET specification uses the

Network Code to identify a particular UNID in the system, as

if a UNID would be used to attach each network to the

system. It may happen that several local area networks are

attached to a single UNID, due to the limited number of

UNIDs available. In this case, modification of the

addressing scheme will be necessary. However, like the

Country Code, it will still remain constant within the Intel

systems implementation of the I/O Interface.

Host Code (HC)

The Host Code specifies a particular computer system

within a network. The I/O Interface system is, in fact, a

local area network from the viewpoint of the DELNET. The 8

bit code for the Intel systems can range from 0 to 63, [0000

0000] to [0011 1111]. In particular, the 432 processor

system is designated Host 0, the Debugger system is Host 1,

and the second AP system is Host 2 for the current

organization of the Intel systems.

According to the DELNET specification, the Host Code

values are dependent upon the hardware port that is used for

interconnection with the UNID. When the UNID becomes

operational and the systems are interconnected, it may be

necessary to modify these values.

E-3

User Code MUCI

The User Code is the identification of the particular

device or user process which is to be addressed. It is the

lowest level in the addressing heirarchy. These 12 bit

values may be assigned as fixed values for particular system

devices or processes, or they may be allocated during

execution and deallocated when not required by the using

process or device. within the I/O Interface system, fixed

values will be assigned to each User Agent process. Future

implementations of the CBMS may provide other methods.

This appendix has presented the details of the I/O

Interface message addressing scheme. The organization

provides for an address space which should be adequate well

into the future. The important fields for the I/O Interface

will be only the Host Code and the User Code. Constants

should be supplied for the upper field values which may be

modified at the time the system in connected to the DELNET

devices. Further information about DELNET organization and

operation can be found in "Protocol Standards and

Implementation within the DELNET using the Universal Network

Interface Device (UNID)" (Ref 32).

E-4

APPENDIX F

Intel 432 Cross Development SYStem
Hardware and Software Compatibility Guide

This appendix contains a table of the software and

hardware which are compatable for use in the Intel 432 Cross

Development System. The configuration presented is for the

Release 2 hardware and software which was used during the

I/O Interface system development. This is n= the latest

release of 432 hardware and software from Intel Corporation.

Use of the I/O Interface software with a later version of

the 432 development environment may require modifications to

the interface code modules. Refer to the appropriate Intel

documentation for each development system component or

utility regarding system upgrades.

All of the information presented here comes directly

from Intel publication number 172547-003 "Intel 432 Cross

Development System Hardware and Software Compatibility

Guide." For more information the reader should refer to

that document and the "Intel 432 Cross Development System

VAX Host User's Guide" (Ref 21).

F-1

TABLE F-I

Hardware and Software Compatibility Guide
for Release 2 Components

Product Product Code Version

ACS 432 (VAX/VMS) CDS432-11 R Vl.01* Vl.00
(VAX/Unix) CDS432-21 R Vl.01-

LINK-432 (VAX/VMS) CDS432-12 R Vl.01" V1.00
(VAX/Unix) CDS432-22 R Vl.01"

DEBUG-432 CDS432-30 T/U V1.01 Vl.00

UPDATE-432 CDS432-30 T/U VI.00

iMAX 432 (VAX/VMS) MAX432 T/U
-432 Code V2.01* Vl.00
-AP Code Vl.00**

(VAX/Unix) MAX432 20 T/U
-432 Code V2.01*
-AP Code Vl.00**

DSP 432 DSP432-6 A/B V2.00 Vl.XX

iAPX 432 GDP Release 2.1 Release 1.X
Release 2.0

iAPX 432 IP Release 2.1 Release 1.X
Release 2.0

* Compatable VAX Host Operating Systems:

VAX/VMS : Version 2.4
VAX/Unix : Fourth Berkeley distribution of Unix/32V

** Compatible with iRMX 88 V2.0

C
F-2 •onwf- -

APPENDIX G

432 Ada Compiler Avatpm
Version 1-01-

Inimplementod Paelitiem

Introduction

The purpose of this appendix is to present a concise

listing of the facilities which are not supported by the

current cross compiler system, version 1.01. The

information presented here comes directly from Intel

Publication Number 172250-005, "432 Ada Compiler System

Version 1.01, VAX/VMS Release Unimplemented Facilities,"

dated 6 August 1982. Additional information on these

restrictions may be found in the first appendix to the Intel

publication "432 Cross Development System VAX Host User's

Guide" (Ref 21:A-l/A-4).

DnimDiementod Facilities

The following facilities are n=t supported in the

version 1.01 release of the Ada language cross compiler:

1. Approximate numbers (fixed and floating).

2. Tasking.

3. I/O facilities except the ones specified in the 432
TEXT-IO package.

4. Array operations, notably concatenation and boolean
operations.

5. Arrays (including strings) whose bounds are not
static.

6. Packed arrays of non-byte-length elements.

G-1

: w !

7. Arrays of mixed records (records that include

access and data values).

8. Arrays longer than 64K bytes.

9. The following pragmas
(Ada language compiler controls):

controlled,
extension,
include,
interface,
list,
memorysize,
optimize,
priority,
rights (for instruction segments),
storage_unit,
suppress,
system.

The "pack" pragma is partially implemented.
"Pack" has effect only on new scalar types. For *type
s is range l..10" and 'pragma pack (s)" instances of s
will be represented by four bits. Without the pragma
instances will be represented by 32 bits, the default
for universal integers.

10. The following attributes:

address,
constrained,
first-bit,
image,
last_bit,
position,
range,
size,
storagesize,
value,
all fixed and floating attributes,
all tasking attributes.

11. Type conversion involving structural

representation changes.

12. Packages with no package body declarations.

13. Run-time checks.

14. The constrainterrors Accesscheck and
Lengthcheck.

G-2

p

15. The following pre-defined exceptions:

Constrainterror,
Numeric-error,
Select_error,
Storageerror,
Tasking-error.

16. User-defined exceptions.

17. Dynamic typing as described in Appendix F of the
Intel Edition Ada Language Reference Manual (Ref 20).

18. Representations over access types.

19. Record representation "at mod'.

20. Address specification.

21. Interrupts.

22. Static packages (i.e., packages not local to a
subprogram or block) requiring any executable code for
their initialization. Thus, package initialization,initialization of package variables, constants, and
separate packages are not supported by the first
release of the 432 CDS.

23. Generic Pormal types that have discriminates are
not checked at instantiation.

24. Access before elaboration checks are not
implemented. Recent language discussions suggest that
these checks may not be required in the future.

Summary

The facilites which are not implemented or are

restricted in use are summarized in Table G-1. While these

limitations on the use of the Ada language impose a large

burden on the software designer, this was the only compiler

available for the 432 system. The latest release of the

comipiler, Version 2.0, has many of these problems corrected

including arrays and limited tasking facilities. Intel is

G-3

NI

TABLE G-I

Ada Compiler System
Implementation Restrictions

(Ref 21:A-1)

Pacility Status

Approximate Numbers Not Implemented
Tasking Not Implemented
Packages without bodies Restricted
Address specifications Not Implemented
Interrupts Not Implemented
Change of representation Restricted
Arrays Restricted
Run-time checks Not Implemented
Exceptions Not Implemented
Representations Restricted
I/O facilities Restricted

currently working to complete Version 3.0 which will

implement the complete Ada language.

G-

I

G-4

APPENDIX H

T/O Tnta.r pc nals Mannal

Table of Contents

Page

Table of Contents H-1

Introduction ° H-2

AFIT/ENG 432/670 Development System H-3
Hardware Systems H-4
Hardware Interfaces .' . . .0-7
Software Utilities H-9

I/O Interface Configuration H-11
Hardware B-12
Software H-15

Operation of the I/O Interface 0-20

I/O Interface Devices H-25

Using the I/O Interface Devices H-27
Printer System Device H-27
ISIS File System Device . . & 0 0 0 0 . * H-29
Series III Console Device 0-31

Adding New Devices H-32

Operation of the User Shell H-35
Configuration . . . B -35
Shell Comman dsds. 0 -38

Help Command H-40
Set Command -43
Copy Command -45

Summary 0-46
Bibliography H-47

H-2

The purpose of this thesis (Ref 2) appendix is to

provide a structured guide to the use of the I/O Interface

for the AFIT/ENG 432/670 Micromainframe Computer System.

The following sections describe the operation and use of the

1/O Interface, itself, and then the operation of the User

Shell software which in an example of an application of the

interface.

This document is intended to be used as a user's guide

for the I/0 Interface. Therefore, there is some duplication

of information with other sections of the thesis nign- -and

Tmolementation of an Inout/Output Interface Protocol for the

Intel 432/67n Computer System (Ref 2), of which this manual

is an appendix. The reader should refer to that document

for further information.

AFIT/ENG 432/970 Develoment Systm

This section describes the hardware and software

environments of the Intel 432 Cross Development System

(CDS). The CDS is an interconnection of three computer

systemsr a VAX 11/780 CDS Host System, an Intel Series III

Microcomputer Development System (MDS), and the Intel

432/670 Micromainframe Computer System. Figure H-I shows

this organization. The following paragraphs will describe

the system hardware, the interconnections, and the software

utilities used in each part of the CDS. Users of CDS should

H-3

VAX 11/780 1 ________ Multiple
Host System Host System

jl Users

I Asyncronous
Serial Link

Intellec
Series III
Microcomputer - Debugger
Development System User
System

I Intel 432/670
ProcLink

Intel 432/670oi
Micromainframe
System

Figure H-1. Intel 432 Cross Development System
Hardware Environment

refer to the Introduction to the Intel 432 Crosa Develogment

4Yjt~em for a more detailed description of the system (Ref

13).

Hardware sgRtem-& The major components of the CDS are

the VAX-11/780 Host system, a Series III NDS Debug

Workstation, and the 432/670 System (see Figure H-1). The

other necessary hardware includes the communications link

'-4

,."

for downloading programs from the host to the Debug

workstation, and a 432 Interconnect Kit to connect the

Series III MDS to the 432/670 System. The communications

link and the Interconnect Kit will be discussed in the next

section.

The VAX Host system provides an environment for the

software development tools of the Ada Compiler System (ACS)

and the 432 linker program. The system also provides access

to standard text editors and large data storage systems

which can be accessed by multiple users to speed the

software development tasks.

The Debug Workstation consists of an Intellec Series

III Microcomputer Development System (MDS) connected to

both the VAX Host system and the 432/670 computer. The

required configuration for the Series III MDS consists of

the following hardware:

- 192K bytes of RAM (minimum)

- single- or double-density diskette drives

one hard disk drive (minimum)

an interface to the System 432/670.

The System 432/670 is a flexible computer system that

can be configured to meet the processing needs of the user.

The maximum configuration includes up to four General Data

Processor (GDPs) boards, at least one Interface Processor

(IP) system, a Memory Controller (MC) board, and up to six

Storage Array (SA) boards providing 1.5 megabytes of memory.

