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~y Preface

ol

In the past two decades, one of the major stumbling blocks in apply-

ing optimal control theory to flight control problems has been that

Er S LD

measurements of all the states of the system are not available. Thus,

it is necessary to use some type of observer or filter to reconstruct the

states of the aircraft. However, when this is done, all guarantees of

R Ry
¥ et e e

desirable stability robustness properties are lost. This thesis addresses
this problem and eﬁaluates the success of some techniques to recover

! the good stability robustness properties associated with full-state feed-
) back.

I wish to thank my advisor, Professor Peter S. Maybeck for his
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F committee members, Professors John J. D'Azzo and Robert Calico for their
o suggestions and comments. Finally, I wish to thank Captain Richard Floyd
<
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! to accomplish this project.
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Abstract

wJThis study examines the concept of robustifying a controlled system

against differences which may exist between the real world system and the
low-order design model upon which the controller design is based. The
types of controllers considered are based upon the Linear system model,
4/gpadratic cost, and Gaussian (LQG) noise process methodology of optimal
control theory. It is assumed that full-state feedback is not available
and a Kalman filter is employed to provide state estimates to the
controller. Both continuous-time and sampled-data controllers are con-
sidered.

Two robustification techniques are considered. The first is the
method of injecting zero-mean white Gaussian noise into the design model
at the point of entry of the control inputs during the process of tuning
the Kalman filter. The second method is an extension of the first, where
the white noise is replaced by a time-correlated noise. This allows the
primary strength of the noise to be concentrated only in the frequency
range where robustification is desired. Comparing the results of applying
the two methods allows a designer to make a trade-off between the amount
of desired robustification and the performance degradation at the design
conditions which occurs when the techniques are applied.

Both methods are found to improve substantially the robustness
properties of the controllers considered. For the specific flight control
problem considered in this thesis, the technique of injecting white input
noise into the design model produced the desired degree of robustification

\
without prohibitively degrading performance ;; the design conditions.
\
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The second method, though effective, did not yield substantial

) — enough performance benefits over the first to warrant use in actual

;; implementation.
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ROBUST FLIGHT CONTROLLERS

I. Introduction

1.1 Background

A vital element of a flight control system is that it be "robust".
Robustness implies that the controller provides adequate (i.e., stable
closed-loop) performance over a wide range of operating conditions and
system parameters. For example, finite-dimension models of the dynamics
of an aircraft are typically generated by linearizing the aircraft equa-
tions of motion about a limited number of specific equilibrium flight
conditions. Controllers are then designed for these "trim" conditions.
However, at flight conditions other than the specific trim condition used
for controller design, the closed-loop performance of the controller system
may be inadequate or unstable. That is, at the off-design flight condi-
tion, the aircraft parameters (upon which the design is based) have
changed sufficiently to make performance of the controller inadequate.

One method used in the past has been to schedule feedback gains for the
controller so as to compensate for the change in system parameters. How-
ever, it is desirable to have enlarged regions about nominal design condi-
tions within which a specific controller design will yield adequate perform-
ance. This would allow linear perturbation techniques to be used with more
confidence and may also reduce the number of required design conditions
about which such perturbations are defined. It may even be desirable to

have a fixed controller which is sufficiently robust to produce acceptable

performance for all conditions in the aircraft's flight envelope.




3 '
2 Robustness 1s also a concern when controllers are designed using

:S ‘Sﬁg purposefully reduced order models. A robust controller will provide

'? stable closed-loop performance even when states of the real-world system
é have been ignored in the design model. A third robustness issue is

: survivability. Robustness can also imply the ability to maintain closed-
> loop stability if, for instance, part of the flight control system is lost
% due to ground fire: {i.e., the '"true" system is vastly different than the
N system model upon which the controller was designed. Such a robust

{ controller will provide a stable, though degraded, aircraft performance

] while adaptation algorithms attempt to discern what system elements have
7 been lost and to determine an appropriate modification of controller

;: characteristics for future use.
~S In the 1960's, modern control theory methods, such as optimal control
& ﬁ theory, showed promise in application to flight control problems. One

3 drawback of applying optimal control theory techniques to flight control
Q problems, however, is that the resulting controllers require full-state

3 feedback, but measurements of all states are generally not available.

T; Thus, it becomes necessary to include a filter or observer in the con-
;: trolled system to estimate the states. However, once an observer has been
lf inserted into the loop, stability robustness becomes a major concern

(Ref 5).
‘Ef Recently, efforts to improve the robustness properties of observer-
: based controllers have included a technique, developed byJ.C. Doyle and
'j G. Stein (Ref 6), which injects white noise into a controller system model
s at the point of entry of the control inputs during the process of tuning
;: the Kalman filter. It is claimed that, as the strength of the input noise
if :ffg
p
‘ 2
\d




>

g {ﬁﬁ is increased, the filter-based controller will asymptotically recover the

,f DN good robustness properties of a full-state feedback system in the

_; continuous-time case. A disadvantage of this technique is that the

3 additional noise can degrade the performance of the system at the design

. conditions.

*3 A natural extension to the idea of injecting white input noise into

53 a system model is to consider time-correlated noise. This allows the
robustification technique to be applied only over a desired frequency

;E range rather than over all frequencies as in the original Doyle and Stein

{; method. Thus, the degradation in performance due to the additional noise

N can be reduced (Ref 15;16;28).

i: The techniques described aboﬁe are applied in this thesis to a

;i specific aircraft flight control problem. Two types of controllers are

" 0 considered. The first 1s an optimal Linear Quadratic Gaussian (LQG)

;f regulator. Available software allows the design of a continuous-time

§, and a digital controller. The second type of controller is an optimal

”i LQG-based Proportional-plus-Integral digital controller. For both types

:: of controller, a Kalman filter is implemented to provide estimates of

;2 the states of the system. The success of applying the robustification

S

: techniques is determined by designing a Kalman filter and controller for

-g one trim condition, then evaluating the performance of the controller at

fE an off-design flight condition, as well as designing the filter and con-

: troller on the basis of purposely reduced-order models for computational

; loading reasons. Time histories of the mean and standard deviations of

Li the aircraft states and controls are examined. Additionally, it is desired

; -~ to compare the performance of the controller at the design conditions with

o

g
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no input noise, white noise and time~correlated noise used for filter
retuning (robustification) to determine how much the performance is de-
graded by the input of the noise, and also to determine if performance
benefits can be gained by using time-correlated noise as opposed to

white noise.

1.2 Problem

The primary objectives of this thesis are:

1. To apply the robustification techniques of injecting white or
time-correlated noise into a system model at the control entry
points during filter tuning to a flight control problem for a
high performance aircraft.

2. To extend the techniques for LQG regulators to LQG-based PI
controllers.

3. To evaluate the robustness properties of the controller designs
by performiqg covariance analyses for the controlled systems at
both the design flight condition and other off-design conditions

within the aircraft's operational flight envelope, using a

purposefully reduced-order design model. Robustified designs
are to be compared to unrobustified designs and also to full-

state feedback designs when possible.

1.3 Sequence of Presentation

The body of this thesis is contained in Chapter II-V. Chapter II
presents the equations used for designing and evaluating optimal determin-

istic LQG regulators for both the continous- and discrete~time case.
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Also included is the application of the Doyle and Stein technique to
continuous-time systems and several extensions of the technique to
discrete~time systems.

Chapter III presents the equations necessary to design and evaluate
optimal LQG-based PI controllers for the discrete-time case. Then the
Doyle and Stein technique is applied to systems employing PI controllers.
As pointed out in the text, robustification by this technique is a pro-
cedure which affects only the Kalman filter design; thus, the same method
is used for PI controllers as for regulators in this thesis.

Chapter IV examines the idea of injecting time-correlated noise

rather than white noise into a controlled system model during tuning

of the filter, to improve the tradeoff of the controller's robustness
properties versus performance degradation at design conditions. First,
@ a stochastic process model (shaping filter) is developed for the noise
process which is then augmented with the system state differential equa-
tions. Then, the types of time-correlated noise of interest to this
thesis are considered, including a discussion of the specific shaping
filters to generate the desired noise process.

Chapter V presents the model of a high-performance aircraft to be
used in this thesis. A design flight condition is chosen and linearized
perturbation equations of motion are developed for the aircraft about
that operating point. The design model for the Kalman filter and con-
troller is purposefully reduced in order from the full set of linearized
equations so that this aspect of robustness can be examined. Finally,

models at other flight conditions are listed with which the robustness

- of the system to parameter changes will be evaluated.
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;ij The findings of this thesis, results and conclusions are presented in
f‘ ;é;} Chapter VI. Recommendations for further research are made in Chapter VII.
{1. Four appendices are included. The first presents a generic format
§§, for a controller into which the types of controllers in Chapters II and
%3 III can be rearranged. The usefulness of the format becomes apparent

2§; in a performance analysis, when the same set of equations can be used

;§3 to evaluate the performance of any controller in the standard format.

I

Appendix B lists the source code for a Fortran program used in design-

v »-

ing LQG regulators. Included are a discussion of how the program is

executed and modifications from a previous version to allow the input

LR LA

il
>

of time-correlated noise (Ref 21).

:’i Appendix C 1lists the modification to the software of Reference 13 and
*%: 30 to allow the input of white and time-correlated noise into the system
NN (:Ea model. The software is an interactive program used for designing PI

j;; N regulators with a Command Generator Tracker in the feed-forward loop.

E% This thesis will exploit only the PI regulator design capabilities.

Appendix D includes further performance analysis results in addition

:j: to the findings in Chapter VI. It was stated in Reference 6 that the
:ji Doyle and Stein technique is not guaranteed to improve robustness if
7

— the design model is non-minimum phase (i.e., there are transmission
;5 zeroes in the right-half s-plane). Appendix D shows a case where the
;ij design model was non-minimum phase and where the addition of input

l".

K'Q noise to the system model has actually drive an initially stable closed-
}j; loop system to be unstable.
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II. LQG REGULATORS

2.1 Introduction

This chapter presents the equations used in designing optimal Linear
Quadratic Gaussian (LQG) controllers for a system modelled as linear,
time-invariant, and driven by zero-mean, white Gaussian noise and deter-
ministic inputs, subject to quadratic costs for defining optimality
criteria. The model used for this thesis is described in Chapter V. The
methods used are taken primarily from Reference 24 unless otherwise
stated.

In the first section, the controller equations for a continuous-
time system having continuous-time measurements are given. The structures
of controllers assuming perfect access to all the states of a system
versus controllers with a Kalman filter to estimate states are examined.
Next, the equations needed to evaluate the performance of controller
designs are given. Finally, a technique developed by Doyle and Stein
(Ref 6) to robustify the Kalman filter for continuous-time systems is
presented.

The fourth section contains the controller equations for a continuous-
time system having sampled-data measurements. Ngxt the performance analy-
sis equations for the sampled-data system are developed.

The final sections contain alternative methods for applying the
Doyle and Stein technique to sampled-data systems. Three possible basic
approaches are simply to discretize the controller designed for the con-

tinuous system or to modify the technique in one of two ways so that it

applies directly to a discrete system.
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All methods described in this chapter are incorporated in a Fortran

program originally written by Captain Eric Lloyd and modified to some
extent by this author. For source codes and information about the pro-
gram, see Reference 21. Modifications and additions to the program are

listed in Appendix B.

