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result of this investigation using generalized inverses
of that kind of matrices encoqntered in those areas.

It would not have been possible without the assis-
tance and guidance of Dr. John Jones, Jr., whose imagina-
tion and fertile mind are the true source of this thesis.

This work was sponsored by the Aerospace Medical
Research Laboratory (AMRL), Wright-Patterson AFB, Ohio,

I would like to thank Dr. Dan Repperger of the AMRL
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review this report. I also would like to thank

Lt Col Edwards, whose notes and advice were a big help
to complete this report.

Mrs. Becky Brumlow, my typist, deserves my most
heartfelt thanks for taking this jumbled mass of equa-
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Abstract

<
Theory and computation techniques of the various
types of generalized inverses of matrices which have

polynomial elements x, y, 2..., etc., are presented,

A simple algorithm for computation of generalized in-

verses of a constant matrix is established, and then
k. applied to the case of matrices having polynomial
elements in several variables. Reduction cof a matrix

to its Smith form over the ring of polynomial elements

LA S Y

in several variables is presented. A simple algorithm
h for investigation of the system Ax = b in case of
constant and nonconstant rank of A is presented.
Application of generalized inverses to solve more
general matrix equations such as Lyapunov and Riccati

equations is studied,
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Introduction

) The problem of solving m linear equations’'in n
unknowns over the field of complex numbers can

be formulated as a matrix equation Ax = b , where x

is the column vector of ‘'unknowns'. If A is a non-
singular square matrix, then the linear matrix equation
has an immediate solution, given by x = a~lp. If,
however, A is a singular square matrix or in general
nonsquare matrix, then the classical inverse of A is not
defined. In this case it is possible to find a similar
representation of the solutions of the system Ax = b
using generalized inverses associated with the matrix.

In 1920, Moore 22 published a theory for the

generalized inverses in abstract form. In 1955,

Penrose published a theory for a generalized inverse

of any matrix with complex elements. He showed that

for any matrix A whose elements are complex numbers

! there exists a unique generalized inverse, called
Moore~Penrose inverse, A+ « This unique matrix A+

is used to find the minimum-norm solution to the least-
squares problem ||Ax-b|| = minimum. Penrose put four
conditions which must be satisfied by the generalized

+
inverse A .

TR IO ARy e

Since 1955, the concept of generalized inverse
.~ has been modified to include more general generalized

inverses which satisfy only some of Penroses's four
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conditions. These generalized inverses are not unique.

Y o

The most important yeneralized inverse, which is enough

to investigate the system Ax = b, is an A1 inverse which

satigfies the first Penrose condition, AAlA = A,

Chapter I of\this thesis contains the theory of

all types of generalized inverses. The theory of

generalized inverse which produces a special solution

for.the system Ax = b, will be studied., In Chapter II,

the computation techniques of the generalized inverses

will be established. A simple algorithm for computing

all types of generalized inverses will be introduced.

In Chapter III, the theory of generalized inverses of

i ; matrices with polynomial elements will be discussed.

Z i The conditions under which a matrix with polynomial
elements has a generalized inverse will be investigated.
The problem of finding a solution of the system Ax=b,
where A has polynomial elements in more than one
variable, will be studied. Chapter IV will contain
application of generalized inverse for solving more

! general matrix equations such as Lyapunov and Riccati
equation. -

Throughout this thesis capital letters denote

matrices, while lower case letters represent scalars.

- e
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I Theory of Generalized Inverses of a Matrix

Definition of Generalized Inverses

The main purpose of this chapter is to establish
the main concepts of generalized inverses of a matrix
with complex elements. Any men matrix A having real
or complex elements satisfies the following four axioms:

(I) AXA

A

(II) XAX

X

(IIT) (AX) 1is hermitian

(IV) XA 1is hermitian
where X 1is a unique (nem) matrix. This unusual fact
was proved hy Moore[ 22 in 1920 in abstract form and
established as shown above by R. Penrose[ 25 ]in 1955.

The introduction to this field of interest will be
given in special cases with respect to the matrices
which satisfy axiom I; axioms I, II; axioms I, II, III,
and finally, axioms I, II, IV. These more general
cases will be denoted by Al, Al,2' A1'2'3, A1'2'4,
respectively, which in general, are not unique for
given matrix A,

Below, is given a list of those types of generali-
zeq inverses. Unfortunately, there are a lot of
different notations for each type, but in this thesis

we will use the notation given above,

|
;
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Al-Inverses: every matrix possesses at least one
Al inverse, sometimes termed "generalized_invérse", A~
or g-inverse.
A -Inverse: Every matrix whose elments are
1,2,3,4
real or complex numbers possesses a unique A
1,2,3,4
inverse called "Moore Penrose inverse" and usually
denoted by at.
Al 2-Inverse: Every matrix possesses at least one
’
so-called weak generalized inverse, or reflexive
generalized inverse.
A1'2'3,Al'2'4-lnverse: Every matrix whose elements
are real or complex numbers possesses at least one Al 2.3
’ ’
and one Al 2.4 inverse. In the case of full row rank
’ [ .
(full column rank), there exists a right (left) inverse
which in this case will be an A1,2,3(A1,2,4) inverse.
In this chapter we will try to investigate the
theory of different kinds of generalized inverses.

Let c™'" denote the vector space of all men matrices

having complex numbers as elements.

Characterization of Al Inverse

Theorem (l1-1): Let A be an men matrix whose
elements are real or complex numbers (i.e., Acc™ My,
The matrix G of order nem is an Al generalized

inverse of A if and only if X = Gy is a solution for

consistent equation Ax = y,




Proof: First, assume that the equation Ax = y has

a solution. This implies the existance of a vector w

such that Aw = y . Substituting with AA1A=A we have
Aw=y AAl(AW)=Y A(AIY)=Y

The last equation implies that x=Aly is a solution of
Ax=y.
'; Second, suppose that Ax = y is consistent.
Suppose that there exists a solution X such that

x = Gy then,

A A(Gy) =y
g, |
. ‘1
1, AGAX = ¥y
1 AGA = A
G is A, inverse of matrix A.

Theorem (l-2): Let A be an men matrix whose

elements are real or complex. Then, the matrices A1A

and AAl are idempofénts with the same rank as A. Further,

rank A = trace AlA = trace AA1 .
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Proof: Suppose H = AlA and F = AA

1
2 _ - =
H = Aj(AAlA) = AlA = H
and also
FZ = (AA,A)A, = AA, = F
1 1 1l

Also, rank A > rank H > rank AH = rank A and

rank A > rank F > rank FA = rank A. These relationships
imply that rank A = rank H = rank F. Since H and F
are idempotent, the rank is given by the trace of each.

From the equation AAlA = Al it is clear that rank

A, > rank A.

Based on previous theorem we can define Al-inverse

men such that (AlA) is an

of AeC as a matrix A ecn-m

1
R(A) or, alternatively AAi is

idempotent and R(AlA)

idempotent and R(AAl) R(Ad).

Characterization of Al 2 Inverse
ri

e

Theorem (1-3): The necessary and sufficient con-
dition for an Al inverse to be Al 2 inverse of matrix
’

A{(men) is that rank of Al = rank of A.

Proof: Suppose that Al 2 is an (1,2} -inverse of
’

A , then




- .

AA. A = A rank (A) .. rank (A 5)
.- '.‘

rank (A < rank (a)

1,2)

Thus, Rank(A) = rank (A )
1,2

Conversely, suppose that A1 2 is an {l}-inverse
14

of A with R(A) = R(Al 2). This implies the following
e’

R(A) = R(A = R(A

1,2 1,28
In addition, Al 2A is idempotent using the previous
14
definition of {l}-inverse, A is {l}=-inverse of Al 24
14

This implies that AI,ZAAL,Z = A1,2 and this completes

the proof.

Theorem (l=4): Any Al 2-inverse of A can be
’

expressed as

Ay,2 = AAA

~

f~]
where Al and Al are (possibly different) Al—inverses

of A,

Proof: Tne proof will be given in detail in

Chapter II.
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Matrices of Full Rank

Theorem (l1=-5): A matrix AcC™? has a right inverse

AL if and only if rank (A) = m (full row rank). For

a full row rank matrix AeCm°n, the following statements

are equivalent:

a. Ar is a right inverse of A

b. Ar is an Al-inverse of A

¢c. A_ is an A -inverse of A

r 1,2,3
Proof: To prove that "a" implies "b" and "c",

suppose that A, is a right inverse of A, i.e.,

Premultiply:' previous relation by Ar and post-
multiply by A we get

A_AA_ = A and

r'r !
AArA = A , respectively.
Thus, A is an A

r 1,2,3
Ar is a (l}-inverse of A. Since rank A equals m , we

-inverse. Next, suppose that
can find two nonsingular matrices P and Q such that

PAQ = [Imld , or

a=pt 1) o ot




any {l}~-inverse can be written as follows:

where U is arbitrary.

Substituting in the first three axioms of generalized

inverses, we get

AAJA

-

7 [rle]em o [a]r e [zl e] o™

i

p~l [Imlo] = a

o ol Ede [

U

0 {Infe
U

= e o [

5

A

L]

1

B

Thus, "b" implies "a", and "c". It is clear also that
"c" implies "a", and "b",
Theorem (1-6): A matrix AcC™ '™ has a left inverse

(A() if and only if, rank (A) = n. For a full column
Men

, the following statements are

rank matrix AeC

equivalent:
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a. AQ is a left inverse of A
b. A is an A,-inverse of A.
C. Af is an Al'2'4-inverse.

Proof: Proof is similar to theorem (1-5).

Minimum Norm and Least-squares Solution of Ax-y

Theorem (1-7): Let the norm of x ¢ R™ be defined as

[ix]] = (x*x)%. Let the equation Ax=y be consistent.
let the minimum norm solution x be x = Gy. Then, G
is an A1'2'4 inverse of A. In this case, the minimum
norm solution of consistent equation Ax=y will be uni-
que, although minimum norm generalized inverse may
not be.

