
FD-A138 232 DEVELOPMENT OF A REAL-TIME GENERAL-PURPOSE DIGITAL 1/
SIGNAL PROCESSING LABO. .(U) AIR FORCS INST OF TECH
WRIGHT-PATTERSON AFB OH- SCHOOL OF ENGI.. J W BENGTSON

UCASIFIED DEC 83 AFIT/GCS/EE/83D-3 F/6 9/2 NE hCRSso nhS0 00 00 1 i

smhEmhhhhhhhh
Iflflflflfoflmf....f
EhhhhmhhhhhhhE
EhhhhmhmhhhhEI

I lllffffllllff.

AAL

'L1.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

-0I

,. .. .,_ .. =. -.. -.- -1.-111= .O .. ,".% 2 8 I- - . . .
I I 11 132 r - rl li ' ~ l €.: t. ,;.la'G , .,,,.e

- J - . - - - --. -.A, -- _-.- .- - ', - -'. ** . -.- . . - - . ,. - .- - .- -. -, . .

mom

J.

- -,. Ar

*14c

DEVELOPMENT OF A REAL-TIME
GENERAL-PURPOSE

DIGITAL SIGNAL PROCESSING
" '- LABORATORY SYSTEM

THESIS

__ AFIT/GCS/EE/83D-3 John W. Bengtson
Capt USAF

A" DTIC
._ "" "" E T EiFEB 2 3 1984

I DEPARTMENT OF THE AIR FORCE IK[ECTA

.. AIR UNIVERSITYA

i AIR FORCE INSTITUTE OF TECHNOLOGY

"" Wright-Patterson Air Force Base, Ohio

8.4 02. Z 0'74
*_...*j *....

t 4 * 4 % - ar- e f_: T E

AFIT/GCS/EE/83D-3 /

DEVELOPMENT OF A REAL-TIME
GENERAL-PURPOSE

DIGITAL SIGNAL PROCESSING
LABORATORY SYSTEM

THESIS
AFIT/GCS/EE/83D-3 John W. Bengtson

Capt USAF

Approved for public release; distribution unlimited

.

.

/ :, '.:

3D- - t---3--

AFIT/GCS/EE/83D-3

Development of a Real-Time

General-Purpose Digital Signal Processing

Laboratory System

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

ton1 For

by - - - -

John W. Bengtson, B.A.. . .

Capt USAF

Graduate Computer Systems 4

December 1983 "

Approved for public release; distribution unlimited.

Prefac-e

It's easy to make a case for the importance of Digital

Signal Processing (DSP). With ever-decreasing computer

hardware costs, ever-increasing gains in computer

performance, and never-ending demands for improved signal

processing capabilities, a wide spectrum of disciplines

place heavy reliance on DSP techniques for solutions to

their problems. The DSP system developed through this thesis

effort is an attempt to make the benefits of DSP available to

engineers with as little effort (and knowledge of computers)

as possible required on their part.

Thanks to my thesis advisor, Dr. Gary Lamont, for

helping things to happen. Two lessons learned at his hands

O warrant mention: "There's always more than one right way to

do things" (an encouragement to freedom of thought and

action); and "It all depends on your level of observation"

(visions of endless Escher...) e's are best left as e's (the

4world has no lack of proper mountains).

Thanks to my mother and father for providing so much

more than just my entrance to this world.

The lessons in life offered me during this year and a

2" half bear witness to our creator's grace and succor for one

"obsessed" (Ecclesiastes 12:12b comes to mind). Certainly,

it is only because life is imbued with His presence that

(even in the midst of AFIT!):

Life, like a dome of many-coloured glass,
.4. Stains the white radiance of Eternity

ii

* *. . .* . '.*..... '...4 ". . 4

Table of Contents

Preface...........................ii

List of Figures vi

List of Tables vii

Abstract viii

ChapterI--Introduction 1

1.1--Problem and Background 1
1.2--Requirements....................2
1.3 -- Scope 3
1.4--Past Development Efforts 4
1.5--Approach......................5
1.6 -- Results of Local User and University Survey . . 6
1.7--Overview of Thesis 7

Chapter 2-- Requirements 8

2.1 -- Software Development Methodology 8
2.1.1 -- Goals for Software Methodology 8
2.1.2 -- Alternatives and Choice. 9

2.2 -- User nterface 11
2.2.1 -- Rationale for a User*Interface...........11
2.2.2--On-Line Requirements..............11
2.2.3 -- Off-Line Documentation. 13
2.2.4 -- Definition and Importance of Real-Tilme

Processing 13
2.3 -- Application Programs...............14
2.3.1--Important DSP functions 14
2.3.2 -- Application Program Interaction. 16
2.3.3--Graphics 16
2.3.4 -- Off-Line Documentation.............16

2.4 -- Requirements Summary...............17

Chapter 3 -- Design 18

3.1 -- overview. 19
3.2--Logical Design of System...............21
3.2.1--Context DFD 23
3.2.2 -- GETREQUEST (1.0) DFD. 23
3.2.3 -- GETOPTIONS (1.1) DFD 26
3.2.4 -- EDIT-OPTIONS (1.2) DFD.............26
3.2.5 -- SATISFYIMMEDIATEOPTIONS (1.3) DFD 29
3.2.6 -- FORMAT REQUEST (1.4) DFD. 31
3.2.7 -- SATISFY_-REQUEST (2.0) DFD 33
3.2.8 -- ACQUIRE_-DATA (2.2) DFD.............35
3.2.9 -- PROCESSDATA (2.3) DFD. 37

3.2.10 -- DISPLAYDATA (2.4) DFD 39
3.3 -- Physical Design of System 41
3.3.1 -- Dialogue Approach 42
3.3.2 -- Division of User Interface/Application

Program Responsibilities............45
3.3.3 -- Application Program Invocation

Alternatives.................46
3.3.4 -- Interprocess Communication Alternatives . . 49
3.3.5 -- Physical Design Structure Charts 0

3.3.5.1 -- DSP Structure Chart 51
3.3.5.2 -- GOPT Structure Chart. 53
3.3.5.3 -- DMENU Structure Chart 55
3.3.5.4 -- SIOPT Structure Chart 57
3.3.5.5 -- EOPT Structure Chart. 59

*3.3.5.6 -- FREQ Structure Chart. 59
3.3.5.7 -- ADATA Structure Chart 63
3.3.5.8 -- PDATA Structure Chart 63

343.3.5.9 -- DDATA Structure Chart 63
3.4 Hardware Components 68

3.5 -- Data Acquisition Application Program
*Characteristics.................69

3.5.1 -- AD001 (Generate Data) 70
3.5.2 -- AD002 (Sample A/D Converter)..........70

3.6 -- Data Processing Application Program
*Characteristics 71

3.6.1 -- PDO01 (Correlation and Covariance) 71
3.6.2 -- PDO02 (Coherence) 74
3.6.3 -- PDO03 (Convolution) 76
3.6.4 -- PDO04 (FFT). 77
3.6.5 -- PDO05 (FIR Filter Design) 78
3.6.6 -- PDO06 (IFFT).................79
3.6.7 -- PDO07 (IIR Filter Design) 80
3.6.8 -- PDO08 (Waveform Averaging)...........80

3.7 -- Data Display Application Program
Characteristics.................82

3.7.1 -- DD001 (Display to HP2648A)...........82
3.7.2 -- DD002 (Display to HPl3lO) 82

3.8 -- General Testing Procedures and Criteria 82
3.9 -- Design Summary..................86

Chapter 4 -- Implementation and Testing. 88

4.1 -- Initial System Difficulties88
4.2 -- General System Characteristics. 89
4.3 -- User Interface Implementation 92

4.3.1 -- Basic User Interface Communication
Modules 93

4.3.2 -- Other GREQ Subordinate Modules.........96
*4.3.3 -- SAREQ Module.................97

4.4 -- Application Program Implementation 97
4.4.1 -- AD001 (Generate Data) 98
4.4.2 -- AD002 (Sample A/D Converter)..........98
4.4.3 -- PDO0l (Correlation and Covariance) 98

iv

4.4.4 -- PDO02 (Coherence) 99
4.4.5 -- PDO03 (Convolution) 99

:: 4.4.6 -- PDO04 (FFT)99
4.4.7 -- PDO05 (FIR Filter Design) 100
4.4.8 -- PDO06 (IFFT) 100
4.4.9 -- PDO07 (IIR Filter Design).. 100
4.4.10 -- PDO08 (Waveform Averaging) 100
4.4.11 -- DD001 (Display to HP2648A) 100
4.4.12 -- DD002 (Display to HPI310) 101

4.5 -- Implementation and Testing Summary 101

Chapter 5 -- Conclusions and Recommendations 102

Bibliography 106

Appendix A: User's Guide 110

Appendix B: System Manager's Guide 118

Appendix C: Current and Anticipated Hardware 133

Appendix D: WPAFB HP 21MX Users 135
Appendix E: Introduction to Structured Analysis and

Design 136

Appendix F: Data Dictionary (Data Items) 139

Appendix G: Data Dictionary (Program Modules) 163

Appendix H: User Interface Software Listings 191

Appendix I: Application Program Software Listings . . . 303

Appendix J: Test Plan 326

Vita 334

V

.List of Figures

La Figure Page

1 User's View of the System 20

2 DFD 0: Context Diagram 24

3 DFD 1: Get Request 25

4 DFD 1.1: Get Options 27

5 DFD 1.2: Edit Options 28

6 DFD 1.3: Satisfy Immediate Options 30

7 DFD 1.4: Format Request 32

8 DFD 2: Satisfy Request 34

9 DFD 2.2: Acquire Data 36

10 DFD 2.3: Process Data 38

11 DFD 2.4: Display Data 40

12 DSP Structure Chart 52

13 GOPT Structure Chart 54

14 DMENU Structure Chart 56

15 SIOPT Structure Chart 58

16 EOPT Structure Chart 60

17 FREQ Structure Chart 61

18 ADATA Structure Chart 64

19 PDATA Structure Chart 65

20 DDATA Structure Chart 66

21 Block Diagram of Correlation Method 72

vi

A .0 P

List of Tables
.. .:.,-

Table Page

I User Interface Services 12

II System Message Design Guidelines 12

III Essential DSP Functions 15

IV Dialogue Alternatives 43

V Program Invocation Alternatives 47

I

vi

O'W

,.

i vi

a'. . '2 * '..-"/.,",'-". .i. .. ' " '"".i2" ",. , , ,: ., 2 22 :

Abstract

This investigation resulted in the design and

implementation of software to support a real-time, general-

purpose digital signal processing (DSP) system. The major

design aims for the system were that it: be easy to use,

support a wide variety of DSP functions, and be capable of

real-time processing. All work was performed using an HP21MX

computer running under the RTE-III operating system.

The system's analysis and design were accomplished using

Structured Analysis and Structured Design techniques.

Their results -- both logical and physical system designs --

are presented via Data Flow Diagrams and Structure Charts

respectively. The hardware environment was also analyzed to

Q ensure its suitability.

The resulting system consists of two main components: a

User Interface, and a collection of DSP application programs.

The User Interface is menu driven and allows the system to

be used by those with little or no prior computer experience.

The User Interface gathers user requests and presents them to

an arbitrary number of concurrently executing application

programs for satisfaction. All of the major system

components were successfully implemented with the exception

of real-time data sampling support via analog to digital

converter. With the addition of an HP21MX co-processor, the

developed system should be capable of supporting the full

range of DSP activities invisioned.
'

viii

4,.:

DEVELOPMENT OF A REAL-TIME GENERAL-PURPOSE
. .*'.- DIGITAL SIGNAL PROCESSING LABORATORY SYSTEM

Chapter 1 -- Introduction

This chapter introduces this thesis investigation's

problem, suggests its importance, broadly outlines its

requirements, notes past progress, and sketches the approach

.taken in solving the problem.

1.1 Problem and Background

The problem this investigation deals with is the

continued development of AFIT's HP21MX computer system in its

role as a real-time general-purpose digital signal processing

4.. (DSP) laboratory. The system is to provide a flexible,

&won Jexpandable environment in which DSP engineers can work

productively without needing to bother with details of the

computer's operation.

To gain an appreciation for the relevance of the

requirements that are discussed in the next section (and for

the value of this thesis investigation), it may be helpful to

consider the role played by signal processing in the world at

large.

Historically, signal theory came into being with the

invention of the telephone and especially of the radio. For

the first time signals were transmitted and received by

complex electrical apparatus, the performance of which could

be subjected to mathematical analysis. Signal processing now

encompasses far more than this interest in the modification

'S

5-,

of electrical signals representing messages as they pass

through electrical networks. The definition of the term

"signal" now includes almost any physical variable of

interest, and the techniques of signal analysis and

processing are extended to areas no longer directly related

to communication (Ref 28).

The ever-increasing availability of digital computing

facilities has been the most important factor in the growing

diversity of signal processing applications. With DSP, there

"4. is no longer a need for special-purpose electronic circuits

(or even for an understanding of electrical technology) to be

J able to perform signal processing tasks (Ref 28:6, 36:4).

Thus, DSP is both replacing other techniques in conventional

applications and suggesting its own new, unique applications

(Ref 47).

Given the importance of DSP, Professor Gary Lamont of

the Air Force Institute of Technology has designated that the

*HP21MX system form the core of a DSP laboratory. In this

role it should serve several important purposes: to

familiarize students with the use of common DSP tools in an

instructional environment, to serve as a research tool for

class or thesis work, and to act as a foundation in gaining

experience with developing DSP systems.

1.2 Requirements

The main requirements of the system are as follows:

first, the system must be able to support the "most common"

2

.".. -. "--- .. *. o." " ".-.".- -".- ".-."--" ". "' "-.-'.,........-......-.".......,.".............'..m ~ i

DSP applications. Thus, the system should be designed so

'-~ .:-~ that any such applications not provided directly by this

thesis effort are anticipated, making later expansion a well-

ordered process. This requirement ensures the system's

continued relevance to real-world concerns. Second, the

system must be easily used by those having no experience with

the HP21MX computer or with computers in general. This is

important in ensuring that the system serves as a useful tool

and not as a lesson in the intricacies of the computer.

And finally, real-time capabilities (see Section 2.2 for a

definition) and the use of graphics should be emphasized to

ensure that the system is responsive and that it communicates

.its results in the most effective way.

1.3 Scope

S. This thesis investigation is directed toward the DSP-

role development of the existing AFIT HP21MX system. Thus

while other, newer systems may be available offering higher

performance potential or complete ready-made solutions,

replacement of the HP21MX system is not considered. Instead,

incremental hardware and software improvements are planned

(Chapter 5, Appendix C).

Making the HP21MX system into the optimal DSP system

requires far more work than could reasonably be expected from

a single thesis effort within the given time frame. Some

work has already been accomplished in other AFIT thesis

efforts (see Section 1.4). Of these, Lt. Todd's thesis (Ref

3

4- . . ,- . . -- . - .. .- . -.

51) is the one most germane to this thesis effort. His

% ' :..' thesis covers the broad requirements of a general-purpose DSP

system (such as the type of operating system required, the

". various storage options available, etc.), allowing this

investigation to be more narrowly focused. His results are

taken as valid throughout this investigation except where

noted.

'C,

1.4 Past Development Efforts

Three previous AFIT thesis investigations have worked on

the development of AFIT's HP21MX system as a DSP laboratory.

The first of these was a thesis effort (Ref 48) which

i64 looked at microprogramming as a way to increase processing

speed for critical sections of code. The conclusion reached

was that microprogramming is useful in certain situations

when the gain in efficiency justifies its coding difficulty.

Another thesis effort (Ref 44) also focused on

microprogramming as an approach to improving the system's

processing speed, and reached the same conclusion.

Yet another thesis (Ref 50) outlined the broad

requirements for a general DSP system, analyzed the HP21MX

system's capabilities and deficiencies, demonstrated the

system's ability to perform several basic DSP acquisition and

computational tasks, and made recommendations for continued
*4

development.

4

* |.

i
°

• , q * . *

, ?, ,.",' ••.-• . . - . .-. , ,e. . ' .. ' .' .. ," .e - e ..". .- e ...-. . ..-. •.C •. '.'-' ...

Each of these thesis efforts also involved work on the

HP21MX system as a whole, including the addition of new

hardware elements.

1.5 Approach

These are, in order, the basic steps taken during this

thesis investigation:

1. A literature search and local HP21MX user survey for

information concerning: basic signal processing and DSP

principles, typical DSP applications, program and system

analysis and design methodologies, the HP21MX computer,

available (and acquirable) DSP software, and graphics.

2. A survey of local WPAFB and AFIT HP 21MX users,

Wright State instructors, University of Dayton DSP

instructors, and University of Dayton Research Institute

researchers for DSP software and DSP system design insight.

3. Formulation of statement of requirements for

development methodology.

4. Definition of requirements for the system's user

interface.

5. Definition of requirements for the system's

application software.

6 Design, implementation, and testing of the system's

user interface.

7. Design, implementation, and testing of application

'- programs.

5

U.' , % - , ', '"": ,,''.". .""". """ " -"

1.6 Results of Local User and University Survey

None of the local (WPAFB) HP21MX users have DSP software

deemed useful for this system's development.

Wright State University doesn't have a DSP computer

system and is doing very little DSP work. Some DSP software

exists, but most of it was taken directly from Reference 13

and is located without organization on a variety of computer

systems (including personal computers).

Neither the University of Dayton nor its Research

Institute have a DSP computer system. While UD offered no

software or DSP system design information, the Research

Institute has widespread contacts with Air Force laboratories

on WPAFB, some of which have DSP systems. None of those

systems is based on the HP21MX so only their high-level

0 software is transportable. Unfortunately, most of the high-

level software has been written for special narrowly-focused

purposes. For example, the lab in building 824 (Biodynamics

and Bioengineering) has an HP21MX system used for gathering

up to six channels of data from human factors test bed

equipment -- but the data acquisition rate supported is quite

slow (usually less than 500 Hz) and the only processing done

is spectral analysis. In addition, none of the surveyed

systems has a user interface of the sort envisioned for this

thesis effort (user friendly), and none of them supports real-

time processing with concurrent processes.

6

...- W.7 : 7 774.7 ;77--.- 7.-..

1.7 Overview of Thesis

• The next chapter (Chapter 2) elaborates on the

requirements for this thesis investigation. Following it are

chapters on design (Chapter 3) and implementation (Chapter

4). The last chapter (Chapter 5) then presents conclusions

and recommendations. These textual chapters are followed by

a bibliography, various appendices, and a vita.

.1

i.%

~7

Chapter 2 -- Requirements

* Many of this thesis investigation's requirements reflect

the fact that it is primarily a software development and

integration effort. While every effort will be made to

borrow as much developed software as possible, all of it must

be documented, modified to suit the purposes of this system,

and integrated into the system's User Interface and

U' applications software structure. The first section of this

chapter considers the need to adopt a development methodology

so that the software produced or adapted has certain

desirable characteristics. Some of these characteristics

follow directly from major goals for the system, such as ease

of adding new applications. Others are taken as requirements

a' because they have proven to be strongly related to overall

system success at minimal cost (Ref 6:i). The second section

' specifies the requirements for the User Interface. The third

section gives the application program requirements.

2.1 Software Development Methodology

2.1.1 Goals for Software Methodology

The primary goals in adopting a software methodology are

to ensure that the software system is finished on time, that

it satisfies all stated requirements, that it is well-

documented, and that both remedial programming and the time

required to later add new software components are minimized.

Completing the system on time is aided by having a well-

defined approach and tool set for the entire development

.- ,.

,% 8

W 7

process. Ensuring that the system satisfies its requirements

- "implies a well-defined test procedure.

Minimizing the difficulty in making corrections or

additions to the system has been shown to be related to

certain software quality metrics, including: communicative-

ness, structuredness, self-descriptiveness, conciseness,

legibility, and augmentability. These metrics are, in turn,

part of a larger set of metrics which may be used to define

other desirable aspects of software quality such as

portability, reliability, and efficiency (Ref 6: xiii). A

good development methodology should have some means of

encouraging the presence of these characteristics. Their

lack can often lead to software maintenance requiring as much

as 75% of a software project's total effort (Ref 6:iii).

2.1.2 Alternatives and Choice

Some of the formal methodologies available are: the

Structured Analysis Design Technique (SADT) method (Ref 5:378-

409); Michael Jackson's data-structure method (Ref 5:120-

175); the Warnier-Orr Structured Systems Design method (Ref

5:176-199); Yourdon and Constantine's Structured Design

method (Ref 5:200-224); the METAStepwise Refinement (MSR)

method (Ref 26); and the Higher Order Software (HOS) method

(Ref 19). None of these methodologies is demonstrably

superior to the others in general (Refs. 5:314, 5:321); in

fact, new methodologies continue to be proposed as solutions
9.

to their various failings (Ref 5:297-346).

99

S.S.
- . .

This project uses the Structured Analysis methodology

presented by Victor Weinberg (Ref 53). Weinberg has borrowed

analysis and design techniques from several sources (mainly

Yourdon and Constantine (Ref 54)) and added his own

contributions. Because of this, his method has the advantage

of being a more complete "packaged" statement of methodology

than many, since it deals not just with the matter of program

design but with the entire development process. It borrows

the concepts of data flow diagrams, data structure diagrams,

and structure charts for use as tools in program analysis and

design, and combines them with top-down strategies for

analysis, design, implementation, and testing to form a

complete method for software development from initial

specification of requirements through final acceptance.

Another reason for choosing Weinburg's method is its

4suitability for design problems in which well-defined data

flows are present (input and output are clearly distin-

guishable from each other and transformations of data are

done in incremental steps) (Ref 5:317). Well-defined data

flow is typical with the type of math-intensive processing a

DSP system performs. The final and perhaps most important

reason for choosing Weinburg's Structured Analysis pproach is

the author's familiarity with it. A brief overview of the

Structured Analysis approach is given in Appendix E.

10

*4%

..

.' . "' " " , " " " " "' " " " " " " " " "• " '< '' ' " , "- -" " "" . "
-4 %mlmmm

2.2 User Interface

. ""> 2.2.1 Rationale for a User Interface

It has been said the the future growth of the computer

industry and the acceptance of computer methods will depend

largely on the successful establishment of effective man-

*machine communications (Ref 30:3). So also the future growth

and acceptance of this system will depend in large part upon

the system being not just functionally capable but also easy

to use. To a large extent, the ease with which a person can

communicate with a computer determines the extent to which it

will be used. Making the system easy to use and efficient

are the goals of a user interface, just as they are the goals

of the Operating System (OS) in any computer system. While
Vt the HP 21MX's OS does take care of the four basic ease-of-use

and efficiency functions (memory, processor, device, and

information management (Ref 29)), it is quite complicated and

difficult to learn, especially for the computer novice; the

DSP User Interface remedies this. (Note that as a matter of

convention, "User Interface" is capitalized when referring

specifically to this system's implementation.)

2.2.2 On-Line Requirements

The User Interface complements the OS by providing the

services listed in Table I for DSP system software (Ref 27).

The main emphasis here is to help the user in recovering

from mistakes and in deciding what to do next. Toward those

S -ends, one of the most important User Interface services is

V.
t1

S... -- SIh

-. "• "- '," • ,•. • .. ' •.•....' ." " . .. ".-".-"..• . • '. .. -, 1% % .• * * -** S* 5 *%* * ... • , '- €,

:'4

Table I
User Interface Functions

1. Prompts for user input
2. Lists of options
3. Summary information for each valid command
4. User interruption of a requested action
5. Interception of user input errors
6. User allowed to correct input errors
7. Provision of default values
8. Logical sequencing of inputs
9. Directory listings

Table II

System Message Design Guidelines

System messages System messages
should not be: should be:

Wordy Brief
Negative in tone Positive
Critical of errors Constructive
General Specific
Cryptic Comprehensible
Or suggest system control And emphasize user con-

over the user trol over the system

Other considerations:

Upper- and lowercase letters are preferred to
uppercase only

Asterisks should be used only in special
circumstances

Error numbers, if needed at all, should appear
at the end of the message

Two or more levels of messages could be bene-
ficial

The use of terms like "illegal", "invalid", and
"error" should be avoided

12

" the provision of on-line help: option lists, command

summaries, and textual descriptions of the system's

requirements and behavior at each point in the user/system

dialogue. System message design guidelines to be followed by

the User Interface in all of its actions are listed in Table

II (Ref 45).

2.2.3 Off-Line Documentation

The concerns for the on-line User Interface may be

extended to include requirements for off-line documentation.

A user's guide (Appendix A) should be prepared to: present

an introduction to the system, guide the user through the use

of the system (some sort of tutorial), and show in detail the

capabilities of each of the application programs and how they

can be used with each other.

2.2.4 Definition and Importance of Real-Time Processing

One of the most-needed capabilities for the HP 21MX DSP

-system is real-time processing abilities. The term "real-

time" has many different shadings of meaning. In this thesis

investigation, it is used in two different ways. First, and

in keeping with its most common definition, "real-time"

denotes the system's ability to do its job quickly enough for

processing results to be available within the limits imposed

by time-critical operations. Second, real-time is used in

describing the system's ability to perform the functions of

data acquisition, processing, and result display

..'- concurrently, while allowing for user interaction to

13

V.
.

interrupt or change the characteristics of the work being

.. done. In general, being able to intervene while calculations

are in progress, in response to the nature of intermediate

results, greatly enlarges the possibilities of computation

(Ref 7:11). It should be noted that AFIT's other DSP

facility (the ILS system located in the Signal Processing

Laboratory) does not have this second form of real-time

processing. With the ILS system, only one function -- such

as gathering data -- occurs at a time (Ref 50).

2.3 Application Programs

The application programs are building blocks called by

the User Interface to perform work requested by the user.

While never seen or directly manipulated by the normal user,

0 their proper design and documentation is crucial to the

initial and continued success of the DSP system. This

section considers which DSP functions the system should be

capable of performing, how they should be able to interact,

and which should be implemented first.

2.3.1 Important DSP functions

Certain DSP functions stand out as being essential to a

general-purpose DSP system's repertoire. These are listed

alphabetically in Table III along with some of their general

characteristics (Ref 1,3,13,35,38,49,50).

14

.%

S.

* :;. Table III

Essential DSP Functions

iput Output
Function A.omain Domain System Name

Correlation and T-R T-R PDO01
Covariance (*)
Measure of internal similarity in a single signal

("auto") or between two signals ("cross")

Coherence T-R/C F-R PDO02
Measure of degree of linearity in input/output behavior

/ Convolution T-R T-R PDO03
Describe system input/output behavior in time domain

FFT (*) T-R F-C PDO04
Time- to frequency-domain transformation

FIR Filter Design P T,F PDO05
Derive FIR filter parameters

IFFT (*) F-C T-R PDO06
Frequency- to time-domain transformation

IIR Filter Design P T,F PDO07
Derive IIR filter parameters

Power Spectral Density T,F-R F PDO02
Signal power distribution by frequency

Transfer P F PDO07
Describe system input/output behavior in freq. domain

Waveform Average PDO08

Legend:
T=Time, F=Frequency, P=Parameters, R=Real, C=Complex

(*) = Partially implemented by Todd (Ref 37.5)

Note: the characteristics described in this table are
those of the programs found in Reference 10 and may not be
applicable in all cases to other programs/systems.

A

4*/ 15

6"N

2.3.2 Application Program Interaction

Specifying the manner in which various programs can

interact with and complement each other is a major design

goal. There are two major forms of interaction which should

be supported. First, when output data from one program is to

serve as input data to another program, the two programs

should be able to share the data directly so that the user
".- doesn't have to manage the transfer. This applies in the

case of filter design and synthesis, for example, where the

data to be passed are filter parameters. The second kind of

interaction involves real-time processing. The user should

be able to execute a set of data acquisition, processing, and

display application programs concurrently, with data passed

from acquisition to processing to display automatically.

2.3.3 Graphics

Graphics software should be available to translate any

large collection of data points into graphical form. This

should be possible for both raw and processed data, either

while it is being generated (real-time) or later from

permanent storage. Three-dimensional representation is

preferable in the case of complex, frequency-domain data.

2.3.4 Off-Line Documentation

A system manager's guide should be prepared, containing

essential maintenance information. Its purpose is to

facilitate maintenance and expansion of the DSP system by

... describing: its overall structure, the structure,

16

capabilities and limitations of each of its application

programs, hardware characteristics (especially such things as

D/A converters), and aids to help in using the HP 21MX and

its operating system.

2.4 Requirements Summary

All of this thesis effort's essential requirements were

presented in this chapter. They included: the selection of

a development methodology (Section 2.1, Weinberg's Structured

Analysis); the goals and characteristics of the system's User

Interface (Section 2.2, notably ease of use); and application

program characteristics (Section 2.3, Table III).

* This thesis contains no separate chapter devoted to the

analysis stage of system development. One reason for this is

0the fact that this is not an effort to automate or extend an

existing, operational DSP system. Modeling of the "current

system" is one of the primary goals of the analysis stage,

and does not apply in this case. A second reason is that, at

4% least from the user's view, the system to be developed is

rather straightforward -- the system's design follows quite

*readily from its requirements. Thus, all analysis results

and other support for the system's design are naturally and

unobtrusively included "in the text of the design chapter

(Chapter 3).

Chapter 3 now presents the system design developed to

satisfy the requirements of this chapter.

fl 17

" ~ a ~*~ V . . , - . . ,...- * . , . - -. -. ..-. . -. •, . ,. . . .- . . * . .. ** \-*. '. . , . ,- ,. .. . , - - - ,.., ... , ,' .. " ,, . -,

Chapter 3 -- Design

This chapter presents first an overview of the system's

operation, then the logical design of the system, then its

- physical design, and finally specific characteristics of the

system's hardware and software. The overview section

(Section 3.1) gives a picture of how the system will appear

to a user. The logical design section (Section 3.2)

describes the system's basic capabilities and its global

design characteristics. The physical design section (Section

3.3) provides a more detailed view of the system's structure

- and of its control and coordination characteristics. The

hardware components section (Section 3.4) describes the

hardware that is currently available on the HP21MX DSP

system. The data acquisition program section (Section 3.5)

treats those programs responsible for acquiring the system's

data. Section 3.6 describes the system's data processing

application programs which perform: correlation, covariance,

coherence, convolution, FFT, FIR filter design, IFFT, IIR

filter design, and waveform averaging functions. The data

display program section (Section 3.7) characterizes the

system's data display programs, which transform data into

graphic form. The test section (Section 3.8) lists the test

procedures to be applied to all system programs during

implementation.

..

18

,,~., ~ . . * ~ *** **.*.*******. **.** ~ * ** -

3.1 -- Overview

Figure 1 gives a "user's view" of the HP21MX DSP system.

The user communicates through the User Interface. The User

Interface serves to coordinate and support (with help text,

for instance) the activities of the programs responsible for

the system's real DSP work -- the data acquisition,

processing and display programs. The User Interface prompts

for, collects, edits, organizes, and distributes user

requests to the application programs. The application

programs then acquire, process, and display data according to

the user's requests. They are able to communicate both with

one another and with the User Interface, so that a number of

them may be executing at the same time, passing data through

what might be termed a data pipeline. The user is in control

0of the system at all times, able to start, stop, and alter

the system's activities at will.

19

'°...

.User

User Interface

jData Acquisition Data Processing Data Display
Application Application Applicationj-Programs Programs Programs

Input Devices Output Devices

Figure 1
* User's View of the System

20

3.2 -- Logical Design of the System

v -,>. The purpose of a logical design is to show the flow of

data through a system's components without reference to low-

level physical details such as devices, storage media,

variable names, and specific file names. The logical design

presented in this section is the first attempt to give shape

to a system reflecting Chapter 2's requirements. Data Flow

Diagrams (DFD's) are used here to specify the system's

logical design (DFD's were chosen as the tool for this task

in Subsection 2.1.2). The following subsections describe

their respective DFD's. Again, there are many additional

details given in the physical design section (Section 3.3).

The DFD names and their associated diagram and figure numbers

are:

Diagram Figure
Number Number Name

0 2 Context DFD
1.0 3 GETREQUEST
1.1 4 GET OPTIONS
1.2 5 EDITOPTIONS
1.3 6 SATISFY IMMEDIATEOPTIONS
1.4 7 FORMATREQUEST

2.0 8 SATISFYREQUEST
2.2 9 ACQUIREDATA
2.3 10 PROCESSDATA
2.4 11 DISPLAY DATA

As an example in interpreting DFD's, consider Figure 3

(Get Request, Diagram 1.0). Each circle in a DFD represents

a transformation to be applied to data. A transform may be

some sort of mathematical operation, an edit operation, etc.

In the case of Diagram 1.0, there are four such transforms:

21

p' ;' '. ' "" "' .-.' -<"- .. .'-.--' ;- -

"Get Options", "Edit Options", "Satisfy Immediate Options",

, and "Format Request". The transforms on each diagram are

consecutively numbered starting at 1. The data provided to

the transforms are represented by labelled arrows such as

"Options" (input to Transform 1). Likewise, data which is

being output from a transform following its transformation is

represented by a labelled arrow. "Edited Options " is thus

both an output from Transform 2 and an input to Transform 4.

Boxes represent sources or sinks of data. Here, the user of

the system is a sink for data -- receiving the system's

response to immediate option requests from Transform 3.

Horizontal lines are data files (repositories for data of

some sort, not necessarily disk files) with their names

listed underneath. "Menu File" is Diagram 1.0 data file.

Each of the transforms in a DFD may in turn be further broken

down by a subordinate DFD which further details the sequence

of transforming operations it performs. Each DFD is

identified by concatenating the transform numbers of all of

its superordinates, in order, from the topmost diagram

(Diagram 0) on down. Thus Transform 2 ("Edit Options") of

Diagram 1.0 is further broken down in Diagram 1.2, and so on.
.

Transforms that are not broken down further in subordinate

DFD's have an asterisk inside the circle beneath their name

(neither of the transforms of Figure 4, for example, are

• "broken down further).

22

* *°.*- .** **%** 44. - - ..~' ' ~ : -~ ~

3.2.1 -- Context (0) DFD

This DFD (Figure 2) shows the DSP system in its

simplest, highest-level form. The first data to enter the

system are user requests for services, with the user being

-, prompted as required. Transform 1 (GETREQUEST) is

responsible for handling all interaction with the user, which

includes mostly accepting and editing requests and providing

-\ help. Transform 2 (SATISFY_REQUEST) represents the

collection of application programs available to handle signal

acquisition, processing, and display needs.

Separating the system into these two major pieces is a

natural way of functionally decomposing the work to be

accomplished; the system finds out what's expected of it

(GETREQUEST), and then does it (SATISFYREQUEST).

3.2.2 -- GETREQUEST (1.0) DFD

Within the GETREQUEST DFD (Figure 3), GETOPTIONS

(Transform 1.1) initiates and continues a dialogue with the

user by prompting for user options. The user's options are

normally passed to EDITOPTIONS (Transform 1.2) where they

must satisfy certain criteria before being accepted and acted

upon. If the options selected by the user don't involve any

DSP processing per se, such as requests for help, then the

options are passed to SATISFYIMMEDIATEOPTIONS (Transform

1.3) and satisfied. Accepted non-immediate requests, such as

requests for data acquisition and processing, are finally

passed from EDITOPTIONS to FORMATREQUEST (Transform 4)

23

.4
* ' ** * '- .4

". o ' ,", ' ". '.". " ' . ,• - % .",..' ' - ' ,. ' .*. ' 4 ., ..% '•, ,%'.**. " .% ."

7 77 7 .77 7 r7i M1

04)

S44 U)

a4)

-Sw 0

a)r

4JO

.04-

24)

..
9.4

U.,

"p>

0) 4)

4)A
*10 --4

04 -

4) a)

4J 0

01 41

rz 4 1
00

4).4

r0 0 l
04 41(a(

) 02w)r4-

too
0 0)

*.41

0) a,

01

-Uq

'Uj

~~Q0

0 25

where they are transformed into the form expected by the
application programs to which they apply.

3.2.3 -- GETOPTIONS (1.1) DFD

GETOPTIONS (Transform 1.1, Figure 4) is responsible for

handling all interaction with the user. The user is prompted

for input by DISPLAYMENU (Transform 1.1.1). The prompts

include (as per system requirements stated in Chapter 2)

default values for all requested information. The user's

)responses are accepted by ACCEPTOPTIONS (Transform 1.1.2)

%and then passed on to be edited by EDITOPTIONS (Transform

1.2).

3.2.4 -- EDITOPTIONS (1.2) DFD

The transforms that make up EDIT OPTIONS (Transform 1.2,

Figure 5) are responsible for identifying any unacceptable

user options and for providing appropriate error messages.

DISTRIBUTEEDITOPTIONS (Transform 1.2.1) distributes the

user's options to a particular EDITMENU transform

(Transforms 1.2.2-1.2.N), which is then responsible for

confirming the proper content of that set of options. The

notion of a screen menu is admittedly a physical detail

(treated in section 3.3), but is presaged here for the sake

of continuity. options which are accepted by their editing

module are sent on their way to be made a part of a set of

complete user requests for execution later at the user's

bidding.

"'-26

Ur-4

'-4

S0) 0 41~

-'~4 a) U-

0)0

4-)

* 0

r4

4c-

-l-

272

--. 41

"-4.

to

0

4

0 0

A 4JI
W~U *e-4

w 414

28U

v-

3.2.5 -- SATISFY IMMEDIATE OPTIONS (1.3) DFD

SATISFYIMMEDIATEOPTIONS (Transform 1.3, Figure 6)

takes care of all user services which aren't really a part of

an actual DSP work request. DISTRIBUTE IMMEDIATEOPTIONS

(Transform 1.3.1) gives the user-specified option to one of

Transforms 1.3.2-1.3.7 for action. The first of these,

PROVIDEHELP (Transform 1.3.2), reads a help file containing

text directed toward the current menu which should help the

user in interpreting prompts and understanding more fully the

consequences and limitations of available options.

PROVIDEDIRECTORY (Transform 1.3.3) provides a directory

listing of disk files in case the user has forgotten the name

of one needed for input or wants to ensure that the name

chosen for a new file isn't a duplicate of one that already

exists. The operation of TRAVERSEMENUTREE (Transform

1.3.4) is transparent to the user. Its function is to

coordinate the order in which menus are presented to the

Vuser, taking care of both normal sequencing and express user

requests to deviate from the normal flow of data entry (such

as requests to exit the system or to back up to the previous

menu). SAVEREQUEST (Transform 1.3.5) gathers all of the

user 's options (which cumulatively form a "request") and

saves them on a file for later recall and use. READREQUEST

(Transform 1.3.6) reads in a previously stored request,

treating it is current terminal input from the user.

"" SAVEDEFAULTS (Transform 1.3.7) takes the values which were

provided by the user for the current menu (along with any

29

0
.r4

0

4-) rZ4 U)

W. ~ 41 4.) Q) 0
0 :3 U -4 1-4-

41) .~4.J :3 -q4
u aI) :3 in M r4

)w)4-4 0

.4 D w 4-

-P4 4 > 0)4.)

0 rd Z E-4

404

030

... *%* a ,% .% * '1.* *S%'~"p * S

default values which were left unchanged) and saves them in

the menu file for the current menu, so that they will appear

as the menu's default values until changed again. Note that

SAVEREQUEST doesn't affect default values; it simply allows

a user request to be saved so that when it is later read in,

the values it contains are substituted for the default values

just as though the user had entered them from the terminal.

Similarly, READREQUEST doesn't affect default values except

to replace certain of them for the current terminal session.

3.2.6 -- FORMATREQUEST (1.4) DFD

The FORMATREQUEST transform (Transform 1.4, Figure 7)

is needed to translate user requests from the form in which

they're stored by the user interface into the form expected

by the system's application programs. This is necessary

because (speaking physically again) the application programs

are not required to be consistent in their description and

use of data items. For example, the order of entry or

required type of data values (e.g., REAL vs. COMPLEX) might

vary from one FFT to another. This allowance for data

structure variance from one application program to the next

-I means that programs may be taken from diverse sources and

K integrated into this system without having to rewrite them.

Rather than having each module of the user interface keep

track of the many different forms their data must be in to

satisfy various application program requirements (a

requirement which could mean significant reworking of modules

U. ,31

~~41

4J Z J Z 4 z c

toO (l oO

00 000(n4

E Nr w4 0

.4.4

.4S

.4,y

0 0

4J 0 r

14

VV

32

throughout the system with each newly added application

program), consistent data structures are used throughout the

user interface and translated to satisfy application program

needs by the format transforms. Note that there is one

formatter module for each application program.

CHECKREQUESTFORCONSISTENCY (Transform 1.4.2, still

Figure 7) ensures that requests being sent to different

application programs are consistent. For example, if an

acquisition program is told to provide-512 sample points, and

the follow-on processing program is told to process 1024

points, an incompatability may exist and, if so, must be

corrected before the user's request can be executed. Error

messages (and help if requested) are provided to assist the

user in fixing any problems.

3.2.7 -- SATISFYREQUEST (2.0) DFD

Once a set of user requests has been formed, they are

submitted to SATISFYREQUEST (Transform 2, Figure 8).

DISTRIBUTEREQUEST (Transform 2.1) is then responsible for

parceling out the requests according to whether they are

requests for data acquisition, processing, or display.

ACQUIRE DATA (Transform 2.2) and DISPLAY DATA (Transform 2.4)

will never have more than one request directed to them at a

time, and in fact may not have any directed to them at all

during a given system run. Thus, the system gathers data

from only one source at a time, and provides a graphical

display of its results to only one destination at a time.

33

* SS* 0~5

1%776

0a
W~

z4 (040

U

Z4*
-. (N

ol..

4J." C
U)r r

W 0

4.43

4~~tr

0 0
* .4H

0)
0

"4Q)

36

7S. c.

takes values (samples) from an analog-to-digital converter

. that's hooked up to some real-world signal of interest. Both

GENERATEDATA and SAMPLEA/DCONVERTER can either pass their

data on to a processing transform (application program) or

store it in a file for later use.

3.2.9 -- PROCESSDATA (2.3) DFD

The PROCESSDATA transform (no. 2.3, Figure 10) performs

all of the system's number-crunching, including FFTs, filter

design, etc. DISTRIBUTEPROCESSINGREQUEST (Transform 2.3.1)

Ais responsible for distributing processing requests to their

appropriate processing transforms (application programs) and

for setting up controls so that multiple application programs

executing at the same time cooperate properly. This includes

such things as the passing of data from one process to the

next, and termination of all processes when a fatal error

occurs. Note that each transform may, in general,

communicate in a number of ways. Input data to be processed

may come from another transform (either acquisition or

processing), from a raw (acquired) data file prepared earlier

by one of the acquisition transforms, or from a processed

data file prepared earlier by a processing transform. Output

data may be sent to another transform (either processing or

display) or to a processed data file. In addition to normal

input and output data transfers, parameter transfers are also

supported. Thus, a transform whose output is a set of

I .*" parameters which may be used to control another transform's

37

. .

4-)

Vl

a4)

4) 0 ~ a)u

1444

44-

04 r-44

44

A3

actions on actual data is able to pass those parameters

" directly to the using transform through a data file. An

example of this is a filter design program passing its output

(the filter's defining parameters) to a filtering program.

3.2.10 -- DISPLAYDATA (2.4) DFD

DISPLAY DATA (Transform 2.4, Figure 11) takes acquired

or processed data and transforms it to graphical form before

presenting it to the user on some output device.

DISTRIBUTEDISPLAYREQUEST (Transform 2.4.1) sends the

request to the appropriate display module (of which there may

be arbitrarily many). DISPLAYTOHP2648A (Transform 2.4.2)

handles output which is to be presented to the HP2648

aterminal. DISPLAYTOHPl310 (Transform 2.4.3) is responsible

for output to the HP1310 graphics terminal.

39

4-) 4J 0 r-zr z~x 4J

co

C4 040 * n 04-4 +44-0

4) -ri to

.4'4

JE

.44

>40

.................................... r-4,***~*d

1; 7Z 717717---

V3.3 -- Physical Design of System

Developing a physical design is mainly a process of

translating the logical design into a form which more closely

resembles what the finished software product will look like,

filling in a lot of detail along the way. In general, each

of the completely decomposed transforms specified in the

logical design represents a software module in the physical

design. Certain modules appear in the physical design that

were not a part of the logical design. This is due to the

fact that some modules have fairly physical functions whose

need could not be foreseen at the logical level (even more of

them are added during system implementation for the same

reason).

Structure Charts are used in this section to pictorially

describe the system's physical design in the same way that

Data Flow Diagrams were used to describe the system's logical

design in the last section. In fact, techniques known as

Transform Analysis and Transaction Analysis (Ref 53:176-187)

were used to create most of the Structure Charts from the

Data Flow Diagrams (Ref 53). There are other ways to handle

the transformation of DFD's to Structure Charts, such as

direct linear mappings, but Transform and Transaction

Analysis are the only techniques widely cited and recommended

for use with the Structured Analysis Methodology (Ref 53,54).

Subsection 3.2.5 contains the Structure Charts along with

their descriptions. The data item and module names used in

- :.. the Structure Charts are defined (and cross-referenced to

41

S W *-...'. . g -** ,- . --.. -. -..- .- .-. .- . -

logical design variants) in Data Dictionaries (Appendices F

and G).

Before presenting the Structure Charts, several design

issues are dealt with in subsections 3.2.1-3.2.4.

3.3.1 -- Dialogue Approach

Dialogue with a computer can take many forms, each form

having its own advantages and disadvantages. The most

important concern affecting the choice of this system's

dialogue form is that it be easy to use. Several

* alternatives are listed in Table IV, along with their

advantages and disadvantages (Ref 30).

Among the approaches considered, several had major

shortcomings which led to their being discarded. A natural-

language dialogue would appear to be the best form of user-

interface communication. Unfortunately, such an approach is

extremely difficult to implement. Dialogues using mnemonics

are used in other DSP systems (such as the Air Force

Institute of Technology's ILS system), but require the

operator to be familiar with the mnemonics and their formats.

A dialogue using programming-like statements has merit in its

precision and conciseness, but requires a well-trained

operator with some programming aptitude. The use of

programming languages for user-interface communication

requires a user well-versed in programming, which violates

the requirement that this system be usable by those having

little or no computer experience.

42

Table IV
Dialogue Alternatives

Natural-language dialogue
Advantages: theoretically the most natural man-machine

interface.
Disadvantages: unsuitable where an operator's input must

be interpreted with precision because of the ambiguity
of language. Immense software problems.

Dialogue using mnemonics
Advantages: can be concise and precise.
Disadvantages: operator must be familiar with mnemonics

and formats.
Dialogue with programming-like statements
Advantages: can be concise and precise.
Disadvantages: operator must be well-trained, familiar
with the coding, and have limited programming aptitude.

Programming languages
Advantages: concise, precise, powerful, flexible.
Disadvantages: inappropriate for vast majority of

computer users (non-programmers).
Question and answer dialogues (computer asks operator a

series of questions)
Advantages: very simple for the operator. Simple to
program.

Disadvantages: limited flexibility.
Computer-initiated dialogue
Advantages: can be used with a totally untrained opera-

tor.
Disadvantages: dialogue can be lengthy and slow. Little
flexibility in sequence of operation.

Form-filling dialogue
Advantages: straightforward for operator except for
cursor manipulation.

Disadvantages: less flexible than a "branching tree" of
questions, and error correction procedures less easy.

Menu-selection dialogue
Advantages: simple for the operator. Can be written with
a simple program generator.

Disadvantages: limited in scope.

4 °43

The remaining forms of dialogue (question and answer,

"' " computer-initiated, form-filling, and menu-selection) all

have simplicity of operation as one of their advantages.

Their common disadvantage is limited flexibility.

Unfortunately, there is an inherent tradeoff between novice

ease of use and flexibility which can't be circumvented. For

example, if the user is to be prompted by menus for all4.
input, he is necessarily constrained to entering data in the

order and format dictated by those menus. While some

flexibility should be permitted in the order of data entry,

too much flexibility would present the user with many more

decisions and ambiguous situations than would a tightly

controlled data entry sequence. The developed system will

represent an attempt at achieving a reasonable balance

.* between ease of use and flexibility.

This system makes use of each of the four easy-to-use

types of dialogue. The question and answer and computer

initiated approaches free the user from having to know what

actions are expected -- the user is prompted for input. Each

dialogue interchange with the user is physically centered

around a screen form. This form filling allows data on the

screen to be protected, so that the user doesn't accidentally

erase or write over prompting messages. It also provides a

means of pre-editing, by physically preventing the user from

entering data values containing too many characters.

Finally, each of the forms is presented in a consistent menu

selection format so that the user is always shown all

44

SL- . 4,. .t IL*. - * - -..... . . . -. - .

available options and may always use the same procedures for

S.,2 responding, no matter what the inquiry.

3.3.2 -- Division of User Interface and Application Program
Responsibilities

It may not be obvious why the user interface is given

the tasks of prompting for input, correcting errors (even

those at levels intimately associated with the operation of

specific application programs), and providing default values.

Admittedly, this requires extra communication between the

user interface and application programs. Why not localize

these activities, making each application program responsible

for its own prompting, etc.? One reason for centralizing

rather than localizing is to keep from having to duplicate

the menu generation code involved in prompting. Also, error-

handling conventions are more easily and consistently

implemented when error-handling code is kept together rather

than being divided among the modules served. Another reason

is to decrease the need to tamper with already-developed

application programs that are being incorporated into the

system, so that errors are less likely to be introduced into

them. Finally, centralizing all error correction, etc. keeps

application program size to a minimum, allowing all available

memory space to be dedicated to essential program logic and

data storage (this is important because the memory available
persntiguou (roef i9tper contiguous program is quite limited -- 17K words at

present (Ref 39:6.14).

45

3.3.3 -- Application Program Invocation Alternatives

Once the user interface has gathered the user's

requests, it must arrange for various application programs to

carry out those requests. Table V presents three different

methods by which one program may invoke others on the HP21MX.