2.2 Continuous-Time Controllers

The state description for an important class of continuous-time

systems is given by the linear stochastic differential equation
x(t) = F(t) x(t) + B(t) u(t) + G(t) w(t) (2-1)
where w(t) is a white Gaussian noise with statistics
E{w(t)} = 0 (2-2a)
E{w(t) v (t+D)} = Q(£)6(1) (2-2b)

An optimal LQG controller for the system minimizes the cost

functional
1 T
JC = E 55 (tf)xfz(tf)
T
| ks x(t) Wxx(t) qu(t) x(t)
+37 T dt
e (Lu®) W (B W, u(t) (2-3)

where Wn(t) is a positive semi-definite weighting matrix associated with
the system states, x(t); Wuu(t) is a positive definite weighting matrix
associated with the controls, u(t), applied, to the system; wxu(t) is a

cost-weighting matrix associated with cross terms of x(t) and u(t) and is




L
N
-‘f‘
E} chosen so that the composite matrix of Equation (2-3) is positive semi-
gt ?jﬁ‘ definite; and X is a positive semi-definite weighting matrix associated
% with the states at the final time,lg(tf).
e,
- The optimal control to be applied at time t which minimizes the
o
; N above cost function 1is described as
A8 ' " *
RS u*(t) =~ G (r) x(t) (2-4)
R
$: "
5
el with the gain matrix, Gc (t), given by
o |4
"
'f\ * = -1 T
2 G, (&) =W () B (£) K_(£) (2-5)
~
and Kc(t) is calculated using the backward Riccati differential equation
[ g
\“.‘ . T
:‘5 K (t) = F (t) K (t) + K (€) F(t) + W _(t)
T - R_(t) B(t) W_"I(e) BY(e) K _(¢) (2-6)
<, - c uu [
o
-
"\
. subject to the final condition
o5 K (tp) =X, (2-7)
e
* Notice that Equation (2-6) assumes that the cross weighting matrix
'. qu(t) is zero. If this is not the case, an appropriate variable trans~
-
b formation can be made which will account for the non-zero cross terms and
;;: allow equation (2-6) to be used (Ref 24:202-203; 19:79-86).
- Up to this point, the controller equations have been derived allowing
<. for time-varying systems, cost-weighting matrices and feedback gains.
Vo
::j However, as described in Chapter V, the model used for this thesis is
3 "L time-invariant with stationary noises (i.e., the covariance kernel
'-q" ""::.'.
e, T
o g
.
>
2N
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E{w(t)w;(t+1)} is a function of only the time difference T (Ref 23:139-
s 140)) and constant weighting matrices. Thus a steady-state constant gain

controller can be used, ignoring terminal transients in the feedback gain
* c” [w "7 g ] 2
u (t) = -6 x(c) = - W, <] x(© (2-8)

where icis now the solution to the steady-state Riccati equation

Tz +RF+w -KBw “1BIE (2-9)
[ C XX [o] uu

K =0=F
C [}

Henceforth, the assumption of a time-invariant system with stationary
noises and constant weighting matrices is made, and the time argument is
omitted unless needed to avoid confusion.
The optimal control law of Equation (2-4) is given as a gain matrix
N times the state values at a particular time. If, however, perfect know-
ﬁ ledge of the states is not available, then an estimate of the state ,
X(t), must be used in place of x(t). In this case. a Kalman filter is
employed to evaluate the conditional mean, X(%). 2nd conditional co-
variance, P(t), of the states of the system.
Instead of the actual values of the states, assume that what are

accessible from the system are noise-corrupted measurements of the time-

invariant form
z(t) = H x(t) + v(t) (2-10)

where x(t) is a stationary white Gaussian noise assumed independent of

the dynamics driving noise w(t) and with statistics

E{v(t)} = 0 (2-11a)
E{v(t) y_T(t+'r)} = RE(T) (2-11b)
10
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5?- Then the Kalman filter equations yield an estimate of the states and

e - the covariance via (Ref 23:257,259)

‘Zn:'i é(t) = FX(t) + Bu(t) + PHR [z(t) - HR(t)] (2-12a)

1

-~ P(t) = FP(t) + P(t)FT + GQGT - P(t) H'R™! HP(t)  (2-12b)

These differential equations are solved forward in time subject to the

initial corditions

‘(E} E{§(t°)} = (2-13a)

%
= E([x(c) - 5] [x(c)) - X1} = 2, (2-13b)

frly which are obtained from an a priori Gaussian density function for the
R states at the initial time.
. s The precomputable Kalman filter gain for the continuous-time system

4‘._? is expressed in Equation (2-12a) as

1

. R(t) = P(t) BR (2-14)

et}
'
AL

If it is assumed that the initial transients of Equation (2-12b) are

XA
et

short compared to the total time of interest, the steady-state co-

variance, P, can be computed as the solution to

05

<, €
I\A*I‘ll.“ll

+,

B(t) = 0 = FP + BF' + GQG' - PHR™® HP (2-15)

‘xx%&\
.
+ 988

H

and the constant Kalman filter gain is given by

Y
A _';_‘:

O K = PHOR ! (2-16)

| E‘E | 11
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R
,j Do not confuse the Kalman Filter gain, K, with Kc of Equation (2-6) and
SRS (2-9).
o Figure (2-1) shows the form of the continuous-time controller.
. *
\': u (t)
j' !—.--—-—-—._‘---—-—-—-—-—-—.
>, e e - ——— 1
. | } Lo
. ] l t 1
; | 1 LB i [
5} i ; | ¢
! 1 l I
x l | + A | ' T *
> 2( 4 iy RV O gl 6 oL
P ¢ by i [
‘ i : .
N ! : | |
! | !
2 | 1 t |
A \ 1 F le | ]
A | | ‘ |
" , e e e J |
q ! Dynamics Model !
- | |
: ; : |
'ﬁ i Measurement Model i
- e e e -
; Kalman Filter
o
2 Figure 2-1: Continuous Measurement LQG Optimal
Stochastic Controller
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2.3 Continuous-Time Performance Analysis

Ry The performance analysis for a continuous-time LQG controller is
based on the development for a sampled-data controller given in Reference
23 and derived in Reference 21.

First, a "truth model" is developed for a given system which is
judged to represent adequately the response of a system to inputs and
disturbances encountered in the real world. Then, controllers for the
system can be designed, generally based on lower order, simplified models.
The performance is determined by examining the statistical characteristics
of the truth model states, Et(t)’ and the controls, u(t), for each pro-
posed controller inserted into the real world simulation provided by the

truth model. This is depicted in Figure (2-2).

0 :

Yy :

. 1
} xt(t) }xt(:3
Truth

wi(eh 1

t Model |

T —> hl l

l u(t z:(t) '
} s o Controller _u.(LL_:ﬁ_t).

| |

| l

i {

S —— — e — ———— o —— — —— T W S ——. e - - e e

Figure 2-2: Performance Evaluation for Linear
Sampled-Data Controller
The performance evaluation determines the statistical characteristics
of‘gt(t). the truth model states, rather than the states of the simplified
controller model. It is important to determine the effect of applying

controls from a reduced order controller on the actual system response.

13




:-',: Additionally, the statistical characteristics of the controls are examined
()" to ensure that they do not exceed physical limits or design specifications.
-.: The assumed linear differential equation describing the continuous-
RS

1
?.: time truth model system and available measurements are

39

" 5':(1:) = th(t) + Btg_(t) + Gtv_vt(t) (2-17)
o

>

o

z (t) = H x(t) +y (t) (2-18)
?_'-:' where initial conditions and statistics of the noise are given by
,:;::

S =

2o E{x, (t )} =x . (2-19)
{3 Ellx () - X Jlx, (t)) - x J} =P (2-20)
;

m E{gt(t)} =0 (2-21)

~l$: = T
‘-‘. = -

% Elw, (t) w, (t+1)} = Q. 8(T) (2-22)
o

)

Ely ()} =0 (2-23)

e T

9 E{v, (t) v, (e+)} = R 8(T) (2-24)

Note that y_t(t:) and gt(t) are assumed to be independent of each other and

that the subscript t refers to the truth model.

% A useful form of expressing the control law of Equation (2-4) and
.._4 other more general linear control algorithms, and an equation to propagate
.. the internal states of the controller, are given by

:j

L

e u(t) = chgc(c) +G,, it(t) + ch 2q(®) (2-25)
ol PO

Iy

<

. 14
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N \
|
::'.-5 e _:gc(t) =F, 5c(t) +3B_, Et(t) = ch zd(t) (2-26)
;
A where Xd(t) refers to a command input for the system controlled variable,
e
‘:‘, y(t), to track, where
-'.:J
‘ 2(t) = Cx(t) + D u(t) (2-27)
-
o
SO
E}f The gain matrices in Equations (2-25) and (2-26) are evaluated
N
explicitly in Appendix A. Putting the control law into the generic form
WY
:~}j‘b allows direct comparison of different types of linear control laws.
..'-\
"':: Determination of time histories are desired of the mean and co-
e
variance of an augmented vector
o
A A o - -
S x (t
i x, (t)
5% . 7, (8) = (2-28)
DY u(t)
4.:* L .
o
W All quantities of interest in a performance analysis are assumed to be
Y
= components or linear combinations of components of this vector. If 9 is
P
2,
:-:. a scalar quantity of interest, i.e.,
i :..:
\:: T
n. ' qk = &k za(t) (2‘29)
1..‘-\
*‘::: then the statistics of q, are given by
'~
".‘.
!.‘J
T
e mean{qk(t)} 9 I, (t) (2-30a)
3 a
2 { } Te (2-30b
R cov { q, (t) 9 Yy, 9, )
I A‘ <,
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where m (t) is the mean and P
Ya Ya

vector xa(t).

(t) is the covariance of the augmented

To evaluated the first two moments of xa(t), it is first necessary

to form another augmented vector composed of the internal states of the

truth model and the controller model

x,(t) =

(2-31)

Using Equation (2-18) and (2-25), u(t) and gét) are eliminated from

Equation (2-17)

xt(t) = { Ft + Bt Gcth} gt(t) + Bthxgc(t)
+ Bthy J4(e) +BG gét) + Gw (t) (2-32)
Similar substitution into Equation (2-26) yields
% (t) = Fx (t) + chzd(t) +B [Hx (t) + g (t)] (2-33)
Form the augmented noise vector

v, ()
gh(t) - (2-34)

v, (%)

as a zero-mean white Gaussian noise with covariance kernel

E{wa(t)war(t +T)}-Q36(T), where

..

<,

NN AT N\ TR TR
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Q = (2'35)

Non-zero cross terms can easily handle the case of !t(t) and 3t(t) being

correlated. Now an augmented system equation can be written as

5&“’) - Fagt_a(t) + Bazd(c) + Ga_vga(t) (2-36)
where
Ft + Bt Gcth: Btccx
F =
a
B F
cz c
- (2-37)
- -
Bthy
B =
a
i ch J (2-38)
-
6, s ]
G =
a
© Bez | (2-39)

ém

E{ia(to) }= = x (2-40)

ém




AR
BN Pa(to) = (2-41)

Initial conditions on the controller states are often assumed to be zero:

x =0.
=0 =
< The mean and covariance of the states in Equation (2-36) propagate
: as
X
é g&a(t) = Fagxa(t) + Bazd(t) (2-42)
i
| P._(t) =FP _(t) +B _ ()FF +GQGC. T  (2-43)
X X axx X X a aaa
. aa aa a'a
s
‘: or solving the differential equation yields
€ .
m (8) = ¢ (t,t)E +[t 6, (6, TIBy (1) dT  (2-44)
o

)
2y a
T

T
Px x (t) = ¢a(t’t0)P ¢ (tato)

:' a~a ao’'a

i

% : T

+[c 6, (£,1)G,Q,6 "6, (£,7T) dT  (2-45)
: o

A

)

where ¢a(t,to) is the state transition matrix associated with Fa’ i.e.,

¢ (t,e ) = ¢ (t=t ) = exp {Fa(t-to)}.

-_an
- s

However, the requirement is to solve for the statistics of the

vector za(t) defined in Equation (2-32). This vector is related to

x,(t) by

¢
U

" .
.
e Y
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[ x, (0)] (o0 ] [0
+ zd(t) +
ch (t).J LGCY_ I G, |

-« e

v (t)

The vector is seen to be a linear combination of jointly Gaussian

variables with known statistics.

(2-46)

Thus, the desired statistics can be

generated from Equation (2-39) using the method shown in Reference 23:112.

gya(t) =

CczZ

DRI A TN T SR LR NP RS Y LA v iy
I A ) o N R A A ah S O, ot Rt

0 o

E"a(t) + xd(t)

G

cx | oy

0 1 )

Px X (t)
a a
t ch Gcznt ch

0

cX
i 1t
1 0
T
P (t)
Xa't
_Gcznt CX_J
P T
vtvt(t) [0 G‘;z ]
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(2-48)
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<
o
e
s In the last term, note that P_ (t) = Rté (0) and that §(0) = ®. This
EAB S tt
- 2Ny
. terms gives an infinite value to the lower right-hand partition of the
L%
:_ covariance matrix. However, it is still of interest to look at the
n’-l
‘:',:: contribution of the other three terms separately. To evaluate Equation
" (2-48) fully, it 18 necessary to find an expression for Px v (t). This
-" at
AS
j can be written as
T
e SR LRORS WOIACES MO (2-49)
e
b e Expand this, noting that m (t) = 0
8, t
' T T
~~
«.:t: Py (B E{gt_a(t)xt (e) - m (©)y, (t)} (2-50)
e at a
w
{ Teey {v T 2

N ) Py =E{x (v, ()} -m (OB {y "(t)} (2-51)
N at a
\..
o, but E{vT(t) I=m T(t) = OT, therefore
¥ -t V. -

P__(t) = E {x (t)v.  (t)} (2-52)

XV, A

Replace X, (t) with the solution form for Equation (2-36)

Py v () - E(9, (e, )x, (e )v, " (6)

* f"’a“-ma!d“) v, (t) dt
0
t
+fo_ (006w (1) v T(e) dt} (2-53)
t.
(o]
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Making the assumption that Ea(to) and Xt(t) are independent (and thus
uncorrelated), the first term in Equation (2-53) is zero since

E{vtT(t)} = Q?. Substituting in the augmented matrices, the remaining

terms are
. Be cy
T
BCERITEXCE 2,0 v (®ar
e, ]
L &y
Gt Bthz zt(T)
+[t (t,T) Teya 2-54
[ oyt v.M(ear}  (2-s0)
o
0 Bz v, (D
which can be rewritten as
e T
t cy
(t) = E /(¢ (t,7) () v T(t)d‘t
v a' "’ 2 AL A
t (]
| Py
. Gtgt(r) + Btccz!t(r)
+[ 40 v, Tear} (2-55)

