
PERFORMANCE EVALUATION USE(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. D L OWEN

UNCLASSIFIED DEC 83 AFIT/GCS/EE/83D i6 F/G 9/2 NEhh hhhi

11111 1.0 2.5
32

MICROCOPY RESOLUTION TEST CHART
NAtIONAL BUREAU OF STANDARDS- 1963-A

.-.-. %

i .- -.... .. -.,--

-- F,,. ; r- I' '

CPESIM II: A COMPUTER SYSTEM -MULATION

FOR COMPUTER PERFORMANC- EVALUATI6N USE

THESIS

D3vid L. Owen

Capta'n, USAF

AFITi CS/EE/83D-16 DTIC
SELECTEF

i::; FEB 2 2. 1984

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

.-": 0 FILE COPY T--s : ' - '' A
8 4 02 2~":-limit

Accession For

NTIS GRA&I
DTIC TAB -
Unannounced E
Justification

By
Dist ribut ion/___

Availability Codels
Avail and/or

Dist Special

/OTIC>

(copY)
INSPECTCDJ

CPESIM II: A COMPUTER SYSTEM ZzIMULATION

FOR COMPUTER PERFORMANCr EVALUATION USE

THESIS

David L. Owen
Captain, USAF

AFIT! .;CS/EE/83D-16

F.r

loproved for public release; distribution unlimited Lz
NMxFEB 2 21984

AFIT/GCS/EE/83D-16

CPESIM II: A COMPUTER SYSTEM SIMULA':[ON FOR

COMPUTER PERFORMANCE EVALUATION USE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force nstitut- of Technology

SI Air University

In Partial Fulfillment cff the

Requirements for the Degree of

Master of Science

David L. Owen, B.S.

Captain, USA

December 1983

- .Approved for public release; distribution unlimird

Preface

Professor Thomas Hartrum provided the original

stimulus for this thesis. WhIle teaching computer performince

evaluation courses, he discovered a need for a vehicle to

illustrate the problems and techniques he was discussing in

class. In 1979, Capt Paul Lewis wrote a simu ation t o- help

. solve some of the3e problems. As time past, iimitations in

the original simu.ation needed to be solve.

This thesis is the first step in converting the

standalone simulation package into a total computer

performanc- evaluation simulation environment. This

environment should include as a minimum a simulated computer,

"user" interfaces, data base record keeping, and workload

generators. My attempt wa; to redesign and code the simulated

computer syst.,m, and create a "user" interface to the system

From this basic environment follow on efforts can then enhance

the environment in a modular fashion.

I would like to thank Professor Hartrum for .s

guidance and valuabl, suggestions that he made through out the

development of this thesf. Lt Col Clark iroved to be not

only a excellent committee member, but a source of knowledge

on many obscure aspects of SLAM. Finally, I wish to thank my

... future wife Sue fir .er underitanding and support on those

many nights when I had to work.

David L. Owen

ti

t 1 . .: .: : . -: . -: . . 7 -- , - -.... • -. , . ., , . . . - . . . -, . . v ., , . - ,

Vl.

.P'

Coatents

Page
' 5.

-.. Preface ii

List of Figures v

Abstract vi

I. Introduction 1

Pi_!kground 1
*.r- 1em Description 3

-". A: -roach 4
S.-)e •

Order of Presentation 6

Ii. System Requirements 7

Environment 7
Software Requirements 8
Support ReqL.reents 14
Conflicting Requirements 5
Verification and Validation 15

., Summary.....................16

III. Simulation Design 17

Implementation Languages 17
Computer Architecture. 18
Operating System 24
Software Monitor 28
Hardware onito. • 29
Workload jeneration 30
User Interface 30

IV. Verification and Validation 33

Verification 33
Main Program Flow 33
Disk I/O and Channel Implementation . . . 34
Tape I/0 Implementation 34
Software Monitor Implementation 34
Hardware Monitor Implementation 34

Validation 34

.. -X..
F o,

,4.

.• *. S
. ; .* .* 5% *' SS* *'* .(S . ~ '' - . *..*..G ¢ . 5 , ..- . ,

Contents

Page

V. Summary and Recommendations 36
Summary 36

Rec mmendations 3"

Bibliography 40

Appe-dix A: CPESIM II kDT Diagrams A-1

Appendix B: CPESIM II -M Network Drawings B-1

Appendix C: CPESIM II Sturctured English C-1

Appendix D: CPESIM II Code D-1

Appendix E: CPESIM II Instructor Manual E-1

ippendix F: CPESIM II Studen - Manual F-1

C Vita...................................V-.L

ii

'

. '.i

S. .

''.'""'. ,"'".''',., .' " % ",., , , ,.",'. " ". ,7,? -'.2.-" ',j....,g " ,.-' . _ _'. .- '.'.". ., ,".""i"v• ".

" "List of Figures

-" Figure Page

1. Performance Improvement 2

2. Case Study Flow 9

3. Typical CPESIM II Configuration 12

4. Job Flow 13

5. CPESIM IT Ccnfiguration Limits 23

6. " :: J.b Flow 25

." 7. U'ser In -face Structure 31

!v.

4"

:.4

.4. 0*
" .- .V - . . . •

.4.
"

' " "
"

. x - . , , ., , , . - . . -

Abscract

"This report describes the development of an

education tool which is used in conjunction with a c .rse in

4 computer performance evaluation. The tool is a system

composed of background informaticn and software which

simulates a computer system. The student is assigned a

position in a fictional computer site, and is given

performance problems to solve. The instructor prepares

scenarios, constructs a model of the site's wor-lo-d, and

describes the initial computer configuration. The student

takes this information and uses it to decide if additional

data is required from the hardware and software monitors.

The student forms an improvement hypothesis and

makes changes to the simulated computer site. Changes to

the simulated computer configuration are made by an

interactive "user" interface. The configuration changes,

along with the workload description and monitor request3 are

submitted to the simulation. The simulation uses these

inputs to simulate a large mainframe computer with attached

software and hardware monitors. Accounting and monitor logs

are generated by the simulation. After eyamining the

outputs, the student provides further changes until he is

satisfied with the simulated computer sit s performance.

vi

%

"..

This document provides a copy of the current software

used to imitate the computer, the software used to generate

the "user" interface, and instructions to the instructor an.

-. the student on executing the software on the ASD computer

systems which support AFIT.

vi

.-...;

.%

.4-

".4"

.4

aJ-' --

..
v l

vio

CPESIM II: A Computer System Simulation for
Computer Performance Evaiuation .ie

V

I. Introduction

Background

Every computer system eventually comes to the point

where more computing power is needed. In the past, the

general solution has often been to buy more hardware without

analyzing the performance of the present computer system.

Recently, more and more effort has been p-aced on a'alyzing

the comp'ter environment as a whole to determine if

additional resources are needed or if the computer can be

."tuned" to perform more efficiently. In a study for the Air

Force (Ref 6), Bell, Boehm and Watson suggested seven p ases

f r a Computer Performance Evaluation (CPE) team to fol ow

to successfully evaluate the c-nputer system and its

environment (Figure 1). In order for a student to

effectively learn the CPE tools, he should gain experience

in using these seven phases. The first four phases,

understanding the system, analyzing operations, formulating

performance improvement modifications, and analyzing

probable cost-effectiveness of modifications, can be

accomplished with information provi !ed by the instructor.

The instructor can either use an actual scenario or zan make

g ° "" -' "" ,' . % °% " "' "' " ' - "- % ' " ". .-° " • " " "C' " " " . " * i . - . - *'. "° " . ". 2.

UNDERSTAND ANA7.Y'E I FORMULATE
THE SYSTEM OPERATIONS IMPROVEMENT

1HYTH.E

INVALiD

IMPLEMEN 1'-EST SPECIFIC ,ANALYZE COST-
MO [FICATION3-.*-- YPOTHESES EFFZCTIVEES

OF MODIFICATIONS]

I STOPNO:.

TEST EFFEC- UNSATISFACTORY
TIVENESS OF B
! MODIFICATIONS

SATISFACTORY

STOP

Fig. 1 Performiance Im?rovenent (Ref 6)

up a scenario to illstrate a particular performance

problem. In order for the student to accomplish the last

three phases, testing specific hypotheses, implementing

appropriate combinations of modifications, and testing the

effectiveness of the implemented modifications, the student

must have ac-ess to C? data from an actual or simulated

computer system. CPE data comes :tom three general sources:

accounting 1ata, software mijn!tor data, and hardware monitor

data Many computer installations have only some of the

dat3 necessary, at.d even that may not be acequate. Ir

addition, many installations -annot afford to have st tents

experiment with their oper tional system. In order for the

students to gain "hands on" experience in the last three

phases, a computer simulation is needed. In '979, Capt Paul

Lewis developed a model (called CPESIM II) to aid students

in perform'ng CPE (Ref 7).

Proilem Description

Whil- Capt Lewis' model was a maj step in aiding

the CPE student witV "ha-Is on" experience, it haa se "er l

shortcomings. The first major sh-rtcoming is similar to

many real life computer environments. The software monitor

for CPESIM I did not prciide the necessary information for

the student to successfully analyze the problem. The second

problem with CPE1IM II was the language in whic' it was

written. CPESIM II was written in SIMSc.IPT II (Ref 3),

,° 3

which at the time was one of the better simulation

languages. Fince 1979, the expertise for SIMSCRIPT has not

been available at AFIT and it is no longer eing trught.