The first method, linking programs together into a single

program unit, may be dismissed out of hand because it doesn't

allow arbitrarily large sets of code to be executed (within

the limits of physical computer memory). Such a restriction

would severely limit the system's flexibility in combining

programs for real-time processing. The second method is

program segmentation (Ref 39:4.47). Note that HP uses the
term "segmentation", which usually refers to a sophisticated

memory management scheme (Ref 29:165-181), instead of "swap",

which is really all that's being done (a program or

subroutine is called by and replaces one in memory). The

HP's segmentation scheme may be viewed as a crude form of

overlaying (Ref 29:186) -- crude because all partitions are

fixed in size, all overlaying is explicit controlled by calls

within the programs, and because the overlaying provides a

transfer of control in one direction only (the

overlayed/called program must call back its caller to return

control to it, and control passes to the first executable

statement in the caller rather than to the point from which

it called the o;-rlay). Segmentation may be dismissed

because it is very slow without offering any offsetting

advantages. For maximum flexibility and nearly optimal speed

46

Table V
Program Invocation Alternatives

1. Linked Programs

With the linked program method, all programs that are
needed to satisfy some user request (a program set) are
linked together so that they appear as a single program
unit.

Advantages:

Fast executing method, since programs all reside
in memory together (no swapping or loading from
disk).

.- Disadvantages:

Program set size severely limited (17K words under
present operating system, RTE-III).

Every possible combination of acquisition, proces-
sing and display programs would have to be linked
& stored in a file. Thus a change to one program
might mean having to re-compile and re-store a
great many program sets.

2. Segmentation (Ref 29:4.47)

With segmentation, each program that is invoked
(brought into memory and executed) is loaded into memory
on top of the invoking program. This technique is also
known as overlaying.

Advantages:

No limit on the amount of code which may be exe-
cuted (arbitrarily many program segments may be
successively invoked)

(Continued)

47
V..,' °"" ''. ' '" ' , " ," ." ," ".' ,'."" . " . . , ,$"""' .Z'e .?,"","" ",

-°'o•

04

Table V (Continued)
Program Invocation Alternatives

Disadvantages:

Programs must be loaded from disk before being
executed each time they are invoked; thus, the
process is very slow.

Only one program is executing at a time, so system
resources aren't used efficiently (e.g. data
acquisition and processing could be occurring
simultaneously), which bodes ill for real-time
processing.

CLASS I/O communication may not be used for trans-
ferring data from one segment to the next and for
coordination. Only FORTRAN COMMON is permitted,
the use of which is bad programming practice in
general.

3. Concurrent Programs (Ref 29:4.49)

The HP21MX's operating system (RTE-III) allow several
programs to be executing at the same time, subject only
to memory partition availability. One program may start
another one executing (while it continues its own exe-
cution) by using EXEC calls (Ref 29:3.24).

Advantages:

Program set size limited only by available memory
(segmentation could be used on any programs too
large to fit in a single partition).

Fast method, since programs reside wholly in memory
(no disk swapping) and can make optimal use of
system resources.

Both CLASS I/O and FORTRAN COMMON may be used for
communication between programs.

48

i 4 .-

the obvious choice is to take advantage of the HP21MX

-.-'operating system's ability to perform multitasking, allowing

the system to share its resources among a number of

concurrently executing programs. Those programs may then

communicate either through a special type of memory common

known as system common (Ref 39:1.6)), or through calls to an

operating system message-passing utility (a service known as

CLASS I/O (Ref 39:1.10)).

3.3.4 -- Interprocess Communication Alternatives

While it is clear that CLASS I/O and system common are

the best means of communication between concurrently

executing application programs, it is not clear how data
d.

should be held and passed by the various user interface

modules (which together form a single program).

A memory space problem arises because of the user

interface's need to retain all of the default and current

values for each of arbitrarily many menus (if current values

were not retained, then the user would lose any changes made

to the default values of a given menu if he left that menu

page without calling for its execution). Default values are

kept in the MD(NNN) files, and so need not be kept in memory.

It would be preferable to keep the current values in memory,

so that file access wouldn't be necessary each time the user

changed menu pages. However, in light of the fact that a

single menu page's entries could well amount to hundreds of

characters, this would restrict future expansion potential

*49%:

4..49.

rather severely. Therefore, each menu page's current values

are kept in a CV(NNN) file. Since the HP21MX system has a

hard disk, access time should be acceptable.

With the current values stored in files, there is no

need for the explicit passing of dozens of variables which

would otherwise be required. Another benefit gained is

reduced data name duplication. For instance, many of the

menus require a "Number of data points" entry. If all

current values were retained in memory, each would have to be

assigned a distinct name so that consistency checking could

be performed (the user may actually want to have one module

providing more data points than another is accepting). This

could lead to a lot of confusion, and ultimately to nearly

meaningless data names. Keeping current values in files thus

allows the same consistent data name to be used with the same

,J data item throughout the system, with different values given

their full meaning through context (the name of the file in

which they're stored).

3.3.5 -- Physical Design Structure Charts

In this subsection, Structure Charts with accompanying

remarks are presented for the entire system. Many of the

Structure Charts (especially those at the higher levels)

contain modules which have already been described at some

length in the logical design section (Section 3.1); for

those, all that is added here is module and variable names

50

* . . . - .-

that correspond to their actual program counterparts. Other

modules are presented for the first time in this section.

Many of the module and data names in the following

section may seem a bit cryptic. The shortness of module and

variable names in all physical descriptions of the system is

an unfortunate consequence of using HP's version of the

FORTRAN programming language, which (as is the case with most

FORTRAN's for variable names) restricts variable names to at

most six characters and program/subroutine names to at most

five unique characters. It may be helpful to refer to the

Data Dictionaries (Appendices F and G) when trying to relate

logical names (from DFD's) to the actual shortened physical

names used in Structure Charts.

3.3.5.1 -- DSP Structure Chart

The first structure chart, DSP (Figure 12) provides the

same global view of the system's physical structure as the

context DFD did of the system's logical sti:.ucture in

subsection 3.1.1. All of the modules on this chart perform

almost pure managerial functions. They instigate and
%"

coordinate the activities of the lower-level modules doing

the actual work. The DSP module, at the top, calls first
-4

GREQ and then SAREQ again and again to (respectively) get and

then satisfy user requests until the user asks to exit the

system or a fatal error occurs. GREQ first calls GOPT to get

the user's options (building blocks of a request), then EOPT

to edit the requests, and finally (if the options passed

51

.. 4 "

H 4

z 140 n13

000

u i

.a4

4,~ ~ r3 oio0 f -'-

c z CAlz z4

.44

.44

$4 4

Inz

'-H W
4.4 ... 4-

L - -. 0 zu

44% 52 0

'..

their edits) FREQ to format the disparate options into

coherent requests which are then passed in files to

application programs to direct their activities. Once GREQ

has successfully gotten the user's request for services, DSP

calls SAREQ to satisfy the request. SAREQ looks at the

* * parameters it has been provided and determines the nature of

the user's request. If data acquisition (e.g. A/D

conversion) is to be performed, ADATA is called to start the

appropriate data acquisition application program running. If

data processing (e.g. data transform) is to occur, PDATA is

called to start the appropriate data processing application

program(s) running. And if data display (graphics, etc.) is

part of the request, DDATA is called to start the proper data

" display application program running. All of the application

programs are provided with information that allows them to

communicate with SAREQ and with the other concurrently

running programs, and are held in an idle state until each of

i. the other application programs have been initiated and are

ready to accept/provide data.

3.3.5.2 -- GOPT Structure Chart

The next structure chart, GOPT (Figure 13), shows the

major modules involved in writing prompts to the terminal

screen and accepting the user's responses (and default

values) returned. Each time GOPT is called, it first calls

DMENU to display a menu. Once the menu has been displayed,

X AOPT is called to poll the terminal and accept the block
of

r 4. *53

-~~-4 .40 . A . .V -.

-. 9

,.9

PCW
z x T4A

10411

rz ,,,,II

..-.. ,z 4 4J

Ig4z4 E-

00

44 .- :D

rzz

54• , , , ,. . . •.- , ,- '-4 ,°-, .,. - ,/• - .-
.7,I. -.9 -" a i A' d I i .

options returned. Before returning control to GOPT, AOPT

checks to see if the user initiated the data transfer by

hitting one of the terminal's programmable function keys,

which would indicate that the user wants to have some sort of

-an immediate service performed. If on of the function keys

has been hit, and if it is one to which an immediate option

meaning has been assigned (such as a request for help), SIOPT

is called to satisfy the user's immediate request.

3.3.5.3 -- DMENU Structure Chart

The DMENU structure chart (Figure 14) shows the modules

that take a menu definition stored in an MD(NNN) disk file

and translate it into a screen menu. BORDR first draws a

border around the screen. Then each of the PREC(N) modules

is called in turn repeatedly to handle its respective MD(NNN)

*record type for each of arbitrarily many record groups.

PRECI reads type-l records and positions the terminal's

cursor according to row and column coordinate pairs found in

* -. them. PREC2 reads type-2 records and turns on the terminal's

inverse video function if instructed to. PREC3 reads type-3

records and writes out the prompting text found on them.

PREC4 reads type-4 records to find out the length of the

field to be provided for the user's response to that

particular prompt (which is also the length of the field to

contain the system's default value for that prompt), and

passes the length on to PRECS. PREC5 reads type-5 records to

. ... c.. find out whether or not the user wants the default value to

55

z r 4 u,
-'W

-4

% z

z.. 4)

*5, rz~44

U N4

0 u5

W5 w

.44

56
* * * - . N

.

5,*5.***0 Ix4 a a .- S~.55,55 ~... . .. * .* . * . . ~ * . .

be printed in inverse video, and sends attribute characters

to the terminal accordingly along with the proper number of

spaces for the default field. PREC6 is called repeatedly

-. after all of the response fields have been set up, and reads

,- type-6 records containing default values. PREC6 then writes

the default values to the terminal, which automatically

'- places them in the default fields in the order they are

received.

3.3.5.4 -- SIOPT Structure Chart

The next structure chart, SIOPT (Figure 15), contains

the modules responsible for satisfying immediate options such

as requests for help or directory listings. SIOPT calls the

appropriate module based on the values of flags passed to it

by AOPT (see Figure 13). HELP is called to give additional

information about the menu the user is faced with. The user

may browse through the help text (there may be many pages)

until ready to return to the menu that was left. DIREC

provides listings of different file types to help the user in

choosing or remembering a file name for some menu response.

The directories are either sent to the terminal or placed on

a file from which they may later be listed. SVREQ gathers

all of the options that the user has entered so far (from the

CV(NNN) files which have been receiving them) and forms them

into a request file which may later be read and accepted as

though the user had just typed in all of those same options.

REREQ reads a request file created by SVREQ and places the

57

*6-°

-E-

z

u E-

r2-I

U. >

4.7

*e- 4.

IZ P-4

W 4

4458

-. ~~~~~~~ O* l. .%% .~ ,~% ~)- ' ~ \ . ~ - .. ~ ***% *-.i*~*-

options it contains into appropriate CV(NNN) files so that by
,all appearances the user has just entered those options from

the keyboard. SVDEF saves the system's current values (which

are simply the default values originally read in with any

changes made by the user) as its new default values.

Finally, TMENT figures out which menu should be displayed

next (each menu is assigned a unique number), according to

whether more options are required to complete a pending

request, whether the user has asked to back up one menu, etc.

TMENT does this by examining a data file (MENUTR) which

contains data associating the menus in a tree-like fashion.

3.3.5.5 -- EOPT Structure Chart

In the EOPT structure chart (Figure 16), we see that

6 EOPT has a set of editing'modules that it may call upon to

check the validity of the user's responses in a particular

menu. Each of the edit modules is uniquely associated with a

single display menu. Thus EM001 is called to edit menu

number 1, EM002 is called for menu number 2, etc. The

EM(NNN) modules' only responsibility is to return an error

flag (FGEDIT) signifying whether the options edited were good

or not.

3.3.5.6 -- FREQ Structure Chart

The FREQ structure chart (Figure 17) shows the three

groups of modules that FREQ controls, each of the groups

being responsible for formatting the request for a particular

type of application program, either acquisition, processing,

59* ,-.- -. ;..-

-- . . - . *~**v a ~~*. ... *.*.*.

.E-1

rt4

r1-4

-E4
a)4 -

0 4 4J

44.4

Q 0

IZE-

60

V~ E '~ *' ~ .

qz

0 44

z 4-I

rIT4
Im~

rZ4 44J

zz

44*

'r-4

.5,

-I-

61

-I.

or display. FREQ determines which of the modules it must

- - call by examining the data items ACQNO, PRONO, and 7)ISNO;

they contain numbers identifying, respectively, the

acquisition, processing, and display application programs

which must be invoked to satisfy the request. The numeric

portion of each formatting module's name uniquely associates

the module with a particular application program (which has

the same number as part of its name). The FA(NNN) modules

format requests for data acquisition application programs.

. For example, FA001 formats data for the program AD001. The

.4

FP(NNN) modules format requests for data processing

application programs. For example, FP005 formats requests

for the data processing application program PDO05. The

FD(NNN) modules format requests for data display application

programs. FDO01 formats requests for the application program

DD001, etc. The final module on the chart, CCONS, ensures

that all of the various parts of the user's request are

consistent. For example, if an acquisition application

program is called upon to provide data to a processing

application program, that processing program must have been

specified as part of the overall user request. If it wasn't,

and the user tries to execute the request, CCONS will point

out the inconsistency and force the user to go back and

reconcile it.

.462
.. ,

" 62

.-4 , . - •
4 .'

4
I.. .*"-.', ' .. .,. . ," ," " .- . " ."% " , . , "."' . - . ..' . " .

3.3.5.7 -- ADATA Structure Chart

ADATA is responsible for executing data acquisition

application programs, as shown by the ADATA structure chart

(Figure 18). ADATA determines which acquisition program is

to be executed based on the value of the data item ACQNO. If

ACQNO equals two, for instance, then the user has requested

some function provided by acquisition program number two.

ADATA invokes the requested program, passing it communication

parameters (ACQIO and PROIO) that enable it to communicate

with SAREQ (which remains in charge of the overall process)

and any data processing acquisition program to which it is to

provide its data.

3.3.5.8 -- PDATA Structure Chart

The PDATA structure chart (Figure 19) diagrams PDATA's
control of the data processing application programs. PDATA

looks at the data item PRONO (which is an array) and invokes

each of the processing programs whose identifying number is

found in PRONO. An arbitrary number of processing programs

may be invoked during a given request satisfaction; each is

provided with communication parameters so that it may pass

data and control information back and forth with other

processing application programs and with SAREQ (things such

as processed data and completion signals).

3.3.5.9 -- DDATA Structure Chart

", The last structure chart, DDATA (Figure 20), shows the

control relationship between DDATA and all of the data

63

".'. ; '. '.' VV. 2.'. • "" .' .. k "-." -.".."...'"....."..".'."..."".."..".".....".....-......'...."...-...".".-..-'."......." -"..-*, ..

S.7 W .- r. 7k

7

Pr4J

.4.4

E- 4 4

'4$4

44%

.4,4

4'N

.4,0

4' . 4 *' 4 4,.4 *r4 .

V 4 4 4. .~4 . 4

0 H- 0 04C z -.H oX z

OI H
a 0H00

rz 4 1

'.4

E-4 o 1

I .u0o 4)

00

I~~ I) 0 .H- En

a A

.P1

65

0 0

10 z

014J

.4.4

Cu

G41

rz4c

. -. ... 66

display application programs. As with ADATA and PDATA, DDATA

is responsible for executing application programs requested

by the user. Which one is executed depends upon the value of

the data item DISNO, which should be equal to the numeric

portion of one of the display application programs' names.

Again, communication parameters are passed to the display

program that is invoked so that it may be controlled by SAREQ

and (in this case, possibly) accept data from data

acquisition or data processing programs.

6

*0

W . __ .

3.4 -- Hardware Components

This section describes the makeup and configuration of

the major hardware components needed to support the DSP

software system at least minimally. All of the hardware

described here was present at the time system implementation

began. Recommendations for additional hardware are presented

"* in Chapter 5, and Appendix C contains an exhaustive list of

all the system's hardware.

The following paragraphs list the system's major

hardware components along with brief explanations of their

importance.

Computer: The system's central processor is an HP 2108A

16-bit microprogrammable minicomputer with 80K words of

memory. Its Direct Memory Access (DMA) capabilities and

Input/Output (I/O) flexibility are essential for real-time

applications. DMA permits data to be acquired and placed in

memory by the computer's Dual Channel Port Controller (DCPC),

freeing the Central Processing Unit (CPU) to perform

concurrent, independent tasks. The computer's I/O facilities

(in particular its rearrangeable I/O card slots) allow a wide

range of external devices to be interfaced directly to the

system's main data bus, which means that DMA data transfers

and low-level device interaction with the system are easily

implemented (both are common requisites for real-time

" ~. systems) (Ref 23).

" Mass-Storage: The system has an HP 7906 hard disk

drive. This is a 20-megabyte unit with two platters, one

68

fixed and one removable. Using DMA, this unit provides and

accepts data at rates that make real-time data acquisition

and storage a possibility. Its speed also makes feasible the

use of data files for relatively fast communication between

executing processes -- a crucial ability in a system handling

large amounts of data whose limited address space (17K words

at present) makes concurrent processes almost unavoidable.

• " Console Device: An HP2648A graphics terminal serves as

the system's console device. This is the device through

which the user interacts with the DSP system's user

interface. Many of the system's objectives could be realized

with a less capable terminal, but the abilities of performing

direct cursor addressing, defining protected fields, and

performing block data transfers are necessary for the menu-

driven interface format that best meets the system's ease-of-

use goal.

Hardcopy Output: A Heathkit H-25 printer allows the

user to produce high-quality hardcopy output at a reasonable

speed (60 characters per second). Without such a printer,

documentation and system development efforts would be much

more difficult, much less reliable, and much more time

consuming.

3.5 -- Data Acquisition Application Program Characteristics

This section describes the characteristics of

application programs (as opposed to user interface programs)

responsible for acquiring the DSP system's data. Data is

69

) '< .'..'t'."."'b 2 '.,!''.€ ,2 ¢L ,'''.,''?'.'" " . -' -" i.< i. . * *5.' **...*.** . --) 2-) -Y v ° -

-'I,-

acquired either from external sources, such as an Analog-to-

Digital (A/D) converter, or from an internal generating

function, such as a random number generator or FORTRAN

library sinusoid. Each of the programs is capable of passing

its data to a concurrently-executing program (for processing

or display) or to a data file.

3.5.1 -- AD001 (Generate Data)

The data acquisition program known as AD001 generates

data using a two-term linear combination of sinusoids. The

4user's options include: the number of data points; the scale

of each sinusoid term; sinusoid frequency; sampling

-. frequency; and phase shift.

The SIN data generated is defined by

(1) f(n) = [aSIN(27rn/b+0 1) + cSIN(27n/d+02)]

-.' where N is the number of data points, a and c are scaling

factors, and 01 and 02 are phase shifts. b and d are

related to the sinusoid frequencies w1 and w2 and to the

sampling frequencies Fs1 and FS2 (all input by the user

as options) by

(2) wI = FsI/b and

(3) w2 = Fs2/d

3.5.2 -- AD002 (Sample A/D Converter)

AD002 acquires data for the DSP system by sampling the

analog signal via an A/D converter. The user's options are:

70

'K%

sampling rate (Hz); number of sampling points or continuous

... sampling; and data to file or directly to concurrent

application program.

3.6 -- Data Processing Application Program Characteristics

This section describes the characteristics of certain

programs taken from the IEEE's body of published DSP software

. (Ref 13). These programs process the data acquired by the

data acquisition application programs of Section 3.4, and so

are known as data processing application programs (as opposed

-to data acquisition or display application programs). They

are termed application programs to distinguish them from the

system's user interface. Any changes made to these programs

* during implementation are noted in Chapter 5. Of course, all

of the programs will have to have at least I/O,

communication, and coordination code added. The programs are

treated here in essentially the same order as they occur in

Table III. They are identified by both their Reference 13

and DSP system names.

C.

3.6.1 -- PDO01 (Correlation and Covariance)

The first application program is from (Ref 13:2.2), and

has the name PDO01 in this system (it is called CMPSE in

Reference 13). It provides an estimate of the auto-

correlation function of a signal, the auto-covariance of a

signal, the cross-correlation between two signals, or the

cross-covariance between two signals, using FFT techniques.

.7. All of these functions are time-domain measures of the amount

71

of similarity between a signal and itself ("auto-") or

S.. between it and another signal ("cross-"). An estimate of the

power spectrum of the signal (obtained by computing the

discrete Fourier transform of a windowed version of the

correlation function) is also provided. Figure 21 shows a

block diagram of the signal processing within the program.

"(X)" is the windowing operator w(m).

x(n) Use FFT to
--- > compute R i(m) --------- S . (k)
y(n) estimates of ---- ----- >(X)-->j FFT I -- - --- >
--- > correl./covar. 0<--m<=L-I ----

function
+-------------

(Figure 21)
Block Diagram of Correlation/Covariance Method

In the general case there are two input signals, x(n)

and y(n), which are defined for the interval 0 <= n <= N-1 (N

being the total number of data points provided). Outside

this interval x(n) and y(n) are assumed to be zero. The

correlation function Rxy to be computed is defined as

N-l-m
(4) R (m) = (1/N). (x(n)-x)(y(n+m)-y)

n=0

where 0 <= m <= L-l, L is the desired number of correlation

values (known as lags), and R and are the estimated means

of x(n) and y(n), i.e.,

72

N-I
(5.-) x = (I/N) x(n) and

S"n=O

N-i
(6) y = (1/N) ny(n)

n~o

For covariance function estimates, these means are subtracted

2; in Equation (4). For correlation function estimates, the

means are not subtracted in Equation (4). To obtain the

power spectrum estimate from the correlation function, one of

two procedures is used. For x(n) = y(n), i.e., auto-

correlation/covariance, the windowed auto-correlation

function R (m) is created as:
.

(7) R (m) = R(m)w(m) 0 <= m <= L-1

= R(xx(-m)w(M-m) M-L+l <= m <= M-1

= 0 otherwise

where w(m) is a symmetric finite duration window which tapers

R xx (m) to 0 as M (the size of the FFT) tends to L-1. If

4 x(n) <> y(n), i.e., for cross-correlation or covariance, the

signal R xy(m) is created as:

(8) R xy(m) = R xy(m)w(m) 0 <= m <= L-1

= 0 otherwise

where w(m) again represents a finite duration window (either

rectangular or Hamming).

.73

* 73

4 %,'J- .% .'.. • - .-. '.- .. '... • 4 . , '.. , ,, ' , 4 . .-4 -

3.6.2 -- PDO02 (Coherence)

The second application program is known as CCSE in (Ref

13:2.3), and as PDO02 in the DSP system. It provides
V 4

estimates of auto and cross power spectral density functions

together with coherence and generalized cross correlation

functions. For the purposes of this system, it is useful

because it is the only program in Reference 13 to provide

coherence function estimates. Other smaller, less complex

programs are used to provide the other functions it is

capable of. PDO02"s first step is to segment the two digital

waveforms it is provided into N segments, each having P data

points. Second, each segment is then multiplied by a smooth

weighting function. Third, the z-transform of the weighted P-

. point sequence is evaluated on the unit circle in the Z-

plane. The two-sided z-transform of an infinite sequence may

be defined as

(9) Xn(z) = Xn(P)z-P, n 1
i : p=-o

where z is any complex variable. Y (z) is defined

similarly. Since Xn (p) and yn(p) are typically finite in

duration, the infinite series in Equation (9) becomes finite.

VEvaluation of the z-transform at P equally spaced points

around the circle yields the discrete Fourier transform or

DFT

*74

-a-

(10) X (k) = Xn(p)e-J2 pk/P

In the fourth and final stage, the discrete Fourier

coefficients X (k) obtained in the third step are used to

estimate the elements of the power spectral density matrix by

averaging "raw" power spectral estimates over all the N

segments. The magnitude squared coherence estimate we are

interested in is then computed from the spectral estimates.

The spectral estimates are defined as

N 2
(11) Gxx(k) = c g L Xn(k)Jgn=l

n(_N_ Gn(k)J 2 and
(12) Gyy(k) = cg L an

N .
(13) G xy(k) = c g X (k)Y n(k)

with the constant gain

1
(14) Cg = ,E F

, (Nf SP)

a,

where fs - sampling frequency and "*" indicates complex

conjugation. The estimate of magnitude squared coherence

(MSC) is

si-

(15) C (k) = I G y (k) 1
* ~xy [G (k)G (k)]

. xx yy

... 75

3.6.3 -- PDO03 (Convolution)

-'q . The third data processing application program in this

system, PDO03, is an FFT-based convolution program taken from

(Ref 13:3.1) where it is known as FASTFILT. PDO03 uses the

overlap-add method to perform the digital filtering

operation. PDO03 filters the digital signal provided to it

according to a set of impulse response values that the user

defines. In general, the convolution operation may be

defined on two time-domain signals x(n) and h(n) as

N-I
(16) x(n)*h(n) =.x(k)h(n-k)

k=O

where "*" is the convolution operator and N is the number of

signal values. Three basic steps are involved in convolving

a pair of signals. First, the Discrete Fourier Transforms

(DFT's) of the two signals are computed using a Fast Fourier

Transform (FFT) algorithm. Second, the transforms of the

signals are multiplied together at all pertinent frequency

points. Third, the inverse transform of the product is

computed, again using an FFT algorithm, producing the desired

convolved output signal (Ref 47:285). Since this program

uses the convolution method to perform filtering operations

on a single time-domain signal rather than to perform general

convolutions on pairs of time-domain signals, it expects not
two time-domain signals but rather a time-domain signal x(n)

and the frequency-domain description of the impulse response

"A """ characteristics of the filter to be applied to the signal.
°o . .. •

~76

.

Thus h(n) in Equation (16) is supplied to the program having

been transformed already to the frequency domain by something

such as a DFT, or having been specified directly by the user.

3.6.4 -- PDO04 (FFT)

The fourth data processing application program, PDO04,

is an implementation of the Fast Fourier Transform (FFT)

algorithm. The FFT is, as its name suggests, a fast method

of performing the Discrete Fourier Transform (DFT). The key

to its speed lies in the identification and systematic

elimination of redundancy in the calculations executed by the

DFT (Ref 10:408). A large number of different FFT programs

are available in Reference 13. Each favors a particular set

of functional capability decisions, with most of the

decisions requiring that a tradeoff be made. For example,

the most efficient FFT programs (in terms of execution speed)

are also the ones that require the most memory space.

Likewise, being able to operate on complex-valued input

signals or on signal sets not having some power-of-two number

.. of elements adds to the complexity and size of the programs.

PDO04 is one of the smaller FFT programs, known as FAST (Ref

13:1.2-1). It operates on real-valued input data, and the

number of data points provided must be a power of two (such

as 210 = 1024). The operation performed by PD004 may be

"* defined as

N-I i2rk/N
(17) X(k) = x(n=0

77

where x(n) is real, X(k) is complex, and k=0,l,...,N/2. Only

(N/2+1) complex DFT values need to be computed and stored

* because x(n) is real and by symmetry

(18) X(N-k) = X (k)

for k = 0,1,...,N/2 with "*" denoting complex conjugation.

3.6.5 -- PDO05 (FIR Filter Design)

The fifth data processing application program, PDQ05, is

a program for designing Finite Impulse Response (FIR) digital

filters. Its Reference 13 name is EQFIR (Ref 13:5.1). PDO05

uses the Remez exchange algorithm to design linear-phase FIR

digital filters with minimum weighted Chebyshev error in

approximating a desired ideal frequency response. It offers

0 Gsome of the more common ideal filter types such as multi-

band, bandpass, Hilbert transform, and differentiators. The

. frequency response of a general FIR digital filter with an N-

point impulse response {h(n), n = 0,1,...,N-1} is the z-

transform of the sequence evaluated on the unit circle, i.e.,

N-1(19) HMf)= H(z)l j 2rf = h(n)e -j2 nf()f= z = e n=0

The frequency response of a linear-phase filter (the type

PDO05 designs) may be written as

(20) H(f)= G(f)expV C --)2f27r

4. 784.-

where G(f) is a real-valued function and L = 0 or 1. There

are four cases of linear-phase FIR filters to consider,

differing in the length of the impulse response (even or odd)

and the symmetry of the impulse response. The form of G(f)

in Equation (20) depends upon which of the four cases is

being used. All four of the cases are combined into a single

algorithm in this program, so that a only one central

computation routine (based on the Remez exchange method) is

needed to calculate the best approximation in each of the our

cases.

3.6.6 -- PDO06 (IFFT)

The sixth application program (PDO06) is an

implementation of the Inverse Fast Fourier Transform (IFFT)

algorithm. The IFFT is a fast means of computing the Inverse

Discrete Fourier Transform (IDFT). It relies on the

identification and elimination of redundant computations for

its speed (just as the FFT does). PDO06 is taken from

Reference 13, where it is known as FSST (Ref 13:1.2-1). As

in the case of the FFT, there are a number of IFFT programs

to choose from. PDO06 is similar in its capabilities and

level of complexity to PDO04 (the FFT pro.gram). It expects

complex-valued input data, provides real-valued output data,

and the number of signal data points to be transformed must

be some power of to. The IDFT may be defined as

IN-1
(21) x(n) = - X(k)e 2 nk/N

N k=O

79

where X(k) is complex, x(n) is real, and n = 0,1,...,N-l.

-. .. Since X(k) has complex conjugate symmetry around k = N/2,

only (N/2+I) complex values of X(k) are actually needed to

compute the N values of x(n).

3.6.7 -- PDO07 (IIR Filter Design)

PDO07, the seventh data processing application program,

is a design program for Infinite Impulse Response (IIR)

filters. It is found in Reference 13 under the name of EQIIR

(Ref 13:6.1). PDO07 is capable of handling these filter

types: lowpass, highpass, symmetrical bandpass, and

bandstop. The types of approximation available are the

maximally-flat magnitude (Butterworth), the Chebyshev types I

and II, and the elliptic (Cauer) forms. In addition to

providing filter approximations, the program also minimizes

coefficient wordlength, optimizes noise performance, and

- allows the user to analyze filter performance by providing a

cascade-realization transfer function.

3.6.8 -- PDO08 (Waveform Averaging)

PDO08 performs waveform averaging. It accepts a number

of sets of data values (each of these sets being called a

frame) and maintains a point-by-point running average. The

frames may be from a data file, or they may be provided as

real-time data by a data processing application program.

PDOO8 is useful for allowing comparisons between a signal's

long-term average characteristics and its single-frame

S.-. characteristics. Since PDO08 can supply its output to either

80

.. 4 e. e. ~44(** ~ *****

W V

"d a data file or another application program, a graphical

picture of a signal's gradually stabilizing average may be

formed in real time by sending PDO08"s output to one of the

data display application programs (DD(NNN)).

PDO08 is the only data processing application program

described in this section that is not taken from Reference

13.

8

p0

,81

4' '' ; , 2 , . , ,, " . . . °*. ,j4 - . *5.

3.7 -- Data Display Application Program Characteristics

This section describes the application programs

responsible for displaying DSP data to the available HP21MX

DSP system graphics devices. The programs can take their

input from either a concurrently-executing application

program (acquisition or processing) or from data files. Each

-. of the programs is tailored to work with a particular

graphics device.

3.7.1 -- DD001 (Display to HP2648A)

DD001 takes DSP data and displays it graphically on the

HP2648A terminal. The user's options include: number of

data points per block; number of blocks; real or complex

data; and if complex data, display real, imaginary, or

magnitude values.

3.7.2 -- DD002 (Display to HPl310)

DD002 takes DSP data and displays it graphically on the

HP1310 terminal. The user's options include: data from file

or from a concurrently executing application program; X and Y

axis labels; number of grid lines per axis; and minimum and

maximum X and Y values (again required only if scaling is

desired).

3.8 -- General Testing Procedures and Criteria

This section describes the general procedures to be

followed and the universal criteria to be met by all software

modules during system testing. A complete test plan,

82

'-I. J

orJ . t. W . . V - -

including more specific tests directed toward individual

* :.'-*~ modules, together with the results of all tests, is found in

Appendix J. The testing philosophy adopted in this thesis

effort is that "Testing is the process of executing a program

with the intent of finding errors" (Ref 32:5).

Testing will be performed on modules as they are

implemented (in accordance with the top-down method of system

development), starting with the top-most control modules in

the system's structure (see the Structure Charts in

Subsection 3.3.5) and proceeding level by level. All of the
procedures and criteria in this section are to be applied to

every module, without regard for the detailed logic the

module may contain. Such testing is known as "black box"

testing (Ref 32:8-9), in light of the fact that the module is

treated as a box closed to the view of the tester. The more

extensive tests given in Appendix J are designed with a full

knowledge of each module's contents, and are thus known as

"white box" tests (Ref 32:9-11). In general, the black box

tests concentrate on catching commonly occurring errors, such

as the failure to properly handle input values located on the

boundary of a range of permissible values, or the inability

to properly handle termination/error conditions. White box

Stests, on the other hand, probe more than just the obvious

gross functionality of a module. They are meant to locate

subtle, unpredictable errors that are usually the result of

combinations of coincidental oversight in the detailed logic

structure of the module. Such errors are often discovered by

83

A

exercising the module with data that causes the module's code

to be executed exhaustively -- every possible path (and

perhaps combination of paths) in the code is executed.

Unfortunately, truly exhaustive testing is virtually

impossible with non-trivial systems (Ref 32:8-11). For the

purposes of this system, an intelligent balance between

completeness and time required will be sought by choosing

those test methods which have been shown to have the highest

probability of discovering errors (Ref 32:36-37), while

coming as close as possible to exhaustive testing.

Once a module is coded and compiles without errors, the

procedure for testing it is as follows:

1) The module is examined to ensure that it is

completely, clearly, and accurately documented. This is done

with the belief that internally documenting a system is

extremely important (especially with a system that's

evolving), and is much more difficult, too easily slighted,

and error-prone if put off until the system is complete.

2) All modules subordinate to the module being tested

are "stubbed". That is, dummy subordinates are created to

accept and return the parameters needed to permit the proper

operation and evaluation of the module unde' going testing.

3) A set of test cases is defined. Each test case

should specify the conditions under which the test is to take

place, the data to be provided the module (an exact image if

that is practical), and the exact behavior (especially in the

case of error conditions) and results expected from the

84

.3b

. ° ..- . , -' "/% ", - ".. a . . '-°.'."- -. "."".4 --' ". - .- .C --.-.-

module. The characteristics of any required stubs should be

-" .included. The tests should cover both white and black box

cases.

-5 4) The tests are performed, with changes made to the

module until it performs satisfactorily. Each change or

group of changes made to a module results in a new version

number being assigned to the module. The module's final

version number and the date on which the tests are

successfully passed are then noted in Appendix J.

5) The module is installed into the system, and testing

continues with any modules that remain at that level in the

structure chart before proceeding to the next level. Any

subsequent changes (other than purely cosmetic) made to a

validated module will require it to be retested.

These are the black box tests every module should be

able to successfully pass (as applicable):

1) Every data item provided to the program should be

assigned values at the lowest, mid, and highest limits of its

range, if it is to be so restricted. This is known as

boundary-value analysis (Ref 32:50-55).

. 2) For each input data item which may occur arbitrarily

many times, a test should be performed with no occurrences, a

typical number of occurrences, and a large number of

occurrences of that data item (this is also a ,-art of

". boundary-value analysis).

3) All numeric items should be assigned alphabetic

values, and all alphabetic items should be assigned numeric

85

* s..f

. . 04 . - • ° o -.- .. -, , . . . *--. . . -o - - .j . ~ .. . -_

values to test the error-handling abilities of the module.

• " "4) For each file the module uses, a test should be

performed with the file in existence and without the file in

existence to test the error-handling abilities of the module.

5) For each external device the module uses, a test

should be performed to confirm that the module handles the

device's absence/unavailability properly.

6) Any other test thought likely to detect an error

(based solely on a knowledge of the module's specifications)

should be performed; this intuitive strategy is know as

error guessing (Ref 32:73-75).

These tests may be combined if they are clearly

independent, if their interaction is necessarily a part of a

meaningful test, or if equivalence partitioning (Ref 32:44-

50) is being used to reduce the number of test cases needed.

Other black-box testing methods are certainly possible, such

as simple random data entry, and may be performed in

individual cases as warranted (Appendix J documents them).

The methods listed are simply some of those with the highest

probababilities of detecting errors (Ref 32:36-37).

3.9 -- Design Summary

This chapter presented first (Subsection 3.1) an

overview (user's view) of the system. Subsection 3.2 then

presented the logical design of the system via Data Flow

Diagrams (DFD's) and accompanying descriptions of the

system's basic data transformations. Next the physical

86

• S - . .o .V° . , , . . .-

design was presented (Subsection 3.3) with structure charts

and descriptions of the actual physical modules responsible

for carrying out the system's operations. Then in Subsection

3.4 the system's essential hardware components were described

and their importance justified. Subsection 3.5 described the

system's data acquisition application programs. Next

(Subsection 3.6), the system's data processing application

programs were described somewhat abstractly through

discussions of their basic characteristics accompanied by

mathematical statements of their function. In Subsection

3.7, the system's data display application programs were

treated. Finally (Subsection 3.8), the system's general

testing procedures and criteria were presented as informative

forerunners of the complete test plan (with specific testing

criteria and test results) found in Appendix J. The next

chapter, Chapter 4, now deals with the implementation and

*' testing of this chapter's design.

'87

a.

Chapter 4 -- Implementation and Testing

This chapter describes the system's implementation and

Vtest results. Section 4.1 presents difficulties that were

- encountered with the system at the beginning of the

implementation and testing phase. Section 4.2 takes a broad

look at some of the first and most basic implementation

./ decisions and discoveries. Section 4.3 portrays the User

Interface's implementation and testing, with emphasis on

several module groupings. Section 4.4 then describes the

implementation and testing of the system's application

programs, with one subsection for each of those implemented.

., Finally, Section 4.5 summarizes the implementation results.

Note that this chapter contains test summaries; complete

specifications of test conditions and results are found in

Appendix J.

4.1 -- Initial System Difficulties

The start of system implementation was delayed because

of equipment failures suffered by the HP21MX computer and

some of its peripherals (the computer was down for a total of

nearly two months). Relating the lessons learned while

restoring the system to service may help in correcting or

preventing similar problems in the future. First, problems

with the system's disk drive (which prevented the system from

-" starting up properly) were blamed on the disk controller.

Several of the controller's cards were replaced. Later the

same problem resurfaced, and the cable connecting the disk

88.%°%

HD-RI38 232 DEVELOPMIENT OF A REA -TItE GENERAL-PURPOSE DIGITAL 2/4
SIGNAL PROCESSING LABO..U) AIR FORCS INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. J W BENGTSON

UCASIFIED DEC 83 AFIT/GCS/EE83D3 F/G 9/2 NEhhhh son hS o hhohiI
EhmhhmhhhhhhhI
EhhhhEEohmhhhE
mhhhEEEomhhhhhE
EhhhhhmhEmhhhE
EhhhhhhhhhEohE

41&

1.25,, 13-m .6

I'

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

...

111 I;E2 I

11°1=oS 12:....__

LI

" o,. ,.........,_.. . 1..... . .-, o.o . -.-.-. : .. .,....O .., :.: -...... ,

drive to its controller was found to be bad (and was probably

the cause of trouble all along). This supports the

experience of other HP21MX users (Appendix D): interface

cables and other sorts of connectors are often at fault when

problems occur and should be among the first things checked.

With the cable fixed, one other major problem remained: the

system "bombed" (inexplicably stopped running) every time a

system generation was attempted. System generations must be

run each time a new piece of hardware is installed, any

changes are made to I/O assignments, etc. For the purposes

of this thesis effort, system generations were expected

to be needed to install a new tape drive and to install new

software (I/O drivers) in support of A/D converters, D/A

S converters, and the HP1310 terminal. This problem has

existed for the recorded history of AFIT's HP21MX system, and

has caused tremendous difficulty in provious thesis efforts

(Ref 51). The problem was traced to a set of faulty memory

boards. Once the boards were removed and the system

reconfigured, the system s erratic behavior ended.

4.2 -- General System Characteristics

With a properly functioning system, the implementation

began with setting up file accounting and control procedures.

A number of removable disk packs (currently six) are

available for the HP21MX's HP7906 hard disk drive. They are

equal in capacity to the 7906's fixed platter: each holds

approximately 10 megabytes. With that large a capacity, the

89

entire DSP system is easily kept on a single removable disk
J.

pack, PACK1 (the packs are numbered sequentially). Every

file on the pack is documented in the file name glossary

found in Appendix B. Before PACK1 and the other removable

packs could be reinitialized for use, it was necessary to

break the system's password protection (no one could remember

the password). This was done with the FORTRAN program CODE.

The system now has no password. While a password can easily

be assigned, it obviously doesn't offer much protection

/ anyway and can be the cause of great inconvenience!

Most of the programs described in Section 3.4 came from

an IEEE publication on Digital Signal Processing (Ref 13).

They were brought onto the DSP system by means of a tape

(containing all of the book's programs) acquired from the

IEEE. Reading the IEEE tape posed a problem, however: it

came in 1600 bpi, blocked, EBCDIC format. The HP21MX's tape

drive is 800 bpi, ASCII, and can only read unblocked data,

unless user programs are written to perform the block

conversions (the inability of the HP's operating system

utilities to support blocking is not documented in HP

literature; no mention seems to be made anywhere of tape

drive formatting specifics). The tape was first converted to

the proper format using AFIT's Scientific Support Computer

(SSC) and its UNIX utility, DD. All of Reference 13's

programs, not just those used by this system, are now on

PACK1 and available for use.

90

Several Operating System (OS) utilities common to more

modern systems are not present or behave unsatisfactorily on

the HP21MX under its RTE-III OS. First, the system's

standard utility for listing files to the printer (LIST)
truncates all lines to 66 characters. A FORTRAN program

* (LST) was written which list up to 132 characters per line

(the maximum width supported by the printer), numbers pages

if requested, and maintains top and bottom of page margins.

*RTE-III provides no easy method for gathering together data

from a collection of files, such as might be needed to print

out a group of source files en masse. To solve this problem

a FORTRAN program was written (CAT) which concatenates a set

of files into a single file.

It was quickly discovered that memory space limitations

would have a major impact on this system's implementation.

As mentioned earlier, the maximum size of a user program is

limited to 17K words under RTE-III. With only the DSP, GREQ,

GOPT, and DMENU modules implemented (together with some

service subroutines), the User Interface requires 11K words.

Thus, more use is made of disk files for data storage and

transfer than had been anticipated (more detail is given in

the following sections).

Several languages are available on the HP21MX: ALGOL,

BASIC, and FORTRAN compilers/interpreters exist. Since the

author doesn't know ALGOL, its use as the system's
implementation language was ruled out. BASIC offers a

7significant advantage over FORTRAN in the area of string

91

~handling -- a major advantage given the large amount of

i •.-character manipulation done by the User Interface.

Nonetheless, FORTRAN use is a necessity, since all of the DSP

" program from Reference 13 are in FORTRAN and FORTRAN is the

" only available language to support complex and double-

4,

[...precision data types. The choice was thus between exclusive

haraBASIC used to implement the User Interface and FORTRAN used

~for the DSP application programs. The decision was made to

nhuse FORTRAN exclusively for two reasons: first, having two

'" languages rather than one would make the job of system
maintenance more difficult, since the programmer would need

to be conversant in the peculiarities of HP versions of two
- nlyn vailale lana just one. Second, HP's BASIC is an

interpretive version, which means that the interpreter

" resides in memory along with the program being run -- further

B-i restricting available user memory.

4.3 -- User Interface ImplementationThe left and right halves of the User Interface (Figure

~12) were implemented in sequence, each as a "top-down"

or timplementation (Appendix E). This was possible because of

the almost complete independence of the two halves, and

desirable because the left half -- which contains all the

modules responsible for communicating with the user -- had to

be at least minimally operational before decisions could be

confidently made concerning the application programs

9'u

communication and control structure. (And of course, those

> decisions had much to do with determining the types of

changes to be made to the application programs in adapting

them to this system.)

4.3.1 -- Basic User Interface Communication Modules
The first User Interface modules to be implemented were

DSP, GREQ, GOPT, DMENU, BORDR, PRECI through PREC6, AOPT, and

SIOPT. Figures 12 through 15 show that these modules form

the "core" of the user-communication side of the User

Interface. The top-down dictum of system implementation

(Appendix E) was violated in this instance, with all of the

modules in this group implemented before others at higher

- levels were implemented. This was done for several reasons;

chief among them was the desire to prove the system's basic

design elements workable early in the implementation process.

In particular, the ability to communicate with the terminal

using screen menus and block data transfers was tested. It

was necessary to access the RTE-III driver for the terminal

*/ directly to accomplish block transfers and writes to the

terminal's screen without carriage return/line feed sequences

being inserted at the end of each line (Ref 40:2.5) -- but

all of the design aims were proved realizable. Implementing

the modules early also made testing of the User Interface's

-i other modules easier and more realistic by allowing them to

operate on real, interactively entered data.

93
S.,

5-,, - - - - - - -% % % . , , .. ' ... - . - . . - ' . '. . ' -o. .. ° '. . .-' .

I . t o .S ! S. S. * .- S . . o * * - ,

It was in implementing these modules that the space

" problem mentioned in Section 4.1 first caused a change in

implementation direction. The fastest method of passing

parameters from one module to another is in memory.

Unfortunately, many of the data items being passed among the

modules in this group are rather lengthy. Each menu page of

user input data can easily require hundreds of words of

memory space. A few of these data items, combined with only

the small percentage of total User Interface code this group

of modules represents, left only 6K words of memory remaining

out of the total of 17K available. To alleviate this problem

(especially to allow more space for present and future

editing modules), it was decided to store as many large data

items in disk files as possible. Current data values for

screen menus and complete user requests are among the items

now kept on disk. While response time is somewhat slower,

the time required to switch menu pages (the most common of

User Interface activities) is still on the order of only a

second or two, depending upon the amount of data to be

written to the screen. The speed at which the computer

communciates with the terminal (9600 baud maximum) is really

a more significant limiting factor.

Only two of the modules in this group required code that

wasn't completely straightforward: DMENU and AOPT. DMENU

makes direct calls to the I/O driver mentioned earlier so

that data can be written without being followed by a carriage

.. return/line feed sequence (carriage control features

94

described in the FORTRAN manual (Ref 41:8.29) don't work on

terminal devices). AOPT also uses the device driver directly

to accomplish block reads and writes. One of the benefits of

making calls directly to the device driver is that it makes

use of the HP2648s programmable function keys possible in

block mode (Ref 24:5.9,C-11, 40:2.4-6). This allows all User

Interface immediate requests to be assigned to function keys,

so that the user need only press one key for immediate

attention rather than enter an option code from the keyboard

and send it along with all the other screen data to the

computer for decoding. Consistency is obviously much easier

to achieve in this fashion (there is no need to worry about

always including certain fields at the same place in each

menu display).

Several utility subroutines were written to make the job

of dealing with character data in FORTRAN easier; they are

among the modules appearing in Appendix H. SESC substitutes

the escape character for all capital E's, without regard for

which byte (half) of a word the E is in. This is very useful

for creating the escape code sequences needed to control the

HP2648A terminal: instead of having to include a variable

field in a FORMAT statement for the escape character (which

can't be represented directly in a FORMAT statement as

printing characters can), the character E can be used to

represent the escape character. Thus, the user can "see"

what the control string looks like directly (with E's

.-..s:. representing escapes) and, with a simple call, transform the

95

.17

string into its final operational form. A generalization of

SESC is SCHAR, which allows a character to be substituted for

another arbitrary character, again without regard for which

byte the character is in. (SCHAR does require that both

characters be specified, so SESC is a little easier to use

with the cases it was designed for).

Test results for these and all other implemented modules

are found in Appendix J.

4.3.2 -- Other GREQ Subordinate Modules

The major modules remaining on the left side of the User

Interface are EOPT and FREQ. EOPT (Figure 16) and its

subordinates (EM001, EM002,...) consist almost entirely of

character manipulation logic, with one EM(NNN) editing

routine devoted to each screen menu. No difficulties were

encountered in implementing EOPT and its subroutines other

than the normal resistance FORTRAN offers to any attempts at

character manipulation. FREQ (Figure 17) and its

subordinates (FA001, ... , FP001, ... , FD001, ... , CCONS) were

similarly straightforward, except that the 17K memory limit

was reached in attempting to implement CCONS; thus no

consistency checking is done by the current User Interface

(an easily correctable situation once the RTE-IV operating

system -- with its expanded address space -- is made

available). Note that for both EOPT and FREQ subordinate

S"modules (EM(NNN), etc.) were created only for the menus

96

existing at this time; with each added application program

s .v new editing and formatting modules must be added.

4.3.3 -- SAREQ Module

The SAREQ module is where the User Interface and

application programs meet. Implementing it was mostly an

exercise in developing efficient and effective communication

and control procedures. SAREQ communicates with the

application programs it executes through system EXEC calls

(Ref 39:1.10); it controls them by sending messages to

initiate and terminate their actions. SAREQ was relieved of

some of its responsibilities because of the memory crunch

described earlier (Section 4.1). With all user requests

stored in disk files (to save memory), SAREQ has no

parameters to pass except file pointers and communication

identifiers (Figure 12).

4.4 -- Application Program Implementation

Each of the following subsections covers the

implementation and testing of one of the system's application

programs (data acquisition, processing, and display, in

order). Not all of the application programs were

successfully implemented; some for lack of time, some because

of memory limitations, and others for lack of hardware or

software support from the HP21MX computer. RTE-IV provides

enough user-addressable memory to support all those not

implemented because of RTE-III memory limitations. While RTE-

III provides a 17K-word address space, RTE-IV provides about

97

28K words (this varies depending upon the system
A.

characteristics specified during system generation). For

those not implemented, any specific recommendations for their

implementation are made in Chapter 5. Source listings of the

programs are given in Appendix I. Complete test conditions

and results are given in Appendix J.

4.4.1 -- AD001 (Generate Data)

AD001 was successfully implemented and tested. All of

its features described in Subsection 3.5.2 are operational,

including its ability to interact with concurrent data

processing application programs.
I..1

-4.4.2 -- AD002 (Sample A/D Converter)

AD002 was not implemented, because of time constraints.

AD002 is one of two application programs (the other is DD002)

*. requiring that assembly-language I/O drivers be written for

communication with external devices -- in this case, with an

*A/D converter. In addition to the need for an I/O driver,

AD002 requires some sort of real-time clocking device; this

is discussed in Chapter 5.