B zzt('r)

Again, the first term is zero since !t(t) is zero-mean, and 1d(1) is

deterministic. This leaves

21
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o - -
,-d
S i Gw (t) +BG v (1)
. ! - T
A P, (© = [0, .0 v T@®a)  (@2-56)
o at to
Bczlt (1)
o - -
Noting that gt(‘r) and _gt(t) are assumed independent and
2 E{v, (1)v, (6)} = R §(t-1) (2-57)
ye -t -t t
S the expected value operation can be moved inside the integral, and
N Equation (2-56) further reduces to
- -
R ¢ Bt:Gcz
' e, (= by(e R 8(t-T)dt (2-58)
4 at t
O ° B
by cZ J
x
m Applying the Dirac delta sifting property to the above equation, noting
ot
::;-j that t is the upper limit of the integration and that it also appears
ﬁ in the delta function argument, yields
oo BEX F
Ny t cz
> = l -
- Py (B ¢, (t,¢) 7 B, (2-59)
a't
= B
cz
-‘. od -
\
"
X The state transition matrix q;a(t,t) is the identity matrix I. The value
~
Z of % appears when integrating the Dirac delta function between the time
.{‘ limits to and t since its argument goes to zero at t= t, i.e., at its
o~
L, upper limit. The resulting form is
.:c '-:.v"'Q
o -.. -.'
‘.\E -
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( DK an"t =3 B R, (2-60)
iy cz
s
;? At this point, all quantities needed to obtain the performance
] analysis for a linear, time-invariant, continuous-time system and
ig controller have been defined in this section. The primary result is that,
t? for a truth model given by Equations (2-17) and (2-24) and a controller
. of the form (2-25) and (2-26), the statistics of desired outputs are
’g given by (2-47) and (2-48), using (2-42) through (2-45) and (2-60).
o
‘?{ 2.4 Improving Robustness in Continuous-Time Controllers
i? The stability robustness of LQG controllers is guaranteed assuming
ga that full-state feedback is available. However, once a Kalman filter is
w inserted into the loop, all guarantees of robustness, such as minimum
j}s gain and phase margins, are lost (Ref 6). J.C. Doyle demonstrated this
:i for a simple case of an observer-based controller in Reference 5.
™ In Reference 6, Doyle and Stein introduced a method for improving
iE? the robustness of a control system that employs an observer or state
i; estimator to generate estimates of states when full-state feedback is
= unavailable. In many practical systems, this is the case. Their method
t;: assumes that the linear, time-invariant system to be controlled is
.}5 observable, controllable and has no transmission zeros in the right-half
‘f s-plane, (i.e., it is minimum phase).
i:j Figure (2-3) shows the structures for a full-state feedback control-
E: ler and an observer-based controller. Doyle and Stein claim that if
2
. ,E: ;:'.EE-Z-’
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the corresponding return-difference mappings are asymptotically equal

. e when the control loops are broken at point x (the point of entry of the
i

f control inputs), then the robustness properties cf the observer-based
ff controller will asymptotically approach those of the full-state feedback
Y

controller.
The return~-difference mappings of Figure (2-3) are equal if the

observer satisfies the following equation
-] -1 ]-1
K[I + H(sI-F) K] = B[H(SI-F) B] (2-61)

where H,F, and B are system matrices and K is the observer gain. Let K

P
[ R o W R

be parameterized as a function of the scalar variable, q. Equation

(2-61) is satisfied asymptotically as q approaches infinity if

J-Kfl ) ———=> BW (2-62)

where W is any nonsingular matrix, If the observer used is Kalman

., filter, then K(q) becomes the Kalman filter gain
o T -1
" K(q) = P(q)H'R (2-63)
P
N and P(q) replaces in Equation (2-16).
X To implement the Doyle and Stein technique, the value of GQGT in
Q Equation (2-16) must be altered. Let Qo be the matrix GQGT of the
- original system (i.e., let G = I) and 0(q) be the modified matrix after
- the robustification technique is applied. The modified matrix is
)
y Q@) = Q_ + q?BVB (2-64)
‘
2 ':';:::jf
3
25




o
:EE where q is the design parameter chosen to reflect the amount of desired
{SE -ﬂ;ﬁi robustification and V is a positive definite symmetric matrix. Note that
;{3 the second term of Equation (2-64) implies adding additional pseudonoise
;;é to the system at the point of entry of the control inputs, u(t), rather
isj than the point of entry of the dynamic driving noise, w(t). As q
. approaches infinity, the observer-based controller recovers the robust-
:‘ ness properties of a full-state feedback controller. Note that if q is
N zero, Q(q) is the GQGT matrix of the original system.
;; 2.5 Sampled-Data Controller
;f: For a continuous-time system, represented by Equation (2-1), having
A; sampled-data measurements, an equivalent discrete-time stochastic dif-
f; ference equation (Ref 23:170) can be written as
A
X v, Bt ) = 6k, ,8) x(e) + By(e) uley) + Gy(e) wole)  (2-65)
b
:Eg vwhere !ﬁ(ti) is a discrete-time white Gaussian noise with statistics
ro
E{w,(t,)} = 0 (2-66a)
5 T
§ E{w, () w, ("j)} = Qq(ty)8,, (2-66b)
;$. and 61j is the Kronecker delta, equal to one if i=j and zero if i#¥ j.
Eg The matrix ¢(tt+1’ti) is the state transition matrix for the system
‘5; over a single sample period and B,(t,) and Q (t,) are defined in terms
:: of the continuous-time system matrices to be
i; Ciel
| B,(t,) -jt' B(t,,;5T) B(T) dr (2-67)
§ '
b
W 26
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, Note that Equation (2-67) inherently assumes u(t) is held constant over
.:‘

) a sample period, i.e., u(t) = g(ti) for all ti in the interval

,\: [ti'tiﬂ)' Gd(ti) is defined to be an identity matrix I. 1If, as in

::: the continuous-time controller case, a time invariant system model and
stationary noises are assumed, and if in addition a fixed sample period
% is assumed, the integrations of Equation (2-67) and (2-68) need only be
f performed once and B d and Q q are constant matrices.

. A discrete~time cost function similar to that of Equation (2-3) can
:: be generated as

oY

o 1T

N . Jc =E X (tn+1) xf E(tn+1)

: xe) | T [xre,)  sep||xe)

n =1 i 17j|=""1

2 + 1z 3 (2-69)
" i=0 T

u(ey) s'(e)  UCe|{ule)

-g In the above equation, t n is the last time at which a control is

- applied. It is assumed that a zero-order-hold is used to interface with
Y.

. the continuous-time system. xf and X(t i) are positive semi-definite

v weighting matrices and U(t 1) is a positive definite weighting matrix.

7
= S(t 1) is chosen so that the composite matrix of Equation (2-69) is
}3 positive semi-definite. The weighting matrices are again assumed

o constant henceforth, in order to obtain constant gain control laws

[]
B
- eventually.
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The LQ optimal full-state feedback control law is given by

W) = -6 " ey x(e)) (2-70)

*
where Gc (ti) is the solution to the equation

* T -1 T T
Gc (ti) = [U + nd Kc(t“_l) Bd] [Bd xc(tiﬂ) ¢ +8°] (2-71)

and Kc(ti) satisfies the backward recursive Riccati difference quation
K (t,) =X+ 0K (t,,.)é~- [B,7K (t )0+ sT]Tc *t)  (2-72)
c i ¢ i+l d ¢ i+l c i

subject to the final condition

Kc(tn+1) - Xf (2-73)

As in the case of a continuous-time system having continuous-time
measurements, perfect access to all the states usually is not available.

Instead, sampled-data measurements may be available in the form of

2(t;) = B x(e,) +w,(t,) (2-74)

where !d(ti) is a discrete-time white Gaussian noise assumed independent

of dynamics driving noise !h(ti) in Equation (2-65), with statistics

E {v(t)} =0 (2-75a)

E{!d(ti) xdT(tj)} = Ry Gij (2-75b)

Again, a Kalman filter is employed to generate an estimate of the
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- conditional mean,'g(ci+), and conditional covariance, P(ti*), of the
f - states of the system.

The mean and covariance are propagated between sampled times by

RN N )

these equations (Ref 23:217)

A - +

. (e ) = ox(t, ) + Bu(t,) (2-76a)
. - + T T

N P(ti+1) ¢P(ti ) ¢ + Gd Qd Gd (2-76b)
5' Then, at the sample times when measurements are taken, the mean and

covariance are updated by (Ref 23:217)

.' A + = A - - ] = -
: (e, = %(e,D) + K(e) [2(t) -BR(E D] 21
“
+ - -
‘ &« p(e, ") = P(r,7) - R(t )R R(e,) (2-78)
4
", vhere K(t,) is the Kalman filter gain, given by
K(t,) = P(t,”) H[H P(t,”) HT + R 7 (2-79)

s i i i d
”. The superscripts, - and +, refer to quantities just before and just
) after the measurements at the samples times are taken, respectively.
§ The mean and covariance aere propagated and updated forward in time
) by the above discrete-time Kalman filter equations subject to the
: initial conditions
W\
£ X
W E{x(t )} = x (2-80a)

A,

«_,:.f
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o,

f.
o
o
S BU[x(t,) - X Hx(e ) - X1} = B, (2-80b)
i which are obtained from an a priori Gaussian density function of the

\,

‘J

- states at the initial time, as discussed below Equation (2-13).

Tl
N As in the continuous-measurement case, it is desired to generate
',# a constant-gain, steady-state LQG controller. Thus, steady-state solutions
LSS
VAN

:q from Equations (2-72), (2-76b) and (2-78) are desired to generate a
NI Y

» constant Kalman filter gain matrix, K, and a constant feedback gain matrix,
b3 *
L ™ G .
AN c

The form of the sampled-data controller is shown in Figure (2-4).

2.6 Sampled-Data Performance Analysis

a}% The performance analysis for a sampled-data LQG controller is based
| *-'1:
:i"} on the development in Reference 24:Ch 14.
R Gi:’ Similar to Section 2.3, a truth model for a given system is developed
)
:‘ N which has the following form
L
- %, (t) = F, x (t) + B u(t) + G, ¥, () (2-8la)
o
njk
P 2z, (t) =H x (t,) +y, () (2-81b)
.;k; The measurements are now in sampled-data form, and v -dt(ti) is a discrete
\':-.:
; time white Gaussian noise of covariance R, .
- As shown in Figure (2-5), proposed sampled-data controllers can be
{225 inserted into the truth model simulation of the real world and their
o performance evaluated.
N
: -' -.'i:: "-
S
o "
o
R
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Figure 2-5: Performance Evaluation for Linear
Sampled-Data Controller

For each controller, it is desired to evaluate a control law of the

generic form

G Ll-(r’:I.) - ch 1{-nc(t"i.) + Gcz E-éti) * ch zd(‘:i.) (2-82)

where.gﬁti) uses measurements up to and including the ith measurement and
is held constant over the ith sample period. The states of the controller

can be propagated by the linear difference equation
zc(ti+1) = erc(ti) + B<:z 5:“1) + ch xd(ti) (2-83)

Note the analogous form of the above two equation to that of Equation
(2-25) and (2-26). Expressions for the gains multiplying‘gc(ti),
Et(ti) and zd(ti) aregiven in Appendix A. Initial conditions for the
controller states are usually assumed zero.

The performance of a controller is evaluated by generating time

histories of the mean and covariance of the augmented Gaussian vector
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x, ()
g
- xa(ti) = (2-84)
u(t)
o -
and the corresponding vector between sample times. This is developed
subsequent to a description pertaining to sample times only.
First, as in Section 2.4, it is necessary to evaluate the statistics
of a second augmented vector
x (t)
x () = (2-85)
_Ec(ti)
By performing the integrations indicated in Equations (2-67) and (2-68),
an equivalent discrete~-time equation can be generated for Equatiom
I" (2-8la). Then by substituting Equations (2-81b) and (2-82) into the
equations for the truth model and controller states, Equations (2-8la)
and (2-83) can be rewritten as
x (tyy) = [0 + By G H ) X, (t))
+ By BxX(ty) + By G oy, (ty)
+ I !dt(ti) + Bdthz !dt(ti) (2-86)
X () + o2 (t) + BB x . (£)
RaYY
LN + ch zd(r.i) + Bcz gdt(ti) (2-87)
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j B The subscript d referes to a discrete quantity,

p e Form the augmented, stationary, zero-mean white Gaussian noise

: vector

5 T
N [ ¥ae(ty)
. ‘—'da(ti) = (2-88)
. ety
: - |

Ay

x with covariance

. Qe O©

:; Qda = (2-89)
. 0 Rae

) - .

fl

',
‘ If -‘!dt(t 1) and xdt(t i) are correlated when off-diagonal terms can be
| b added to Equation (2-89).

'.') Now an augmented system equation can be written by combining

d

y Equations (2-86) and (2-87)

n

- = -
'_:, 5a(ti+1) ¢a5(t:l.) + Bda zd(ti) + Gda !da(ti) (2-90)
A

S where

_‘:I o * Bdthth: Bdt:ch

\'

X s

Bcth: ¢c ] (2-91)

- B .