The final problem with CFESIM II was with the user

interface. The amount of work required to run the

,* .. simulation was burdensom _ to both the instructor and cne

S-:" st 'ent. Thus, an easy means of obtaining all the "ecessary

CPE lata was still needed.

Approach

*i One possible approach to solv ig this problem was to

modify the existing CPESIM II and to create a "friendly"

user interface. There are several problems with this

...- approach. First, since SIMSCRIPT is no longer taught at

AFIT there is a question about how much longer it will be

supported. Secondly, even if the d -ired enhancements were

made, the possiblity of incorporating .iture improvements

is small since the students do not understand the lang..age.

Finally, more powerful simulation languages have been

developed since he original CPESIM II was written.

Since more powerful simulation lanL ,iges are now in

existance, it seems reasonable that the one of these

languages should be used to develop the new CPESIM II. The

choosing of the proper simulation language to implement both

the hardware and the software CPESIM I will be discussed in

greater detail in later chapters. With this new model the

4

..............................

• o- '•

_77

• ." student will get a better environment to enhance his skills

..- in the world if CPE. He will have an easier to understand

and more realistic model of a real computer environment. In

addition, the ins' *uctor can concentrate more on developing

realistic scenarios and less ti.me on changing the model to

fit these scenarios.

Scope

As with any simulation, certain limitations have to

be placed on CPESIM II. The number of possible

architectures and operating systems i almost limitless. In

order to get a model of reasonable size which ill take a

reasonable amount of time to execute, a spec fic

architecture and itperating system was chosen. En

partic lar, the architecture will consist of a claisic von

Neumann machine, which can vary in memory size, allocated

and unallocated I/0 devices, I/0 channels, and number of

CPUs. The operating system will be a static partion memory,

multiprocessing operating system. In addition there will be

a specific software and hardware monitor for the computer

system. Interactive processing, distributed processing, and

dynamic memory allocation will not be covered in this

thesis.

9.2 The financial cost and manpower requir-d to use the

monitors, to buy more hardware, o to manipulate the

computer environment is not addressed. This Ls a necessary

m 5

e 7- ~- . 7"7%. . F

part of CPE, and should be supplied in the instructor

scenario given to tue students.

Order of Presentation

Chapter II describes the system's requirements for

CPESIM II. Chapter III describes -he transformation of the

requirements into the sy cem design. Chapter IV describes

the results and validation of CPESIM II, while C.apter V

provi,-s a final summary and recommendation for future

enhance:_..nts. Appendix A provides a detailed represen:ation

of the requirements in SADT form. Appendices B and C

provide the detailed design in SLAM network form and

Structured English, respectfully. Appendix D lists the

actual CPESIM II code. Appendix E consists of an

instructor's manual for using the simulation, while Appendix

F is the student's CPESIM II manual.

." .. 2 C .

S S V

II. System Requirements

Environment

CPESIM II is intended to be used in graduate level

computer performance evaluation classes and graduate level

queueing theory classes. These classes concentrate on the

application of moderi tools and techniques for evaluating a

computer in its environment. Specific techn!ques are

presented throughout the term and the student is given case

studies to which these techniques are applied.

CPESIM II's high level requiremant is to give the

student a "realistic" system in which he can apply these

techniques to the given case studies. In order to

successfully integrate the case study with CPESIM II, the

instructr needs to develop a scenario which will

* demonstrate the pezformance problems. The scenario will

consist of describing the computer, its environment, and

possibly its performance problem or desired goal. The

description could be in prose form or in tha form of

accounting and monitor data of n existing system. The

student will evaluate the given data and determine if h , has

enougi data to formulate an improvement hypothesis. If more

data is required, then he can run the CPESIM II model to get

aczounting data, software monitor iata or hardware monitor

data. Once sufficient data is available he will form a

hypothesis that might solve che problem. The student will

• •A

, -. .. ., ..,,. . , ., ..,, ''. ..." -'. " .. -. ..' .. ". .., ,--. .' .'. ,. .,. " '., ' , .,7

S . . - a

then implement his hypothesis by changing the computer

configuration of the CPESIM II model and run the model

against the workload. The model shall provide "realistic"

*1 accounting data, and depending on the request, hardware and

software monitor data. The student will analyze the data

and determine if other changes are needed. If necessary

this process can continue until the student is satisfied

with his solution to the origiral problem. Figure 2 shows

this case study flow in SADT (Ref 1) format.

Software '.equirements

The software implementing CPESIM II shall provide a

"realistic" computer environment to the student. In order

to pro'ide this "realistic" environment, the software will

fr be ,roken into four parts.

The first portion of software will produce a

workload data file which may be used as input to the

simulation. The instructor will input the different types

of job streams in terms of empirical distributions. The

program will take these distributions and calculate job

streams. -he job st-eams dill consist of job parameters

such as job name, cpu time required, number of disk I/Os,

etc. Each job will then have its parameters written to the

workload data file in a format that the computer simulation

can use.

8
p.. 4

* .. a", -a ..- ,'

o1. . w. 7 7 77'..-' .. . i74v

MY -- - .-

~4-3

'C~

cc C

I- -. J -

The second portion of CPESIM II will be the user's

interface to set up of the computer's architecture and

operating system. In this portion of code the specific

computer configuration must be specified. The software must

be able to describe the hardware configuration in terms of

number and spied of c'us, I/0 devices, and channels; size of

main memory; and hardware monitor connection probes. In

addition, t..e I/0 matrix between the channels a..d the I/0

devices has to be described. The user interface will also

be able to specify the start and stop times for the software

monitor and hardware monitor.

The third part :f CPESIM II wil be the post

processing of the accounting data file, the software monitor

data file and the hardware monitor data file. 'he
40

processing will pr luce listings which wil be aimilar In

format to real acc unting, software monitor and hardware

monitor output files. This processing will not affect the

original data file. This will allow the students to analyze

the ra output using standard statistical software packages

like Statistical Package for the Social Sciences (SPSS) (Ref

9).

The last software portion of CPESIM II will be the

simulation of the computer and operating system. The

architecture will vary slightly according to the the user's

input parameters, but the basic machine will be the cla sic

von Neumann computer (Ref 5). It will consist of one or

10
Ji

more cpus, main memory, I/0 channels, allocated I/O devices

(tapes, card readers and line printers), and unallocatable

I/0 devices (disks, drums) (Figure 3). The operating system

is a basic multiprocessing, multiprogramming, partioaed

memory operating system (Ref 8). Looking at the hardware

and the operating system as i combiied unit, a typical job

will perform six basic tasks as it flows through the

simulation (Figure 4). At J, b arrival the job will be

spooled (1) onto disk. A ter spooling the job will be

placed into the hold queue where it will wait for the job

sch_.duler to allocate resources (2). After the resources

are allocated the job will wait in the execute *ueue. When

a cpu becomes free the cpu will perform a cpu burst (3) on

the job. After the cpu burst one of three things will

happen. _f the job is not finished the job will either go

back into the execute queue or perform an I/O (4). If the

job is completed it will be pla ed in the output queue until

it can be spooled to the printer (5). The last process (6)

is the writing of -he data files and the freeing of the

job's resources.

In addition to the hardware and the operating system

the last software portion will contain both the hardware and

the software monitors. The hardware monitor will be an

event driven monitor which will record timing and counter

data for the cpus, channels and I/O devices. The hardware

monitor will not affect the (simulated) speed of the cpu.

-p2 °11

...............
.....................................

CPUA CPU

Fig 3.Typical CPESIM II Configuration

12

At
ul 0

4a 0

4.13

•.S. > .. , I

The software monitor will keep track of the time that a job

S.spends in each of the queues. Unlike the hardware monitor,

the software monitor will slow down the relative speed of

the simulated cpu. This slowdown represents the Increased

overhead which a real software monitor causes on a real

system.

Appendix A contains the detailed requirements of the

simulation in SADT form.

Support Requiremen.s

CPESIM II is only oae portion of ai educational tool

in teaching CPE. There is 3ore to CPE than just applying

tools in a "closed" system. With enough money and equipment

almost anyone can improve the performance of a c~mputer. To

effectively learn all the aspects of CPE, the student needs

to be presented with a scenario which represent a "total"

computer environment. Scena-ios will aid the student in

learning the complexities involvel in the decision making

process. The sce ario should include data on the presen

hardware and software configurations, possible limitations

in configurations, and costs ass.ciated with the different

pieces of equipment. In addition to the measurable factors

in the system, intangibles like the user's and management's

needs and goals should be represented. Witi a sc-nario the

simulation will be more than a simple "plug and chu"

exercise.

14

i'-.' ', , * ' .. - -.-.. . . .-. - " .-....... ".." . . .- . . - -';.% , .,2
" " " °" " " ' ' '' '" ""' * ''' " " ' ' " " " " " - "' " " " "" " " , *' ' ' • ".

.7 .7 77, 7-. - V C . .. - -

Support is also ne'ded for the student to analyze

the results of the simulation run. After the student has

implemented his imr)v ment hypothesis, he needs to analyze

the affects in the system. In o der a do this, he needs

access to standard statis c,_i packages like SPSS (Ref 9).

ConflictingRequirements

There are a few conflicts with the re"uirements for

CPESIM II. Like any simulation, the confl zts involve

-' flexibility and complexity of the simulation. An increase

in flexiblity directl, correlates to an increase in

complexity. There are aa infinite number of computer

configurations which are avaijable. In order to get a

"reasonable" simulation, limitations must be made in the

0nflexiblity of the system. This "reasonable" simulation must

be flexible enough to effectively teach the tools of CPE

while simple enough for the student to comprehend the

simulation and for the developer to implement it.