4.4.3 -- PDO01 (Correlation and Covariance)

PDO01 was not implemented because of time constraints

and the fact that no more User Interface program space

S..remained for needed editing and formatting modules. However,

the program (Ref 13:2.2) was modified so that it would

, compile a, t op cleanly on the HP21MX, demonstrating that

98

its size (12K words) will allow it to be used when RTE-IV is

., installed.

4.4.4 -- PDO02 (Coherence)

PDO02 was not implemented. As now configured, the

memory address space available to the user on the HP21MX

under RTE-III (17K words) is insufficient to allow loading of

this program, which requires approximately 23K. Installation

of the RTE-IV operating system on the HP21MX should allow

PDO02 to be used.

4.4.5 -- PDO03 (Convolution)

PDO03 was not implemented because of the limited address
'

space RTE-III provides. PDO03 requires approximately 26K

words.

a4.4.6 -- PDO04 (FFT)

PDO04 was successfully implemented according to the

design presented in Subsection 3.6.4, and successfully passed

its tests as defined in Appendix J. PDO04 is able to handle

up to 4096 data points per block under RTE-III (memory

address space being the limiting factor); it should be

possible to double this under RTE-IV.

PDO04 was the first data processing application program

to be implemented. Because of this, special care was taken

to ensure that its documentation was explicit enough to allow

its use as an example for future application program

99

4-4 . .'-.,"" T -.- " .' . .- ..,-. .. " ~ " ." , a5 -'. ' ~ p *'," ,N' ' .\'' . s" a. -- "€ .*.", ,

development. In particular, communication protocols are well

documented.

4.4.7 -- PDO05 (FIR Filter Design)

PDOO5 was not implemented because of RTE-III's limited

address space. PDO05 needs about 18K words of memory,

placing it just outside RTE-III's maximum of 17K. It should

easily fit within RTE-IV's address space.

4.4.8 -- PDO06 (IFFT)

PDO06 was successfully implemented according to the

design presented in Subsection 3.6.6, and successfully passed

its tests as defined in Appendix J. PDO06 was the second

application program to be implemented, providing an easy-to-

check complementary program pair with PDO04. As with PDO04,

* PDO06 handles up to 4096 data points per block under RTE-III,

with twice that many likely to be possible under RTE-IV.

4.4.9 -- PDO07 (IIR Filter Design)

PDO07 would not fit into the 17K words of user-

addressable memory available under RTE-III, and so was not

implemented. PDO07 should fit in RTE-IV's address space.

4.4.10 -- PDO08 (Waveform Averaging)

PDO08 was not coded or implemented because of time

constraints.

4.4.11 -- DD001 (Display to HP2648A)

DD001 was successfully implemented according to the

100

design presented in Subsection 3.7.1. The HP2648A's graphics

abilities made DDOOl's implementation a fairly simple

process. The HP2648A automatically produces graphs when

provided with a short set of parameters and a collection of

coordinate-value pairs ("AUTOPLOT" (Ref 24:3.24-31)).

Testing of DD001 was uneventful. All Appendix J tests

were successfully passed.

4.4.12 -- DDOO2 (Display to HP1310)

DD002 was not implemented because of time constraints.

Since DD002 is to operate the HP1310 graphics terminal

directly, much of the work required to implement DD002 is

involved with writing an assembly-language driver for the D/A

converter responsible for communicating with the HP1310 (not

a trivial matter) (Ref 42).

4.5 -- Implementation Summary

This chapter presented the system's implementation. As

implemented, the system provides both a set of basic, useful,

easy-to-use DSP services, and the groundwork for continued

development of hardware and software elements. The next

chapter (Chapter 5) details the conclusions reached in this

thesis effort and makes recommendations for further

development of the HP21MX DSP system.

77o

101

Chapter 5 -- Conclusions and Recommendations

2€-. This thesis effort demonstrates that the HP21MX computer

system is well suited for its role as a general-purpose DSP

system, with further hardware additions required only to

support its real-time abilities. The requirements and design

presented in this thesis have been proven workable, and the

resulting system s performance gives promise of its long-term

usefulness. In particular, the following main conclusions

may be stated (compare with the requirements given in Section

1.2):

1) The system is capable of supporting the most common

of DSP applications. Several of them (data generation, FFT,

IFFT, graphics display to the HP2648A terminal) are now

operational as a result of this thesis effort, and all others

identified in Section 2.3 (with the exception of waveform

averaging) are available on the system from Reference 13,

needing only to be integrated into the system.

2) Because of the modular design of the system, its

complete documention, and help in the form of the System

Manager's Guide, system maintenance and further system

development are well-defined, well-ordered processes.

Unfortunately, this doesn't mean that they are easy

processes. For example, HP's FORTRAN offers none of the

extensions that are common on newer versions of FORTRAN.

Most significantly, HP's FORTRAN provides no help in

manipulating character-type information. Without CHARACTER

A-' data types, string processing subroutines, etc. nearly every

102

character manipulation task turns into an exercise in ANDing

and ORing words to allow their individual byte/character

components to be examined. Several user-written subroutines

(e.g. SCHAR, SESC) are included in the DSP system to help

with some of these problems; but they don't obviate the fact

that the system manager will have to be very well-versed in

HP's FORTRAN and its character manipulation characteristics.

3) The system's greatest success was achieved in making

it easy to use. Screen menu prompts, user-friendly error-

trapping and recovery, on-line help, and a "Plain English"

User's Guide all play a part in getting a new user to the

point of doing real work much more quickly than would be

expected with a less friendly system.

These steps are recommended for the system's further

development:

1) Implement the data acquisition application program

AD002, which samples the system's A/D converter. An assembly-

language I/O driver will need to be written, installed in the

system, and interfaced to AD002 (all difficult tasks).

2) Finish implementating the data processing

application programs given in Chapter 3. With two completed

programs to consult as examples, this should pose no

insurmountable problems for an implementer well-versed in

HP's FORTRAN.

3) Implement the data display application program

DD002, which drives the HP1310 graphics terminal. As with

AD002, this means writing an assembly-language I/O driver.

103

It also means interfacing the HP's D/A converter to the

" 'terminal, which may or may not be an easy task.

4) Finish implementing the remaining portions of the

User Interface. These modules are not part of the current

implementation (they wouldn't fit within the 17K memory

limit): CCONS, DIREC, REREQ, and SVREQ. What this means is

that, at present: no consistency checking of user requests

is performed; no directory listings are provided from within

the User Interface; collected sets of user requests may not

be saved (the system's "submit file" facility); and collected

user requests may not be recalled. It is possible to save

one collected request (i.e., a set of all default values

associated with all of the system's menus) by making the

collected request values the default values (default value

saving and recalling is supported by special function keys).

5) Solve the problems involved in controlling the

system's A/D converter so that its sampling rate can be

interactively specified by the user just as any other

parameter can. The HP21MX has a time base generator (TBG)

which should make this possible. The TBG can be programmed

to provide interrupts at regular intervals (any decade

multiple of 0.1ms). Note that this means the maximum

sampling rate possible using the TBG as an interrupt source

is 10kHz. The TBG must be combined with assembly-language

software to handle the TBG's interrupts by activating the A/D

converter's I/O driver when the interrupts occur (Ref

:- .J... 21:3.2). Unfortunately, the RTE operating system uses the

104

V"" * k," ... \.t w \.P. -. X. ... -.. * * * •. _.

TBG for some of its own purposes, most obviously for the
". ""maintenance of real-time date and time of day information.

While the TBG does support multiple concurrent timing

requests (even though it has only one channel), an

investigation of RTE's use of the TBG needs to be conducted

to ensure that RTE permits conflict-free use of the TBG by

application programs (Ref 21). One possible alternative is

to clock the A/D converter with an external source (some sort

4of signal generator) which the user can control directly.

This would get around the TBG problems just mentioned, but

would require the user to have knowledge of the operation of

the signal source (outside the software control of the DSP

system).

6) Make use of AFIT's second HP21MX computer (now

sitting idle) as a co-processor. Without some kind of multi-

aprocessor support, this thesis' system will likely never be

capable of useful real-time processing. The reason has to do

with the number of independent tasks that must be

accomplished concurrently by the system -- acquisition,

processing, and display, with each task perhaps having

subtasks (calls to I/O drivers, etc.) A half-dozen or more

processes could easily be required to execute concurrently.
a.

The second HP21MX computer could be used to handle a part of

the workload, such as all A/D and D/A data transfers to/from

memory or disk.

105

• . .% .. . , . , .- °. . . . , - . . . - . - , . .

Bibliography

1. Anderson, Brian D. and John B. Moore. Optimal

Filtering. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1979.

2. Batch-Spool Monitor Reference Manual. Hewlett-Packard
Company, May 1979.

3. Blinchikoff, Herman J. and Zverev, Anatol I. Filtering
in the Time and Frequency Domains. New York: John
Wiley & Sons, 1976.

4. Bergland, Glenn D. "A Guided Tour of the Fast Fourier
Transform," IEEE Spectrum, 6 (7): 41-52 (July 1969).

5. Bergland, Glenn D. and Gordon, Ronald D. Tutorial:
Software Design Strategies. New York: IEEE Computer
Society, 1981.

6. Boehm, Barry W., et al. Characteristics of Software
Quality. New York: North-Holland Publishing Company,
Inc., 1978.

7. Brignell, John and Rhodes, Godfrey. Laboratory On-
Line Computing. London: International Textbook
Company Limited, 1975.

8. Brown, P. J. "Error Messages: The Neglected Area of
the Man/Machine Interface?," Communications of the
ACM, 26 (4): 246-249 (April 1983).

9. Cappellini, Vito. Digital Filters and Their
Applications. New York: Academic Press, 1978.

10. Chamberlin, Hal. Musical Applications of Micro-
processors. New Jersey: Hayden Book Company, Inc.,
1980.

11. Chen, Chi-Tsong. One-Dimensional Digital Signal Pro-
cessing. New York: Marcel Dekker, Inc., 1979.

12. Childers, Donald G. and Allen E. Durling. Digital
Filtering and Signal Processing. San Francisco: West
Publishing Company, 1975.

13. Cooley, J.W., et al. Programs for Digital Signal
Processing. New York: John Wiley and Sons, Inc., 1979.

14. Dehning, Waltraud, et al. The Adaptation of Virtual
Man-Computer Interfaces to User Requirements in Dialogs.
New York: Springer-Verlag, 1981.

106

15. DeMarco, Tom. Structured Analysis and System
,. Specification. New York: Yourdon, Inc., 1978.

16. DOS/RTE Relocatable Library Reference Manual. Hewlett-
Packard Company, December 1978.

17. Foley, James and Andries Van Dam. Fundamentals of
Interactive Computer Graphics. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1982.

18. Freeman, Herbert, editor. Tutorial and Selected
Readings in Interactive Computer Graphics. IEEE
Computer Society, 1980.

19. Hamilton, M. and Zeldin, S. "Higher Order Software --

A Methodology for Defining Software," IEEE Transactions
on Software Engineering, 2 (1): 9-31 (March 1976).

20. Hodge, Theo. W. and Anita P. Skelton. "A General
Purpose Mini-Computer Based Digital Signal Processing
Laboratory," NRL Memorandum Report 3502 (May 1977).

21. HP 12539C Time Base Generator Interface Kit Operating
and Service Manual. Hewlett-Packard Company, June

22. HP 12555B Digital-to-Analog Converter Interface Kit
Operating and Service Manual. Hewlett-Packard Company,
March 1973.

23. HP 21MX Computer Series Operator s Manual. Hewlett-
Packard Company, July 1974.

24. HP 2648A Graphics Terminal Reference Manual. Hewlett-
Packard Company, August 1979.

25. Kernighan, Brian W. and Plauger, P.J. The Elements of
Programming Style. New York: McGraw-Hill Book

Company, 1978.

26. Ledgard, Henry F. "The Case for Structured
Programming," Bit, 13: 45-57 (1973).

27. Ledgard, Henry F., et al. Directions in Human Factors
for Interactive Systems. New York: Springer-Verlag,
1981.

28. Lynn, Paul. An Introduction to the Analysis and Pro-
cessing of Signals. New York: Halsted Press, 1973.

29. Madnick, Stuart E. and John J. Donovan. Operating
Systems. New York: McGraw-Hill Book Company, 1974.

410

l107

%* ..

'' • , ' -, •., % " . ,.•, , ,' ' , ,... -".-,,.. .' , . - .- . . -

30. Martin, James. Design of Man-Computer Dialogues.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1973.

" 31. Mehlmann, Marilyn. When People Use Computers.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

32. Myers, Glenford J. The Art of Software Testing. New
York: John Wiley & Sons, 1979.

33. "National Bureau of Standards Programming Environment
Workshop Report," ACM Software Engineering Notes, 6
(4): (August 1981).

34. Newman, William and Robert Sproull. Principles of
Interactive Computer Graphics. (Second Edition) New
York: McGraw-Hill Book Company, 1979.

35. Oppenheim, Alan V. Applications of Digital Signal

Processing. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1978.

36. Oppenheim, Vlan V. and Schafer, Ronald W. Digital
Signal Processing. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1975.

37. Papoulis, Athanasios. Signal Analysis. New York:
McGraw-Hill, Inc., 1977.

38. Rabiner, L.R. and B. Gold. Theory and Application of
Digital Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1975.

39. Real-Time Executive III Software System Programming

and Operating Manual. Hewlett Packard Company, October
1975.

40. RTE Drivers DVR05/DVA05 for HP 263X/264X Terminals.
Hewlett Packard Company, July 1979.

41. RTE FORTRAN IV Reference Manual. Hewlett-Packard
Company, July 1979.

42. RTE Operating System Driver Writing Manual. Hewlett-
Packard Company, January 1980.

43. RTE-IV Programmer's Reference Manual. Hewlett-
• .Packard Company, January 1980.

44. Schoon, Gary A. Applications Directed Microprogramming
on a Minicomputer System, AFIT Thesis, (December 1982).

I 108

v.
o..

.'; * -. .. '. "..' . . . '.. - -' - . ."..' . .. ,1 -

.5

45. Shneiderman, Ben. "Designing Computer System Messages,"
... Communications of the ACM, 25 (9): 610-611 (September

•': :.%4 1982).

46. Smith, H.T., et al. Human Interaction with Computers.
New York: Academic Press, 1980.

47. Stanley, William D. Digital Signal Processing. Reston,
*VA: Reston Publishing Company, Inc., 1975.

48. Steidle, John J. Microprogramming: A Tool to Improve
Program Performance, AFIT Thesis, (December 1981).

49. Taylor, F. and S. Smith. Digital Signal Processing in
FORTRAN. Lexington Books, 1976.

50. Time Series Systems Operating Manual. Time/Data Cor-
poration, 1973.

51 Todd, Wayne. A General Purpose Mini-Computer Based
Digital Signal Processing Laboratory, AFIT Thesis,
(June 1982).

52. Wasserman, Anthony J. "User Software Engineering and
the Design of Interactive Systems," Proceedings of the
Fifth International Conference on Software Engineering,
IEEE Computer Society, 1981.

53. Weinberg, Victor. Structured Analysis. New York:
Yourdon Press, 1978.

54. Yourdon, Edward and L. L. Constantine. Structured
Design: Fundamentals of a Discipline of Computer
Program and Systems Design. Englewood Cliffs, N.J.:
Prentice-Hall, 1979.

55. Zohar, Stalhav. "Fast Hardware Fourier Transformation
through Counting," IEEE Transactions on Computers,
C-22 (5): 433-441 (May 1973).

56. 21MX M-Series and E-Series Computer I/O Interfacing
Guide. Hewlett-Packard Company, July 1977.

3.10
.- .

--" 109

°.'. .". .* -'.' ." - . ".", " . . .'. . *,., . . . - - - -. - - . - . . - , . ,. ... _,-,5,-.. .

4. APPENDIX A
'' . User's Guide

Introduction

This User's Guide describes the AFIT HP21MX Digital

Signal Processing (DSP) System (Ref 1). It is meant to serve

both as an initial introduction to the DSP System and as a

reference source for certain problems lying outside the scope

of its on-line help facilities (such as how to get the system

running). The guide is divided into four sections

presenting: (I) An overview of the system, (II) How to get

the system running, (III) How to use the system's DSP

functions, and (IV) How to stop the system when finished. A

small bibliography follows Section IV.

I. System Overview

The AFIT HP21MX DSP System is a real-time general-

purpose system whose primary aim is to make useful DSP

capabilities available without the user having to know much

about computer operation or principles. Toward that end, the

system insulates its users from nearly all details of the HP

RTE-III operating system (a large collection of support

•. :programs (Ref 2)) and from having to worry about how to make

various DSP programs work with each other. All interaction

with the system is handled by a collection of software known

as the User Interface. Once the system is running, the user

doesn't have to be concerned about any of the low-level

details of the system's operations. Instead, the user simply

110

follows the User Interface's prompting (via menus) and

specifies the processing desired on a functional level. The

next section deals with what it takes to get the system

running.

II. Getting the System Running

a, This is one area where the HP21MX computer clearly shows

its age. Unlike most more modern computers, the HP21MX

requires that its user play an integral part in even the very

9earliest stages of getting the system running.

The first step is, of course, to turn everything on.

The system manager may have everything controlled by a single

switch, or the system's various components may need to be

powered-up individually (if so, get the system manager to
4 -_

show you where the switches are; some are in the rear of the

system's chassis, and others are covered by panels). When

all the components have power, one additional switch needs tj

be turned on. It's found on the front of the disk drive

unit, marked "RUN/STOP", and controls whether the disk inside

is spinning or not (turn it to "RUN"). Once all the

components have power and the disk drive is starting to spin

up, the computer needs some instructions.

All computers have some sort of an initializing program

that gets things going, known as a "bootstrap" program.
J

Unfortunately, the HP21MX doesn't know where its bootstrap

program is without being told (modern computers usually do

:77 know). Therefore, the first instructions given to the

N 111

computer have to do with where it can find its bootstrap

program. The program's location is specified by entering a

memory address on the computer's front panel. Follow these

steps:

1. Turn the computer's on-off key all the way counter-

clockwise and then back to the "OPERATE" position. This

initializes certain internal components and should cause some

of the front panel lights to come on.

2. Use the rocker switch marked located mid-panel (with

arrows on either side) to move the red light closest to it so

that it's at the "S" position. This selects the proper CPU

register to receive the program location.

3. The location is given to the computer in binary by

setting certain of the numbered red lights to on (push up the

rocker switches beneath them to turn them on, push down to

turn them off). Turn on lights 15, 12, 9, 7, and 1 (i.e.,

111202 in binary). All of the lights can be cleared at once

by pushing the "INSTR STEP/CLEAR DISPLAY" switch to "CLEAR

DISPLAY".

4. Press the "STORE/DISPLAY" rocker switch toward

"STORE" so that what's on the computer's front panel is

stored for access by the CPU.

5. Press the "PRESET/IBL" rocker switch to "PRESET" and
then to "IBL" (Initial Binary Load). This clears the

computer's memory and loads the bootstrap program into memory

from the memory chip it is permanently kept in.

6. Press the "RUN/HALT" switch toward "RUN".

112

.**- , %*- - , , % - . ' - , - '.+ . . , ['

.4.7

At this point you should immediately hear noise from the

disk drive, if it has had time to come up to speed (shown by

the "Drive Ready" message on its front panel). Give it a

- minute or so if nothing is happening. If nothing happens

after about a minute, go back through steps 1 through 6,

- taking special care with steps 3 and 4.

-" The computer's terminal should now have a message on its

screen. If it doesn't, check to make sure that the

terminal's switch settings are correct. All of the

* terminal's pushdown switches should be up (unlatched) except

for the REMOTE and CAPS LOCK switches, which should be down.

The terminal should be set for communication at 9600 baud

*.-" with parity set to "NONE" and duplex set to "FULL" (these

switches are located at the upper left hand corner of the

keyboard). After confirming/changing their settings, hit

return a few times; if the computer still hasn't put anything

on the screen, consult the system manager.

III. Using the System

With the system up and running, type RU,DSP and hit

return. Use the backspace key to correct any errors. From

this point on, you will be assisted in all of your actions by

the DSP program, which provides prompts, error correction

hints, and general help for every function available on the

system. You will find yourself able to write only in certain

areas of the terminal's screen; these areas are known as

.7- unprotected fields (the areas you are not permitted to write

113

in are, of course, protected fields). With unprotected

fields, the length of each entry is restricted to some

maximum number of characters (defined by the creator of the

menu). Typing beyond that maximum number of characters will

automatically put you into the next unprotected field. To

move forward to the next unprotected field, hit the TAB key;

to move backward, hit control-TAB. Once all desired changes

have been made to the screen's data, press the ENTER key

(above the number 9 key) -- it takes the place of the RETURN

key when using unprotected fields. The best way to learn the

system is to work with it. The only caution you need to show

is in destroying existing files which may have importance to

other users. It's best to do any saving of data or

parameters to new files (the system has a very large amount

of file space -- about 20 million characters worth) unless

you're certain that an existing file can be uneventfully

overwritten.

The only part of the system's operation requiring

independent explanation is its ability to provide certain

immediate services that are not presented in screen prompts.

On the upper right portion of the terminal's keyboard there

are eight keys arranged in two rows. Some of the keys have a

label underneath. For example, the first key's label is

HELP. These keys may be pressed at any time to initiate

their stated function. Pressing the HELP key will cause the

system to display explanatory text directly related to the

current choices being offered to you on the screen. When

114

finished with the text, you'll find yourself back facing the

same choices you did when you hit HELP. Pressing the BACKUP

key will take you back to the menu you last saw, eventually

leading to the system entry menu. Pressing the SAVE NEW

DEFAULTS key will save the values on the screen so that they

will always come up as the standard default values (until

changed again). If you've changed the values on the screen

and want to get back the default values to start from scratch

(on that menu), press the READ DEFAULTS key and the system's

default values will be read in again (note that this does NOT

undo a SAVE NEW DEFAULTS). -The last special function key is

the EXIT key. Pressing it will cause an immediate exit from

the system (and loss of any screen data you have not saved).

In general, putting the system to work means specifying:

a data acquisition function, a data processing fuwttlon, and

a data display function. With the system's prompting and the

HELP key to guide you, you should find it to be a fairly

straightforward process.

IV. Stopping the System

The first step toward stopping the system is exiting the

DSP program. This is accomplished by pressing the EXIT

function key. Once the DSP program is exited, the first

thing that should be done is to turn the disk drive's

"RUN/STOP" switch to STOP so that the disk will start to slow

down; it should be completely stopped (signified by a DOOR

UNLOCKED message on the drive's front panel) before its power

115

a - - -. - -. - - - . - , - -. -. - - " . - . ,. -- . -. .. , ' ' - - , -. . ., , . .

I. bU - * 6 - -

is turned off. If the disk isn't permitted to stop spinning

before power is removed, damage to the disk drive may result.

With the disk drive stopped, the system's master power switch

or the individual component power switches may be turned off,

and system shutdown is complete.

'

,

116

0, 5 % . 5 5 c - e

User's Guide Bibliography

1. Bengtson, John W. Development of a Real-Time General-
Purpose Digital Signal Processing Laboratory System,
AFIT Thesis, (December 1983).

2. Real-Time Executive III Software System Programming and
Operating Manual. Hewlett-Packard Company, October
1975.

VI

is117

APPENDIX B
System Manager s Guide

Introduction

This Guide is meant to serve as an aide to both system

maintenance and continued system development by the person

designated as the DSP system's manager. Section I is a

system overview. Section II contains information to help the

system manager become acquainted with Hewlett-Packard (HP)

concepts and conventions. Section III deals with adding new

functions to the system (i.e., new application programs such

as FFT's). The final section, Section IV, covers basic

system maintenance operations, and includes examples of some

of the more important ones. A short bibliography and

0 appendices containing a list of the system's file names and

its documentation are found following the final section.

I. System Overview

From the system manager's point of view, the HP21MX DSP

• :system is a collection of FORTRAN modules executing on the

HP21MX computer under the control of a User Interface

executive program (all of which is, of course, supported by

the RTE-III operating system) working together with a

collection of peripherals that make it possible to gather,

process, store, and display DSP data.

The system manager's responsibility is to ensure that

all of the components of the system continue to work together

properly, and to add additional components (hardware and

118

C...

" software) when necessary. Being able to do these things

requires a system manager with three basic skills: 1)

Fluency in the FORTRAN programming language (Ref 5); 2)

Proficiency with HP's Real-Time Executive (RTE) operating

system (Ref 1,3,4); and 3) Knowledge of low-level HP computer

fundamentals (such as HP assembly-language programming and

I/O device interfacing). To help the system manager in

becoming comfortable with HP's operation and with the DSP

system's reliances on non-standard HP concepts and

conventions, the next chapter provides an introduction to the

system's basic concepts and conventions.

II. System Concepts and Conventions

The first step to becoming adept with the RTE operating

system is gaining an understanding of its two-tiered nature.

RTE's developers borrowed heavily from earlier HP operating

systems; specifically, some that were around when nothing but

paper tape was available for mass storage. The lowest level

portion of RTE -- which is called just RTE -- provides only

the most basic of services, including very few related to

mass storage devices (hard disk drives, in the case of this

system). As far as pure RTE is concerned, "files" don't

exist; only tracks, sectors, etc. exist. In the course of

RTE's evolution, a large OS program known as FMGR was added.

FMGR is necessary for almost any useful maintenance or

development work done on the system. For example, renaming

files or moving them from one disk to another without use of

- 119

4. ..°..

some auxiliary program is possible only through F. R. In
addition, all FORTRAN I/O calls to disk are handled by
accessing FMGR modules. In more modern operating systems,

RTE and FMGR equivalents are usually integrated. Their not

being integrated here poses no real problems, but does mean

that a basic knowledge of the operating system's structure is

essential to preventing confusion and to being able to

accomplish even trivial tasks at times. Three HP manuals are

particularly helpful in presenting RTE/FMGR (Ref 1,3,4).

Several HP concepts are unusual and pervasive enough to

warrant special attention. One of the most frequently used

unusual HP terms is cartridge (Ref 4:1.14). Cartridge refers

to a collection of tracks on a hard disk. Each cartridge is

defined during system generation and contains its own

directory structure. Thus, the cartridge concept provides a

means of enforcing data integrity rules (each cartridge can

be assigned an independent password), and also provides a way

to control the length of time required for directory searches

(by limiting the amount of data under the control of any one

cartridge directory). Another HP-specific term is select

code (see various hardware manuals). Each external device

connected to the HP21MX has some sort of interface board

plugged into a slot in the back of the HP21MX. The slots are

numbered from 10 to 20 (octal); select codes are nothing more

than these slot numbers. For a given select code (I/O

device) there can be several logical unit numbers of the sort

that are used in FORTRAN reads and writes. For example, the

I.12
120-4 .- . -....4 4 ...4 * * [

• ", k.x" " . 2"-,". .- ". < -- " "' . ". '...'- "-,'-'. " -',• - '""'-"..- "' • .'-" "."-'-.v .'-.

-. .. . i . ° -S - - . - J . . .- o . - .o - . - . . ' . , , . • .--. .

*HP2648A terminal is currently assigned select code 13, with

logical unit numbers 1 (screen/keyboard), 4 (left cassette

drive), and 5 (right cassette drive) assigned to its somewhat

independent components.

By convention, all disk files are prefixed with a

specific character as a means of identifying the file's type

and usage. These are the characters and their meanings:

& -- Source file (ASCII)
%-- Relocatable binary (compiled)
I -- List file (compiler output listings, etc.)

(none) -- Memory-image file (linked and executable)

III. Adding New Functions

Adding a new data acquisition, processing, or display

module to the system requires that seven types of changes be

made to the User Interface. Of course, before changing the

User Interface, the new program itself must have

communication and control logic added to it; the existing

application programs should serve as adequate examples. The

only part of designing application programs for this system

that should be strange to an experienced FORTRAN programmer

is HP's CLASS I/O service. The RTE-IV reference manual (Ref

7) has a good treatment of CLASS I/O -- much better than that
.,

given in the RTE-III reference manual (Ref 3). The changes

to be made in the user interface are best handled as follows:

1) Define the new program's parameter requirements; use

those requirements to guide the design of a screen menu for

their entry.

121

L . . ,.. .. o : . . ' .,..

2) Create an MD(NNN) file containing the menu's design

(see the Data Dictionary for MD(NNN) data file definitions)." 3) Enter the menu in the TMENT file so that it will be

recognized by the User Interface (again, consult the Data

Dictionary).

4) Change the parent menu's edit module logic (an

EM(NNN) module), and its TMENT file entries, so that entry

into the new menu is permitted.

5) Create an edit module (EM(NNN)) for the new menu and

install it in the system, and provide a call for it from the

EOPT module.

6) Create a help file (HLP(NNN)) for the menu.

7) Create an FREQ subordinate module to handle

formatting the request associated with the new menu, or

incorporate the new menu into an existing FREQ module, as

appropriate.

Note that in all of the above actions, the "NNN"

mentioned is some unique number/group of numbers assigned to

the new program's menu(s). Numbers may be assigned to menus

arbitrarily, so long as they are unique (make sure they

aren't already in use). The process of adding a new function

can be confusing; look to some of the existing parts of the

system as examples (the software listings are included in Ref

2).

Once all changes have been made, the new User Interface

modules and application program are installed into the system

via the following steps:

122

V .°.S

7- 7.. P

-p

1) Compile the source programs with the command

RU,FTN4,&(NAME),-,- (Ref 5:J.5). This command works best

(there's some sort of the bug in the compiler) when the list

and object files -- %(NAME) and '(NAME) -- have already been

created with the CR command. The FTN4 compiler should create

these files itself, but it usually aborts if they don't

already exist. They may be created by entering CR,'(NAME)::-

20:4:100 and CR,%(NAME)::-20:5:I00 (Ref 1:2.19). These

create commands direct that a type 4 (list) file be created

and that a type 5 (relocatable) file be created, both on

i4 logical unit 20 (the removable disk pack), and both 100

blocks in length. Note the two different prefixes to (NAME).

(NAME) is the five-character name chosen for the file (and

usually for the program also).

2) Enter a line like the following (one for each new

module) into the command file "LDDSP": MR,%(NAME)::-20 (Ref

1:2.42). This causes the new module to be included in the
next step's link and load operation, along with all the other

system modules.

3) Execute the LDDSP command file by typing TRLDDSP

(Ref 1:2.59). On its completion, LDDSP will save the new

version of DSP for you (if the link and load was successful).

Be very careful about any changes made to existing menu

files (e.g. MD001). In particular, changing the field length

for a menu item requires that all its associated editing and

formatting modules (EM(NNN) and FA/FP/FD(NNN) modules) be

checked for field length dependencies. For example, many

123

. V t A - .
%'A ~ -

.

menu items are numeric, and are edited by calling the

"- ~subroutine NUMER. NUMER is passed the length of the item to

be checked; if the item is made longer on the menu without

the calls to NUIER (from editing modules) being changed to

reflect that new length, the item will not be edited

* properly. As an example, suppose a field was originally

defined and edited as a single numeric character. If it was

changed to four numeric characters in its MD(NNN) file

without a corresponding change being made in the associated

EM(NNN) file, the user could enter non-numeric information

from the second character position on, and NUMER would still

classify the item as numeric (since it wasn't told to look
v.1- beyond the first character), leading EM(NNN) to consider the

non-numeric item as being strictly numeric.

4..

IV. System Maintenance

Many system maintenance functions -- such as getting rid

of old disk files, etc. -- are quite easy to accomplish with

knowledge of a few basic RTE commands (Ref 1,3,4). Three of

the most important system maintenance functions, however, are

not documented adequately in any single manual. The

following paragraphs give examples of: how to perform a disk

backup to tape, how to perform a restore from tape to disk,

and how to change disk packs (and make the new disk

recognizable to the DSP system).

124

%~~~~~~~~~~~~~~ V%. "%-".-", . -% "% .-

-~ - % .

Making a Backup

There is no on-line utility for performing a complete

disk to tape backup. The "ST" command allows easy on-line

backup of individual files (Ref 1:2.23), but for a

comprehensive backup the "DSKUP" off-line utility must be

used (there is an on-line version of DSKUP, but we don't have

it) (Ref 6). Unfortunately, DSKUP performs only physical

"* (device-oriented) saves and restores; there is no provision

for logical (file-oriented) processing. DSKUP is kept on one

of the HP2648A's cartridge tapes. To load and execute it,

follow these steps:

1) Turn on all power to the system. Load the DSKUP

tape into the HP2648A's left tape drive, and load a tape onto

0 the reel-to-reel tape unit (make sure the drive is switched

on-line and that the tape reel has a write ring in it).

2) Follow normal system startup procedures, except

instead of entering "111202" into the S register, enter

041300. This tells the system to do its initial load from

the terminal's left drive instead of from disk. At this

point, the light above the tape unit should start flashing,

indicating that the load is in progress. If the light isn't

. flashing, start again from the beginning.

3) When the load is complete, the system will halt (the

execute light will go out on the HP21MX's front panel).

Enter 000013 into the S register, then enter 000002 into the

P register (be sure to press STORE in both cases). These

125

A.

-- 5--. _1 .1 -.7 -* * . r.. ... w . . ". j * -

give the DSKUP program the terminal's select code and the

program location at which execution is to begin.

4) Press PRESET and then RUN. At this point the

following prompting dialogue should begin. If it doesn't, go

back to step 2. Any mistakes made in entering data will

likely require that yougo back to step 2 (DSKUP catches a

few obvious errors, but doesn't allow you to change anything

that it has already accepted). User responses are

underlined.

TASK?

SA
MAG TAPE CHANNEL#?
16
S-SOURCE DISC CHANNEL#?
12
SOURCE DISC TYPE?
7906
SOURCE DISC DRIVE#?

0
TYPE OF SAVE?
FR
RTE OR DOS DISC?
RTE
FROM CYLINDER#?
0
TRACKS?
822
SURFACES?
2
STARTING HEAD#?
0
6144 WORD BUFFER DESIRED?
YE
VERIFY?
YE
FILE ID?
16 Dec 83 822-track FR-TO save of PACK1
MT FILE#?
1

If everything has been done properly, the reel-to-reel

tape unit should start spinning. DSKUP provides messages

126

............

telling what it's doing; after about six or seven minutes it

will display a "VERIFYING" message and the tape will

automatically rewind for the verification procedure. When

everything is done, simply remove the newly-created backup

tape; the system may then be brought up in its normal

fashion. Note that the above procedure is for backing up the

•~ removable disk platter. To backup the fixed disk (which

contains the operating system, etc.) follow exactly the same

procedure except respond to "STARTING HEAD#?" with 2 instead

of 0.

Restoring from Tape

Restoring from a backup tape is handled very much like

the original backup procedure. Follow the steps given above

for executing DSKUP (making sure that the backup tape doesn't

have a write ring in it, in this case). Once DSKUP is

executing, conduct the following dialogue (user responses

* underlined):

TASK?
RE
MAG TAPE CHANNEL#?
16
MT FILE#?
1
FILE ID:

(System prints file ID entered during backup)
TAPE#: 01
OK?
YE (if it really is the right tape)
DEST DISC CHANNEL#?
12
DEST DISC DRIVE#?
0
TO CYLINDER?
0

'-. # OF SURFACES?
,% '..-. 2i2

127

F , , ,,i % . ,.,., ' ... ,.. ' ' ' ' ' . .- ' ,- " .- ' .. '- , . .- - - . ' .- " .-

STARTING HEAD#?
0 (or 2 for the fixed platter -- BE CAREFUL!)

* - :...VERIFY?

YE

DSKUP will now perform the restore. It's a good idea to

protect the platter not being restored to using the disk

protect switches found under the front panel of the 7906 disk

drive. Just make sure that the protection switches are

turned off after the restore operation; the system won't

operate normally (in fact it won't even boot) with them on.

If you want to make absolutely sure that your backup tape

contains what you think it does, it's a good idea to try

restoring the tape to the scratch disk (PACK4) first. Mount

S, PACK4 (just put it in with the system turned off), restore to

it, and convince yourself that what's on it is what you want

II to have written over the existing contents of your pack. The

same kind of previewing can be done for the fixed disk; just

restore it to head number 0 on the scratch pack.

Changing Disk Packs

There are six disk packs currently available, labelled

PACK1 through PACK6. They are assigned storage duties as

follows:

.5 Pack Cart.
Label Number Contains

PACK1 101 Complete DSP system (software & data)
PACK2 102 RTE-III backup (copied from fixed plat.)
PACK3 103 Steidle/Schoon thesis work
PACK4 104 Scratch pack

. PACK5 105 RTE-IV operating system (?...)
PACK6 106 DSP software from ILS system (nonwork.)

128

"a .n . .. & &- %5 * *

Normally, the system will be run using PACK1; it has all

-\ -. of the DSP software, etc. on it. Appendix A contains a list

of all the files found on PACK1. Many of the files found on

the other packs are unfortunately unidentifiable since no

records have been kept by previous users. If a different

pack is to be mounted, perform the following actions (it is

assumed the system is already running):

1) Issue a DC,-20 command (Ref 1:2.88). This tells the

. system that you are planning on removing the pack found on

logical unit 20; i.e., the removable pack. The minus sign

tells DC that you are giving it a logical unit number, not a

cartridge number. Using "-20" instead of "101", "102", etc.

keeps you from having to know and specify which specific pack

is actually mounted at the time.

2) Turn the disk drive's RUN/STOP switch to STOP. Wait

for the drive door open light to come on (signifying that the

disk has stopped spinning).

3) Open the drive door, remove the old pack, insert the

new pack.

4) Turn the disk drive's RUN/STOP switch to RUN. Wait

for the drive ready light to come on.

5) Issue an MC,20 command (Ref 1:2.81). Note that

there is no minus sign preceding the 20; this is because the

MC command, unlike the DC command, expects that it will be

given a logical unit number rather than a cartridge number

(in spite of its name -- MC -- which means "Mount

[C Cartridge").

129

System Manager's Guide Bibliography

1. Batch-Spool Monitor Reference Manual. Hewlett-Packard

Company, May 1979.

2. Bengtson, John W. Development of a Real-Time General-
Purpose Digital Signal Processing System, AFIT Thesis,
(December 1983).

3. Real-Time Executive III Software System Programming
and Operating Manual. Hewlett-Packard Company, October
1975.

4. RTE: A Guide for New Users. Hewlett-Packard
Company, April 1977.

5. RTE FORTRAN IV Reference Manual. Hewlett-Packard
Company, July 1979.

6. RTE Utility Programs Reference Manual. Hewlett-Packard
Company, June 1978.

7. RTE-IV Programmer's Reference Manual. Hewlett-Packard
Company, January 1980.

130

.. C .- #i..b %...e* . C .. .

System Manager's Guide Appendix A
:- .- ' File Name Glossary (PACK1 Disk Pack)

This glossary contains the names and a description of

all files found on the PACK1 removable disk pack. All source

files are listed only once, with a "&" preceding them (they

may also exist with a "%11 an "I", and with no prefix at

all). The files are listed alphabetically with prefixes

disregarded.

Name Description

&ALDSP Collection of all user interface software. Created
by the CAT program.

&AOPT ACCEPTOPTION user interface subroutine.
&BORDR DRAW BORDER user interface subroutine.
&CAT FORTRAN program to concatenate a group of files

into a single file.
&CLRET CLEAR ERTEXT user interface subroutine.
&CLRRB CLEARRECBUF user interface subroutine.
&CLRTC CLEARTCONT user interface subroutine.
COMP Procedure file for compiling and loading a FORTRAN

program.
COMPO Procedure file for compiling a FORTRAN program.
CREI Procedure file for creating all of the DSP system's

list (') files.
CRE2 Procedure file for creating all of the DSP system's

object (%) files.
CRE3 Procedure file for compiling all of the DSP system's

modules and saving the compilation results to indi-
vidual % and ' files.

DICT This file name glossary.
&DMENU DISPLAY MENU user interface subroutine.
&DSP DIGITALSIGNALPROCESSING user interface subroutine.
&EOPT EDIT OPTIONS user interface subroutine.
&ERMSG ERROR MESSAGE user interface subroutine.
&FKEYS FORTRAN program for defining some of the 2648A's

function keys with aids for programming.
FNAMES File containing names of files to be concatenated by

the CAT program.
&FORM FORTRAN program to test out the 2648's format mode.
&FREQ FORMATREQUEST user interface subroutine.
FRTAPE Procedure file for reading a tape containing 33 IEEE

DSP programs into disk files (SECN.N series).
,. &GREQ GET REQUEST user interface subroutine.

GODSP Procedure file for putting together all of the user

131

Ci,

C. V C%° C ,e.. . % . . ' .

interface source files, compiling them, and loading
them. Calls the CAT program.

&GOPT GETOPTIONS user interface subroutine.
&GCOM GET_COMMON user interface block data subroutine.
HEADER Outline of documentation header used in all program

elements.
LDDSP Procedure file for moving all of the DSP object (%)

files into the LG track area, loading them, and
storing the resulting executable file as "DSP".

'LIST Shared-use FORTRAN compiler listing file.
&LST FORTRAN program for listing ASCII files. Prints up

to 132 characters per line, as opposed to a maximum
of 66 for the HP LIST utility. Performs page break
at beginning of each subroutine.

MD(NNN) MENUDATAFILE, containing menu-defining records
(including prompting text and defaults).

%OBJ Shared-use FORTRAN compiler object code output file.
&PREC1 PROCESS RECORD 1 user interface subroutine.
&PREC2 PROCESS RECORD 2 user interface subroutine.
&PREC3 PROCESS RECORD 3 user interface subroutine.
&PREC4 PROCESS RECORD 4 user interface subroutine.
&PREC5 PROCESS-RECORD_5 user interface subroutine.
&PREC6 PROCESS RECORD 6 user interface subroutine.
PURl Procedure file for purging all DSP list () files.
PUR2 Procedure file for purging all DSP object (%) files.
&SAREQ SATISFY REQUEST user interface subroutine.
&SCHAR SUBSTITUTECHARACTER user interface subroutine.
SECN.N SECTION N.N listings from the IEEE publication of

digital signal processing software.
&SIOPT SATISFY IMMEDIATE OPTIONS user interface subroutine.
TEST Shared-use FORTRAN source code file.
TOTAPE Procedure file for storing 33 IEEE DSP files (the

SECN.N series) to tape.

4.135.5o

-. 5
.4.. , . . , ; .. .'. ' . '. .- '. ','.'.. " . - . ,'v . '

.. 7 + _7

- Appendix C
Current and Anticipated DSP System Hardware

This appendix contains a list of all independently
identifiable components that are now a part of the DSP system
or are recommended for future acquisition. The hardware is
divided into two main categories: current system, and
anticipated additions.

Current System

Computer

* HP 2108A M-Series computer

Main Memory System

2102A 5060-8360 Memory Controller (two available)
B 1502-22

* 2102B 2102-60001 Memory Controller (ok for RTE-IV)
C 1830

* 1 2 7 4 7A 64K Word Standard Performance
Memory Module

* 9801031 National Memory Systems 16K-word
. memory (three in use)

* 12892B 12892-60003 Memory Protect (ok for RTE-IV)
B 1727

* 12897B 12897-60003 Dual Channel Port Controller (DCPC)

C 1649 (ok for RTE-IV)
* 12731A 12731-60001 Memory Expansion Module (ok for RTE-

A 1652 IV, two available)
2102A 5060-8359 8K Word Standard Performance

D 1540-22 Memory Module (two)
B 1442-22

2102A 5060-8378 4K Word Standard Performance
B 1572-22 Memory Module

12896-60001 DMA Board (two; requires 12895 DMA
A 1122-22 option; old?)

Microprogramming

* 12945A User Control Store (UCS) for
M-Series computer

* 12978A 12908-60006 Writable Control Store (WCS) for
1436-22 M-Series computer

General Accessories

" * 12539C 12539-60003 Time Base Generator
* 12992B Disk Loader ROM for 7905/7906/7920

- .* disk

133

" 4* ,~ , *4."4q+,: .[' -* ' - .'' . - "- - - +*,- + * -'. ' .''.'. ".'*.

General Accessories

"-. * 12539C 12539-60003 Time Base Generator
• 12992B Disk Loader ROM for 7905/7906/7920

disk
* 12992C CRT Terminal Loader ROM for 2648A
* 13037-80023 Disk Controller

A1635

Interfaces

* 12966A 12966-60001 Buffered Asynchronous Data Communi-
D-2305 42L cations Interface (two)

.4 * 12555B 12555-60002 Dual D/A Converter (no RTE-III/IV

- A-1138-22 support)
12604B 12604-60001 HP Data Source Interface (no RTE-

C-1020-6 III/IV support)
12531 12531-60023 Terminal Interface

B 1606-22
12531-80025 1204-22
12531-6001 A-820-6

* 12566B 12566-60024 Microcircuit Interface Card
1148-22 (two; for A/D converters, etc.)

02100-60060 Terminator Board (two)
1131-22

02116-6198 Dual D/A Converter

Peripherals

* 2648A Graphics Terminal
* 5060-6282 Paper Tape Reader
* 7906 Disk Drive
* H-25 Heathkit Printer (dot-matrix)
* ADC-12QZ D/A Converter (two)
* 7970B Tape Drive (9-track, 800 BPI)

'

Anticipated Hardware Acquisitions

Computer

92852M Hardware Upgrade Package (for
RTE-IV)

12747H 64K Memory Board

• = Item currently installed and usable with system

.% lFm*

134

.-.

APPENDIX D
-, WPAFB HP21MX Users

This is a list of all known WPAFB HP21MX users. Those

marked with an asterisk were particularly knowledgeable and

helpful.

Name Phone Bldg. Organization

Bob Ballard 52493 24C AFWAL/FIMN

John Bankovskis 76177 FTD

L. T. Drzal 52952 32 AFWAL/MLBM

Sgt. Sam Jiles 56361 622 AFWAL/AARI

*Brian Kent 54465/55076 Barn AFWAL

*Jim Leonard 53050 23 AFWAL/AAFR/2

Irvin F. Luke 52372 18 AFWAL/POOC/1

135

,5S.6 .. * *

Appendix E
Introduction to Structured Analysis and Design

Introduction

This appendix should help to familiarize readers

unacquainted with structured analysis and structured design

* tools and procedures. The development methodology used is a

combination of tools and procedures gleaned from a number of

sources and collectively espoused by Victor Weinberg (Ref

39). Tom DeMarco's book (Ref 11.5) is a good source for more

detailed information on structured analysis, and Yourdon and

Constantine's book (Ref 39.5) goes deeper into structured

program design.

Development Phases

System developments are typically divided into three

broad phases: analysis, design, and implementation. This

thesis investigation follows that pattern with one slight

deviation due to the fact that a current system analysis

isn't required (no current unautomated system exists): the

analysis phase is segmented, with preliminary analysis

results presented in the requirements chapter and further

analysis included in the design chapter.

*Analysis Phase

In this thesis, the analysis phase is documented in

section 3.1, "Logical Design of System". The goal of the

analysis phase is to develop a logical model of the system to

be developed. This is done with the use of two major tools:

the data flow diagram (DFD) and the data dictionary. DFD's

136

4., " .0",•-".
•

"
• • ° °

". , " - -
%

% " -m
°

" °' °

7
% 7 --- V" L" r-- - 7 . . -

show the flow of data through the logical processes of the

system. The data flows are documented in a data dictionary.

DSD's provide a graphical description of user logical data

structure requirements. DFD's are composed of a few basic
-°q

symbols: circles, representing data transforms; labeled

*- arrows, depicting data flow in and out of transforms;

rectangles, acting as data sources and destinations; and

labeled bars, representing files of some sort. Figure 3 is a

simple DFD using these symbols. Note that DFD's do not show

control information.I Data dictionaries are used to keep track of the

terminology associated with a system 's development,

including: data elements, data flows, and processes. A

complete and accurate data dictionary is essential for follow-

on system development. See Appendices F and G for examples.

Design Phase

The goal of the design phase is to translate the logical

model of the system produced in the analysis phase into a

physical model of the system. Structured design is based on

a process of successive decomposition: the system is broken

into several main functions, each of which is decomposed into

subordinate functions, etc. A new tool is introduced to

help: the structure chart.

Structure charts are used to define the structure of the

physical model of the system just as DFD's are used to

* portray the logical model of the system. In fact, structure

charts may generally be derived from DFD's by any of several

137

N V.

techniques. The structure chart graphically depicts the

* .-" modular, hierarchical structure of the system and the passing

of data between modules. Each module in the system is

represented by a box. Labeled arrows are placed on the lines
joining the various boxes to indicate data flow. See Figure

12 for an example.

Implementation Phase

When a system's design is complete, implementation

follows. Implementation refers to the coding and testing of

the system. The top-down approach applies here: highest-

level modules are implemented first, followed by their

subordinates. Each level of modules in a structure chart is

generally coded and tested completely before the next level

is begun. All code is internally documented. A test plan is

produced, and includes: test data, expected results, and any

performance requirements.

.6

..
J

138

- Z Z%

* 1 h; o A7 - - . W%

APPENDIX F
Data Dictionary

(Data Items)

Data items are listed alphabetically.

Legend

Data Characteristics:

A Alphabetic ASCII Any printing ASCII charac-
ter, subject to stated
restrictions

C Complex Complex floating-point
number

D Double Double-precision floating-
point number

F Floating-point Single-precision floating-
point number

I Integer Single binary word
L Logical Single logical value
N Numeric ASCII 0-9, decimal point, minus

and plus signs

I ACQIO = * Class I/O number associated with acquisition
process *

Used by: ADOOO through AD(NNN), PD001 through PD(NNN),
SAREQ.

Changed by: SAREQ.
Characteristics: I

Class I/O numbers are assigned by the system
when requested via an EXEC call. They are used to
uniquely identify Class I/O senders and receivers.

ACQNO = * Identifying number of data acquisition module
user has selected *

Used by: DSP, EOPT, FREQ, GREQ, SAREQ.
Changed by: EM002, GREQ.
Characteristics: I

0 = File input (ADOOO)
1 = Generate data (AD001)
2 = Take data from A/D converter (AD002)

ACQOT = * Name of file to which acquisition process
is writing *

139

-~ . ,i , .. .- ' . .-*.:. ..-.. ,. '.5**.-. - ... ' ... '.'. -. , .f.'t. .,-

-- 0 ri ..I.I

Ut

Used by: ADOOO through AD(NNN)..,-Changed by: AD000 through AD(NNN).