Proof: To illustrate the optimal property of

Al 2.4 as stated in the previous theorem, let us consider
[ 4

the following consistent system of equations

Ax = b

where

One can check that the following matrices are

A1,2' A1'2'4, Al'2'4-inverses, respectively.

10

sk gy Do




MRl A T - XY s 7 10

]

fs o g (32 -1 g 82 31 10
109 109 109 109 109

96 -33 246 =96 30

o o0 0 109 109 © 109 109 109

o o o il <75 36 tl -90 42 -3 .

109 109 169 109 109

7 1 52 _ 9
L2 1 4 159 169 109 Y 103 |

Each of the above matrices will give a solution for the

- system as follows:

- 2 -
5 -2 o] 1 [ -5
. x; = o o offs] = |o
o o ofls 0
, -2 1 0 3
- | | [ 3
c
32 -11 o] 1 -23
I - D S
i x, =155 |96 33 of|s| =135 |-69
-75 36 o] |s 105
| 7 1 ﬂ | 12
- - - =
g2 =31 1wl [1 -23
Xy = 2| 246 -96 30][s]= T%? -69 ,
109
-90 42 -3]|1}s 105
;’ L-52 -17 9 B led

Notice that both A ~inverses give the same solution.

1,2,4

-

11
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Theorem (1-8): Let G be a matrix such that Gy

is a least squares solution of the inconsistent equation
Ax = y for any yeRm . Then, G 1is an A1'2'3-inverse
; of A . A least squares solution x=Gy may not be unique,
A\ but minimum ||Ax-y|| is unique. If Gy is a least
squares solution, then the class of least squares solu-

tions is xq = Gy + (I - GA)Z, is arbitrary.

Proof: Note that the least squares solution if the
solution of the consistent system Ax = ; » Where y
is the projection of y onto the column space of A.
That means to find a solution to the system Ax = AGy
f where G 1is an Al-inverse substituting with general

solution, we get

Ax A(Gy + (I-G A)Z)

e .

AGy + AZ - AGAZ

AGy + AZ - AZ

=AGY=;.

Notice that there are infinitely many least square

solutions. Let us consider the following inconsistent

=

‘l1inear system:




—tllh -

L

- -

These

generalized inverses will give the following

least square solutions

All have the same ||ax - y|| = ~

%

e o

-

[

o= o~ o)

P e

3

0

= A~ o

[ o

e —s e o ey

Theorem (1-9):

nem such that Gy is the minimum-norn,

solution of Ax =y,

.

I~ o~ o

£

——— s rm ol

- F;-
S

%, ;g
S

% s

o o‘]
xz::!% L
o 0

- o~ |~
SO |

t

| AU |
LY

Let G be a matrix of order

Then, G

+
inverse Al,2,3,4 = A" of the matrix A.

13

least~-squares

is the generalized




The proof is direct application on theorems

Proof:

(1-7 and (1-8 . The previous example shows that the

last solution (corresponding to A -inverse) is the
1,2,3,4

minimum=-norm, least-squares solution.

14

- -y
.
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II Computation of Generalized Inverses

Introduction

The main purpose of this chapter is to establish
the techniques to be used in the more general cases of

computation of the various generalized inverses of

\

matrices.

First, the elements of matrices considered will be

Mmen

real or complex numhers. Let C denote the vector space

of all m.n matrices having real or complex numbers as

elements. Let I be the identity matrix; that is,

KeIr m-n€ Mmen

IreC . Let O Cc he the zero matrix, that is, all
elements equal zero. Capital letters will deonte matrices.

In the next section the ceneral representations of

*n

Ay and A, , are given., Reduction of a matrix AeC |
’

to its canonical form using elementary operations is used
to derive a general formula for computation of Ay and A1,2
generalized inverses.

In the following section, the techniques given above
will be modified. A simple computation technique for
will

computing Al, A and A

1,2 21,2,37 21,2,4 1,2,3,4
be given. This technique will be based on the previous
technique after suitable partitioning of the transformation
matrices.

Next, the basic technique given above will be applied

through simple examples.




The basic technique previously given will be applied
to investigate the linear system of equations Ax = b and
to find the general solution, if it exists. A comparison
between this new technique and the other techniques will
be given through simple examples.

In the next section, the technique for computing
at using factorization will be given,

After that, the basic technique given in the third
section will be applied for computing Al and a, of a

specified rank.

General Representation of Al and A1 2
A

———

In this technique, the Gausian elementary operations
(row and column) will be used to reduce any matrix
Agcm'n to its canonical form. In other words, for each

men

matrix AeC there exists two nonsinqular matrices

ReC™ ™ and cec™Psuch that

!}

Ll
|

2]

RaCcC (2-1)

Theorem (2~1)
Let AcC™ ™ with rank r. Let ReC™™ and cec™'® be

nonsingular such that

RAC= |Tr]|K (2-2)




.- mw“ -

then

is a {l,2}inverse of A.

Proof:

(2-3)

First, we prove that Al 2 satisfies the first axiom
[4

for generalized inverses as follows:

A

AR,

Moreover,

1,2

1,2

A

= (C

rI K1

i<t chie X 0 mrt
i | x] [r ] o] 5] x] 2
0[O0 0| o L0 0

T o] 1. |x] ot
0lo0 0 (o0

A ) ]

e Ktcet = a

10

-

satisfies second axiom, that is

0f gy (r7L| Iy ¢~y (c
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Theorem (2-2)

men

Let AcC with rank r. Let R and C be as previously

defined in (2-2). Then
A, =C r R (2-4)

where U and W are matrices of proper size. That is, UeCr(m-r)

and Wscjnfr)(m-r).

Proof: The proof is trivial by substituting (2-4) into

Axiom-1 of generalized inverse. That is:

- -
AA A= (R rig_K_ chc 1,]v R)(R™Y |I] X[ c™L
) AL G0
L _1 L 4
M e ] -
- rL Ik ] v] [1.] K] o2
IR O ENE
AL L]
- THKW | 1 - - -
= gl I | U+rW I ) K] =1 2 g1 I K] 1. a
0| o© K 0 ]0
. d

Theorem (2-3)

men

Let AecC™ and P, Q be nonsingular matrices such

that:

where r is the rank of A. Then
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X {m-r) Leln-r)Xr ~(n=r)X(m-r)
u:C , VzC , WeC

Proof: Al given in (2-6) satisfies the first axiom

as follows:

aa a= (7t Ie] O o7y (o [Ix] Vg (p~1 |I| Of o2y
0 0 W 0 0
= P-l rIr Ir’ 0 Q-l
1] 0 0 0
- -
[ ] -
= I 0 o7l o g
0 QJ

Remark: There may be infinitely many Al'

Theorem (2-4)

men m

Let AeC and let X belong to c™’

. then X is a
{1,2}~inverse of A if and only if X has the followina
form:

X =A A& (2-7)

~

where Al

{1} -inverses for A.

and Kl are two (not necessarily different)

Proof:

Sufficiency proof: if (2.7) holds, then X

satisfies the first and second axioms. That is
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2 AXA = A A1 AAlA = A Al A = A
and
XAX = (A1 AAl)A (AlAAl) = Al AAlA Al

Necessity proof: Let us supposa that X is
a {1,2} -inverse to A. X salisfies the second axiom.

* That is

X = ¥AX

using first axiom.

s sy e

=
1]

X(A X A)X (2-8)

X (AYA)X (AZA)X

where Y and 2 are two {1} =-inverses for matrix A. X

given in (2.8) can be reduced as follows:

>4
!

= XAY (AXA) ZAX

(XAY) A (2AX)

NAM

3 To complete the proof, it is sufficient to prove that N

! ‘ and M are two {1} -inverses for A as follows




ANA = A(XAY)A = (AXA)YA

and

AMA = A(ZAX)A = (AZA)XA

= AXA = A,

Theorem (2-5)

Let AC

x=0(Tel® | 2
7 1vo

14

b e N Le bk ety e . L

of A if and only if X has the following form:

where P,Q are two nonsingular matrices such that:

and V,U are arbitrary matrices.

Proof: First, we prove that X given in (2.9)

(1,2} -inverse as follows:

i1

21

MmN and let Xe¢™'™, then X is a {1,2}-inverse

(2-9)

(2-10)

is




s itk

.
axa = ("I Ot o™hH 0|V | py (27 Ee]° [07Y)
5170 v VU 510
<t 1] 0] [rfe] o2
5 1ol |10
= P-l Ir 0 Q-l = A
510
and
XAX

[}
o
-
|
<‘c
c
—
z
]
]
H
o +
[a]
ol O
d
0
]
'-J
™
U TR
al
<l o
(e
——d
lav)

Second, suppose that X is (1,2}-inverse, then, by using

theorem (2-4) X can be expressed as:

~ ~ -~ \‘
AL ARy = (0 [Ir UJP) @1 [ I[°] 07 (0 [Ir U}p)
o [

Q Ir 0 Ir u* P
(o) VW

: "
o {IefY ] P .
Vult

=<
]

That means that X has the form given in (2-9).
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b Lemma (2-1)

Let XeC™'™ and aec™ ™ and let X be

0 i) P (2-11)
then X is a {1,2}~inverse of A .,
Proof: Proof is evident by choosing U = 0 , and

V =0 in (2-9)

The Basic Technigue

in ' In this part, the basic algorithm used for computation

of generalized inverses will be established. Let cmn

denote the vector space of all men matrices having real

=

or complex elements. Let Ir be the identity matrix:
that is, IreCr'r. Let o™'™

men

e C be the zero matrix:;

s that is, all elements equal zero. Capital letters will
denote matrices.