'p. Verification and Validation

The verification of CPESIM II will test the accuracy

of the model to execute the statements in the proper or-er.

This will be done by running a workload of a few programs

through te model. These programs will cause the execution

of all the statements in the model. A visual inspection

will be made to insure that the model executes the

statements as expected.

15

-e-~S S* * .. . ,.* . % -5

How does one validate a simulation that is not a

model of anything in real life? That is the problem one has

to address when trying to validate "PESIM II. CPESIM II is

a representation of a "computer" in the general sense, but

not of any parti-ular model. It should behave like a

typical computer given a certain workloac, but it should not

produce exactly the sa-e results. For that reason, it

cannot be directly compared to any real life Gata from a

computer system. Thus, the validation by comparing it to a

real life machine will ha'e to be intuitive in nature.

The new CPESIM II should act similar to the old

version of CPESIM II, but once again the matching will not

be exact. The new version has enhancements, particularly in

the job scheduler algorithm and the 1/0 scheduler algorithm,

which the original CPESIM II did iot have. As a re- 'It of

these enhancements, the output data of the simulations

should have some correlation for the same workload, but not

an exact cor-eiation.

Summary

This chapter has presented only the high level

requirements for PESIM II and a general verification and

validation procedure. If the reader is interested in the

detailed requirements needed to design and test the

simulation, -e should now read Appendix A before going on to

the next chapter which will cover the design of CPESIM II.

16

III. Simulation Design

This chdpter discusses the thought process and

decisions that were made in the design and development of

the CPESIM II simulation software. In particular, this

chapter will discuss the simulation language chosen, the

design of the simulated computer architecture, operating

s.,stem, workload a3rameters, user interface, and post

processing software.

Implementation Languages

In order to decide on which language or languages

would be best to use, certain criteria had to be

established. First, the language must be presently

supported by one of AFIT's computers, and should have a high

likelihood of future s,.-pport. Secondly, the language should

be user friendly. The users should not have to know all the

details of simulation but only about those portions which

effect the performance of a computer. The third criteria

* that a language was gauged agaiast was that of its power.

The power of a language shall be defined as the ability of

the language to haadle the mundane bookkeeping associated

*' I with simulations, with little or no us .r intervention. At

the same time the language should give the programmer the

ability to go to a lower level if desired.

17
................................

* , - . , . -.. •- -o . .. 4

The original CPESIM II was written in SIMSCRIPT II

so Simscript was a natural benchmark against which to judge

other languages. In 1979, AFIT supported SIMSCRIPT II and

it was one of the more powerful languages. By 1983, more

powerful languages had come into being. AFIT is no longer

teaching SIMSCRIPT II and most of the expertise at AFIT has

been lost. It was questionable whether or not it would be

supported in the future. SLAM (Ref 10) on the other hand,

is well supported by AFIT and is o' e of the most powerful

languages of the day. The support of SLAM and its power

make it a very desirable language, but SLAM is not user

friendly. In order to over-ome this drawback, a second

language was introduced to make a user friendly interface.

This interface will use FORTRAN V (refs 2, 3) to modify the

configuration data file which ini:ializes the simulation to

a particular hardware configuration. This interface shall

query t a user about the differ-nt options avail ble and

then generate a .onfiguration data file. Thus the power of

SLAM can be used to rrogram the simulation and the user can

still have a user friendly system.

Computer Architecture

After the simulation language was decided upon, the

type of computer architecture to be imulated 'lad zo be

established. There were two main types of architectures

considered. The bus oriented architecture, which is

-2' 18

L- . *'. - * . . - . - -.. .---

representative of many of the mini computers, has a central

bus which links the cpu, the memory a,-d the I/0 devices

together. The central-memory architecture uses main -emcry

as the interface between the cpu and the I/0 devices. The

central-memory architecture was chosen for two reasons.

First of all, it is representative of the majority of the

large scale computers in which CPE would be used and

secondly, it is the architecture which proved itself as a

valuable teaching aid in the original CPESIM II.

There are many possible varieties of central-memory

computers. The CPESIM II design is a trade off between

flexiblity of the different varieties and a reasonable sized

simulation. Most of the limits on the simulation were based

3n having a reasonable simu'ation (in terms of size and

speed). Since SLAM was written in FORTRAN, the basic memory

allocation for a SLAM program is the same as a FORTRAN

program. This memory allocation requires that the size of

arrays be specified at compile time. Unlike PASCAL and some

of the newer languages, theoe arrays are initialized at run

time and use a fixed amount of memory during the entire

simulation. For this reason, dimensions of arrays were

carefully chosen. The number of channels, allocatable I/0

devices, unallocatable devices, and memory partitions had to

be analyzed. The simulation can easily be expanded if

desired by changing the limits on these arrays.

19

The basic computer consists of a single cpu

- multiprocessing system. jecause the cpu is treated as a

server by the SLAM compiler, multiple cpu configurations are
U.

availab-.e, but the hardware monitor will treat all the cris

as one. There will still be one execute queue in the

multiple cpu c'-nfiguration. When a cpu is free, the cpu

will get the first job in the execute queue and will perform

a time burst on that job. There is no limit on the number

of cpus that the simulated computer can handle.
'U

A static partition memory management system is

implemented in the simulated 2omputer. There is a maximum

of twenty partitions available t; the user. Twenty

partitions should be a sufficient number of partitions so

that the student can tailor the size of the partitions to

fit several different workload streams, the input spooler,

output spooler and software monitor. There is no limit on

the size of the memory partitions. The implementation of a

dynamic memory management scheme was investigated. Based

- upon experience with the original CPESIM II, dynamic memory

management took excessive amounts of real cpu time to

execute the simulation. For this reason, it was 4etermined

that the simulated computer would not have dynamic memory

management.

"2

• " 20

. . U........... . . -...

The IOCs connect the I/O devices tc memory. There

is a limit of five IOCs connected to memory. The limit on

the IOCs was based on p st experience with CPESIM II.

Performance problems such like having all the high-speed

devices on one channel, or just a general backlog for an

IOC can be modeled with just one or two IOCs. The IOCs can

have any data transfer rate desired and be multiplexed to

any or all I/O devices. This combination will allow the

instructor to create a scenario for just about any I/O

performance problem.

The I/0 devices are broken into four types. The

first type is the card reader. There is only one card

reader. The card reader is only used by the inpuz spooler,

and can be connect to any or all channels. The card reader

can be set to any desired speed (cards per minute).

Presently the simulation assumes that t .e card contains 80

bytes of information. This could be changed by changing one

variable in subroutine INTLC. The choice for only one card

reader was to simplify the algorithm for the input spooler.

Adding the capablity of having multiple card readers does

not substantially add to teaching of CPE.

The second type of I/0 device is the line printer.

Like the card reader, there is only one line printer, and it

can be connect to any IOC. The line printer prints a 132

character line at any desired speed lines per minute).

21

I-Y -? . i---.-i - .- - .? . :- --. • ¢ -- - . - -. . -. -... . .

The allocitable I/O devices (tapes) are the third type

of 1/0 devices. Allocatable devices are assigned to a job

prior to the job being placed in the execute queue and

released back to the system when the job is placed in the

output queue. The I/O requests on allocated devices are

* spread evenly between the devices allocated to the job. The

allocatable 1/0 devices can be set to any desired speed and

be connected to any IOC. There is a limit of ten

allocatable devices in any one simulation.

The last type of I/0 device is the unallocatable

device. These devices are usually disks or drums. The

unillocatable devices are assigned to a job when a job

requests a unallocatable I/0 and released back to the system

when that particular I/0 is finished. Unallocatable device

I'Os are distributed evenly between all unallocatable

devices in a round robin fashion. Like the other devices,

unall zated I/0 devices can be specified at any speed and

connected to any or all channels. There is a limit of ten

unallocatable devices at one time (Figure 5).

22

.4 -'- i.

4 *..*- . ~ -

Iz-

4- 2 .

ca.

Operating System

The operating system for CPESIM II is a

multiprogrammed static partition operating system. The

operating system executes five different types of jobs. The

first ty-e is a typical applications program. The other

four types of jobs are actual parts of -he operating system:

the input spooler, the output spooler, the job scheduler and

a software monitor.

A typical application program gets into the system

through the input spooler (Fig re 6). After the job is

spooled It is placed into the hold queue to await resources.

The job scheduler exami es the jobs in the hold queue,

according to the job priorities and the time the job entered

the hold queue, and allocates memory partitions and

allocatable I/O devices to each job. After the job is

allocated it proceeds to the execute queue. When the cpu is

free it takes the highest ranking job in the execute queue

and performs a cpu burst. Job ranking in the execute queue

is done by job type. The job scheduler gets the highest

priority, followed y the software monitor start-up job,

output spooler, input spooler and user jobs, respectively.

The cpu burst lasts until one of four things happen: an I/O

was issued for an allocatable 1/0 device, an I/1 was

requested issued for an unallocatable device, a timeout

occurred, or the job finishes. If an allocatible device I/O

request occurred then the job gets placed in tle smallest

24

* .' * * * , .. *.,.U ~ . .- * . . .A

-W -7 :7

0 H
C-

Cy

IU
* * -4-

LL,0

25.

channel queue which is connected to the requested I/0

device. The I/O is performed, the channel is freed, and the

job is placed back into the execute queue. If an

unallocatable device I/O occurred the job gets placed in the

proper device queue. Once the device has been acquired, the

job is placed in the smallest channel queue which is

connected to the device. The I/O is thE i performed. After

. completion of the I/0 the channe.L and the deviced are freed

and the job is placed back into the exec.ite queue. If a

timeout occurred then the job is placed back into the

execute queue to wait for another time slice. If t'e job is

completed the job is placed in the output queue an°: waits

for the output spooler to print the job. Also at that time,

the memory partition used and the allocatable devices

assigned to the job are released back to the operating

system.