Characteristics: 6A (31)

File names of raw, sampled/generated data
files are always of the form "SDnnnn", where
nnnn is a four-digit number.

AREQ" = * Acquisition request file. Contains all the
control data needed by an acquisition module
to define the operations expected of it *

= (acquisition module specific)

Used by: ADOOO through AD(NNN)
Changed by: FAOOO through FA(NNN)
Characteristics: Sequential disk file

ATTRI * Character which defines display attributes
of menu file text and defaults; found in menu

4 file (MD(NNN)) record types 2 and 5.

Used by: PREC2, PREC5
Changed by: PREC2, PREC5
Characteristics: A

"I" = Print text in inverse video0 "N" or " = Print text in normal video

CBEGIN = * Character position at which some operation
(such as a string substitution) should begin *

Used by: SCHAR.
Changed by: (modules calling SCHAR)
Characteristics: I

CEND = * Character position at which some operation
(such as a string substitution) should end *

Used by: SCHAR.
Changed by: (modules calling SCHAR)
Characteristics: I

CFREQ = * Coherence function frequency values produced
to accompany magnitude-squared coherence (MSC)
values *

Used by: COHER
Changed by: COHER
Characteristics: (512)*F

-. CHAR = * Temporary storage for a single character from

140

.1 • . - . - . - • . . ° . . - ., , ,. . .,

some word (each HP word contains two
~ .',. characters) *

Used by: EM001.
Changed by: EM001.
Characteristics: I

.-.

COLMAX = * Maximum column number for terminal screen *

Used by: PRECI.
Changed by: GCOM.
Characteristics: I

Columns are numbered from 0 to 79 on the HP2648A
terminal.

COLMIN = * Minimum column number for terminal screen *

Used by: PREC1.
Changed by: GCOM.
Characteristics: I

COLUMN = * Column to which screen cursor is to be
positioned *

Used by: CURSR.
Changed by: (modules calling CURSR)
Characteristics: I

CONDAT = * Convolved data *

Used by: PDO03.
Changed by: EM___
Characteristics: (512)*F

CONWD1 = * EXEC call control word number one; used to
request a terminal-enabled block data read
from the HP2648A terminal *

Used by: AOPT, DMENU, HELP.
• .. Changed by: GCOM.

" - Characteristics: I

CONWD2 = * EXEC call control word number two; used to
request a transparent write to the terminal *

Used by: AOPT, BORDR, CURSR, DSP, ERMSG, HELP, PREC2,
PREC5, PREC6.

Changed by: GCOM.
Characteristics: I

CONWD3 = * EXEC call control word number three; used to
request a program-enabled block data read from

1" 141

-. , .. -. U .- , -. . ..o . -,. .-. d .
-

• - .'.. . . - b. . ,

the terminal *
Used by: AOPT.

Changed by: GCOM.
Characteristics: I

CORPTS = * Number of correlation points used in esti-
mating a power spectrum *

Used by: PDO01.
Changed by: EM____
Characteristics: I

CORPTS must be <= PTSBLK/2+l when used by CORR

CORTYP = * Type of correlation to be performed *

Used by: PDO01.
Changed by: EM___
Characteristics: I

0 = Auto-correlation
1 = Cross-correlation
2 = Auto-covariance
3 = Cross-covariance

* CORVAL = * Correlation function output values *

Used by: PDO01.
Changed by: PDO01.
Characteristics: (>=FFTSIZ)I

CPOS = * Character position identifier; used to keep
track of which character in a character string
is receiving some operation's attention *

Used by:
Changed by:
Characteristics:

CURMEN = * Unique number identifying current menu *
p.,

Used by: AOPT, BORDR, DMENU, EOPT, GOPT, GREQ, HELP,
PRECI - PREC6, SIOPT, TMENT.

Changed by: DSP, TMENT.
Characteristics: I

N = Menu number N is currently being
displayed

*CV(NNN)" = * Current values file containing the current
,.... values associated with menu number (NNN) *

U.

142

W_.~~~~~ 4% 'o..V : -P7%-

Used by: DMENU, AOPT

Changed by: AOPT
Characteristics: Sequential ASCII disk file

Current values files are structured in the
same way that menu files (MD(NNN)) are. The

r. %only difference is that comment records are left
out of CV(NNN) files.

CVDCB = * Current value file (CV(NNN)) data control
block, used when performing system calls for
file I/O operations *

Used by: AOPT, DMENU.
Changed by: AOPT.
Characteristics: 1441

CVNAM = * Array containing the name of the current
value (CV(NNN)) file in use *

Used by: AOPT.
Changed by: AOPT.
Characteristics: 6A (31)

-I

CXSIG = * Complex X signal (note that the X signal is
considered the primary signal, and the Y
signal is the secondary signal (if present)) *

Used by: PDO03.
Changed by: EM
Characteristics:)*C

DIRDES = * Directory destination. Defines where the user
wants his requested directory listing to be
sent *

Used by: DIREC.
* Changed by: SIOPT.

Characteristics: I

0 = Print out directory on terminal screen
1 = Print out directory on printer

DIRTYP = * Directory type. Defines what sorts of files
the user wants to have appear in his directory
listing *

Used by: DIREC.
Changed by: SIOPT.
Characteristics: 10*I

Each file type is represented by one of the
entries in the array. If an array element con-

4. 143

i

rtains a 1, then the corresponding file type will
-be included in the directory listing. If the

array element contains a 0, the file type will
not be included.

Position File Type

1 CV(NNN) - Current Values
2 ID(NNN) - Input Data
3 MD(NNN) - Menu Data
4 OD(NNN) - Output Data
5 PT(NNN) - Parameter Transfer
6 RF(NNN) - Request File

DISIN = * Name of file from which display module is
reading *

Used by: DDOOO.
Changed by: EM
Characteristics: 6A (31)

Names of files to be used by a display module
are always of the form "ODnnnn". "nnnn" is a
unique four-digit identifier.

DISIO = * Class I/O number assigned to display module
* - user has selected *

Used by: DDOOO - DD(NNN), PDO01 - PD(NNN).
.. Changed by: SAREQ.

Characteristics: I

Class I/O numbers are provided by the system
in response to an EXEC request.

DISNO = * Identifying number of display module user has
selected *

Used by: DDATA, DSP, EOPT, FREQ, GREQ, SAREQ.
Changed by: EM004, GREQ.
Characteristics: I

0 = File output
- 1 = Display to HP 2648

2 = Display to HP 1310

.L "DREQ" = * Display request file. Contains all the data
needed to define the operations expected of
a selected display application program *

. (display-program dependent)

'Used by: DDOOO through DD(NNN)

144

! ! -B .,q ~ ~ ° .. *.%. .. '. % " - * * % * '" '.'*% '.

Changed by: FDOOO through FD(NNN)
Characteristics: Sequential disk file

ERTEXT Text to be printed as an error message to
the user *

Used by: ERMSG.
Changed by: (all modules calling ERMSG)
Characteristics: 160A (801)

FBACK = * Flag used to communicate whether or not the
user wants to back up to the previous menu *

Used by: GREQ, SIOPT, TMENT.
Changed by: AOPT, EM001 - EM(NNN), GREQ.
Characteristics: L

menu.TRUE. = User wants to back up to previous
~menu.

.FALSE. = User doesn't want to back up to
previous menu.

FCONS = * Flag used to communicate whether or not the
user 's requests are consistent with one
another (and thus whether or not execution
should be permitted to commence) *

Used by: CCONS, FREQ, GREQ
Changed by: CCONS
Characteristics: L

.TRUE. = User's requests are consistent --
execute.

.FALSE. = User's requests are inconsistent --
do not execute.

FDIREC = * Flag used to communicate whether or not the
user wants a directory listing *

Used by: DIREC, EOPT, GREQ, SIOPT.
Changed by: AOPT, EM001 - EM(NNN).
Characteristics: L

.TRUE. = User wants a directory listing.
.FALSE. = User doesn't want a directory

listing.

FERR = * Flag used to communicate whether or not a
fatal error has occurred *

Used by: All modules
-. Changed by: All modules
* Characteristics: L

145

.TRUE. = Fatal error has occurred.
-FALSE. = Fatal error hasnt occurred.

When a fatal error occurs, the normal pro-
cedure is for the system to print out a descriptive
error message and then stop execution.

FEXE = * Flag used to communicate whether or not the
user wants to execute the request that has
been formed *

Used by: EOPT, GREQ.
. Changed by: EM001.

Characteristics: L
.TRUE. = Execute request.

.FALSE. = Don't execute request.

FEXIT = * Flag used to communicate whether or not the
user wants to exit the system *

Used by: CURMEN, DSP, GREQ, SIOPT.
'. Changed by: AOPT, DSP, EM001 through EM(NNN).

Characteristics: L

.TRUE. = User wants to exit the system.
.FALSE. = User doesn't want to exit the

system.-4

FFTSIZ - * Number of points on which FFT is to be
performed *

Used by: PDO06.
Changed by: EM
Characteristics: I

FFTSIZ must always be a power of 2.
FFTSIZ must be >= 2*CORPTS-I for use by CORR.

FFTYPE = * FIR filter type

Used by: PDO05.
Changed by: EM___
Characteristics: I

, 1 = Multiple passband/stopband

2 = Differentiator
3 = Hilbert transformer

FGEDIT = * Flag specifying whether edited user entries
were good (acceptable) *

146

.4,

Used by: EM001 through EM(NNN), EOPT, GREQ.
Changed by: EM001 through EM(NNN).
Characteristics: L

.FALSE. = User's entries are unacceptable

.TRUE. = User's entries are acceptable

FHELP = * Flag specifying that the user wants help with
- the current menu *

Used by: SIOPT.
Changed by: AOPT, EM001 through EM(NNN).

VCharacteristics: L

.FALSE. = User doesn't want help

.TRUE. = User wants help

FIRST = * Flag specifying whether PRECI is being called
for the first time or not *

Used by: PRECI.

Changed by: DMENU.
Characteristics: L

.FALSE. = Not first time to call PRECI

.TRUE. = First time to call PREC1

FLDLEN = * Length of a menu response field as defined
by a type-4 record in a menu (MD(NNN)) file *

Used by: PREC4.
Changed by: AOPT, DMENU, PREC4.
Characteristics: I

FRDEF = * Flag specifying whether the user wants to
re-read the default values for a menu (useful
if a lot of entry errors have been made and
the user wants to start again from scratch) *

Used by: DMENU, GOPT, SIOPT.
Changed by: AOPT, EM001 through EM(NNN).
Characteristics: L

.4 .FALSE. = User doesn't want to re-read default
values.

.TRUE. = User wants to re-read default values.

FREDIS = * Flag specifying whether or not the current
menu should be displayed again or not *

Used by: GOPT.
', . Changed by: AOPT, GOPT.

Characteristics: L

147

.TRUE. = Re-display the current menu.
* I'?..? .FALSE. = Don't re-display the current menu.

FREREQ = * Flag specifying whether or not the user wants
to read a previously-created request into the
menus *

Used by: EOPT, GREQ.
Changed by: EM001.
Characteristics: L

.TRUE. = Read in a request.
.FALSE. = Don't read in a request.

FREVAL = Frequency values produced by program CORR
as part of its power spectral density compu-
tations *

Used by: CORR
Changed by: CORR
Characteristics: (FFTSIZ/2+l)F

FS = * Sampling frequency *

Used by: AD001, AD002.
Changed by: EM___
Characteristics: I

FSDEF = * Flag specifying that the user wants to save
.,.the menu's current values, making them the

new default values.

Used by: SIOPT.
Changed by: AOPT, EM001 through EM(NNN).
Characteristics: L

.FALSE. = User doesn't want to save new default
*values.

.TRUE. = User wants to save new default values.

FSIOPT I * Flag specifying whether or not the SIOPT
module should be called to satisfy an
immediate request *

Used by: AOPT.
Changed by: AOPT.
Characteristics: L

.TRUE. = Call SIOPT.

.FALSE. - Don't call SIOPT.

'- FSVREQ * Flag specifying whether the user wants to

148

** °.~* v ~

save the requests which have been formed
for later user *

"4".

Used by: EOPT, GREQ, SIOPT.
Changed by: EM001 through EM(NNN).
Characteristics: L

.FALSE. = User doesn't want to save requests.

.TRUE. = User wants to save reqests.

FX = * Frequency response desired for each band in
an FIR filter *

Used by: PDO05.
Changed by: EM
Characteristics: 10*F

"GI(NNNN)"= * Generated input data file containing raw
generated data *

Used by: PD(NNN)
Changed by: AD001
Characteristics: Sequential disk file containing

header information followed by sample values.

Record (in order): Format:

Identifying text 80A
Number of data points I
Sampling frequency I
Sample value F
(more sample values)

HLPDCB = * Data control block used for system I/O calls
when reading/writing HP(NNNN) files *

Used by: HELP.
Changed by: HELP.
Characteristics: 1441

HLPNAM = * Array containing the name of the current help
file being read *

Used by: HELP.
Changed by: HELP.
Characteristics: 6A (31)

IMPFIL = * Name of file used to store filter impulse
response values *

Used by: PDO05.
Changed by: EM_
Characteristics: 6A ()

149

File name must be of the form "PTNNNN", where
. . ."PT" identifies it as a parameter transfer file,

and "NNNN" is a four digit number used to uniquely
identify the file.

LAGVAL = * Lag values produced by the correlation program
(PDO01) while performing correlation and
covariance functions*

Used by: PDO01
Changed by: PDO01
Characteristics: (FFTSIZ/2+l)I

LASTC = * Pointer to the last character for some string
operation *

Used by:
Changed by:
Characteristics:

LCAPE = Contains a capital "E" in its left byte *

Used by: SESC.
Changed by: SESC.
Characteristics: I

Q LEN = * Length (in words) of data block read from a
file as a result of a call to the system sub-
routine "READF" *

Used by: (all modules that read/write files)
Changed by: (all modules that read/write files)
Characteristics: I

LENCHR = * Length of a string, in characters *

Used by: PREC5.
Changed by: PREC2.
Characteristics: I

LENWDS = * Length of string to be operated on, in words *

Used by: SESC.
Changed by: SESC.
Characteristics: I

LFILT = * Length of filter *

Used by: PDO03.
Changed by: EM___
Characteristics: I

150

IZ

:. . - . .; • ~. - .J 4' . 4 *J . -. ,. -- o- . - . . - '
,

. . . " .' -o. . ** -. ' * **** * ,. ,.. *. ~ i .*.. --

LFROM = * Left-byte value for a character (each word
contains two characters) *

Used by: SCHAR.
Changed by: (all modules calling SCHAR)
Characteristics: I

LGRID = * Grid density for FIR filter design compu-
tations *

Used by: PDO05.
Changed by: EM___
Characteristics: I

Default value is 16.

LMASK = * Mask used for logically extracting (ANDing
out) the left character in a word *

Used by: DMENU.Changed by: DMENU.

Characteristics: I

LMASK = 077400B (octal)

LTO = * Left-byte character value for "TO" value in
character substitution *

Used by: SCHAR.
Changed by: (all modules calling SCHAR)
Characteristics: I

MAXERT = * Maximum value of subscript which may be used
with the ERTEXT array *

Used by: BORDR, CLRET, ERMSG.
Changed by: GCOM.
Characteristics: I

MAXREC = * Maximum value of subscript which may be used
with the RECBUF array *

Used by: DMENU, HELP, PREC1, PREC4, PREC5.
Changed by: GCOM.
Characteristics: I

4 MAXSCR = * Maximum value of subscript which may be used
with the SCRDAT array *

Used by: AOPT, PARAM.
Changed by: GCOM.
Characteristics: I

151

&" ei? 'D i.'- -'- e ." ."". ". -. . • " "•" -". " k "J , ,''" . , . *.- ,- * ,*-'"".

MAXTCO = * Maximum value of subscript which may be used
with the TCONT array *

Used by: AOPT, CLRTC, DMENU, DSP, ERMSG, PREC2, PREC5.
Changed by: GCOM.
Characteristics: I

"MD(NNN)" = * Menu data files containing user prompting
text and default values *

Used by: DMENU, PREC1 through PREC6
Changed by: SDEF
Characteristics: Sequential ASCII disk file

Each menu has one of these menu files
associated with it. The "NNN" in the menu file's
name uniquely identifies the menu it will be used
with, and corresponds with the same number used to
make up a part of certain associated software
module names (such as "EM(NNN)").

The menu file consists of text lines followed
by sets of lines in groups of six. Each of the
groups defines a single entry on a menu page,
including where the prompting text is to be
placed on the page, what its display attributes
will be, the length of the response field, what
the response field's attributes will be, and the
response field's default value. An example is
given below.

0,This is a text line; anything at all may
O,be placed on it as long as the line starts with a
0,zero and a comma.
1,2,8 (Cursor is to be positioned on row 2,

column 8)
2,1 (Text is to be printed in inverse video.

If normal display desired, put an "N"
after the comma)

3,Number of points? (Prompting text)
4,3 (The user is to be allowed up to three

characters/digits for a response)
5,N (The default value, and the user's

response when entered, are to be printed
in normal video rather than inverse)

*6,128 (The default value is 128)
1,5,60 (New group)

etc.

Each line in the file MUST start with 0-6
followed by a comma. Type 0 lines may be placed
only before all other line types for documentation,

~. and have no effect on processing. Line types 1-6
must occur in order, and all six must be present

152

in each group.
Note that row and column values used in type

1 records assume that row and column numbering
starts with 0, not 1.

MDDCB = * Menu data file data control block; used to
hold file control information when opening
MD(NNN) files for reading/writing *

Used by: PREC1 through PREC6.
Changed by: AOPT, FAOOO through FA(NNN), FDOOO throughFD(NNN), FP001 through FP(NNN).

Characteristics: 1441

MDNAM * Array containing the name of the menu data
(MD(NNN)) file in use*

Used by: AOPT, DMENU.
Changed by: AOPT, DMENU.
Characteristics: 6A (31)

MENUSE = * Array of flag values which specify whether or
not a particular menu has been accessed during
the current terminal session *

Used by: DMENU, FREQ subordinates.
Changed by: AOPT.
Characteristics: lOOL

MENUT = * File containing values values which define
the structure of the user interface's menu
tree (which menus follow/precede which) *

Used by: TMENT
Changed by: (None)
Characteristics: Sequential ASCII file

The file contains pairs of integers, with one
pair on each line (separated by commas). The first
integer in each pair is a "parent" menu number.
The second integer is a "child" menu number. Each
parent can have arbitrarily many children
(including none), so parent (first integer) entries
need not be unique. Each menu number should appear
as a child (second integer) entry only once,
however, since each child has only one parent. The
order of the entries for a given parent is very
significant: the children must be listed so that
they may be indexed by the user's menu entry. For
example, if the user wants the third option on a
(parent) menu, and so enters a 3, the child menu

.. - associated with that option must be defined by the
third MENUF entry for the current parent.

153

... , .. ,, ,.

*" . a a1 . -. . p -, -. .. ,, . .. - * * * 4 . - I. . . ! . !. - . ..

.- *,. MESG = * Message buffer *

Used by: NOCR, SCHAR, SESC.
Changed by: NOCR, SCHAR, SESC.
Characteristics: 80A (401)

MSC = * Magnitude-squared coherence values *

Used by: PDO02
Changed by: PDO02
Characteristics: 1024*F

MTDCB = * Menu tree file data control block used when
performing I/O operations to the menu tree
file.

U:,* Used by: TMENT.
Changed by: TMENT.
Characteristics: 1441

MTNAM = * Array containing the menu tree file name *

Used by: TMENT.
Changed by: TMENT.
Characteristics: 6A (31)

0 NOCRLF = * Data value used to supporess the printing of
carriage return/line feed sequences on the
terminal screen *

Used by: AOPT, BORDR, DMENU, DSP, ERMSG, HELP, NOCR,
PREC2, PREC5.

Changed by: GCOM.
Characteristics: I

NUMBLK = * Number of data blocks to be processed *

Used by: PDO02.
Changed by: EM
Characteristics: I

NUMPAR = * Number of parameters needed to format a
request *

Used by: FA001.
Changed by: FA001.
Characteristics: I

OD(NNNN) = * Output data file containing data ready for
printing, plotting, etc.

Used by: Device routines (and OS commands)

154

. y.i.........:..'.....-.* **. %; ... -:-'*:.'-. .9;.%*.V .V '.V'. $K - ' M .'V.

Changed by: DD001
,- * Characteristics: Sequential disk file containing

header information followed by output data.

Record (in order): Format:

'S. Identifying text 80A
Output device number I
(Data) (Depends on output

device)

OPTCNT = * Option count for options being decoded from
the SCRDAT array *

Used by: TMENT.
Changed by: TMENT.
Characteristics: I

OPTNUM = Number of option to be decoded from the SCRDAT
array *

Used by: TMENT.
Changed by: TMENT.
Characteristics: I

PAGEDE = * Number of page desired *

Used by: HELP.
Changed by: HELP.
Characteristics: I

PAGENO = * Page number count *

Used by: HELP.
Changed by: HELP.
Characteristics: I

PARBUF = * Parameter buffer, used to transfer parameters/
options from SCRDAT or data file to using
module *

Used by: AOPT, FPAR, TMENT.
Changed by: PARAM.
Characteristics: 80A (401)

PARCNT = * Parameter count *

Used by: FPAR, PARAM.
Changed by: AOPT.
Characteristics: I

PARNUM = * Parameter number; 1 = first parameter in file,
d 2 = second, etc. *

40

155

* .,. . . .

S.-Used by: FPAR.
Changed by: FREQ subordinates.
Characteristics: I

"PD(NNNN)" = * Processed data file containing data produced
by a processing module *

Used by: PDO01 through PDO08
Changed by: PDO01 through PDO08
Characteristics: Sequential disk file containing

header information followed by processed data
values.

Record (in order): Format:

Identifying text 80A
Number of data points I
Number of points/block I
Sampling frequency I
Data type I

0 = Integer
1 = Single precision floating-point real
2 = Double precision floating-point real
3 = Complex (single precision)

Data values F/D/C
(more data values)

PROIN = * Name of file from which process module is
reading *

Used by: PDO01 through PD(NNN).
4- Changed by: EM__

characteristics: 6A

Names of files to be processed by a process
module are always of the form "SD(NNNN)" for raw,
sampled/generated data files, or of the form
"PD(NNNN)" for previously processes data. In each
case, (NNNN) is a unique four-digit identifier.

PROIO = * Class I/O number assigned to data processing
module *

Used by: ADOOO through AD(NNN), DDOOO through DD(NNN),
PDO01 through PD(NNN).

Changed by: SAREQ.
Characteristics: 10I

I:.[.. Class I/O numbers are provided by the system
in response to an EXEC call, and are then used to

156
4q

%*-..-.**-.*.*%* .*.- (o . %-o. . .- ' . - . -.. -'--°, ---., % . ---. o --.- -. . ' ' ' °

uniquely identify Class I/O message senders and
receivers.

PRONO = * Identifying number of data processing module
user has selected. If PRONO(3) = 4, it means
that the third processing module is to be a
Fast Fourier Transform *

Used by: DSP, EOPT, FREQ, GREQ, SAREQ.
Changed by: EM003, GREQ.
Characteristics: 10I

0 = No processing
-1 = Auto-correlation, cross-correlation,

auto-covariance, cross-covariance, power spectral
density

2 = Coherence
3 = Convolution
4 = Fast Fourier Transform
5 = FIR Filter Design
6 = Inverse Fast Fourier Transform
7 = IIR Filter Design
8 = Waveform Average

PROOT = * Name of file to which process module is
writing *

Used by: PDO01 through PD(NNN).
Changed by: EM__
Characteristics: 6A

Names of files containing data produced by a
process module are always of the form "PDnnnn".
"nnnn" is a unique four-digit identifier.

"PRQ(NNN)" = * Processing request file. PRQ001 contains
parameters for the processing program PDO01,
etc. *

Used by: PD001 through PD(NNN).
Changed by: FREQ subordinates.
Characteristics: Sequential disk file.

PSDVAL = * Power spectral density function values *

Used by: PD001
Changed by: PDO01
Characteristics: (>=FFTSIZ)F

"PT(NNNN)"= * Parameter transfer file containing parameters
to be transferred from one process module to
another *

157

. . , , - - - .. . ,' , - . - . - - .- .- .- .- , . •. . .. •-.. - . -. . ** . - - . *. . , . ..- , - -.

. ,V -1.~.- *

Used by: PDO05, PDO07
Changed by: PDO05, PDO07
Characteristics: Sequential disk file containing

header information followed by parameters to
be transferred.

Record (in order): Format:

Identifying text 80A
Parameter type I(?)
Parameters (Depends upon type)

PTSBLK = * Number of points per block of data *

Used by: PDO01.
Changed by: EM___
Characteristics: I

Must be a power of two at present.

RECBUF = * Record buffer used to initially hold data
read in from disk files *

Used by: AOPT, DMENU, HELP.
Changed by: AOPT, DMENU, ERMSG, HELP, PRECI, PREC2,

PREC4, PREC5, PREC6.
Characteristics: 80A (401)

RECTYP = * Record type. Hold the first character of
menu file (MD(NNN)) record, which is used to
define the record's type *

Used by: DMENU, PREC1 through PREC6.
Changed by: DMENU, PRECI through PREC6.
Characteristics: I

REQFIL = * Array containing the name of a file to which
user requests are written *

Used by: SVREQ.
Changed by: SIOPT.
Characteristics: 6A (31)

RESC = * Contains the right-byte value for an ASCII
ESCAPE character *

Used by: SESC.
Changed by: SESC.
Characteristics: I

RESP = * Filter impulse response array *

158

Used by: PDO03
"-."- Changed by: PDO05
j " Characteristics: (LFILT/2+I)*F

-RF(NNNN)"= * Request file containing user request *

Used by: AOPT
Changed by: SVREQ
Characteristics: Sequential disk file containing

header information followed by user request.

Each request file contains a set of data
which is used as if it had been entered from the
keyboard in the same order it occurs in the file.
It would be nearly impossible to predict all the
forms of data which might occur in a request file.
But, since all requests are edited before being
stored in a request file, the data is seldom likely
to be in error (requiring interpretation).

RFROM = * Contains the right-byte form of a character
to be operated on during substitution (from-
to) *

Used by: SCHAR.
Changed by: SCHAR.
Characteristics: I

RMASK = * Mask for isolating the right-byte character
in a word *

Used by: SCHAR.
Changed by: SCHAR.
Characteristics: I

ROW = * Row on terminal screen to which cursor is to
•, be positioned *

Used by: CURSR.
* Changed by: (modules calling CURSR)

Characteristics: I

ROWMAX = * Maximum row value for HP2648A terminal
screen *

Used by: PREC1.
Changed by: GCOM.
Characteristics: I

ROWMIN = * Minimum row value for HP2648A terminal
screen *

Used by: PREC1.

159

.

Changed by: GCOM.
Characteristics: I

RTO = * Right-byte value of "TO" substitution charac-
ter (FROM-TO substitution) *

Used by: SCHAR.
5. Changed by: SCHAR.

Characteristics: I

SARIO = * Class I/O number assigned to the SAREQ module,

used by other modules to uniquely identify
SAREQ as the recipient of Class I/O messages *

Used by: All AD(NNN), PD(NNN), and DD(NNN) programs.
Changed by: SAREQ.
Characteristics: I

SCRDAT = * Screen data buffer array. Used for accepting
blocks of data from the screen during block
read operations (EXEC calls) *

Used by: EM001, EM002, EM003, EM004, PARAM.
Changed by: AOPT, CLRSD.
Characteristics: 1000A (5001)

SFX = * Scaling factor to be applied to X signal *

Used by: PDO02.
Changed by: EM__
Characteristics: F

SFX is normally set to 1.0, unless scaling
of input data is desired.

, .5

a" SFY = Scaling factor to be applied to Y signal *

Used by: PDO02.
Changed by: EM__
Characteristics: F

K. SFY is normally set to 1.0, unless scaling
of input data is desired.

"SI(NNNN)"= * Sampled input data file containing raw
sampled data *

Used by: PDO01, PDO02, PDO03, PDO04, PDO08
Changed by: AD001, AD002
Characteristics: Sequential disk file containing

header information followed by sample values.

.9 9. *Record (in order): Format:

160

' . ., , • " . . .' , .- -.--.0 ,. ...--. . -. ... I- ALI

.[Identifying text 80A
Number of data points I
Sampling frequency I
Sample value I
(more sample values)

SS = * Starting sample number (for offsets within
a data block) *

Used by: PDO01.
Changed by: EM___
Characteristics: F

SS will typically be an integer, but PDO01
expects it to be a floating-point number for the
sake of generality.

STRLEN = * Length of character string to be operated on;
given in number of characters *

Used by: NOCR.
Changed by: NOCR.
Characteristics: I

TCONT = * Holds terminal control characters for taking
care of simple chores like clearing the
screen *

Used by: AOPT, BORDR, CLRTC, CURSR, DMENU, DSP, ERMSG,
PREC2, PREC5.

Changed by: AOPT, BORDR, CLRTC, CURSR, DMENU, DSP,
ERMSG, PREC2, PREC5.

Characteristics: 20A

TOTPTS = * Total number of sample points to be
processed *

Used by: PDO01.
Changed by: EM___
Characteristics: I

At present, must be a multiple of the number

of points per block, PTSBLK.

WDADDR = * Address of word being manipulated (substi-
tutions, etc.) *

Used by: NOCR.
Changed by: NOCR.
Characteristics: I

WINCOR = * Type of window used by CORR program *

'1611

~161

. •.. .- . .;.> z -.A - . .** - - .. . -. . • ° o . -

* Used by: PDOO1.
Changed by: EM__
Characteristics: I

1 = Rectangular
2 = Hamming

NTX =*Positive weighting functions for filter fre-
quency bands*

Used by: PDOO5.
Changed by: EM
Characteristics: lOF

XSIG = * Primary set of signal values*

Used by: PDO0l, PDOO2.
Changed by: EM , PD(I).
Characteristics: (TOTPTS)F

YSIG =*Secondary (typically optional) signal
values

Used by: PDO0l, PDOO2.
Changed by: EM__ PD(I).

Characteristics: (TOTPTS)F

'16-

APPENDIX G
Data Dictionary
(Program modules)

Modules are listed alphabetically.

Module name: ADOOO

Aliases: ACQUIREDATAFROMFILE

Description: ADOOO reads files and provides the data they
contain to data processing application programs (PDO01,
PDO02, etc.), acting as though the data were being taken
from an A/D converter. This allows the PD(NNN) programs
to have a standard interface with AD(NNN) programs,
whether the data are coming from file or from a real-
time device.

Calling modules: ADATA.

Modules called: (none)

Data items input: ACQIO, PROIO, SARIO.

Data items output: SD(NNNN).

Module name: AD001

Aliases: GENERATEDATA

Description: Generate sinusoidal data for use by processing
and display application programs.

Data items input: ACQIO, PROIO, SARIO.

Data items output (changed): SD(NNNN).

Calling modules: ADATA.

Modules called: (none)

Module name: AD002

Aliases: SAMPLEA/DCONVERTER

Description: Take data samples from the analog-to-digital

163

*0%

converter for use by processing and display application
programs.

I Data items input: ACQIO, PROIO, SARIO.

Data items output (changed): SD(NNNN).

Calling modules: ADATA.

Modules called: (none)

Module name: ADATA

Aliases: ACQUIREDATA

Description: Initiates processing by data acquisition appli-
cation programs (ADOOO, AD001, etc.)

Data items input: ACQNO.

Data items output (changed): (none)

Calling modules: SAREQ.

Modules called: ADOOO, AD001, AD002.

Module name: AOPT

Aliases: ACCEPTOPTIONS

Description: AOPT accepts the user's terminal input
(options). All data is sent from the terminal in block
form, with unit separator (US) characters placed between
each field automatically by the terminal.

Two reads of the terminal's data are performed when
the user specifies that data entry is complete by hit-
ting either the ENTER key or one of the programmable
function keys. The first read checks to see if it was

a, one of the function keys that was hit. If so, and if
that key has been assigned a function, its associated
flag (such as FHELP) is set. Whether or not a function
key was hit, a second read is then performed to get all
of the data in protected fields (which requires that
the cursor be homed first).

Function keys are identified by their default
escape sequence values. Key number 1 sends an ESCp,
key number 2 sends an ESCq, etc. If the function keys
have been changed from their default settings, a reset

.** of the terminal should be performed before running DSP.

164

X. . . ., -. - -.\ .. .- . . .
-
. r- . - .. < "- '- .. .

Calling modules: GOPT.

Modules called: CLRRB, CLRSD, CLRTC, PARAM, SCHAR, SESC,
SIOPT.

Data items input: CONWD1, CONWD2, CONWD3, CURMEN, MAXSCR,
MAXTCO, NOCRLF, PARBUF, RECBUF.

Data items output (changed): FBACK, FDIREC, FERR,
FEXIT, FHELP, FRDEF, FREDIS, FSDEF, FSIOPT, MDDCB,
MENUSE, PARNUM, PARBUF, SCRDAT, TCONT.

Module name: BORDR

Aliases: DRAWBORDER

Description: BORDR prepares the terminal screen each time a
menu is to be displayed. First it clears the screen,
then it draws a border around it and enables both
alphabetic and graphic display capabilities.

If it's the first ("Title Page") menu that's being
displayed (CURMEN = 1), some extra lines, boxes and
text are added to the basic menu border.

Finally, the current menu (CURMEN) value is written
to the upper left corner of the screen (mostly as an aid
to debugging).

Data items input: CONWD2, CURMEN, MAXERT, NOCRLF.

Data items output (changed): ERTEXT, FERR, TCONT.

Calling modules: DMENU, HELP.

Modules called: CLRET, CLRTC, CURSR, SESC.

Module name: CCONS

Aliases: CHECKCONSISTENCY

Description: This module is responsible for checking to
ensure that the user's request is self-consistent.
For example, if a filter design application program is
requested, it would make little sense to also specify a
data acquisition application program.

Data items input: ACQNO, DISNO, PRONO.

Data items output (changed): FCONS, FERR.

.165
165

.,., . ..4 ,.> ?

.J

-.Calling modules: FREQ.

Modules called: CLRET, ERMSG.

Module name: CLRET

Aliases: CLEARERTEXT

Description: CLRET fills the array ERTEXT with nulls (binary
zeros).

Calling modules: (nearly all)

Modules called: ERMSG.

Data items input: MAXERT.

Data items output: ERTEXT, FERR.

Module name: CLRRB

Aliases: CLEARRECEUF

Description: CLRRB fills the array RECBUF with spaces.

Calling modules: AOPT, DMENU, ERMSG, HELP, PREC1, PREC2,
PREC3, PREC4, PREC5, PREC6.

Modules called: CLRET, ERMSG.

Data items input: MAXREC.

Data items output: ERTEXT, FERR, RECBUF.

Module name: CLRSD

.Aliases: CLEARSCRDAT

Description: CLRSD fills the array SCRDAT with nulls (binary
zeros).

Calling modules: AOPT.

Modules called: CLRET, ERMSG.

% .<* Data items input: (none)

166

':. .~ ~ ~ ~ ~ ~ - e e-,".-..• '_ .. . "-'"•",' . - ..-. ...- "". "- '.". . ""'. .

..€-. Data items output: ERTEXT, FERR, SCRDAT.

Module name: CLRTC

Aliases: CLEAR TCONT

Description: CLRTC fills the array TCONT with nulls
(binary zeros).

Calling modules: AOPT, BORDR, CURSR, DMENU, DSP, ERMSG,
PREC2, PREC3, PREC5.

Modules called: CLRET, ERMSG.

Data items input: MAXTCO.

Data items output: ERTEXT, FERR, TCONT.

Module name: CURSR

Aliases: POSITION CURSOR

__ Description: Given a row/column coordinate pair, CURSR
positions the screens cursor at that row and column.
The row must be between 0 and 23; the column must be
between 0 and 79.

Calling modules: BORDR, ERMSG, HELP, PREC1.

Modules called: CLRET, CLRTC, ERMSG, SESC.

Data items input: COLUMN, CONWD2, NOCRLF, ROW.

Data items output: ERTEXT, FERR, TCONT.

Module name: DDOOO

Aliases: DISPLAYTOFILE

Description: DDOOO acts just like any of the other data
display application programs, except it stores the
data it receives to a file. In this way the data
acquisition and data processing application programs
never have to worry about whether they are to provide
their output to a file or to another program -- they
always provide it to another program.

167

Ae

Calling modules: DDATA.

Modules called: (none)

Data items input: ACQIO, DISIO, SARIO.

Data items output: (none)

Module name: DD001

Aliases: DISPLAYTOHP2648

Description: Application program for graphically displaying
data on HP2648A terminal. Uses the HP2648A's
intelligent AUTOPLOT function.

Data items input: DISIO, PROIO, SARIO.

Data items output (changed): (none)

Calling modules: DDATA.

Modules called: (none)

Module name: DD002

Aliases: DISPLAY TO HPl310

Description: Application program to graphically display
data on the HP1310 terminal.

Data items input: DISIO, PROIO, SARIO.

Data items output (changed): (none)

- . Calling modules: DDATA.

Modules called: (none)

Module name: DDATA

Aliases: DISPLAY DATA

Description: Invokes appropriate application program
*("DD(NNN)") for displaying the results of data acquisi-

tion/processing.

168

44 £ %% i . ,... 'L .X' ..- " .,. - .. i-., -. , -.. - -..
4. i i if • ~d '' "'""'"'"' "' ,"'

Data items input: DISIO, DISNO, DISREQ, PROIO.

Data items output (changed): FERR.

Calling modules: SAREQ.

Modules called: DDOOO, DD001,

Module name: DIREC

Aliases: PROVIDEDIRECTORY

Description: Provides the user with a directory of files
on disk (according to file type: whether sampled data,
processed data, etc.)

Data items input: DIRDES, DIRTYP.

Data items output (changed): ERTEXT, FERR.

Calling modules: SIOPT.

Modules called: CLRET, ERMSG.

Module name: DMENU

Aliases: DISPLAYMENU

Description: DMENU is responsible for displaying user
9prompting menus. It does this by calling a series of

subroutines (PREC1 through PREC6), each of which
is responsible for a part of creating each prompt and
default item in the menu. Menus are defined by groups
of records stored in MD(NNN) and CV(NNN) files. PREC1
through PREC6 are repeatedly called until all the menu-

-defining record groups for the current menu have been
processed.

Calling modules: GOPT.

Modules called: BORDR, CLRET, CLRRB, CLRTC, ERMSG, PRECI,
PREC2, PREC3, PREC4, PREC5, PREC6, SCHAR, SESC.

46

Data items input: CONWD2, CURMEN, FERR, FRDEF, MAXREC,
-MAXTCO, MENUSE, NOCRLF, RECBUF.

* Data items output (changed): ERTEXT, FERR, FIRST, RECBUF,

169

TCONT.

Module name: DSP

Aliases: DIGITALSIGNALPROCESSING

Description: DSP is the main driver for entire system. It
repeatedly gets user requests from GREQ and passes them
on to SAREQ for satisfaction until either a fatal error
occurs or the user asks to exit the system.

Calling modules: (none)

Modules called: CLRTC, GREQ, OLDIO, SAREQ, SESC.

Data items input: ACQNO, CONWD2, DISNO, FERR, FEXIT, MAXTCO,
*NOCRLF, PRONO.

Data items output (changed): ACQNO, CURMEN, DISNO, FERR,
FEXIT, PRONO, TCONT.

Module name: EM001

Aliases: EDITMENU_1

Description: Edits the user-supplied options from menu
number 1. Menu number 1 is special, because it is
the only menu from which these options may be
selected: save request, read request, directory,
and execute request. From menu 1 the user selects
which part of the DSP system to enter (acquisition,
processing, or display) or what to do with requests
that have already been entered (e.g. execute).

Data items input: FERR, SCRDAT.

Data items output (changed): ERTEXT, FDIREC, FEXE, FGEDIT,
FREREQ, FSVREQ.

.* Calling modules: EOPT.

Modules called: CLRET, ERMSG, PARAM.

Module name: EM002

Aliases: EDITMENU_2

170

*

.

Description: Edits the user-supplied options from menu 2.
-,Menu 2 allows the user to select from among various

*: i[-.. data acquisition application programs.

i, Calling modules: EOPT.

Modules called: CLRET, ERMSG, PARAM.

Data items input: SCRDAT.

Data items output: ACQNO, ERTEXT, FERR, FGEDIT.

Module name: EM003

Aliases: EDITMENU_3

Description: Edits the user-supplied options from menu 3.
Menu 3 allows the user to select from among various data
processing application programs.

Calling modules: EOPT.

Modules called: CLRET, ERMSG, PARAM.

Data items input: SCRDAT.

Data items output: ERTEXT, FERR, FGEDIT, PRONO.

Module name: EM004

Aliases: EDIT MENU 4

Description: Edits the user-supplied options from menu 4.
Menu 4 allows the user to select from among various data
display application programs.

Calling modules: EOPT.

Modules called: CLRET, ERMSG, PARAM.

Data items input: SCRDAT.

Data items output: DISNO, ERTEXT, FERR, FGEDIT.

Module name: EM005

-*.* Aliases: EDIT MENU 5

171

...............

--. -_- - .. w - • --

S._.. Description: Edits the user-supplied options from menu 5.
i 'y'".' Menu 5 allows the user to specify the name of a file

*" from which data is to be acquired.

. Calling modules: EOPT.

"" Modules called: ERMSG, PARAM.

Data items input: PARBUF.

Data items output: FERR, FGEDIT, PARNUM, ERTEXT.

Module name: EM006

Aliases: EDITMENU_6

Description: Edits the user-supplied options from menu 6.
Menu 6 allows the user to specify the characteristics
of data to be supplied by the data generation program,
AD001.

Calling modules: EOPT.

Modules called: ERMSG, NUMER, PARAM.

.. Data items input: PARBUF.

Data items output: FERR, FGEDIT, PARNUM, ERTEXT.

Module name: EM007

Aliases: EDITMENU_7_ _

Description: Edits the user-supplied options from menu 7.
Menu 7 allows the user to specify the parameters to be
supplied to the FFT program PDO04.

Calling modules: EOPT.

Modules called: ERMSG, NUMER, PARAM.

Data items input: PARBUF.

Data items output: FERR, FGEDIT, PARNUM, ERTEXT.

Module name: EM008

172

• . - § ° . . . : -.. 172...-..0- ' o . - : >:- ... " - - . -.

Aliases: EDIT MENU 8

Description: Edits the user-supplied options from menu 8.
Menu 8 allows the user to specify the parameters to be

. supplied to the IFFT program PD006.

Calling modules: EOPT.

Modules called: ERMSG, NUMER, PARAM.

Data items input: PARBUF.

Data items output: FERR, FGEDIT, PARNUM, ERTEXT.

-Module name: EM009

Aliases: EDITMENU_9

Description: Edits the user-supplied options from menu 9.
Menu 9 allows the user to specify the name of a file
to which data is to be supplied by the data display
program DDOOO.

Calling modules: EOPT.

Modules called: ERMSG, PARAM.

Data items input: PARBUF.

Data items output: FERR, FGEDIT, PARNUM, ERTEXT.

.* Module name: EM0010

Aliases: EDITMENU_10

Description: Edits the user-supplied options from menu 10.
Menu 10 allows the user to specify the data display
parameters to be supplied to the data display program
DD001 (displays data to the HP2648A).

Calling modules: EOPT.

Modules called: ERMSG, NUMER, PARAM.

Data items input: PARBUF.

A_7 Data items output: FERR, FGEDIT, PARNUM, ERTEXT.

173

SJ

* .Module name: EOPT

Aliases: EDITOPTIONS

Description: EOPT call subroutines (EM(NNN)) which edit
the user's options . There is one such subroutine for
each menu.

Calling modules: GREQ.

Modules called: EM001, EM002,...(one for each menu).

Data items input: ACQNO, CURMEN, DISNO, FDIREC, FERR, FEXE,
FGEDIT, FREREQ, FSVREQ, PRONO.

Data items output: FGEDIT.

Module name: ERMSG

Aliases: ERRORMESSAGE

Description: ERMSG accepts error message text and displays
it to the terminal screen in a standard fashion. All0error messages are displayed on the last four lines
of the screen, with no attention paid to formatting;
the user must place carriage returns and line feeds
where desired in the midst of the text. Unfortunately,
using a "/" in a FORMAT statement for encoding text
into the ERTEXT buffer won't work, since a WRITE after
calling CODE ignores slashes. It's thus necessary to
explicitly place CR/LF sequences in the text.

If the FERR flag is set, signifying a fatal error,
then an extra message is printed to tell the user that
the program is going to terminate.

Calling modules: (nearly all)

Modules called: CLRRB, CLRTC, CURSR, SESC.

Data items input: CONWD2, ERTEXT, FERR, MAXERT, MAXTCO,
NOCRLF, RECBUF.

Data items output (changed): ERTEXT, FERR, TCONT.

Module name: FAOOO

* , Aliases: FORMAT FORACQUISITION PROGRAM 0

174

; # Zi '&-"" C b " .-"v,. -, "' " '"",". " ".... .".' , '. . .'.'..

Description: FAOO formats the request provided to ADOO to
"' guide its actions when reading data from a file and

providing it to data processing/display application
programs that are executing concurrently.

Calling modules: FREQ.

Modules called: CLRET, ERMSG, FPAR.

.* Data items input: PARBUF.

Data items output: ERTEXT, FERR, MDDCB, PARBUF.

Module name: FA001

Aliases: FORMATFORACQUISITIONPROGRAM_1

Description: FA001 formats the request provided to AD001 to
guide its actions when it is call upon to generate data.

- Calling modules: FREQ.

Modules called: CLRET, ERMSG, FPAR.

Data items input: PARBUF.

Data items output: ERTEXT, FERR, MDDCB, PARBUF.

S

Module name: FA002
:.4

Aliases: FORMATREQUESTFORACQUISITIONPROGRAM_2

Description: FA002 formats the request which is provided to
AD002 to guide its actions when it is called upon to
sample the system's A/D converter for data and provide
that data to concurrently operating processing/display
application programs.

Calling modules: FREQ.

Modules called: CLRET, ERMSG, FPAR.

V. Data items input: PARBUF.

Data items output: ERTEXT, FERR, MDDCB, PARBUF.

175

-, Module name: FDOOO

- Aliases: FORMAT REQUEST FOR DISPLAY PROGRAM 0

Description: FDOOO formats the request which is provided to
DDOOO to guide its actions when it is called upon to
accept the output of data acquisition/processing appli-
cation programs and store the data to a file.

Calling modules: FREQ.

Modules called: CLRET, ERMSG, FPAR.

Data items input: PARBUF.

Data items output: ERTEXT, FERR, MDDCB, PARBUF.

Module name: FDO01

Aliases: FORMATREQUESTFORDISPLAYPROGRAM_1

Description: FDO01 formats the request which is provided to
DD001 to guide its actions when it is called upon to
accept data from acquisition/processing application
programs and display the data on the HP2648A terminal.

Calling modules: FREQ.

Modules called: CLRET, ERMSG, FPAR.

Data items input: PARBUF.

Data items output: ERTEXT, FERR, MDDCB, PARBUF.

Module name: FDO02

Aliases: FORMATREQUESTFORDISPLAYPROGRAM_2

Description: FDO02 formats the request which is provided to
DD002 to guide its actions when it is called upon to
accept data from acquisition/processing application
programs and display the data on the HP1300 terminal.

Calling modules: FREQ.

Modules called: CLRET, ERMSG, FPAR.

Data items input: PARBUF.

*I 176

Data items output: ERTEXT, FERR, MDDCB, PARBUF.

Module name: FPAR

Aliases: FILEPARAMETERS

Description: FPAR reads menu data files (either MD(NNN) or
CV(NNN) types) for their parameters, and passes back
the PARNUMth non-blank parameter (i.e., non zero-
length in associated type-4 record) in the PARBUF
buffer. FPAR assumes that the file it is to read
from has already been opened using the common area file
control block MDDCB.

4Calling modules: FAOOO through FA(NNN), FDOOO through
-FD(NNN), FP001 through FP(NNN).

Modules called: SCOPY.

Data items input: MDDCB, PARBUF, PARNUM.

Data items output: PARBUF.

Module name: FP004

Aliases: FORMATREQUESTFORPROCESSINGPROGRAM_4

Description: FP004 formats the request which is provided to
PDO04 to guide its actions when it is called upon to
perform an FFT.

Calling modules: FREQ.

-h Modules called: CLRET, ERMSG, FPAR.

Data items input: PARBUF.

Data items output: ERTEXT, FERR, MDDCB, PARBUF.

Module name: FP006

Aliases: FORMATREQUEST FORPROCESSINGPROGRAM_6

Description: FP006 formats the request which is provided to
PDO06 to guide its actions when it is called upon to
perform an IFFT.

.177

177

4 -.. '-" 5 . "".. . ,.".".-" -".'. "-" - ,-,- .- . "" ' ! 'v ."

Calling modules: FREQ.

-ZI Modules called: CLRET, ERMSG, FPAR.

Data items input: PARBUF.

V. Data items output: ERTEXT, FERR, MDDCB, PARBUF.

Module name: FREQ

Aliases: FORMATREQUEST

Description: Manages modules which format the user's
requests so that they are compatible with what the
application programs expect. The raw data FREQ uses is
taken from CV(NNN) (current value) files. The for-
matted requests are placed in "AREQ", "PREQ(NN)", and
"DREQ" files where they can be read by their appropriate
application programs.

Each application program has a formatting module asso-
ciated with it. Formatting modules FA001 through
FA(NNN) are associated with data acquisition applica-
tion programs AD001 through AD(NNN); FDO01 through

-" FD(NNN) are associated with DD001 through DD(NNN); and
FP001 through FP(NNN) are associated with PDO01 through
PD(NNN).

Calling modules: GREQ.

Modules called: CLRET, ERMSG, FAOOO, FA001, ... (one for
each acquisition module, with FAOOO for acquisition to
file); FCONS; FDOOO, FDO01, ... (one for each display
module, with FDOOO for processing output to file);
FPOl, FPOO2,...(one for each processing module).

Data items input: ACQNO, DISNO, PRONO.

Data items output (changed): ERTEXT, FERR.