Theorem (2-6): Let Aecm-n with rank r. Let

pec™ ™ ' 0ec™' ™ pe nonsinqular matrices such that
f - _ 0
PAQ = I = r . (2-12)
i 0 0

Consider the following partitioning for matrices

P and Q




i —a

{m=x)em r

where TeCE'™ ; MeC ; sect't , NeC

Then the following pair of matrices

are equivalent,

men

Proof: For any AeC there exists

L R X a4

(2-13)

n(n-r)

(2-14)

nonsingular

matrices P,Q as defined in (2-12). To show that the

matrices given in (2-1l4)are equivalent:

Theorem (2-7): Let AeC™ ", let P,Q,

matrices defined as in (2-12) and (2-13),

is a {(1,2}-inverse of A.

s, T,M,N be

then Al,z = (ST)

[ e 5

T odpatl. < - s
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Proof: Applying Lemma (2-1)

1,2 ) 5

[si8) Zel 20 (] -
1] 0 M

W

' [é|wl Eﬂ = ST

Theorem (2=8): Let the matrices A,?P,0,S,T,M,N

be matrices defined as in theorem (2-7). Moreover, let

™% = o, (2-15)

then

. S L e e ae

Al'2'3 = ST

Proof: First, let X = ST and let TMt = 0, It is
obvious that X satisfies the first and second axioms.
To complete the proof it is sufficient to verify the

third axiom. That 1is

@~ I O o7h (s (2-16)
o 10

&

1}
bt
L2}

o ls)T




———— .

Using the fact that 0~ lQ = I_, then

r—
o
"y
o

’—l
z
n

AX

i
e
La ]
o
=3

But

r

t t
T £, Lt T ™

PP L rt M ] = l——-—f»———
i} [M] | mrt | amt

Substituting with (2-15) into (2=19)

26

(2-17)

(2-18)

(2-19)

= "'1‘- , ' - a - " .‘-.




e

m - N ke — e we

- multiplying both sides by

] o
0 I(MMt) -1

we have .

p(pt [‘TTt) - , 0

o '(MMt) -l]) = Im

i.e.,

t, -1
ol o pt [ (oTh) , 0

Substituting with P! into (2-18) we have

Y il B N | )
[ t, -1 0

o | om

- pt [(T’rt)"ll 0 ] 1] o
o lomH"?t 0| o

t, -1

o |o

which is symmetric.
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Theorem (2-9): Let the matrices A,P,Q,S,T,M,N

be matrices defined as in theorem (2-6). Moreover, let
N™S =0 ; . - (2-21)
then A = ST.

Proof: The proof is similar to theorem (2-8).

-1 ]I 0 -1

3 s [IrIO] Irl o | 0o}, where TPp7! = [Irl 0]
. 0 0
0 [;_;_] [IL;I o] ;r’ g_ o™t

>
i

—-

[}
| t -
i ofo = {8 [s N] - Tsts|stn] = [stsl o
I NT T T t
! LN s | ntn o | vty
i.e.,
ool = [ 7t o ot
0 |(NtN)"l

Subgtituting into (2-21) we have

: Ay , A=0]1r] 0 [‘Sts’ ll 0 (2-23)
. 2, S0 [wmt
B -0 sty | o] ot

0 l oJ
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nique will be generalized to the cases where the elements

TR s LA woeaee SN DN

which is symmetric.

Lemma (2-1): Let the matrices A,P,Q,S,T,M,N be

matrices as in theorem (2-7). Moreover, let

r Mt =0
and

Nt s =0 hold ,
then

t _ _

A" =12 3,3,4=°5T

Proof: Referring to theorems (2-8) and (2-9), it

is clear that A+ satisfies the four axioms.

Application of the Basic Technique

The following examples will illustrate the computa-

tion techniques given in the .second section. This tech-

of the matrix are polynomials in several parameters.

Example 1. Given the following matrix

1 1 1
A= . (2-24)
1 1 1
It is required to compute Al,Al 2,Al 2,37 Al 2,3,4
[4 [ A [ A 4

(A+). The first step in the process is to form the

following array




BRI O ST Y PNy oy

I 0 (2-25)

Elementary row operations on A will affect Im
only and elementary column operations on A will affect
the columns of In only. A obviously does not have a
classical inverse, since it is not square. The second
i? step is to perform row elementary operations on A to get

the following array

o 1 1 1 |l1 o]
X 0 0 0 Jl-11
3 (2-26)
“ 1 0 ollo o
] o 1 0 {lo o
0 0 1 %0 o

Next step is to perform elementary operations on

the columns of A to get the following array

110 ol o] [z, of
r p
0lo o fl-11|a]o__o0
ol1 o}]jo o 0 o‘]
b e
! 0/]0 1 0 0_
L




A | Ie] 0 |7]
’ “lo |o M (2-28)
S N 0

This process is not unique, however, one should check

the following for possible errors

1 0 1 1 1 1 -1 -1 110 O
PAQ = = —-
-1 1 1 1 1 0 1 0 cilo0o O

3 f Al 5 =ST= (1 [1 o] = |1 o
| 0 0 o
4
i 0 0 0
!

We can check the answer to see that

and

Al,Z A A = A

1,2 1,2

Next, to get Al 2.3 it is required to further modiry
1%
. 3 (2-27) array by making the rows of T orthogonal to rows

of M. This can be accomplished by adding multiples of

; < » second row of A to the first row. 1In our ecxample we will

L I S,
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L e Am—

add (%) times the second row to the first one and this

will result

L
Then
- - 1 b3 -
Ay g,3=5T=1 [5 s] =[x ¥
0 0 0
0 0 o

To check the last result

AA 1 1 1] % %] (%%

1,2,3 = =
1 1 1 0 o ¥ %
which is symmetric.
Next, when the first column of the array is made

to be orthogonal to the second and third one by adding

1/3 times second column and 1/3 times third colum to the

first, we have the following array




BB TTE A N A SR

110 o0 Lok
0olo o -11
(2-29)
1
1
T |+10 0 0
1]
5101 0 0

L -
Now
A) 534 at = [1/3 [% !s_] = [1/6 1/s
1/3 1/6 1/6
1/3 1/6 1/6

Example 2: Let

After performing column and row elementary operations,

the array will be as follows

1 o0 offo 14 o] [iofoo 1
o 1o ofly % o |ofool
o ofo ofl-2 2 1f loefoojlm
o 1{12 -3 -

o ofo 1 0
1 222 -4 0 s| n

|0 -2l-23 4 ] L §
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Making the rows of T orthogonal to that

adding multiple of third row to rows of T we

S5 =17
36 18
-31 +16

18 18

2 1

Finally, we can make the column of S to be orthogonal

to that N (i.e., StN=0).Using multiples of columns of N,

we get the following array

O}

W

—

5 =1 ]

6 18
31 16
18

18

'
'H

2

mn

Now, we can

inverses,

calculate all kinds of generalized

34

32

"
[

2]

o
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To f£ind A -inverse or Al 2.4 inverse using the
’ ’

1,2,3

technique given in theorem (2-8) and (2-9), we have to

establish a technique to find T or S such that (2-15)

or (2-21) holds. That means to find Al 2 3-inverse we
’ ’

V. 4
have to find T such that
n
T Mt =0 (2-30)

The direct way to find T is to add a multiple of
rows of M matrix such that (2-30) holds because this will
not affect the canonical form given in (2-14). 1In matrix

form we can write T as

~
T=T+ KM

where K is chosen such that (2-30) holds, i.e.,

. e

(T + K M) M¥ =0 .

This implies that

K = -tmt(mmb) "L

Now the following theorem is clear.

m-n

Theorem (2-10): Let A€C , M,T,5,N be defined as

in (2=)4). Then the following holds

AR T 4




a) Al,2 =S T
3 oo N e ot gty =1
b) A1'2’3 = S T = S(T=-T2"(MM) ™M)
-2 - (c - toy =1t
c) Al'2'4 =S T = (S N(N'N) N S)T
Ay N
d A) 5,3,4=ST
Proof:

It is sufficient to prove only part C. From theorem(2-9)

it is sufficient to calculate S such that

§Tn = 0 (2-31)

holds. This can he done by adding multiples of columns

of N to that of §. That is,

3]

+ NK (2-32)

nR
0
92]

Substituting (2-31) we have

- AT e i o s

s + NK)" N =0
(st + k®tN) = 0

kY (vt = -stn

But since (NtN) is nonsingular matrix, we have

kKt = stnantm) -

; K = -(N*'N) "Ints

1

Substituting into (2-32) we have

36
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[

. S + NK
] = s-N (8°N)~1 Nts
that is Al,2,4 will be
A =87
1,2,3 *
= (s - N(NTN) TInts) T
= sT - N(N*N) “InEsT

(s - Nt “Ints) T, :

To apply this theorem let us consider the example

( )« T can be calculated as follows

T=T— (M 85" In -l
=1 o] -1 0 [‘ﬂ([—l 1] L.i;} [-1 1]
=1 o) + [1] [2]7" [ 1] |

i
e |
-
o

| -
+

4 4] - [l

In the same way § can be calculated as follows

-1 Nt

we
"

s - N(N'N) s
P -y
Nt = |11 0 fy-1 -1f_ g2 1
-1 0 1 1 0 1 ZJ
. 0 1

———




- - - .

* ————

W= W W

L

To apply that to another example,

example {2

(vt Tt

(vewy 1L

2 1]

[
o
W

~

) to calculate §,

1 42

2(969)

+216

38

12 0 22 -23] (12 -3
-3 1 -4 4 0 1

22 -4

| ~23 4J

+21g
1157

"
O o
| S —

let us consider

-

_ {'1157 -216

=216 42

‘
¢

I
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1
In this case the general solution is

~ [o 1"! T12 -3 Taz 2167 T12 0 22 -23" oL
"Tlo o] lo 1 1 231 a4 o o]
1 27969) | ;
1 2 22 -4 L216 115_§ 12
0 -2 ~23 4_1 _o-zJ
[-174 4797 ]
= T3 | -e2 -6388
557 -626
| 442 1904 _
' The Gencral Solution of the System
g Ax = b: Let AeC™™ and bec™ . Let P,Q,M,X,T,S
. be defined as in Section 2.2, It is proved in Appendix A
s theorem(A-1) that there exists a solution for the system
" : Ax = b if and only if
j
! AA, b=Db.,

X =Ab+ (I -AAZ,

1
where 2 is arbitrary. Using the special generalized in-
verse given in previous section,. i.e. A1=ST , we can check
the consistency condition of the system Ax=b and moreover,
we can find the general solution in an easier way. This

is clear from the following theorem.