;Z. Bdt:ch
b - B da ™ (2-92)
! DAY ch

L 4
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'5_% e Bdt cz

." ._- :' -::::Ip
’ C4a = (2-93)

L cz

IR
P

The initial conditions for the augmented system are given by

P

X
E{ga(to)} = = x (2-94)

)
"_"
alts

."."::_'; j.'.‘.' ' P
1“1 PN n_f&f A
o
2]
o

E{[x (t) - x_ 1x (t) - X, T - (2-95)

If desired, a cost function for the augmented system can be formed,

)

N _o‘.-r"
AT -

¢ LSS
g

@ as shown in References 24:Ch 14;12. .

The mean and covariance of the augmented vector, X, (t i) can be

7
‘o

propagated by

e
%%
PRI 0 b ¥ ) ",/

b, ¢

Exa(ti) - ¢agxa(t':t) + Bcla xd(r’i.) (2-96)

L &
LR
Yy

Ao T

)0 T "
S anxa(ti) =9 1’x X ¢ -+ GdanaGda (2-97)

a
aaa

[ The vector of interest, -za(ti)’ is related to 3:_a(ti) by the

following equation

..
.

A
> P
“.'l
)
’f.r)

“
>
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T Za(ty) = =

e + 740t + v (E)) (2-98)

Kt
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GCYJ cz

e a e
G
P
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o0

and the desired statistics are therefore generated by

LA

INYN
1
-~
o
—
1
o
1

gya(ti) = m (t,) + zd(ti) (2-99)

EYRY
/X
@
®

(%0
LRARAARA

-a

«
s’

P (ti) = P (t

yaya aa

'. .’0 "‘ l,. *

@
@
(2]
e}
(7]

40 G a0

- + Rdt [0 Gcz ] (2-100)

G
cz

-

'25%" 200

oy 4

Equations (2-99) and (2-100) provide an efficient means for evaluating

statistics at the sample times via the equivalent discrete-time system

% - |7

v

model. However, it may be desired to obtain more complete results

LU

it

between sample times, to ensure that adequate sample period choice and
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~

W -

SO

-
b

.-..;.-__.

[y

36

[ ]

t§

RO e e e : iy
A R 2 A e o e A S S T S S R R L N Pt
s L . " - A hJ

.....
......




A
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\23 system control have been achieved. Between sample instants, a
_;.j W differential equation for Xa(t) can be written as
AN
h
'_3'5 Fe B, Gy
~ - -
*-J la(t) _za(t) + y_t(t) (2-101)
o) (4] 0

e
and the mean and covariance can be propagated from t g Ot where

‘ u(t 1) undergoes a step change, using the initial conditions given by
. Equations (2-90) and (2-91). The propagation equations are

5’

o«

\.

o~

N Ft: Bt

S gya(t) = gn,ya(t) (2-102)
X

- 0 o]
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& - Ft Bt Ft Bt

-" °

] P (t) = P (t) +P (t)

$1 yaya yaya yaya

- 0 0 0 0

- -

0 - -
: ;j:' T

i,‘ GQG 0

5 +

. | o 0] (2-103)
;

,::: At this point, all quantities of interest have been defined to
by Y
- evaluate the performance of a sampled-data controller. The primary
i results are that for a truth model given by (2-81) and a comtroller of
!
::'_, the form (2-82) and (2-83), the statistics of desired outputs at the

o
- sample times are given by (2-99) and (2-100). Between sample times the
o e

$\ :'. statistics are given by (2-102) and (2-103).
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2.7 Improving Robustness in Discrete-Time Systems

Three approaches are taken to apply the robustification technique
described in Section 2.3 to sampled-data controllers. The first is
simply to discretize the LQG controller designed for the continuous-time,
continuous-measurement system. The second approach is to extend the
technique of adding pseudonoise to the points of entry of u to a sampled-
data system by making a first order (or better) approximation to the
modified Q matrix. The third is to apply the fundamental conditions
under which full-state feedback characteristics are obtained asymptotic-
ally from a controller with a filter or observer in the loop.

It has been observed in Reference 21 that, unlike the continuous-
measurement case, the scalar parameter q of Equation (2-64) cannot be
adjusted arbitrar;ly upwards for the discrete~time case. Rather, there
is a finite rang; of values for q that will robustify the Kalman filter,

and beyond that range the closed~-loop system is unstable.

2.7.1 Discretizing the Continuous-Time LQG Controller

The required format for the discretized controller is given by
Equation (2-82) which requires values for ch(ti), Gcz(ti) and ch(ti),
and by Equation (2-83) which requires values for ¢c(ti+1,ti), Bcz(ti)
and ch(ti). Recall that the continuous-time controller equations are

expressed as

u(t) =G  (t) x (t) + G (t) z(t) + ch(t) 24(t) (2-104)

£ (6) = F(6) (6 + B (6) 2(t) +B_ (6 y,(t)  (2-105)
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i.::: In Appendix A, it is shown that for a steady-state constant-gain LQG
-, o
LRSS regulator
{
= ex t) c (2-106a)
L)

. Gcz(t) =0 (2-106Db)
.
o
2l (

ch t) =0 (2-106c)

¥

=° %*

A5 Fc(t) = F - BGc - KH (2-106d)
\'\-

','.:q = -

e G,,(t) =K (2-106e)
}.l
I ._:‘ .

a}:j‘, ch(t) =0 (2-106£)
%
.q,J * *

4 For this problem, Gc (t) is a constant value Gc , and thus the
” discretized control law is given by

3

L *

;::: u(t,) = -G, 5c(ti) (2-107)
L]

2 To obtain a discrete propagation equation for the controller states,

N
:5 first-order approximations for ¢c(ti+l'ti)’ Bcz(ti) and ch(ti) are
o obtained by

‘:

:: ¢’c(ti+1’t1) = [I+ Fc(ti)At] (2-108a)
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chd(ti) = ch(ti)At (2-108¢)

Again, for this thesis, the system is assumed time invariant and Fc,
Bcz’ and ch are constant matrices. They are evaluated explicitly in
Appendix A. The quantity At is the sample period for the sampled-data
system. Higher order approximations are also possible, but if At is
not sufficiently small compared to the transient times of the system,
this basic idea breaks dowm anyway, so its use is confined to problems
with short sample periods

In addition, a discrete approximation for Rdt(ti) is needed for use
in the performance analysis described in Section 2.6. If the sample
time is sufficiently small to allow the approximations in Equation

(2-108), then it is reasonable to make a first-order approximation for

the discrete measurement noise covariance Rdt(ti). This 1is given by

Rdt(ti) - Rt(ti)/At (2-109)
Notice that as At -=-> 0, the discrete-time white noise !dt(ti) of
Equation (2-81b) converges to the continuous-time white noise described

by (2-18) and (24) if (2-109) is satisfied throughout the limiting

process.

2.7.2 Doyle and Stein Technique for Sampled-Data Systems

The second approach to enhancing robustness is to extend the Doyle
and Stein technique and apply it directly to a sampled-data controller.
Several ways of accomplishing this are considered.

If the sampled period of the system is sufficiently small, a first-

order approximation for the discrete-time noise strength matrix Qd(q),

40




IR
N
I:-“ can be made which is the discrete counterpart for Equation (2-64).
""u, ORIEA
P AR
e L This yields
:'-'tf-“ Q. () +Q, + q2 BVBT At (2-110)
o d do
3 where Q do is
%3 Qgo = Qqty) (2-111)
= which is defined in Equation (2-68). Again, this implies that G a°" I.
>3 For larger sample times, a first-order approximation may not be
z' sufficient. If this is the case, subintervalling may be considered a
k)
3
‘E higher order approximation for Q d(q), such as
N
2 1 T
b Qu(q) =3 [9Q(a) + Q)] At (2-112)
s
’ -
' @ as given in Reference 24:172.
ot -
};-' Another alternative is to make the return-difference mapping for the
’l
.':.E observer-based controller asympotically equal to that of the full-state
i " feedback controller in the discrete~time case. The two configurations
:“': are shown in Figure (2-6). The observer-based system is based upon the
4."
4
A sub-optimal control law
\.'
- ¢ * xce,” (2-113
..-'.: E(ti) - c E(ti ) - )
X
: S;: . rather than the law given by Section 2.5 using x(t i+)'
"J'-
- To recover the robustness properties of the full-state feedback
system, [¢K] must be found such that
-1 _.~1 -1 -1
L ¢K[I + H(z2I -~ ¢) ¢K] = Bd[H (zI - ¢) Bd] (2-114)
s e
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where the analysis is carried out in the z-domain. Equation (2-114) is
satisfied asymptotically when the Kalman filter gain, K, is parameterized
as K(q), and

lim  ¢K _
g g =By ¥ (2-115)

where W is a nonsingular m x m matrix. Therefore, for finite values of

q, K is given by

K=qp B W (2-116)

Unfortunately, this does not lend itself to an interpretation of
retuning via pseudonoise addition, as in the continuous-time case.
Reference 24:113-114 suggests looking at the dual state equations

to select W. This yields

-1 (2-117)

W a8,

which assigns m eigenvalues of the closed loop dual system to the origin
and the remaining (n-m) eigenvalues to the invariant zeros of the system
where n is the number of states and m is the number of controls.

To use the performance analysis equations, the sub-optimal control
must be put into the generic format of Equations (2-82) and (2-83).

This is shown explicitly in Appendix A.

2.8 Summary

The preceding sections have presented the equations for designing

and evaluating optimal LQG regulators. Three applications are considered:
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‘Ji’ for a type of controller that does exhibit these characteristics, based

a continuous-time controller, a discretized continuous-time controller

A

<.

and a sampled~data controller. The structure of these controllers was
examined with and without a Kalman filter in the loop to estimate states.
For the case where a Kalman filter is necessary to estimate states,
a technique was presented to robustify a controlled system against |
differences that exist between the controller design model and the real |
world system. The technique was developed for a continuous-time system
and several extensions to discrete-time systems were presented.
A disadvantage of the type of controller considered in this chapter
is that it will mot regulate the states to zero in the face of unmodeled
disturbances. Also, it only regulates the deviations in the states from
an equilibrium position and does not allow the system to track a desired

piecewise constant non-zero input. Chpater III presents the development

on an LQG methodology.




III. PI CONTROLLERS

3.1 Introduction

This chapter presents the equations used for designing Proportional-
plus-Integral (PI) controllers for a system modeled as linear, time-
invariant, and driven by stationary white Gaussian noise and determin-
istic inputs. The model used for this thesis is described in Chapter V.

The advantage of a PI controller over the regulator described in
Chpater II is that, in the absence of stochastic inputs, it will maintain
the system output at some nonzero commanded value with zero steadystate
error, even in the presence of unmodeled constant disturbances. This is
known as a "Type-1" property (Ref 4). This property is achieved by
integration of the error in the controlled variables, i.e., integration of
the difference between achieved and desired values of the controlled
variables. In discrete~time feedback control, the PI effect is achieved
by performing summation (or pseudo-integration, often interpreted as
Euler integration) on either the difference between the actual and desired
system outputs (regulation error). In this thesis, this structure is
obtained via LQG synthesis applied to an augmented system composed of the
original system states and the controls (Ref 24:141-150). Two possible
implementations are "position form"” and "incremental form'". In position
form, the control‘g(ti) is specified in terms of the current position of
the system state, Eﬁti), as in the LQ regulator solution of the previous
chapter. In incremental form, only changes in states and commands from
the previous values are used to generate increments in control relative to
the value at the previous sample time. For implemention, an incremental
form PI controller is generally preferable because it is not necessary
to provide initial
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f-: . values for the controller states as in the position form. Also it lends
'- \, iteself more readily to relinearizations about new nominal values and to
< anti-windup compensation (Ref 24).

\ The optimal deterministic (LQ) PI controller is developed in the

‘\-: first section of this chapter for a sampled-data system. Next, the

'-'.: Doyle and Stein technique is applied to a PI controlle:r. Then the

E; controller is put into the generic format presented in Chapter II, with
% a Kalman filter in the loop to provide estimates of the states to the
\'. controller, Once the generic form is available, the performance of the
‘i controller may be evaluated using the method of the previous chapter.

;- The software developed to design optimal PI controllers is described

in Reference 13, Modifications to the software are described in References

26, 27 and 29. The performance analysis software is described in

ﬁ Reference 29. The above references deal primarily with the design of

? controllers that employ a PI regulator in the inner feedback loop and a

A

j- Command Generator Tracker (CGT) to provide inputs to the system (Ref 12).

e

v This chapter contains the development of only the inner loop PI regulator.