%: Module name: GCOM

Aliases: GETREQUESTCOMMON

Description: GCOM is only present because of a quirk in HP
FORTRAN IV. In HP FORTRAN, each named common block must
be described in a common block subprogram such as GCOM.
There is one benefit to having to do this: the common
data items may be initialized by the subprogram at run

V %L"time, the subprogram is independently compilable, so

178

"d(. . *. *~S -S -- *

.- * : .'V ' - '.'' . .5

changes can be made to the initial values of common area
items by changing and re-compiling this single module.

Calling modules: (none -- system executes automatically)

Modules called: (none)

Data items input: (none)

Data items output: CONWD1, CONWD2, CONWD3, COLMAX, COLMIN,
MAXSCR, MAXDCB, MAXMEN, MAXERT, MAXREC, MAXTCO, NOCRLF,
ROWMAX, ROWMIN (these are the data items that are
initialized at run time).

Module name: GOPT

Aliases: GETOPTIONS

Description: GOPT manages the modules that prompt the user
for options (via menus) and then accept the user's
options. DMENU is called by GOPT to prompt the user,
then AOPT is called by GOPT to accept the options.

Calling modules: GREQ.

Modules called: AOPT, DMENU.

Data items input: CURMEN, FERR, FEXIT, FRDEF, FREDIS.

Data items output: FREDIS.

Module name: GREQ

Aliases: GETREQUEST

Description: GREQ is responsible for coordinating the
activities of modules which get requests from the user.
First a set of options is acquired by GOPT, then the
options are edited by EOPT, and finally the options are
formatted into a request by FREQ.

Calling modules: DSP.I Modules called: EOPT, FREQ, GOPT, TMENT.

Data items input: ACQNO, CURMEN, DISNO, FBACK, FCONS,
FDIREC, FERR, FEXE, FEXIT, FGEDIT, FREREQ, FSVREQ,
PRONO.

179

Data items output (changed): FBACK.

Module name: HELP

Aliases: (none)

Description: Provides help messages to the user when
requested by pressing the HELP function key on the
terminal's keyboard.

Data items input: CONWDl, CONWD2, CURMEN, FERR, MAXREC,
NOCRLF, RECBUF.

Data items output (changed): ERTEXT, FERR.

Calling modules: SIOPT.

Modules called: BORDR, CLRET, CLRRB, CURSR, ERMSG.

Module name: NOCR

Aliases: NOCARRIAGERETURN

0Description: NOCR places an underscore character in the
user's message string (MESG) just after the character
position designated by STRLEN. The 000137B value is
placed in the first word after the word containing
the character pointed to by STRLEN. Then the value
of STRLEN is increased by either two or three to repre-
sent the character length of the new string (STRLEN
points to the 137B).

It is very important to note that STRLEN is the
number of characters in the string, not words.

000137B needs to be placed at the end of text
strings because it suppresses the printing of a CR/LF
sequence at the end of the line if the string is
printed using an EXEC call to DVRO5 (the 000137B must
be the last word printed for this to work).

Calling modules: PREC5, PREC6.

Modules called: CLRET, ERMSG.

Data items input: MESG, NOCRLF, STRLEN.

Data items output (changed): ERTEXT, FERR, MESG, STRLEN.

180

. Module name: NUMER

" "Aliases: NUMERIC CHECK

Description: NUMER is a logical function subprogram. It
returns the value TRUE if PARBUF contains a numeric
value in its first NUMCHR character positions. Other-
wise, it returns FALSE.

Calling modules: EM006, EM007, EM008, EM010.

Modules called: (none)

Data items input: NUMCHR.

Data items output: PARBUF.

Module name: PARAM

Aliases: EXTRACTPARAMETER

Description: PARAM pulls out the requested parameter string
from the SCRDAT array, which contains the data read in
from the terminal after the user hits the ENTER key or

one of the function keys. The input variable PARNUM
contains an integer value specifying which of the
parameters in SCRDAT, in order, is to be extracted.
Parameters are separated by the US character --
000137B. Once extracted, the parameter is passed back
to the calling routine through the PARBUF output
variable (without any US characters).

Calling modules: AOPT, TMENT.

Modules called: SCHAR, SCOPY.

Data items input: PARBUF, PARNUM, MAXSCR, SCRDAT.

Data items output: PARBUF.

Module name: PDO01

Aliases: AUTOCORRELATION, CROSSCORRELATION,
COVARIANCE, POWER SPECTRAL DENSITY

Description: Application program for performing auto-
correlation, auto-covariance, cross-correlation,
cross-covariance, and power spectral density functions.
See (Ref 10:2.2) and Section 3.4 of this thesis for a

181

7. W

detailed description of the program's design and
... ,.. capabilities.

Data items input: ACQIO, DISIO, PROIO, PROREQ, TOTPTS,
PTSBLK, CORTYP, FS, WINCOR, CORPTS, FFTSIZ, XSIG, YSIG,

. Data items output: CORVAL, PSDVAL.

Calling modules: PDATA.

Modules called: (none)

Module name: PDO02

Aliases: COHERENCE

- Description: Application program for performing the
coherence function. Two jointly stationary signals
(XSIG and YSIG) are processed to derive an estimate of
magnitude squared coherence (MSC). See (Ref 10:2.3) and
Section 3.4 of this thesis for a detailed description of
the program s design and capabilities.

Data items input: ACQIO, DISIO, PROIO, FS, NUMBLK, PTSBLK,
SFX, SFY, XSIG, YSIG.

Data items output (changed): CFREQ, MSC, PRONO.

Calling modules: PDATA.

Modules called: (none)

Module name: PDO03

Aliases: CONVOLUTION

Description: Application program for performing a convo-
lution. Technique used is overlap-add. See (Ref 10:
3.1) and Section 3.4 of this thesis for detailed infor-
mation on the program's design and capabilities.

Data items input: ACQIO, DISIO, PROIO, IMPFIL, LFILT, RESP,
TOTPTS, NUMBLK, PTSBLK.

Data items output (changed): CONDAT.

.Calling modules: PDATA.

182

-! 4 -.%Z . . .*. ,. ..-.*. ~.~.. . *.

p ao.

Modules called: (none)

Module name: PDO04

Aliases: FASTFOURIERTRANSFORM

Description: Application program for performing fast Fourier
transform function. See Section 3.4 of this thesis and

design and capabilities.

Data items input: ACQIO, DISIO, PROIO, PROREQ, XSIG, FFTSIZ.

Data items output (changed): XSIG.

Calling modules: PDATA.

Modules called: (none)

Module name: PDO05

VI Aliases: FIRFILTERDESIGN

Description: Application program for designing finite
impulse response filters. The Remez exchange algor-
ithm is used to design linear phase FIR filters with
minimum weighted Chebyshev error. See Section 3.4 of
this thesis and (Ref 10:5.1) for detailed information
on the program's design and capabilities.

Data items input: ACQIO, DISIO, PROIO, FFTYPE, IMPFIL,

LFILT, EDGE, FX, WTX, LGRID.

Data items output (changed): RESP.

Calling modules: PDATA.

Modules called: (none)

Module name: PDO06

Aliases: INVERSEFFT

Description: Application program for performing inverse
fast Fourier transform. Input is complex, output is
real. See Section 3.4 of this thesis and (Ref 10:1.2)

- for a detailed description of the program's design and

183

'-a ~ %;

characteristics.

* Data items input: ACQIO, DISIO, PROIO, CXSIG, FFTSIZ.

Data items output (changed): XSIG

Calling modules: PDATA

- .Modules called: none

Module name: PDO07

Aliases: IIR_FILTERDESIGN

Description: Application program for designing IIR filters.

Data items input: ACQIO, DISIO, PROIO, PROREQ.

Data items output (changed): PT(NNNN).

Calling modules: PDATA.

t Modules called: (none)

. Module name: PDO08

Aliases: WAVEFORMAVERAGE

Description: Application program to perform waveform
averaging.

Data items input: ACQIO, DISIO, PROIO, PROREQ.

Data items output (changed): PD(NNNN)

Calling modules: PDATA.

N, Modules called: (none)
-.

Module name: PDATA

Aliases: PROCESSDATA

Description: Initiates data processing application programs
(those with names like "PD(NNN)").

-.0.Data items input: ACQIO, DISIO, PROIO, PRONO, SARIO.

184

, . .a• . . • . " . " .
a I.." "% " " " % " " ' " % % " ' '

RD-Ai38 232 DEVELOPMENT OF A REAL-TIME GENERAL-PURPOSE DIGITAL 3/4
SIGNAL PROCESSING LABO. .(U) AIR FORC$ INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. J W~ BENGTSON

UNCLASSIFIED DEC 83 AFIT/GCS/EE/830-3 F/G 9/2 N

EEEEE0 100 0 0iE
EhomhhhhhhhhhhE

4U.

0iii iL 2:

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS-1963-A

.-

4,,.

'4 .. .°/.. . . , • • o. % . • o . , % ° ° . - -% % .,

i - " " 11111.0. *'2i8wai.,, ,, I'%.JT k. ,J~~ P.E

Data items output (changed): ACQIO, DISIO, PROIO.

Calling modules: SAREQ.

Modules called: PDO01, PDO02,

Module name: PREC1

Aliases: PROCESSRECORD_1

Description: PREC1 positions the terminal's cursor in
preparation for the writing out of a prompt string as
part of a user menu creation. The cursor's position is
specified by type-l records in menu (MD(NNN)) files.

*Calling modules: DMENU.

Modules called: CLRET, CLRRB, CURSR, ERMSG.

Data items input: COLMAX, COLMIN, CURMEN, FIRST, MAXREC,
.- ' MDDCB, RECBUF, ROWMAX, ROWMIN.

Data items output (changed): ERTEXT, FEOF, FERR.

* Module name: PREC2

Aliases: PROCESS RECORD 2

Description: PREC2 prepares the user's terminal to print a
menu prompting message in either normal or inverse
video, according to the content of type-2 records in
menu (MD(NNN)) files. If the type-2 record specifies
inverse video for a prompt message, the proper escape
sequence is sent to the terminal; otherwise, nothing is
done.

- Calling modules: DMENU.

" Modules called: CLRET, CLRRB, CLRTC, ERMSG, SESC.

Data items input: CONWD2, CURMEN, MAXREC, MAXTCO, MDDCB,
NOCRLF, RECBUF, RECTYP, TCONT.

Data items output (changed): ERTEXT, FERR, TCONT.

. '-." Module name: PREC3

185

w- r. W% r. *

Aliases: PROCESS RECORD_3

Description: PREC3 displays the prompting text given by
type-3 records in menu (MD(NNN)) files. Inverse video
is also turned off at the end of the text, just in case
it was turned on by PREC2.

Data items input: CONWD2, CURMEN, MAXREC, MAXTCO, MDDCB,
NOCRLF, RECBUF, TCONT.

Data items output (changed): ERTEXT, FERR, TCONT.

Calling modules: DMENU.

Modules called: CLRET, CLRRB, CLRTC, ERMSG, SESC.

Module name: PREC4

Aliases: PROCESSRECORD_4

Description: Sets up unprotected fields (the only ones data
may be entered into) on a menu display. The field
length is provided by a type-4 record in a menu
(MD(NNN)) file.

Calling modules: DMENU.

Modules called: CLRET, CLRRB, ERMSG.

Data items input: CURMEN, MAXREC, MDDCB, RECBUF.

Data items output (changed): ERTEXT, FERR, FLDLEN.

4Module name: PREC5

Aliases: PROCESSRECORD_5

Description: PREC5 turns on the terminal's inverse video
function (for the default value to be printed by PREC6)

" if it has been requested by a type-5 record in a menu
(MD(NNN)) files.

Calling modules: DMENU.

Modules called: CLRET, CLRRB, CLRTC, ERMSG, NOCR, SESC.

Data items input: CONWD2, CURMEN, LENCHR, MAXREC, MAXTCO,
MDDCB, NOCRLF, RECBUF.

186
.4

Data items output (changed): ERTEXT, FERR, TCONT.

Module name: PREC6

Aliases: PROCESSRECORD_6

Description: PREC6 takes the default values provided by
type-6 records (in MD(NNN) files) and writes them to
the protected fields set up by PREC3. The default
values are truncated, if need be, to fit into the
unprotected default fields.

Calling modules: DMENU

Modules called: CLRRB, NOCR, SCHAR.

Data items input: CONWD2, MAXREC, MDDCB, RECBUF.

Data items output (changed): FERR.

Module name: SAREQ

Aliases: SATISFY-REQUEST

Description: SAREQ is responsible for managing the satis-
faction of user requests by calling modules (ADATA,
PDATA, DDATA) which execute application programs for

data acquisition, processing, and display.

Calling modules: DSP.

Modules called: ADATA, PDATA, DDATA.

Data items input: ACQNO, DISNO, FERR, PRONO.

Data items output (changed): ACQIO, ACQNO, DISIO, DISNO,
PROIO, PRONO, SARIO.

Module name: SCHAR

Aliases: SUBSTITUTECHARACTER

Description: SCHAR replaces all occurrences of the character
LFROM with the character LTO in the string MESG, start-
ing at character position CBEGIN and ending at charac-

i ter position CEND. (Note that CBEGIN and CEND point to
18

187

4.
.0 , , , - ;-: Z- - <'';' '. '/ -' .-. '-"..-- < - - ' - ; - ' ' ' . .

characters, not words).
* .. LFROM and LTO are the left-byte values of their

respective characters. E.g., the character "X" is an
octal 05400B in the left byte of a word (see the char-
acter set table in the back of the HP FORTRAN IV manual
for a complete list of left and right-byte ASCII char-
acter codes). LFROM and LTO should be assigned their
values in the calling routine using statements like:

LFROM = 1HX (or) LFROM = 054000B
LTO = lHY LTO = 054400B

These assignments will change X's in the string to Y's.
The right byte is ignored; it is masked out before any
other operations are performed.

The string is currently limited to being 80 char-
acters or less in length.

Calling modules: AOPT, DMENU, PREC6, TMENT.

Modules called: CLRET, ERMSG.

Data items input: CBEGIN, CEND, LFROM, LTO, MESG.

Data items output (changed): ERTEXT, MESG.

Module name: SCOPY

Aliases: STRING COPY

Description: SCOPY copies a string from its input buffer to
its output buffer. It is used mostly to copy parame-
ters from the array SCRDAT (which contains terminal
input) into the array RECBUF, where the parameters can
be dealt with one at a time for editing or formatting
purposes. SCOPY allows does not require the input
string to begin on a word boundary; nor does it require
that the receiving buffer accept the string starting on
a word boundary (left and right-byte character values
are automatically transposed as necessary). IBEGIN
specifies the first character of the input string; IEND
specifies the last character. OBEGIN specifies the
beginning character position for storing the string in
the output buffer (the string length is computed as
IEND-IBEGIN+l).

Calling modules: PARAM.

Modules called: CLRET, ERTEXT.

Data items input: IBEGIN, IEND, INBUF, OBEGIN.

188

° , -u 4 I e , . , * • •- ,-*.* .* . " -aa m.a °- *- *. , --*n q• q - *. - * 0. 'i

WVa4 e. -r. r 'r- -. Sw'4 .- a a

Data items output: FERR, OBUF.

Module name: SESC

Aliases: SUBSTITUTEESCAPE

Description: SESC takes a string composed of printing ASCII
characters and replaces all occurrences of capital "E"
with an ASCII escape character. This allows terminal
control sequences to be formed by encoding FORMAT
character strings, instead of having to deal with
directly encoding thp octal value for an escape into the
string.

Calling modules: AOPT, BORDR, CURSR, DMENU, DSP, PREC2,
PREC5.

Modules called: CLRET, ERMSG.

Data items input: LENWDS, MESG.

Data items output: ERTEXT, FERR, MESG.

Module name: SIOPT

Aliases: SATISFYIMMEDIATEOPTIONS

Description: Manages modules responsible for satisfying
immediate user options. Immediate user options are
those which may be satisfied without having to perform
any data acquisition, processing, or display (e.g. help,
saving new defaults, etc.)

Calling modules: AOPT.

Modules called: DIREC, HELP, SVREQ, TMENT.

Data items input: CURMEN, FBACK, FDIREC, FERR, FEXIT, FHELP,
FRDEF, FSDEF, FSVREQ.

Data items output (changed): DIRDES, DIRTYP, FERR, REQFIL.

Module name: SVREQ

Aliases: SAVEREQUEST

189

Description: Save the user's request for later use. "User's
request" means all current values for menus which haveI.. J.been accessed during the terminal session.

Data items input: REQFIL.

." Data items output (changed): ERTEXT, FERR.

Calling modules: SIOPT.

Modules called: CLRET, ERMSG.

Module name: TMENT
Aliases: TRAVERSEMENUTREE

Description: Coordinates the traversal of the menu tree.
Arranges for proper menus to be displayed according
to the user's directions.
TMENT recognizes two types of menus: decision menus

and data entry menus. Decision menus are expected to
3 .request that the user enter an integer to specify a

choice of options. For each possible option, there
should be an entry in the MENUT file to relate the
option to its own menu. If the user chooses option N
while viewing menu M, there should be an Nth item in
the MENUT file of the form "M,K" where K is the menu
to be displayed for data entry (or further decisions
related to option N. ("M,K" should be the Nth item to
have "M" as its first integer -- not the Nth item in the
file overall). Data entry menus are expected to have
at most one subordinate menu, and thus will have only
one entry in the MENUT file.

Data items input: CURMEN, FBACK, PARBUF.

Data items output (changed): CURMEN, ERTEXT, FERR.

Calling modules: SIOPT, GREQ.

.,. Modules called: CLRET, ERMSG, PARAM, SCHAR.

.
19

.- N

~190
*0M

* ,% 3 ' 1 V ~ ~ .'2 . ' .*,. .*.... . . - .

APPENDIX H
.,.. User Interface Software Listings

PROGRAM DSP(,20 OCT 83, V1.2

C* *

C* Module name: DSP (DIGITAL SIGNAL PROCESSING) *
C* Author: Capt John Bengtson *
C* Version: 1.2 *
C* Date: 20 Oct 83 *
C**
C* Description: *
C**
C* DSP is the main driver for the entire system. *
C* It repeatedly gets user requests from GREO and *
C* passes them on to SAREQ for satisfaction until *
C* either a fatal error occurs or the user asks to *
C* get out of the system. *
C*
C* Calling module: (none) *
C**
C* Modules called: CLRTC,GREQOLDIO,SAREQ,SESC. *
C**
C* Data items input: ACONO, CONWD2, DISNO, FERR, FEXIT, *
C* MAXTCO, NOCRLF, PRONO. *

C* *

C* Data items output (changed): CURMEN, FERR, FEXIT, LEN, *
V C* TCONT, ACQNO, DISNO, PRONO. *

C*

C Common block definitions.

COMMON /COM2/MDDCB
COMMON /COM6/TCONT
COMMON /COM22/CONWD2
COMMON /COM31/MAXTCO
COMMON /COM32/NOCRLF

INTEGER MDDCB(144),TCONT(10)
INTEGER CONWD2,MAXTCO,NOCRLF

C Normal data item definitions.

INTEGER PRONO(10)
INTEGER ACQNOCURMENDISNORESET
LOGICAL PERRFEXIT

C Initializations.

'* , 19

191

CALL OLDIO
FERR = .FALSE.
FEXIT - FALSE.
CURMEN - 1
ACQNO = 1
DO 5 I - 1,10

PRONO(I) - 0
5 CONTINUE

PRONO(1) - 4
PRONO(2) - 6
DISNO - 1

C Main loop. Executed until fatal error or user request to
C exit. First get a request.

10 CALL GREQ(ACONO,CURMEN,DISNO,FERR,FEXIT,PRONO)

IF ((.NOT.FERR).AND.(.NOT.FEXIT)) GOTO 20
GOTO 10101

C If no fatal error and no request to exit, satisfy request.

20 CALL SAREQ(ACQNO,DISNO,FERR,PRONO)

C If no fatal error encountered in satisfying request, get
C another request.

IF (.NOT.FERR) GOTO 10

C Turn off block and format modes, clear screen,
C turn off graphics display, and close files.

10101 CALL CLRTC
CALL CODE
WRITE(TCONT,9999)
LEN - MAXTCO
CALL SESC(FERR,TCONT,LEN)
TCONT(LEN) - NOCRLF
CALL EXEC(2,CONWD2,TCONT,LEN)
CALL CLOSE(MDDCB)
WRITE(1,9998)

STOP

9999 FORMAT("EXE&kOBEHEJE*ddZ")
9998 FORMAT(20X,w(DSP) ...dust to dust...")
9997 FORMAT(A2)

END
END$

192

SUBROUTINE GREQ(ACONO,CURMEN,DISNO,FERR,FEXIT,PRONO)
-15 OCT 83 V1.2

C**

C* Module name: GREO (GET REQUEST) *
C* Author: Capt John"Bengtson *
C* Version: 1.2 *

" C* Date: 15 Oct 83 *
C**

C* Description:
C* *
C* GREQ is responsible for coordinating the activities *
C* of modules which get requests from the user. First *
C* a set of options is acquired (GOPT), then the options *
C* are edited (EOPT), and finally the options are *
C* formatted into requests (FREO). TMENT is called in *
C* case the entry of options for a request requires *
C* more than one menu. *
C* *

C* Calling module: DSP. *
C**
C* Modules called: EOPT, FREQ, GOPT, TMENT. *

C*

C* Data items input: ACONO,CURMEN,DISNOFBACKFCONS,
C* FDIREC, FERR, FEXE, FEXIT, FGEDIT, FREREO, FSVREQ, *
C* PRONO.
C**
C* Data items output (changed): ACONO, DISNO, FBACK, *
C* PRONO. *
C* *

C Normal data item definitions.

INTEGER ACQNO,CURMEN,DISNO,PRONO(10)
LOGICAL FCONS,FERR,FEXE,FEXIT,FGEDIT,FBACK
LOGICAL FDIREC,FEXE,FREREQ,FSVREQ

C Main loop; repeat until fatal error or user desires
C to exit.
C Start off by getting a menu full of options.

20 CALL GOPT(CURMEN,FERR,FEXIT)
IF (FERR.OR.FEXIT) GOTO 10101

C Edit the user's options

CALL EOPT(ACQNO,CURMEN,DISNO,FDIREC,FERR,FEXE,
- FGEDIT,FREREQ,FSVREQ,PRONO)
IF (FERR) GOTO 10101

193

C If the options didn't pass editing criteria, go back
C and try again by asking for option reentry.

IF (FERR) GOTO 10101

IF (.NOT.FGEDIT) GOTO 20

C If the user hasn't asked to execute the options entered
C thus far, keep accepting options.

IF (FEXE) GOTO 30
FBACK - .FALSE.
CALL TMENT(CURMEN,FBACK,FERR)
GOTO 20

C Format the user's options into requests and return to
C DSP so that the requests may be satisfied.

30 CALL FREQ(ACQNO,DISNO,FCONS,PRONO,FERR)
FEXE = .FALSE.

10101 RETURN

END
END$

1

,ty

~19

SUBROUTINE GOPT(CURMEN,FERR,FEXIT),27 OCT 83 V1.34 ********C************************* **** *******

c*
C* Module name: GOPT (GET OPTIONS) *
C* Author: Capt John-Bengtson *
C* Version: 1.3 *
C* Date: 27 Oct 83 *
C*

C* Description: *
C**
C* GOPT manages the modules that prompt the user (via *
C* menus) and then accept the user's options (response *
C* data). DMENU does the prompting, and AOPT does the *
C* accepting.
C* *

C* Calling module: GREO. *
C* *

C* Modules called: AOPT, DMENU. *
C*
C* Data items input: CURMEN, FERR, FEXIT, FRDEF, FREDIS. *
C* *

C* Data items output (changed): FREDIS. *
C*

C Normal data item definitions.

INTEGER CURMEN

LOGICAL FERR,FEXIT,FRDEF,FREDIS

C Main program section. Start by displaying a menu.

10 CALL DMENU(CURMENFERRFRDEF)
IF (FERR) GOTO 10101

C If no fatal error was encountered in displaying the menu,
C accept the user's options.

FREDIS - ,FALSE.
CALL AOPT(CURMEN,FERR,FEXITFRDEF,FREDIS)

C If the user made an immediate request, re-display the
C current menu.

IF ((FREDIS).AND.(.NOT.FERR)) GOTO 10

10101 RETURN

END
END$

195

S . , . ,,,-... ... ;...-..-.-.--...-. ..-. .

* : ' , ; * * *j~ ~ *, o .**, -*S . , o.* , J; ,. - ;. j.,:, i :o. .~*, :r ''' * ,: . ." -**

SUBROUTINE DMENU(CURMEN,FERR,FRDEF)
-' -,29 OCT 83 V1.2

C**
C* Module name: DMENU (DISPLAY MENU) *
C* Author: Capt John Bengtson *
C* Version: 1.2 *
C* Date: 29 Oct 83 *
C**

C* Description: *" C**
C* DMENU is responsible for displaying prompt *

* C* menus. It does this by calling a series of sub- *
C* routines (PREC1 -- PREC6), each of which sends
C* a certain type of data item to the terminal *

* C* screen. The subroutines are called an arbitrary *
C* number of times, depending upon the number of
C. items in the menu.

C**

C* Calling module: GOPT. C
C**
C* Modules called: BORDR, CLRET, CLRRB, CLRTC, ERMSG,
C* PREC1 through PREC6, SCHAR, SESC. *
C*

C* Data items input: CONWD2, CURMEN, FERR, FRDEF, MAXREC, *
C* MAXTCO, MENUSE, NOCRLF, RECBUF. *
C**
C* Data items output (changed): ERTEXT, FERR, FIRST, *
C* RECBUF, TCONT. *
C* *

C Common block definitions.

COMMON /COMI/ERTEXT
COMMON /COM2/MDDCB
COMMON /COM3/MENUSE
COMMON /COM4/RECBUF
COMMON /COM6/TCONT
COMMON /COM22/CONWD2
COMMON /COM30/MAXREC
COMMON /COM31/MAXTCO
COMMON /COM32/NOCRLF

INTEGER ERTEXT(80)
INTEGER MDDCB(144)
LOGICAL MENUSE(100)
INTEGER RECBUF(40)
INTEGER TCONT(10)

INTEGER CONWD2

196

i,:.' . . . : ; , .- .. : .- -' . - -..... _..... & , 4

INTEGER MAXREC
INTEGER MAXTCOc 'INTEGER NOCRLF

C Normal data item definitions.

INTEGER MDNAM(3)
INTEGER ATTRI,CURMEN,DISCOL,DISROW,FLDLEN,RECTYP
LOGICAL FEOF,FERRFIRST,FRDEF

C Initializations.
C When ANDed with a word, LMASK will leave only the left
C character of that word intact (masking out the right
C character).

DATA LMASK/077400B/

C Main program section.
C Prepare the screen for receiving a menu.

CALL BORDR(CURMEN,FERR)

C Encode proper file name for use by OPEN statement.

IF ((.NOT.MENUSE(CURMEN)).OR.FRDEF) GOTO 10
CALL CODE
WRITE(MDNAM,9998) CURMEN
GOTO 20

10 CALL CODE

WRITE(MDNAM,9999) CURMEN

C Replace blanks in file name with zeros.

20 CALL SCHAR(FERR,1H ,lHO,1,5,MDNAM)

C Open the menu file to be read (either MD or CV type).

CALL OPEN(MDDCB,IERR,MDNAM)
IF (IERR.GE.0) GOTO 30
FERR = .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9997) (MDNAM(I),I=1,3)
CALL ERMSG(FERR)
GOTO 10101

C Read until first non-type-0 record is found or EOF is reac

30 CALL CLRRB
CALL READF(MDDCB,IERR,RECBUF,MAXRECLEN)
CALL CODE

%=

197

'.. .P, ', , ' .U ' . .- . ..

READ(RECBUF,*) RECTYP
IF ((RECTYP.EO.0).AND.(LEN.GE.0)) GOTO 30

C Take care of file which is empty or contains nothing
C but type-0 records.

IF (LEN.GE.0) GOTO 40
FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9995) CURMEN
CALL ERMSG(FERR)
GOTO 10101

C Take care of file which doesn't have type 1 record as
C first non type-0 record.

40 IF (RECTYP.EO.1) GOTO 50
FERR = .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9991) CURMEN,(RECBUF(I),I=1,MAXREC)
CALL ERMSG(FERR)
GOTO 10101

C MAIN LOOP: start processing records.

50 FIRST = .TRUE.
FEOF = .FALSE.

C Write everything but default values to screen (all unpro-
C tected fields must be defined before data can be written
C into them).

60 CALL PREC1(CURMEN,FEOF,FERR,FIRST)
IF (FERR) GOTO 10101
IF (FEOF) GOTO 80
CALL PREC2(CURMEN,FERR)
IF (FERR) GOTO 10101
CALL PREC3(CURMEN,FERR)

S. IF (FERR) GOTO 10101
CALL PREC4(CURMEN,FERR,FLDLEN)
IF (FERR) GOTO 10101
CALL PRECS(CURMEN,FERR,FLDLEN)
IF (FERR) GOTO 10101

* C Read over type-6 record.

CALL CLRRB
CALL READF(MDDCB,IERR,RECBUF,MAXREC,LEN)
IF (LEN.GE.0) GOTO 60

FERR - .TRUE.

198

CALL CLRET
CALL CODE
WRITE(ERTEXT,9992) CURMEN,(RECBUF(I),I=1,MAXREC)
CALL ERMSG(FERR)
GOTO 10101

C Set terminal to block and format mode and home cursor in
C preparation for writing out default values.

80 CALL CLRTC
CALL CODE
WRITE(TCONT,9994)
LEN = MAXTCO
TCONT(LEN) = NOCRLF
CALL SESC(FERRTCONT,LEN)
CALL EXEC(2,CONWD2,TCONT,LEN)

C Rewind data file so that type 6 records (which contain
C default values) may be read, and read to first type-3
C record.

CALL RWNDF(MDDCB)
FEOF = .FALSE.

90 CALL CLRRB
CALL READF(MDDCB,IERR,RECBUFMAXREC,LEN)
IF (LEN.GE.0) GOTO 100
FERR - .TRUE.

0 CALL CLRET
CALL CODE
WRITE(ERTEXT,9992) CURMEN,(RECBUF(I),I=1,MAXREC)
CALL ERMSG(FERR)
GOTO 10101

100 CALL CODE
READ(RECBUF,*) RECTYP
IF (RECTYP.NE.3) GOTO 90

C Now process all type-6 records.

110 CALL PREC6(FEOFFERR)
-' IF ((.NOT.FERR).AND.(.NOT.FEOF)) GOTO 110

10101 CALL CLOSE(MDDCB)
-" RETURN

9999 FORMAT("MD,13,)
9998 FORMAT("CV",I3," 1)
9997 FORMAT(10X,"(DMENU) Needed menu file *,3A2

- , doesn't exist.")
9995 FORMAT(10X,O(DMENU) No type-i records found in menu fi

*' - ,13)
47 .9994 FORMAT("EHE&k 1BEW")

199

.

9992 FORMAT(5X,"(DMENU) Menu records out of order in menu f-9 --

. 9 - 3,; expected type-6 record, found instead: W,40A
.9991 FORMAT(5X,"(DMENU) Menu records out of order in menu f

- ,13,"; expected type-i record, found instead: ",40A

END
END$

020

'

,

-I

'200

*. . . . - *4-

.7-. * 4..4.

.. - 4 * *

SUBROUTINE PRECI (CURMEN, FEOF,FERR,FIRST)

-l NOV 83, V1.2

4 C**

C* Module name: PRECI (PROCESSRECORD_1)*
Author: Capt John Bengtson*

C* Version: 1.2
C*Date: 1 Nov 83*

C**

C* Description:
C**

C* Performs the cursor positioning function which is *
C* specified by type-i records in menu (MD(NNN)) files.*

C**

C* Calling modules: DMENU.
C**

C* Modules called: CLRET, CLRRB, CURSR, ERMSG.*
C**

C* Data items input: COLMAX, COLMIN, CURMEN, FIRST,*
C* MAXREC, MDDCB, RECBUF, ROWMAX, ROWMIN.*
C*
C* Data items output (changed): ERTEXT, FEOF, FERR.

C**

C Common block definitions.

COMMON /COM1/ERTEXT
COMMON /COM2/MDDCB
COMMON /COM4/RECBUF

COMMON ICO 2 4/CO LMAX
COMMON /COM2 5/COLMIN
COMMON /COM3O/MAXREC
COMMON /C0M33/ROWMAX
COMMON /COM3 4/ROWMIN

INTEGER ERTEXT (80)
INTEGER MDDCB(144)
INTEGER RECBUF (40)

INTEGER COLMAX
INTEGER COLMIN
INTEGER MAXREC
INTEGER ROWMAX
INTEGER ROWMIN

C Normal data item definitions.

INTEGER CURMEN, DISCOL, DISROW,RECTYP

201

LOGICAL FEOF,FERR,FIRST

" .'4 C Initializations.

C Main program section.
C If FIRST is true, it means that a non-type-0 record has
C already been read by DMENU and is held in RECBUF.

LEN 1
IF (FIRST) GOTO 10
CALL CLRRB
CALL READF(MDDCB,IERRRECBUF,MAXREC,LEN)
GOTO 20

10 FIRST = .FALSE.

C Exit if EOF has been reached.

20 IF (LEN.GE.0) GOTO 25
FEOF - .TRUE.
GOTO 10101

25 CALL CODE
READ(RECBUF,*) RECTYP,DISROW,DISCOL

C Make sure proper record type.

IF (RECTYP.EQ.I) GOTO 30
FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9999) CURMEN,(RECBUF(I),I-1,MAXREC)
CALL ERMSG(FERR)
GOTO 10101

30 IF ((DISROW.GE.ROWMIN).AND.(DISROW.LE.ROWMAX)) GOTO 40
FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9998) CURMEN,(RECBUF(I),I-1,MAXREC)
CALL ERMSG(FERR)
GOTO 10101

40 IF ((DISCOL.GE.COLMIN).AND.(DISCOL.LE.COLMAX)) GOTO 50
FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9997) CURMEN,(RECBUF(I),I-I,MAXREC)
CALL ERMSG(FERR)
GOTO 10101

C Position cursor.

202

V- - P -jI- 7 -- i -

50 CALL CURSR(DISROW,DISCOL,FERR)

10101 RETURN

9999 FORMAT(N(PRECl) Menu records out of order for menu
- 1I3,"; expected type 1 record, found instead: ,*1 - ,40A2)

9998 FORMAT(P(PREC1) Row coordinate out of bounds on type",
- 1 record for menu 0,13,0; record in error:*/

- 40A2)
9997 FORMATCO(PREC1) Column coordinate out of bounds on",

-"type 1 record for menu *,13," type 1 record in",
*1. - error: ",/,40A2)

9996 FORNAT("Eaa *,12,ur 0,12,0 C")

END
END$

220

SUBROUTINE PREC2(CURMENFERR)
-,I NOV 83, V1.2

C**

C* Module name: PREC2 (PROCESSRECORD 2) *
C* Author: Capt John Bengtson *
C* Version: 1.2 *
C* Date: 1 Nov 83 *
C**

C* Description: *
C*

.1 C* Sets up the user's terminal to print a menu *
C* prompting message in either normal or inverse video, *
C* according to the content of type-2 records in menu
C* (MD(NNN)) files. *
C* *

C* Calling modules: DMENU. *
C**

C* Modules called: CLRET, CLRRB, CLRTC, ERMSG, SESC. *
"C

C* Data items input: CONWD2, CURMEN, MAXREC, MAXTCO, *
C* MDDCB, NOCRLF, RECBUF, RECTYP, TCONT. *

C**

C* Data items output (changed): ERTEXT, FERR, TCONT. *
C* *

C Common block definitions.

COMMON /COMI/ERTEXT
COMMON /COM2/MDDCB
COMMON /COM4/RECBUF
COMMON /COM6/TCONT

COMMON /COM22/CONWD2
COMMON /COM30/MAXREC
COMMON /COM31/MAXTCO
COMMON /COM32/NOCRLF

. INTEGER ERTEXT(80)
INTEGER MDDCB(144)
INTEGER RECBUF(40)
INTEGER TCONT(10)

INTEGER CONWD2
INTEGER MAXREC
INTEGER MAXTCO
INTEGER NOCRLF

C Normal data item definitions.

204-4

INTEGER ATTRI,CURMEN,RECTYP
LOGICAL FERR

C Initializations.

9.- C Main program section.
C Read a record and decode it.

CALL CLRE
CALL READF(MDDCB,IERRRECBUF,MAXREC, LEN)
CALL CODE
READ(RECBUF,9999) RECTYP,ATTRI

C Make sure it's the proper record type and that EOF has
C not been reached.

IF ((RECTYP.EQ.2).AND.(LEN.GE.0)) GOTO 10
FERR = .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9998) CURMEN,(RECBUF(I),I=1,MAXREC)
CALL ERMSG(FERR)
GOTO 10101

C Only "I" and "NO are acceptable as attribute characters.

10 IF ((ATTRI.EQ.000111B).OR.(ATTRI.EQ.000116B).OR.
- (ATTRI.EO.000040B).OR.(ATTRI.EO.0)) GOTO 20

FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9997) CURMEN,(RECBUF(I),I-1,MAXREC)
CALL ERMSG(FERR)
GOTO 10101

C Write out attribute-defining character sequence.

20 IF (ATTRI.NE.111B) GOTO 10101
CALL CLRTC
CALL CODE
WRITE(TCONT,9996)

C LEN - MAXTCO
TCONT(10) - NOCRLF
CALL SESC (FERR, TCONT, 10)
CALL EXEC(2,CONWD2,TCONT,10)

10101 RETURN

9999 FORMAT(I1,1X,A1)
9998 FORMAT("(PREC2) Menu records out of order for menu ",I

.' 205

V * V . \--. iq.;..~;.. * .. ., ; ¢ '.. 2..-.-. . ..

o . .. *

N.. -. A9

expected type 2 record, found instead: ",40A2)
9997 FORMAT("(PREC2) Illegal prompt attribute in menu " ,13,

." - "-, should be I, N or blank, found instead: ",40A2)
9996 FORMAT("E&dB")

END
END$

n.. 2

-.-. 1

--

• ' 206

S
o

. . , ,

SUBROUTINE PREC3(CURMEN,FERR)
-,I NOV 83, Vl.2

C**

C* Module name: PREC3 (PROCESS RECORD 3) *
C* Author: Capt John Bengtson *
C* Version: 1.2 *
C* Date: 1 Nov 83 *
C**

C* Description:
C**
C* Displays the prompting text given by type-3 records *
C* in menu (MD(NNN)) files. *
C* *

C* Calling modules: DMENU. *
C* *

C* Modules called: CLRET, CLRRB, CLRTC, ERMSG, SESC. *
C* *

C* Data items input: CONWD2, CURMEN, MAXREC, MAXTCO, *
C* MDDCB, NOCRLF, RECBUF, RECTYP, TCONT. *
C* *

C* Data items output (changed): ERTEXT, FERR, TCONT. *
C* *

C Common block definitions.

COMMON /COMI/ERTEXT
COMMON /COM2/MDDCB
COMMON /COM4/RECBUF
COMMON /COM6/TCONT

COMMON /COM22/CONWD2
COMMON /COM30/MAXREC
COMMON /COM31/MAXTCO
COMMON /COM32/NOCRLF

INTEGER ERTEXT(80)
INTEGER MDDCB(144)
INTEGER RECBUF(40)
INTEGER TCONT(10)

INTEGER CONWD2
INTEGER MAXREC
INTEGER MAXTCO

4' INTEGER NOCRLF

C Normal data item definitions.

INTEGER CURMEN,LENWDS
INTEGER RECLEN,RECTYP

207

LOGICAL FERR

* -.. 'l C Main program section.
- C Read a record and decode it.

CALL CLRRB
CALL READF(MDDCB,IERR,RECBUF,MAXREC,LEN)
CALL CODE
READ(RECBUF,9999)RECTYP

C Make sure it's the proper record type and that EOF has
C not been reached.

IF ((RECTYP.EQ.3).AND.(LEN.GE.0)) GOTO 10
FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9998) CURMEN,(RECBUF(I),11 ,MAXREC)

* CALL ERMSG(FERR)
GOTO 10101

C Shift RECBUF one word left to erase 03,0
10 DO 20 I - 1,MAXREC-1
20 RECBUF(I) - RECBUF(I+1)

C Write out prompting text (remember that LEN is number
C of words read, and text has been shifted so no text

0 C is being overwritten by NOCRLF).

RECBU JEN) = NOCRLF
CALL tA C(2,CONWD2,RECBUF,LEN)

C Also turn c.f inverse video, which may be on.

CALL CLRTC
CALL CODE
WRITE(TCONT,9997)

I LENWDS - MAXTCO
CALL SESC(FERR,TCONT,LENWDS)
TCONT(LENWDS) - NOCRLF
CALL EXEC(2,CONWD2,TCONT,LENWDS)

10101 RETURN

9999 FORMAT(I1,lX,39A2)
9998 FORMAT(O(PREC3) Menu records out of order for menu

- ,13,"l expected type 3 record, found instead: ",/,
- 40A2)

9997 FORMAT(*E&dQ")

END
- . END$

208

S. , .' ' ', ., ."." ' / .," ' ".. .".""..' .". . ".'."-" ' ." ". i,."i. ." "." ,.

' ..

.-C-..

C,,

*-,

C,-

C-%

q. Jo
Cs-.:

, C.

-".."

%+ . °

N -Cg , i ,i -..- ;, -2 -. + i,:'.-. .- :'" . .,' .'-,''- -..-- ?.-

. -. . * * . . _. .h S - *'j e . . -- , -. j . .. , .*.

-"

SUBROUTINE PREC4(CURMEN, FERR,FLDLEN)
*-.-. -,l NOV 83 V1.2

C*
C* Module name: PREC4 (PROCESS RECORD 4) *

Author: Capt John Bengtson *
C* Version: 1.2 *
C* Date: 1 Nov 83 *
C**
C* Description: *

C**

C* PREC4 sets up unprotected fields (the only ones *
C* data may be entered into) on a menu display. The
C* field length is provided by type-4 records in menu *
C* (MD(NNN)) files. *
C*
C* Calling modules: DMENU.

"' C* *

C* Modules called: CLRET, CLRB, ERMSG. *
C* *

C* Data items input: CURMEN, MAXREC, MDDCB, RECBUF. *
C**

C* Data items output (changed): ERTEXT, FERR, FLDLEN. *
N; C *

C Comon block definitions.

COMMON /COM1/ERTEXT
COMMON /COM2/MDDCB
COMMON /COM4/RECBUF

COMMON /COM30/MAXREC

INTEGER ERTEXT(80)
INTEGER MDDCB(144)
INTEGER RECBUF(40)

INTEGER MAXREC

5-" C Normal data item definitions.

INTEGER CURMEN,RECTYP,FLDLEN
LOGICAL FERR

C Main program section.
C Read a record and decode it.

CALL CLRRB
CALL READF(MDDCB,IERR,RECBUF,MAXREC,LEN)
CALL CODE

210

*. 4.' q..

READ(RECBUF,9997) RECTYP, FLDLEN

C Make sure it's the proper record type and that EOF
C has not been reached.

IF ((RECTYP.EQ.4).AND.(LEN.GE.0)) GOTO 10
FERR - .TRUE.

-. CALL CLRET
CALL CODE
WRITE(ERTEXT,9999) CURMEN,(RECBUF(I),I=lMAXREC)
CALL ERMSG(FERR)
GOTO 10101

C Make sure response field length is between 0 and 78.
10 IF ((FLDLEN.GE.0).AND.(FLDLEN.LE.78)) GOTO 10101

FERR = .TRUE.
CALL CLRET
CALL CODE

A WRITE(ERTEXT,9998) CURMEN,(RECBUF(I),I=1,MAXREC)
CALL ERMSG(FERR)

10101 RETURN

9999 FORMAT("(PREC4) Menu records out of order for menu
-,13,"; expected type 4 record, found instead:",/,40A2)

9998 FORMAT("(PREC4) Field length must be between 0 and U,

- "78 in menu ",13,"; found instead:",/,40A2)
9997 FORMAT(II,1iX,13)

END
END$

1'1
211

'- 5 - S ' S* S -

SUBROUTINE PRECS(CURMEN,FERR,LENCHR)
l-, NOV 83, V1.2

C**

C* Module name: PREC5 (PROCESS RECORD 5)
Author: Capt John Bengtson *

C* Version: 1.2
C* Date: 1 Nov 83 *
C**

C* Description: *
C**

C* PREC5 sets up the user's terminal to print a menu
C* default value message in either normal or inverse *
C* video, according to the content of type-5 records *
C* in menu (MD(NNN)) files. *
C**

C* Calling modules: DMENU.
C*
C* Modules called: CLRET, CLRRB, CLRTC, ERMSG, NOCR, SESC.*
C* *

C* Data items input: CONWD2, CURMEN, LENCHR, MAXREC,
C* MAXTCO, MDDCB, NOCRLF, RECBUF. *
C*
C* Data items output (changed): ERTEXT, FERR, TCONT. *
C* *

C Common block definitions.

" COMMON /COM1/ERTEXT
COMMON /COM2/MDDCB
COMMON /COM4/RECBUF
COMMON /COM6/TCONT

" COMMON /COM22/CONWD2
COMMON /COM30/MAXREC
COMMON /COM31/MAXTCO
COMMON /COM32/NOCRLF

INTEGER ERTEXT(80)
INTEGER MDDCB(144)
INTEGER RECBUF(40)
INTEGER TCONT(10)

INTEGER CONWD2
INTEGER MAXREC
INTEGER MAXTCO
INTEGER NOCRLF

C Normal data item definitions.

212

.•..,* \• * * *-C\\Xx

.. INTEGER ATTRI,CURMENLENCHR
INTEGER RECTYP,SPACE

LOGICAL FERR

*C Main program section.
C Read a record and decode it.

CALL CLRRB
CALL READF(MDDCB,IERRRECBUF,MAXREC,LEN)
CALL CODE
READ(RECBUF,9999) RECTYP,ATTRI

C Make sure it's the proper record type and that EOF
C has not been reached.

IF ((RECTYP.EQ.5).AND.(LEN.GE.0)) GOTO 10
FERR = .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9998) CURMEN,(RECBUF(I),I=lMAXREC)
CALL ERMSG(FERR)
GOTO 10101

XC Only "I" and "N" are acceptable as attribute characters.
C (Don't even check if the length of the string is zero.)

10 IF (LENCHR.LE.0) GOTO 10101
IF ((ATTRI.EQ.000111B).OR.(ATTRI.EQ.000116B).OR.

- (ATTRI.EQ.40B).OR.(ATTRI.EQ.0)) GOTO 20
FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9997) CURMEN,(RECBUF(I),Isl,MAXREC)
CALL ERMSG(FERR)
GOTO 10101

C Write out characters to define the beginning of an
C unprotected field.

20 CALL CLRTC
CALL CODE
WRITE(TCONT,9996)
LEN = MAXTCO
TCONT(LEN) - NOCRLF
CALL SESC(FERR,TCONTLEN)
CALL EXEC(2,CONWD2,TCONTLEN)

C If specified, write out characters to define inverse video
C field.

IF (ATTRI.NE.1llB) GOTO 30
CALL CLRTC

213

,.A . ' . .;-¢. :. -;-.-- -.- *-* --* %. --.. . -.. 4:. '. -.* ',:-.- , • -. .*..-. * . ".. .-
" " "," " ," 'T, , T'' " : '- ., ,, .. , 5_. ". . . ':.. .. t' '' -. '

CALL CODE
WRITE(TCONT,9995)
LEN = MAXTCO
TCONT(LEN) = NOCRLF
CALL SESC(FERR,TCONT,LEN)
CALL EXEC(2,CONWD2,TCONT,LEN)

C Write out specified number of blanks.

30 DO 40 I - 1,MAXREC
40 RECBUF(I) = 2H

CALL NOCR(FERR,RECBUF,LENCHR)
LENWDS = (LENCHR-l)/2+1
CALL EXEC(2,CONWD2,RECBUF,LENWDS)

C Now turn off inverse video.

CALL CLRTC
CALL CODE

-. WRITE(TCONT,9994)
LEN = MAXTCO
CALL SESC(FERR,TCONT,LEN)
TCONT(LEN) = NOCRLF
CALL EXEC(2,CONWD2,TCONTLEN)

C Finally, end the definition of an unprotected field.

CALL CLRTC
4. CALL CODE

WRITE(TCONT,9993)
LEN - MAXTCO
CALL SESC(FERR,TCONTLEN)
TCONT(LEN) - NOCRLF
CALL EXEC(2,CONWD2,TCONT,LEN)

10101 RETURN
.a 9999 FORMAT(IllX,A1)

9998 FORMAT("(PREC5) Menu records out of order for menu ",I
- ;a expected type 5 record, found instead: ",40A2)9997 FORMAT(n(PREC5) illegal prompt attribute in menu ",13
- a; should be I or blank, found instead: ",40A2)

9996 FORMAT("E[N)
9995 FORMAT("E&dB")
9994 FORMAT(*E&a@")
9993 FORMAT("E] ")

END
END$

op

.214

r .

.4 ,.-,. ..., _.. .- , .-,4 .Va,._-,........-.

SUBROUTINE PREC6(FEOF,FERR)
-,l NOV 83, V1.2

C**

C* Module name: PREC6 (PROCESS RECORD 6) *
c. Author: Capt John Bengtson *
C* Version: 1.2 *
C* Date: 1 Nov 83 *
C**

C* Description: *
C**

C* PREC6 takes the default values provided by type-6 *
C* records in menu (MD(NNN)) files and writes them to *
C* the protected fields set up by PREC3. The default *
C* values are truncated, if need be, to fit into the *
C* unprotected default fields. *
C* *

C* Calling modules: DMENU. *
C**

- C* Modules called: CLRET, CLRRB, CLRTC, ERMSG, NOCR,
C* SESC. *
C* *

C* Data items input: CONWD2, CURMEN, LENCHR, MAXREC,
C* MAXTCO, MDDCB, NOCRLF, RECBUF. *
C**
C* Data items output (changed): ERTEXT, FERR, TCONT. *
C**

C Common block definitions.

COMMON /COM2/MDDCB
COMMON /COM4/RECBUF

COMMON /COM22/CONWD2
COMMON /COM30/?@AXREC

INTEGER MDDCB(144)
INTEGER RECBUF(40)

INTEGER CONWD2
INTEGER MAXREC

C Normal data item definitions.