H- 5

:iU
9 *

256K-byte SA board

256K-byte
SA board

,troller
]dte

Central System Memory Controller
(System Bus Backplane) GDP board I

GDP board C

IPL board/

IPL board/

Ppheral SubsystemP (UTIBUS Backplane)

Figure H-2. System 432/670 Standard Configuration

(Ref 13:1-6)

The original (factory shipped) configuration of the system

includes (Ref 13:1-5):

1. One iSBC 432/630 Enclosed Chassis with a power
supply and card cage

2. One iSBC 432/611 12-slot System bus backplane
and one iSBC 432/615 6-slot MULTIBUS backplane

3. Two iSBC 432/601 General Data Processor boards

4. One ISBC 432/603 Interface Processor Link
(IPL) board

5. One iSBC 432/604 Memory Controller (MC) board
and two iSBC 432/607 256K-byte Storage Array (SA)
boards

6. One iSBC 432/602 Interface Processor (IP)
board

H-6

7. One Attached Processor (AP) board (properly
configured iSBC 86/12A board) with 32K-bytes of
EPROM and 64K-bytes of RAM.

The arrangement of these boards in the 432 system chassis is

shown in Figure 9-2 (Ref 13:1-6).

Wardyare Interconnections. As shown in Figure H-l,

there are two major system interconnection in the Cross

Development System hardware. The first is the VAX-Series

III serial link. The second is the Series 111/432

Interconnection, also called the Intel 432 ProcLink.

The VAX-11/780 system is connected to the Intel Series

III MDS by an asyncronous serial link. The operation of the

serial link is described, in detail, in the Intel manual

Amyncronous Communication Link Users Guide (Ref 17). The

existing 5-wire unshielded connection runs from the Intel

systems, in the basement of building 640, room 67, up to the

second floor, room 245, where it is connected to the VAX

system. While this connection far exceeds the 50-foot

maximum for EIA Standard RS-232-C Type E interfaces (Ref

21:56), the link is sufficient for data transfers at 9600

baud.

The Series III MDS is connected to the 432/670

Micromainframe by the Intel ProcLink cable which provides

the data path for the 432 Interface Processor (IP) and the

Interface Processor Link (IPL) communication system. This

hardware is called the *Intel Series 111/432 Interconnect

KitO and is described in the manual Introduction t2 the

R-7

SoaeMemory iAPX 432 iAPX 432Arrays Controller |General General
|Data DataProcessor Processor

Intel 432/670
Processor to Memory InterfaceK(System 432/670 System Bus)

Processor

Link

S Intel 432/670 ProcLink

I APX 432
Interface
Processor,

Debugger System

Debugger Processor (Series III NDS Bus)
MULTIBUS

8086/12A Peripheral
Debugger Device
Processor Controller

Figure H-3. 432/670 Cross Development System
Hardware Configuration

H-8

..... ' i- -

TABLE H-I

432 Cross Development System
VAX/VKS Directories

Contents VAX/VMS Directory Name

Ada Compiler System [INTEL2.ACS]
(Version 1.01)

iMAX 432 Operating System [INTEL2.IMAX]
(Version 2.01)

432 Link System [INTEL2.LINK432]
(Version 1.01)

Asyncronous Link Software [INTEL2]
(Version 1.02)

Intel 432 Cross DeveloDment System (Ref 13:1-7). Figure H-3

shows the ProcLink connection between the IP board on the

Attached Processor system bus and the IPL board on the

432/670 system bus.

Software Utilities. The Ada language programming is

performed on the VAX host system under the VMS operating

system. Software development includes: compiling and

revising Ada source programs, compiling programs, creating

combined specification files, generating program listings,

and linking compiled programs. Standard VAX text editor

systems are used to create source files. The CDS host

resident software includes the Ada Compiler System (ACS) and

the 432 program linker (LINK432) (Ref 13:1-7).

H-9

9

Table H-I shows the directories which contain the CDS

software on the VAX/VMS Host system. The files in these

directories were supplied by Intel Corporation on 9-track

tapes and copied to the VAX/VMS system disk storage

according to the instructions in the 432 CDS VAX Host User's

Guide (Ref 12:G2-G3). This software is on the "INTEL"

labeled disk for the VAX/VMS system in room 245 of building

640.

The Debugger Workstation software tools permit users

to handle executable files for the 432/670, load and debug

programs on the 432/670 system, and develop device drivers

for the 432 Attached Processor. The files necessary for the

Debugger Workstation are listed in Table H-II. These

program files were supplied by Intel on single-density 8-

inch floppy disks in ISIS readable format. For detailed

instructions on the operation of the Series III utilities,

refer to the series III MDS Console O2eratina Instructions

(Ref 4) and the Series III MDS Programmer's Reference Manual

(Ref 3). Operating instructions for the Debugger, Update

and Diagnostic programs can be found in the 412 QS

Workstation User's raidie (Ref 14). These manuals and disk

files are maintained, with the Intel systems, in room 67,

building 640.

It must be noted that the proper hardware configuration

for the Series III Workstation requires a hard disk storage

device (Ref 13:1-6). Lack of the larger mass storage device

B-10

TABLE H-II

432 Cross Development System
Series III Workstation Software

Contents File Name

Series III Operating System (Version 4.3)

Executable Debugger Program DEB432.86

Intel-supplied Templates DEB432.TEM

Executable Updater Program UPDATE.86

Asyncronous Link Software

Configuration Program CONFIG

Terminal Emulation
Program ONLINE

One-Way Communication
Program SEND

VAX-to-Series III File
Transfer Program DNLOAD

Series III-to-VAX File
Transfer Program UPLOAD

limits the size of the executable file which may stored on a

double-density floppy diskette, 3895 blocks (498,560 bytes).

The operation of the system utilities is not affected by

this limitation.

T/O Intorfaea Canfiguration

This section describes the minimum configuration Gf

hardware and software necessary for operation of the I/O

H-11

.,o

]d

Interface on the AFIT/ENG 432/670 computer system. These

configurations do not include the requirements of any

applications, which would use the interface, or the Debugger

system which may be required for loading and executing the

software on the Intel 432/670.

Hardware. The hardware configuration for the I/O

Interface operation is an interconnected system of, at

least, four distinct microprocessors; the iAPX 432 General

Data Processor (GDP), the iAPX 432 Interface Processor (IP),

the Intel 8085-based Integrated Processor Card (IPC), and

the Intel 8086-based Resident Processor Board (RPB). These

processors, and their associated system hardware, are

placed on two system bus structures; the Processor and

Memory Interface bus of the Intel 432/670 Micromainframe

Computer System and the MULTIBUS structure of the Series III

Microcomputer Development System (MDS). These two main

chassis are interconnected by the Intel ProcLink cable as

shown in Figure H-4.

The Processor to Memory Interface bus is the main

system bus of the Intel 432/670 Micromainframe Computer

System. The 432/670 chassis contains a 12 slot system bus.

There are five slots available for processor boards (Ref

13:3-1/3-16). Those slots may contain any combination of

GDP and Interface Processor Link (IPL) boards. However, at

least one GDP board and one IP Link must be included in the

system configuration. The execution environment is defined

H-12

I

• 0a

Storage Memory iAPX 432 IAPX 432
Arrays Controller General GeneralData DataProcessor Processor

Intel 432/670
Processor to Memory Interface

mft

Interface
Processor
Link I

f Intel 432 Proc Link Cable[iAPX 432 IP
Interface 8085
Processor Board

Inte SeiesIII Microcomputer Development
Intel eries System Bus/

RPB JSC64 Disk Disk
8086/12A Memory System System
Board Board Interface Controller

Figure H-4. AFIT/ENG 432/670 Computer System
4 Hardware Configuration

H-13

9

"i -= T ' " l I.=- ;l it - = " i r '' ' " i li ' . . I ': " ir" ' I l- '-" . .. "

in the Processors package of the iMAX operating system,

which must be modified to reflect the current system

configuration (Ref 16:CON-2). The minimum configuration of

the Processor to Memory bus for operation of the I/O

Interface is exactly the configuration of the System 432/670

described with the Cross Development System (see Figure H-

2). Additional memory or processors may be required by the

application program.

The minimum configuration is also shown in Figure H-4,

where the Intel ProcLink cable is shown between the

Interface Processor Link board, on the 432/670 system bus,

and the Interface Processor board, on the Series III MDS

system bus. Figure H-5 also shows the minimum configuration

of the Series III MDS. Note that this need not be the same

Series III MDS as was used for the Debugger in Figure H-3.

In fact, if the Debugger system is required, the I/O

Interface AP must be a second Series III system.

The configuration of the MULTIBUS boards in the Series

III system depends upon the particular chassis and the

optional boards that are included. In general, the IPC-85

processor board is in the top-most slot of the main system

chassis and the disk controller/interface boards are placed

in the lowest priority slots of the system. For the exact

configuration, users should refer to the Tntellec Series III

Microcomputer Development System Hardware Reference Manual

and the System 432/970 system Reference Manual (Ref 15).

H-14

E6.

Software. The software of the I/O Interface

implementation for the AFIT/ENG 432/670 Computer system is

organized into packages, or modules, that provide functional

implementation of each mechanism of the interface protocol.

The following paragraphs describe the software for each

system of the 432/670 I/O Interface implementation:

The 432 software packages are written in the Ada

language and must be compiled and linked, with the operating

system, using the facilities of the 432 Cross Development

System. The VAX Host Users Guide provides operating

instructions for the Ada Compiler System (ACS) and the 432

system linker (LINK432) (Ref 12:3-1/3-40).

When compiling the source modules, it is important to

note the interaction among the packages. Each package must

begin with an Environment Pragma which lists the source

files which have specifications of modules that are

called by the procedures of the package. The source files

must be compiled in a sequence that ensures all referenced

specifications have already been compiled. Table H-III

lists the I/O Interface Ada language files in the order in

which they may be compiled. However, several modifications

must be made to these files and changes in this sequence may

be required.

The processor initialization procedures file

(Pserp.mbs) mZa= be modified to properly start the program

written to use the I/O Interface. The iMAX 432 Referenca

5-15

TABLE H-III

I/O Interface 432 Software Packages

Am.mss Address Manager Specification
Am.mbs Address Manager Body
Rm.mss Route Manager Specification
Rm.mbs Route Manager Body
Cbms.mss CBMS Message Manager Spec.
Cbms.mbs CBMS Message Manager Body
Mts.mss Message Transfer System Spec.
Mts.mbs Message Transfer System Body
Usa.mss User Agent Specification
Usa.mbs User Agent Body
Pserp.mbs Processor Initialization Body

Ioface.lkd Linker Command File

Manual explains the system initialization procedures in

detail (Ref 16:INI-1). The tasks of the I/O Interface are

"static' processes which started at the time of system

initialization (Ref 16:CON-3).

The User Agent package was written for use with a

particular user/device package; the User Shell process,

which is explained later. To use the I/O Interface with

another process, the receive procedure (Usareceive) of the

User Agent package must be modified to work with the

functions of that process. In addition, similar User Agent

packages must be written for each user/device process which

is added to the 432 processor program and requires the

services of the I/O Interface. The function of the User

Agent is explained in the following section.

H-16

When all Ada language modules have been successfully

(compiled, the resulting 432 object code files must be linked

with the operating system module (Imax.eod) using LINK432.

The iMAX 432 Reference Manual (Ref 16) contains a complete

description of the facilities of the operating system.

The commands for the linker program have been provided

in a file (Ioface.lkd). This file must be modified to

include the object files containing the program which will

use the interface. The linker commands are explained in the

Intel 432 CDS VAX Host Users Guide (Ref 12:3-1/3-40).