‘ 39
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Theorem (?-11): The equation Az=b for Ang’

and bng 1 , has a solution Xecn.l

if and only if

Mb = 0 (2-33)
In this case the gencral solution is given by
X = (ST)b + NZ (2-34)

where the matrix 2 is arbitrary and the matrices

M,s,T,N are defined as in Section (2-2).
* men

Proof: For any A ¢ C there exists nonsingular

matrices P and Q such that the following holds

PAQ = Ir 0]
; 0 0o

Ax = b has a solution x iff

s R R S

PAX = Pb has a solution x iff
PA00"lx = Pb has a solution x iff

(PAQ)Yy = Pb has a solution y; x=Qy iff

" x=0y=[S|N]{H]=SW+NZ iff

40
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wl _ [tb] . _ .
{0] = [Mb] ; X = SW+NZ iff

Mb=0 ; X = STb + N2 where 2 is .an arbitrary matrix of
appropriate size.

Remark: The solution X = (ST)b for the system
Ax = b is a particular solution of Ax = b, and NZ is the
general solution of the homogenious equation Ax=0.

Example ( 3 ): Consider the system Ax = b with

i 3 2}

N e

6 9 5|+ b

!
w w L

To £ind the general solution using both methods, we must
calculate the generalized inverse first,
Using the elementary operation S, we can write the

following array:

r1000|L100

0 110 ol =21 0 1201"
0 oo off 5 =21 0 M
1 =2|3 -3 smo4
0 0{0 1

0
6 0|1 o
0 1}-30 i




To check the first step

1 o o] {1 3 3 2. "1 -2 3 -%
- PAQ = | !
-2 1 of| {2 6 9 5 0 0 0 o
i s -2 1] [-1 -2 3 of o 1 -3 0 _’ |
3 !
o — - - o~y
=1 8 o] 1t o o o 1 00 o0
4 =2 1 o}l {2 1 o o =!0o 1 0 o
4 5 -2 1] |-1 2 o o 0 0 0 o
1 -2 i1 o0 o0 5 -2 o0
- A, . = ST = b -
i 1'2 N ' : - ! 1
0 0, (-2 1 of 0 o o0
0 0 {00 0
0 1 sz 1 o
- o

To check the consistency condition

C e S . ot e,

M1 3 3 2 l's -2 o']’-l]
1
AA.b= 2 6 9 5 0 o0 ol I'si
1 ;a !
-1 -3 3 0 0 o 0 5]
=2 0t
1 0 o by 1
= o 1 o0 s{ =1|5
-5 2 0 5 SJ

Thus, the system is consistent and has the following

t general solution:




e A

cary

i &34

Ll S nandes i

X=Alb+(I —AlA)Z
s-zo'] 1] 110020 5 -2(?!1 332‘5
={0o0 o0 5+(0100“..o o ol |2 695)2
00 o0f (5 0010 0 0 O L1-33o
, =21 0 0001 [-2 1 0] .
5] [0 -3 3 07 o] f-57 =37 ;1’3‘1
i : N ; :
=310 . + {01 4] 0" §v~;=o’+f1. v+fo§w
ig,f‘f | i
0 00 10 wl 10 0 Il
| ‘ ‘ g
3 ] 00 -3 of | 31 fnJ -3
- - L o4

—— ———.

Using the second method, we can first check the consistency

condition as follows:

1
Mb= 5 -2 1 = .
[ ],
)
The general solution is
X = (ST)b + N2
[s -2 o] [1 3 =37 [v
= 1o o o 5/ + |0 1 W
F 0 0 0 5 l 0
; -2 1 ¢ -3 0]
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It is easy to see from previous calculation that
the second method is much simpler.
Remark: The columns of M matrix are the basis for

the null space of A.

Another Technique for Computation of A+

me*n

Theorem (2-12): L et AeC and have rank k < min

({m,n). Let A = BC , where rank of B = rank of C = k ;

Bec™ ™ and cec™™. Then (8%B)”!, and (c ¢H7?
exist and
_ o+ _ t t, -l ,_+_.~1 _t _
A1’2’3'4 =2aA =C (CC") (B B) B (2-35)
Proof: Substituting in the four axioms by

(2-35), we have

t

Bic chHwceh ! (8

B) "1 (atB) "1 (r®m)C

2
>

Dttt - - -




g S Y J ST

afant = ¢l eeH T ha s T sty (¢ ¢t eet Tt mte) Bt

"

cBieety L(ate) “int = At

and

sc ct(cct)~t(stm) "1nt

AA

B(BtB)-lBt is symmetric

and finally

ctect) " Lsteylete ¢

>
w
i}

ctieety e

. adami emanme o

‘ Theorem (2-13): Let AcCT™ ", let P, O be nonsingular

matrices such that

A where B =P rJ

9
i
r—
-

la]

2L
S
L]

«»

- . I T

bt shaadiisitde
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Procf:

BC

p~1 gg] [Irl 0] o~t

I_ 0
-1 r -1 _
P [; o] Q" =aA

Generalized Inverses of a Specified Rank

The purpose of this section is to compute Al and
A2 of a specified rank. In chapter I we proved that
the rank of A, must be greater than or equal to the

rank of the matrix, i.e.,

r £ R(Al) < min(m,n).
It is clear that rank of Aé will be less than or equal
rank of A.
Now let AecC™ ™. Let P and Q be two nonsingular
matrices such that
f1_]o

PAQ =| —= .
)

Let P and O be partitioned as follows

[p(®)
p=l | . 0= [s®]n®)] (2-36)

46
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where T e ck*m, R r=kim k) ek g

14
u(K) o cnin-k) where 0 < k £ min(m,n) and the following
theorem uses the partitioning given in (2-36) to compute

A, and A, of specified rank k.

1

Theorem (2-13): Let AsCm'n. Let P and QO be non-

singular matrices such that

I_10
PAQ = [r .
o o

(k) M(k) ’ S(k) , and N(k) be given as in

Let T, ,.
(k) (k) denote A, and A, of

( ). Let AL and A2 1 2

specified rank k, then

Afk) = S(k) T(k) r< k £ min(m,n)
Aék) = (k) T(k) ug kegr

= () plx) _
A1,2 =8 T = ST

where S and T are given as in Section (2-3).

Proof: The proof will be easy if we notice that

I
(k) (k) _ [ x| o _

To complete the proof, substitute (2-37) into the first

and second conditions of generalized inverse as follows:

47
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EERPRTY 3 i“"j* . TR I e

-1
- —l - - - - — - Q
Al 4 -l |Irp CroTro [Tk O et gty O
1 0o lo [0 0, (o 0
et frjodot - A for ki
_ 0 oJ
(1,1 0 1
P~ Ik } 0~ for k <r

This implies that
A(k). =5

1

Substituting in the second condition we have
— — -l ‘ R
A% aal¥). 2o L9 p p-1 Ir’o‘lo o[rk[o P
o | o ol ol lo o

0 Fik d]P = A{k) for k < r

v
2]

0 Flrf o] P for k >
L0 0
This implies that

(k)
SORRNUR A k

A
[a ]

48
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Dxample (4 )

Given

L p 0] 0 J1 0 0

0; 1 o0 2/3 -1/6 0 -

i

ol oo -1 -1/2 1
1 -2;-5/3
o1 1/3

1]
0!051 -

From this array we can write

g(0)

>
(=]

g(1) ,

2)

49
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i -

(0)
T - o
1 o 0]
(2 _
| 2/3 -1/6 0]

and finally

i 1 0 0

i

] 3 = l2/3 -176 o0 *
-1 -1/2 1

Now the generalized inverses can be computed as follows:

al® =0, the trivial solution for XAx=x.

(1) = =
Az =11 [} 0 d] =

o
(o] o -
(=] o o
o (=] o
-
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I1I Matrices Over a Polynomial Ring

in Several Variables

Introduction

The purpose of this chapter is to establish an algorithm
to compute the generalized inverses for the matrices whose
elements belong to a polynomial ring in several variables
having coefficients which are complex numbers. 1In the
previous chapter, we established many algorithms to com~
pute the generalized inverses for constant matrices using

reduction of the matrix to the following canonical form:

(3-1)
040

In the case of matrices with polynomial elements in
several variables, it is not true that all matrices can be
reduced to the form (3-1). To study the existence of
generalized inverses of those matrices, we have to reduce
the matrix to another simple form called the Smith Normal
form. Thus, the study of the existence of the Smith form
for matrices over the polynomial ring will be a necessary
step to characterize those matrices which admit generalized
inverses and to compute them in case of their existence.

In the next section, we will study the existence of
the Smith form for matrices with polynomial elements.

Conditions under which a matrix over a polynomial ring is

52
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equivalent to its Smith form will be investigated. A

systematic algorithm to reduce a matrix to its Smith form
will be established.

In the third section, the necessary and sufficient
conditions for a matrix over polynomial ring to have a cer-
tain type of generalized inverse will be given. The com-
putation of generalized inverses for matrices with con-
stant rank size having Smith form as in (3-1), will be
established.

In the fourth section, the case of variable rank
matrices will be investigated. The problem of finding
solutions of the system Ax = b in the case of_variable rank
matrices will be discussed, since it was not treated before
in any preceeding work., .

Throughout this chapter, C will denote the field of
complex numbers. Let R = c[el,ez,...,en] be the ring
of polynomials in the variables 31.62,...,en with co-
efficients belonging to C. Let c™'®(g) be the vector
space of all matrices of order m+.n and their elements

belong to R.

Reduction to Smith Form

Consider any msn matrix A(9)e cm;n(e)‘ The Smith

form S(8)e C™M(g) of the matrix A(g) is defined to be




.-J'f\'- - oo cemy g F e, Gl

S(g) = [diag [ei(e)]‘ O] ; m<n ?
s(e) = [aiag [e;(0)]] ; men
s(e) = [ﬁiag b[ei(ef ; m>n %

o -

where ei(e) are the invarient polynomials over R of A(6)

given by

. di(e)
» ei(e) = a;:ITET (i-1,2,...,min(m,n))

A

where do(e)é 1l and di(e) is the greatest common divisor

h

(g.c.d.) of all the it order minors of A(9).