INTEGER CURMEN,FLDLEN,RECTYP
LOGICAL FEOF,FERR

C Main program section.
C Read a type-4 record to get field length (note that
C file was positioned to first type-3 record by

215

a,.% " °. -% % -% ° .% i . • .°. -. . .

g.- - -- -- -' - -* - -

C DMENU).

.. CALL CLRRB

CALL READF(MDDCB,IERR,RECBUF,MAXREC,LEN)
. CALL CODE

READ(RECBUF,9998) RECTYP,FLDLEN

C Read over type-5 record (must exist because passed edits
C of PREC1-PREC5).

- . CALL READF(CMDDCB, IERR, RECBLJF ,MAEC,LEN)

C Read type-6 record to get default value.

CALL CLRRB
CALL READF(MDDCB,IERR,RECBUFMAXREC,LEN)
CALL CODE
READ(RECBUF,*) RECTYP
IF (FLDLEN.EQ.0) GOTO 20

C Left justify prompting text by moving it over one word
C (erases "6," in first word).

DO 10 I - I,MAXREC-l
10 RECBUF(I) - RECBUF(I+1)

C Put an underscore at the end to inhibit CR/LF and write
C out text (with any needed spaces following the actual
C default value).

CALL SCHAR(FERROOOOOOB,020000B,1,2*MAXREC,RECBUF)
"., CALL NOCR(FERRRECBUF,FLDLEN)

LENWDS - (FLDLEN-1)/2+1
CALL EXEC(2,CONWD2,RECBUF,LENWDS)

C Read next record (type-i). If end of file is
C encountered, exit normally.

20 CALL READF(MDDCB,IERR,RECBUF,MAXREC,LEN)

IF (LEN.LT.0) FEOF - •TRUE.
IF (LEN.LT.0) GOTO 10101

C Read over next two records (type-2, type-3)
CALL READFIMDDCB,IERR,RECBUF,MAXREC,LEN)
CALL READF(MDDCB,IERR,RECBUF,MAXREC,LEN)

10101 RETURN

9999 FORMAT(*(PREC6) Menu records out of order for menu
-,13,;" expected type 6 record, found instead:",40A2)

. 9998 FORMAT(I1,lX,13)

V.. 216

a -." -

."

4. .v END
.. . END$

4'.

*5 .

.J

-,
o4

~i
~ ,'/ - .'L - "".-"" ", " """"". . - "- -." ."," - -"."• -" "-'"","

SUBROUTINE TMENT (CURMEN ,FBACK, FERR)
- 4 NOV 83 V1.1

C**

C* Module name: TMENT (TRAVERSEMENUTREE)
C* Author: Capt John Bengtson
C* Version: 1.1*
C*Date: 4 Nov 83

C**

C* Description: Coordinates the traversal of the menu *

C* tree. Arranges for proper menus to be displayed
C* according to the user's directions (BACKUP, etc.)

C**

C* Calling modules: SIOPT, GREQ.
* ~c*

C* Modules called: CLRET, ERMSG, PARAM, SCHAR.*
C**

C* Data items input: CURMEN, FBACK, PARBUF.
-, C*

C* Data items output: CURMEN, ERTEXT, FERR.
C*

C Common block data definitions.

COMMON /COM1/ERTEXT
COMMON /COM2/MDDCB
COMMON /COM7 /PARBU F

INTEGER ERTEXT (80)
INTEGER MDDCB(144)
INTEGER PARBUF(40)

C Normal data item definitions.

INTEGER MTNAM(3) ,MTBUF(4) ,FRMENU,TOMENU
INTEGER HOMENU, OPTNUM, CURMEN,OPTCNT
LOGICAL FERR,FBACK

C Main program section.

CALL CODE
WRITE(MTNAM,9999)

CALL OPEN(MDDCB, IERR,MTNAM)

C If file doesn't exist, write error message.

IF (IERR.GE.0) GOTO 10
FERR - TRUE.

CALL CLRET
CALL CODE

218

WRITE(ERTEXT. 9998)
CALL ERMSG(FERR)

* ..GOTO 10101

10 IF (FBACK) GOTO 80

C Move down the directory tree.

20 CALL READF(MDDCB,IERRIMTBUF,4,LEN)
IF (LEN.GE.O) GOTO 30
GOTO 10101

30 CALL CODE
READ(MTBUF,*) FRMENU,TOMENU
IF (FRMENU.NE.CURMEN) GOTO 20
HOMENU - TOMENU

* CALL READF(MDDCB, IERRIMTBOF,4,LEN)
IF (LEN.GE.0) GOTO 40

* CURMEN - HOMENU
GOTO 10101

40 CALL CODE
READ(MTBUF,*) FRMENU,TOMENU
IF (PRMENU.EQ.CURMEN) GOTO 45
CURMEN - HOMENU
GOTO 10101

45 CALL RWNDF(MDDCB,IERR)
CALL PARAM(1VFERR)
IF (FERR) GOTO 10101
CALL CODE

* READ(PARBUFf*) OPTNUM
OPTCNT -1

50 CALL READF(MDDCB,IERRIMTBUF,4,LEN)

IF (LEN.GE.0) GOTO 60
FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE (ERTEXT, 9995) OPTNUM ,CURMEN
CALL ERMSG(FERR)
GOTO 10101

60 CALL CODE
READ(MTBLIF,*) FRMENU,TOMENU
IF (FRMENU.NE.CURMEN) GOTO 50
IF (OPTCNT.EQ.OPTNUM) GOTO 7n
OPTCNT - OPTCNT+1
GOTO 50

70 CURMEN - TOMENU
GOTO 10101

219

-- c. VW

C Move backward (up) on the menu tree.

80 IF (CURMEN.EQ.1) GOTO 10101

90 CALL READF(MDDCB,IERR,MTBUF,4,LEN)
". IF (LEN.GE.0) GOTO 100

FERR -. TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9996) CURMEN
CALL ERMSG(FERR)
GOTO 10101

100 CALL CODE

READ(MTBUF,*) FRMENUTOMENU
IF (TOMENU.NE.CURMEN) GOTO 90
CURMEN = FRMENU

-4 10101 RETURN

9999 FORMAT("MENUT U)

9998 FORMAT(10X,"(TMENT) Menu tree file MENUT doesn't",
- exist.")

9996 FORMAT(10X,*(TMENT) No backup entry in MENUT file
- "for menu ",13,".")

9995 FORMAT(1OX,*(TMENT) Option " ,13," entry doesn't
-. -"exist for menu ",13,-.")

END
END$

~220

I.

-I >> ";Ia,. '& ; . . - & -€' c :''a.

4. SUBROUTINE AOPT(CURMEN,FERR,FEXIT,FRDEFFREDIS)
* .* - 27 OCT 83 V1.2

C**

C* Module name: AOPT (ACCEPTOPTIONS)
C**

C* version: 1.2
-~C* Date: 27 Oct 83

C**

C* Description: AOPT accepts the user's terminal input
C* (options). Data is sent from the terminal in block *

C* form; special characters separate the various data *

C* fields.*
C**

C* Calling modules: GOPT.
'Ii *

C* Modules called: CLRRB, CLRSD, CLRTC, PARAM, SCHAR,
C* SESC, SIOPT. *

C*

& C* Data items input: CONWDl, CONWD2, CONWD3, CURMEN,
C* MAXSCR, MAXTCO, NOCRLF, PARBUF, RECBUF.
C*
C* Data items output (changed): FEACK, FDIREC, FERR,
C* FEXIT, FHELP, FRDEF, FREDIS, FSDEF, PSIOPT, MDDCB, *
C* MENUSE, PARNUM, PARBUF, SCRDAT, TCONT.

C**

-'C Common block definitions.

COMMON /COM2/MDDCB
COMMON /COM3/MENUSE
COMMON /COM4/RECBUF
COMMON /COM5 /SCRDAT
COMMON /COM6/TCONT

-~COMMON /COM7/PARBUF

*COMMON /COM2l/CONWDl
COMMON /COM 22/CON WD2
COMMON /C0M23/CONWD3
COMMON /C0M26/MAXSCR
COMMON /COM31/MAXTCO
COMMON /C0M32/NOCRLF

INTEGER MDDCB(144)
LOGICAL MENUSE (100)
INTEGER RECBUF (40)
INTEGER SCRDAT (500)
INTEGER TCONT(10)
INTEGER PARBUF(40)

221

INTEGER CONWD1
V .1.- INTEGER CONWD2
e INTEGER CONWD3

INTEGER MAXSCR
INTEGER MAXTCO
INTEGER NOCRLF

C Normal data item definitions.

INTEGER CURMEN
INTEGER CVDCB(144),CVNAM(3),FLDLEN,ISIZE(2)
INTEGER MDNAM(3),PARNUM
LOGICAL FBACK,FDIREC,FERR,FEXIT,FHELP,FRDEF
LOGICAL FSDEF,FSIOPT,FSVREQ,FREDIS

C Initializations.

FSIOPT = .FALSE.
FHELP = .FALSE.
FBACK = .FALSE.
FSDEF = .FALSE.
FRDEF = .FALSE.
FSVREQ = .FALSE.
FEXIT = .FALSE.
FREDIS = .FALSE.

• C Main program section.
C Accept the user's options in the form of a block of data
C transferred from the terminal (which is operating in
C block mode).

C First wait for the user to signal data entry is complete
C (by hitting the "ENTER* key).

10 CALL CLRSD
CALL EXEC(1,CONWDI,SCRDAT,MAXSCR)

C Check for function key usage. If valid function key, set
C appropriate flag; otherwise, come back and wait for
C valid response.

IF (SCRDAT(1).NE.015560B) GOTO 20
FHELP - .TRUE.
FSIOPT = .TRUE.
FREDIS -. TRUE.
GOTO 80

20 IF (SCRDAT(1).NE.015561B) GOTO 30
FBACK - .TRUE.
FSIOPT = .TRUE.
FREDIS - TRUE.
GOTO 80

... 30 IF (SCRDAT(1).NE.015562B) GOTO 40

222

4•. A A...A A.o,- ** .
- A-.... '* k - AA- - ** S A -*

79

FSDEF = .TRUE.
FSIOPT = FALSE.
FREDIS = TRUE.
GOTO 80

40 IF (SCRDAT(1).NE.015563B) GOTO 60
FRDEF = .TRUE.
FSIOPT .FALSE.

"*. FREDIS = .TRUE.
GOTO 10101

60 IF (SCRDAT(1).NE.015567B) GOTO 70
FEXIT = .TRUE.
FSIOPT = .FALSE.
GOTO 10101

70 IF (IAND(SCRDAT(1),077400B).EQ.015400B) GOTO 10

C Home and backup cursor (so that all unprotected data
C on the screen will be transmitted), initiate block
C transfer.

80 CALL CLRTC
CALL CODE
WRITE(TCONT,9999)
LEN = MAXTCO
CALL SESC(FERR,TCONT,LEN)
TCONT(LEN) - NOCRLF
CALL EXEC(2,CONWD2,TCONT,LEN)

C Accept block transfer data into SCRDAT. May want to use
C larger buffer eventually...

CALL CLRSD
CALL EXEC(1,CONWD3,SCRDAT,MAXSCR)

C Call SIOPT if an immediate option has been requested.

IF (FSIOPT) CALL SIOPT(CURMEN,FBACK,FDIREC,FERR,
- FEXITFHELP,FRDEF,FSDEF,FSVREQ)
IF (FSIOPT) GOTO 10101

C Write out values to CV(NNN) file.
C Begin by opening files.

MENUSE(CURMEN) - .TRUE.

CALL CODE
WRITE(MDNAM,9996) CURMEN
CALL CODE
WRITE(CVNAM,9995) CURMEN
CALL SCHAR(FERR,1H ,1HO,1,5,MDNAM)
CALL SCHAR(FERR,1H ,1HO,1,5,CVNAM)
ISIZE(1) - 20
ISIZE(2) - 0

223

, I *, t'' ,".' *.'. . ,., . .* *-. * . .. -." '.. .. ,

C Get rid of (possibly) existing CV(NNN) file.

CALL CREAT(CVDCB,IERR,CVNAM,ISIZE,4,O,-20)
CALL OPEN(MDDCB,IERR,MDNAM,O,O,-20)
CALL OPEN(CVDCB,IERR,CVNAM,O,O,-20)

C Get to first type-4 record to read length of param.

PARNUM - 0
90 CALL CLRRB

CALL READF(MDDCBIERR,RECBUF,40,LEN)
IF (LEN.LT.0) GOTO 120
CALL WRITF (CVDCBIIERR, RECEUF ,LEN)
IF (RECBUF(l).NE.2H3,) GOTO 90

C Read field length from type-4 record.

CALL CLRRB
CALL READF(MDDCB, IERR,RECBUF,40,LEN)
CALL WRITF (CVDCB ,IERR, RECBUF, LEN)
CALL CODE
READ(RECBUF,9993) I ,FLDLEN

C Skip type-5 record.

CALL CLRRB
CALL READF(MDDCBIIERR,RECBUF,40,LEN)0 CALL WRITF (CVDCB, IERR,RECBUF, LEN)

C Read type-6 record.

CALL CLRRB
CALL READF(MDDCB,IERR,RECBUF,40,LEN)
IF (FLDLEN.GT.0) GOTO 110
CALL WRITF (CVDCB, IERR , RCBUF, LEN)
GOTO 90

C There is a default value associated with this
C type-6 record (type-3 was a true prompt).

110 PARNUM - PARNUM+1
IF (FLDLEN.GT.38) FLDLEN - 38
CALL PARAM(CPARNUM, FERR)
IF (FERR) GOTO 10101
CALL CODE
WRITE(RECBUF,9994) (PARBUF(I),I=1,(FLDLEN-l)/2+1)
CALL WRITF(CVDCBIERR,RECBUF, (FLDLEN-1)/2+2)

S., GOTO 90

C If the user asked for the current values to become
C new defaults, copy the current-value file into
C the default (MD(NNN)) file.

224

120 IF (.NOT.FSDEF) GOTO 10101
CALL RWNDF(MDDCB)
CALL RWNDF(CVDCB)

130 CALL CLRRB
CALL READF(CVDCB, IERR,RECBUF,40,LEN)
IF (LEN.LT.O) GOTO 10101
CALL WRITF (MDDCB, IERR, RECBUF,LEN)
GOTO 130

10101 CALL CLOSE(MDDCB)
CALL CLOSE(CVDCB)

9999 FORMAT("EHEDEdw)
9998 FORMAT("EXE&kO BEH")
9997 FORMAT(5(8(2XFo6),/))
C997 FORMAT(2(20A2,/))
9996 FORMAT("MD",I3r" "
9995 FORMAT("CV",I3," I

9994 FORMAT("6,*,39A2)
9993 FORMAT(I1,1X1I3)

END
END$

225

SUBROUTINE SIOPT(CURMEN,FBACK,FDIREC,FERR,
- FEXIT,FHELP,FRDEF,FSDEF,FSVREQ)
-,15 OCT 83, V1.2

C**

C* Module name: SIOPT (SATISFY IMMEDIATE OPTIONS) *
C* Author: Capt John Bengtson *
C* Version: 1.2 *
C* Date: 15 Oct 83 *
C**

C* Description: Manages modules responsible for satis- *
C* fying immediate user options. Immediate user options *
C* are those which may be satisfied without having to *
C* perform any data acquisition, processing, or display *
C* (e.g. help, saving new defaults, etc.) *
C**
C* Calling modules: AOPT. *
C**

C* Modules called: DIREC, HELP, SVREQ, TMENT. *
C**

C* Data items input: CURMEN, FBACK, FDIREC, FERR, FEXIT, *
C* FHELP, FRDEF, FSDEF, FSVREQ. *
C**

C* Data items output (changed): FERR. *
C**

C Normal data item definitions.

INTEGER CURMEN,DIRDES,DIRTYP

LOGICAL FBACK,FDIREC,FERR,FEXIT,FHELP
LOGICAL FRDEF,FSDEF,FSVREQ

C Main section.

IF (.NOT.FBACK) GOTO 10
CALL TMENT(CURMEN,FBACK,FERR)
GOTO 10101

10 IF (.NOT.FDIREC) GOTO 20
C CALL DIREC(DIRDES,DIRTYP,FERR)

GOTO 10101
20 IF (.NOT.FHELP) GOTO 30

CALL HELP(CURMEN,FERR)
GOTO 10101

30 IF (.NOT.FSVREQ) GOTO 40
C CALL SVREQ(REQFIL,FERR)

GOTO 10101
40 CONTINUE

10101 RETURN

226

-.-., -- • . - . " ,'- . .- ' *; " " ..".. ". "., C .. " " '* * -.C * .C* ", " "-".". . ' .-. -.-'' "

*/ -. * * . - -

9 .-

A.

C.

i.

C.,

',p

Ii

227

'p.

SUBROUTINE HELP(CURMEN,FERR)
h-> - , ~t* 15 OCT 83 V1.1

C* *

C* Module name: HELP *
C* Author: Capt John Bengtson *
C* Version: 1.1 *
C* Date: 15 Oct 83
C**
C* Description: Provides help messages to the user when *
C* the user requests them by pressing the HELP special *
C* function key on the keyboard. *
C*
C* Calling modules: SIOPT. *
C**
C* Modules called: BORDR, CLRET, CLRRB, CURSR, ERMSG. *
C* *

C* Data items input: CONWD1, CONWD2, CURMEN, FERR,
C* MAXREC, NOCRLF, RECBUF.
C**

C* Data items output: ERTEXT, FERR. *
C**

C Common block definitions.

COMMON /COM1/ERTEXT
COMMON /COM4/RECBUF

COMMON /COM21/CONWD1
COMMON /COM22/CONWD2
COMMON /COM30/MAXREC
COMMON /COM32/NOCRLF
INTEGER ERTEXT(80)
INTEGER RECBUF(40)
INTEGER CONWD1
INTEGER CONWD2
INTEGER MAXREC
INTEGER NOCRLF

C Normal data item definitions.

INTEGER CURMEN,HLPDCB(144),HLPNAM(3),LINENOPAGEDE
INTEGER PAGENO,PGLENG
LOGICAL FERR

C Initializations.

PGLENG - 20
PAGENO a 1
PAGEDE a 1

228

C Main program section.
. C Open help file. Tell user "No help available" if error.

CALL CODE
WRITE(HLPNAM,9999) CURMEN
CALL SCHAR(FERR,1H ,HO,1,6,HLPNAM)
CALL OPEN(HLPDCB,IERR,HLPNAM)
IF (IERR.GE.0) GOTO 10
CALL CLRET
CALL CODE
WRITE(ERTEXT,9998) (HLPNAM(I),I-1,3)
CALL ERMSG(FERR)
GOTO 10101

C Draw border for new page.

10 CALL BORDR(0,FERR)
CALL CURSR(1,0,FERR)
LINENO = 0

C Write out PGLENG lines (after positioning cursor)

20 CALL CLRRB
CALL READF(HLPDCB,IERR,RECBUF,MAXREC,LEN)
IF (LEN.GE.0) GOTO 30

C If EOF, user may back up or exit. If the user hits
C the EXIT key, control will return to the
C calling program. The BACKUP key displays the previous
C page. Anything else is ignored.

CALL CURSR(23,0)
CALL CLRET
CALL CODE

S.. WRITE(ERTEXT,9996)
ERTEXT(40) - NOCRLF
CALL EXEC(2,CONWD2,ERTEXT,40)

23 CALL EXEC(1,CONWD1,RECBUF,MAXREC)
IF (RECBUF(1).EQ.015561B) GOTO 25
IF (RECBUF(l).EQ.015567B) GOTO 10101
GOTO 23

• 25 PAGEDE - PAGEDE-l
IF (PAGEDE.LT.l) PAGEDE - 1
PAGENO - 1
CALL RWNDF(HLPDCB)
GOTO 10

C EOF has not been reached. If the page being read is the
C page the user wants, print out the record.

30 IF (PAGENO.EQ.PAGEDE) WRITE(1,9997) (RECBUF(I),I-1,39)
LINENO - LINENO+l

229

-3. .::":;'"::':.. ." ::""" :: :.:::: ''"""' ,k , ?-:":.,5 ..:-,¢ . :. - ; 'y

*-"o C Has end of page been reached? If so, wait for the user's
C instruction to backup, proceed, or exit.

IF (LINENO.LT.PGLENG) GOTO 20
LINENO - 0
IF (PAGENO.NE.PAGEDE) GOTO 60

..Z 40 CALL CLRET
CALL CODE
WRITE(ERTEXT, 9995)
ERTEXT(40) - NOCRLF
CALL CURSR(23,0,FERR)
CALL EXEC (2,CONWD2, ERTEXT, 40)
CALL EXEC(1,CONWD1, RECBUF, MAXREC)
IF (RECBUF(1).EQ.015567B) GOTO 10101
IF (RECBUF(1).NE.015561B) GOTO 50

V- CALL RWNDF(HLPDCB)
PAGEDE - PAGEDE-1
IF (PAGEDE.LT.1) PAGEDE = 1
PAGENO - PAGENO-1
IF (PAGENO.LT.1) PAGENO = 1
GOTO 10

50 IF (IAND(RECBUF(1),077400B).EQ.015400B) GOTO 40
PAGEDE = PAGEDE+1

60 PAGENO - PAGENO+1
GOTO 10

10101 CALL CLOSE(HLPDCB)
"-" RETURN

9999 FORMAT("HLP",13)
9998 FORMAT(8X,"No help available for this menu; file

- 3A2,1 doesn't exist. ")

9997 FORMAT(39A2)
9996 FORMAT(13X,"(Hit EXIT to exit, BACKUP to backup",

- - to previous menu) ")

9995 FORMAT(2X,"(Hit ENTER for next page, BACKUP for",
- previous page, EXIT to return to menu)")

END
" END$

230
0°°

.* o.. o. . . * * * * . .

SUBROUTINE EOPT(ACQNO,CURMEN,DISNO,FDIREC,FERR,FEXE,
- FGEDIT,FREREQ,FSVREQ,PRONO)
- ,28 OCT 83 V1.2

I C**

C* *

C* Name: EOPT (EDIT OPTIONS) *
-.. C* Author: Capt John Bengtson *

C* Version: 1.2 *
C* Date: 28 Oct 83 *
C* *

C* Description: *
C* *
C* EOPT calls subroutines (EM(NNN)) which edit the *
C* user's options. There is one such subroutine for *
C' each menu. *
C*
C* Calling module: GREQ. *
C* *

C* Modules called: EM001, EM001,...
C*

C* Data items input: ACONO, CURMEN, DISNO, FDIREC, FERR, *
C* FEXE, FGEDIT, FREREQ, FSVREQ, PRONO.
C* *

C* Data items output (changed): FGEDIT.
C*

C Normal data item definitions.

INTEGER ACONO,CURMEN,DISNO,PRONO(10)
LOGICAL FDIREC,FERR,FEXE,FGEDIT,FREREQ,FSVREQ

C Initializations.

FGEDIT - .TRUE.

C Main section.

IF (CURMEN.NE.1) GOTO 2
1 CALL EM001(FDIREC,FERR,FEXE,FGEDIT,FREREQ,FSVREQ)

GOTO 10101

2 IF (CURMEN.NE.2) GOTO 3
CALL EM002(ACONO,FERR,FGEDIT)
GOTO 10101

3 IF (CURMEN.NE.3) GOTO 4
CALL EM003(FERR,FGEDIT)
GOTO 10101

.23

~231

p.

'.." -" r.. - '. I. L. " ... '. " " . * .- V* i V '. .'- ' .'.. '-..". '. .'." .*.. *. ".... * - ' -% ... "."

-0 -m ~~ - * .. - -- - ---- --~--* -w*-.-. -

irz.-F-a a,. W. I* ll . .

4 IF (CURtIEN.NE.4) GOTO 5
CALL EMOO4(DISNO,FERR,FGEDIT)
GOTO 10101

5 IF (CURMEN.NE.5) GOTO 6
CALL EMOO5(FERR,FGEDIT)
GOTO 10101

6 IF (CURMEN.NE.6) GOTO 7
CALL ENOO6 (FERR,FGEDIT)
GOTO 10101

7 IF (CURZ4EN.NE.7) GOTO 8
CALL EMOO7(PERR,FGEDIT,PRONO)
GOTO 10101

8 IF (CURMEN.NE.8) GOTO 9
CALL EMOO8 (FERR,FGEDIT,PRONO)

a-' GOTO 10101

*9 IF (CURMEN.NE.9) GOTO 10
CALL EMOO9(FERR,FGEDIT)
GOTO 10101

*10 IF (CURMEN.NE.1O) GOTO 10101
CALL EMOlO (FERR,FGEDIT)
GOTO 10101

10101 RETURN

END
END$

a23

SUBROUTINE EM001(FDIREC,FERR,FEXE,FGEDIT,
- FREREQ,FSVREQ),31 OCT 83 V1.1

C**
C* Module name: EM001 *
C* Author: Capt John Bengtson *
C* Version: 1.1 *
C* Date: 31 Oct 83 *

C**

C* Description: Edits the user-supplied options from menu *
-C* number 1. *

C**
C* Calling modules: EOPT.*

C**
C* Modules called: CLRET, ERMSG. *
C**

C* Data items input: FERR, SCRDAT. *
C*
C* Data items output: ERTEXT, FDIREC, FEXE, FGEDIT,

S- C* FREREQ, FSVREO. *
C**

C Common block definitions.

COMMON /COM1/ERTEXT
COMMON /COM7/PARBUF

INTEGER ERTEXT(80)

INTEGER PARBUF(40)

C Normal data item definitions.

,- INTEGER CHOICE
LOGICAL FDIREC,FERR,FEXE,FGEDIT,FREREQ,FSVREQ

C Initializations.

CALL PARAM(1,FERR)
CALL CODE
READ(PARBUF,9998) CHOICE
FGEDIT - .TRUE.

C Main program section.

IF (CHOICE.NE.1) GOTO 10
GOTO 10101

10 IF (CHOICE.NE.2) GOTO 20
GOTO 10101

20 IF (CHOICE.NE.3) GOTO 60

S.~: ~;r~ ~GOTO 10101

233

30 IF (CHOICE.NE.4) GOTO 40
FSVREO .TRUE.

-' .: GOTO 10101
40 IF (CHOICE.NE.5) GOTO 50

FREREQ = .TRUE.
GOTO 10101

50 IF (CHOICE.NE.6) GOTO 60
FDIREC -. TRUE.
GOTO 10101

60 IF (CHOICE.NE.7) GOTO 70
FEXE = .TRUE.
GOTO 10101

70 FGEDIT = •FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT, 9999)
CALL ERMSG(FERR)

10101 RETURN

9999 FORMAT(10X,"(EN001) Current valid options are",
- " 1, 2, 3, and 7")

9998 FORMAT(I1)

END0END$

'3

-,

U, 234

1 .a . .* 5 . . * .

SUBROUTINE EMOO2(ACQNO,FERR,FGEDIT),31 OCT 83 Vi.1

C**

C* Module name: EM002 (EDIT MENU 2) *
C* Author: Capt John Bengtson *
C* Version: 1.1 *
C* Date: 31 Oct 83 *
C* *

C* Description: Edits the user-supplied options from *
C* menu 2. *
C* *
C* Calling modules: EOPT. *
C* *
C* Modules called: CLRET, ERMSG.
C* *

C* Data items input: SCRDAT. *
C* *

C* Data items output: ACQNO, ERTEXT, FERR, FGEDIT.
C*

C Common block definitions.

COMMON /COMl/ERTEXT
COMMON /COM7/PARBUF

INTEGER ERTEXT(80)
INTEGER PARBUF(40)

C Normal data item definitions.

INTEGER ACQNO,CHOICE
LOGICAL FERR,FGEDIT

C Initializations.

FGEDIT = .TRUE.
CALL PARAM(1,FERR)
CALL CODE
READ(PARBUF,9998) CHOICE

C Main program section.

C Accept only valid options. Subtract one from the
C option selected so that it corresponds to the
C module number of the desired acquisition module.

IF (CHOICE.NE.2) GOTO 10
ACONO - 1
GOTO 10101

235

I'

a, .-

• ... , ,- .- ,- ,- - . , , ., ,- " '- -.---. -. , , -,-,- -. . . .- . a. .-. . -. a.

10 FGEDIT = .FALSE.
CALL CLRET

-. *-CALL CODE
WRITE(ERTEXT, 9999)
CALL ERMSG(FERR)

10101 RETURN

9999 FORMAT(1OX,"(EM002) Only option 2 is currently.,
- *supported.*)

9998 FORMAT(Il)

END
END$

2

'A

°-U

'A.,." '' " . " " - ." - ..-. '' "'v . , , '-" ," . . - - '..,-, ,. , . , ':., " " ,,,.; *', . .

. 7 7.-7 . 77" 7. 7. 7. 7'.

SUBROUTINE EM003(FERR,FGEDIT),31 OCT 83,Vl1.

C**

C* Module name: EM003 (EDIT MENU_3) *
C* Author: Capt John Bengtson *
C* Version: 1.1
C* Date: 31 Oct 83 *
C*
C* Description: Edits the user-supplied options from *
C* menu 3. *
C* *

C* Calling modules: EOPT. *
C*
C* Modules called: CLRET, ERMSG.
C* *

C* Data items input: SCRDAT. *
C* *

C* Data items output: ERTEXT, FERR, FGEDIT, PRONO. *
C*

C Common block definitions.

COMMON /COM1/ERTEXT
COMMON /CO 7/PARBUF

INTEGER ERTEXT(80)
INTEGER PARBUF(40)

C Normal data item definitions.

"" INTEGER CHOICE
LOGICAL FERR,FGEDIT

C Initializations.

FGEDIT - .TRUE.
CALL PARAM(1,FERR)
CALL CODE
READ(PARBUF,9998) CHOICE

C Main program section.

IF ((CHOICE.EQ.4).OR.(CHOICE.EQ.6)) GOTO 10101
FGEDIT - .FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9999)
CALL ERMSG(FERR)
GOTO 10101

237

g N ,. , .. .:€€: **-. .- 5- 5.; ..) . -. -~..-. * .- . .. ,'+'-....'.. . '.i.. ~.-: :-..''

* 10101 RETURN

9999 FORMAT(1OX,"(EMOO3) only options 4 and 6 are "

-"currently supported.")
9998 FORMAT(I1)

END
END$

223

SUBROUTINE EMOO4(DISNO,FERRFGEDIT) ,31 OCT 83 V1.1

C**

C* Module name: EM004 (EDITMENU_4)*
C* Author: Capt John Bengtson
C* Version: 1.1*
C*Date: 31 Oct 83

C*
C* Description: Edits the user-supplied options from

C* menu 4.*
C**

C* Calling modules: EOPT.*
C*C* Modules called: CLRET, ERMSG.*
C**

C* Data items input: SCRDAT.*
C**

C* Data items output: DISNO, ERTEXT, FERR, FGEDIT.*
* C**

C Common block definitions.

% COMMON /COM1/ERTEXT

COMMON /COM 7/PARBUF

0 INTEGER ERTEXT(80)
INTEGER PARBUF (40)

C Normal data item definitions.

INTEGER COE, DISNO

LOGICAL FERR, FGEDIT

C Initializations.

FGEDIT - .TRUE.
CALL PARAM(1,FERR)
CALL CODE
READ(PARBUF,9998)CHOICE

C Main program section.

IF (CHOICE.EQ.2) GOTO 10
FGEDIT a FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT, 9999)
CALL ERMSG(FERR)
GOTO 10101

239

777-371777-:77.-

10 DISNO =1

j10101 RETURN

9999 FORMAT(1OX,N(EMOO4) Only option 2 is currently
" supported.")

9998 FORI4AT(I1)

N. END
END$

424

SUBROUTINE EM005(FERR,FGEDIT),8 NOV 83 V1.1

C**
C* Module name: EM005 (EDIT MENU 5) *
C* Author: Capt John Bengtson
C* Version: 1.1 *

Date: 8 Nov 83 *
C**
C* Description: *

4. C* *

C* EM005 edits menu 5 values, returning FGEDIT = FALSE
C* if any are found unacceptable. *
C *

C* Calling modules: EOPT. *
C* *
C* Modules called: CLRET, ERMSG, PARAM.
C*
C* Data items input: PARBUF.
C**
C* Data items output: FERR, FGEDIT, PARNUM, ERTEXT. *C**
C* *

C Common block definitions.

COMMON /COMI/ERTEXT
COMMON /COM7/PARBUF

INTEGER ERTEXT(80)
INTEGER PARBUF(40)

C Normal data item definitions.

INTEGER IDCB(144),NAME(3),PARNUM

LOGICAL FERR,FGEDIT

C Main program section.

PARNUM - 1
CALL PARAM(PARNUM,FERR)
DO 10 I = 1,3

10 NAME(I) - PARBUFCI)
CALL OPEN(IDCBIERR,NAME)
IF (IERR.GE.0) GOTO 20

FGEDIT - .FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9999) (NAME(I),I-,3)
CALL ERMSG(FERR)
GOTO 10101

241

-20 PARNUM 2
CALL PARAM(PARNUI4,FERR)
IF ((PARBUF(1).EQ.2HR).OR.(PARBUF(1).EQ.2HC)
-GOTO 10101
FGEDIT - FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT, 9998)
CALL ERI4SG(FERR)

10101 CALL CLOSE(IDCB)
RETURN

9999 FORMAT(5X,-(EMOO5) File ",3A2," not found.")
9998 FORMAT(5X,"(EMOO5) R and C are the only data

-"types that are recognized.")

END
END$

24

SUBROUTINE EMOO6(FERR,FGEDIT),8 NOV 83 V1.1

C**

C* Module name: EM006 (EDITMENU_6)
C* Author: Capt John Bengtson
C* Version: 1.1
C*Date: 8 Nov 83*

C**

C* Description: Edits user-supplied options to menu 6. *
C**

C* Calling modules: EOPT.
C**

C Modules called: HUMER, ERMSG, PARAM.*
C**

C* Data items input: PARBUF.
C**

C* Data items output: FERR, FGEDIT, PARNUM, ERTEXT.
C**

C Common block definitions.

COMMON /COMl/ERTEXT
COMMON /COM7/PARBUF

INTEGER ERTEXT(80)IZ INTEGER PARBUF(40)

C Normal data item definitions.

INTEGER BLOCKS, PARNUM

LOGICAL FERRPGEDIT,NUMER

EXTERNAL NUMER

C Main program section.

PARNUM - 1
CALL PARAM(PARNUMFERR)
IF (NUMER(4)) GOTO 10

FGEDIT - OFALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT, 9999)
CALL ERMSG(FERR)
GOTO 10101

10 PARNUM - 2
CALL PARAM(PARNUM,FERR)
IF (NUMER(4)) GOTO 15

243

FGEDIT - FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT, 9998)
CALL ERZ4SG(FERR)
GOTO 10101

is1 CALL CODE
READ (PARBUF, 9988) BLOCKS
IF (BLOCKS.NE.9999) GOTO 20

FGEDIT - .FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9997)
CALL ERMSG(FERR)
GOTO 10101

20 PARNUM - 3

4 CALL PARAM(PARNUM,FERR)
IF (NUMER(6) GOTO 30
FGEDIT - FALSE.
CALL CLRET
CALL CODE
WRITE (ERTEXT, 9996)
CALL ERI4SG(FERR)
GOTO 10101

30 PARNUM - 4
CALL PARAM(PARNUM,FERR)
IF' (NUMER(S) GOTO 40

FGEDIT - .FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT, 9995)
CALL ERMSG(FERR)
GOTO 10101

40 PARNUM - 5
CALL PARAM(PARNUMPERR)
IF (NUMER(S) GOTO 50

FGEDIT - .FALSE.
CALL CLRET
CALL CODE
WRITE(BRTEXT, 9994)
CALL ERMSG(FERR)
GOTO 10101

50 PARNUM -6
CALL PARAM(PARNUM,FERR)
IF (NUMER(3) GOTO 60

FGEDIT - .FALSE.
CALL CLRET

244

CALL CODE
WRITE(ERTEXT,9993)
CALL ERZ4SG(FERR)
GOTO 10101

60 PARNUM - 7
CALL PARAM (PARNUM,FERR)
IF (NUMER(6) GOTO 70

FGEDIT - FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT, 9992)
CALL ERMSG(FERR)
GOTO 10101

70 PARNUM = 8
CALL PARA1I(PARNUM,FERR)
IF (NUMER(5) GOTO 80
FGEDIT = .FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9991)
CALL ERMSG(FERR)
GOTO 10101

80 PARNUM - 9
CALL PARAM (PARNUM, FERR)0 IF (NUMER(5)) GOTO 90

FGEDIT - .FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXTU 9990)
CALL ERMSG(FERR)
GOTO 10101

90 PARNUM -10
CALL PARAM(PARNUM,FERR)
IF (NUMER(3)) GOTO 100
FGEDIT - .FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9989)
CALL ERMSG(FERR)
GOTO 10101

100 FGEDIT - .TRUE.

10101 RETURN

9999 FORMAT(SX,"(EMOO6) Number of data points should "

* be numeric.")
9998 FORMAT(5X,"(EMOO6) Number of blocks should be*,,

245

'~~q'~ aJI~. ~ *I~~s'*.:* L"Z

.,, - numeric.")
9997 FORMAT(5X,"(EM006) Continuous data generation is",

not supported at this time.")
9996 FORMAT(5X,"(EM006) Scaling factor in first term",

- " should be numeric.")
9995 FORMAT(SX,"(EM006) Sampling frequency in first term",

- " should be numeric.")
. 9994 FORMAT(5X,O(EM006) Sinusoid frequency in first",

- term should be numeric.")
9993 FORMAT(5X,"(EM006) Phase shift in first term

- ,"should be numeric.")
9992 FORMAT(SX,"(EM006) Scaling factor in second "

- term should be numeric.")
9991 FORMAT(5X,"(EM006) Sampling frequency in second",

- " term should be numeric.")
9990 FORMAT(5X,"(EM006) Sinusoid frequency in",

" second term should be numeric.")
9989 FORMAT(5X,"(EM006) Phase shift in second term ",

- "should be numeric.")
9988 FORMAT(I4)

END
END$

42.

-4

.4

-i 246

SUBROUTINE EM007(FERR,FGEDIT,PRONO)
- ,19 NOV 83 Vl.1

C**C* *

C* Module name: EM007 (EDIT MENU 7) *
C* Author: Capt John Bengtson *
C* Version: 1.1 *
C* Date: 19 Nov 83 *
C**

C* Description: Edits user-supplied options to menu 7. *
C**

C* Calling modules: EOPT.
C**
C* Modules called: ERMSG, NUMER, PARAM. *
C**

C* Data items input: PARBUF. *
C*
C* Data items output: FERR, FGEDIT, ERTEXT, PARNUM. *

C**

C Common block definitions.

COMMON /COM1/ERTEXT
COMMON /COM7/PARBUF

EZ INTEGER ERTEXT(80)
INTEGER PARBUF(40)

C Normal data item definitions.

INTEGER BLOCKS,PARNUM,POINTS
INTEGER PRONO(10),PRONUM

LOGICAL FERR,FGEDIT,NUMER

, EXTERNAL NUMER

C Main program section.

PARNUM = 1
CALL PARAM(PARNUMFERR)
IF (NUMER(4)) GOTO 10
FGEDIT - .FALSE.
CALL CLRET

'S CALL CODE
WRITE(ERTEXT,9999)
CALL ERMSG(FERR)
GOTO 10101

10 CALL CODE

24

v, ",' . . ,. .,.... ,. <, . .< ¢ ,.,<,.24..7., .

READ(PARBUF,9994) POINTS

DO 20 1=1,15
IF (POINTS.EQ.J) GOTO 30
J = *

20 CONTINUE
FGEDIT - .FALSE.

4 CALL CLRET
4 CALL CODE

WRITE (ERTEXT, 9998)
CALL ERMSG(FERR)
GOTO 10101

30 PARNUM -2
CALL PARAM(CPARNUM ,FERR)
IF (NUMER(4) GOTO 40

* FGEDIT -. FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT, 9997)
CALL ERMSG(FERR)
GOTO 10101

40 CALL CODE
READ(PARBUFt9994) BLOCKS
IF (BLOCKS.GE.1) GOTO 50

FGEDIT - FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXTI 9996)
CALL ERMSG(FERR)
GOTO 10101

50 IF (BLOCKS.NE.9999) GOTO 60
v FGEDIT m FALSE.

CALL CLRET
CALL CODE
WRITEC ERTEXT, 9995)
CALL ERMSG(FERR)
GOTO 10101

60 PARNUM - 3
CALL PARAM(PARNUMrFERR)
IF (NUMER(2)) GOTO 70
FGEDIT - .FALSE.
CALL CLRET
CALL CODE

* WRITE(ERTEXT,9993)
CALL ERI4SG(FERR)
GOTO 10101

70 CALL CODE

248

- READ(PARBUF,9994) PRONUM
IF ((PRONUM.GE.0).AND.(PRONUM.LE.2)) GOTO 80

FGEDIT = .FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9993)
CALL ERMSG(FERR)
GOTO 10101

80 IF (PRONUM.GT.0) GOTO 90
IF (PRONO(1).EQ.4) PRONO(1) 0
IF (PRONO(2).EQ.4) PRONO(2) = 0
GOTO 10101

90 PRONO(PRONUM) = 4

10101 RETURN

9999 FORMAT(5X,"(EM007) Number of data points per block",
'N - " should be numeric.")

9998 FORMAT(5X,"(EM007) Number of data points per block",
- " should be a pooitive power of 2.")

9997 FORMAT(5X,"(EM007) Number of blocks should be",
- " numeric.")

9996 FORMAT(5X,-(EMOO7) Number of blocks should be",
- "a positive integer.")

9995 FORMAT(5X,"(EM007) Continuous processing is not",
.- "yet supported.")

9994 FORMAT(I4)
9993 FORMAT(5X,"(EM007) Process number must be ",

- "between 0 and 2.")

END
END$

249
%.. .'4. .*
' " " " ' -'".4-" ' ." '''' ' '"' -"." ' .' ' ' v -, "''''" _ _ .' v - ' , . . -, , . _ , . ' ''o • . . " , " - ..

SUBROUTINE EM008(FERR,FGEDIT,PRONO)

- ,19 NOV 83 V1.1

C* *

C* Module name: EM008 (EDIT MENU 8) *
C* Author: Capt John Bengtson *

Version: 1.1 *
" C* Date: 19 Nov 83 *

C**
C* Description: Edits the user-supplied options for *
C* menu 9. *
C* *
C* Calling modules: EOPT. *
C* *

C* Modules called: ERMSG, NUMER, PARAM. *
C**
C* Data items input: PARBUF. *
C**

C* Data items output: FERR, FGEDIT, ERTEXT, PARNUM.
C**

C Common block definitions.

COMMON /COMI/ERTEXT
COMMON /COM7/PARBUF

INTEGER ERTEXT(80)
INTEGER PARBUF(40)

C Normal data item definitions.

INTEGER BLOCKS,PARNUM,POINTS
INTEGER PRONO(10),PRONUM

4'. LOGICAL FERR,FGEDIT,NUMER

EXTERNAL NUMER

C Main program section.

PARNUM - 1
CALL PARAM(PARNUM,FERR)
IF (NUMER(4)) GOTO 10

FGEDIT - .FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9998)
CALL ERMSG(FERR)
GOTO 10101

250
*

%°% . p ~

.4. * . ' . *P

10 CALL CODE
* READ(PARBUF, 9994) POINTS

J=-2
DO 20 I - 1,15

IF (POINTS.EQ.J) GOTO 30
J -J*2

20 CONTINUE
FGEDIT - FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT, 9998)
CALL ERMSG(FERR)
GOTO 10101

30 PARNUM - 2
CALL PARA4 CPARNUM ,FERR)
IF (NUMER(4)) GOTO 40

FGEDIT = UFALSE.

CALL CLRETU CALL CODE
WRITE(ERTEXT,9996)
CALL ERI4SG(FERR)

.5 GOTO 10101

40 CALL CODE
READ(PARBUF,9994) BLOCKS
IF (BLOCKS.GE.1) GOTO 50
FGBDIT - .FALSE.

5. CALL CLRET
CALL CODE
WRITE(ERTEXT, 9996)
CALL ERMSG(FERR)
GOTO 10101

50 IF (BLOCKS.NE.9999) GOTO 60
FGEDIT -. FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9995)
CALL ERMSG(FERR)
GOTO 10101

60 PARNUM- 3
CALL PARAM(PARNUM,FERR)
IF (NUMER(2)) GOTO 70
FGEDIT - .FALSE.
CALL CLRET

* CALL CODE
WRITE(ERTEXT, 9993)
CALL ERMSG(FERR)
GOTO 10101

.5 251

" . 70 CALL CODE

... READ(PARBUF,9994) PRONUM
IF ((PRONUM.GE.0).AND.(PRONUM.LE.2)) GOTO 80

FGEDIT = .FALSE.
CALL CLRET
CALL CODE
WRITE (ERTEXT, 9993)
CALL ERMSG(FERR)
GOTO 10101

80 IF (PRONUM.GT.0) GOTO 90
IF (PRONO(1).EQ.6) PRONO(1) = 0
IF (PRONO(2).EQ.6) PRONO(2) = 0
GOTO 10101

90 PRONO(PRONUM) = 6

10101 RETURN

* 9998 FORMAT(5X,"(EM008) Number of data points per block",
- should be a positive power of 2.")

9996 FORMAT(5X,"(EM008) Number of blocks should be",
-- a positive integer.")

9995 FORMAT(5X,"(EM008) Continuous processing is not",
- " yet supported.")

9994 FORMAT(14)
9993 FORMAT(SX,"(EM008) Process number must be ",

- "either I or 2.")

END
END$

.425

;, 252

* *. .4 .,. ..

SUBROUTINE EM009(FERR,FGEDIT),8 NOV 83 V1.1

C**
C* Module name: EM009 (EDIT MENU 9) *
C* Author: Capt John Bengtson *
C* Version: 1.1 *
C* Date: 8 Nov 83 *
C*
C* Description: Edits user-supplied options for menu 9. *
C**
C* Calling modules: EOPT. *
C**

C* Modules called: ERMSG, PARAM. *
C**

C* Data items input: PARBUF. *
C**

C* Data items output: ERTEXT, FERR, FGEDIT, PARNUM. *
C**

C Common block definitions.

COMMON /COMI/ERTEXT
COMMON /COM7/PARBUF

INTEGER ERTEXT(80)
INTEGER PARBUF(40)

C Normal data item definitions.

INTEGER PARNUM

LOGICAL FERR,FGEDIT

C Main program section.

"' PARNUM = 2
CALL PARAM(PARNUMFERR)
IF ((PARBUF(1).EQ.2HR).OR.(PARBUF(1).EQ.2HC))

- GOTO 10101
FGEDIT - .FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT, 9999)
CALL ERMSG(FERR)

10101 RETURN

9999 FORMAT(SX,"(EM009) Only real (R) and complex (C)",
- data types are recognized.")

253

W. .D

END$

425

** a~~g. * -. *I , '. 7vb K ; '. V'. 5' -1-- .- - - - - ~- '76

SUBROUTINE EM010(FERR,FGEDIT),8 NOV 83 V1.1

"' C* *

C* Module name: EM010 (EDIT MENU 10) *
C* Author: Capt John Bengtson *
C* Version: 1.1 *
C* Date: 8 Nov 83 *
C**
C* Description: Edits user-supplied options for menu 10. *
C**
C* Calling modules: EOPT. *

C**" C*
Modules called: ERMSG, NUMER, PARAM. *

C*

C* Data items input: PARBUF. *

C**
C* Data items output: ERTEXT, FERR, FGEDIT, PARNUM. *
C**

C Common block definitions.

COMMON /COM1/ERTEXT
COMMON /COM7/PARBUF

INTEGER ERTEXT(80)
INTEGER PARBUF(40)

C Normal data item definitions.

N INTEGER BLOCKS,PARNUM,POINTS

LOGICAL FERR,FGEDIT,NUMER

EXTERNAL NUMER

C Main program section.

PARNUM = 1
.~ CALL PARAM(PARNUM,FERR)

IF (NUMER(4)) GOTO 10
FGEDIT - .FALSE.

*: CALL CLRET
CALL CODE
WRITE(ERTEXT, 9999)
CALL ERMSG(FERR)
GOTO 10101

10 CALL CODE
- READ(PARBUF,9994) POINTS

255

'V~~~~~~ ~~~~* ~

DO 20 I - 1,15
IF (POINTS.EQ.J) GOTO 30" ''"J - J*2

20 CONTINUE
FGEDIT - .FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9998)
CALL ERMSG(FERR)
GOTO 10101

30 PARNUM - 2
CALL PARAM(PARNUM,FERR)
IF (NUMER(4)) GOTO 40
FGEDIT - .FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9997)
CALL ERMSG(FERR)
GOTO 10101

40 PARNUM = 3
CALL PARAM(PARNUM,FERR)
IF ((PARBUF(l).EQ.2HR).OR.(PARBUF(1).EQ.2HC))

- GOTO 50
FGEDIT = .FALSE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9996)

' CALL ERMSG(FERR)
GOTO 10101

50 PARNUM = 4
CALL PARAM(PARNUM,FERR)

- IF ((PARBUF(1).EQ.2HR).OR.(PARBUF(1).EQ.2HI).OR.
- (PARBUF(1).EQo.2HM)) GOTO 10101

FGEDIT = .FALSE.
CALL CLRET

"* CALL CODE
WRITE(ERTEXT,9995)
CALL ERMSG(FERR)
GOTO 10101

10101 RETURN

9999 FORMAT(SX,"(EM010) Number of data points per",
- " block should be numeric.")

9998 FORMAT(5X,"(EM010) Number of data points per",
- "block should be a positive power of 2.")

9997 FORMAT(SX,"(EM010) Number of blocks should
- "be a positive integer.")

9996 FORMAT(5X,"(EM010) Recognized data types are

256

* .I * * *.**4 . * .?i. .i - '.l / **q .. u"i E qt -

" Nreal (R) and complex (C).")
9995 FORMAT(5X,"(EMO1O) only real (R), imaginary (I), "

* - wand magnitude (M) are permitted for part.")
9994 FORMAT(14)

END
END$

25

.7 1

SUBROUTINE FREQ(ACONO,DISNO,FCONS,PRONO, FERR)
-31 OCT 83, V1.2

C'
C* Module name: FREQ (FORMAT REQUEST)*
C' Author: Capt John Bengtson
C' Version: 1.2
C* Date: 31 Oct 83*

C**

C' Description:

C**

C* so that they are compatible with what the system's *
C' application programs expect. Data is taken from
C' CV/(NNN) files and formed into ACQ(XXX) records.
C'

9' C' Calling modules: GREQ.*
C'
C' Modules called: FAO0l, FAOO2,...FDOO1, FDO02,....
C' FPOO1, FPOO2,..., CLRET, ERMSG.
C*
C' Data items input: ACONO, DISNO, PRONO.
C*

A C' Data items output (changed): ERTEXT, FERR.*
C'

C Common block definitions.