The 8086 software for the Series III MDS contains a

similar set of files. These are listed in Table H-IV.

The Series III MDS software is written in PL/M-86 and

utilizes the facilities iMAX provides for process control

and memory management. The order in which files are

compiled is not important in this environment. Also, the

specifications for each package are simply text files which

are "included" in the PL/M-86 source files that need to

reference procedurep in the package. The specification

files are designated by the I.inc" extension. The source

files (package bodies) have the O.plm" extension. The list

includes *System.libl which is the Series III/ISIS-II

operating system library of routines.

These files are compiled using the PLM86 compiler

program. Then the iRMX-88 Interactive Configuration Utility

(ICUS8) is used to identify the operating system modules

H-17

j

I I I II ll i ,. ,,, - HI ,, ,, d " 1P ; . ..

TABLE H-IV

I/O Interface 8086 Software Packages

Am.inc Address Manager Specification
Am.plm Address Manager Body
Rm.inc Route Manager Specification
Rm.plm Route Manager Body
Cbms.inc CBMS Message Manager Spec.
Cbms.plm CBMS Message Manager Body
Mts.inc Message Transfer System Spec.
Mts.plm Message Transfer System Body
Psa.inc Printer System Specification
Psa.plm Printer System Body
Ifsa.inc ISIS File System Agent Spec.
Ifsa.plm ISIS File System Agent Body
S3ca.inc Series III Console Agent Spec.
S3ca.plm Series III Console Agent Body
Ps.inc Printer System Specification
Ps.plm Printer System Body
Ifs.inc ISIS Pile System Specification
Ifs.plm ISIS File System Body
S3c.inc Series III Console Specification
S3c.plm Series III Console Body
Init.plm Processor Initialization Body

Ioface.lkd Linker Command File

that need to be included. Finally, all the program and

operating system modules are combined by the system linker

(LINK86) and an executable file is created. The operating

instructions for each of these utilities are provided in the

appropriate Intel manualsu the PL/M-R8 Cnmpilr OUerating

Instrunions (Ref 20), the IRMX 80/BR Interactive

CQnfiguration Uttlity User's Guide (Ref 5), and the J=&

R6.BA Family Utilitie. User'n nuide (Ref 6).

H-18

I III i I i i i

System

4iur325 Processo S32/670 IOItraeSse

System

Attache

Operation of the Interface
A

4 This section describes the operation of the I/0

Interface. The following paragraphs will present the

general topology of the system and discuss the user

interaction with the interface:

The I/0 Interface contains three basic parts; the

application program (hereafter, referred to as the User),

the User Agent, and the Message Transfer System. The User

is, simply, the applications program which requires access

to I/O devices. The User Agent (UA) is the element which

defines the way in which the User can interface with the I/O

devices. Finally, the Message Transfer System (MTS) is the

system that moves the I/O commands and replies between the

User Agents and Device Agents (User Agents for the I/O

devices).

Figure H-5 shows the organization of Users, UAs, MTS,

and devices in the AFIT/ENG 432/670 System. This view is

overly complex. The User process only interacts with the

User Agent and, therefore, the system shown in Figure H-6 is

more appropriate. The User can access any I/O device in the

system through the User Agent.

The User Agent has two major parts; the send section

and the xeatya section. Each section may be tailored to

the needs of the User. The User Agent also has two

communication ports; a receive 2o=t, and a ra .IX.

These ports are created during the system initialization.

H-20

- --- -a '----~ --- __

L _ d

4!

system
User

MDS
PrinterConsole

Deevice

iii

Figure H-6. User View of I/O Interface System

The reply port is used by the send section, which waits at

that port for a response after sending a request to another

User Agent. All request messages are sent, by the MTS, to

the receive port.

The receive section is a static process that waits at

the User Agent's receive port for a request message from

another User Agent. The process then determines the I/O

command and calls the User-supplied function appropriate for

that request. The User function returns a status value

which is then sent back to the requesting User Agent, as a

reply message. Figure H-7 shows this process as a data

H-21

k -

System
user

Priter ,Console

SytmIsis Device

Device FieSys.
Device

Figure H-6. User View of I/O Interface System

The reply port is used by the send section, which waits at

that port for a response after sending a request to another

User Agent. All request messages are sent, by the MTS, to

the receive port.

The receive section is a static process that waits at

the User Agent's receive port for a request message from

another User Agent. The process then determines the I/O

command and calls the User-supplied function appropriate for

that request. The User function returns a status value

which is then sent back to the requesting User Agent, as a

reply message. Figure B-7 shows this process as a data

5-21

i i i~ l i i i iI i i

Receive Port Address

CBMSBMS

Figure 5-7. User Agent Receive Process Data Plow

flow.
The receive section of the User Agent is written to

work with a particular User. Each User is unique anL
performs a different set of functions in response to the I/O

Interface commands. Whether the User is a peripheral device

or a system process, the User Agent receive section must be
tailored to call the functions of the User properly. The

send section, however, may be the same for all users.

The send section, of the User Agent, contains a set of

procedures which perform input and output functions using

K -22

Inerac comns Whthr...........rihealdeic

TABLE H-V

I/O Interface Replies to Function Requests

I/O Interface Reply Codes

0 1 2 3 4 5 6 7

I/O Interface Ok Invalid End of Bad - Device -
Function Command File Data Error Closed Off Busy

Open x x x x
Close x x x x
Read x x x x x x x x
Write x x x x x x
Page x x x x x x
Title x x x x x x x
Delete x x x x x
Rename x x x x x x
Reset x x x x x
Get Config x x
Set Config x x x x x x x
Test x x x

the I/O Interface. Each procedure returns a reply code as

an indication of the success or failure of the request.

Table H-V shows the procedures of the send section and the

reply codes they can return. The User Agent may contain all

the procedures listed in the table (as in the case of the

User Shell Agent, discussed later). However, to conserve

memory, the send section only needs to contain the

procedures that are required by that particular User.

The procedures of the send section generally perform

the same steps. The send procedures use the facilities of

the MTS to create a message containing the command and any

data required. The message is sent to the User Agent for

the device requested. That device's User Agent returns a

H-23

Src_Name -
Dest_Name Reply Port Address| Function_ .., -

Args

Get PullReceive
Name Message

(iMAX)

CEMS
srcName Create
Dest_Name Message CBMS_ ..

Message

CBMS_
Message CBMS

Read
MTS Message

Status

Figure H-8. Typical User Agent Send Procedure Data Flow

message containing the reply code that indicates the result

of the operation. The send procedure, then, returns the

status indication to the calling user process. Figure H-8

shows a typical send procedure as a data flow.

Each device has a User Agent similar to that described

for the User. The devices that are currently implemented

with the I/O Interface, on the AFIT/ENG 432/670 System, are

described in the next section.

9-24

I/O Interface Devices

There are three I/O devices implemented in the current

software of the I/O Interface. Each device is defined by

two software packages; the device abstraction and the

device-Age.

The device abstraction package contains the functions

which control the device and, thus, define the capabilities

of the device for the system. For example, the Printer

System package contains the procedures Ps_Open, Ps_Close,

PsPrint, PsFormFeed, PsTitlePage, and PsTest. To the

I/O Interface, the Printer System is a device which can

perform only these functions. The implementations of these

functions or the operation of the device driver routines

which might be used to perform the functions are not

important to the I/O Interface. The interface only requires

knowledge of the arguments required by these functions and

the status indications they provide in return.

The device agent package contains the procedures for

mapping the interface commands to :he device functions of

the abstraction. The device agent may have two sections;

one for sending interface commands to other devices and the

other for receiving commands.

The receiving portion of the device agent is a process

which accepts command messages from the interface and calls

the necessary procedures of the device abstraction. Table

H-VI shows the mapping of the I/O Interface functions onto

H-25

TABLE H-VI

Mapping of I/O Interface Commands to Device Functions

I/O Interface Device Functions

Command PS IFS S3C

Open Open Open 2
Close Close Close 2
Read 1 Read ReadWrite Print Write Write

Page Form Feed 2 Clear Screen
Title Title Page 2 Clear Screen
Delete 1 Delete 1
Rename 1 Rename 1
Reset Close Reset 2
Test Test Test Test
Get Config 1 1 1
Set Config 2 1 2

1 - Not Implemented, UA replies "command invalid"
2 - Not Used, UA replies "ok"

each device. When the device function is complete and

returns a status value, the receive process calls procedures

of the Message Transfer System to send a reply message to

the requesting user of the I/O Interface. Thus, the receive

process syncronizes the operation of the device with the

command/reply sequence.

The send section of the device agent is only required

when the device is capable of originating I/O Interface

commands for other devices. None of the devices implemented

for the Series III MDS have this capability. However, the

send section of the package is simply a collection of

B-26

procedures, each of which implements an I/O Interface

command, as discussed in the previous section.

Using the I/O Interface Devices

This section describes the operation of the current

devices of the I/O Interface system. Each device has

characteristics which must be known by the user for

efficient operation. There are several characteristics that

are common to all three devices:

The maximum buffer size (read or write) is 256
bytes in length.

The reply codes are 8-bit integers with values
as given in Table H-VI, above.

The reply to the "test" command will be one of
the following:

Ok - device ready to accept a
command.

Device Busy - device is active and
in use by another process.

Device Off - device did not receive
the message or the User Agent did
not respond to the request message.

The following sections describe the abstraction of each

device and the operation of the procedures in the device

software package:

Printer System Device. The Printer System is an

implementation of a minimum number of procedures to provide

printer services to the system. The functions are listed in

Table B-VII. The functions define a device that is "output

only" and can only be accessed by one user at a time.

9-27

TABLE H-VII

Printer System Functions

OPEN open device to a user
CLOSE close device to a user
PRINT write a buffer to the printer
FORM_FEED eject a page on the printer
TITLE_PAGE print a title and eject a page
TEST check printer status

The OPEN and CLOSE functions are used to ensure that

the printer is allocated to only one user until that user is

finished. The CLOSE function also performs the reset

function, clearing any error condition in the device. The

PRINT function allows the user to write a variable size

buffer (0 to 256 bytes) of data to the printer. The

FORMFEED function requires no data and, simply, sends an

ASCII form feed byte (OC hex) to the printer to eject a

single page. The TITLE-PAGE function uses the data provided

as a header, or title, and prints a formatted page, then

moves to the top of the next page to prepare for printing

again.

The software implementation of the printer assumes that

the device is installed on SERIAL CHANNEL 2 of the Series

III NDS. The ISIS operating system utilities are used to

send the data to this port of the system. Obviously, if the

device is not connected to this port, the system will not

H-28

d

TABLE H-VIII

ISIS File System Functions

OPEN open file to a user
CLOSE close file to a user
READ read a buffer from an open file
WRITE write a buffer to an open file
DELETE delete a file from the disk
RENAME rename a file on the disk
RESET close all open files
TEST check existence of a file

work. The TEST command will return a "Device Off" reply in

this case. If the device is operating, the TEST procedure

returns an indication of whether or not the printer has been

opened by another user (and not yet closed).

The Printer System functions do not do any data

transformations in this implementation. If necessary, the

software could be modified to handle special requirements of

the printer by modifying the data written to the device.