The input spooler takes the applic tions programs in

the input queue (card reader) and spools them onto the disk.

When a new job arrives at the input queue the operating

system checks to see if the input spooler is already in

memory. If the spooler is not in memory it is placed in the

hold queue and must compete for resources and cpu time like

any other job. When the input spooler acquires the cpu, it

first schedules an I/O to read the cards into a system

buffer. Presi itly, the system buffer is 1K, but it can be

changed to any size by modifying subroutine INTLC. After

26

the buffer is loaded the spooler is placed back into the

execute queue. The next time the spooler gets the cpu the

buffer is spooled to the disk. This two step process

continues uncil the entire job is spooled. At that time the

operating system checks to see if there are ny more jobs in

the input queue. The input spooler continues until a 1 the

jobs in the input queue are spooled. The input spooler is

then released from the system and the memory partition is

returned tc the operating system.

The output spooler takes the job's output file which

is stored on disk and prints it. Whenever a job arrives at

the outpt queue, the operating system checks to see if the

output spooler is loaded. If necessary the output spooler

will be placed in the hold queue and wi-l compete for

resources. When the output spooler first executes it will

perform an I/0 which will load the 1K system buffer from the

disk file. The spooler will be placed back into the execute

queue so that it can print the buffer on the next time

through. The process continues until the entire job has

been printed. Like the input -pooler, the output spooler

continues to spool until its associated queue is empty.

The job scheduler allocates memo-y partitions and

allocatable I/0 devices to jobs in the hold queue. The job

scheduler is loaded in the execute queue (if it is not

already) every time a new job arrives in the hold queue cr

when resources are freed (after each applications job,

27

spooler or software monitor completion). The job scheduler

Is always core resident as part of the operating system and

* does not count against the iultiprogramming level. When the

job scheduler obtains the cpu, it looks at every job in the

hold queue to see if it can assign resources. Resources are

" -assigned to 'obs according to a priority system. The job

scheduler ranks the jobs according to the job's priority

attribute. This attribute is p rt of the job's input

parameters, which are read ia from the workload data file.

If there is a tie, the jobs are arranged according to the

hold queue arrival time. Each job in the hold queue is

analyzed according to this priority scheme. The job

scheduler first checks to see if a memory partition is free

which can handle the job. If a memory partition is free the

schedul ,r thens checks to see if there are enough

allocatable I/0 devices free. Only if both conditions are

met, the job is assigned resources and is taken from the

hold queue and placed into the exec;, e queue.

Software Monitor

The software monitor is like any other job in the

simulated system. It is entered into the system and must

compete for computer resources. The monitor is loaded into

the hold queue at the user specified starting time. It sits

in the hold queue until a partition of at leist 4K is

available. It is then placed in the execute queue until it

28

qut es. The software monitor then releases the cpu back to

the operating system. Once the trace has started the

monitor will record data about every job that enters one of

the five queues. The queue name, the time spent In the

queue, where the job came from, and where the job is going,

is recorde: every time a job leaves a queue. Like a real

software monitor the monitoring of the queues and the

recoruiing of the data puts an extra burden on the system.

This burden is represented by making the cpu run at 95%

efficiency.' When the scheduled stopping time of the monitor

occurs, the memory partition is freed and the cpu goe back

to running at full efficiency.

* Hardware Monitor

Unlike the software monitor, th hardware monitor

does not use up the simulated computer resources. The

hardware monitor has its own timers, counters, and data

recording devices. It is an event driven monitor which can

be conneced to any I/O device, channel, or cpu. The

hardware monitor has two timer probes and three counter

probes. These probes along with the starting time, the

stopping time, and the sample data rate are specified in the

configuration file. One limitation in the hardware monitor

is that the monitor treats mulitple cpus as one if it was

29

Le int

on, cpu. The timer or counter connected to the cpus will be

pulsed every time any cpu is activated. The output of the

hardware monitor is written to a data file which is

available for -3ost processing.

Workload Gene ration

The software necessary for the generation of the

workload data came from the original CPESIM develo-ed by

Capt Lewis (Ref 7). No changes to workload generator were

made.

User Interface

In order to easily change the conf . uration of the

simulated computer, a user interface was written in FORTRAN

V. This interface allowes the user to specify the number

and types of cpus, allocatable I/O devices, unallocatable

devices, and channels. In addition, the connections

between the I/0 devices and the channels, and the number and

size of memory partitions are specified. If the user

desires the software monitor and/or the hardware monitor,

they will be specified in this interface as we

The interfa-e was broken down into three seztions

(Figure 7). The first part of the interface takes an input

file called TYPES and reads in the different types of cpus,

I/O devices and channels that the student may pick from.

The secon,: part queries the student about the simulated

computer configuration desired. The program does this by

3

- V. ."

- .%'. 7 -777

-Ti) "fo.-r;o t-e

Reaod Goty U.Lsor Wv,+e..
Worelware. A~u

: .. FaPQr 1m.f rS Corv, 3 ur,:hon P Q

Fig 7. User interface Structure

31

* *7-- . .

displaying a menu of options for each piece of equipment and

allowing the user to make his choice. This section of code

also queries the user about the monitors and their

parameters. The third section of code takes the users

responses and writes a configuration file, called CONFIG,

which can be read by the simulated computer.

32

-a-
. . a a

a4 ~ * . . . a . * ~

7o- 79 77

IV. Verification and Validation

This chapter will discuss the method in which CPESIM

II was tested and the process that occurred in validating

the model. The chapter is broken into two main sections.

The first section will cover the testing hat was performed

to verify that the code was executing as expected. The

second section will discuss the validation process that

occurred in validating the new CPESIM II against the old

CP SIM II.

Verification

The testing of the computer simulation followed the

top down implementation of simul ition progra The coding

of CPESIM II was broken into five parts and the testing f

the program followed these five phases.

-. Main Program Flow. The first phase concentrated on the

testing of the "main" job flow through the computer

simulation. The "main" flow consisted of job arrival, input

queue, hold queue, execute queue, and output queue. There

was not any I/0 implemented in this phase and the monitors

were not operational. Reading job arrivals from the disk,

figuring cpu bursts, writing output to disk files, and

general job flow were the major test objectives demonstrated

in this phase.

433

ke"' '-

Disk I/O and Channel Implementation. The second phase took

the "main" job flow and added unallocatable I/0 devices

(disks) and channels to the network. The main test

objective of this phase was the proper selection of devices

and channels for given I/0 conditions.

Tape I/O Implementation. The hird phase was the

implementation of allocatable 1/O devices (tapes) into the

network. The allocation of the devices in the job scheJuler

module was tested, as well as how the tape drives interacted

with the channels and disk drives.

Software Monitor Implementation. The fourth phase was the

implementation of the software m :itor into the network.

Key factors which were tested are the increase cpu time

required because of the software nonitor and the writing of

the job's queue times to the appropriate disk file.

Hardware Monitor Implementation. The fifth phase

implemented the hardware monitor network. Key factors which

were tested in this phase were the counters and timers for

the cpu, I/0 devices and the channels.

Validation

CPESIM II validation had to be general in nature.

CPESIM II represents a computer in the "general" sense. It

is not a model of any particular computer and can not be

directly compared to one. The simulation should behave like

anyother computer in that changes in the wor.. Ad and

34

...................... ,. .

configuration of the system should have an affect on the

* . turnaround time. In additlo' , CPESIM II could not be

directly compared to CPESIM :or two reasons. First, the

alogorithms used in CPESIM II are different t.. n the

al ~orithms used in CPESIM. Secondly, because of a SLAM

imitation on the Cyber, only about 50 jobs could be handled

by the simulation. Fifty jobs was not sufficient to perform

a 3etail validation of the syste

'.1 ** *.35

V. Summary and Recommendations

Summary

This thesis provides a simulation which aids in the

teaching of CPE to graduate students. The simulation, along

wich instructor provided scenarios, gives the stulent "hands

on" experience in analyzing an,. solving performance problems

in a computer center.

The simulation models a central memory architecture

which has multiple processors, continuous memory, I/0

channels, allocatable I/0 devices, and unallocatable I/0

devices. The operating system is a basic multiprocessing,

multiprogramming, partioned memory operating system. The

12 user is allowed to -odify the configuration of the basic

s stem by changing the input 7onf-iguration file. The

configuration file, along with a workload data file, is

needed to execute the simulation. The output of each

simulation run will consist of account'ng data, and if

requested, monitor data. If the monitors are used, the user

has the choice of a software monitor and/or hardware

monitor. The software monitor records the length of time a

job spends in the queues. The software monitor requires

computer resources like any other job. The hardware monitor

is an event driven monitor which can track timer and counter

data of the cpus, I/0 devices and channels. Unlike the

*1 .36

9p

-J -

software monitor, the hardware monitor does not compete for

computer resources.

The simulation does not implement interactive

processing, computer networking or dynamic memory

allocation. These limitations were imposed upon the

simulation because of the lack of time. These limitations

*-." can be resolved in follow-on eftorts, but at the present

A time the simulation simulates the arrival of jobs by a card

reader and the printing of jobs by a single line printer.