: 3.2 Sampled-Data PI controller

¥

:; The following development for a PI controller, based on augmentation
to the original system state relations of equations for pseudo-integration

A

': of the control input rates, is found in Reference 24:Ch l4.

bR

3.2.1 (Control-Rate Pseudo Integration

:3 Recall from Chapter 1I that an equivalent discrete-time difference

)

5 ! equation can be generated for the continuous-time system model in the

B,

- form of

v
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o "
X
e = -
s x(t, ) = ¢x(t)) + By u(t) (3-1)
where, by the certainty equivalence principle (Ref 24:Ch 13), the noise
o
- vector was deleted.
g Define the perturbation state and control variables to be
'h
-
Su(t,) = u(e,)) - u, (3-2b)

where X, and u, are the nominal values of the states and the controls to
maintain the system at its equilibrium "trim" operating condition such

that controlled variables assume the desired values. If an equation for

N the output of the system is given by
¥ ':
@ }:(ti) = C§(t1) + Dy g(ti) (3-3)
i
)
-
\j then the nominal control, u . to hold the system at that equilibrium

operating point is found as the solution to

-

’

- X = ¢§o + Bd u, (3-4a)
2

4 T4 = Cx, + D u, (3-4b)
n
A or

}‘ - d o (3-5)
hY T4 c Dy u,
AN
q &i:-‘, vhere Y4 is the desired system output. Then, (3-5) can be solved as

~

>
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Al

.
a

s 5

B T [ T-1 . 7 B ] B B
50 (¢-1) Bd 9_ “11 “12 g
= = (3—6)
| % | ¢ Dy | 24 M1 22 R
or
X " T2 L4 Yy " T Yy (3-7)
The difference in perturbation control variable is
Su(ty,,) = Sult) = [ue, ) - ul - [u(t) -u) (3-8)
or, equivalently
Su(ty, ;) = Sule) + [u(t, ) - u(t)] (3-9)
The above equation has the form of an update relation for Qg(ti+1). 1f

the second term is thought of as an Euler integration of the time rate-

of-change of the control input u at time t , then the change in u, i.e.,

b 4
the bracketed term in Equation (3-9), can be written as

buCe,) =[utes ) - uep]= utepae (3-10)

where At is the sample time of the controller. Thus, Ag(ti) is termed

the control pseudo-rate and Equation (3-9) becomes

Su(t, ) =~ Su(ty) + Au(e,) (3-11)

1+l

At this point, an augmented state description can be written using

Equations (3-1) and (3-11) for the perturbation variables Qg(ti) and

Qg(ti):
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g
:‘ ] Sx(t )- F¢ B ] réx(t )- F 0 ]
.:‘ .\’::.._ =*"1+1 d
L] \'4
; - + Ag(ti) (3-12)
:-: L 52(ti+1)- LO 1 ) LGB(ti)_ L 1 |
3

The control pseudo-rate is now considered to be the input to this

augmented perturbation state equation.

el SN
P U

;i 3.2.2 Optimal Regulator Solution
- The optimal regulator solution described in Section 2.5 can now be
= applied to the augmented system above, subject to a quadratic cost
.’ .
f criterion
"‘ F — - - — -
<, T
i: §x(tyg, ) X, 0. 6x(ty. ;)
. -l
> Je ™3
. G | Sultyyy) | o o ] Sultyyy)
\‘ b o b -
.
o~
N
. _ _ - B
- [ T [
A L r %2 51 Sx(t,)

. 1 T -
.:. +2 i--l 62(1:1) xlz Xzz S2 Gg(ti) (3-13)
(L
o T T
™ Ag(ti) Sl S2 U Ag(ti)J
- &, b - e - -
‘-

where xll places a weighting on state deviations away from the nominal
"
<,
ﬁ X, x22 places a weighting on control deviations away from u.» and U
¥
\) places a weighting on the control pseudo-rates, Ag(ti). Notice that this
; term allows the designer to place a weighting on the rate of change of
Lﬁ control inputs, i.e., to guard against commanding actuator rates that are
N
o beyond the physical limits of the actuators.
SR
‘ Tt
3
CLJ
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The term X_ applies a weighting on deviations of the states at the

f

final time. The cross-terms X12’ S1 and 52 arise as the continuous-
time cost is converted to a discrete~time cost, as demonstrated in
Reference 24 and 12. In Equation (3-13), notice that the index for the
summation begins at -~1. This places a weighting on the potentially
large control differences which may occur at the initial time due to a
change in the setpoint (Ref 24:142),

To apply the optimal regulator solution to Equations (3-12) and

(3-13), redefine the matrices as follows

(o s,
s = (3-14)
0 I
o
By = (3-15)
| I
[ x|
8x, = (3-16)
ou
Xf o
Xeg = (3-17)
Lo 0




,s i v ) NS T ~ LD A N N R R L N AR A
¥
’
“ r~
E . X1 X
s f_'.-:‘.
ER XG = (3-18)
{
T
N X X
X | 12 22
" — -
51
.\!
e sts =
“
-, 5,
[y - o
bt Thus, the state equation and cost function become
J-
% 8xg (ty,) =040xs(c) + By Bu(r,) (3-20)
: I =2 Sxa(ty,.) Koo Oxc(te.)
W c 2 "=0'N+1 f6 =8 N+l
Y
4 Sx.(t,) Trx S Sx.(t,)
b N =1 § § =1
% +3 1 (3-21)
v.', i~ T
| Ag(ti) | Ss U ] -Ag(ti) |
3 - -
3 Then, the optimal, constant-gain LQ regulator solution is given by
A G * ) 3-22
)‘ P'_(ti) = ~ c Es(ti) ( - )
b where
N * * % T - -1 T T
" Gc [Gc1 Gc; (U + BG Kc 36] [BG Kc ¢6 + SG ] (3-23)
-
- and I-tc is the steady-stzte solution to the backward Riccati difference
. B equation
5 e
R 51
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Ko (tg) = X5+ d5 K (t5)) (85 = Bg Gc*] - Sacc* (3-24)

solved backwards from the terminal condition

K. (tyr1) = Xgs (3-25)

The optimal control input is given by Equation (3-22) in partitioned form
as

* * *
B (t) = - c‘:1 sx(t,) - cc2 Su(t,) (3-26)

Combining this with Equation (3-11) yields

- -
Qg(ti)
Su(t ) =oue) - 6. ¥ e " (3-27)

1 )
_au* (cy) |

Unfortunately, the above control law does not achieve the desired Type

1 property.

3.3 Achieving Type-l1 Control

The desired integral characteristics for the controller can be
achieved by manipulation into the form of a continuous-time PI controller

(Ref 1)

% t
g@©) = kx®) +k [ [y - z@] (3-28)
t

]

where ¥4 is the desired output and y(t) is the actual system output defined

by

y(t) = Cx(t) + Dyg(t) (3-29)




A discrete-time equivalent is given by

* i-1
u (ti) = -Kxé(ti) + Kz :Z]:._l

(x4 -x(tj)] (3-30)

In incremental form, the above equation is expressed as
* %
ity ) =u(e) K [x(t, ) - x(t)] +K [y, - y(e)] (3-31)

Define a perturbation output equation as

61(1:1) = l(ti) - ¥y " CG_:E(ti) + Dy&g(ti) (3-32)
and the control law as
% * 5
Su (t;.,) = 6u (t,) - K [8x(e ) - &x(t,)]
- K, [C6§(ti) + Dy&g(ti)] (3-33)
The above equation can be rewritten using Equation (3-9) as
¢-1 B, | |&x(t)
* *
Su (ti+1) = Su (ti) - [Kx Kz] (3-34)
i c Dy ] Lsg(ti)_
Equating Equations (3-34) and (3-27), it is seen that
B 7 -1
(¢-1) B,
(3-35)
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N K K * *

2 [ % z] = [Gc Gc ] (3-36)

; 1 2

2 "1 T2z |

~

» The values for the feedback gains Kx and Kz are thus defined by

5:3 K =G * *

o < A Tt Gc To1 (3-37a)
X 1 2

7y
' K =G¢ ~ n.+6¢ * (3-37b)

R z ¢y 12 c, 22

¢,

»

"2 *

' once Gc and Gc are available from the augmented state regulator

ol 1 2

¢

..,J' solution and T M2e Moy and T,, are obtained from Equation (3-35)
W

v G and (3-36). The final form for the PI cotroller which achieves Type-1
"' control, implemented in incremental form is

b Su'(t, ) = Su K_[6 § 3-3
= u (t,0) = Sule,) - K [8x(t,, ) - 8x(t)] (3-38)
£ (3-38)
b

-, -

oy * Ry gty - 2(ep]

§25

Lo

Notice that the different time arguments on the y terms are correct

o (Ref 24:147).

o,

=] 3.4 Doyle and Stein Technique for PI Controllers

?-: The technique of injecting white input noise into a controlled
>

7. system 1s accomplished for a sampled-data PI controller in a manner

<

similar to that described in Section 2.7.2 for a sampled-data LQ regulator.
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The equivalent discrete-time, stochastic difference equation to

describe the system to be controlled is given by

K(£g,g) = 0x(e,) + By u(e,) + 65 wy(e) (3-39)

where the hoise vector has now been included. The discrete~time input
vector, Bd’ and the noise covariance, Qd, are formed by solving the

following equations

i+1

By = #(t,,, -1) B dt (3-40)
4
sl T T
Q = [ #Ct, -0 66T o7 (e, -D) dr (3-41)
i

T
where Q, E(gd(ti)gd(ti)} . G4 is now defined to be the identify
matrix, I.
Recall from Chapter II that input noise was added to the system by

modifying the Qd matrix via

Q @) = Q , + a’BVB At (3-42)

where Qdo is now the original noise covariance given in Equation (3-40),
B is the input vector from the continuous-time state differential
equation, q2 is a scalar design parameter which adjusts the strength of
the input noise, and At is the sample time of the discrete controller.
This, in effect, makes a first-order approximation to the discrete~time
input noise.

However, the discrete~time input vector is available from Equation

(3-40) and is approximated to first order by Bd = BAt, and so it will be
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‘
18 used to modify the Qd matrix for PI controllers. The resulting modified
- NS
‘ if}* noise covariance matrix is
& Q,(q) = QqQ, + q2 B, VB, /st (3-43)
» d do d d

v where V is a nonsingular matrix, chosen to be the identity matrix for this
n thesis. Notice that the Kalman filter design 1is the same regardless of
{: the type of controller implemented so that robustification would be ac-
AN
M complished in the same manner as described in Chapter II. The structure
A of the sampled-data PI controller is shown in Figure(3-1). The Kalman
f‘ filter of Figure (3-1) is the same as for the LQG regulator shown in
5«

Figure (2-4).

43

f 3.5 Performance Analysis for PI Controllers
ﬁz The performance analysis for a PI controller is accomplished by
. ‘Esb following the same procedure given in Section 2.6 for LQ regulators. As
2y

'ﬁ given in Equation (3-38), the incremental form for the optimal, determin-
A

§: istic PI control law is given by
; * ] K s ]

> Su (ty,) = 8u (t) - K [8x(t, ) - 8x(c))
N (3-44)
, + K, [yg(ty ) - x(e)]

X

:t Again, the differing time arguments on the y terms are correct.
g: When a Kalman filter is employed to estimate states for the

Y controller, the conditional mean and covariance of the states are propa-
e gated between sample times by Equations (2-76a) and (2-76b). At the

Cal

.h .

a2 sample times, when measurements become available, the conditional mean and
SR

) b ¢

I
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A
'.,';: covariance are updated by Equations (2-77) and (2-78), where the Kalman
T
RN filter gain is given in Equation (2-79). Using the control law of
29 Equation (3-44) and the Kalman filter equations, the PI controller can
_::'* be put into the generic format introduced in Equation (2-82) and (2-83):
!
. *
- u (e ) +6, ltc(ti) +6_, z(t) + ch Y4(t) (3-45a)
5
>
‘ \. - -
I~ x (ti ) =6, x(t) +B_ z(t) + ch A (3-45b)
;’,: where the subscript ¢ refers to states of the controller. The gain
‘-:‘C matrices of Equations (3-45a) and (3-45b) are evaluated explicitly in
" Appendix A.
e
?‘. At this point, the performance of the PI controller may be evaluated
N
s
‘-g. using the method of Section 2.6, evaluating the statistical characteristics
” @ of an augmented vector
.’¥‘
X
4
d x (tp)
N
a t)s= 3-46
. T,(t) (3-46)
o
AR
328 8(ty)
:f.'
5 which is composed of the states of the truth model and the controls
f.*j, generated by the PI controller.
(&)
L]
LV 3.6 Summary
iy The chapter has presented the equations for designing and evaluating
]
V" .
:‘g PI controllers based on an LQG methodology. The advantage of a PI con-
._::"3 troller over the LQG regulator discussed in Chapter II is that it will
a T track a desired output with zero steady-state error (in a deterministic
g
.‘1'. -
>,
) 58
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::3

.g‘:.: . setting, or in zero steady-state mean error in a stochastic environment)

'.;J' ‘};} even in the face of unmodeled constant disturbance. The type chosen |
:‘C: for implementation was an incremental form of PI controller that is based l
5 i on augmentation of system state equations with relations 1nvoiving pseu-

:‘: dointegration of the control rates.

;,t‘q The Doyle and Stein stability robustness enhancement technique of

§§ inputting white noise into the systemmodel at the control entry points

Y during filter tuning was applied to PI controllers. The following chapter

will extend this method to allow time-correlated input noise for the case

:.: where robustification is desired ow)er only a limited frequency range.