ITSS File System Device. The ISIS File System provides

access to the ISIS operating system's disk storage

facilities. The procedures implemented are listed in Table

H-VIII. The procedures use ISIS operating system utilities

to perform file operations and require valid ISIS format

file names (Ref 3,4:2-1). All procedures of the ISIS File

System require a valid file name as data in the message.

Note that the use of these file operation does not require

H-29

b4

any verification by the requesting process. All valid

operations are performed when requested with no recourse.

The OPEN and CLOSE procedures are used to control the

file access. There may be fo= files open, simultaneously,

and each request message is checked to ensure that the

requesting user is the same user that opened the file. The

system will respond "Device Busy" to any other user

requesting access to that file. If there are, already, four

files open, then the system is busy to all other users.

The READ and WRITE procedures will only operate on

files previously opened by that user. They each provide for

buffer transfers of data (0 to 256 bytes) and the READ

function returns an 'end-of-file" indication when the last

record of the file has been sent. A file that has been

opened for a WRITE operation must be closed before a READ

function will be accepted (likewise, for reading then

writing).

The DELETE operation removes a file from the disk. The

operation may not be requested on an open file. The system

will indicate *device busy', if this is attempted. Also,

the reply will indicate *invalid data' if the file does not

exist on that disk. Generally, once a file has been

deleted, it cannot be restored. Use of this function

requires some caution.

The RENAME function required two valid file names and,

like the DELETE function, cannot be performed on a file that

B-30

TABLE H-IX

Series III Console Device Functions

READ read a buffer from keyboard
WRITE write a buffer to the display
CLEAR-SCREEN clear the console display
TEST check console device

is open or does not exist. If the file names do not have

identical drive numbers, the procedure indicates "bad data"

and does not perform the function.

The RESET procedure, simply, closes all files opened by

the requesting user. No other user's files are affected by

this operation. No user may close another user's active

files. This is the only command that does not require a

file name as data. The RESET command always responds "Oku

if the system is operating.

The TEST command checks for the existence of the file

given. If the file is not in the directory of the disk

named, the procedure returns a "error" indication.

series II! Console Device. The Series III Console

device is the implementation of a simple terminal source and

sink system. There is no device allocation procedure for

this device (i.e., OPEN and CLOSE procedures). Thus, input

from several users can become intermixed on the display.

Also, extended output from the keyboard may be sent to

H-31

different users, as well. The available procedures are

listed in Table H-IX. As with the other devices, the

maximum buffer size is 256 bytes.

The READ function accepts input from the Series III MDS

console keyboard. The end of the input is signaled by

entering a <RETURN>. The WRITE function displays the

information in the message on the console display. The data

will begin at the current cursor location. The eighth bit

of the data characters is not changed by the procedure.

Thus, any special control characters will be sent to the

display without modification.

The CLEARSCREEN procedure requires no input. It,

simply, writes an escape sequence to the console display

(the two character sequence is 1B45 hex, the *Clear Display"

code for the Heath H-19 terminal). This code may need to be

modified, if the console terminal is changed, in the future.

The TEST function, for this device, does n=t actually

check the device. Only the User Agent package and the

existence of the device abstraction software is verified by

this function. The procedure always returns "Ok" when

called.

AAdina New Devicm

Future users of the AFIT/ENG 432/670 Computer System

may wish to implement additional devices within the I/O

Interface system. This IT/ENG 432/670 Computer System

may wish to implement additional devices within the I/O

H-32

d

TABLE H-X

Guidelines for Adding New Devices to the I/O Interface

1. Define the device abstraction.

2. Define the command mapping onto the
device abstraction.

3. Implement all I/O Interface commands
in the device agent.

4. Provide procedures for device and
device agent initialization.

5. Thoroughly test the procedures

Interface system. This section is intended to provide

guidelines for adding new devices. In addition, these

guidelines may be applied when modifying the existing device

software packages.

There are two software packages that must be created

for each device. The device abatraction package is the set

of procedures which define the possible actions of the

device. The other package is the device agent, the User

Agent for the device, which defines the mapping of the I/O

Interface commands onto the device functions and provides

the device with access to procedures which can create I/O

Interface messages.

In general, the best approach is to first examine the

software of an existing device with similar functions. It

may be possible to, simply, duplicate the procedures of the

H-33

existing packages. In any case, the structure of the

software will provide an example of procedures which use the

I/O Interface facilities.

If no existing software satisfies the requirements,

then an organized approach may be taken to implement new

devices. There are six steps (see Table H-X) which form an

outline of a device development process.

First, create the abstraction. Determine the functions

of the device and program those functions. The inputs and

outputs should be clearly defined. Refer to Table H-V for

the proper use of the reply codes to indicate the status of

the function.

Second, define the mapping of the I/O Interface

commands to the functions of the device. If a device

function has no corresponding I/O command, it cannot be used

by the system. Ensure that the arguments of the device

function are properly retreived from the message format.

Refer to Appendix D of the I/O Interface thesis for

details of the message structure. Implement the mapping as

function calls from the receive procedure of a new device

agent package.

Next, ensure that all I/O Interface commands are

handled by the device agent receive process. If there are

any commands that do not apply to the new device, the device

agent must return an appropriate reply code to the

requesting user. Also, the initialization section of the

H-34

9

device agent should be implemented. This should be modeled

from the software of an existing device. Any hardware

initialization sequence should be included in this section.

The send section of the device agent should, then, be

added. If the new device requires access to other system

devices, the procedures which create and send I/O Interface

messages should be included in the device agent. These

procedures should be modeled after those of the User Shell

Agent package implemented on the 432 processor system.

Finally, the device should be tested. If possible, the

new software packages should be tested without other system

devices active. The new software should be validated by

thorough testing to ensure there is no undesired results.

Stepwise, top-down, testing may be performed in the same

sequence as followed in this design procedure.

Operation of the naer Shell

The User Shell is a single user system interface,

implemented as to demonstrate the use of the I/O Interface

facilities. This section describes the configuration of the

system and the operating commands available with the User

Shell program.

Configuration. The User Shell provides for operator

interface with the Intel 432/670 Computer System. The

Debugger console is the operator station for command input

to the Shell. This means that, during system operation, the

H-35

Storage Memory iAPX 432 iAPX 432j Arrays Controller General General
Data Data
Processor Processor

Intel 432/670
Processor to Memory Interface

[Interface Interface
Processor Processor
Link Link

SIntel 432 Proc Link

I APX 432 I1iAPX 432
Interface Interface
Processor Processor

Debugger System Remote System

Debugger Processor Attached Processor
Multibus Multibus

8086/12A Peripheral 8086/12A Peripheral
Debugger Device Attached Device

Processor ContColler Processor onoller

Figure H-9. User Shell Operating Hardware Configuration

H-36

TABLE H-XI

User Shell System Files

[il Zile Contents

Usa.mss User Shell Agent Specification
Usa.mbs User Shell Agent Body
User.mss User Interface Specification
User.mbs User Interface Body
Syscmd.mss System Commands Specification
Syscmd.mbs System Commands Body
Shell.mss User Shell Specification
Shell.mbs User Shell Body

Debugger system must remain as an Attached Processor to the

432/670 system. Figure H-9 shows this arrangement.

After the 432 Processor program is loaded and started,

the Debugger workstation must be set to a mode which allows

I/O with the 432. There are three commands which control

the Debugger I/O mode:

CONTROL-C Place the debugger in Debugging Only mode

CONTROL-O Place the debugger in I/O Only mode

CONTROL-B Place the debugger in Debugging + I/O mode

A complete description of the Debugger commands, and their

functions, can be found in the Tntel 432 CDS Workstation

12a anf~a (Ref 14).

The software of the User Shell must be compiled and

linked with the I/O Interface packages, using the facilities

of the 432 CDS on the VAX-l1/780. The Ada source files are

listed in Table H-XI. Note that the User Shell Agent is

B-37

included for use with the User Shell.

This file must be used with the User Shell system

because it provides access to the I/O Interface functions.

If another User Agent package is being used with the 432

system software, then insure that there is no conflict with

file names or package specifications. Generally, more than

one process cannot use the same agent package.

It is also important to modify the process

initialization package body (Pserp.mbs) to include the main

procedure of the User Shell package (Shell.main). If this

is not done, the User Shell process will not execute.

The Debugger console I/O facilities are very limited.

There is no queueing of messages to be written to the

console by the 432 processor. If two processes on the 432

attempt to write to the Debugger at the same time, one will

write and the other process will be halted until the first

process's I/O function is complete. Generally, this will

cause the two processes to intermix their text on the

Debugger console. The important corollary to this feature

is that while the User Shell is waiting for a command from

the operator, no other prOCesS can read or writg at the

Debuager console.

Shell Commands. The User Shell commands are provided

to allow user interaction with the system while

demonstrating the operation of the I/O Interface. The

User Shell will prompt the operator for a command by

H-38

TABLE H-XII

Logical Operands for Command Syntax Definition
(Ref 24:163)

F bol Mn
M "is composed of"
+ "and"
[] "choose one of (exclusive or)
<> "at least one of (inclusive or)"
() "optional"
{} "iterations of"
** "comment"
Delim "one or more blanks"

writing the "prompt character" to the Debugger system

console. The prompt character is I>". The command syntax

is the following:

Command-Name Argument-l Argument-2 ... Argument-n

where Command-Name is the name of the command (or an allowed

abbreviation). The number "n" of required arguments depends

on the command used. The Command-Name and arguments are

separated by one, or more, blanks. The maximum length of a

command line input is 79 characters. The syntax of each

command is shown in a figure using the logical operands

listed in Table H-XII.

There are three commands implemented in the User Shell;

Help, Set, and Copy. The HELP command is provided simply

for conven,,,'ce of the user. The SET command allows the

user to abbreviate the device names used in commands. The

COPY command uses the functions of the I/O Interface to

H-39

Command-Name Argment-1

HELPi FHELi
H + Delim + ET

LCOPYJ

Figure H-10. Help Command Syntax

allow the user to transfer information from one device to

another.

ReI Command. The HELP command gives the user

limited descriptions of the commands available and their

syntax. There are three accepted Command-Name values for

the HELP command; the full name, QHELPw, the first letter,

H, or a question mark, 0?".

There is only one argument allowed in the current

implementation of the HELP command. Argument-1 may be the

name of a system command; OHELP = , "SETO, or OCOPYO. If no

argument is given after the Command-Name, then a list of the

available commands is written to the console. Any incorrect

value for Argument-b will, also, get the list of commands.

Figure H-10 summarizes the syntax of the HELP command.