Example( 3-)

o Mo oymmt e e o

Given
1 A-1 A+2
AN = A A2 A2+2)
2 2

A=2 AT=32+2 AT+A=3

then, one can compute the following

g 841,
- M =1 ,
: a0 =1 ,
B d; () = A(A41),

and the invariant factors of A()) are as follows:




e SR T v

N

el(k) 1 =1,
1 _

e2(>\) —I_ ll

and

e () = "—“—*lil = A(A+1).

Thus the Smith form S(A) associated with A(1) 1is

S(\) = 0 1 0
0 0 A(x+1)J

Example (3-2)

i
; For
% -] 0 1
| A(s,z) = 0 sz+l 1
14
0 0 4

dl(s,z) = dz(s,z) =1, d3(s,z) = gz(sz+l).

Thus the Smith form associated with aA(s,z) is

1 0 0
d S(s,z) = 0 1l (1]

0 0 8z (sz+l)




48

g

Example (3-3)

Given
-
s+l
A(s,z) = s
o
_s+l

then, one can compute

dz(s,z) =1, d3(s,z)

e € g G B Btk iy

1+z (s+l) 0 (s+l)z 22 ]
sz+l =-(s+l) (s+2) sz 22

s(s+l) (s+l1) s(s+l) sz2(s+1)

14z (s+1) - (s+1) (s+2) (s+l)z 22 ]
the following dl(s,z) =

= L(s+1), and d,(s,z) = s(s+1) 2 (s+z) .

Thus, the diagonal elements are

el(s,z) = e,(s+z) = 1,
e3 (S,Z) = _(i—ﬂ'L = (S+l) ’
and
e (s z)= s—(LlLZE:’.—z)- = S(S+1) (s+z)
4 (s+1) :

Finally, the

S(s,z) = 0

O

Smith form S(s,z) of A(s,z)

is

0 0 0 Q
1 0 0 Or .
0 (s+1) 0 0
0 0 S(s+l) (s+2) Q
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Equivalence of a Matrix over R to Its Smith Form

A matrix A(9) ¢ c™™(9) is said to be unimodular
if |A(6)| is nonzero complex number. It is clear that
any unimodular A(e)ec“’“(e; has inverse A-l(e) which be-
longs to c™M(e). Let A(8) and B(8) be matrices which
belong to C™ ™(g), then A(8) and B(8) are said to be
equivalent. over R if and only if there exists two
unimodular matrices P(8)e C™™(9) and o6) e c™*®(6) such

that:
P(6) A(8) Q(8) = B(9).

It is easy to show that equivalent matrices over
R = c[el,ez,...,eJ have the same Smith form over R. The
converse of this fact is true in the case of matrices

over the field R in one variable since A(8)¢ Cm'n(e) in

;
4
,
!
)
'
1
E)
M
1

one variable is always equivalent to its Smith form.
Although it is true that two matrices A(8), B(8)

are equivalent over S = R[z] (ring of polynomial in

variable) if and only if they have the same Smith form,

this may not be true for the case of matrices over

R =c{91,92,...9rl (polynomials of more than one variable).

The following two examples illustrate this fact over the

field R = C[s,z] (see Frost and Storey ).
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Example (3-4)

The following matrices

s+2 0 2 s+z 0 1l
A(s,z) = 0 S+2 0 , B(s,z) = 0 s+z 0
0 0 [ 0 0 s

have the same Smith form S(s,2z)
1 0 0 I
S(s,z) =}0 s+2 0

0 0 s(s+z)

but there is no transformation of equivalence over
R=C [s,z] such that (3.2) holds. Thus, A(s,z) and
B(s,z) are not equivalent. This is clear since they

have different rank at s=2=0.

Example (3-5):

The following matrices are not equivalent although

they have the same Smith form:

S 0 1 S 0 0
A(s,z) = 0 sz+l I , B(s,z) = 0 sz+l 1
0 0 z 0 0 2

58




Mt X T .ﬂk‘g«. i

Their Smith form is

1 0 0
S{(s,z) =1{0 1 0
0 0 SZ(sz+l)

Frost and Storey [8] ’ [9] investigated the
sufficient and necessary conditions for a matrix
A(9) ecmwn(e) in two variables to be equivalent to its
Smith form., These conditions involve a new concept called

. zeros of a matrix over R.

Zeros of a Matrix over R

o

For a matrix over R[s] it is certainly the case
that if the determinantal divisor di(s) is removed from

all the ith-order minors, then the remaining polynomials

o S, s e B

cannot be simultanecusly zero fur any value of S. This
result does not extend for matrices over R[g,% .

It is quite possible that on removal of the deter-

h

minantal divsor di(s,z)_from all the it -order minors of

a matrix A(s,z) over R [s,z] , the remaining polynomials
may all be simultaneously zero for one or more values
Of the pair (s,z). Such value of (s,z) will be called

an 1th

~order zero of A(s,z).

-
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Example (3.6):

Let us consider the same matrices given in Example
(3.4). A(s,z) has zeros of first and second order at

{0,0) while B(s,z) has no zero of any order.

Example (3.7):

Let us consider the same matrices given in (3.5).
A(s,z) has no zero of any order while B(s,z) has zero
of second order at (0,0).

It is important to note that the Smith form S(s,z)

has no zero of any order. To prove that, it is quite

h

sufficient to note that the determinant of it principal

minor is di(s,z) as follows:

th

determinant of i principal minor

dl(s,z)- dz(s,z)'

= e,(s,2) e,(s,2),...0;(8,2) =
l 14 2 ’ i ’ l dl(s,z)

LI

The Conditions for Equivalence Over Rls,J :

It is important to note that a transformation of
equivalgnce over R[s,z] preserves the zeros of a matrix
over R[s,4 . From this remark it is clear that matrices
over R[s,z] having the same Smith form over R[s,4

but not having the same zeroes are not equivalent over
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R[s,4 . Applying this fact to matrices A(s,z) and B(s,z)
given in example (3.4), it is clear that both matrices
A(s,2z) and B(s,z) do not have the same zeros, Since
Smith form over R[s!z] has no zeros, it is clear that
a matrix over R[s,z] which has zeros cannot be equiva-
lent to its Smith form over R[s,%' .

As an example, note that the following matrices

s+2 0 z S 0 0
A(s,z) = 0 S+2 4] , Bl(s,z) = 0 sz+l 1
0 0 <] 0 0 z

are not equivalent to their Smith form because A(s,z) has
zero of order 1 and 2 at (0,0); and B(s,z) has a zero of
second order at (0,0).

An example of matrices over R [s,z] which are

equivalent to their Smith form is as follows:

s+2 0 1l ] 0 1
A(s,z) = O s+2 0 ., B(s,2) = {0 sz+1 1
0 0 s 0 0 2

Note that both matrices have no zeros of any order.
Lee and éak[ 19 ] proveé that lack of zeros of

any order is not a sufficient condition for the equiva-

lence of A(s,2) over R[s,z] to its Smith form. For

example the matrix
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f Mz =-s-1
- A(s,z) =
hrsz z
has Smith form
1 0
S(s,z) = ’

0 zz-sz(s+l)

but A(s,z) is not equivalent to S(s,z) although A(s,z)

has no zeroes of any order.

Construction of Transformations of Equivalence

In the previous part we have investigated the

equivalence of a matrix to its Smith form over the ring

‘ of polynomials in several variables. The question now
is how to construct transformation of the form (3,2) which

MmN 9) to its Smith form S(8).

reduces the matrix A(8)¢ C
That is, to find unimodular matrices P(8) and Q(8) such

that

P(6) A(8) Q(8) = s(0) (3=3)

»
As we did in Chapter II, P(6) and Q(6) can be con-
structed using elementary row and column operations, if one

, modifies the standard definitions of elementary operations

to include:
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1) Multiplying of a row (column) by an arbitrary

nonzero scalar constant,

2) adding to a row (column) the elements of another
row (column) multiplied by an arbitrary polynomial which
belongs to the ring R[el,.ez.....,en] , and

3) interchanging of two rows (columns).

The construction of matrices P(8) and Q(8) is, in
general, a difficult step. Frost and Storey
suggested a systematic procedure to reduce matrix A(s,z)
over the ring R F,%} to its equivalent Smith form using
elementary transformations. The first step in this pro-
cedure is to bring the matrix A(s,z) via a transforma=-

tion of equivalence over R[s,z] to the form
el(s,z) R (s,2)

where el(s,z) is the first invariant polynomial of
A(s,z), and A" (s,z) has the form
1 0

o b - .

0 Al(s,z)
It follows that A(s,z) is equivalent over R[s,z] to
a matrix of the form

el(s,z) 0
0 el(s,z)Al(s,z)
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By repeating this procedure for the matrix el(s,z)Al(s,z),
we can find a transformation which reduces el(S,Z)Al(s,Z)

to the form
ez(slz) A'Y(s,z) ,
where A" (s,z) has the form
1 0
A" (s,2) = .

0 AZ(S'Z)

That means A(s,z) is equivalent over R[s,z] to

el(s,z) 0 0 ] .
0 ez(s,z) 0
0 0 ez(s,z)Az(s,zJ

This procedure can be successfully repeated until
A(s,z) has been brought to its Smith form under condi-
tion A(s,t) 1is equivalent to its Smith form. This

procedure will be explained in the next example.