,\::
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Chapter IV, Time-Correlated Input Noise

4,1 Introduction

Section 2.4 introduced the idea of robustifying a Kalman filter by
adding pseudonoise to a system at the point of entry of the control
inputs, u. By increasing the intensity of this pseudonoise, the stability
robustness properties of a full-state feedback system could by asymptoti-
cally recovered by the observer-based sytem.

One disadvantage of this techniques is that the noise addition de-
grades the performance of the system at the design conditions. The white
noise adds uncertainty to the model with the same intensity throughout
the frequency spectrum. It may be desired to robustify the Kalman filter
only over a certain frequency range where confidence in the adequacy of
the controller design model may be low. Thus, a natural extension to the
Doyle and Stein technique (Ref 6) is to add time-correlated (colored)
input noise where the strength of the noise is highest for the frequency
range of interest. This chapter develops this idea and describes how to
apply it to the types of controllers discussed in Chapter II and III
(Ref 15;16;18).

In the first section, a stochastic model is developed for the

fictitious colored noise process. Then, this is augmented with the model
used to describe the system. Finally, the colored noise processes to be
used in this thesis are described, including the shaping filters to

generate them.

T 3
R | CACCX XN

-~
."l.
-

4.2 Stochastic Model

Stationary, time-correlated input noise is represented as the

)

-a e
'Y
4

b
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steady-state output of a linear time-invariant system driven by white

Gaussian noise as

:':_u(t) =F, Eu(t) + G, w_vu(t) (4-1a)

Eu(t) = Hu Eu(t) + Du v_vu(t) (4-1b)

The subscript u refers to uncertainty parameters. The statistics of the

stationary white noise, v_.ru(t), are given by

E{w (t)} = 0 (4-2a)
E{w,(t) guT(cw)} = Q,8(1) (4-2b)

The colored noise process, l‘.u(t)’ is added to the system model,

given by
%(t) = F x(t) + B u(t) +6 w(t) (4-3a)
z(t) = 4 x(t) + v(t) (4~3b)

at the point of entry of u. This results in
2(0) = 7 x(e) + Blu(e) + n (0] + 6w (0 (4-4)

Define an augmented vector to be the system states and the uncertainty

model states




) Next, augment the uncertainty state differential equations with those
Y l\‘
\1...1‘

of the original system. This yields an augmented system equation, given

by

is(t) =F, Es(t) + B, u(e) + G, !s(t) (4-6a)
ga(t) = H, gs(t) + v(t) (4-6b)

The above matrices are described by

F BH
F, = (4-7)
0 Fu
—.B
G BS = (4-8)
_ O
G BD
u
G, = (4-9)
LO G
u -
Hs = [H 0] (4-10)

The noise vector, ge(t), is given by

w(t)

g‘(t) - (4=11)

L gu(t)

-
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a
:
;xg ' with covariance kernal E{v_vs(t)v_ws (t +1)} = Q SS(T), where
SR
| Q@ o
:: Q = (4-12)
0 0 q
;z The augmented system model described in Equations (4-5) through
iﬁ (4-12) is used to design either the continuous-time Kalman filter in
Equations (2-12a) and (2-12b) or the sampled-data Kalman filter in
ﬁ Equations (2-76) through (2-79). However, it is not necessary to feed
‘3 back the uncertainty model states in the controller algorithm; they are
{‘ used only to modify the filter within the overall controller. Therefore,
':: the original system model is used to design the LQ regulator of Chapter
:3 II or the PI controller of Chapter III. However, the dimensions of the
_l m Kalman filter and the controller are now incompatible. This is solved
135 by augmenting the controller gain matrix with zeros
- ¢ *a [c * o] (4-13)
] cs c |
Thus, the order of the original system has been increased to reflect the
adding of uncertainty model states, but these are fed back through the
controller with zero gains.
At this point, the control law is put into the continuous-time
generic form of Equations (2-25) and (2-26) or the sampled-data form of
N Equations (2-82) and (2-83). then, the performance of the robustified

system is evaluated using the performance analysis described in Chapter

1I.
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f..:j: 4.3 Shaping Filter Design
-:‘..' A
j DA The time-~correlated noise processes to be examined in this thesis
\’ are generated by inputting white noise to first- or second-order shaping
74
::}2 filters as described in Reference 23:180-186. The following sections
"
o .
e describe the form of the shaping filters.
e . .
\i‘i 4.,3.1 First-Order Colored Noise Processes

g . . . . . .

o A noise process which has low intensity at low frequencies and high
0N

intensity at high frequencies (or high intensity at low frequencies and
.-\..
',:‘~' low intensity at high frequencies) can be generated as the output of a
.:{
e system with a transfer function of the form
I
£ \
2 (s)
BEN x (s s +a
- u -~ = (4-14)
2N wi(s) s+b
’{.: - In Chapter V, it is shown that the model used for this thesis is adequate
¥y
: :2 for low frequencies but may not be for higher frequencies. Thus, for this
ALY
\§

N case, the strength of the noise should be kept low at low frequencies and
Iy then increased where the adequacy of the model is in doubt. Figure (4-1)
""'.
aza shows the power spectral density function for this process.

o

E)

— Using the standard controllable form given in Reference 23:Ch 2, the
e state-space representation for Equation (4-14) is

-"

o

Q},\ %, (t) = -b x (t) + w (c) (4-15a)
:.:,\

_;:; n (t) = (a = b) x () +w () (4-15b)

)

'-'d"

o4

"" For this first-order shaping filter, the uncertainty model matrices
'_:.. '::::::: are thus scalar and given by

2 ..

P A
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e -s-v- -

)

¥

= F, = -b (4-16a)
b N
: B =1 (4-16b)
)

: H = (a-b) (4-16¢)
> u
7

v D, =1 (4-16d)
‘

o

! Note that a noise process is generated for each control applied to
A the system. Thus, the dimension of the augmented system is that of the
‘. basic system plus the number of controls.

A

4.3.2 Second-Order Colored Noise Processes

::: A noise process which has high intensity over only a limited

*Q

*: frequency range can be generated by passing white noise through a linear
/i 0 system model that has a transfer function of the form
N

; *y(8) . re (4=17)

, qusT (s +d) (s + e)
N

J:P If it is the case where the adequacy of the design model is in doubt over
'. a limited frequency range, then a second-order shaping filter as in
Equation (4-17) would be appropriate. The power spectral density function
o . . o
) for this process is shown in Figure (4-2).

/

’7"\ A state-space representation for this process, using standard control-
" lable formis given by
r
&
o x (¢t 0
&2 u, ) 1 xul(t) 0
- - + wu(t) (4-18a)
Ry x (t) -de -(d + e) x (t
SRR 2 0 l
R "

-
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pi¢ n, (t) = I:c 1:] (4-18b)

oy For this second-order shaping filter, the uncertainty model matrices

are thus given by

F = (4‘]93)

A ~de -(d + e)

B = (4-19b)

o H = | ¢ 1] (4=19¢)

- [o] (s

' For this case, the dimensionality of the original system is increased
by two times the number of controls when these shaping filter states are

oy augmented to the system states.

30 The above technique for robustifying the Kalman filter in a control

system is incorporated into two subroutines added to the LQG regulator

design program described in Reference 21. Source code and instructions

\5 for running the program with the additional routines are listed in

. .‘R Appendix B.
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Similarly, for PI controllers, the user must input the original
design model, before augmenting the shaping filter states, to the program
described in Reference 13. The original model is used to design the PI
controller. Then, the shaping filter states are augmented with the
model for the Kaiman filter design. Finally, the PI controller feedback
gain matrix is augmented with zeros to make the dimensions of the two
solutions compatible. Modifications to the software in Reference 13 are

listed in Appendix C.

4.4 Summary

This chapter has presented an extension to the Doyle and Stein
robustness method of injecting white input noise into a controlled system
during the process of tuning the Kalman filter. The extension allows
time-correlated noise to be injected into the system model, which is
accomplished by augmenting shaping filter states to the state different-
ial equations of the system to be controlled. Thus, the strength of the
colored noise can be concentrated at frequencies where robustification
is desired and attenuated elsewhere.

Two types of shaping filters to generate the colored noise were
examined. The first concentrated the strength of the noise at higher
frequencies. The second concentrated the strength of the noise over a
limited frequency range. Then, the method was applied to the types of
controllers discussed in this thesis.

At this point, the types of controllers which are designed for
this thesis have been discussed. In addition, techniques to enhance the
robustness characteristics of the controllers have been presented. The
following chapter presents the linear, time-invariant model to which the

above mentioned methods are applied in this thesis.
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E . Chapter V. AFTI/F-16 Flight Control Design

IR

’ - 5.1 Introduction

;. This chapter presents the longitudinal dynamic equations for the

i‘: Advanced Fighter Technology Integration aircraft, an F-16 aircraft (AFTI/
. F-16) modified for advanced controls research. For longitudinal control,
:§ the aircraft is equipped with a decoupled horizontal tail and trailing

s' edge flap which make it possible for the AFTI/F-16 to perform such

2 maneuvers as pitch pointing. A pitch-pointing maneuver allows the air-
;3 craft's attitude angle to be changed while holding the flight path angle
.% constant. The controllers to be designed lend themselves readily to

& multiple-input multiple-output (MIMO) system methods such as those
E: described in this thesis. The aircraft equations are adequately portrayed
:.E: as linear and time invariant by linearization about specified trim

A ﬁ conditions in the aircraft's flight envelope. The controllers described
E: in earlier chapters will be designed for the AFT1/F-16, applying the
'5‘3 techniques of tuning the Kalman filter for robustness purposes by inject-
s ing fictitious white or time-correlated noise into the system model at
!1 the point of entry of the control inputs.
I Data used to form the AFTI/F~16 longitudinal equations was taken
}! from References 11 and 12. Reference 1] lists dimensional stability
;4:\ derivatives in a body-axis coordinate system for the aircraft, but does
2 not include data for the trailing-edge flap. This information is given
E in Reference 12 in a stability-axis coordinate system. The necessary
’E: transformations were performed to convert all values to the body-axis

E frame.

2
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I

i; The development of a linear perturbation model for am aircraft's
;;: Eii? longitudinal dynamics is found in References 7;8;9;10;25. The model for
f:: clear air turbulence is developed in Reference 17 and used in Reference
~£¥ 12. Both these models are incorporated to form the AFTI/F-16 equations
5?' described later in this chapter.

2 The first section of this chapter describes a thirteen-state linear
swé perturbation truth model for the AFTI/F-16. This thirteen-state model
Ebf is unobservable because a measurement is not available for all four air-
) craft states. Therefore, the unobservable state is deleted from the full
éé model to leave a twelve-state truth model. This model, described in a
;32 second gection, will be used to evaluate the performance of lower order
, controller models. The lower order (eight-state) controller model is
~j§ described in a third section. The final section gives the data and

‘ﬁw . longitudinal equations for one twelve-state truth model at an off-design
‘;i (3E5 tlight condition. This will be used to evaluate the robustness of the
;Ej controllers designed.

N

fﬁ‘ 5.2 AFTI/F-16 Truth Model

'; The longitudinal aircraft truth model consists of four aircraft
,’§ states, three turbulence (gust) states, and six additional states to

- describe the third order dynamics for each of the horizontal tail and
isi trailing-edge-flap actuators. The aircraft states are: O, attitude

ézz angle; a, angle of attack, q, pitch rate, and; u, forward perturbation
:t; velocity. There are two angle of attack gust states and one pitch-rate
ég gust state. Noise-corrupted measurements are available for O, a, and

q, and the measurement for a includes an angle-of-attack gust state.