COMMON /COM1/ERTEXT

INTEGER ERTEXT(80)

C Normal data item definitions.

INTEGER ACQNO,DISNO,PRONO(JO)
LOGICAL FCONS,FERR

C Main program section.

CIO IF (ACQNO.NE.O) GOTO 20
C CALL PAOOOCFERR)
C IF (FERR) GOTO 10101
C GOTO 50

20 IF (ACQNO.NE.1) GOTO 30
CALL FAOO1(FERR)
IF (FERR) GOTO 10101
GOTO 50

30 IF (ACQNO.NE.2) GOTO 40

258

C CALL FA002(FERR)
C IF (FERR) GOTO 10101
C GOTO 50

*C Error.

40 FERR = .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT, 9999)
CALL ERMSG(FERR)
GOTO 10101

s0 IF ((PRONO(l).EQ.0).AND.(PRONO(2).EQ.0)) GOTO 80
* IF ((PRONO(1).NE.4).AND.(PRONO(2).NE.4)) GOTO 60

CALL FPOO4(FERR)
IF (FERR) GOTO 10101
GOTO 80

60 IF ((PRONO(1).NE.6).AND.(PRONO(2).NE.6)) GOTO 60
CALL FPOO6(FERR)
IF (FERR) GOTO 10101
GOTO 80

C Error.

* 70 FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXTf9998)
CALL ERMSG(FERR)
GOTO 10101

80 IF (DISNO.NE.0) GOTO 90
C CALL FDOOO(FERR)
C IF (FERR) GOTO 10101
C GOTO 10101

90 IF (DISNO.NE.1) GOTO 100
CALL FDOO1(FERR)
IF (FERR) GOTO 10101
GOTO 10101

100 IF (DISNO.NE.2) GOTO 110
C CALL FDOO2(FERR)
C IF (FERR) GOTO 10101
C GOTO 10101

C Error: invalid display request.

110 FERR - .TRUE.
,-*. .-~CALL CLRET

259

.1

4

CALL CODE
WRITE(ERTEXT,9997)
CALL ERMSG(FERR)
GOTO 10101

10101 RETURN

9999 FORMAT(10X,O(FREO) Acquisition request number must",
- 'be between 0 and 2.n)

9998 FORMAT(10X,"(FREQ) Processing request number must",
- " be either 4 or 6.0)

9997 FORMAT(1OX,O(FREQ) Only display option 2 is ',

- currently supported. ")

a.

END
END$

D260

4

a.
a'

.5

,,

4

. o -**

" 260

,4.. ,'' """'"',.".".. -'.".".," "-' ' '"-" '..- - . . . , .""",". . . "- ". ,.'i _. ,.; 'I ' 'L,

SUBROUTINE FA001(FERR),8 NOV 83 V1.1

C**
C* Module name: FA001 (FORMAT ACQUISITIONREQUEST1) *
C* Author: Capt John Bengtson *
C* Version: 1.1 *
C* Date: 8 Nov 83 *
C*
C* Description: Formats the request provided to AD001 *
C* to guide its actions when it is called upon to *
C* generate data. *
C* *
C* Calling modules: FREQ. *
C**
C* Modules called: CLRET, ERMSG. *C* *

C**
C* Data items input: PARBUF. *
C*
C* Data items output: ERTEXT, FERR, MDDCB, PARBUF.
* **

C Common block definitions.

COMMON /COMl/ERTEXT
COMMON /COM2/MDDCB
COMMON /COM3/MENUSE

*COMMON /COM7/PARBUF

INTEGER ERTEXT(80)
INTEGER MDDCB(144)
LOGICAL MENUSE(100)
INTEGER PARBUF(40)

C Normal data item definitions.

Y INTEGER ARDCB(144),ARNAM(3),ISIZE(2),MDNAM(3)
INTEGER NUMPAR,PARNUM,CVNAM(3)

LOGICAL FERR

C Initializations.

DATA MDNAM/2HMD,2H00,2H6 /,NUMPAR/10/
DATA ARNAM/2HAR,2HEQ,2H /,ISIZE/20,O/
DATA CVNAM/2HCV,2H00,2H6 /

C Main program section.

IF (MENUSE(6)) GOTO 5
-.CALL OPEN(MDDCBIERRMDNAM)

261

ST-- - 1 .71 M l 7-6 .7- -. S S- .

GOTO 7
.~-.5 CALL OPEN(MDDCB,IERR,CVNA4)

*55 ~5~~S7 IF (IERR.GE.0) GOTO 10
FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9999) (MDNAM(I),I=1,3)
CALL ERMSG(FERR)
GOTO 10101

10 CALL OPEN(ARDCBIERR,ARNAM)
IF (IERR.LT.0) CALL CREAT(ARDCB,IERRARNAM,ISIZE,4)

20 DO 30 PARNUM - 1,NUMPAR
CALL FPAR(PARNUM,FERR)
IF (FERR) GOTO 10101

S.. CALL WRITF(ARDCB,IERR,PARBUF,40)
30 CONTINUE

10101 CALL CLOSE(ARDCB)
CALL CLOSE(MDDCB)
RETURN

9999 FORMAT(5X,"(FAOO1) Can't open MDOO6.")

END
END$

S.262

SUBROUTINE FPOO4(FERR),8 NOV 83 V1.1

C**

Author: Capt John Bengtson*
C* Version: 1.1
C*Date: 8 Nov 83*

C**

C* Description: Formats the request which is provided to*
C* PDO04 to guide its actions when it is called upon to*
C* perform an FFT.

C**

C Calling modules: FREQ.
C**

C* Modules called: CLRET, ERMSG, FPAR.
C**

C* Data items input: PARBUF.
C**

C* Data items output: ERTEXT, FERR, MDDCB, PARBUF.*
C**

C Common block definitions.

COMMON /COM1/ERTEXT
COMMON /COM2/MDDCB
COMMON /COM3/MENUSE
COMMON /COM7/PARBUF

* INTEGER ERTEXT(80)
INTEGER MDDCB(144)
LOGICAL MENUSE(100)
INTEGER PARBUF(40)

C Normal data item definitions.

INTEGER ISIZE(2) ,MDNAM(3) ,NUMPAR,PARNUM
INTEGER PRDCB(144),PRNAM(3),CVNAM(3)

LOGICAL FERR

* C Initializations.

DATA MDNAM/2HMD,2H00,2H7/
DATA NUMPAR/3/
DATA PRNAM/2HPR, 2HQO, 2H04/,ISIZE/20, 0/
DATA CVNAM/2HCV,2H00,2H7/

C Main program section.

IF (MENUSE(7)) GOTO 5

263

CALL OPEN (MDDCB, IERR,MDNAM)
GOTO 7

*5 CALL OPEN(MDDCB,IERR,CVNAM)
7 IF (IERR.GE.0) GOTO 10

FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9999) (MDNAM(I),I-1,3)

-~ CALL ERMSG(FERR)
GOTO 10101

10 CALL OPEN(PRDCB,IERR,PRNAM)
IF (IERR.LT.0) CALL CREAT(PRDCB,IERRPRNAM,ISIZE,4)

20 DO 30 PARNUM -1,NUMPAR
CALL FPAR(PRUFERR)
IF (FERR) GOTO 10101
CALL WRITF (PRDCB, IERRI PARBUF,40)

30 CONTINUE

10101 CALL CLOSE(MDDCB)
CALL CLOSE(PRDCB)
RETURN

9999 FORM4AT(5X,"(FPOO4) Needed menu file MDW007 not"
- "found.")

OD END
,a4 END$

-26

~4..

SUBROUTINE FPOO6(FERR),19 NOV 83 V1.1

C**

C* Module name: FP006 (FORMATPROCESSINGREQUEST_-6*
C* Author: Capt John Bengtson
C* Version: 1.1*

C*Date: 19 Nov 83*
C**

C* Description: Formats the request which is provided to*
C* PDO06 to guide its actions when it is called upon to*

C**

C Calling modules: FREQ.*
* * C*

C* Modules called: CLRET, ERMSG, FPAR.*
C**

C* Data items input: PARBUF.
C*
C* Data items output: ERTEXT, FERR, MDDCB, PARBUF.*
C**

C Common block definitions.

COMMON /,COM1/ERTEXT
COMMON /COM2/MDDCB
COMMON /COM3/MENUS E
COMMON /CON 7/PARBU F

INTEGER ERTEXT(80)
INTEGER MDDCB(144)
LOGICAL MENUSE(lOO)
INTEGER PARBUF(40)

C Normal data item definitions.

VINTEGER ISIZE(2),MDNAM(3)VNUMPAR,PARNUM
INTEGER PRDCB(144),PRNAM(3),CVNAM(3)

LOGICAL FERR

C Initializations.

DATA MDNAM/2HMD,2H00,2H8/
DATA NUMPAR/3/
DATA PRNAM/2HPR,2HO,2H06/,ISIZE/20,O/
DATA CVNAM/2HCV,2H00,2H7

C Main program section.

IF (MENUSE(8)) GOTO 5

265

'16V M1A16

,V.'

CALL OPEN(MDDCB, IERR,MDNAM)
GOTO 7

* ..,5 CALL OPEN(MDDCB,IERR,CVNAM)

7 IF (IERR.GE.0) GOTO 10
FERR - TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9999) CMDNAM(I),I=1,3)
CALL ERMSG(FERR)
GOTO 10101

10 CALL OPEN(PRDCBIERR,PRNAM)
IF (IERR.LT.0) CALL CREAT(PRDCB,IERR,PRNAM,ISIZE,4)

20 DO 30 PARNUM - 1,NUMPAR
CALL FPAR (PARNUM ,FERR)
IF (FERR) GOTO 10101
CALL WRITF(PRDCB, IERR,PARBUF,40)

30 CONTINUE

10101 CALL CLOSE(MDDCB)
CALL CLOSE(PRDCB)
RETURN

9999 FORMAT(5X,"(FPOO6) Needed menu file MD008 not"
- Ufound.")

END
END$

266

SUBROUTINE FDOO1(FERR),8 NOV 83 V1.1

C**

JbC* Module name: FDO01 (FORMAT DISPLAYREQUEST_1)*
C* Author: Capt John Bengtson
C* Version: 1.1*
C*Date: 8 Nov 83*

C**
C* Description: Formats the request which is provided to*

C' DD001 to guide its actions when it is called upon to*
C* accept data from acquisition/processing application *

C'programs and display the data on the HP2648A terminal.'
C*
C' Calling modules: FREQ.
C*

C' Modules called: CLRET, ERMSG, FPAR.
C*
C' Data items input: PARBUF.*
C'
C' Data items output: ERTEXT, FERR, MDDCB, PARBUF.*
C'

C Common block definitions.

* COMMON /COMl/ERTEXT
COMMON /COM2/MDDCB
COMMON /COM3/MENUSE

* COMMON /COM7/PARBUF

INTEGER ERTEXT(80)
INTEGER MDDCB(144)
LOGICAL MENUSE(100)
INTEGER PARBUF(40)

-. C Normal data item definitions.

INTEGER DRDCB(144),DRNAM(3),ISIZE(2)
INTEGER MDNAM(3) ,NUMPAR,PARNUM,CVNAM(3)

LOGICAL FERR

C Initializations.

DATA MDNAM/2HMD, 2H01 ,2110 /,NUMPAR/4/
DATA DRNAM/2HDR,2HEQ,2H /, ISIZE/20,O/
DATA CVNAM/2HCV,2H01,2H0

C Main program section.

IF (MENUSE(10)) GOTO 5

* 267

CALL OPEN (MDDCB, IERR, MDNAM)
.2: GOTO 7

5 CALL OPEN(MDDCB,IERR,CVNAM)
7 IF (IERR.GE.0) GOTO 10

FERR = .TRUE.
CALL CLRET
CALL CODE
WRITE (ERTEXT, 9999)
CALL ERMSG(FERR)
GOTO 10101

10 CALL OPEN(DRDCB,IERR,DRNAM)
IF (IERR.LT.0) CALL CREAT(DRDCB,IERR,DRNAM,ISIZE,4)

DO 20 PARNUM = 1,NUMPAR
CALL FPAR (PARNUM, FERR)
IF (FERR) GOTO 10101
CALL WRITF (DRDCB, IERR ,PARBUF ,40)

20 CONTINUE

*10101 CALL CLOSE(MDDCB)
CALL CLOSE(DRDCB)
RETURN

9999 FORMAT(5X,-(FDOO1) Can't find file MDO1O.0)
END
END$

-26

SUBROUTINE SAREO(ACONO,DISNO,FERR,PRONO)
.- -,19 NOV 83, V1.3

C**

C* Module name: SAREQ (SATISFY REQUEST) *
C* Author: Capt John Bengtson *
C* Version: 1.3 *

C*Date: 19 Nov 83*
C*

C* Description: *
C*
C* SAREQ is responsible for satisfying the user's *
C* requests by calling modules which execute application *
C* programs for acquiring, processing, and displaying *
C* data. *
C* *

C* Calling module: DSP. *
C**

3 C* Modules called: ADATA, PDATA, DDATA.
C**

C* Data items input: ACONO, SCRDAT, DISNO, DISREQ, FERR, *
-C* PRONO, PROREQ. *

C**
C* Data items output (changed): ACQIO, ACONO, DISIO, *
C* DISNO, PROIO, PRONO, SARIO. *
C*

C Normal data item definitions.

INTEGER ACQNO,DISNO,PRONO(10)
INTEGER IONUMB(12),SARIO
INTEGER ACQNAM(3),PRONA1(3),DISNAM(3),BUFFER(5)
INTEGER PRONA2(3)
LOGICAL FERR

C Initializations.

C Main program section.

C Clear the screen.

WRITE(1,9996) 15530B,15510B,15512B,15452B,
- 62040B,62107B

C Get CLASS I/O numbers. Acquisition and display
C programs each require a single number; additional
C I/O numbers must be acquired for each of the
C processing programs to be executed.

* ... DO 10 I 1,12

269

.,-.,., , ,. ,.L- .••. . , , , - _

IONUMB(I) -. 0
10 CONTINUE

SARIOO

ICLAS - 0
CALL EXEC(20,0,BUFFER,5,IZ,JZ,ICLAS)
IONUF4B(l) - ICLAS
DO 20 12 -1,10

ICLAS -0
CALL EXEC(20,0rBUFFER,5, IZ,JZ ,ICLAS)
IONUMB(12+1) = ICLAS
IF (PRONO(I2).EQ.0) GOTO 30

20 CONTINUE
30 DO 40 I = 1,12+1

IONUMB(I) = IOR(IONUMB(I),20000B)
CALL EXEC(21,IONUMB(I),BUFFER,5)

40 CONTINUE
CALL EXEC(20,0,BUFFER,5,1Z,JZ ,SARIO)

4 SARIO = IOR(SARIO,20000B)
CALL EXEC(21,SARIO,BUFFER,5)

C Form names of programs to be called. Each name
C is the concatenation of the process number with
C a few textual characters.

CALL CODE
WRITE(ACQNAM,9999) ACONO
CALL SCHAR(FERR,1H ,lHO,l,5,AC0NAM)

CALL CODE
*WRITE(PRONA1,9998) PRONO(1)

CALL SCHAR(FERR,lH ,lHO,1,5,PRONAl)
CALL CODE
WRITE(PRONA2I 9998) PRONO(2
CALL SCHAR(FERR,1H ,lHFjl,5,PRONA2)

CALL CODE
WRITE(DISNAM,9997) DISNO
CALL SCHAR(FERR,lH ,lH0,1,50DISNAM)

C Schedule programs for execution, passing them
C any needed 1/O numbers.

CALL EXEC(10,ACQNAM,IONUMB(1),IONUMB(2),SARIO)
IF (PRONO(l).NE.0)

- CALL EXEC(l0,PRONA1,IONUMB(2),IONUMB(3),SARIO)
IF (PRONO(2).NE.0)

CALL EXEC(10,DISNAt4,IONUMB(12+1) ,SARIO)

C Now wait for completion message from program.

270

4- CALL EXEC(21,SARIO,BUFFER,5)

C Release CLASS I/0 numbers so that we don't run
C out of them.

* Do 50 I = 1,12+1
IONUMB(I) - IOR(lOOOOOB,IAND(17777B,IONUMB(I)))
CALL EXEC(21,IONUMB(I),BUFFER,5)

50 CONTINUE

SARIO - IOR(100000B,IAND(17777B,SARIO))
CALL EXEC (21 ,SARIOBUFFER, 5)

10101 RETURN

9999 FORMAT(AD,13,"
9998 FORIAT(PD,13,u 0)
9997 FORtAT(DD,I3," U

9996 FORMAT(10A2)

SEN

END$

EN271

SUBROUTINE BORDR(CURMEN,FERR),3 OCT 83, V1.1

C**
C* Module name: BORDR (DRAW BORDER) *

Author: Capt John Bengtson *
C* Version: 1.1 *
C* Date: 3 Oct 83 *
C**
C* Description: *
C**
C* BORDR prepares the terminal screen for each *
C* menu display. First it clears the screen, then *
C* it draws a border around it and enables both *
C* alphabetic and graphic display capabilities. *
C* If the "Title Page" menu is being displayed *
C* (the first one to appear when the system is *
C* brought up), some extra lines/boxes and text are *
C* written to the screen in addition to the basic *
C* border. *
C**
C* Calling modules: DMENU, HELP. *

•4 C* *

C* Modules called: CLRET, CLRTC, CURSR, SESC.
C* *

C* Data items input: CONWD2, CURMEN, MAXERT, NOCRLF. *
C**

C* Data items output (changed): ERTEXT, FERR, TCONT. *
C* *

C Common block definitions.

COMMON /COM1/ERTEXT
COMMON /COM6/TCONT

COMMON /COM22/CONWD2
COMMON /COM29/MAXERT
COMMON /COM32/NOCRLF

INTEGER ERTEXT(80)INTEGER TCONT(10)

INTEGER CONWD2
INTEGER MAXERT
INTEGER NOCRLF

C Normal data item definitions.

INTEGER CURMEN,LENCHR
LOGICAL FERR

272

C Main program section.
S.C Turn off format mode.

CALL CLRTC
CALL CODE
WRITE(TCONT,9998)
CALL SESC(FERR,TCONT,1)
TCONT(2) = NOCRLF
CALL EXEC(2,CONWD2,TCONT,2)

C Write out basic border-defining instructions to terminal.

CALL CLRET
CALL CODE
WRITE(ERTEXT,9999)
CALL SESC(FERR,ERTEXT,45)
ERTEXT(46) = NOCRLF
CALL EXEC(2,CONWD2,ERTEXT,46)
IF (CURMEN.NE.1) GOTO 10101

C If this is the "Title Page" menu (CURMEN = 1), write out
C some extra lines/boxes and text.
C First draw box.

* CALL CLRET

CALL CODE
!* WRITE(ERTEXT,9996)

CALL SESC(FERR,ERTEXT,MAXERT)
CALL EXEC(2,CONWD2,ERTEXT,40)

C Position cursor for text.

CALL CURSR(2,1,FERR)

C Write title page text.

".: WRITE(1,9994)
WRITE(1,9993)
WRITE(1,9992)

10101 WRITE(l,9991) 15510BCURMEN

9999 FORMAT("E*d f Z E*d d Z EH EJ E*d a Z E*p a f 0 0 0",
;- 359 719 359 719 0 0 0 Z E*d c Z E*d e Z")

9998 FORMAT(OEX")
9996 FORMAT("E*p a f 162 344 553 344 553 259 162 259",

- " 162 344 a 0 244 719 244 Z")
9994 FORMAT(20X,"AFIT Digital Signal Processing System",/)
9993 FORMAT(26X,"Author: Capt John Bengtson")
9992 FORMAT(24X,"Advisor: Professor Gary Lamont")
9991 FORMAT(A2,13)

273

I .. , -. '. , : -'- ' .

- -. - S
.~... . S

a?

(S

SND
* S END$

~

a.

a.

-v

0
N

'N

Sg

'S

*Sd

.4

274

-a

I.

- -* - a0 ~*'/~~~(V*-.:** ~'*~~'*~ ~' ' *.;.- :.-.;.~ .a* ~ *,'a \ ~ ~,'aa'a~ ~%.. ~ S ~

SUBROUTINE CLRET
-,2 OCT 83, V1.1

C**

C* Module name: CLRET (CLEAR ERTEXT) *
C* Author: Capt John Bengtson *
C* Version: 1.1 *
C* Date: 2 Oct 83 *

C**

C* Description:

C* CLRET fills the array ERTEXT with spaces. *
C**
C* Calling modules: (all that use ERTEXT) *
C**
C* Modules called: (none) *
c**
C* Data items input: ERTEXT. *
C**

C* Data items output: ERTEXT. *
C* *

'. C Common block definitions.

0COMMON /COMI/ERTEXT
COMMON /COM29/MAXERT

INTEGER ERTEXT(80)

INTEGER MAXERT

* C Normal data item definitions.

LOGICAL FERR

C Main program section.

DO 10 I - 1,MAXERT
ERTEXT(I) - 2H

10 CONTINUE

10101 RETURN

END
END$

S2.5

275

4 .~SUBROUTINE CLRRB'i -2 OCT 83, V1.2

",-" *~** * ****** ****** ***** *** **** *** ***************

C**

C* Module name: CLRRB (CLEAR RECBUF) *
C* Author: Capt John Bengtson *
C* Version: 1.2 *
C* Date: 2 Oct 83
C**

C* Description: *
C**
C* CLRRB fills the array RECBUF with spaces. *
C* *

C* Calling modules: (all that use RECBUF) *
C**
C* Modules called: (none) *
C**

C* Data items input: MAXREC, RECBUF. *
C**

C* Data items output: RECBUF. *
C**

C Common block definitions.

COMMON /COMl/ERTEXT
COMMON /COM4/RECBUF

COMMON /COM30/MAXREC

INTEGER ERTEXT(80)

INTEGER RECBUF(40)

INTEGER MAXREC

C Normal data item definitions.

LOGICAL FERR

C Main program section.

DO 10 I - 1,MAXREC
10 RECBUF(I) - 2H

10101 RETURN

END
END$

276

a. - ° a " -a .- "-- - . . .v.

aI - SUBROUTINE CLRSD,V1.0 26 OCT 83

C* ,*

C* Module name: •
C* Author: Capt John Bengtson *C* Version: 1.0 •
C* Date: 26 Oct 83 •
C*,
C* Description: ,C*,
C* ,
C* Calling modules: •
C*
C* Modules called: •
C* ,
C* Data items input: •
C* ,
C* Data items output: •
C* ,

.C Common block definitions.

COMMON /COM5/SCRDAT

COMMON /COM26/MAXSCR

INTEGER SCRDAT(500)

INTEGER MAXSCR

C Main program section.

DO 10 I = 1,MAXSCR
10 SCRDAT(I) 0

10101 RETURN

END

"277

.5,

a. * * * ~ ". ' -. ' . - . . .-. - -.- , * . .. ,
,'.' • ,.'% " %' -.'.',,--v .'.',.'.'...'.',. ,-..'. ,",. ',' ',- -' , .'. ' u,' a,,'

SUBROUTINE CLRTC
-,2 OCT 83, V1.1

C**

C* Module name: CLRTC (CLEARTCONT)*
C* Author: Capt John Bengtson*
C Version: 1.1*
C*Date: 2 Oct 83*

C**

C* Description:
C*
C*CLRTC fills the array TCONT with nulls.*

C*
C* Calling modules: (all that use TCONT)*

C**

V C* Modules called: (none)
C*
C* Data items input: TCONT

C**

C* Data items output: TCONT
C*

C Common block definitions.

COMMON /COMl/ERTEXT£4 COMMON /COM6/TCONT

COMMON /COM31/MAXTCO

-~ INTEGER ERTEXT(80)
INTEGER TCONT(lO)

INTEGER MAXTCO

C Normal data item definitions.

LOGICAL FERR

C Main program section.

IF (MAXTCO.EQ.10) GOTO 10
FERR - TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9999) MAXTCO
CALL ERMSG(FERR)
STOP

10 DO 20 I - 11MAXTCO
TCONT(I) -0

14

278

;5s

20 CONTINUE

- 10101 RETURN

9999 FORMAT("(CLRTC) MAXTCO has been changed from 10 to "
- 3,"; stopping execution.")

END
END$

.279

.4N

4

5,'."

.. 2"79

SUBROUTINE CURSR(ROW,COLUMN,FERR),20 Oct 83 V1.2

C*

C* Module name: CURSR (POSITION CURSOR)
C* Author: Capt John Bengtson *
C* Version: 1.2 *
C* Date: 20 Oct 83 *
4 *

C* Description: Positions cursor on the screen of the *
C* 2648A terminal. *
C**
C* Calling modules: BORDR, ERMSG, HELP, PREC1. *
C*
C* Modules called: CLRET, CLRTC, ERMSG, SESC.
C**

C* Data items input: COLUMN, CONWD2, NOCRLF, ROW. *
-C*

C* Data items output: ERTEXT, FERR, TCONT. *
C* *

C Common block definitions.

COMMON /COMl/ERTEXT
COMMON /COM6/TCONT

COMMON /COM22/CONWD2
COMMON /COM32/NOCRLF

INTEGER ERTEXT(80)
INTEGER TCONT(10)

INTEGER CONWD2

INTEGER NOCRLF

C Normal data item definitions.

INTEGER COLUMN,ROW
LOGICAL FERR

C Main program section.

IF ((ROW.GE.0).AND.(ROW.LE.23).AND.(COLUMN.GE.0).AND.
- (COLUMN.LE.79)) GOTO 10

CALL CLRET
CALL CODE
WRITE(ERTEXT,9999) 006412B,ROW,COLUMN
CALL ERMSG(FERR)
GOTO 10101

10 CALL CLRTC

280

1D-R138 232 DEVELOPMENT OF A REAL-TIME GENERAL-PURPOSE DIGITAL 4/4
SIGNAL PROCESSING LABO._(U) AIR FORCS INST OF TECH
WRIGHT-PHTTERSON AFB OH SCHOOL OF ENGI. J W BENGTSON

UNCLASSIFIED DEC 83 AFIT/GCS/EE/83D-3 F/G 9/2 N

EEmmomhommohi

Ehh~~EENhhh

.. 4

1.0 t Q I-521111I1 II'=

11I11 ,__,
.1.0

.i 2 ll IIHIA ll=L6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-]I963-A

'L

"I,

.

. . ,. - . * . . . ' % .o. - * . . . - . - ' - . . . * - . . %

--i~~Y-~-.~~;.~ W-~.-~2~*.::

CALL CODE
WRITE(TCONT,9998) ROW,COLUMN
CALL SESC(FERR,TCONT,6)
TCONT(7) - NOCRLF
CALL EXEC(2,CONWD2,TCONT, 7)

10101 RETURN

9999 FORMAT(SX,"(CURSR) Row must be between 0 and 23,
- A2,5X,"column must be between 0 and 79 (vs. the "
- 12,fI2,* provided)")

9998 FORNAT(*E&a 0,12,*r " ,12,u C*)
END
END$

,

c.

281

I•..

SUBROUTINE ERMSG(FERR),20 Oct 83 V1.2

C**

C* Module name: ERMSG (ERROR MESSAGE) *
C* Author: Capt John BeWgtson *
C* Version: 1.2 *
C* Date: 20 Oct 83 *
C*
C* Description: *
C**
C* ERMSG accepts error message text and displays it *
C* to the terminal screen in a standard fashion. All *
C* error messages are displayed on the last four lines *
C* of the screen, with no attention paid to formatting. *
C* The user must place carriage returns and line feeds *
C* where desired in the midst of the text. Unfortu- *
C* nately, using a "/" in a FORMAT statement during *
C* the message encoding process doesn't work; it seems *
C* to be necessary to place CR/LF in explicitly as an *
C* A20 item (006412B). *
C* If the FERR flag is set, signifying a fatal error, *
C* then an extra message is printed to tell the user *
C* that the program is going to terminate. *
C* (See the test program *&FORM" for an example of *
C* an attempt to use "/1 directly) *
C**
C* Calling modules: (all) *

.1*• C* *
C* Modules called: CLRRB, CLRTC, CURSR, SESC. *
C**

C* Data items input: ERTEXT, FERR, TCONT. *
C**

C* Data items output: ERTEXT, FERR, TCONT. *
C**

C Common block definitions.

COMMON /COM1/ERTEXT
COMMON /COM4/RECBUF
COMMON /COM6/TCONT

COMMON /COM22/CONWD2
COMMON /COM29/MAXERT
COMMON /COM31/MAXTCO
COMMON /COM32/NOCRLF

INTEGER ERTEXT(80)
INTEGER RECBUF(40)
INTEGER TCONT(10)

282

- "-- '

WTIW2 - -v K. T-7 7 -v 72 -

INTEGER CONWD2
* INTEGER MAXERT

INTEGER MAXTCO
INTEGER NOCRLF

C Normal data item definitions.

INTEGER DISCOL,DISROW

LOGICAL FERR

C Initializations.

DISROW - 21
DISCOL - 0

C Main program section.
C Turn off format mode, position cursor, and clear to
C bottom of screen.

CALL CLRTC
CALL CODE
WRITE (TCONT, 9999)
CALL SESC(FERR,TCONT,1)

- TCONT(2) - NOCRLF
CALL EXEC(2,CONWD2,TCONT,2)
CALL CURSR(DISROW,DISCOL F'ERR)

___ CALL CLRTC
CALL CODE
WRITE(TCONT, 9991)
CALL SESC(FERR,TCONTel)
TCONT(2) - NOCRLF
CALL EXEC(2,CONWD2,TCONT,2)

C Write out error message.

ERTEXT(MAXERT) - NOCRLF
CALL EXEC (2, CON WD2 ,ERTEXT, MAXERT)

C If fatal error, write out special error message.

C Tell the user to hit "ENTER" to continue.

CALL CURSR(23,O,FERR)
CALL CLRRB
CALL CODE
WRITE(RECBUF, 9996)
RECBUF(30) - NOCRLF
CALL EXEC(2,CONWD2,RECBOF,30)

C Position cursor to top of screen, create a small unprotec-
C ted field, turn on FORMAT mode, wait for response.

283

DISROW -1
.. ~ *~ DISCOL -1

* CALL CODE
WRITE (TCONTU 9994) DISROW, DISCOL
LEN - MAXTCO
CALL SESC(FERRTCONT,LEN)
WRITE(1,9993) (TCONT(I),I-1,LEN)

READ(1,9992) I

10101 RETURN

* 9999 FORMAT(EX)
9998 FORMAT(8A2)
9997 FORMAT(80A2)
9996 FORMAT(28X,(Hit ENTER to continue)")
9994 FORMAT("E&a *,12,"r ",12,"C l"EE EI",r"EWN)
9993 FORNAT(10A2)
9992 FORMAT(A2)
9991 FORMAT(OEJO)

END
END$

428

SUBROUTINE FPAR(PARNUM,FERR),8 NOV 83 V1.1

C**
C* Module name: FPAR (FILE PARAMETER) *
C* Author: Capt John Bengtson *
C* Version: 1.1 *
C* Date: 8 Nov 83 *
C* *

C* Description: *
C**
C* FPAR reads MD(NNN) data files and extracts the *
C* parameters from non-zero length type-6 records (de- *
C* fault values). PARNUM expects that the desired menu *
C* data file has been opened using FCB MDDCB. *
C**
C* Calling modules: FAOOO through FA(NNN), FDOOO *

C* through FD(NNN), FP001 through FP(NNN). *C**
C* Modules called: (none) *

C**

C* Data items input: MDDCB, PARNUM *
C* *

C* Data items output: PARBUF (common area) *
C**

C Common block data definitions.

COMMON /COMl/ERTEXT
COMMON /COM2/MDDCB
COMMON /COM7/PARBUF

INTEGER ERTEXT(80)
INTEGER MDDCB(144)
INTEGER PARBUF(40)

C Normal data item definitions.

INTEGER FLDLENPARCNT,PARNUMRECTYP

LOGICAL FERR

C Main program section.

PARCNT - 0
CALL RWNDF(MDDCB)

C Read until coming to the PARNUMth parameter group
C (counting only those with non-zero length parameters).

10 DO 20 I - 1,40

'

a' 285

9 - . . . - .- - . -. ,. . . . - . . .-.-. . -..-.. .-

20 PARBUF(I) = 2H
oS

"" CALL READF(MDDCB,IERR,PARBUF,40,LEN)
IF (LEN.GE.0) GOTO 30

FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9999) PARNUM
CALL ERMSG(FERR)
GOTO 10101

30 CALL CODE
"" READ(PARBUF,9997) RECTYP,FLDLEN

IF (RECTYP.NE.4) GOTO 10
IF (FLDLEN.LT.1) GOTO 10

C Found a non-zero length parameter.

PARCNT - PARCNT+1
IF (PARCNT.LT.PARNUM) GOTO 10

C If it's the one being looked for, skip the type-5
C record following it and read in the actual default
C value (parameter) desired.

CALL READF(MDDCB,IERRPARBUF,40,LEN)
IF (LEN.GE.0) GOTO 40

FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9999) PARNUM
CALL ERMSG(FERR)
GOTO 10101

40 DO 50 I - 1,40
50 PARBUF(I) - 2H

CALL READF(MDDCB,IERRPARBUF,40,LEN)
IF (LEN.GE.0) GOTO 10101
FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9998)
CALL ERMSG(FERR)

10101 DO 10102 I - 1,39
10102 PARBUF(I) - PARBUF(I+1)

RETURN

9999 FORMAT(5X,O(FPAR) Can't find requested parameter",
- " in MD(NNN) file ",I3)

9998 FORMAT(5X,O(FPAR) Unexpected EOF in reading MD",

286

4i%, ° t t . . ' o'-" -" " ' ." " -,,.'." ' . """ '''' ..,, """""" "" '."-

* n'r-T AU% Tw.T- Vi ~.* -.

- (NNN) file")
9997 FORMAT(I1,1X,13)

END
END$

'287

SUBROUTINE NOCR(FERR,MESG,STRLEN)
Z.*. -,2 OCT 83, Vl.l

C* *

C* Module name: NOCR (NO CARRIAGE RETURN) *
C* Author: Capt John Bengtson *
C* Version: 1.1 *
C* Date: 2 Oct 83
C* *

C* Description: *
C**
C* NOCR places an underscore character in the *
C* user's message string (MESG) just after the char.
C* position designated by STRLEN. STRLEN is incremented *
C* by either one or two, to indicate the new length *
C* of the string including the underscore. *
C* It is very important to note that STRLEN is the *
C* number of CHARACTERS in the string, NOT WORDS. *
C* The result of doing all this is a message string *
C* that will suppress the printing of a CR/LF sequence
C* at the end of the line, if it is printed using *
C* an EXEC call to DVR05.
C*
C* Calling modules: PRECS,PREC6.
C'
C* Modules called: (none)
C**

C' Data items input: STRLEN,MESG.
C'
C* Data items output: STRLEN,MESG. *
C* *

C Common block definitions.

COMMON /COM1/ERTEXT

'COMMON /COM32/NOCRLF

INTEGER ERTEXT(80)

INTEGER NOCRLF

C Normal data item definitions.

INTEGER MESG(40)
INTEGER STRLEN,WDADDR
LOGICAL FERR

C Main program section.

4288

*.?' .~~ %'

IF ((STRLEN.GE.1).AND.(STRLEN.LE.80)) GOTO 10
FERR -. TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT, 9999) STRLEN
CALL ERNSG(FERR)
GOTO 10101

10 WDADDR - (STRLEN-1)/2+1
IF (NOD(STRLEN,2).EQ.0) GOTO 20
tESG(WDADDR) - IAND(MESG(WDADDR),077400B)
MESG(WDADDR+1) - NOCRLF
STRLEN - STRLEN+3
GOTO 10101

20 NESG(WDADDR+l) - NOCRLF
STRLEN - STRLEN+2

10101 RETURN

9999 FORNAT((NOCR) Length of string to be processed by",

" NOCR should be between 1 and 80, not ",13,".")

END
END$

-4289

4 LOGICAL FUNCTION NUMER(NUMCHR),8 NOV 83 V1.1

C**

C* Module name: NUMER
C* Author: Capt John Bengtson
C* Version: 1.1*

C**

C* Description:*
C**

C* NUMER returns the value TRUE if the characters in *

C* PARBUF are numeric; FALSE otherwise.
* C*

C* Calling modules: EN001 through EM(NNN)
C**

C* Modules called: (none)*
C**

C* Data items input: NUMCHR, PARBUF
C**

C* Data items output: NUMER, PARBUF.*
C**

C Common block definitions.

COMMON /COM7/PARBUF

INTEGER PARBUF(40)

j C Normal data item definitions.

INTEGER CHAR, CPOS, WDADDR

C Initializations.

4 NUMER - .TRUE.

C Main program section.

DO 20 CPOS - 1,NUMCHR
WDADDR - (CPOS-1)/2+1
IF (MOD(CPOS,2).EQ.l) GOTO 10
CHAR - IAND(177BPARBUF(WDADDR))
IF (((CHAR.GE.60B).AND.(CHAR.LE.71B)).OR.

- (CHAR.EQ.40B).OR. (CHAR.EQ. 559)
- .OR.(CHAR.EQ.56B)) GOTO 20

NUMER - FALE1.
GOTO 3101

10 CHAR - L.Li'(t.'7400B,PARBUF(WDADDR))
IF (((CHU-:.GE.300U0B).AND.(CHAR.LE.34400B)).OR.

- (CHAR.EQ.20000B).OR.(CHAR.EQ.27000B)

290

- OR.(CHAR.EQ.26400B)) GOTO 20
NUI4ER = .FALSE.
GOTO 10101

20 CONTINUE

10101 RETURN

END
END$

.29

SUBROUTINE PARAM(PARNUM,FERR),V1.l 5 NOV 83

C**

C* Module name: PARAM *
C* Author: Capt John Bengtson *
C* Version: 1.1 *
C* Date: 5 Nov 83 *
C* *

C* Description:
C*
C* PARAM is pulls out a specified parameter/field *
C* from the data buffer SCRDAT. Fields are numbered *
C* consecutively starting at 1. The first parameter *
C* starts at character 1 in the buffer. Each field is *
C* separated from the one following it by the US *
C* character (000037B). The last field is NOT termi- *
C* nated by a US; it is simply followed by whatever *
C* was in the buffer before it was filled with a *
C* terminal read -- which should be nulls (binary 0). *
C* SCRDAT contains the complete set of fields, *
C* PARNUM is the number of the parameter/field *
C* desired, and PARBUF is passed back to the calling *
C* program with just the one parameter desired. *
C* Note that the terminal always blank fills (on *
C* the right) the last word sent... *
C* *
C* Calling modules: AOPT, TMENT. *
C* *

C* Modules called: SCHAR *
C* *

C* Data items input: MAXSCR,PARNUM,SCRDAT. *
C**

C* Data items output: PARBUF. *
C**

C Common block definitions.

COMMON /COM5/SCRDAT
COMMON /COM7/PARBUF

-8' COMMON /COM26/MAXSCR

INTEGER SCRDAT(500)
INTEGER PARBUF(40)

INTEGER MAXSCR

C Normal data item definitions.

... . INTEGER FIRSTC,LASTC,LCHAR,LMASK

292

"..:' - ."".a' -:" ' - '. '." :" -""" - " '' -"'-" . ' -"" ' -"""' . -"". "" ,","""" ". - '. " '

INTEGER PARCNT, PARNLJM ,PARWD, RCHAR, RMASK, SEPCHR
INTEGER WDADDR

LOGICAL FERR

DATA LMASK/077400B/,RMASIC/000177B/

C Initializations.

PARCNT - 1
FIRSTC - 1
LASTC 1
WDADDR - 1

C Main program sectior..

10 LCHAR - IAND(SCRDAT(WDADDR),LMASK)
RCHAR - IAND(SCRDAT(WDADDR),RMASK)
IF ((LCHAR.NE.0).AND.(LCHAR.NE.017400B)) GOTO 20
LASTC - 2*WDADDR-2
GOTO 40

20 IF ((RCHAR.NE.0).AND.(RCHAR.NE.000037B)) GOTO 30
LASTC = 2*WDADDR-1
GOTO 40

30 WDADDR - WDADDR+1
IF (WDADDR.LE.MAXSCR) GOTO 10

C Found US or end of last parameter.

40 IF (PARCNT.GE.PARNUM) GOTO 50
IF(MOD(LASTC,2).EQ.0) WDADDR - WDADDR+1
WDADDR - WDADDR+1
FIRSTC - LASTC+2
LASTC - FIRSTC
PARCNT - PARCNT+1
GOTO 10

C Found desired parameter; copy into PARBUF.

50 CALL SCOPY(FIRSTCLASTC,SCRDAT, 1 PARBUF,FERR)

10101 RETURN

~END
END$

END$3

SUBROUTINE SCHAR(FERR,LFROM,LTO,CBEGIN,CEND,MESG)
-,15 OCT 83, V1.2

ii '? ********************************* ******* ****** *** *** *******

C**

C* Module name: SCHAR (SUBSTITUTE CHARACTER) *
Author: Capt John Bengtson *

Version: 1.2 *
C* Date: 15 Oct 83 *
C**

C* Description: *
C**
C* SCHAR replaces all occurrences of the character *
C* FROM with the character TO in the string MESG. *
C* Only the first LEN characters are examined for *
C* replacement. Note that LEN is the number of *
C* characters, not words. *
C* FROM and TO should be specified in the calling
C* routine by assignment statements like: *
C* *
C* LFROM = 1HX (or) LFROM = 054040B *
C* LTO - IHY LTO = 054440B *
C*
C* to change all "X"s to "Y"s. Note that the character *
C* is in the left byte, and a space character is in *
C* the right byte. *
C**
C* Calling modules: AOPT, DMENU, PREC6, TMENT. *, C**

C* Modules called: CLRET, ERMSG.
C*
C* Data items input: CBEGIN, CEND, LFROM, LTO, MESG.
C* *

C* Data items output: ERTEXT, MESG. *
C* *

-I-.

" *C Common block definitions.

COMMON /COM1/ERTEXT

INTEGER ERTEXT(80)

C Normal data item definitions.

INTEGER MESG(80)
INTEGER CBEGIN,CEND,CPOS,LEN,LCHAR,LFROM,LMASK
INTEGER LTO,RCHAR,RFROM,RMASK,RTO,WDADDR
LOGICAL FERR

C Initializations.

294

w-- 97 W.b

LMASK = 077400B
* *... RMASK = 000177B

C Main program section.
C Make sure that all parameters are within the bounds of
C arrays dimensioned in this subroutine.

IF((CBEGIN.LE.CEND).AND.(CBEGIN.GE.1).AND.
- (CEND.LE.80)) GOTO 10

• ' FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9999) CBEGIN,CEND
CALL ERMSG
GOTO 10101

C Truncate LFROM and LTO and find their right-byte
C equivalents.

10 LFROM = IAND(LFROM,LMASK)
LTO = IAND(LTO,LMASK)
RFROM = LFROM/256
RTO = LTO/256

C Mike the substitutions.

DO 30 CPOS - CBEGIN,CEND
WDADDR = (CPOS-1)/2+1
LCHAR IAND(MESG(WDADDR),LMASK)
RCHAR - IAND(MESG(WDADDR),RMASK)
IF (MOD(CPOS,2).EO.O) GOTO 20

IF (LCHAR.EQo.LFROM)
- MESG(WDADDR) = IOR(LTO,RCHAR)

*GOTO 30
20 IF (RCHAR.EQ.RFROM)

- MESG(WDADDR) = IOR(LCHAR,RTO)
30 CONTINUE

10101 RETURN

9999 FORMAT("(SCHAR) CBEGIN and CEND must be between",
1 and 80 current values: ",13,", ,13,.")

END
END$

.429

"S295

4 . . .

'. ' 4 C*m' ' . 4

SUBROUTINE SCOPY(IBEGIN,IEND, INBUF,OBEGIN,OBUF,FERR)

.- ,8 NOV 83 V1.1

C**
C* Module name: SCOPY (STRING COPY) *
C* Author: Capt John Bengtson *

Version: 1.1 *
C* Date: 8 Nov 83 *
C**
C* Description: *' C**

-C*
STRCOPY copies a character string from one buffer

to *

C* another. INBUF is copied to OBUF; the first character *
C* copied from INBUF is at character position IBEGIN, the *
C* last character copied from INBUF is at character *
C* position IEND; the characters are placed in OBUF *
C* with the first character going into character position *
C* OBEGIN. *

C**

C* Calling modules: PARAM *
C**
C* Modules called: ERTEXT. *

'C* *
C* Data items input: IBEGIN, IEND, INBUF, OBEGIN, OBUF *
C**
C* Data items output: OBUF *

C**

C Common block data item definitions.

COMMON /COM1/ERTEXT

INTEGER ERTEXT(80)

C Normal data item definitions.

INTEGER IBEGIN,IEND,INBUF(250),OBEGIN,OBUF(40)
INTEGER IPOS,IWORD,OPOS,OWORD

LOGICAL FERR

C Main program section.

OPOS = OBEGIN-l
DO 10 I - 1,40

10 OBUF(I) - 2H

C Make sure that the input parameters are acceptable.

IF (IBEGIN.LE.IEND) GOTO 12

-296

67

FERR = .TRUE.
, ,,.-.,, CALL CLRET

CALL CODE
WRITE(ERTEXT,9999)
CALL ERMSG(FERR)
GOTO 10101

12 IF ((IBEGIN.GE.1).AND.(IBEGIN.LE.249)) GOTO 14
FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9998)
CALL ERMSG(FERR)
GOTO 10101

14 IF ((IEND.GE.1).AND.(IEND.LE.249)) GOTO 16
FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9997)
CALL ERMSG(FERR)
GOTO 10101

C Copy the string, character by character. There are four
' C cases to consider, depending upon the location of the

C from and to characters in their respective words (left to
C left, left to right, right to left, right to right); each0C must be dealt with separately. A character's position
C within a word is determined by checking whether its char-
C acter position value is even or odd. If it is even, the
C character is in the left byte; if odd, the right byte.

C The OBUF assignments handle, in order: left to left,
C left to right, right to left, and right to right.

16 DO 50 IPOS = IBEGINIEND
OPOS OPOS+1
IWORD - (IPOS-1)/2+1
OWORD = (OPOS-1)/2+1
IF (MOD(IPOS,2).EQ.0) GOTO 30

1IF (MOD(OPOS,2).EQ.0) GOTO 20
* . OBUF(OWORD) - IOR(IAND(OBUF(OWORD),000177B),

IAND(INBUF(IWORD),077400B))
GOTO 50

20 OBUF(OWORD) - IOR(IAND(OBUF(OWORD),077400B),
IAND(INBUF(IWORD),077400B)/256)

GOTO 50
30 IF (MOD(OPOS,2).EQ.0) GOTO 40

OBUF(OWORD) - IOR(IAND(OBUF(OWORD),000177B),
aIAND(INBUF(IWORD),000177B)*256)

GOTO 50
40 OBUF(OWORD) - IOR(IAND(OBUF(OWORD),077400B),

.297

C).'R L , ¢ ,k - , '. . . -... -. ..- .-.. - .-.... .. -. . . .

IAND(INBUF(IWORD) ,000177B))

50 CONTINUE

10101 RETURN

9999 FORMAT(5X,O(SCOPY) IBEGIN must be less than or equal",
- , to IEND.0)

9998 FORZ4AT(5X,(SCOPY) IBEGIN must be between 1 and 249.")
9997 FORNAT(5X,"(SCOPY) IEND must be between 1 and 249.")

END
END$

298

J° o -". , .- o -. °

I.i

SUBROUTINE SESC(FERRMESGLENWDS)
'-:' .>. -,10 OCT 83, V1.2

C**

C* Module name: SESC (SUBSTITUTE ESCAPE) *
C* Author: Capt John Bengtson *
C* Version: 1.2 *
C* Date: 10 Oct 83
C* *

C* Description: *
C* *
C* SESC takes a string composed of printing ASCII *
C* characters and replaces all occurrences of capital *

.'C* "E"'s with an ASCII escape character. This allows *
C* terminal control sequences to be generated using *
C* quoted character strings in FORMAT statements, *
C* instead of having to deal with encoding the octal *
C* value for an escape into the string. *
C*
C* Calling modules: AOPT, BORDR, CURSR, DMENU, DSP, *
C* PREC2, PREC5. *
C**

C* Modules called: CLRET, ERMSG. *
C**

C* Data items input: LENWDS, MESG.
C**

C* Data items output (changed): ERTEXT, FERR, MESG. *
C* *

C Common block definitions.

COMMON /COMl/ERTEXT

INTEGER ERTEXT(80)

S" C Normal data item definitions.

INTEGER MESG(80)
INTEGER LCAPE,LCHAR,LESC,LMASK,RCAPERCHAR
INTEGER RESC, RMASK, LENWDS
LOGICAL FERR

C Initializations.

DATA LCAPE/042400B/,LESC/015400B/,LMASK/077400B/
DATA RCAPE/OOO1O5B/,RESC/000033B/,RMASK/000177B/

C Main program section.

:C Make sure that LENWDS isn't greater or less than MESG's

* 299

, , ,,, , ".". . " •- -, . ,." ." .- '. ,'5 , t

C dimension.

~. N.$ IF ((LENWDS.GE.1).AND.(LENWDS.LE.80)) GOTO 10
FERR - .TRUE.
CALL CLRET
CALL CODE
WRITE(ERTEXT,9999) LENWDS
CALL ERMSG(FERR)

.GOTO 10101

C Look for all occurrences of a capital "E", in both the
C left half and right half (byte) of each word. Must
C first decompose each word into its left and right
C bytes.