The information provided for each valid HELP command is

shown in Tables H-XIII through H-XVI. This information is

stored as constant data in memory and modification requires

rewriting the System_Commands package of the Ada source

code. There are no references to this data from outside the

H-40

a

TABLE H-XIII

Help Command Response (Default)

COMMAND HELP RESPONSE

HELP User Shell Commandi: HELP - Command Query
SET - Default Naming
COPY - Data Transfer

TABLE H-XIV

Help Command Response (Set Command Query)

COMMAND HELP RESPONSE

HELP SET SET Command Use: Default Device Naming

Argument may be appended
to the left side of
abbreviated device
name string

SET Command Syntax:
Command Arguments

SET DEFAULT Device-Name
S

Valid Device Name:

<Country>/<Network>/<Host>/<Device>

where <Country> must be RM67
<Network> must be NETO
<Host> is one of 432, MDS
<Device> is one of

[USR] on 432
[PTR, CON, or DSK] on MDS

H-41

TABLE H-XV

Help Command Response (Help Command Query)

COMMAND HELP RESPONSE

HELP HELP HELP Command Use: Command Query
Response displays on

Debugger console

HELP Command Syntax: Command Argument
HELP HELP
H SET
? COPY

TABLE H-XVI

Help Command Response (Copy Command Query)

COMMAND HELP RESPONSE

HELP COPY COPY Command Use: Data Transfer from one
system device to
another

COPY Command Syntax:
Command Arguments

COPY Device-Name-1 Device-Name-I
c

Valid Device Name:

<Country>/<Networ k>/<Host>/<Device>

where <Country> must be RM67
<Network> must be NETO
<Host> is one of 432, MDS
<Device> is one of

[USR] on 432
[PTR, CON, or DSK] on MDS

H-42

s T] + (Delim + DEFAULT + (Delim + "Device Name"))FCommnd-Name
Aruet1Agmn-

where

"Device Name" - () + "Element" + ({/ + "Element"))

Figure B-11. Set Command Syntax

package. Therefore, future implementations of this command

software may use other data structures for this information

storage.

etL omad . The SET command permits the user to

set the value of a default device name string. Device names

may, then, be entered as if the default string were added to

the left side. The syntax for the SET command is shown in

Figure H-li.

The format for the device name string is presented

graphically in Figure H-12. A complete, or full, device

name has four parts, separated by a slash (/)I country,

network, host, and device codes. When it is user, the file

name follows the device name (e.g., "/DSK/filename.ext").

The format for file names (under ISIS operating system) is

explained in the Intel publication Intgelac Series TII

MicrocomDutgr Dgveloment ftatam Console ,oeratina

Instructlonm (Ref 4).

The SET command can make references, to the system

H-43

d

unNetwork ost Device

432 - USR

RM67 NETO . .PTR

MDS CON :FO:file

DSK

:Fl~file

Figure H-12. I/O Interface Device Naming Structure

devices, much easier. For example, the full device name of

the Printer System is IRM67/NETO/MDS/PTR". if the default

name string is set to ORM67/NETO/MDS", then the Printer

System may be referenced by the name "/PTRO. The slash

(/1) on the left indicates that the default should be added

to the device name before the system reference is made.

Similarly, entering the this command:

SET DEFAULT RM67/NETO/MDS/DSK

would allow the following COPY command to be used:

COPY /:FO:OLDFILE.TXT /:Fl:NEWFILE.TXT

to copy one file to another. Without using the SET command,

the COPY command line can become excessively long.

It is important to note that the SET command does n

check for a valid device name when the default name string

H-44

I

i i i i -.

Command-N1ame A lmnz

O] + (Delim +wDevice Name' +(Delim +"Device Name"))

where

"Device Name' = (/) + nElement' + ({/ + 'Element')

Figure H-13. Copy Command Syntax

is entered. This can result in invalid device name errors

when using other system command.

Cogy Command. The COPY command is used to move

data from one device to another. The syntax for this

command is shown in Figure H-13. The command accepts two

arguments; the source and destination device names. If

either of the arguments is missing, the console operator

will be prompted to enter the missing element. Note that if

only one device name is given in the command line, it is

assumed to be the source device name and the operator will

be asked for a destination name.

The COPY command performs a file transfer. That is,

the system continues to transfer data, from the source to

destination, until an end-of-file condition is found. Each

system source device has a logical end-of-file indication to

allow the device to function as a source for the COPY

procedure.

When reading from a disk file (DSK device), an end-of-

9-45

file occurs when the end of the file data is reached. From

either console device (USR or CON), use <CTRL>-Z to enter an

end-of-file (i.e., press the "CTRL" key and the "Z" key

simultaneously). The Printer System does not accept "read"

commands, so, it has no need to generate an end-of-file.

Bum=w
The I/O Interface implementation on the AFIT/ENG

432/670 Computer System is an extensible and maintainable

system. This manual has provided guidelines for using and

maintaining the software system. Users should refer to the

design thesis for the Interface (Ref 2), if more detail is

required.

The attached bibliography includes the Intel

publications that are necessary for operation of the Intel

432/670 Micromainframe Computer System. This documentation

is extensive. It is hoped that this manual provides a

concise presentation of the fundamental knowledge required

to operate the I/O Interface system.

H-46

Albliography

1. ANSI/MIL-STD-1815A. Ada Programming Language.
Washington, D.C.: United States Government,, Under
Secretary of Defense, Research and Engineering, 1980.

2. Cole, Kenneth N. Dasign and Implementation of an
In~nt/Ontiout Interface Protocol for the Total 432/670
Compjutar Aystam, Unpublished MS Thesis. Wright-
Patterson APB, Ohio: School of Engineering, Air Force
Institute of Technology, December 1983.

3. Intel Publication No. 121618-003. Intellec Series 11II
MicrocoMouter Development avstem Programmer's Reference
lanjAl. Santa Clara, California: Intel, Corp., 1981.

4. Intel Publication No. 121609-003. Intellac Serien TTT
MicrocoMputer Davelonment System Console Ooerating
InstruCtions. Santa Clara, California: Intel, Corp.,
1981.

5. Intel Publication No. 142603-004. iULX fla8
Interactive Configuration Utility User's nuide. Santa
Clara, California: Intel Corp., 1981.

6. Intel Publication No. 143232-002. iRt4X 88 Rpference
HBn~fl. Santa Clara, California: Intel Corp., 1981.

7. Intel Publication No. 143241-003. iRMX 88 Tngtallation
Inatxjactionsa Santa Clara, California: Intel Corp., 1981.

8. Intel Publication No. 171858-001 Rev, B. IAPX 432
Oblect Primer, Santa Clara, California: Intel Corp.,
1981.

9. Intel Publication No. 171821-001. Introduction to the
1APX 432 Architecture. Santa Clara, California: Intel
Corp., 1981.

10. Intel Publication No. 171867-001. Intel 432 Satam
Stzmuarvt MAager's Perapact4 ye. Santa Clara,
California: Intel Corp., 1981.

11. Intel Publication No. 171869-002, Reference Manual for
thg Ada Proramng Language. Santa Clara, California:
Intel Corp., 1981.

12. Intel Publication No. 171870-002. Intel 432 Cross
Devlopment Wkstm VAX nant timr's .t3uide Santa Clara,

California: Intel Corp., 1982.

H-47

..... ----

13. Intel Publication No. 171954-002. Introduction to the
Intel 432 Cross Development System. Santa Clara,
California: Intel Corp., 1982.

14. Intel Publication No. 172097-002. Intel 432 Croas
Development System Workstation User's Guide. Santa Clara,
California: Intel Corp., 1982.

15. Intel Publication No. 172098-002. System 432/600
System Reference Manual. Santa Clara, California:
Intel Corp., 1982.

16. Intel Publication No. 172103-002. iMAX 432 Reference
lannal. Santa Clara, California: Intel Corp., 1982.

17. Intel Publication No. 172174-001. AaynchronuM
Communication Link User's Guide. Santa Clara, California:
Intel Corp., 1981.

18. Intel Publication No. 172283-001. Reference Manual for
the Intel 432 Extensions to Ada. Santa Clara,
California: Intel Corp., 1981.

19. Intel Publication No. 9800466,rev C. PLLMZ.6
Proarammino Manual for 800/8085-Based DeveloPment
Systems. Santa Clara, California: Intel, Corp., 1981.

20. Intel Publication No. 9800478,rev D. PL/1-8
ComDiler ODerating Instructions. Santa Clara,
California: Intel, Corp., 1981.

21. McNamara, John E. Technical AsDects Of Data
Communication. Bedford, Massachusetts: Digital
Equipment Corporation, 1977.

22. Phister, Paul W., Jr. Protocol Standards and Implementation
within the Digital Engineering Laboratory Computer Network
(DELNET) usina the Universal Network Interface Device
(.LID). Unpublished MS thesis. Wright-Patterson AFB,
Ohio: School of Engineering, Air Force Institute of
Technology, October 1983.

23. Smith, Lynn M. Intel 432/f70 Computer System riser's
Guide, Unpublished text. Wright-Patterson AFB, Ohio:
School of Engineering, Air Force Institute of
Technology, June 1983.

24. Weinberg, Victor. Structured AnalvaLa. New York, New
York: Yourdon Press, 1979.

B-48

m ,i

APPENDIX I

I/O Interface Data Ploy Diagram.

This appendix contains the data flow diagrams for the

I/O Interface. These diagrams have been extracted exactly

as they appear in Chapter III and are collected here for

reference. The full discussion of the logic development for

these diagrams can be found in the main body of this report.

I-1

- .. . I ~+-E

Prgurm 3-1ply/ InterfaoneDiga

Figure 3-1. User Shtellac Context Diagram

UserComandRespnse Use

Re eospRspose

Respond~ent

Fiueo-mmeand~yte...omndDtaFo

Line ommanp ArgStr-3

Receive Port Addresst

Function_.Args

Send

-Ncjame
DestName Reply Port Address

Function_.
Args

AN
Get Full Receive

Name Message
UiMAX)

CBMS
SrcName Create
DestName Message CBMS_

Message

CBMS_
Message CEMS

Read
MTS Message
Send

Status

Figure 3-7. Typical User Agent Send Procedure Data Flow

1-5

Device Name Receive Procedure

Create
AN Port Create

Lookup (iMAX) Task
Address (iMAX)

CBMS_-Address Port_.Address

Port AddressSe
Data BaseRot

Figure 3-8. Typical User Agent Initialization
Data Flow

1-6

IMF

MTS Port Address

Message BMSCBeSMesUnage

(iAddes Ades ot ddes (M

DeestName
CBMBMS-Msssage

CLooMesag 1BSLou Pr esg

Address ~MT Ports Rut Address (MX

Figure 3-10. MtsR.ecedv Data Flow

Src-Na-7

APPENDIX J

1/O interface Software Structure Charts

This appendix contains the structure charts for the

I/O Interface. These diagrams reflect the design of the I/O

Interface software modules described in Chapter III. Code

listings for these modules can be found in Volume II of this

thesis.

Note that there are identical modules on the 432

Processor system and the Attached Processor system. In the

case where the modules are named and numbered the same, the

only difference is the language of the implementation

program (see Appendix H). The data dictionary, included in

Volume II, provides a cross reference for the module and

variable names used in these charts.

In general, a single structure chart is sufficient to

show the organization of each system. However, when there

is a difference in the structure of the modules a separate

chart is presented for each system. The following page

contains a list of the charts provided.

J-1

u0

I/O Interface Structure Charts

stem/Modulp .

432 System
0.1 432 System Initialization J-1

User Shell
0.2 Main J-3

System Commands
2.1 Perform System Command J-4

2.1.1 Determine Command J-5
2.1.1.1 Set J-6
2.1.1.2 Help J-7
2.1.1.3 Copy J-8

User Shell Agent
6.1.1 USA-Receive J-21

6.2 USAOpen J-9
6.3 USA-Close J-10
6.4 USARead J-11
6.5 USA_Write J-12
6.6 USAPage J-13
6.7 USA-Title J-14
6.8 USADelete J-15
6.9 USARename J-16
6.10 USA_Reset J-17
6.11 USA_GetConfig J-18
6.12 USASetConfig J-19
6.13 USA-Test J-20

Message Transfer System
10.1.1 MTS..Receive J-25

Attached Processor System
0.1 Attached Processor Initialization J-2

Printer System Agent7.1,1 PSAReceive J-22

ISIS File System Agent
8.1.1 IFSAReceive J-23

Series III Console Agent
9.1.1 S3CAReceive J-24

Message Transfer System
10.1.1 MTSReceive J-25

J-2

- . - .
0

4

0 r-4

Ic 41

C4

41)

J-3.