The actuator and gust models will be described first.
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5.2.1 Actuator Dynamics

The actuators for the horizontal tail and trailing-edge-flap are
modeled as third-order systems, yielding delivered angle § in response to

commanded angle 5c°m, of the form

-2
s 1/t (W (5-1)
2 -2
Gcom(s) (s + L/Ts) (s° + 2¢ W + W )
Multiplying the numerator and denominator terms yields
8(s) a
Gcom(s) §T +ay8” +as+a

Using the standard observable state space representation given in

Reference 23:Ch 2, the corresponding model is

-, - 1r . -
8(t) 0 1 0 §(t) bl
s = o o s |+ | by |8 (8) (5-3a)
Lsz(‘)_ |7 A1 T _52“)_ | ®3 |
[~ n
§(t) = [1 0 o] §(t) (5-3b)
61(c)
§,(t)
277

where the bi's arise when taking the Laurent series for G(s). Notice
that scom is the command surface deflection and § is the surface deflec-
tion output from the actuators. Two intermediate states, 61 and 62, are

needed to describe fully the actuator dynamics.
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The values chosen for the parameters in Equation (5-1) are specified

- R

A in Reference 27 as

s §(s) (20.2) (71.4)% |
px - 5 (5-4)

§  (8) (s + 20.2) (s%+ 2(.736) (71.4)+ 71.4%)

oLy com

ety

The same actuator equations are used for both the horizontal tail and

.
4

_.‘..;‘ 1

trailing-edge-flap. Expanding Equation (5-4) yields

§(s) 102980
s: = —3 3 (5-5)
% Gcom(s) (s + 125.38° + 7221s + 102980)
‘.;
‘ Thus the resulting state equation is
-':' [ . ] B T r T r 1
;s s(t) 0 1 0 8(t) 0
: n‘ .
» Gl(t) = 0 o] 1 61(:) +| O Gcom(t) (5-6)
: i _sz(t)- b-102980. -7221. -125.3 LGZ(t) ]02980J
“~
o2
e 5.2.2 Turbalence State Equations

The model uged for clear air turbulence is found in References 12

.

and 17. The state equations for the three gust states are given by

)

= a = agl ag * 1, (5-7a)
\‘.
A%
&
5,
:i‘.: ot ' ( :
244 = a + a = an 5-7b
% " %, % " %% T "'
&9
)
&
Y:’ q a & +
R 8 8g% g% (5-7c)
o ¢
:’i‘*ai'
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$ The noise source, s is modeled as a white Gaussian noise with statistics

E{na(t)} =0 (5-8a)

E(a () o' (t + D} =& (5-8b)

-
irﬁ The coefficients in Equations (5-7) are computed using the following

- equations

358 a = 't (5~9a)

g ®, t
&% %, = -If (L- /3 n/ & (5-9b)
(5~9¢)

(5-9d)

a = __ (5~9e)

A

(5-9¢£)

S N ey

g ‘.ﬂ
£
[ ]
[ ]
ry
(-

l

A

Vt is aircraft velocity and b is the wing span. The quantities o, and

‘s

%

A
" ;.nc.ré":~

L, are given in Reference 3 as functions of altitude, where g, is the

o

e root mean square intensity of the clear air turbulence in feet per

=
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o i second and L_ is a reference scale length in feet.

i

L 5.2.3 System Equations
1-3 The thirteen states for the unobservable truth model are listed in
N

2 . .

B Equation (5-10) on the following page.

, ..; As demonstrated in Reference 12, it is convenient to define the

‘...‘

b4a truth model equations in two stages. First, define the ssytem matrix, F":
B . : A o

b of Equation (2-25), neglecting all o stability derivative terms and also
::, the &g term in Equation (5~7c). Then modify the matrix to incorporate the
! ‘ .

. neglected terms. This is done for mathematical convenience as the q terms

are neglected in a later truth model. Defining the system matrix in two

': stages does not change the definition of the states; the second stage is
W

merely a more adequate model. The initial matrix is given in Equation

%

@ (5-11) on the following page.

h To incorporate the neglected terms, rows 2,3,4 and 13 are modified
::' with the following equations (using standard double~index array notation
N P (I,J) for the I-th row and J-th colum of F).

2

i ;‘ F (2,J) = F'(Z’J) /(10 - ZO) (5-123)
2 t t Q

b

Ay - F! . -
f,? F (3,0) = Fi(3,J) + M, x F (2,3) (5-12b)
s
@4 F (4,) = F (4,3) + X, % F.(2,0) (5-12¢)
" a F! ' -
2 FUI3,3) = FLOI3,) + & x FLO2,) (5-12d)
N4

- e The column index J ranges from ] to 13.
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In Equations (5-11) and (5-12), the dimensional stability deriva-
tives "X", "2", and "M" refer to body forces acting along the X- and Z-
axes (forward and down axes) and the pitching moment about the Y-axis,
(axis emanating from aircraft center of mass toward the right wing)
respectively., The subscript identifies the state with respect to which
the derivative is taken. The term "g" is the acceleration due to gravity.
The subscripts HT and TEF refer to deflections of the horizontal tail and
trailing-edge-flap, respectively. The terms ao’ u, and LA refer to trim
values of angle of attack, and velocity components along the X~ and Z-
axes, respectively. A trim condition is a steady-state level flight condi-
tion about which the longitudinal dynamic equations are linearized. For
this case, the trim condition is chosen to be steady level flight at a
Mach number of 0.6 and an altitude of 10,000 feet.

Table (5-1) gives the values needed to define the thirteen-state
truth model. Note that the value of a, given in the gust model coefficients
is for "Level 1" or light to moderate air turbulence. This level of air
turbulence has a high probability of being encountered in flight.

From Chapter II, the truth model is of the form

% (t) = F, x.(t) + B, u(t) + G, w,(t) (5-13)

The control vector, u, is given by

- -
GHT €3]
com

us= (5-14)

TEF (t)
com
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b
gﬁ The Bt and Gt matrices are given by Equations (5-15) and (5-16) on the
S T
» DS following page. The last element of the Gt matrix is defined to be
M
v
e =% *% (5-17)
IR
RN
prapn where a and a  were defined previously in Equations (5-9d) and (5-9e).
2 : d
, ;(: Employing the data of Table (5-1) and Equations. (5-11) and (5-12),
i the F, matrix is given by Equation (5-18). Equations (5-19) through (5-22)
o
e give the other system matrices with their numerical values inserted.
\':'1’:
"Q:j- Recall the continuous-time measurement equation is of the form
;::::'_. gc(t) =H x, + gc(t) (5-23)
_*:::' The covariance kernel description, Rt’ for the measurement noise, !t(t)’
' @ (Equation (2-28)) was established using the values given in Reference 12.
o‘* b
_4-':2 The results are listed in Equation (5-24).
e
o r y
NN _
AN 9.52x 108 0 0
A R, = 0 2.44 x 1077 0 (5-24)
p 0 0 6.44 x 1077
X - -
Recall from Equation (2-120) that a first order approximation for a
\{, discrete-time Rdc’ to be used to design a sampled-data controller is given
N by
N Ry, = R /At (5-25)
J-:’.-:
:ﬁ:—f . .
e The truth model described above will hereafter be referred to as
N
S . (T13,10,0.6). "T" indicates truth model, 13 refers to the number of
v '-- '..
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g

Q, = [1]

8.142x10"

0.1378

3

(5-20)

(5-21)

(5-22)
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states, 10 refers to the altitude in thousands of feet, and 0.6 to the

Mach number for which the equations were computed.

5.3 Reduced Order Truth Model

The truth model of the previous section represents an unobservable
system because a measurement of the fourth state, u, is unavailable. In
practice, it is rarely desirable to feed back this state through a control-
lex. Therefore, the fourth state is deleted from the truth model before
any further simplification to yield models upon which to base a controller/
estimator design. In addition, all terms involving & stability deriva-
tions are ignored because their effects on the terms of Equation (5-19)
are negligible. Incorporating these derivatives causes the values for the
F, matrix to change only slightly, except for the terms involving, u, which
were deleted. Thus, the modifications listed in Equations (5-12a), (5-12b)
and (5-12c) are not necessary. Equation (5-12d) now becomes

Ft(lz,J) = Fé(lZ,J) + asd x Fé(ll,J) (5-26)

The matrices needed to define the twelve~-state truth model are given
in Equations (5-27) through (5-33). Note that R, was defined previously
in Equation (5-24).

The twelve-state truth model based on linearization about a trim

condition at 10000 feet and Mach 0.6 will be referred to as (T12,10,0.6).

5.4 Controller Design Model

The reduced order controller is formed by modelling the AFTI/F-16

actuator dynamics as first-order lags instead of third-order systems as
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u(e) =
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1
;: given in Equation (5-1). The transfer function for a first-order lag
L] ..
- G{:* with a coefficient of 1/Ts, i.e., a lag time of Ts, is given by
§(s) /T,
-— . —— (5-34)
g Gcoés) s + l/’l‘s
: In state space representation, the above equation becomes
2
2 § /1) 6
(€) = (-1/T)) 6(t) + (1/1,) 8___(t) (5-35)

where Ts is the time constant for the actuator. Again, Gcom is the com-
; mand surface deflection and § is the surface deflection output from the
actuator. A good fit to the frequency response of the actuators yields

~
o 1/'1‘s = 20.2 (Ref 27). Equation (5-35) then becomes

m S(t) = -20.2 8(t) + 20.2 6com(t) (5-36)

Making this modification to the twelve-state truth model of Section
v 5.3 yields an eight-state controller design model. The matrices needed
K to define the controller model are given in Equations (5-37) through (5-43).

7] This eight-state controller model will be referred to as (C8,10,0.6).

5.5 Truth Models at Off-Design Conditions

To evaluate the effectiveness of the techniques previous described for
- robustifying the Kalman filter, the performance of the controllers are to
be evaluated at flight conditions other than that for which the controllers
f were designed, as well as by using truth models of higher order than the
design model. This is accomplished by using a truth model defined at an

~ S . off-design condition in the performance analysis described in Chapter III.

EAE P2 N K

The following sections contain one such truth model.
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SR 5.5.1 Truth Model (T12,20,0.6)

s -?}7‘\{

; This truth model is defined for an altitude of 20,000 feet and a

.ii Mach number of 0.6. The values of parameters and stability derivatives
needed to form the system matrices are given in Table (5-2). The truth
model G, and F_ matrices are given in Equation (5-44) and (5-45).
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5.6 Summary

N This chapter has presented the model which will be used to design LQG

'_.' regulators as in Chapter II and PI controllers as in Chapter III for the

E'.: AFTI/F-16. The robustification methods detailed in Chapters II and IV will
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A be applied to the model, and the effect of this will be examined by
AR performing covariance analysis as described in Chapter II. The results

be," of this study are presented in the following chapter.
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V. Results

6.1 Introduction

The results of the study of methods to improve the robustness
properties of controlled systems are presented in this chapter. The two
methods examined are the techniques of tuning the Kalman filter by input-
ting both stationary white and time-correlated Gaussian noise into the
system model at the control entry points,

The results of applying these techniques are presented first for LQG

regulators. In the first sections, results are given for a continuous-
time system. Then, two approaches for a discrete-time system are examined:
discretizing the continuous-time controller using first-order approxima-
tions, and designing a sampled-data controller.

Finally, in the last sections, the robustification techniques are

applied to a sampled-data PI controller.

6.2 Robust LQG Regulators

Two separate issues of robustness are addressed in the following
sections. The first is the idea of robustifying a system against dif-
ferences between the real world and the finite-dimension, low~order model
that is chosen for controller and Kalman filter design. As discussed in
Chapter V, the model to represent the real world (the truth model) and
the lower-order controller model were purposefully established so that the
differences between them occur in a specific high frequency range. As pro-
posed by Doyle and Stein (Ref 6), the stability characteristics of a full-

state feedback system can be recovered by adding white noise at the

control entry points during the process of filter tuning. The validity




e,

3 of this claim is examined by looking first at a purposefully reduced-order
i -

2 controller evaluated against a truth model of the same dimension with

( first-order actuator dynamics. That is, the low-order controller model
;:: is evaluated as if it were a perfect representation of the real-world

system. The performance of this controller is the best that can be expected
with a Kalman filter to estimate the states. Then, the higher-order

actuator dynamics are introduced into the truth model to demonstrate the

o X,

A )

effects of ignored states on the performance of the system. Next, the

‘a

> robustiffcation techniques are introduced to attempt to recover the

'y w8

R ol

stability characteristics of areduced order but full-state feedback system.

It would be desirable also to examine the performance of a full-state

E: feedback system to evaluate the claim that the stability robustness
__ properties of the filter-based controller will asymptotically approach
' a those of the full-state feedback controller using the Doyle and Stein
:;}. technique. Unfortunately, the software used to design and evalute LQG
:;‘: regulators does not include the option of designing an LQ full-state
| controller. An attempt was made to approximate full-state feedback by
j?, setting the measurement noise intensities to small values and assuming a
g‘s measurement was available for each state, but the results were inconclusive.
' Therefore, performance comparisons are only presented between designs
.{ using the robustified or unmodified Kalman filter.
E: As discussed in Chapter V, the difference between the controller
J design model and the truth model against which the performance is
.}} evaluated lies in the dynamics model for the actuators. Open loop
;.: frequency responses for the third-order model and the first-order model
: ?\\ are shown in Figure (6~1). 1t is seen that the frequency responses differ
- 97
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in the region around 70 rad/sec and beyond, where the complex poles are
located in the third-order model. Robustification of the LQG controller
based on the reduced-order model can be accomplished by adding white noise
to the filter's system model at the point of entry of u, or, by adding
time-correlated noise with the primary power concentrated around the
region of the model inadequacy, i.e., around 70 rad/sec and higher.

One first-order and one second-order shaping filter transfer function
are considered, each of which concentrates the highest strength of the
time-correlated noise in the region where the design model and truth-model
actuator dynamics differ. The first-order shaping filter is described

by the transfer function

xu 8 + 0.5
W, Ts¥0 (6-1)

A power spectral density plot of the time-correlated noise generated by
this shaping filter is shown in Figure (6-2a).