Recommendations

CPESIM II was designed to be the nucleus of a tool

to teach CPE. Several enhancements to both ti . simulation

and its environment are are readily apparent. The following

enhancements coild be made to the simulation software:

1. Most of today's large computer systems are

interactive in nature. The problems associated with an

interactive system cannot be addressed with the present

system, so the adding of remote terminals is a logical

extension to the model.

2. Another area of improvement is in the world of

-" networking or distributive processing. With the advent of

minicomputers and microcomputers, more and more networks

have appeared. It is likely that the students will be

involved with networks and it wLjld be beneficial if they

could study the problems associated with networks.

37

.'.

I- ..., .. ,- --. ... -. -- -.- - -. ---,-- '- ..---- "- - --- ---.-.-, .- -.-- ..,

3. During the development of the simulation,

"" simplifications of a real computer system had to be made.

One of the major simplifications that was made was that I/O

requests were evenly distributed throughout the execution of

a job. It I; unlikely that a job's I/Os are evenly

distributed. The clustering affect of I/Os could easily be

implemented by cianging the subroutine "USER".

In addition to the improvements that could be made

in the simulation, the following are logical extensions to

the front and back e-d of the simulation:

1. The generation of the workload data still uses

the original workload generation program (ref 7). This

program can only generate one job stream at a time and it is

a problem to generale a multiple job stream workload data

file. The ability to easily generate multiple job streams

and changing the program from SIMSCRTPT II to SLAM is a

logical extension.

2. The post processing of the accounting, software

monitor an. hardware monitor data iles also needs to be

written.

3. The tracking of the changes that a student makes

to the simulated environment is presently a manual task by

the instructor. A database which would track the changes to

the configuration would greatly benefit the instructor. In

addition this data base could assess charges to the student

for using different pieces of equipment and making changes

38

-. - . "-

to the system. By adding this change the student would have

incentive to carefully analyze the problem prior to making

changes.

A final recommendation would be to do a careful time

and space analysis. Typical of most simulations, CPESIM II

takes up a large amount of computer time and space. A

typical simulation run of 50 jobs with an average simulated

cpu time of 150 second; a:id 1000 I/Os takes about 400 Cyber

seconds. Because of the time and space required, a careful

analysis of the time and space required by different

simulated cone urations and workloads should be done when

* SLAM is r- ed to handle more han 50 jobs at one time.

q

.-

.9 ,. 39

. * *.,' . .- i,. * .. *, •- '.. -. .. -. . - ,.',.o - - - % .*-.'-.- .&-, • . - .. , • "

Bibliography

1. An Introduction to SADT, Structure Analysis

ard Design Technique," 9022-78R, Softech, Inc., 460
Totten Pond Road, Wltham, MA 02154, November 1976.

2. ------ FORTRAN Extended Vers on 5 Reference
Manual Revision C), Control Data Corp, Sunnyvale, CA,
19I-0. (60481300).

3. ----. SIMCRIPT 11.5 Reference Handout,
CACI, Inc., 12011, San Vicente Blvd., Los Angeles, CA
90049, March 1976.

4. Ageloff, Roy and Mojena, Richard. Applied FORTRAN 77
Featuring Sturctured Programming. Wadsworth Pubilishing
Company, Belmont, CA, 1981.

5. Baer, Jean-Loup. Computer Systems Ar=nitecture.
Computer Science Press, Inc., 11 Taft Court, Rockville,

Maryland 20850, 1980.

6. Bell, T. E., et al. Computer Performance: Analysis:
Fram-work and Initial Phases for a Performance

Improvement Effort. A Report prep.-red for United Stites

Air Force Project Rand, November, 1972. (R-549-l-PR

7. Lewis, Paul C. A Computer Performance Evaluation
Education Tool. MS thesis. Wright-Patterson AFB, Ohio:

Air Force Institure of Technology, Jecember, 1979. (AD

A080154).

8. Madnick, Stuart E. and John J. Dovovan. Operating
Systems. McGraw-Hill Book Company, New York, NY, 1974.

.0

.

9. Nie, Norman H., et al. SPS-S Statistical
Package for the Social Sciences, (Second Editon). New
York, NY, McZ raw-H'L-ilBook-Company, 1975.

A 10. Pritsker, A. Alan B. and Pegden, Claude Dennis.
Introduction to Simulation and SLAM. Halsted Press, New
York, NY, 1979.

fr

41

Appendix A

CPESIM II

SADT Diagrams

A-1

4)

. A• 0

.0 m *

i o

0 -x 1- 0

W w - 0
o o 4 0 4-1 0

4)4. OS

0 1: 3L C.~L

) M Cn 0

4.4.

0 °-

'0 "w '::i .- 2

o $4 =UO
1 .4 4 .-- 44

U, 4.4 C -f)4
'J- .6 4 -4.) (

cU .0 0 aU :
P-4J :34 -4 541

0

W~ 00CU

Ai4

w440. m 4
-4 c 0 . 0

'4 cc 3t U) 00

-i : * 4.)i"".A -2

",,,

"-0I

, o -* |,.,.

j 4-.

.°,

C..),-

, o V,_ ..

C. . . --

.. , -, . - p.4

,.,, p.. - o

-° ° * ,

koo*

'.4.

°x
44G

0 w

(1) U -' '

Sw 5-4 ,4

(D 41 0 w

8 Aj si -44W
* 04w) wu 0)4 .0

*0 '- -4

3J J .0 4-

*4 W 0 t - 4 .0

zOJ- 0
-4 El "4 -4 41

e, 04) cc-40

a4 4.-4 4

WI0 -4
0 0~ 00fJ4

WO j4) "- Q (A

-4.l40 4)

.4j 4. &4 4 -

0 ~ 0 i a

-I. Ai.. M) Li0

.04 4)0

0M 04 0.4- l

0 41 0 > 04

E-4 sw5

0) c J i.44 1 -

00 w w0 -

4) Ai

o40 44 M 4J 0
0 ~ ~ 4 0cc -

-17

o ~ 4jz

Er r

b-4I

E VI'

41. 4*- -

44

0 C/7

-- 5

I f-

C~c ~ .0
o m ~0) 0

o ~ m 0 ~ 0)E..

O..os4.- U, V

Go 4) 0J J.2 0 cr.C:

0) U 0 40£ O q)5 0"-4 0 -

w cc . 2) wIi 0'L

W 00w v j zJM404 J 4
w22 M. m=CU0 wto0 4)

u 4 QJ 14 . 4-i: W
0 (U mU W U4£

1O~ -4 cc 412J.

a cLI 0)~W 4) c Ic.)
cc- 0 a i 4) ") C: -*)U 4 0.

(A 4) -4 2) 0 cc -j 2) = 0 C
a-4 0 = --. CA Ca 0 0 0)

04 0: -1 (L0) ~ U OJ£' O

.-4 0 $.4 j J.J
0 CJ.0 -) 0 0

0 .0 - 0 C 0 J w J 0 CJ So
W = " O a 1) 0 2)

4CI-4 W-MC

.- 4 0 co wUa2

-o 0.O C . ca) cU 2
0.0 0)J (Ui-. (1 -41. (A- 41 Li

-H cc Q 0) u -4 0 US..3 -
0 = = 0 " " 002
5. .5 xJ OX

-4- Q C0.V0J 4 wwC
= .- 4.) 0 -4 - 4 0 Q) 41 "0 =

0 1 4) U2 Q v w U~

A4 .U0 r0 V iJJ -J W2)C .JQ

to o - r - 4J0 W U J - 4 - 4 C

43 5) ~0J cc2 CU4 *
=-£2U = .44 0 co
Ai W4~2 IaJ~ W .)

w X w 0 U)2V.5.

0 "i
'-44- C6O0 MC2 4..'J

LA 4U'J M > 1 -0 W W e4:Ai

$4W0C=W0MU 6

m 41 " o mAi 6 v g

. .-. A - .

-o X

Jl-J

())-
~Co-

2 4..

o4 j

.2 -

LU)

41

41

-4 04

41

0.-

410

UJ4

o 0o
~J41"c

.0 0.

r-4.

41004

000

11-4 r.

.0

0 0V
04a9.4

'4a 0

a).09. C
4J $

-'4. e-4A-8

0 rfn

00

4-D
L

C102

0 0

I., 0

0

0 F04

A-96

0

0

0 0 4)

w0 0 0

o *3 00
0 0 0

U 0. U
0 co 00 1.

o o 4
4f0 14 0

. A.r .0 -
0 coI 0~4

V-4 0 Q -

o alo

0 .0

0 0
4'0 0 4 1

-0 0 -0 0

co -I -10

0.0

0 0 0 a 4

0.- 0 w- 0 41 0

06

-4 0 0 0

A01

.444470

0

c~cc

to

W1 00

-Ew

0U

0

0 0)
j~zA

00

CO

od

0

A-1i1

0 0 0

000a 0 0
0 44.10

00)

w o 0 z
f4 4 0 = 41 U

* 41 4
0.. 05. 93~ 0w

440.0 41U

4.40 0
k.01 4 04.1

00$4 00
01 0. 41 "M

* 06

. 6 . 0 41

~-4£ 0 i

0 4. 6 0 ..0 41

cc 1.0 -F
41 &J'-.

1 .0 a 4

.'. U 0.0.

w 1 040 z
0 *o)-0 0 w

4) 0i6

93 0 0 0. 01 4

*. 0 0 .14
.0 A C:&

*1 Ole 00 44

U. U 410

k0 3 004
) 041 0

0.0~ .
140 41 0. 5

41A- 2~

.