>Y

W

r4 CC

*4'

0

4) N)

>"4

41 4)

c 04 04

ca 0

4--
0

r4)

41 C4

104)

-v4

J-o

02 i

m

C

44.

19oc ra 0

0 41 ri
>100

0 0a

4)

A02

ra'

J- 5

414

441

(A 0e-

4)40

41 04 C

U'

00

41

'0 41

04)4

U 41

41 41

41

4J.4-41

tit

OA 41 ON
cu MS = .

to ~ 0 41
d #-1 w

4) 4)

41

to 0

10,0

'-w r -4 C -

0 00c

alk'
44

411

0))

16
ON 0

j-74

A 4cJ

1 hiO)-

0214.4

1N141 C4

tr 41 w
4 r

- 4)8

4.'

'~4 "4

N El

hil

0

tri I

"4 -s

*4 N

Ely

64 .5 .4

J-9 a

= 4 n On
guy 01w0 c

IR 09l go go

04) t4., -

0 '.4i M 4J 4) (D

'4-I ~4 0 "4

A 44~

03 0
> 41.

:3 IVa 4

1.

J-E-o

4Jd

V
0 0 V0

0c m 8o.la
1 .&1 Mm grm 4)

X:w Q cto oo a 0) a
0)0 a Z.

CA 0to 4 1 A

cu Za (D0

I to r-4-r

U 0f

J- 1- 4

ol > a
4) kv

V 40

o o v~

tn 41tcnM

r4 0
Via) A

0 0If 0J-

0 0 tor-4-4

caa

4) 0)

0 r-4

0 r-0

M m .0

%4-

0 X: 0

4-

r-4

r44

0 '

141 L
FA 10 r _

A3 10 A3 C4J03.

0. 0 0)0 z4,0

I A go p001 041

I x ~ w 1 la4

44 1 F-4 c5
ta U A

4.4 >~
4443 41 "4 4) A 43

W Id In3iu3

10 43-r

431

r4

0' u-I

0 Mtn
.0 02-

A CI v0(

A 4)

J-11

4_ _

..- -~ ' ~ ~ - _ ___ __A

00
tP 141 u

4J E0 4J 4) -I

C) I ca c gU-f 0 () q

4D uto) 1to
44 Z,0 4 yl A

I ow I C)

5 0'-4041 0

ca w .) I I

I -I

0 .1

J-14

__~r m_ _ _ i
____~0 - =w*i

0 r
AVV 01

to 0 - V>

x0 cC J41L
coa co ~ '

Z 03 0.4) N 4
I to. 1-4=

4) Z,-- 0'D to

020W> 0 '_

4) -H0 1 4

tap4J IV o n

ra :3m -4 4 1
C: 4002 d 41-1go4

EA 4)

4J tp

1. 4 -

V4 4 I

04)4

J-1 4

IV co~ all

u 0

to0 0 ad

CA n Id I0)C
0)4 .1. tu0- I

cm1 41

(a.4 Lf

"0 >10L) to

4)0 z 4J

ca1 0 -

J~Im

04 0
0)

41'
toa

40 w

40
A C'j 0w
Imn

L4 to

4n 9-I

41 4) r4 4) o

tp rir-4 v I
c 4) =to 1 "

> 0

J-15

41
41U. 0

ca wn a r- 0
to 0a .

40 I ig 0a. 14-)
CO~t 0u-4 C:

OW4 41 1~

0) 0

~WrI41 4i'04Ji

E-4'

40'

%0 M

E-t M

-1 -4--1 e

to "
Ai 41 E-4

41 0% 4

0 4)- 0

"441

0 1

J-1 6

00 V

U C

0 4.' C4. 0-
410 01 r
C2U r-l 0)0

0 C2 a0 W (D -

go04 141' 4.'

ICU)

> 14
4) 4) 41

.8. 0)-4(

coo

0% tp

in to

r4-'

w 4)I
'IWO 44

Q Z.4

v 41.

J-17

4) 9L O

5-... -

to 01 u

cn cn 0
en R

4) IAJ A0,

Co 41 0.- w0

low 0 U

W-4oO 4) 4J

w 4) Is.'W w U I I
x 4) N $4 414) i

0 4) "1 t

coo

44)

x 0

LI 0

A0 IV

44,

J- 18

tod

0 0 V0

C0 c -0 (D W 'I

Z a 0% 41
0- 0C w

w oo
to to 0 1 1-

x0 C4 w 4 4t
0Q x =topql

I-

0c M

CQo

0 ri

to to
> 0) Z
00

J-1 9

0 40
1415

to 0 r. . >

0 W) 96,-4 '
4) C44El 0 l '4

20a .GJ) 1 a4..
El I~E x o 141

El 4 4)E

>- 00 to 41

to 111) too

CD Io&-f

to01

C4.

E-4 V ti

0

Aj Ol

V-1I

4) * 44

lo
0

41-

4).

00'
0- .9.

(044) pq0) 2

J-01a

IV4
41 0

a1 41

0 C r.-I

a2 ic 0.- 00 _4

1 4j tp41411 ,

W ca 0-4 IV Ix I

gung F-41 Ur a

> 0 to 4J

41 4)1f

ca 41
W IMI
E-4'-1

0' 4

'.41

0 ONM

4j415 a 41 ON

00

4)1

J-214

Cl 0

0 o40- 009

00

0 -to

to (D t

Ow 0 w 10) to$

..o4 I
W 0o

)

to w

IV LI
P-4-

44 0
4) t~l~n t

41 4) 0
tv CP I

0* to 10
'06. wV.) 4

AC
to E-4
top

VI

4).

A5

tp a P4 a

J- 221:

40 a a 4
~~~~~~~~ - " r1 e ~ - ~ fl'~--



0% 044
(IV 00V

r. 4 v 0 0

~v 0
Z4~

IV IV

M iV 41 4)Ul > 0 6-0

4) m0 

Ld0 Z41

.XO9

t 0 -1- V4
co 0

wS

a) 01
. ............ .44 r 4

44 Q)44

en-23

-9** 0*0 U



go oa0 r
La r. Q 00

toW m W 4 IJ1.)u
I r. : >

z0, 04

009

go 0*) 14

Z, 00)al
WA to r-f c .
to w 1 Z,-M 0w tp ri 0

W 0

1

04

5.4 $4 m

to V

0 a2

0' 04

w 020 0

A- 4

03 C12



'U ru 0 '
0203~~~ 010IIb~

ca (D r4
E-f 9 1 04 c

I to -4 r.

'-w UV t41 . 1.
C/3 ~ ~ a, 4-i PCd lnIp0%g -

C20 'U v' 41t r4 0)" 4

002 4)to4)U z
go : V t

(a 03-4 1.1

O4)~4)

J-4J

41
(C m

ca 4) ) 1 02
03 9: r-f 4

0 0 "4

CV 0 Ur
to :3co g

Aa

J-245

w e



AD-A138 429 DESIGN AND IMPLEMENTATION OF AN INPUT/OUTPUT INTERFACE q
PROTOCOL FOR THE I..IU) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOD 0F ENDI. K N COLE

UCASSIFIED DEC 83 AFIT/GE/EE/83D-1 FIG 17/2 NL

mEEEsn 0EMENEE4N84



1111"o

1 11 .6=.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A



C4I

tit

El
E4 A

x IVI

0 A a 04

fm 64.

0' El Cl > -

41 E

t~l 0

0 0'

4)6

$44



- --~.=-wrto

0

~eI ~ 00

4)

1

ri
0 C".
> r4 ra

fa~
0U

E4

491
El

Olt"

.64

J-27



APPENDIX K

Tet Resmnlts

This appendix contains the results of the tests,

described in Chapter IV, for the I/O Interface. These

results are presented as a listing of the test command and

the system response for each step of the procedure. The

test procedures appear in the following sequence:

I. 432 Processor Validation

User Sublayer Validation Test (432)

User Agent Sublayer Validation Test (432)

Message Transfer Sublayer Validation Test (432)

II. Attached Processor Validation

User Sublayer Validation Test (AP)

User Agent Sublayer Validation Test (AP)

Message Transfer Sublayer Validation Test (AP)

III. System Integration Test

K-1

p

I



I. 432 Procemaor Validation

The description of the 432 Processor Validation Tests
can be found in the body of this report (Chapter IV).

RUer Sublaver Validation T"t (4321

The following is a listing of the information displayed
on the Debugger console during the User Sublayer Validation
Test. The system prompt (>) is followed by the operator's
command entry. All command entries are under-lined.

User Shell Commands: HELP - Command Query
SET - Default Naming
COPY - Data Transfer

>HELPSE
SET Command Use: Default Device Naming

Argument may be appended to the left side
of abbreviated device name string

SET Command Syntax: Command Arguments
SET DEFAULT Device-Name
S

Valid Device Name: <Country>/<Network>/<Host>/<Device>

where <Country> must be RM67
<Network> must be NETO
<Host> is one of [432, KDS]
<Device> is one of [USR] on 432

[PTR, CON, DSK] on MDS

COPY Command Use: Data Transfer from one system device
to another

COPY Command Syntax: Command Arguments
COPY Device-Name-l Device-Name-2
C

Valid Device Name: <Country>/<Network>/<Host>/<Device>

where <Country> must be RM67
<Network> must be NETO
<Host> is one of [432, MDS]
<Device> is one of [USR] on 432

[PTR, CON, DSK] on NDS

K-2

p * i



User Sublayer Validation Test (432) (continued)

>SET DEF&ULT RM67 /?4EX
RISETDEFAULT: RM67/NETO

>COPY /432/USR /MDS/CON
USA_SEND: DEVICE: RM67/NETO/43 2/USR

FUNCTION: OPEN
DATA:

USASEND: DEVICE: RM67/NETO/MDS/CON
FUNCTION: OPEN
DATA:

USASEND: DEVICE: RM67/NETO/MDS/CON
FUNCTION: TITLE
DATA: RM67/NETO/43 2/USR

USA_SEND: DEVICE: RM67/NETO/43 2/USR
FUNCTION: READ
DATA:

USASEND: DEVICE: RM67/NET0/MDS/CON
FUNCTION: WRITE
DATA: THIS IS DUMMY TEST DATA

USASEND: DEVICE: RM67/NET0/432/USR
FUNCTION: CLOSE
DATA:

USA-SEND: DEVICE: RM67/NETO/MDS/CON
FUNCTION: CLOSE
DATA:

>COPY /MDS/CON /432/nSR
USASEND: DEVICE: RM67/NET0/MDS/CON

FUNCTION: OPEN
DATA:

USA_SEND: DEVICE: RM67/NETO/432/USR
FUNCTION: OPEN
DATA:

USA-SEND: DEVICE: RM67/NETO/43 2/USR
FUNCTION: TITLE
DATA: RM67/NETO/43 2/USR

USASEND: DEVICE: RM67/NETO/MDS/CON
FUNCTION: READ
DATA:

USASEND: DEVICE: RM67/NETO/432/USR
FUNCTION: WRITE
DATA: THIS IS DUMMY TEST DATA

USA-SEND: DEVICE: RM67/NET0/MDS/CON
FUNCTION: CLOSE
DATA:

USASEND: DEVICE: RM67/NETO/432/USR
FUNCTION: CLOSE
DATA:

K-3

• " . .. ,, + ,w.: ,. +. _ ' , . . .. 1!



User Sublayer Validation Test (432) (continued)

>COPY /432/IBR /432/JST&
US-ASEND: DEVICE: RE67/NET0/ 432/USR

FUNCTION: OPEN
DATA:

USA-..SEND: DEVICE: RM67/NETO/43 2/USR
FUNCTION: OPEN
DATA:

USA-SENW: DEVICE: RM67/NETO/43 2/USR
FUNCTION: TITLE
DATA: RN67/NETO/43 2/USR

USA-SEND: DEVICE: RN67/NETO/43 2/USR
FUNCTION: READ%
DATA:

USASEND: DEVICE: RK67/NET/432/USR
FUNCTION: WRITE
DATA: THIS IS DUMMY TEST DATA

USA&.SEND: DEVICE: RN67/NETO/432/USR
FUNCTION: CLOSE
DATA:

USA-SEND: DEVICE: RM67/NETO/432/USR
FUNCTION: CLOSE
DATA:

T~E DEFAULT RM67/NETO/PmD
RILSET-DEFAULT: RN67/NETO/MDS

>COPY /lRK/6F12T~pTA-XT /PTR
USA-SEND: DEVICE: RM67/NETO/MDS/DSK/: Fl :TEST. TXT

FUNCT ION: OPEN
DATA:

USA-SEND: DEVICE: RK67/NETO/NDS/PTR
FUNCTION: OPEN
DATA:

USA-..SEND: DEVICE: RN67/NETO/NDS/PTR
FUNCTION: TITLE
DATA: RM67/NETO/MDS/DSK/: Fl :TEST. TXT

USASEND: DEVICE: RN67/NETO/MDS/DSK/: Fl: TEST.*TXT
FUNCTION: READ
DATA:

USASEND: DEVICE: RK67/NETO/MDS/PTR
FUNCTION: WRITE
DATA: THIS IS DUMMY TEST DATA

USA..SEND: DEVICE: RM67/NETO/MDS/DSK/:F1 :TEST.TXT
FUNCTION: CLOSE
DATA:

USA-SEND: DEVICE: RN67/NETO/NDS/PTR
FUNCTION: CLOSE
DATA:

> (End of User Sublayer Validation Test (432))

K-4



432 Processor Validation (continued)

User Aaent sublaver Validation Test (4321

This test was not performed due to the lack of
sufficient disk storage on the Debugger system. The size of
the executable code module exceeded the storage of a double
density diskette.

MessaIe Transfer Sublaver Validation Test (432)

This test was n=t performed due to the lack of
sufficient disk storage on the Debugger system. The size of
the executable code module exceeded the storage of a double
density diskette.

II. Attached Processor Validation

The description of the Attached Processor Validation
Tests can be found in the body of this report (Chapter IV).

User Sublayer Validation Test (API

The following is a listing of the test results of the
Attached Processor system User Sublayer Validation Test.
The operator inputs are under-lined. The name of the
device, on which the output appears, is shown on the right
(in brackets). Comments are in parentheses.

(Printer System Test) ----------------------

>Q (open) [CON]
Device: =TR
Device Indicates: OK

> (write)
Devices MTR
Datas TIS IS A TAT OF THE PRINTRR
THIS IS A TEST OF TOE PRINTER [PTR]
Device Indicates: OK [CON]

>A (page)
Device: R=
<form feed> [PTR]
Device Indicates: OK [CON]

K-5



User Sublayer Validation Test - Printer System (continued)

Device: =lR
Data: PRINTER ITLE. 2ACE TES
<form feed> (PTR]
PRINTER TITLE PAGE TEST (centered on tenth line of the page)
<form feed>
Device indicates: OK [CON]

>21 (test)
Device: =R
Device Indicates: OK

>1 (close)
Device: =
Device Indicates: OK

(ISIS File System Test)-------------------------------------------------

>.A (open) [CON]
Device: DSK/2P1eTESTTXT
Device Indicates: OK

>1 (write)
Device: D9K/tP1*TESTr.TXT
Data: THSI TS FTH SSFLE SYSTEM
THIS IS A TEST OF THE ISIS FILE SYSTEM (DSK/:Fl:TEST.TXTJ

(verified by using ISIS utilities)
Device Indicates: OK [CON]

>1 (close)
Device: DSK/tFl2TESTTXT
Device indicates: OK

>.Q (open)
Device: DSK/2F12TEST-TXT
Device indicates: OK

>2 (read)
Device: DSR/f F12T2ST..TKT
Data: !(O<ctrl>-Q Ps was the two character sequence

entered to indicated a buffer length of 80)
THIS IS A TEST OF TEE ISIS FILE SYSTEM
Device Indicates: END -OF-FILE

>1, (read)
Device: DSK/tF1zTXSTTXT
Data: (w<ctrl>-Q PO was the two character sequence

entered to indicated a buffer length of 80)
Device Indicates: END -OF-FILE

1-6



User Sublayer Validation Test - ISIS File System (continued)

>1 (close)
Device: DSK/tFl:TEST.TXT
Device Indicates: OK

>1 (rename)
Device: DSK/2FltTEST.TXT
Data: :l12HEIBTXT
Device Indicates: OK

>1 (delete)
Device: DSK/!FliNEW.TXT
Device Indicates: OK

>8 (reset)
Device: DM[
Device Indicates: OK

>2 (test)
Device: MD
Device Indicates: OK

(Series III Console Test) - ------------------

>2 (read) [CON]
Device: =ON
Data: P (<ctrl>-@ PO was the two character sequence

entered to indicated a buffer length of 80)
THIS IS A TEST OF READING THE CONSOLE
THIS IS A TEST OF READING THE CONSOLE
Device Indicates: OK

> (write)
Device: QN
Data: THIS IS A TEST OF WRITING TO THE CONSOLE
THIS IS A TEST OF WRITING TO THE CONSOLE
Device Indicates: OK

>A (page)
Device: =
(the screen cleared and the cursor appeared in the upper left)
Device Indicates: OK

>I (title)
Device: =QI
(the screen cleared and the cursor appeared in the upper left)
Device Indicates: OK

K-7



User Sublayer Validation Test - Series III Console (continued)

S >I (test)
Device: ORj
Device Indicates: OK

(End of User Sublayer Validation Test)

Useor Aaent Snblaver Validation Toot (API

The following is a listing of the test results of the
Attached Processor system User Agent Sublayer Validation
Test. The operator inputs are under-lined. The name of the
device, on which the output appears, is shown on the right
(in brackets). Comments are in parentheses.

(Printer System Test) ------- ---------------

>jf (open) [CON]
Device: PR
Device Indicates: OK

>2 (read)
Device: 2TR
Data: p (<ctrl>- @ PO was the two character sequence

entered to indicated a buffer length of 80)
Device Indicates: Invalid Command

>1 (write)
Device: 22R
Data: THIS is A TEST OF THE PRINTER
THIS IS A TEST OF THE PRINTER [PTR]
Device Indicates: OK [CON]

>A (page)
Device: MZR
<form feed> [PTR]
Device Indicates: OK [CON]

>1 (title)
Device: =R
Data: P1INTe TIPTLE pA TET
<form feed> [PTR]
PRINTER TITLE PAGE TEST (centered on tenth line of the page)
<form feed>
Device Indicates: OK [CON]

>1 (close)
Device EM
Device Indicates: OK

K-8

i'



User Agent Sublayer Validation Teat -Printer System (continued)

~ XI (delete)
Device: R
Device Indicates: Invalid Command

>2. (rename)
Device: M
Data: Inl
Device Indicates: Invalid Command

>91 (test)
Device: Mf
Device Indicates: OR

>2 (get conE ig)
Device: 2RR
Device Indicates: Invalid Command

>,% (set conE ig)
Device: =R
Data: 00000000flflf
Device Indicates: OK

(ISIS Pile System Test)------------------------------------

>,fl (open) [CON]
Device: DSK/iTKRT-TXT
Device Indicates: OK

>A (page)
Device: DRR/2Fl2TEST.TX?
Device Indicates: OK

>1 (title)
Device: DSK/tP1 zTZST-?TT
Data: aES OPTTLSN TS FTILE SYSTEM
Device Indicates: OK

>%I (write)
Device: DSK/2F1tTRTTXTr
Data: TSISATSOP TATISS PILE AYRTRM
T'HIS IS A TEST OF THE ISIS FILE SYSTEM (DSK/:Pl:TEST.TXTI

(verified by using ISIS utilities)
Device Indicates: OK (CON]

>1 (close)
Device: D9K/2FltT2STA'XT
Device Indicates: OR

K-9



User Agent Sublayer Validation Test - ISIS File System (continued)

3>i (open)
Device: DSK/.P1:TEST.TXT
Device Indicates: OK

>2 (read)
Device: DSK/2P1TEST.TXT
Data: (O<ctrl>-@ PO was the two character sequence

entered to indicated a buffer length of 80)
THIS IS A TEST OF THE ISIS FILE SYSTEM
Device Indicates: END-OF-FILE

>2 (read)
Device: DSK/2F1!TEST.TXT
Data: (O<ctrl>-@ Pw was the two character sequence