The second-order shaping filter is described by the tramsfer function

x s + 0.5

u
2,: ® (s + 50) (s + 400)

(6-2)

Figure (6-2b) shows the power spectral density function for the time-
correlated noise generated by the above shaping filter. The values in
Equations (6-1) and (6-2) were chosen by examining power spectral demnsity
plots of the time-correlated noise with the poles and zeroes of the

shaping filters in different locations. The chosen values generate the

99
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BN
:ﬁ% R desired noise, the strength of which is highest in the frequencies where
S o the truth and design model frequency responses differ.
‘*;i The second robustness issue is concerned with operation of the con-
Tﬁ?é trolled system at flight conditions other than the design condition. The
o differences between the real world and the reduced-order design model
ig; now occur in other frequency ranges besides those given by the actuator
iiiz dynamics models. Since these frequency ranges are now unknown, the use of
;;'r white input noise would be motivated since it injects equal uncertainty
'S;E into the system model over the entire frequency spectrum. The additional
?Egg performance degradation or instabilities that arise in going from the
& design condition to an off-design condition with a Kalman filter in the
.’SE loop are examined to determine the success of the Kalman filter robust-~
F%g ification techniques. That is, if the full-state feedback system (based
s @ on a reduced-order design model) is stable, then the LQG system (which
Sfi may well yield an unstable closed-loop system with the unrobustified
'E€§ filter in the loop) can be stabilized with the addition of white input
.: noise (as claimed by Ref 6) and possibly by colored noise if the robust-
_'é? ification is applied over the appropriate frequency ranges.
i%? The cost-weighting matrices used in Equation (2-3) are the same for
:?1 the continuous~time, discretized, and sampled-data regulators (discretiz-
;'; ing (2-3) to yield (2-69) is accomplished as in Ref 24). The values used
: ; are based on those given in References 12 and 22, with some iteration on
i?:' the control weightings to achiéve designs with commanded control surface
::&s deflections that do not exceed physical limits of the horizontal tail and
:ﬁg tailing-edge flap. The state, control and cross-weighting matrices are
{it -~ given by
MR A
e .

o I~J~
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B ..\1
by W= [0] (6-4)
N

%3

a 10 0
%, = -
» Wuu (6-5)
S

o 0 10

2 It i8 desired to make a direct comparison between the performance
)

4

W of the controlled system with white and time-correlated input noise added
7

) to the model upon which the Kalman filter is based, where the maximum

Lo |Ji intensity of the time-correlated noise is equal to the intensity of the
a5y

) white noise. By equating the maximum magnitudes of the white and time-
\"

',

}" correlated noise, it can be determined if there are performance benefits
};j in choosing one type of noise over aﬁother by comparing the degree of

.
jﬁé robustification achieved by each. This is accomplished using the fre-
ats quency domain shaping filter design techniques in Reference 23, which
e state that

o,

<

A PSD_(s) = G(s) G(-s) PSD(s) (6-6)
_{Z where PSD1 and PSD° are the power spectral densities of the input and
‘.‘ )

is output of a shaping filter, respectively. G(s) is the transfer function
1’\ :

by of the shaping filter. It is desired to have the maximum magnitude of
WD

2

“ .'1
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:b the right-hand side of Equation (6-6) be equal the magnitude of the
e oo
b= -2 white input noise, (the scalar white noise parameter, q2 of Equation
5? (2-64)). Thus, by setting PSD° equal to q2 and solving for the value of
?ﬁ PSD1 which makes this true, the value of Qu in Equation (4~12) can be
.','
ot found for the time-correlated noise. Thus, it is the intensity, Qu’
¢ of the white driving noise, wu(t) to the shaping filter which will
M,
N generate a time-correlated noise with a maximum intensity of qz. Table
. (6-1) lists the values of Qu which make the maximum intensity of the
i
s, Table 6-1
o
¥ Strength of Dynamic Driving Noise to Shaping Filters
5 - .8+0.5 - s + 0.5
;§ G(s) =1 €8 =5+ 50 C(e) =G+ 50)(s + 400
*
8 2
N G : S s
i 1x 1078 1 x 1078 0.21
i 1x10°% 1 x 107 21.
-~ - -
s 1x 1072 1x 1072 2100.
:, time-correlated noise equal to that of the white noise. The values were
o
53
:5 arrived at using the software described in Reference 20.
ia 6.2.1 Continuous-Time LQG Regulators at Design Condition
ﬁi Figure (6-3) shows time histories of the mean and standard deviation
Lo of the aircraft state, ©, for an eight-state controller evaluated against
_2 a truth model of the same dimension (the truth model and controller
I)'
5: model are identical as given in Section 5.4). A perfectly known initial
b }l
- condition of one degree (or 0.0175 radians) was placed on O, and the
'*J "::\'-;:'.
‘ 03
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2

éﬁf e plot shows the response of O to the initial perturbation and to the dynamic

?’ e driving noise built into the model. The trends are similar for all three

"i aircraft states, therefore only one will be examined in detail in this

;3 chapter.

y The time response is stable, although slow. The slow response is

)f typical of systems with a Kalman filter to estimate states. The added

; dynamics of the filter tend to slow down the response. However, the
controller does respond to the perturbation and regulate the state back

;: to zero. Figure (6-4) shows the response of the same controller when

N

§E specific ignored states are now accounted for in the truth model. This

i* figure is the result of a performance analysis when third-order actuator

'E dynamics are included in the twelve-state truth model, while only first-

E order dynamics are used in the eight-state design model. As can be seen,

' ﬁ the system is still stable, bu the mean of O response has degraded

:S substantially, especially in steady-state.

Ao Figures {6-5a) and (6-5b) show the response of the same state with

) a white Gaussian noise of strength q2 =1 x 10-4 injected into the system

;S model. The transient time, the overshoot, and the error in the final

Eé mean value of O have all been substantially improved with the noise addi-
tion. The standard deviation of O has not changed noticeably from the

f& previous case. The trend for lower and higher -2 values is shown in

E Figures (6~5c,e,d,f). It is seen that noise of a very small intensity

-

éﬁ (1 x 10-6) enhances the robustness properties dramatically, and increasing

S; the intensity of the noise only serﬁes to change the transient characteris-

tics of the mean time response and the magnitude of the standard deviation.

-
»
.
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Then, as shown in Figure (6-6), time-correlated noise generated by a
first-order shaping filter is injected into the system model. The maximum
power spectral density of the noise is 1 x 10'“. The figure demonstrates
that the improvement in the transient time, overshoot, and final value of
© 1is as dramatic as for the white noise case. Again, the standard
deviation has not changed enough to be discernible in the figure.

Finally, time-correlated noise generated by a second-order shaping
filter is injected into the design model. As can be seen in Figure (6-7),
the transient time is approximately the same as for the original system,

but much slower than the cases aboﬁe. However, the state 1is converging

to zero, and the overshoot has been reduced to about half of the original
value. Any change in the steady-state value of the standard deviation is
not noticeable in the figure.

Thus, Figures (6-3) through (6-7) demonstrate that the robustification
techniques can recover the stability robustness characteristics that
would be expected from a full-state feedback system. The methods of
injecting white and first-order colored noise produce very similar
improvements, while the second-order colored noise produced less but
still noticeable benefits in the time response.

However, it was stated in previous chapters that the addition of
noise into the design model will degrade the performance (as measured by
the standard deviation of the states or how well kaown the states are) of
the system at the design conditions. Additionally, it was claimed that
the performance degradation will be less for colored noise than for white
noise. To evaluate this claim, Table (6~2) lists the steady-state values

of the standard deviations of all three aircraft states with no input
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';d

' ’: noise, white noise, and first-order and second-order time~-correlated noise
_F: f‘:’x\ .

" ":‘B' for one value of noise intensity. The values listed are the results of a
" performance evaluation where the unmodified controller design model and

>

‘E truth model are identical (both are of dimension eight at the design

~
W condition). The results shown in the table only partially substantiate
_ the claim that time-correlated noise can minimize the performance degrada-
N tion. The addition of white noise to the system model increased the stand-
V)
™ ard deviation of all three aircraft states as expected.

! It was expected that the addition of first-order colored noise would
04
4’3’ reduce the standard deviation of the aircraft states to values less than
1
& those for white noise, but still larger than the case with no noise addi-
) tion. Table (6-2) shows that this is not the case. Rather, the standard

“u
:j deviations have increased, if only slightly for © and a. Only the pitch
Ay
) 'u rate, q, has decreased as expected. Recall from Figures (6-5a) and (6-6a)
': ‘ that white and first-order colored noise produce similar mean of theta
%

) .
~ s responses. That is, the robustness enhancement is very similar for the
o

two cases. However, even though the added uncertainty is applied over a

A
2 Table 6-2
L
’ Comparison of Steady-State Deviations of Aircraft

States at the Design Condition for a Continuous
\' Time System

Pl
's' 2
Lo 1 Q% % % %

. No noise 0 - |8.705x107* | 5.035x1072 | 1.200x1073
X White Noise 1x10~4 - |9.590x107* | 5.306x1073 | 1.978x1073
..!

" 1st-order -4 -3 -3 -3
Shaping Filter - 1x10 | 1.006x10 5.823x10 1.761x10
- -

- ';‘:f-_- 2nd-order -4 -3 -3
3 Shaping Filter - 21 |8.704x10 5.039x10 1.201x10
", 113
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more limited frequency range when first-order colored noise is injected
into the model, the standard deviations have increased slightly. This is
not well understood, except to say that time-correlated noise actually
changes the structure of the Kalman filter design model. The added
complexity of the design model may overcome any benefits that are
realized because the noise was not applied over all frequencies as in the
white noise case.

As expected, the performance at design conditions is degraded less
by using a second-order filter as opposed to a first-order filter or white
noise. However, the greater complexity of the Kalman filter design model
(four additional states in this case) is not justified by the performance
benefits seen in Table (6-2). In this instance, white noise injected into
the system design model provides the desired robustification while not
degrading the performance at the design condition substantially.

Table (6-3) presents similar steady-state standard deviation informa-
tion about the three aircraft states as shown in Table (6-2). However,
the values listed here are the results of a performance evaluation of the
eight-state controller evaluated against the twel#e-state truth model,
accounting for higher-order actuator dynamics. An important difference
between Tables (6-2) and (6-3) is the effect of adding white input noise
on the standard derivation of ©. At the design condition, adding white
noise detunes the filter and results in a performance degradation. How-
ever, when third-order actuator dynamics are included in the truth model,
adding white noise improées the tuning for the O channel, and the

standard deviation decreases for this state. Thus, when the performance
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ga
\
R
N
>
j . of the system is evaluated in an environment different from the design
SE ISy
A
: - condition, the noise addition can result in a performance enhancement.
. It is seen that for this case, second-order time correlated noise again
'f;‘ accomplishes improved filter tuning over first-order and white noise.
The improvement, though, is still not substantial enough to justify the
f;' added complexity of the Kalman filter design model. White input noise,
. as stated above, accomplishes the desired robustness enhancement without
.‘-".1
. adding states to the design model.
o
3
) Table 6-3
o
' R Comparison of Steady-State Standard Deviatioms
- of Aircraft States with Higher-Order Actuator
: :: Dynamics for a Continuous-Time System.
2 Q o o o
"'j L9 u e o q
Q -4 -3 -3
o o No noise 0 - 8.984x10 4.894x10 1.189x10
o White Noise | 1x10™° - | s.850x10™* |5.689x10™ |4.979x107
i 1st Order -4 -4 -3 -3
Shaping Filter - 1x10 9.232x10 5.813x10 5.092x10
o
™
i 2nd Order -4 -3 -3
AN Shaping Filter - 21 8.571x10 5.168x10 1.969x10
-'-
o
ho
oA
%
‘.f::.'
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6.2.2 Continuous-Time LQG Regulators at Off-Design Condition

-, ;T¢. Figure (6-8) shows the results of a performance analysis for the
unrobustified system with a Kalman filter at an off-design flight condi-

.é tion (T12,20,0.6) for the eight-state controller design model. As shown

in the figure, the system is unstable. The mean of 6 is diverging, and

the standard deviation is growing with time. 1In addition, the inputs

'é generated by the controller are growing with time beyond the actual limits
of the control surfaces ¢23 degrees for the horizontal tail and *20
degrees for the trailing-edge flap: Ref 27). This is demonstrated in the
mean plots of Figure (6-9).

Figures (6-10a) and (6-10b) show the system responses at the same off-

design flight condition, except now white noise of strength q2 = 1x10'“

(LS

has been injected into the filter's sytem model at the control entry
n points. The addition of this noise is sufficient to stabilize the system,
T

driving the aircraft state towards zero and the standard deviation of the

state to a finite value. Figures (6-10c,d,e,f) demonstrate the trend for

JEISL T Ty Py

a lower and higher value of q As noted before, stability is recovered with

a very low noise strength. Higher values change only transient character-
istics and the magnitude of the standard deviation. Figure (6-11)
demonstrates that the mean of the commanded controls are no longer exceed-
ing the physical limits of the control surfaces. However, the large

. initial changes in the command inputs do exceed the actuator rate limits
of the control surfaces because there is no weighting on input rates in

the cost function for an LQG regulator.

oS

4

For a time-correlated noise generated by a first-order shaping filter

with a maximum f{ntensity of 1x10-4, the results are similar to those of

Pl ¢
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