00 in

Qrr

V)
-

00

IAJJ

0 F-4
400

-E-

P -P

u C

64)
~ A-1 3

4.

4.1 "f u

00 1. 0. C
v 541 a4

V 0&
-- 1'4. 41 4.4

0. 41
0 o0

"4 0.* 0

41 la

.u11
q 41 41
1.40 1

V4 .v4 4.1 4

*~r u 0
A.S0 w to

444J 9

Co 4 41

41 r64

4141.0~Ae14

0 '00

coo

a-al
rr) 'I x

-44--

HH

141

W Eq

8-a C0

aH0
C0d

:he4

F-4 HZ

A-1 5

0

0 0

o to 0 .0
4.1 :) 4.1 c

4J 0.0

u 0 0E-
0 4.1

0) 0toc
V 0~

41i~ =40 4

.4J A
u W 0 410

to0 0.0 '0
0 0

4.H 0 v' " 1.1(

0A 0

4-.0 z

IL~j .- i IL)..

U0 00
E-4 0 *1 "0 cc.

44- 0J0

A-4 0.,4c .. 0

0 0o W 0

w4 0 0L. Y(

.0 .0 i~'.A.-16

00

00 17

PL4

-F-

HO__ (3l

UA-1

. I .

Appendix B

CPESIM II

SLAM Network Drawings

B-1

0

HH

I-4 -

U)a
CD

00

0 B-2

77 77 7

0)r

LCCD

LrEl
Nm

0 0

C/)O

-B-

0

I4,

%.U'

C.,

00

0

I- 0

oh

p4 a4

E4

C) .
E-4 "'

0 B-4

" "l:l 0 *

• "-. 1 v 0

'-'-"J* r

c"U= ' 6:t

,'.-." i

.-..-4

Ul -

Oo

o --

x -Mi

r -I'~(z

0

HE-H

C.

-3-5

,-. -' ,' ., .Z. Z. .-' .- .. ,' -.-. ' I'. .-" "- ..- . Z --'.- , '. -' ,,- - -.' .. . 'i _ , . , '" - . . ' _- ZI, -

-44 . -

LL
~~C-4

0

w $4~

I)A

a

'.4r
IE-4

coo

B-

U%

CC

0)0

.43

VV

0

-4-

0 4-0
C) C

H ~E'4

- E-4

0 0

00

o rz
I 0

* B-7

Le

CC

a.pa
ON ;4

LAN

4p

0

393

00

E04

IIE

p B-8

CO I 0

0H
G)

NO

cIcc

E-43
j X ' 0

~I'
A

5
tI CD

3-9

.'

0

• II

0-

L- 000 000 000 6

En0

(L-

0 J

o .~ -,4

N4 C,

X1 000 000 000 0

-'" E

71 HH1.-
cl1

%w

Ell
CA

71 1-110

" | " " '-' ''" ' f - ." -' " 5 - .', " -4 . . .r .. "," " " " " . " " i ; - "

vi cu (n - ~

-4 ASL
Co c-i

0 J

LfI

aat

0

C)4 -3:a

00

0V M

B0 1-

%-

C)

coI

-I 00 000

-4

p44

C4)

WE Q;7
Laa

v.4 to

o(0 000

00

F-44

.fB-1 2

-I.

Appendix C

CPESIM II

Structured English

C-1

Initialization Routine

1. Read CONFIG FILE
2. Initialize the input, hold, output queues and channels

to have 0 resources to start with.

3. Initialize all 'XX' variables.

4. Initialize memory partition sizes.

5. Initialize tape speeds and set them to free status.

6. Initialize disks to be a) available,
b) their associated channel connections,
c) and, define disk speeds.

7. Initialize disk count, disk start time, and disk time
for each disk to 0 (used in H/W monitor).

8. Initailize tape count, tape start time, and tape time
for each tape to 0 (used in H/W monitor).

9. Open job stream, s/w monitor and h/w monitor files

10. Call ARIV at time 0.0

I i

L

'" C-2

Subroutine ARVL (Job Arrival -Event 1)

1. Read nex.. job's atributes from workload file

2. Initialize cpu time used and i/o time used to 0.0

3. Initialize time of last I/0 and time of last tape I/0 to
. 0.0

5. Initialize cpu time left to cpu time required.

5. Schedule job arrival into the network.

0.0
5.Iii6z p ielf ocutm eurd

5.ShdlIo ria notentok

nC-

Il

Subroutine ISPO (Put Input Spooler in Hold Q - Event 2)

1. Set arrival time to tnow

2. Set memory size to 4k

3. Set Job Type to 'spooler'

4. Set cpu time used to total cpu time used by the input

spooler

5. Initialize all other atributes to 0.0

6. Put spooler into holdq

'..

c-4

. . . . I. .

Subroutine ENTI (Put Job into Input Queue - Event 3)

1. Enter job into network.

2. Call ARVL (to find out when next job should arrive).

4

4

-. C-5

;, 4 - . '. .- "

-,

Subroutine CPU (CPU Burst - Event 4)

1. cpu-start-time - tnow

• - if h/w-mon - 'on' then
h/w-mon-count - h/w-mon-count + I

2. If s/w-monitor not on then
cpu-ratio - 1.0

else
cpu-ratio = .95

3. If JOB-TYPE - 'user' then CALL USER

4. If JOB-TYPE - input spooler" then CALL SPOOL

5. If JOB-TYPE ' output spooler" then CALL OSPOL

6. If JOB-TYPE - 's/w monitor' then CALL SMON

7. If JOB-TYPE = Job scheduler' then CALL JSCHD

8. If JOB-TYPE not equal to one of the above write error

C-6

:-. C- 6

,, " .. . - . .'. . . - . . , _- .

" :Subroutine USER (User CPU Burst - call by cpu)

1. Calculate intermediate variables.
cpu time used - cpu time required - cpu time left
i/o-time - time-last-i/o + time-between / cpu-ratio
tape-time - time-last-tape + time-between-tape /

cpu-ration

2. /* check for job complete */

If (cpu-time-left /cpu-ratio time-slice) and

((cpu-time-left / cpu-ratio) (i/o-time)) and

((cpu-time-left / cpu-ratio) (tape-time)) then

/* schedule completion of job */
CALL SCHDL(7,tnow + (cpu-time-left /

cpu-ratio) ,atrib)
/* collect cpu timer data for h/w monitor */

if h/w-mon - 'on' then
cpu-timer cpu-timer + cpu-time-left /

cpu-ratio

return
end if

3. /* check for disk io */

If ((i/o-time) (tape-time)) and
((i/o-time) (tnow + time-slice)) then

/* schedule time of disk request */
CALL SCHDL (8,i/o-time,atrib)

/* collect cpu timer data for h/w monitor */
if h/w-mon - 'on' then

cpu-timer cpu-timer + tnow - i/o-time

exit
end if

4. /* check for tape i/o */
If (tape-time (tnow + time-slice)) then

/* schedule time of the tape request */

CALL SCHDL (9,tape-timeatrib)

/* collect cpu timer data for h/w monitor */
if h/w-mon - on' then

cpu-timer - cpu-timer + tnow - tape-time

* 5. If is none of the above it must be a time out

C-7

/* schedule time-out *
CALL SCHDL (lO,tnow + time-slice,atrib)

/* collect cpu timer data for h/w monitor *
If h/v-mon - 'on' then

cpu-timer -cpu-timer + time-slice

C-8

. . - . ..o . - .'.

Subroutine JSCHD (Job Scheduler - called by CPU)

1. for I l,num-in-holdq do
begin

While (J .LE. number-of-partitions) and
(found = false) do

begin
if size-of-partion .GT. memory-needed and

(partion - free) then
begin

if (num-of-free-allocatable-devices .GE.
atrib(6)) then

begin
acquire partition
memory size used - partion size
Call ATAPE (acquire number of tapes

required)
get job from holdq
insert job into execq
if s/w-monitor - on' then

call userf(23);
found - true

end if
end if

end while
end for

2. /* collect cpu timer data for h/w monitor */
if h/w-mon - 'on- then

cpu-timer - cpu-timer + job-sched-cpu-time

3. set job scheduler in execq flag to false

/* schedule the completion of job scheduler */
4. CALL SCHDL(18,job-sched-cpu-time, atrib)

C

c-.

* . . .

Subroutine SPOOL (Input Spooler - called by CPU)

i 1. /* collect cpu timer data for h/w monitor */
if h/w-mon - 'on' then

cpu-timer - cpu-timer + spool-cpu-time

2. if spool-status - 0 then
/* if start of new Job spooling */
if num-in-inputq not - 0 do
begin
copy job atributes from inputq
num-cards-left - cards
if s/w-mon - 'on' then call event(23)
CALL SCHDL(ll,tnow + spool-cpu-timeatrib)

end if

end if spool-status - 0

3. if spool-status - 1
/* write buffer to disk */

begin
/* schedule completion of cpu portion then

do i/o */
CALL SCHDL(8,tnow + spool-cpu-timeatrib)

end if

4. If spool-status - 2 then
/* read cards onto disk */

begin

CALL SCHDL(ll,tnow + spool-cpu-time,atrib)
end If

C-10

hi

t .. ** ."~. *

Subroutine OSPOL (Output Spooler -called by CPU)

* - 1. 1* collect Cpu timer data for h/v monitor *
*if h/v-mon - on' then

cpu-timer - cpu-timer + spool-cpu-time

2. if ospool-status = 0 then
1* start of new Job *
begin

get job from outq
if s/v-mon - 'on' then call userf(23)
1* do disk i/o *
CALL SCHDL(8,tnow + spool-cpu-time,atrib)

end if
-' end if ospool-status - 0

3. if ospool-status - 1
1* write buffer to printer ~

begin
CALL SCHDL(14,tnov + spool-cpu-time,atrib)

end if

4. if ospool-status -2 then
/* load buffer from disk *

begin
/* do disk i/o *
CALL SCHDL(8,tnov + spool-cpu-time,atrib)

end if

C-11

Subroutine SMON (S/W Monitor - called by CPU)

1. s/w-mon 'on'

2. free cpu /* Note that the s/w monitor doesn't take
cpu time */

'

gC-1

Subroutine LJSCH (Load Job Scheduler into EXECQ -Event 5)

* . 1. Initialize job scheduler atributes
a. Arrival time tnov
b. Job Name = 888 (dummy name)
c. Job Type - job scheduler
d. all others - 0.0

2. Put job scheduler into EXECQ

3. Set job scheduler in EXECQ flag to true

C-13

Il' . .. t n~ nn ! n ! -I -~t -[-t *m _ l 4 n , , , ,? , - t -- - .