10 DO 30 I - 1,LENWDS
LCHAR - IAND(MESG(I),LMASK)
RCHAR - IAND(MESG(I),RMASK)

C Skip anything but a capital "E" in left byte.
C Replace "E" with ASCII escape character and put
C left and right bytes back together (IOR).

IF (LCHAR.NE.LCAPE) GOTO 20
LCHAR - LESC
MESG(I) - IOR(LCHAR,RCHAR)

C Skip anything but a capital E" in right byte.
C Replace *E" with ASCII escape character and put
C left and right bytes back together (IOR).

20 IF (RCHAR.NE.RCAPE) GOTO 30
RCHAR = RESC
MESG(I) - IOR(LCHAR,RCHAR)

30 CONTINUE

10101 RETURN

9999 FORMAT(N(SESC) The length of the string to be
- "processed by SESC must be between 1 and 80, not
- 13,".")

END
END$

300

p'

BLOCK DATA GCOM,2 OCT 83, Vl.l

C Common block definitions.
C First arrays, then simple variables.

COMMON /COM1/ERTEXT
COMMON /COM2/MDDCB
COMMON /COM3/MENUSE
COMMON /COM4/RECBUF
COMMON /COMS/SCRDAT
COMMON /COM6/TCONT
COMMON /COM7/PARBUF

C Simple variables.

COMMON /COM21/CONWDl
COMMnN /COM22/CONWD2

4COMMON /COM23/CONWD3
COMMON /COM24/COLMAX
COMMON /COM25/COLMIN
COMMON /COM26/MAXSCR
COMMON /COM27/MAXDCB
COMMON /COM28/MAXMEN
COMMON /COM29/MAXERT
COMMON /COM3O/MAXREC
COMMON /C0M31/MAXTCO
COMMON /COM32/NOCRLF
COMMON /COM33/ROWMAX
COMMON /COM34/ROWMIN

C Now define type, set aside space (arrays, then simple).

INTEGER ERTEXT(80)
INTEGER MDDCB(144)
LOGICAL MENUSE(100)
INTEGER RECBUF(40)
INTEGER SCRDAT(250)
INTEGER TCONT(10)
INTEGER PARBUF(40)

INTEGER CONWD1
INTEGER CONWD2
INTEGER CONWD3
INTEGER COLMAX
INTEGER COLMIN
INTEGER MAXSCR
INTEGER MAXDCB
INTEGER MAXMEN
INTEGER MAXERT
INTEGER MAXREC
INTEGER MAXTCO
INTEGER NOCRLF

301

INTEGER ROWMAX

INTEGER ROWMIN

C Assign permanent values to some.

DATA MENUSE/lOO*.FALSE./

DATA CONWD1/OOOOO1B/
DATA CONWD2/OOOO0lB/
DATA CONWD3/001401B/
DATA COLNAX/8O/
DATA COLMIN/1/
DATA IAXSCR/250/

9.DATA MAXDCB/144/
DATA MAXMEN/lOO/
DATA MAXERT/80/
DATA MAXREC/40/
DATA MAXTCO/lO/
DATA NOCRLF/000137B/

4DATA ROWMAX/20/
DATA ROWMIN/l/

END
END$

30

* 'APPENDIX I
Application Program Software Listings

PROGRAM AD001(),12 NOV 83 Vl.l

C**

C* Module name: AD001 (GENERATE DATA) *
C* Author: Capt John Bengtson *
• Version: 1.1 *
C* Date: 12 Nov 83 *
C**

C* Description: Generates sinusoidal data. *
C* *
C* Calling modules: ADATA. *
C* *
C* Modules called: CLRRB. *
C**

C* Data items input: ACOIO, PROIO, SARIO. *
C*

C* Data items output: (sampled data) *
C**

C Normal data item definitions.

0INTEGER ACQDCB(144),ACQNAM(3),BUFFER(5),RECBUF(40)
INTEGER TPROIO, PTSBLK, NUMBLK
INTEGER ACQIO,SARIO

REAL DARRAY(4096)

C Initializations.

DATA ACONAM/2HAR,2HEQ,2H/
DATA PI/3.141593/

C Main program section.
C Get Class I/O numbers by calling RMPAR.

CALL RMPAR(BUFFER)
ACLO - BUFFER(1)
TPROIO - BUFFER(2)
SARIO - BUFFER(3)

C Get parameter information from ACOREQ file.

CALL OPEN(ACQDCB,IERR,ACQNAM)
CALL CLRRB(RECBUF)
CALL READF(ACODCBIERRRECBUF40,LEN)
CALL CODE

303

READ(RECBUF, *) PTSBLK
CALL CLRRB(RECBUF)
CALL READF(ACQDCB, IERR,RECBUF, 40, LEN)
CALL CODE
READ(RECBUF,*) NUMBLK
CALL CLRRB(RECBIF)
CALL READF(ACQDCB, IERR,RECBUF, 40,LEN)
CALL CODE
READ(RECBUF,*) SCALEl
CALL CLRRB (RECBUF)
CALL READF(ACQDCB,IERR,RECBUF,40,LEN)
CALL CODE
READ(RECBUF,*) FS1
CALL CLRRB(RECBUF)
CALL READF(ACQDCBD IERR,RECBUF,40,LEN)
CALL CODE
READ(RECBUF,*) FSIN1
CALL CLRRB(RECBUF)
CALL READF(ACQDCB, IERR,RECBUF, 40, LEN)
CALL CODE
READ (RECBUF, *) THETAl
CALL CLRRB (RECBUP)
CALL READF(ACQDCB, IERR,RECBUF, 40,LEN)

S. CALL CODE
READ(RECBUF,*) SCALE2
CALL CLRRB(RECBUF)
CALL READF(ACQDCB, IERR,RECBUF,40,LEN)
CALL CODE
READ(RECBUF,*) FS2
CALL CLRRB (RECBUF)
CALL READF(ACQDCB, IERR,RECBUF, 40,LEN)
CALL CODE

* READ(RECBUF,*) FSIN2
CALL CLRRB (RECBUF)
CALL READF(ACQDCB, IERR,RECBUF, 40, LEN)
CALL CODE
READ(RECBUF, *) THETA2

CALL CLOSE(ACQDCB)

C Generate the data

A - F$IN1/FS1
'Sq B - FSIN2/FS2
* DO 200 1 - 1,PTSBLK

DAR.RAY(I - SCALE1*SIN(2.*PI*I*A+THETA1*PI/180.)
- +SCALE2*SIN(2.*PI*I*B+THETA2*PI/180.)

200 CONTINUE

C Transmit the data

.... CALL EXEC(20,0,DARRAY,514,I,J,TPROIO)

304

5%~7--0 T. I_. - I,-7A-- 5, A

" S STOP
END

SUBROUTINE CLRRB(RECBUF),12 NOV 83 V1.0

C Abbreviated form of normal CLRRB; just fills

Carray with spaces.

INTEGER RECBUF (40)

DO 10 I - 1,40
RECBUFCI) - 2H

10 CONTINUE

RETURN

END
END$

'.30

.'-

',

3055

b-°

, 'S . . ,' " ' '/ '..'..".,'..'.;:' ;"......'.? ;'''',.%'.;.',".. . . - ----- o% -.-.-.- '. .'
5... , r v ..

:. ~ . . , . L -- . *~- .-. . , ', . w- J. -.
'

- - * - . -- - '. *'-4 . - , -

PROGRAM PDO04(),II NOV 83 V1.2
"' '"''" ***************** ********* ***** ************** ****** ***

C*
C* Module name: PDO04 (PROCESS DATA 4) *
C* Author: Capt John Bengtson *
C* Version: 1.2 *
C* Date: 11 Nov 83 *
C*

C* Description: Application program for performing *
C* Fast Fourier Transform. *

C* Calling modules: PDATA. *
C**
C* Modules called: FAST.
C**

C* Data items input: ACOIO, DISIO, PROIO, PTSBLK, NUMBLK.*
C*

C* Data items output: (transformed data) *
C* *

C Normal data item definitions.

INTEGER BUFFER(5),PRONAM(3),PRODCB(144),TPROIO
INTEGER RECBUF(40),PTSBLK,NUMBLK
INTEGER DISIO,SARIO

REAL DARRAY(4098)

C Initializations.

DATA PRONAM/2HPR,2HQO0,2H04/

.' C Main program section.

C Get CLASS I/O numbers from calling program.

CALL RMPAR(BUFFER)
TPROIO = BUFFER(1)
DISIO = BUFFER(2)
SARIO = BUFFER(3)

CALL OPEN(PRODCB,IERR,PRONAM)
IF (IERR.GE.0) GOTO 10
WRITE(1,9999)
CALL EXEC(20,0,BUFFER,5,I,J,SARIO)
GOTO 10101

10 CALL CLRRB(RECBUF)
CALL READF(PRODCB,IERR,RECBUF,40,LEN)

... IF (LEN.GE.0) GOTO 20

306

WRITE(1,9998)
CALL EXEC(20,0,BUFFER,5,I,J,SARIO)
GOTO 10101

20 CALL CODE
READ(RECBUF,*) PTSBLK
CALL CLRRB(RECBUF)
CALL READF(PRODCB,IERR,RECBUF,40,LEN)
IF (LEN.GE.0) GOTO 30
WRITE(1,9997)
CALL EXEC(20,0,BUFFER,5,I,J,SARIO)
GOTO 10101

30 CALL CODE
READ(RECBUF,*) NUMBLK

C Accept data from data acquisition program.

CALL EXEC(21,TPROIO,DARRAY,514)

C Perform FFT.

CALL FAST(DARRAY,PTSBLK)

C Send data on to data display program.

CALL EXEC(20,0,DARRAY,514,I,J,DISIO)

10101 STOP

9999 FORMAT(10X,n(PD004) Can't open file PRQO004")
9998 FORMAT(10X,"(PDO04) No points per block parameter",

- " in PRQ004n)
9997 FORMAT(10X,*(PD004) No number of points parameter",

-" in PRQO004")
END

C SUBROUTINE: FAST
C REPLACES THE REAL VECTOR B(K), FOR K-1,2,...,N,
C WITH ITS FINITE DISCRETE FOURIER TRANSFORM
C---
CiIC SUBROUTINE FAST(B, N)

C THE DC TERM IS RETURNED IN LOCATION B(1) WITH B(2) SET TO
C THEREAFTER THE JTH HARMONIC IS RETURNED AS A COMPLEX
C NUMBER STORED AS B(2*J+l) + I B(2*J+2).
C THE N/2 HARMONIC IS RETURNED IN B(N+I) WITH B(N+2) SET TO
C HENCE, B MUST BE DIMENSIONED TO SIZE N+2.
C THE SUBROUTINE IS CALLED AS FAST(B,N) WHERE N=2**M AND
C B IS THE REAL ARRAY DESCRIBED ABOVE.

307

DIMENSION B(4098)
COMMON ICONS! P11, P7, P7TWO, C22, S22, P12

C
C IW IS A MACHINE DEPENDENT WRITE DEVICE NUMBER
C
C IW = IlMACH(2)

IW = 1
C

P11 - 4.*ATAN(1.)
PI8 - P11/8.
P7 = 1./SQRT(2.)
P7TWO - 2.*P7
C22 = COS(P18)
S22 = SIN(PI8)
P12 =2.*PII
DO 10 I=1,15
M= I
NT 2**1
IF (N.EQ.NT) GO TO 20

10 CONTINUE
WRITE (IW,9999)

9999 FORMAT (33H N IS NOT A POWER OF TWO FOR FAST)
STOP

20 N4POW -M/2
C
C DO A RADIX 2 ITERATION FIRST IF ONE IS REQUIRED.
C

IF (M-N4POW*2) 40, 40, 30
30 NN =2

INT =N/NN

CALL FR2TR(INT, B(1), B(INT+1))
GO TO 50

40 N =
C

*C PERFORM RADIX 4 ITERATIONS.
C

50 IF (N4POW .EQ.0) GO TO 70
DO 60 IT=1,N4POW

NN NN*4
INT -N/NN
CALL FR4TR(INT, NN, B(1), B(INT+1), B(2*INT+1), B(3*

* B(l), B(INT+1), B(2*INT+1), B(3*INT+1))
60 CONTINUE

C
C PERFORM IN-PLACE REORDERING.

C
70 CALL FORD1(M, B)

CALL FORD2(M, B)
T = B(2)
B(2) - 0.
B(N+1) = T
B(N+2) = 0.

308

DO 80 1T=4,N,2

80 B(IT) -B(IT)

RETURN
END

C
C---

.4. C SUBROUTINE: FR2TR
C RADIX 2 ITERATION SUBROUTINE
C---
C

SUBROUTINE FR2TRCINT, BO, Bi)
DIMENSION B0C4098), B1(4098)
DO 10 K-l,INT

T - BOWK + B1(K)
BiCK) = BOCK - BiCK)
BOCK = T

.410 CONTINUE
RETURN
END

S'- C

C---
C SUBROUTINE: FR4TR
C RADIX 4 ITERATION SUBROUTINE
C---

'p C
SUBROUTINE FR4TR(INT, NN, BO, Bi, B2, B3, B4, B5, B6,
DIMENSION L(15)t BO(4098), B1(4098), B2(4098), B3(4098
DIMENSION B4(4098), B5C4098), B6(4098), B7(4098)

~mJi~wCOMMON /CONS! P11, P7, P7TWO, C22, S22, P12

~EQUIVALENCE CL15,LC1)), Mi4,L(2)), M13,L(3)), CL12,L

is' *(L6,L(1O)), (L5,L(11)), (L4,L(12)), (L3,L(13)), (L
* L1,LC15))

C
C JTHET IS A REVERSED BINARY COUNTER, JR STEPS TWO AT A TIME

-~ C LOCATE THE REAL PARTS OF INTERMEDIATE RESULTS, AND JI LOCA
C THE IMAGINARY PART CORRESPONDING TO JR.
C

* LC1) = NN14
Do 40 K=n2,15

IF WLK-1)-2) 10, 20, 30
10 LCX-1) - 2

*20 L(K) - 2
GO TO 40

30 LCK) - L(K-1)/2
40 CONTINUE

C
PIOVN -PII/FLOATCNN)
JI = 3
JL =2

.. ~JR-=2

309

.--. DO 120 J2=Ji,L2,L1
DO 120 J3=J2,L3,L2
DO 120 J4-J3,L4,L3
DO 120 J5=J4,L5,L4
DO 120 J6=J5L6,L5
DO 120 J7-J6,L7,L6
DO 120 J8-J7,L8,L7
DO 120 J9-J8,L9,L8
DO 120 J1O-J9,L1OpL9
DO 120 JliUJ1O,LI1,L1O
DO 120 J12=J11,L12,L11

3'DO 120 J13-J12,L13,L12
DO 120 J14=J13,L14,L13
DO 120 JTHET-J14,L15,L14

TH2 - JTHET - 2
IF (TH2) 50, 50, 90

50 DO 60 Kini,INT
TO = BOCW + B2(K)
Ti - BiCK) + B3(K)
B2(K) - BOCW - B2(K)
B3(K) -Bl(K) - B3(K)
BOWK = TO + Ti
BiCK) - TO - Ti

60 CONTINUE
C

IF (NN-4) 120, 120, 70
70 KO - INT*4 + 1

KL =KO + INT - 1
DO 80 K=KO,KL

PR - P7*CB1CK)-.B3(K))
PI - P7*(31(K)+B3(K))
B3(K) - B2(K) + PI
B1(K) - PI - B2(K)
B2(K) = BOCK) - PR
BOWK - BOCK + PR

80 CONTINUE
GO TO 120

C
90 ARG TH2*PIOVN

Cl -COS(ARG)
Si SIN(ARG)

N C2 -Ci**2 - Si**2
% S2 uCi*Si + C1*Si

C3 -C1*C2 - Sl*S2

S3 C2*SI + S2*Cl

INT4 - INT*4
JO -JR*INT4 + 1
KO a JI*INT4 + 1

JLAST -JO + INT - 1

310

7 77.

DO 100 J=JO,JLAST
K -KO +J -JO
RI = BI(J)*C1 - BS(K)*Sl
R5 -B1(J)*Si + B5(K)*Ci
T2 - B2(J)*C2 - B6(K)*S2
T6 - B2(J)*S2 + B6(K)*C2
T3 -B3(J)*C3 - B7(K)*S3
T7 - B3(J)*S3 + B7(K)*C3
TO - BOWJ + T2
T4 - B4CK) + T6
T2 = BOWJ - T2
T6 = B4(K) - T6
Ti-=Ri + T3
TS = R5 + T7
T3 = Rl - T3
T7 = R5 - T7
BOWJ = TO + TI
B7(K) = T4 + T5
B6(K) - TO - Ti
B1(J) =T5 - T4
B2(J) = T2 - T7
BS(K) = T6 .+ T3
B4(K) = T2 + T7
B30J) - T3 - T6

100 CONTINUE
C

JR -JR + 2
JI - JI - 2
IF (JI-JL) 110, 110, 120

*110 JI - 2*JR - 1
JL - JR

120 CONTINUE
RETURN
END

C
C--
C SUBROUTINE: FORMi

* C IN-PLACE REORDERING SUBROUTINE
C--
C

SUBROUTINE FORDI(M, B)
DIMENSION B(4098)

C

KL 2
N -2**M
DO 40 J-4,N,2
10 IF (K-J) 20, 20, 10
10 T -B(J)

* B(J) = B(K)
B(K) - T

S20 K K-2

b 311

* IF (K-KL) 30, 30, 40
30.* K -2*J

K' :;:'KL - J
40 CONTINUE

4. RETURN
END

C
C--
C SUBROUTINE: FORD2
C IN-PLACE REORDERING SUBROUTINE
C--
C

SUBROUTINE FORD2(M, B)
DIMENSION L(15)p B(4098)
EQUIVALENCE (L15rL(1)), (L14,L(2)), (L13,L(3)), (L12,L

(L11,L(5))p (L1O,L(6)), (L9,L(7)), (L8,L(8)), ML7,
* (L6,L(10)), (L5,L(11)), (L4,L(12)), (L3,L(13)), (L

* (Ll,L(15))
N. -i2**M

L(1) - N
DO 10 K-2,M

L(K) - L(K-1)/2
10 CONTINUE

.9 DO 20 K-N,14
9 L(K+1) - 2

20 CONTINUE
IJ -2
DO 40 JI-2,L1,2
DO 40 J2-J1,L2,L1
DO 40 J3-J.2,L3,L2

4.DO 40 J4=J3,L4,L3
DO 40 J5-J4,L5,L4
DO 40 J6-JS,L6,L5
DO 40 J7-J6,L7,L6
DO 40 J8-J7,L8,L7
DO 40 J9-J8,L9,L8
DO 40 J1O-J9,L1O,L9
DO 40 J11-J1O,L11,L1O
DO 40 J12-J11,L12,L11
DO 40 J13-J12tL13pL12
DO 40 J14-J13,L14,L13
DO 40 JI-J14,L15,L14

IF (IJ-JI) 30, 40, 40
30 T - B(IJ-1)

BCIJ-1) -B(JI-1)
B(JI-1) -T
T - B(IJ)
BCIJ) - B(JI)
B(JI) - T

40 IJ -IJ+ 2
RETURN
END

312

* .'SUBROUTINE CLRRB(RECBUF)

INTEGER RECBUF (40)

DO 10 I = 1,40
RECBUF(I) = 2H

..10 CONTINUE

RETURN

END

BLOCK DATA FFTC,17 NOV 83 V1.0

C Common block definitions for PDO04 (FFT) program.

COMMON /CONS/ PII,P7,P7TWOC22,S22,PI2

'-' END
END$

.9.

4.

•-9°

'-"

V.°

p,,

,9 313

°.

PROGRAM PD006(),11 NOV 83 V1.2

* C*
C* Module name: PDO06 (IFFT) *

' C* Author: Capt John Bengtson *
C* Version: 1.1 *
C* Date: 11 Nov 83 *

-C*

C* Description: Performs Inverse Fast Fourier Transform. *
C**
C* Calling modules: PDATA.C**
C* Modules called: FSST.
C**

C* Data items input: NUMBLK, PTSBLK, ACQIO, DISIO, SARIO.*
C**

C* Data items output: (inverse transformed data) *
C**

C Normal data item definitions.

INTEGER BUFFER(5),PRONAM(3),PRODCB(144),TPROIO
INTEGER RECBUF(40),PTSBLK,NUMBLK
INTEGER DISIO,SARIO

REAL DARRAY(4098)

C Initializations.

DATA PRONAM/2HPR,2HQO0,2H06/

C Main program section.

C Get CLASS I/O numbers from calling program.

CALL RMPAR(BUFFER)
TPROIO B BUFFER(1)
DISIO - BUFFER(2)
SARIO - BUFFER(3)

CALL OPEN(PRODCB,IERR,PRONAM)
IF (IERR.GE.0) GOTO 10
WRITE(1,9999)
CALL EXEC(20,0,BUFFER,5,I,J,SARIO)
GOTO 10101

10 CALL CLRRB(RECBUF)
CALL READF(PRODCB,IERRRECBUF,40,LEN)
IF (LEN.GE.0) GOTO 20
WRITE(1,9998)

314

S. " * 'o4. % - - - %- • * • * " - A .* ". .".*. "&. "

CALL EXEC(20,0,BUFFER,5,I,J,SARIO)
GOTO 10101

20 CALL CODE
READ(RECBUF,*) PTSBLK
CALL CLRRB(RECBUF)
CALL READF(PRODCB,IERR,RECBUF,40,LEN)
IF (LEN.GE.0) GOTO 30
WRITE(1,9997)
CALL EXEC(20,0,BUFFER,5,I,JSARIO)
GOTO 10101

30 CALL CODE
READ(RECBUF,*) NUMBLK

C Accept data from data acquisition program.

- CALL EXEC(21,TPROIO,DARRAY,514)

C Perform IFFT.

CALL FSST(DARRAY,PTSBLK)

C Send data on to data display program.

CALL EXEC(20,0,DARRAY,514,IJ,DISIO)

10101 STOP

9999 FORNAT(l0X,(PD006) Can't open file PRQ006")
S9998 FORMAT(1OX,"(PDOO6) No points per block parameter*,

4 - Iin PRQOO6")
9997 FORMAT(1OX,*(PDO06) No number of points parameter",

- in PRQ006")

END

C-C

C ---
C SUBROUTINE: FSST
C FOURIER SYNTHESIS SUBROUTINE
C ---
C

SUBROUTINE FSST(B, N)
C
C THIS SUBROUTINE SYNTHESIZES THE REAL VECTOR B(K), FOR
C K1l,2,...,N, FROM THE FOURIER COEFFICIENTS STORED IN THE
C B ARRAY OF SIZE N+2. THE DC TERM IS IN B(1) WITH B(2) EQU

- C TO 0. THE JTH HARMONIC IS STORED AS B(2*J+l) + I B(2*J+2
J. C THE N/2 HARMONIC IS IN B(N+l) WITH B(N+2) EQUAL TO 0.

C THE SUBROUTINE IS CALLED AS FSST(B,N) WHERE N-2**M AND
C B IS THE REAL ARRAY DISCUSSED ABOVE.

315

"%t% * '~* , *,, .. , . , - . . . - . , , , . . •

14 C
* DIMENSION B(2)

COMMON /CONST/ PrI, P7, P7TWO, C22, S22, P12
- C

C 1W IS A MACHINE DEPENDENT WRITE DEVICE NUMBER
C

1W - 1

P11 - 4.*ATN(1.)
P18 - P11/8.
P7 - 1./SQRT(2.)
P7TWO - 2.*P7
C22 - COS(PI8)
S22 - SIN(PI8)
P12 - 2.*PII
DO 10 1-1,15
M -I
NT - 2**1
IF (N.EQ.NT) GO TO 20

10 CONTINUE
* WRITE (IW,9999)

9999 FORMAT (33H N IS NOT A POWER OF TWO FOR FSST)
S STOP

20 B(2) - B(N+1)
DO 30 I=4,N,2

B(I) -- B(I)
30 CONTINUE0 C

C SCALE THE INPUT BY N
C

DO 40 I-1,N
B(I) - B(I)/FLOAT(N)

* 40 CONTINUE
N4POW - M/2

C
C SCRAMBLE THE INPUTS
C

* CALL FORD2(M, B)
CALL FORD1(M, B)

C
IF (N4POW.EQ.0) GO TO 60
NN -4*N
DO 50 ITl1,N4POW

NN -NN14
INT a INK
CALL FR4SYN(INTr NNI B(1), BCINT+1), B(2*INT+1), B(3

* 9(1), B(INT+1), B(2*INT+1), B(3*INT+1))
50 CONTINUE

C
C DO A RADIX 2 ITERATION IF ONE IS REQUIRED
C

*60 IF (M-N4POW*2) 80, 80, 70

5% 316

70 INT - N/2
.'. CALL FR2TR(INT, B(1), B(INT+1))

80 RETURN
END

C
C---
C SUBROUTINE: FR2TR
C RADIX 2 ITERATION SUBROUTINE
C---
C

SUBROUTINE FR2TR(INT, BO, BI)
DIMENSION B0(2), B1(2)
DO 10 K=IINT

T BOK) + B1(K)
"V. Bi(K) - BO(K) - BI(K)

BOCK) - T

10 CONTINUE
RETURN

END

C
C---

* '4. C SUBROUTINE: FR4SYN
C RADIX 4 SYNTHESIS
C ---

C

SUBROUTINE FR4SYN(INT, NN, BO, Bi, B2, B3, B4, B5, B6,
DIMENSION L(15), B0(2), B1(2), B2(2), B3(2), B4(2), B5

B7(2)
COMMON /CONST/ PII, P7, P7TWO, C22, S22, P12
EQUIVALENCE (L15,L(1)), (L14,L(2)), (L13,L(3)), (L12,L
• (L11,L(5)), (L10,L(6)), (L9,L(7)), (L8,L(8)), (L,
• (L6,L(10)), (L5,L(11)), (L4,L(12)), (L3,L(13)), (L
• (L1,L(15))

C
L(1) - NN/4
DO 40 K-2,15

IF (L(K-1)-2) 10, 20, 30
10 L(K-1) - 2
20 L(K)" 2

GO TO 40
30 L(K) - L(K-1)/2
40 CONTINUE

C
PIOVN - PII/FLOAT(NN),': JI - 3
JL - 2
JR - 2

C
DO 120 J1-2,L1,2

317

-CoO-

DO 120 J2=J1,L2,L1
DO 120 J3=J2,L3,L2
DO 120 J4=J3,L4,L3

-DO 120 J5=J4,L5,L4
S.DO 120 J6=J5,L6,L5

DO 120 J7inJ6,L7,L6
DO 120 J8=J7,L8,L7
DO 120 J9=J8tL9,L8
DO 120 J1O-J9,L1O,L9
DO 120 J11=J1O,L11,L1O
DO 120 J12-J11,L12,L11
DO 120 J13=J12,L13,L12
DO 120 J14=J13,L14,L13

VDO 120 JTHET-J14,L15,L14
TH2 - JTHET - 2
IF (TH2) 50, 50, 90

50 DO 60 K=1,INT
TO = BOWK + BiCK)
Ti = BOWK - B1(K)
T2 = B2(K)*2.0
T3 = B3(K)*2.0
BOWK - TO + T2
B2(K) = TO - T2
BiCK) = Ti + T3
B3(K) - Ti - T3

60 CONTINUE
C

IF (NN-4) 120, 120t 70
70 KO0=INT*4+1I

KL - KO + INT - 1
DO 80 K=KO,KL
T2 = BOMK - B2(K)
T3 -BiCK) + B3(K)
BOWK - (BO(K)+B2(K))*2.0
B2(K) = (B3(K)-BI(K))*2.0
BiCK) = (T2+T3)*P7TWO
B3(K) - (T3-T2)*P7TWO

* .,80 CONTINUE
GO TO 120

90 ARG -TH2*PIOVN
Cl -COS(ARG)
Si =-SIN(ARG)
C2 =C1**2 - Si**2
S2 C1*S + Cl*Sl
C3 -C1*C2 - S1*S2
S3 =C2*S1 + S2*C1

C
INT4 - INT*4
JO - JR*INT4 + 1
KO -JI*INT4 + 1
JLAST -JO + INT -1
Do 100 J-JO,JLAST

318

K KO[(+ J -JO

TO =BO (J) + B6 (K)
Ti = B7 (K) - B1 (J)
T2 = BOWJ - B6(K)
T3 - B7(K) + B1(J)

*T4 - B2(J) + B4(K)
*T5 = B5(K) - B3(J)

T6 - BS(K) + B30J)
T7 = B4(K) - B2(J)
BOWJ - TO + T4
B4(K) - Ti + T5
B1(J) - (T2+T6)*C1 - (T3+T7)*S1

*B5(K) - (T2+T6)*S1 + (T3+T7)*C1
B2(J) = (TO-T4)*C2 - (T1-TS)*S2
B6(K) - (T0-T4)*S2 + (T1-T5)*C2
B30J) - (T2-T6)*C3 - (T3-T7)*S3
B7(K) = (T2-T6)*S3 + (T3-T7)*C3

*100 CONTINUE
*JR - JR + 2

JI = JI - 2
IF (JI-JL) 110, 110, 120

110 JI -2*JR -1
JL - JR

120 CONTINUE
RETURN
END

* C
C C--
C SUBROUTINE: FORMi
C IN-PLACE REORDERING SUBROUTINE
C--
C

SUBROUTINE FORD1(M, B)
DIMENSION B(2)

C
K 4
KL =2

N =2**M

DO 40 J-4,N,2
IF CK-J) 20, 20, 10

10 T nB(J)
B(J - B(K)
B(K) - T

20 K -K -2
IF (K-KL) 30, 30, 40

30 K a2*J
KL - J

40 CONTINUE
RETURN
END

C
~~~ .JC------------------------------------------------------------

319



C SUBROUTINE: FORD2
C IN-PLACE REORDERING SUBROUTINE
C--------------------------------------------------------------
C

SUBROUTINE FORD2(M, B)
DIMENSION L(15), B(2)
EQUIVALENCE (L15,L(1)), (L14,L(2)), (1,13,L(3)), (1,12,1,

* (L11,L(5)), (1OL(6)), (L9,L(7)), (L8,L(8)), (L7,
* (L6,L(10)), (L5,L(11)), (L4,L(12)), (L3,L(13)), (L
* (L1,L(15))

N = 2**M
L(l) = N
Do 10 K=2,M

A L(K) = L(K-1)/2
10 CONTINUE

Do 20 K=M,14
L(K+1) = 2

20 CONTINUE
IJ =2
DO 40 J1=2,L1,2
DO 40 J2=J1,L2,L1
DO 40 J3=J2,L3,L2
DO 40 J4=J3,L4,L3
DO 40 J5=J4,L5,L4
DO 40 J6=J5,L6,L5
DO 40 J7=J6,L7,L6
Do 40 J8=J7,L8,L7
Do 40 J9=J8,L9,L8
DO 40 J1O=j9,L1O,L9
DO 40 J11=JlO,LI1,L1O
DO 40 J12=j11,L12,L11

- ,DO 40 J13=J12,L13,Ll2
DO 40 J14=j13,L14,L13
DO 40 JI=J14,L15,L14

30 IF (IJ-JI) 30, 40, 40
30 T = B(IJ-1)

B(IJ-1) =B(JI-1)

B(JI-1) =T

T = B(IJ)
B(IJ) - e(JI)
B(JI) = T

40 IJ -IJ+ 2
RETURN
END
SUBROUTINE CLRRB(CRECBUF)

INTEGER RECBUF(40)

DO 10 I - 1,40
RECBUF(I) - 2H

10 CONTINUE

320



,. .a J , " , T * .- -.
"  

.•. - .- .. . . . . . .

RETURN

- *v",4" END

BLOCK DATA FFTC,17 NOV 83 V1.0

C Common block definitions for PDO06 (IFFT) program.

COMMON /CONST/ PII,P7,P7TWO,C22,S22,P12

END
END$

32

.,

.0

4-

32

'-p

*.i



PROGRAM DD001(),14 NOV 83 V1.1
** ************** ******** *** *** *****************

S - C* *

C* Module name: DD001 (DISPLAY TO HP2648A) *
C* Author: Capt John Bengtson *
C* Version: 1.1
C* Date: 14 Nov 83

C**

C* Description: Graphically displays data on the HP2648A *
C* terminal *

I.. *

C* Calling modules: DDATA. *
C* Modules called: CLRRB.

C**
C* Data items input: DISIO, PROIO, SARIO. *
C**

C* Data items output: (none) *C**

C Normal data item definitions.

INTEGER DISIO,SARIO,DISDCB(144),DISNAM(3),BUFFER(5)

INTEGER RECBUF(40),PTSBLKNUMBLK,DTYPE,PART

REAL DARRAY(4098)

C Initializations.

DATA DISNAM/2HDR,2HEQ,2H /
DATA IOSIZE/514/

C Main program section.

C Get CLASS I/O numbers from calling program.

CALL RMPAR(BUFFER)
DISIO - BUFFERMi)
SARIO - BUFFER(2)

C Open file containing parameters.

CALL OPEN(DISDCBIERRDISNAM)
IF (IERR.GE.0) GOTO 10-..- WRITE(I,9998)

"" GOTO 10101
• :" 10 CALL CLRRB(RECBUF)' " CALL READF(DISDCB,IERR,RECBUF,40,LEN)

IF (IERR.GE.0) GOTO 20
, WRITE(1,9997 )

322

" ,. .,', , .. ,€. . . ... - . -. ..-. . . -. . . .. . . . .-.... .. , ... ..



.4. GOTO 10101
*20 CALL CODE

READ(RECBUF,*) PTSBLK
PTSBLK = MINO(PTSBLK,IOSIZE)
CALL CLRRB (RECBLJF)
CALL READF(DISDCB,IERR,RECBUF,4O,LEN)
IF (IERR.GE.0) GOTO 30

* WRITE(1,9996)
1,' GOTO 10101

30 CALL CODE
READ(RECBUFI *) NUMBLK
NUNBLK - 1
CALL CLRRB(RECBUF)
CALL READF(DISDCB,IERR,RECBUF,40,LEN)
IF (IERR.GE.0) GOTO 40
WRITE(1 ,9995)

40 GOTO 10101
40 CALL CODE

A READ(RECBrJF,9999) DTYPE
IF (DTYPE.EQ.2HC ) PTSBLK = PTSBLK/2+1
CALL CLRRB(RECBUF)
CALL READF(DISDCB, IERR,RECBUF,40,LEN)
IF (IERR.GE.0) GOTO 50

GOTO 10101
s0 CALL CODE

A xf READ(RECBUF,9999) PART

C Accept data from processing program.

V CALL EXEC(21,DISIO,DARRAY,IOSIZE)

C Determine YMIN and YMAX.

IF (DTYPE.EQ.2HC ) GOTO 60
YMIN -DARRAYMi

N YMAX - YMIN
DO 55 I - 1,PTSBLK

IF (DARRAY(I).GT.YMAX) YMAX - DARRAY(I)
IF (DARRAY(I).LT.YMIN) YMIN - DARRAYCI)

55 CONTINUE
GOTO 100

60 IF (PART.EQ.2HM ) GOTO 80
IF (PART.EQ.2HR ) PART - 1
IF (PART.EQ.2H1 ) PART - 0
IF ((PART.NE.0).AND.(PART.NE.1)) PART =1

YMIN - DARRAY(PART+2)
YMAX a DARRAY(PART+2)
DO 70 I - 1,PTSBLK

IF (DARRAY(2*1-PART).GT.YMAX)
* -. -YMAX -DARRAY(2*I-PART)

'S.

323



IF (DARRAY(2*I-PART).LT.YMIN)
-YMIN = DARRAY(2*I-PART)

70 CONTINUE
GOTO 100

80 YMIN = SORT(DARRAY(1)**2+DARRAY(2)**2)
YMAX -YMIN
DO 90 I 1,PTSBLK,2
VAL -SQRT(DARRAY(I)**2+DARRAY(I+1)**2)
IF (VAL.GT.YMAX) YMAX - VAL
IF (VAL.LT.YMIN) YMIN - VAL

90 CONTINUE

C Initiate AUTOPLOT.

*100 WRITE(1,9990) 15452B
YINTER - (YMAX-YMIN)/10.
YTIC - (YMAX-YI4IN)/20.
WRITE(1,9993) 15452BPTSBLK,YMIN,Y4AX

- YINTER,YTIC,PTSBLK

C Send data to the terminal.

IF (DTYPE.EQ.2HC ) GOTO 105
DO 103 I = 1,PTSBLK

WRITE(1,9992) IDARRAY(I)
103 CONTINUE

GOTO 140

105 IF (PART.EQ.2HM ) GOTO 120
DO 110 I - 1,PTSBLK

WRITE(1,9992) I,DARRAY(2*I-PART)
110 CONTINUE

GOTO 140

120 DO 130 I - 1,PTSBLK
VAL - SQRT(DARRAY(2*I-1)**2+DARRAY(2*I)**2)

* WRITE(1,9992) IVAL
130 CONTINUE

C Turn of f AUTOPLOT.

140 WRITE(1,9989) 15452B
WRITE(1,9988) 15452B,15452B
WRITE(1,9987) 154528
WRITE(1,9986) 15452B

* C Wait for user to respond.

* CALL EXEC(1,1,I,1)

C Send termination message to SAREQ.

324



j.-. %: . . _'L--. L .- * .- 
-

-. *.- '

CALL EXEC(20,0,BUFFER,5,I,J,SARIO)

10101 STOP

9999 FORMAT(A2)
9998 FORMAT(10X,"(DD001) Can't open file DREQw)
9997 FORMAT(1OX,(DD001) No points per block parameter",- found in file DREBQ)
9996 FORMAT(l0X,"(DD00l) No number of blocks parameter",

- found in file DREQO)
9995 FORMAT(10X,O(DD001) No data type parameter found",

- U in file DREO")
9994 FORMAT(10X,"(DD001) No data part parameter found",

- " in file DREQw)
9993 FORMAT(A2,wa d 2h li 2j 1k 11 w,14,"m ",E12.4,

"n ",E12.4,wo 10p lq ",E12.4,"r ",E12.4,ws
- 14,"u lv Ow c A")

9992 PORMAT(I4,2X,E12.4)
9990 FORMAT(A2,"d a f ")
9989 FORMAT(A2,"m 2m 50")
9988 FORMAT(A2,wd 359,15o Z-,2X,A2,-p a c Z")
9987 FORMAT(A2,"d S","(Hit ENTER to Continue)")
9986 FORMAT(A2,wd t Z")

END

0 SUBROUTINE CLRRB(CRECBUF)

INTEGER RECBUF(40)

DO 10 I - 1,40
RECBUF(I) - 2H

10 CONTINUE

RETURN
END
END$

325

*h ',%p % % .. ,.* ';. .- . , a..'' ..'..,.' . .' .'.v . . : . . '



APPENDIX J
Test Plan

This test plan is divided up into a series of blocks,

"" with each block covering the testing of one or more (if

related) software modules. Each block has a series of

consecutively-numbered tests. Each test specifies the

actions to be performed and the expected results of those

actions. The date on which the test/block of tests was

passed is given at the end of each test case/block.

In addition to the "white box" tests given here, each

completed test date signifies completion of the "black box"

tests presented in Chapter 3.

The test cases are presented in essentially a top-down

order, according to where the concerned modules lie in the

system's hierarchy tree (this is the same order in which the

modules are listed in Appendices H and I).

Unless stated otherwise, it is assumed that all modules

subordinate to the one/those being tested are stubbed.

Module(s): DSP
(1) FERR = TRUE from GREQ

Screen is cleared, terminal is reset, execution stops(2) FERR = TRUE from SAREQ

Screen is cleared, terminal is reset, execution stops

(3) FEXIT TRUE from GREQ

Screen is cleared, terminal is reset, execution stops

326

S.

,,.,' , . € . . - ,, , . -. % % %-. , .. . . . ,- . . . . .• , , ' -



(4) FEXIT = FALSE and FERR = FALSE from GREQ
.=>
~- SAREQ is called; on return, if not FERR, back to GREQ

Date passed: 20 Oct 83

-. 1 Module(s): GREQ
(1) FERR = TRUE or FEXIT = TRUE from GOPT

Module is exited; otherwise, execution continues with
calling EOPT

(2) FERR = TRUE or FEXIT = TRUE from EOPT

Module is exited; otherwise, check FGEDIT
(3) FGEDIT = FALSE from EOPT

Go back and call GOPT again
(4) FERR = FALSE, FEXIT = FALSE, FGEDIT = TRUE, FEXE = TRUE

Call FREQ to format user's request
Date passed: 15 Oct 83

Module(s): GOPT
(1) FERR = TRUE from DMENU=>

GOPT is exited
(2) FERR = FALSE from DMENU

AOPT is called
(3) FERR = FALSE or FREDIS = FALSE from AOPT

GOPT is exited
"* else go back and call DMENU again

Date passed: 27 Oct 83

Module(s): DMENU and PRECI through PREC6
(1) Nothing but type-O records in men-file

Write appropriate error message and exit from DMENU
(2) Type-0 records followed by non type-l record

Error message and exit from DMENU
(3) Missing record of any one type in record group

Record-specific error message and exit
(4) Records out of order

Error message and exit

327

.1



(5) Row or column numbers out of range for type-i record

Y v-Error message and exit
(6) Attribute character <> "I", "N", or for type-2

record

Error message and exit
(7) Response field length in PREC4 < 0 or > 78

o =>

Error message and exit
(8) No errors in above items

Menu is displayed to terminal exactly as defined
Date passed: 29 Oct 83 and 1 Nov 83

Module(s): TMENT
(1) Non-existent current menu entry in MENUT file

Error message and exit
(2) No errors

New CURMEN value is provided as requested
Date passed: 4 Nov 83

Module(s): AOPT
(1) Invalid function key is pressed

No action; menu remains static
(2) Valid function key is pressed

Appropriate flag is set
(3) Request to save current values as new defaults

All current values are copied into proper MD(NNN) file
(4) Immediate request (function key)

SIOPT is called with proper flag settings
Date passed: 27 Oct 83

Module(s): SIOPT
(1) FBACK = TRUE

Call TMENT and exit
(2) FDIREC = TRUE

Call DIREC and exit

328



(3) FHELP = TRUE

Call HELP and exit
(4) FSVREQ = TRUE

=>
4': Call SVREQ and exit

Date passed: 15 Oct 83

Module(s): HELP
(1) If FERR is set by any subroutines

Error message and exit
(2) If help file contains multiple pages

ENTER and BACKUP keys allow user to move back and forth
between pages at will

(3) EXIT key hit

User is taken back to originating menu
Date passed: 15 Oct 83

Module(s): EOPT
(1) If FERR is set by any subroutine

Exit EOPT
(2) CURMEN between I and 10

Call exactly one of EM001 through EM010 corresponding to
the value of CURMEN

Date passed: 2 Oct 83

Module(s): EM001 through EM010
(1) If invalid CHOICE value

Error message, set FGEDIT to FALSE, and exit edit module
Date passed: 31 Oct 83, 8 Nov 83, and 19 Nov 83

Module(s): FREQ
(1) If invalid ACQNO, DISNO, PRONO values

Error message (fatal) and exit
(2) If valid ACQNO, DISNO, PRONO values

Call appropriate FA(NNN), FP(NNN), FD(NNN) module(s)
* . Date passed: 31 Oct 83

329



- Module(s): FA001
(1) Menu data needed for acquisition request is from menu
data file (MD(NNN)) that has been used during current
terminal session

i =>
Data values are taken from CV(NNN) file

Date passed: 8 Nov 83

Module(s): FP004 and FP006
(1) Menu data for processing request is from menu data file
that has been used during current terminal session

Data values are taken from CV(NNN) file
Date passed: 19 Nov 83

Module(s): FDO01
(1) Menu data for display request is from menu data file
that has been used during current terminal session

Data values are taken from CV(NNN) file
Date passed: 8 Nov 83

Module(s): SAREQ
(1) ACQNO = N

AD(N) executed
(2) PRONO(l) = M, PRONO(2) = N,

PD(M) executed as process #1, PD(N) executed as process
#2, etc.

(3) DISNO = N

DD(N) executed
Date passed: 19 Nov 83

Module(s): BORDR
(1) If CURMEN = 1

Write out special border and text at top of screen
Date passed: 3 Oct 83

330
I



Module(s): CLRET, CLRRB, CLRSD, CLRTC
(1) If change in MAX(XXX)

Error message and stop (may be disabled/deleted)
• Date passed: 2 Oct 83 and 26 Oct 83

Module(s): CURSR
(1) If ROW < 0 or ROW > 23 or COLUMN < 0 or COLUMN > 79

Error message and exit
else
Position cursor as requested

Date passed: 20 Oct 83

Module(s): ERMSG
(1) Screen with protected fields, etc. defined when ERMSG
is called

Screen area for printing error message is cleared by
ERMSG before printing begins

Date passed: 20 Oct 83

Module(s): FPAR
(1) Requested parameter doesn't exist in the file

Error message and exit
(2) Requested parameter is shorter than descriptor says

=>

Blank fill on the right
Date passed: 8 Nov 83

Module(s): NOCR
a (1) STRLEN an even value

NOCR value placed in following word
(2) STRLEN an odd value

NOCR value placed in low-byte position of current word
Date passed: 2 Oct 83

331

A * C *~~~**~~a



S-.Module(s): NUMER
(1) NUMCHR an even or odd number

Correct logical value is returned (i.e., character iso-
lation is handled properly)

Date passed: 8 Nov 83

Module(s): PARAM
(1) Only one parameter present in SCRDAT

Single parameter correctly returned (absence of US
character causes no problems)

Date passed: 5 Nov 83

Module(s): SCHAR
(1) Substitute starting in odd-byte position

Translatin handled correctly
Date passed: 15 Oct 83

Module(s): SCOPY
(1) Copy from odd-byte position to even-byte position

'. Character translation handled correctly

(2) Copy from even-byte position to odd-byte position

Character translation handled correctly
Date passed: 8 Nov 83

4.

Module(s): SESC
(1) "E" located in left and right bytes of words'>

Translation correctly handled
(2) No "E"'s found in string (or empty string)

a.>

No action taken
Date passed: 10 Oct 83

332

.-*....-0....'-'vu . ~ .v



" "Module(s): PDO04
(1) Program called to execute

PRQ004 successfully opened or error message and stop
Date passed: 19 Nov 83

SModule(s): PDO06
(1) Program called to execute

PRQ006 successfully opened or error message and stop
Date passed: 19 Nov 83

V

.33

4-°

-S

-433



Vita

Captain John W. Bengtson was born May 19, 1956 in

Bakersfield, California. He was raised in California's San

Joaquin Valley, attending Lemoore High School, West Hills

College, and California State University, Fresno (BA in

mathematics) on his way to an ROTC-gained commission as a

S. Second Lieutenant in the Air Force. Following his May of

1978 commission, he was assigned to the Air Force Data

Services Center (HQ USAF). There he served as leader of the

team responsible for AF/LE computer support (receiving the

Air Force Meritorious Service Medal for his performance) and

,I as a White House Social Aide. He entered AFIT in June of

V. 1982 to pursue a Master of Science in Computer Systems.

Permanent address: 21810 Geneva Ave.

Lemoore, CA 93245

3..34

334

* ,..



UNCLASSIFIED
**r SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

- ~UNCLASSIFIED_____________ ______

28. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/A VAI LABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRAOING SCHEDULE Approved for public release;
distribution unlimited.

4. PERFORMING3 ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

Ba. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION

Schol o Engneeing(II applicable)
Scho l o E n ine rin AFIT/EN

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

. Se. NAME OF FuNoINGspoNsOtrIN. Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION If aplcbe

* - . ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS. _______ ____

PROGRAM PROJECT TASK WORK UN11
ELEMENT NO. NO. NO. NO.

11. TITLE rinclualt Security Classification)

-~ See box 19 (Unclassified)__ ____ _________

SPERSONAL AUTHORS)

~ohn W. Bengtson, B.A., Capt, USAF
' J& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Dary) 15. PAGE COUNT

MS Thesis FROM _ TO __ __ 1983 December I345
16 I. SUPPLEMENTARY NOTATION

o~dtt bi release: lAW AFE 190-17.

17. COSATI CODES IS. SUBJECT TERMS (Cont*inue on mreef

FIEL GRUP SB. R. WVA-he-olrson AF3 (. d 4,1433
FIEL GROP SU.GR. Computers, Digital Computers, Signal Processing,9 2 Real Time

19. ABSTRACT (ConItinue ote rveree If neceemy and identify by block number)

Title: DEVELOPMENT OF A REAL-TIME, GENERAL-PURPOSE
DIGITAL SIGNAL PROCESSING LABORATORY SYSTEM

Thesis Chairman: Professor Gary Lamont

-- OISTRI *UTION/AVAI LABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED Q SAME AS RPT. 0 OTIC USERS 0 UNCLASSIFI ED

22a. NAME OP RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
% (Include A mwe Code)

Professor Gary Lamont (513) 255-2057 AFIT/EN

DO FORM 1473,83 APR EDITION OF I JAN 73 18 OBSOLETE. UNCLASSIFIED
.4 SECURITY CLASSIFICATION Of THIS P



UNCLASSIFIED
SECURITY IICATION OFTHIS PAGE

Abstract (Block 19)

This investigation resulted in the design and implementation
of software to support a real-time, general-purpose digital signal
processing (DSP) system. The major design aims for the system were
that it: be easy to use, support a wide variety of DSP functions,
and be capable of real-time processing. All work was performed using
an HP21MX computer running under the RTE-III operating system.

The system's analysis and design were accomplished using Struc-
tured Analysis and Structured Design techniques. Their results --
both logical and physical system designs -- are presented via Data
Flow Diagrams and Structure Charts respectively. The hardware envi-
ronment was also analyzed to ensure its suitability.

The resulting system consits of two main components: a User
Interface, and a collection of DSP application programs. The User
Interface is menu driven and allows the system to be used by those
with little or no prior computer experience. The User Interface
gathers user requests and presents them to an arbitrary number of con-
currently executing application programs for satisfaction. All of the
major system components were successfully implemented with the excep-
tion of real-time data sampling support via analog to digital conver-
ter. With the addition of an HP21MX co-processor, the developed
system should be capable of supporting the full range of DSP activities
envisioned.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

k .. %. 4 - . . . . .. m.. mmmm m . -- - - - m- .. ~ -. *



'4E

0IN 
4

%V

.4w

3C~',
A*4

* -. * ** * -lb