Example (3-8):

Given
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A(s,z) =

one can compute

el(slz) =1

[;+l 1l+z(s+1)

S sz+l

0 s(s+1l)

i s+l 1l+z(s+l)

A(s,z) is brought using

and

o o o o

to the form

where

-~

-1 0
l+s 0
0 1
0 0

-Z -(s+l) (s+2)

o O O M

Al(s,z)

o © = o

0 (a+l)z 22

-(s+l) (s+2) sz 22
S+1 s(s+1) szz(s+l)

2

=-(s+l) (s+2) (s+l)z 2

[
~N
o

© » O o
O o o

-
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Al(s,z)

Now ez(s,z) =

Again, Al(s,
1
0

and

10
N
]
f
o o o Ll

to the form

where

1 =(s+1)2(s+2) 0
= |s(s+l) s+1 s (s+l)
0 =-(s+l) (s+2) 1]

2) is brought using
0 0
(s+1) 1 0
0 1j

1

(s+l)2(s+z) 0 -z2
1 0 0
0 1l 0

0 0 lJ

0
1 Az(s,z)
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a -(s+l) »(1+s(s+l)2(s+z)) s(s+l) 0

1 Az(s,z) =
- (s+l1) (s+2) 0 0
Then, using
1 s(s+1)°2
S P3 = ’
3 , US+Z) l+s(s+l)2(s+2)
L and
l. %
! 1 -s 0
, Q3 = 0 1 0
f 0 0 1

A2 is brought to the form

s+l 0 0
0 s(s+z)(s+l) O

Finally, A(s,z) is reduced to the Smith form
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L e e ok e

>

vary

-

(1 0 0 0 0
0 1 0 0 0
0 0 s+l 0 0

K 0 0 s(s+l)(s+z) O,

Using

I 0 1 (o}
P(s,z) = |-2 ] P,
0 P3 (0] PZJ
and
I1 o} 1 o}
0(s,z) = 0
’ o |9, 0 0, 1

Generalized Inverses of Polvnomial Matrices of Constant Rank

The main purpose of this section is to establish an
algorithm to compute different generalized inverses of a
given matrix A(8) & €™(8). Throughout this section,
it is assumed that a matrix A(9) is equivalent to its

Smith form; i.e., to the following form:

I (o]
x ’ (3-4)

o |a(e)
where Q(6) is a diagonal matrix which belongs to
c(m=r) (n=X) (g, = phat is, there exist two unimodular

matrices P(8), Q(8) such that
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The next theorem establishes the necessary and sufficient

men

conditions for a matrix A(8)e C (8) to have generalized

inverses Al,2(e) ’ Al'2’3(6) seeeqs €tC,

Theorem (3.1): Sontag [27]

Let A(9) ecm’“(e), then A(68) has Al 2 inverse
[
which belongs to c"*™(8) if and only if A(9) has a

constant rank r < min(m,n).

Proof: Suppose that A(8) has constant rank r,
then A(8) can be reduced to the form (3-1) using ele-

mentary transformation as follows:

P(8) A(8) 0(8) = |5 (3-8

o

where P(6) and 0(0) are unimodular matrices, let

X = 0(8) [Ir 0] P(6)
o]0

It is clear that X 1s an Al 2(e) inverse of A(8).
’
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Remark
By proper partitioning of the matrices P(6) and Q(98)
given in (3-6) in the same way as in the case of constant

matrices, i.e.,

T(9)
P(e) = M(0) ; (8) = [s(e)IN(eﬂ
then,

A) ,(8) = 5(8) T(6)

Remark

m.on(e)

In the case of full raw rank matrix A(8)e C ’

i.e., rank of A(8) =m

AL o(8) =2 5 5(0)

Remark

In the case of full column rank matrix A(6)e Cm’n(e),

i.e., rank of A(8) =n

Ay 2(8) = A) 5 (0)
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Theorem (3-2):

Let A(6) be a polynomial matrix which belongs to
Amxn(e). Let P(6) and Q(6) be unimodular matrices such

that

Ir 0 €

P(8) A(8) 0(8) = |5 —feras

where Q(9) ¢ c(m-rr(n-r)(e)’ then there exists A,(8)

with rank k < r in the following form

A,(8) = 0(8) [Ik °} P(8). (3-7)
19) 8]

By proper partitioning of P(8), 0(68) as follows

— |T(8 _
P(e) = [M(e) , A(8) = [s(e) IN(G)] (3-8)
where T(8) ¢ c¥*™(e) , M(8) ¢ c™mk) Mgy |
s(@) ¢ c™'K(9) , and N(o) ¢ cP"(P7K)
Az(e) can be written as
A,(8) =S(8) T(8) (3-9)

71




e s

Proof:

1 [ o L [r]o 19r®
By0) A(8) 2y(8) = 0(9) |5t P(e) P7l(e) |gH—s
Ik o)
() |15~ Tl P(8)
-
I 0 I o I 0
ol [r x]°]
r‘_
2(8)
= 0(e) [Ik °] P(8) = A,(e)
(0] (o)

This proves the first part; to prove the second part,

substitute (3-8 into the relation (3-7 as follows

A, (8) .

T, {0 T
(9) N(e)] X ['r = [s(e) o] [
% | G lo] M(8) 9 |@

s()T(8) .

0(6) [Ik Ol p(e)
(o}

In the following part we will demonstrate the exis-
tence of different types of generalized inverses over

R=C [91'92""'%] .

Example (3 -9 :

Given




s

: s2 sz 1l 0
A(s,z) = |-sz 1-2° o 1| ,
-1 0 0 0

then one can construct the

elementary transformation

| L/‘-.—d—w“".t’?

1 0 0 0 ll 0 sﬂ
[l P ﬂ
0 10 0 30 1 ~sz i o e
0 0o -
0 1 0 0 1,

’ 0 0 1 o | S(0) N(eﬂ 0
Eie . -
! 0 0 0 p
. ; 0

: 2

! -

P L0 1l 0 z°-=1 l ]

: A(8) .

The following matrix is an Al 2 3-inverse of
[

0 0o 1] [1 o s2
Ay 5,3(8) =s(8) T(8) = 0 0 ol lo 1 -se
1 0 of lo o -1
0 1 o]
"0 0 -1
f =10 o o
; 1 0 52
10 1 =-sz

-
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t_.‘
|
®ne can check the answer by substituting in the first
three axioms ( ) as follows:
s? sz 1 o]l o o -1]1[s? sz 1 o
AA A=
1,2,3 sz 1-z2 0 1| o o o |-sz 1-z%2 o0 1
-1 o0 o0 of f1 0 s? (-1 o o0 o
_0 1 -SZ|
2 ey
s sz 1 0 rl 0o o 0
= l-sz 1-22 0 1 0O 0 0 0
3 -1 0 0 O 0 sz 1 0
: 0 1-z%2 0 1}
» L.
i
' s2 sz 1 0
‘ = =52 1-22 0 1 = A
’ <1 0 0 0
also
0 o -1 |s® sz 1 of [o o 1)
2
A g3 RAp g 5=[0 0 0 sz 1-z%0 1] [0 o o
: 1 0 s (-1 o0 0 o 1 o s?
0 1 -sz 0 1 -sz]
: 1 o o ofo o -1 [0 o -1
3 =Jo o o o|o o0 o = o o 0] =a ,,
- 0 sz 1 o 1 0 sz 1 o &
| 2
0 1-z" 0 1| 0 1 ~-sz | 0 1 -sz_j
. 74

[

& NI ey T3 -




et - S - (TR OO S

e S

and finally

)
>
u
|
(0]
N
(=
!
N

1,2,3

]
o o [
[l [=]
[l o o
L]

Also, we compute Az(e) with rank = 1 as follows:

8 0] b o s 2] 6 o 0]
] Az(e) = 0 = 0 Q Q
: 1 1 0 s2
! Lo l P 0 0

and finally we compute Az(e) with rank = 2 as follows:

2

00l fLo s 0 o0 0]
A,(0) = l00[pPpl-szJ = [0 0 o
10 1 0 sz
LO 1] P 1 sz
.; ‘ To compute Al’2'34(e), it is necessary to satisfy %

the relation i

gt n=o.




" ' - QI TSt n D e Kk At

Ny W

Example (3-10)

Given
s+z 0 1
A = 0 s+2z 0
0 0 s

1 | 0 0 1 o0 o
0 4 stz 0 o 1 0
0 E 0 s(s+2) S 0 -1
i
, 0 0 1
; 0 1 0
! 1 0 -(s+z) j

L. It is the case of nonconstant rank so we can construct

only Az(s,z) with rank = 1 as follows

o0 [ o o 0 0 0
Az(slz) = 0 = 10 0 O
1 1 0 0

Example (3-11)

Given

H
¥
x
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!
: s 1-2° o 2
] A(s,z) = |0 s 1 o
1 0 0 0
then one can construct the following arrey
r 1 0 0 0 0 0 1
0 1 0 0 1 0 -s
0 0 1 0 0 1 0
1 0 0 0
0 1 0 -z
, 0 -s 1 sz
4 0z o |1-22 _
:
!
i Thus Al,2,3 is
1 o0 0] 0 o 1
A1’2,3(9) = 0 1 0 1l 0 =-s
0 =-s 1 - 1 0
_0 z OJ
' = o o 17
: 1 0 =-s
f -s 1 s2
3 | z 0 -sz

and Az(e) with rank = 2 is
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Example (3-12} .

For the matrix

S Z Sz+z+l

A(s,z) =
sz sz s3z+s22+52

o PN e e et e

-s [1 o] -5 0
A o0 = | -1 =l-1 o
1 1 0

The Matrices with Variable Rank
For A(9) ¢ cmrn(e) and A(9) does not have constant

‘ | rank, the problem of finding solutions of A(8) x(8) = b(8)
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arises since it was not treated by Sontag [27] and others.
Throughout the next section it will be assumed that there
exist unimodular matrices P(8), Q(8) belonging to

: . .
p c™ M (g) , c®°®(g), respectively, such that:
y

1| o
P(6) A(6) 0(8) = |g-tgray] = Ao(0) (3-10)

where Ao(e) is the Smith form of A(8). Such matrices were
treated by Frost and Storey[8,9 ], and Lee and Zak[ 19 ],

when matrices were reduced to their equivalent Smith form:

Theorem({3.3):
Let A(8) ¢ C™™(8) , b(8) ¢ c™ L(8) , and A(e)

has nonconstant rank k{(8), i.e.,

1 < r < k(8) < min(m,n).