.

- , Subroutine LOSPL (Load Out Spooler into HOLD Q - Event 6)

1. Set ospooleron flag to on

2. Initialize output spooler atributes
a. Arrival time - tnow
b. Job Name - 998 (dummy name)
c. Memory size - 4.0 k
d. Job Type output spooler
e. CPU Time Used = Total CPU Time Used

by Output Spooler
f. All other atributes - 0.0

3. Put output spooler into hold queue

.

" C-14

4 .

.

-..-. r r• .. . r

Subroutine 7 Job Complete

1. If s/w mon on' then call event(23)

2. cpu-time-used - cpu-time-used + (tnow - cpu-start-time)

3. move job into outq

4. Free cpu

5. Free memory partion

6. Free tapes

7. Put job-scheduler into execq (if it is already there)

€-C

w

" C-1 5

...

Subroutine DISKS (Disk 1/0 Event 8)

1. cpu-time-used cpu-time-used + (tnow - cpu-start-time)
*.cpu-time-left =cpu-time-left -(tnow -cpu-start-time)

*cpu-ratio

start-io -triow

2. free cpu

3. Look up next-disk
Disk used =next-disk

If h/w-mon ' on' then
disk-count(X) -disk-count(X) + 1

* . disk-start(X) - tnow

* *4. Update next-disk

5. Await Disk "X" (in SLAM Disk Network)

C.-16

Subroutine 9 Tape I/0

1. cpu-time-used =cpu-time-used + (tnow -cpu-start-time)

cpu-time-left cpu-time-left -(tnow -cpu-start-time)

* cpu-ratio
start-ia tnaw

2. free cpu

3. Look up next-tape
If h/v-mon - 'on' then

tape-count(X) = tape-count(X) + 1
tape-start(X) - tnov

4. Update next-tape

5. Look in matrix for channels for tape "X"

6. Find smallest channel q and put job in channel q

7. Await data-rate portioa of channel

8. If h/v-mon - on' then
tape-timer(X) - tape-timer(X) + (tnow +

tape-speed(X)) - tape-start(X)
channel-time(q) - channel-timer(q) + tape-speed(X)

9. CALL SCHDL(46,tnow + tape-speed(X),atrib)

C-1 7

7 AD-A13 116A CPESIM : ACOMPUTER SSEM SIMULATION
FORCOMPUTER

1I
PERFORMANCE EVALUATION USE(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF END 0 DL OWEN

U~AED EC8 FGSEEhE.EEE /G 92 .E

111111..0111IIII 1 lo 2

li2IN Ill U IL

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

Subroutine TIMEO (Time Out - Event 10)

1. cpu-time-used - cpu-time-used + (tnov - cpu-start-time)

2. cpu-time-left - cpu-time-left -(tnov - cpu-start-time)
*cpu-ratio

3. Free cpu

* 4. Place job back into execq

c-18

Suroutine RCARD (Read Cards into Buffer - Event ii)

1. cpu-time-used - cpu-time-used + (tnow - cpu-start-time)
* cpu-ratio

Note: cpu time for spooling is charged to job but
is not counted against the job's cpu time required

to execute the job.

2. If num-cards-left buff-size then
num-cards-read - hum-cards-left

else
nue-cards-read - buff-size

3. num-cards-left - cue-cards-left - cue-cards-read

4. Free cpu

5. /* Schedule completion of loading buffer */
CALL SCHDL(l4,card-speed,atrib)

C-19

, - A

Subroutine DCOMP Disk Transfer Completed - Event 12)

1. Free channel of portion job was using

2. Free disk

3. i/o-time-used - i/o-time-used + (tnow - start-io)

4. if JOB-TYPE - 'user'
time-last-i/o - tnow
Put job back into execq

end if

5. If JOB-TYPE - "spooler' then
begin

/* check for completion of spooling */
if num-cards-left .LE. 0 then

begin
spool-status - 0
insert job and its atributes into holdq
if num-in-inputq not - 0 then

begin
put spooler back into execq

end
else
begin

spooleron - 0
free memory partion of spooler
put job-scheduler in execq

end if inputq not - 0
end

else
begin

spool-status - 2 /* ready to read more cards */
put spooler back into execq

end if

end if

6. If JOB-TYPE - 'outepooler ° then
begin
ospool-status - I /* ready to print buffer 5/

put ospooler back into execq
end if

C-20

. = _ ,_ _-' -- -

Subroutine TCOMP (Tape I/0 Completion - Event 13)

1. Time-last-tape-i/o- tnOw

2. Free channel of portion job was using

3. i/o-time-used - i/o-time-used + (tnow - start-to)

4. Insert job into execq

C 2." C-21

4.

II 'I II III I " T---------- ----------....-------........---..................

Subroutine FULLB (Finish Loading Buff v/ Cards -Event 14)

1. 1* Ready to read buffer to disk *
Spool-status -

2. Insert spooler back into execq

C-22

4 -

Subroutine CHANL (Find Channel - Event 15)

1. Look in matrix for channels for disk "X"

2. Find smallest channel q and put job in channel q
If h/w-mon - 'on' then

channel-count(q) - channel-count(q) + 1

3. Await data-rate portion of channel (in SLAM
Channel Network)

. C-23

Subroutine DTRAN (Disk Transfer -Event 16)

1.if h/v-mon - 'on' then
disk-timer(X) - disk-timer(X) + rnow +

disk-speed(X) - disk-start(X)

channel-timer(q) - disk-speed(X)

2. /* Schedule completion of disk transfer *
CALL SCHDL(12,tnov + disk-speed(X),atrib)

I C-24

Subroutine FPRNT (Finished Print Buff - EVENT 17)

1. If nun-lines-left - 0 then
begin

ospool-status - 0
release job from outq

if s/wmon - on then event(23)
if num-in-outq - 0 then

begin
free memory-partion of outspooler
ospool - 0
ospooleron = 0
put job scheduler into execq

else
begin

ospool-status - 0
put outspooler back into execq

end if
end
else
begin

ospool-status - 2

put outspooler back into execq

end if

C-25

I Subroutine JSCOM (Job Scheduler Completion -Event 18)

1. Free Cpu

2. Job-ached-cpu-used mjob-sched-cpu-used +
(tnow - cpu-start-time)

C-26

Subroutine ACTLG (Accounting Data - Event 19)

1. Write arrival-time, cpu-time-used, memory-used,
i/o-time-used, priority, allocated-devices,
and tnow to accounting data file.

Note: alot more data is available for accounting data, if
desired.

CI

Subroutine HWMON (H/W Monitor Collection - Event 20)

1. Write tnow, cpu-counter, cpu-timer, all disk, tapes, and
channels counters and timers to the h/w monitor raw data
file.

2. Reset counters and timers to zero

C-28

Subroutine LSMON (Turn S/W Monitor On -Event 21)

1. Open s/w monitor raw data file

2. Insert s/v monitor into hold queue

C-29

Subroutine ESMON (Turn S/W Monitor Off - Event 22)

1. Close s/w monitor raw data file

2. Free memory partition

3. Put Job scheduler into execq

C-30

H[

4 Subroutine SMtON (Write S/W Monitor Data - Event 23)

1. Write qname, (time-entered - tnow), input-from, and
output-to to S/W Monitor file.

5 C-31

Subroutine PBUFF (Print Buffer - Event 24)

1. cpu-time-used cpu-time-used + (tnow - cpu-start-time)

Note cp tie *cpu-ratio
Not: cu tmefor spooling is charged to job but is not

counted against the job's cpu time required to execute the
job.