entered to indicated a buffer length of 80)
Device Indicates: END-OF-FILE

>1 (close)
Device: DSK/2F1:TEST.TXT
Device Indicates: OK

>7- (rename)
Device: DSK/2F1*TEST.TXT
Data: iFLN2Z
Device Indicates: OK

>1 (delete)
Device: DSK/2Fl:NEW.TXT
Device Indicates: OK

>1 (reset)
Device: =lK
Device Indicates: OK

>2 (test)
Device: =lK
Device Indicates: OK

>2 (get config)
Device: D=K
Device Indicates: Invalid Command

>a (set config)
Device: D=Z
Data: 00000000
Device Indicates: Invalid Command

K-10



User Agent Sublayer Validation Test (continued)

(Series III Console Test)-------------------------------

>f (open) [CON]
Device: =I
Device Indicates: OK

>1 (close)
Device: =
Device Indicates: OK

>2, (read)
Device: ON
Data: P (<ctrl>-@ P6 was the two character sequence

entered to indicated a buffer length of 80)
THIS IS A TEST OP READING THE CONSOLE
THIS IS A TEST OF READING THE CONSOLE
Device Indicates: OK

>2 (write)
Device: =QN
Data: THIS IS A TEST OF WRITTNG TO TRE CONSOLE
THIS IS A TEST OF WRITING TO THE CONSOLE
Device Indicates: OK

>A (page)
Device: =N
(the screen cleared and the cursor appeared in the upper left)
Device Indicates: OK

>1 (title)
Device: = N
(the screen cleared and the cursor appeared in the upper left)
Device Indicates: OK

>1 (delete)
Device: CO1
Device Indicates: Invalid Command

>7 (rename)
Device: =QI
Data: 22P
Device Indicates: Invalid Command

>1 (reset)
Device: =I
Device Indicates: OK

>9 (test)
Device: MR
Device Indicates: OK

K-1



User Agent Sublayer Validation Test - Series III Console (continued)

S >2 (get config)
Device: =
Device Indicates: Invalid Command

>. (set config)
Device: =N
Data: 00000000
Device Indicates: OK

(End of User Agent Sublayer Validation Test)

Message Transfer Sublayer Validation Tast (AP1

The following is a listing of the test results of the
Attached Processor system Message Transfer Sublayer
Validation Test. The operator inputs are under-lined. The
name of the device, on which the output appears, is shown on
the right (in brackets). Comments are in parentheses.

Note that these results are exactly the same as for the
User Agent Sublayer Validation test (above). There is no
apparent change in the operation of the system. The
difference is in the fact that the commands are now sent
through the Message Transfer Sublayer routing mechanism
to reach the appropriate device. In the previous test, the
test shell gave the command message directly to the User
Agent for the device requested.

(Printer System Test)-----------------------------------

>.Q (open) [CON]
Device: ZTR
Device Indicates: OK

>. (read)
Device: 2%R
Data: , (O<ctrl>-@ P8 was the two character sequence

entered to indicated a buffer length of 80)
Device Indicates: Invalid Command

>1 (write)
Device: =R
Data: THTS TS A TEST OF THE PRINTER
THIS IS A TEST OF THE PRINTER [PTR]
Device Indicates: OK [CON]

K-12

-. -..-. ~.-.-.-.-- - -.-.. ~--------------~-----.



Message Transfer Sublayer Validation Test - Printer System
(continued)

>A (page)
Device: =
<form feed> [PTR]
Device Indicates: OK (CON]

>1 (title)
Device: t=R
Data: PWIUTR TITLE PA(E TRRT
<form feed> [PTR]
PRINTER TITLE PAGE TEST (centered on tenth line of the page)
<form feed>
Device Indicates: OK [CON]

>1 (close)
Device: mTR
Device Indicates: OK

>1 (delete)
Device: =R
Device Indicates: Invalid Command

>2. (rename)
Device: M
Data: PPP
Device Indicates: Invalid Command

>. (test)
Device: !TR
Device Indicates: OK

>Q (get config)
Device: R
Device Indicates: Invalid Command

>j. (set config)
Device: ER
Data: 00000000
Device Indicates: OK

(ISIS File System Test) .......

>L (open) [CON]
Devicet DRR/tPjtTffST.TKT
Device Indicates: OK

>A (page)
Devicet DRK/tPjiT2RT.TXT
Device Indicates: OK

K-13

I,



Message Transfer Sublayer Validation Test - ISIS File System
(continued)

>1 (title)
Device: DSK/FlItTEST.TXT
Data: TEST OF TITLE ON ISIS FTLE SYSTEM
Device Indicates: OK

>I (write)
Device: DSK/2F12TRST.TXT
Data: TWISTS A TEST OP THE ISIS FILE SYSTPE
THIS IS A TEST OF THE ISIS FILE SYSTEM [DSK/:Fl:TEST.TXT]

(verified by using ISIS utilities)
Device Indicates: OK [CON]

>1 (close)
Device: DSK/2F1zTEST.TXT
Device Indicates: OK

>.Q (open)
Device: DSK/:F1TEST.TXT
Device Indicates: OK

>2 (read)
Device: DRK/tF1;TEST.TXT
Data: P (O<ctrl>-@ PO was the two character sequence

entered to indicated a buffer length of 80)
THIS IS A TEST OF THE ISIS FILE SYSTEM
Device Indicates: END-OF-FILE

>2 (read)
Device: DSK/tFlTEST.TXT
Data: P (I<ctrl>-@ Pu was the two character sequence

entered to indicated a buffer length of 80)
Device Indicates: END-OF-FILE

>1 (close)
Device: DSK/tFliTEST.TXT
Device Indicates: OK

>1 (rename)
Device: DSK/2Fl2TEST.TXT
Data: liNIL2ZZ
Device Indicates: OK

>A (delete)
Device: DSK/tPj2NEW.TXT
Device Indicates: OK

>A (reset)
Device: DUL
Device Indicates: OK

K-14

. . . . . i



Message Transfer Sublayer Validation Test - ISIS File System• (continued

>J. (test)
Device: D=L
Device Indicates: OK

>2 (get config)
Device: MI
Device Indicates: Invalid Command

>% (set config)
Device: D=I
Data: 0000000n
Device Indicates: Invalid Command

(Series III Console Test)-------------------------------

>.a (open) [CON]
Device: =QN
Device Indicates: OK

>1 (close)
Device: =N
Device Indicates: OK

>2 (read)
Device: CMN
Data: P (O<ctrl>-@ P8 was the two character sequence

entered to indicated a buffer length of 80)
TMUL I A TERT OP R ING THE CONBOLE
THIS IS A TEST OP READING THE CONSOLE
Device Indicates: OK

> (write)
Device: C=N
Data: TRHI IR A TERT OP WRITING TO THE CONSOLE
THIS IS A TEST OF WRITING TO THE CONSOLE
Device Indicates: OK

>A (page)
Device: =
(the screen cleared and the cursor appeared in the upper left)
Device Indicates: OK

>I (title)
Device: =
(the screen cleared and the cursor appeared in the upper left)
Device Indicates: OK

K-IS

II



Message Transfer Sublayer Validation Test - Series III Console
(continued)

>1 (delete)
Device: C=N
Device Indicates: Invalid Command

>1 (rename)
Device: SOR
Data: ZU
Device Indicates: Invalid Command

> (reset)
Device: £OR
Device Indicates: OK

>i (test)
Device: =
Device Indicates: OK

>2 (get config)
Device: =
Device Indicates: Invalid Command

>B. (set config)
Device: 5ON
Data: 00000no
Device Indicates: OK

(End of User Agent Sublayer Validation Test)
----- --------------------------------------

TTT- Bvutsm Tntearation TQSI

This test was nok performed due to the lack of an
Interface Processor Board for the second Series III MDS AP
system. Also, without a hard disk system, there is not
sufficient storage on the Debugger system for the executable
code module.

K-l6

oO,



. .I .

First Lieutenant Kenneth N. Cole was born on 21

September 1949 in Highland Park, Michigan. He graduated

from Kimball High School in Royal Oak, Michigan, in 1967 and

entered an engineering program at the University of

Michigan. In 1970, he enlisted in the U.S. Air Force and

served as an Automatic Flight Control Systems Technician

(AFSC 32570) at R.A.F Bentwaters, England. During that

time, he earned a Bachelor of Science degree in Business

Management from the University of Maryland overseas program.

In 1977, then Staff Sergeant Cole was assigned to

Myrtle Beach A.F.B., South Carolina, and in 1978 he was

selected to attend the University of Florida under the

Airman Education and Commissioning Program (AECP). He

received a Bachelor of Science degree in Electrical

Engineering in 1980 and was commissioned later that year.

His initial assignment was to the Aeronautical Systems

Division, AFSC, at Wright-Patterson A.F.B, Ohio.

Lieutenant Cole entered the Air Force Institute of

Technology in June 1982.

Permanent Address: 1009 Middy Drive

Wright-Patterson A.F.B, Ohio 45433

V-1



IECUMT CLASPICATI1014OF T"* PAGE

REPORT DOCUMENTATION PAGE
C. 'E6FORT S4CURtITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED 1___________________

211 SECURITY CLASSIFICATION AUTMORI1TY 3. DISTRIGUTION/AVAILABILITY OF REPORT

31b69CLSSIICAIONno- GRDIN SC441ULEApproved for public release;
2W. ECLASIPCATINIOWNGROINSCHEULEdistribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMURS) S. MONITORING ORGANIZATION REPORT NUMBERIS)

AFIM'G/EW83D-l7 ______________________

So& NAMIE OP PERFORMING ORGANIZATION OFFICE *YMEOL 74L NAME OF MONITORING ORGANIZATION

School of Engineering AFIT/ENG

S&. A0011R11S1 (000. $411110 end ZIP CO*I 7b. ADDRESS (City. Shia and ZIP Co&.J

Air Force Institute of 'echnology
Wight-Pattprson APB, Ohuio 45433

S&. NAMIE Oft PUMDING/SPOt4SORINO Ob. OPPFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMASER

St. ADDRESS WHiY. Stail, and ZIP Cod&) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORIK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE OhaehufaSecuritly Clausifteaiom
See Box 1
I qRSONAL AUTHORI(S)
I.enneth N. Cole, B.S.E.E, 1st Lt, CJSAF

12.. TypE OP REPORT 13b. TIME COVERED 1.DATE OF REPORT (Yr.. M.. Day) 1S. PAGE COUNT
HS 7tmeis 1PROM - TO ___ 1983 Deceumber 303

ISW. SUPPLEMENTARY NOTATION

17COGATI COOES I S. SUGAR CT TIER MS (Con thm on'uwerw i dneceawy and iden cty by block Rof ber)

FIELD GROUP I sum. GR. CuMM~ications Networks,, Input O~utput Processing,

119. AUSTRACT lCouelna. on moortte it neceinavy end hIdllfy 6y block number)

Title: DESS AM II DITmTCD (W A INPI1/IP7!DTIRFAC PROTOOM
FOR THIE IN~tf 432/670 (X3IR3 SYSTM

Thiesis Cairman: Dr. Gary B. Lamont

Ak vI lo I ~To 1AW AM3 I10.1

DoM Iag Lta,i h and Ptr*IO@ olpS

A, Fu asimut at ToahsolIS? (AMC

ISBTISIVIN/AVAILASILITY OF AISTRACT 21. ASTRACT SECURITY CLASSIF ICATION

UNCLASIPOIDIUMLIM41EID SAMEw As aRP. 0 oTric USRS 0 tUNCLASSIFIED
Ift MAME OP REUPONSILS INDIVIDUAL IMTLEPHONE NUMSER11 229. OFF Ice SYMUOL

ftr. ary 3. L=MontM 1-0,AFT*

POAM 14n3, 0 APR EDITION OF I JAM 73 0 OSBOLETE.______
SECURITY CLASSIFICATION of THIS PAGE



SCURSTY CLASSIPICATION OP TIS PAGE

Block 19 (con inued):

Abstract:i

Distributed compzuer systems have iw=y advantages to offer in terms of siuplic. :y,
efficiency, protection, and security as well as improved performance from the
concurrency in suah a system. Comunication among distributed processors is a key issue
in the design of a distributed system. While the lame levels of a commncation system
are generally defined by the hardware configuration and thus, implementation dependent,
protocols for comincation may be developed at higher levels that are independent of
the hardware implemmntation. Using the ila.uter Based Message Bystem under develo*ae1t
for the National Bureau of Standards, this thesis investigation is an attaeft to develop
a usable I/O interface for a distributed computer system.

The Intel 432 Hcromainframe meyputer system is a functionally distributed wuiti-
processor system. The hardware organization and operating system features lend themselves
to the development of a message based cmmuication system among users and devices on
distinct processors,

This specific research effort involves defining the protocol requirements, as well
as designing, inplementing, and testing a distributed I/O system cormmication
interface on the 432 camfuter system.

I,

-!