Let P(8) , 0(8) be unimodular matrices such that:

Ir 0

then the following partitioning of matrices ;

- Ir 0 T(e)q |
A(6) I , O _[f(e)[[M(86 (3-11)
I o
n i S(8] N(6 o

are equivalent over R = C [61,...,8n]




Proof: Proof is similar to constant case of A,

Theorem (3-4):

Let A(g) ¢ ¢ ™(g), and A(g) have nonconstant
rank, i.e.,
l < r < rank of A(8) < min (n,m),
and the hypothesis of theorem (3-3) holds.

Then the following set of equations

A(6) X(9) = b(e) (3-12)

has a solution X(8)¢ Cn'l(e) if

M(8) b(e)

(e) z(8), (3~13)

C(n-r)-l

for some 32(8)¢ (6), and in which case the general

solution X(8) is given by
X(8) = S(9) T(e) b(s) + N(8) Z2(9) (3-14)
where S(e),.T(e), N(8), Q(e) are given as in (3-1})

Proof: For any A(8)e C° () there exist unimodular

matrices such that

1| o
P(e) Ale) 0(0) = [~5T157e (3-15)

where P(8) ¢ ¢C™ ™(9), and 0(6) € c®"(p). A(8) X(6) = b(e)
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has a solution X(3) iff
P(e) A(8) X(6) = P(9) b(8) has a solution X(9) iff
(P(8) A(8) 0(8)) 0~1(8) X(8) = P(8) b(6) has a solution X(6) iff

po

1 0]

g Q(@{l y(8) = P(6) b(s) has a solution y(e)=Q-l(e)>x(9) iff
L

1, °'.[Hiiﬂ - Fﬂﬁl] b(8) ; P(B) = B%%H} ;

5 Jarer|L2(® M) '
L 4
y(0) = |[38H + x(0) = 0o(e) y(o) = [S(G)IN(G)][g(g)] ‘

The last set of equations can be written as

W(8) = T(6) b(8) ; qQ(8) 2(8) = M(6) b(8) ;
X(8) = S(8) W(8) + N(8) 2(8).
Thus, the solution of A(8) X(8) = b(8) will be: !

X(8) = s(8) T(8) b(g) + N(8) Z(8)

in the condition that

(n-r)e1l

Q(8) Z(8) = M(8) b(9), holds for some Z(6)eC (8)

with appropriate size.

Example (3-13)
Consider the following system

[1-x s o] XIS, 02 = [x;s+z>]
z  Sz-x 0 A A2+521

Using the elementary operations we can construct

the following array:




o

H

f

{

)
-

!
[

L s e M

.
8 ST 000 0> = 0o o .40 o g sanmg s = 9. 7%

R emp .l

1 0 0 o |l 1 0
0 A 0 0 h ~Z 1l
1l 0 - -5 i
0 0 0 1
0
1 0 1l-) -S
0 1 A 1l
- --
To check the consistency condition, one may cal-
culate
[x 0 o] a(e) = [—z 1] A (s+2)
a(e) A2+SZ)
c(0)
that is

2

A a(g) = =Zr(s+2) + A“+S2)\, and d(8) , c(9) are

arbitrary polynomial.

-Z(s+2)+A+S2Z A-zz
Z(9) = d(e) = d4(0)
c(9) c(9)

The general solution will be
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X =S TDhb + NZ

= [t o [xis+) + [o -x -s] [r-2?
0 A2+s2)\ o o 1| [ace)
0 1-x-s| |c(e)
0 1z 1]
= a(s+z) [1] [-xd(g) =S c(g) |
0 + c(8)
1 (1-\)d(8) =8 c(8)
| 0] I_.>\--zz+z d(8)+c(8)_
=ats+z) (1] +a@) [ T+ ce) [s] +[ o
L 0 0 1 0
‘ i« 1 1-) -s 0
i LO.J L 2 -l- LA—ZZ..
{

choosing d(6) = 2 c(8) = =2

x= rs+zy [1] [=z7Ns] [o ]
oj+ ]| 0 J+]|=-Al 4+ o
1 z-x2| | As 0
0 72 ] [x-22
L. " - - R -
‘ = [ 285 ]
b = A
| | 2\ s+2z
'b 0 -
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AS+A2Z -]

Ax = = b

2 S2-A 0 A -X A2+)\SZJ

,l
o
. 1)

|

i
o

1
’
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IV Riccati and Lyapunov Matrix Equation

The main purpose of this part is to establish
methods to solve algebraic Riccati and Lyapunov equa-

tions. The Lyapunov. equation

AX-XB = C (4-1)
and the Riccati matrix equation

AX-XB + xDx = C (4=2)

where the matrices A, B, C, and D have elements which belong
to the field of complex numbers.

Riccati and Lyapunov  edquations are very important
to establish methods to enable anyone to do systems
decomposition, i.e., transform large systems to uncoupled
small subsystems. Such process requires the solution
of the equations (4-1) or (4-2).

At first the elements of all matrices are real or
complex numbers. The notion of strong similarity of the

following pair of matrices:

]

and




ﬁ'ﬂ%. j

[ate]

whenever the equation (4-1) holds and

(e

:
=x] . [a [-axexmec afo] (4-5)

fx x] [a c]

. !_o 1o B] 0 I_} o B jo}|B

Equation (4-5) holds whenever the equation «~AX+XB+C=0
g has a solution (i.e., equation (4-1)).
For applying to systems decomposition consider the

i following differential system of equations.

i _fac
3 d::iit) = [o a] x(t) (4~6)
¥ J'
f\ :
o | let
i ‘} x(t) = [ﬁ RS
where
AX - XB = C ' (4-7)

This system is reduced to

1
a ’EC H [OIB} [OI I] y(t) = [%_[__Q_B] y(t) (4-8)




bl § A S DTN W O

So the systems (4-6) and (4-3) are strongly similar under the
condition that (4-1) holds- System (4-8) is uncoupled sub-
systemns.

Now consider the fully coupled differential system of

equations

dx (t) _Fﬂgl x(t) -

applying the following transformation to (4-9)

3 x(t) = Eﬁf%j y(t) (4-10)

where X is a solution of (4-2) with matrices coefficient

defined as in (4-9).

VI

(4-11)

F
Q)
o~
cr
]
[ bl
HIO
(@] [2o]
. ()
[ (]
>
IO
o]
-+

B o]
[XB+C IXD+AJ y(t)
- , >

= |B-DX D
XB+C-XDX=AX I %p+a | Y (%)

8 9
= B-DX ' D ;
0 I XD+AJ

y(t)

Equation (4-11) represents a partially coupled system

instead of (4-9).

87
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Applying another transformation as before using

Lyapounov equation (4-1), the system will be reduced to

' dz(t) = [B-DXx | o0
E dt 0 [A+XD Z(t)

In the next two parts we will establish the different
techniques and approaches used to solve equations (4-1)

and (4-2).

Solving Lyapunov Equation

Consider the linear system represented by

== = RX {(4-12)

[e
(a4

‘ where

3

- 1AlC -
R-[o BJ (4-13)

where A, B, C are nen matrices whose elements are complex

numbers. The matrix R is similar to R* =[g g whenever

L the equation AX - XB = C has a solution ¥. 1In this case
: it is clear that

. TRT™! = R* (4-14)

- where

PME e
A




or esm et i I 5Bl Konle- N

= XX -
T = [o I] (4-15)

where X is a solution for Lyapounov equation (4-1).

First Technique., Theorem (4-1): Roth ( )

A necessary and sufficient conditdon.that equation
(4=-1) ha; a solution X where the matrices A, B, C are
square matrices of order nen with the elements in the field
of complex numbers is that the matrices R and R* given
in (4-13) are sinilar.
be the characteristic

Letting fA(A) and fB(x)

polynomial of A,B respectively then

0'M [N_?M]
| fA(R) = 6‘:? ' fB(R) = o (4-16)
!
i Proof:

The first part 9f the theorem is clear using the

following equation

1 =

if X is a solution of (4-1) then

[I?x] I l-)xc] [AJO}
o 1) R 0 = 0B = R* (4-18)

A _ =AX+XB+C -
[o : = ] (4-17)

i

P R = .I;:..%J [z.\g] [I.,_:] (4-19)
‘ 0 I 0 0

. -

&=y v
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I X £.(A) © T ' X
£.(R) = | . _° AT T L -
O R TR I . I

[

£ (R) = [0 X BR O I M (4-21)
0| fA(B) 0 ul
i
This implies that
M = =XU (4-22)

In the same way

. ; :
g = [21X] Ja] o | ]
Lo 1d o GE (B b §

B d
I AN VI G x| {niw
- SRR S - ) SIS
o TTTET ) Lo

This implies

< 33
n
2
[ )
]

(4223)

Theorem (4-2)
The equation (4-1) has a solution X if the following

pair of equations has a common solution:




M-NX=0 (4-25)

where M, U, ﬂ and ﬁ are as given in (4-16). Moreover,
any common solution will be a solution of (4-1).
The necéssary and sufficient condition that (4-1)

has a solution X is that the euntions

MU U=M (4-26)
and

NN *M=M (4-27)
and

MU=-NM hold. (4-28)

In this case the solution will be expressed as

X = N-¢M-MU-+N-+NM U- (4-29)
Proof:

The first part of the theorem is clear using (4-22)
and (4-23) in theorem (4-1).

Equations (4-26) and (4-27) are the consistency con-
dition of each of the pair of the equations and equation
(4-28) is the condition that the two equations have a
common solution.

Example (4-1): Solve the Lyapounov equation (4-1)

for




Solution:
1 o[ 1 37
R= |1 01 2
' 0o 0fo-1
: 0 o bo -1

fA(A, = A =

s s e s o e

2

£g(A) = A% 42

i - :

0o 0|0 -4 0 M
£_(R) = = _...{w
h 0 0o -2 0 u

o oo 2

o oo 2

—vaca - - - —

(00

f2 012 2] N | M
2 0|2 2 o lo
0

5
. o 0 Jo o

ol

First, calculate generalized inverses

1 ‘ Q v [: :] . |

Fy 92




A solution is

X =N M-MU +Ne+NMU™

ol I B I O 1

-

o A B TR IR

-

i Moreover, we can f£find the general solution by finding
?1 ‘ the general solution for each equation. The general

solution for the first equation is:




e g -

where L

I 4

l-m m

,m are arbitrary.

where {',m'

~ A A

M- (I-N"N)Y2

0 -MU + Y, (I-U uT) (4~-30)

i N R (SR R )

(4-31)

16 1-CI-LED

|

are arbitrary.

Equating x1 = x2

'{ =] ,m"=m ,‘(' = l-m

So the general solution will be




The Second Technique.

Theorem (4-3): If fa(x), f,(\) are polynomials

8
of degree n of )\ with coefficient in the field of complex

numbers such that

|"v N

f (R) = (4-32)
= lofo,
[o (&

] £,(R) = ~ (4-33)
87 Lo lal

3
AjC -1
where R = | sl ’ if v exists, then a solution X of
0

1

N-VX = 0 is & solution of (4-1). Moreover, if M — exists,

then a solution X of N + XM = 0 is also a solution of

Proof: The matrices fu(R) and R commute which implies

v (8| {alc alc v|nN i

= :

0 {oj lotlB 0} B olo
[VA |vc+ma] AV | AN

L 1o 1" [ 1o

This implies the following identities

AV = VA , AN = VC + NB (4-34)




if X is a solution of N-VX=0 , then, using (4-34), the

following holds

0 = A(N = VX)
= YC + NB -~ AVX
= V(C + XB - AX)
’ 1

and since V © exists, X is a solution of (4-1). 1In

the same way, we can prove the second part.

' Example (4-2)

Solve the same problem in example (4-]1)

£) = R =-2I] = (A% - 002 w0

All the possible polynomials are:

Case-~l £(\) = Az - A

Case=2 £(\) = Az + A

Case=-3 £(A) = Az

Case=-4 f(\) = lz -1
44 Case-1:
| 0 {93 o [N

£(R) = o |0 2 "loim
0 2
: [

;13 |
d‘ i




Consider the equation

N+XM=0 , M! does not exist, has the general
solution
X= ~NM +Y (I-MM") (4-35)
= '(2+'( ,f, m arbitrary
ml-

Substituting into the equation (4-1) by this solution,

we obtain the condition on ‘',m' to make (4-35)a solution.
1= 1l , m arbitrary

i.e., the general solution is

Case~2

£(r) = R + R
2 012 2 v N
2 0|2 2 0 0




i
H

e

Consider the equation

N =VX , V is singular, has the general solution

X=2V N+ (I -VV)Y

1l 1

‘@ m' ’ 9' n

Again, substituting in equation (4-1) we have the same

solution,

Case=3

arbitrary

l'l 0:1 0
=11 0! 1 O
0 0. 0 1
0 0: 0 1
The theorem cannot be applied.
Case-4
£(x) = R? - 1
0 0 ; 1 -1
=1 -1 { 1 ©
ooi-er
0 O 0

The theorem cannot be applied.




S0 the previous theorem is applicable only for the cases

where

f(A) is either fA(A) or fB(A).

The Third Technique
In this part, solutions for Lyapounov equation will

be obtained in terms of the principal idempotent and
nilpotent matrices associated with the matrices A, B.
To solve equation (4-1), the following more general

equation will be considered
AXE + DXB = C (4-36)

If A is an n*n matrix having elements which belong
to the field of complex numbers and {ai} is the set
distinct characteristic roots of A, then A has the

following representation:

m
A= j;:l (ajAj+Aj) m<n (4=37)

where the matrices {Aj} ’ {Xi} form a complete set of
principal idempotent and nilpotent matrices with the
following property:

Ai Aj' sjAj ’ Z Aj =TI, j -. 1,;2.'-'0001111
i=1

(4=-38)

99




A, = ] A.-A-.=-..=‘. -
AJAk 0 for j # k , 5 3 AJAJ AJ (4~-39)

Theorem (4-4)

Consider the following matrix equation
AXE + DXB = C (4-40)

where the matrices A, E, D, and B have the following

representation in terms of a complex set of idempotent

and nilpotent.

ja

A= E (ajAj + 3

i=1

>

jb

i=1

-

ja

=Z (dej + Dj) :

=1
je

E = Z (ejEj + Ej)

i=1

v P

with

i+ s B . % A e e e . A+ B

 ——— - ==




Ajc = CBk =

‘ AC=CEk=
|

ch = CBk =

ch = CEk =

for all possible

Ay Dk CE

] Be

The equation (4-4

Lemma (4-1)

The solution

Example (4=1).

a.e.

j,k and whenever i%4

+ dkbe = 0 , then
=0

0) has a solution X given by

je X . .
jd e ja A,D,C E.B
X = Z: i i e (4-41)
e=1 = 591 = 2%yt dbe

for the Lyapounov equation (4-1) given

that A,B are given as in (4-41) is

‘b ta A,CB
i Sl Y
i=1 i=1

Example (4-~3): Solve the same problem given in




Notic

B=Db/B, +Db BZ

"

o
o '
o &
—_ )

]

-

s o
I
—

e that al-bl=0 and

v L BT L1

the solution is given by
X = A1082 N AZCBL R A2C82
-(=1) 1-(0) 1-(-1)

Example (4-4Consider equation (4-1) for

102




-25/2 =31
0 0
0 0

check that

c(¥ By =0

a = 1, a5 = 2, a; = 3, b1 =2, by=1; therefore

and




and the sgolution is

X = AlC Bl + A2C32+% A3CB +A.,CB

273771
6 17/2 1
-4 =6 0
2 3 0

Check that X(LB;) = x(LB; = (X Bpx =0

The Fourth Method
This method is sufficient to obtain all solutions
for the Lyapounov equation (4-1). Equation (4-1) can be

written in the vector form as

Fx=c¢c (4=42)

where X,C are n%:1 elements and F will be nZ. n?. This

method is obviously not suitable for large n.
For A and B and CeC 2:2 and

A=l1l %22
821" 222 by; b




F can be expressed as

a,.I - BT

11 a2

—= |

i T
I I azzI"BJ

as1

B ]

Example (4-5): Considering the same problem in example

T

(4=1)

ﬁ
U ﬁ 0olo o 1
| F= 1 2|0 o , C= |1
; : 2

i 1 010 o

i
: 0-11]1 1
L -

we obtain the general solution

_ a1 19
X = (ST) ¢ + N z
|
1 0 ol 2 o o o] I 0] |
= Jlo 121 0l |- ¥ o o 31 + o] 2z
o 0o 1| |5 -5 o 1] h -1
4 0 0 0] gj 1

ﬁi} 105 {
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1 1 1
1oz i.e., x= -z 2
z

L

consisting condition holds

1,‘ MG = [-1\ 01 o]




- s

V Conclusion and Recommendations

Conclusion

An algorithm for computation of various kinds of
generalized inverses is established for the matrices over
the field of complex numbers. The existence and compu-
tation of various kinds of generalized inverses over the
ring of polynomials in several variables are studied.
Equivalence of a matrix to its Smith form over the ring
of polynomials in several variables is studied. A new
algorithm for finding the solution of Ax = b over the

field of polynomials in several variables is established.

Recommendations

1. Implementation of these algorithms on computer.

2. Study of sufficient and necessary conditions
for 9 matrix over the ring of polynomials in several
variables to be equivalent to its Smith form.

3. Explicit solution of Lyaponov and Ricate equa-
tion in terms of qgeneralized inverscs. Extension of
Jones work [15), (16}, 117].

4. Applications in the field of control theory.
Extention of the work of:

a. Prost and Storey (Contrability and Obser-
vabtitey) (19, (2
b. Das and Ghoshal (Construction of Reduced-

order Observes) ti] .
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Appendix A
Basic Applications of Generalized Inverses

Solution of linear equation Ax=y:

Theorem (A-~1):

A necessary and sufficient condition that Ax=y

is consistent is that

AAly =y i (A=-1)
The general solution of the consistent equation is
x = Aly + (I - AlA)z B {A=-2)

where 2 1is an arbitrary vector.

Proof:

Sufficiency: 1if (A-1) is true, then Aly is a

solution.

Necessity: Suppose that Ax = y 1is consistent,

then there exists w such that




To complete the proof it is sufficient to prove that (A-2)
is a solution for Ax=y. Substituting (A-2) into the

equation Ax=y we have
Ax = A(Aly + (I-AlA)Z)

= AR,y + AZ=AA,AZ

1

Y + ZA = AZ

To prove that any solution x can be derived from

(A-2), we can choose Z as follows:
2 = x - Gy

X =Gy + (I-GA)Z = Gy + (I-GA) (x=-Gy)
= Gy + X - Gy - GAx + GAGY = X ~ GAX + GAGAX

= X = GAX + GAx = x
Theorem (A-2):
The necessary and sufficient condition that the

equation AXB=C has a solution is that

B=¢C ,

Ahch

1|




)
i
!

:im————-———

in which case the general solution is

X = AlCBl + 2 - AlAZBBl (2-4)‘ (A-4)
where 2 is an arbitrary matrix.

Proof:

Sufficiency is trivial since AJ_CBl is a solution.
Necessity proof: if the equation is consistent, then

there exists X such that
AXB + C
AAl(AXB)BlB = C

AAICBIB =C .,
Substituting X given by (A-4) in AXB , we have
A(AICBI+Z-A1AZBBI)B = C+AZB-AZB=C, Any solution of
AXB=C is obtainable through (A-4) by a suitable choice
of 2. For example, X can be obtained if we put
Z = x-AICB1

Solution = A,CB, + (x-Alca) - AIA(x-Alcal)BBl

= X - AlthBl + Al A Al C Bl B Bl

= R - Al AXB Bl + Alc Bl




= X - A, CB, + A,CB, = x

1 1 1771
Theorem (A-3)

Let A(men) , C(m.p) , B(p.g) , D(n.g) be given
matrices. A necessary and sufficient condition for the
consistent equations AX=C , XB=D to have common

solution is that

AD = CB ,

in which case the general expression for a common solution

is

X = A,C + DB, -~ A ADB, + (I—AlA)Z(I—BB

1 1 = A,ADB, 1

where 2 1is arbitrary.
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