2. Free cpu

3. if num-lines-left buf-size-lines then
num-lines-printed - num-l ines-left

else
num-lines-print - buf-size-lines

4. num-lines-left =num-lines-left - num-lines-printed

5. /* schedule completion of printing *
CALL SCHDL(17,tnow + num-lines-printed*

printer-speed, atrib)

C-3 2

Appendix D

CPESIM 11

Code

D- 1

C
C DATE: 5 DEC 1983
C
C VERSION: 1.0
C
C TITLE: CPESIM II Discrete File
C FILENAME: SIMF
C AUTHORt: David L. Owen
C SOF'IWARE SYSTEM: CPESIM II
C USE: Used in combination with SIMS to run CPESIM*
C CONTENTS: EVENTS 1-24, INTLC, EVENT, ATAPE,
C JSCUD, OSPOL, SPOOL, SSMON, USER, USERF
C FUNCTION: Performs the discrete portion of CPESIM*
C*

C
PROGRAM MAIN(INPUT,OUTPUT,TAPE5-INPUT,TAPE6-OUTPUT,TAPE7,TAPE11,

1TAPE12, TAPE 13, TAPE 14, TAPE15)
DIMENSION NSET(20000)
COMHON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNII,II,MFA,MSTOP

1,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(10O)
1,SSL(100),TNEXT,TNcM ,XX(100)
COHMON/UCOMl/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNT(1O), DSTRT(I0), DSUH(1O),DFINC1O),
1 CCNT(5), CSUM(5), CFIN(5), CSmRT(5), RCNT,RSIRT,RFIN,RSUM,
1 PCNT, PS11RT, PFIN, PSUM
COMON/UCOM3/TAP(l0,7), TCNT(1O), TSTRT(1O), TSUN(lO),TFIN(IO)
COMMON/UCOM4/CARD(6) ,PRNTR(6)
COMHON/UCOM5/IQ(5)
COMMON QSET(20000)
EQUIVALENCE (NSET(1), QSET(1))
NNSET - 20000
NCRDR - 5
NPRNT - 6
NTAPE - 7
CALL SLAM
STOP
END

D-2

C
C DATE: 5 DEC 1983
C VERSION: 1.0*
C*
C NAME: INTLC*
C EVENT NUMBER: N/A*
C FUNCTION: Initialize simulation*
C FILES READ: CONFIG
C FILES WRITTEN: none.*
C EVENTS CALLED: 21, 20, 1
C CALLING EVECNTS ,tie.*
C SUBROUTINES CALLED: ALTER*
C CALLING SUBROUTINES: none.*
C
C AUTHOR: David L. Owen*
C HISTORY: n/a.*
C*

SUBROUTINE INTLC
COIIMON/SCOMI/ ATRIB(100),DD(100),DDL(100),DTNOi,II,MFA,MSTOP

1,NCL1II,NCRDR,NPRNT,NNRUN,NNSET,NTAPESS(100)
1.,SSL(100),TNEXT,TNOW,XX(100)
COMMON/UCOMI/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(10,7), DCNT(1O), DSTRT(1O), DSUM(10),DFIN(1O),
1 CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNTRSRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM
CoUMON/UCON3/TAP(10,7), TCNT(I0), TSTRT(1O), TSUM(l0),TFIN(1O)
COMMONIUCOM4/CARD(6),FINTR(6)
COKMN/UCON5/IQ(5)
COMMON/UCOM6/II'3OBE(5)

DIMENSION DSPEED(10),DCOST(IO),TSPEED(10),TCOST(IO),
I CSPEElD(5),CCOST(5),
I PART2(20),IDISK(10,5),

CHARACTER DNANE(10)*20, TNAKE(1O)*20, CNAME(S)*20,

1 RNAM*20,PNAM*20, t1J4*20,SANSWR*1,ANSWR*1,CRATE*20

REAL HSEC

PARAMETER (FREE - 0.0, BUJSY - 1.0, OFF - 0.0, ON - 1.0)

C*** OPEN CONFIGURATION FILE
OPEN(UNT-5,FILE-'TAPE15 ,STATUS-0OLD',ERR-990,IOSTAT-IOS,

I ACCESS--SEQUKNTIAL-, FORM--FORKATTED)

A D-3

C** READ MOTA, FROM CONFIGUARATION FILE

C** NUMBER OF CPUS
READ (UNIT-15,FMT-100, IOSTAT-IOS,ERR-999)NCPUS

C** TYPE OF CPU
READ (UNIT-i 5, FHT-1O1 ,IOSTAT-IOS, ERR-999)
1 UNALME,USPEED,UCOST

C** TIME SLICE
READ (UNIT-15,FMT-104, IOSTAT-IOS,ERR-999)TSLICE

C** READ NUMBER OF MEMORY PARTIONS
READ (UNIT-iS, FMT-1 00, IOSTAT-IOS, ERR-999)NPARTS

C*** READ SIZE OF MEMORY PARTIONS
DC 40 I1INPARTS

READ (UNIT-15,FMT-104, IOSTAT-IOS ,ERR-999)PART2(I)
40 CONTINUE
C*** READ NUMBER OF CHANNELS

READ (UNIT-15,FMT-100, IOSTAT-IOS,ERR-999)NCHAN
C*** READ CHANNEL'S NAME, SPEED AND COST

DO 41 I-1,NCHAN
READ (UNIT-15,FMT-1O1, IOSTAT-IOS,ERR-999)

1 CNAME(I),CSPEED(I),CCOST(I)
41 CONTINUE
C*** READ NUMBER OF DISKS

READ (UNIT-15,FMT-100, IOSTAT-IOS,ERR-999)NDISK
C*** READ DISK'S NAME, SPEED, COST AND CHANNEL CONNECTIONS

DO 42 I-1,NDISK
READ (UNIT-15,FKT-105, IOSTAT-IOS,ER.R-999)

42 1 DNAME(I) ,DSPEED(I),DCOST(I),(IDISK(I,K),K-1,5)
42 CONTINUE

C*** READ NUMBER OF TAPES
READ (UNIT-15,FMT-100, IOSTAT-IOS,ERR-999)NTAPE

C*** READ TAPE-S NAME, SPEED, COST AND CHANNEL CONNECTIONS
DO 43 I-1,NTAPE

READ (UNIT-15,FMT-105, IOSTAT.IOS,ERR-999)
1 TNAME(I),TSPEED(I),TCOST(I),(ITAPE(I,K),K-1,5)

43 CONTINUE
C*** READ CARD READER'S NAME, SPEED, COST AND CHANNEL CONNECTIONS

READ (UNIT-15,FMT-105, IOSTAT-IOS,ERR-999)
1 RNAME,RSPEED,RCOST,(IREAD(K) ,K-1,5)

C*** READ LINE PRINTER-S NAME, SPEED, COST AND CHANNEL CONNECTIONS
READ (UNIT-i 5, FMT-1 05, IOSTAT-IOS,ERR-999)
I PNAME,PSPEED,PCOST,(IPRINT(K),K-1,5)

C*** READ IF SOPNWARE MONITOR IS DESIRED
READ (UNIT-15,FMT'106, IOSTAT-IOS,ERR-999)SANSWR

C*** READ START TIME, STOP TIME, AND QUEUES IF DESIRED
IF (SANSWR .EQ. -Y-) THEN

READ (UNIT-15,FMT-107, IOSTATuIOSERR-999)
1 ISDAY, ISHOUR, ISMIN, SSEC

READ (UNIT-15,FMT-107, IOSTAT-IOS,ERR-999)

D-4

1 JSDAY,JSHOLIR, JSMIN, SSSEC
READ (UNIT-I5,FMT-1O9,IOSTAT-IOS,ERR-999)(ISWMQ(I),I-1,5)

END IF
C'*** READ IF HARDWARE MONITOR IS DESIRED

READ (UNIT-15, FMT-106, IOSTAT-IOS ,ERR-999)HAN9.JR
C** READ START TIME, STOP TIME, TIMERS AND COUNTERS IF DESIRED

IF (HANS'JR .EQ. -Y-) THEN
READ (UNIT-15,FHT-107,IOS~hT-IOS,ERR-999)

1 IRDAY, IHHOUR, IHMIN,HSEC
READ (UNIT-15,FMT-107, IOSTAT-IOS,ERR-999)

1 JHDAY, JHHOUR, JHMIN, SHSEC
READ (UNIT-15,FMT-104, IOSTAT-IOS,ERR-999)RATEIJ
READ (UNIT-15,FMT-109, IOSTAT-IOS,ERR-999)

1 IHTIMI,IHTIM2,(IHWCNT(I),Inl,3)
END IF

100 FORMAT(12)
101 FORMAT(A20,lX,F1O.4,IX,F8.2)

103 FORMAT(15)
104 FORMAT(T22,FIO.4)
105 FORMAT(A20,1XF10.4,lX,F8.2,lX,5(lX,I1))
106 FORMAT(Al)
107 FORMAT(T22,3(14,IX),F8.4)
109 FORMAT(5(I2,lX))

PRINT *,-CONFIGUJRATION FILE READ SUCCESSFULLY'

C*** PRINT DATA FROM CONFIGUARATION FILE

C** NUMBER OF CPUS
PRINT *,NCPUS

C*** TYPE OF CPU
PRINT *,UNAME,USPEED,UCOST

C** TIME SLICE
PRINT *,'TIME SLICE - ',TSLICE

C*** PRINT NUM4BER OF MEMORY PARTIONS
PRINT *,NPARTS

C** PRINT SIZE OF MEMORY PARTIONS
DO 240 I-1,NPARTS

PRINT *,I,PART2(I)
240 CONTINUE
C*** PRINT NUMBER OF CHANNELS

PRINT *,NCHAN
C*** PRINT CHANNEL'S NAME, SPEED AND COST

DO 241 1-INCAN
PRINT *.CNAME(I),CSPEED(I),CCOST(I)

D-5

241 CONTINUE
C*** PRINT NUMBER OF DISKS

PRINT *,NDISK
C*** PRINT DISK-S NAME, SPEED, COST AND CHANNEL CONNECTIONS

DO 242 I-1,NDISK
PRINT *,DNAME(I),DSPEED(I),DCOST(I),

1 (IDISK(I,K),K-1,5)
242 CONTINUE
C*** PRINT NUMBER OF TAPES

PRINT *,NTAPE
C*** PRINT TAPE'S NAME, SPEED, COST AND CHANNEL CONNECTIONS

DO 243 I-1,NTAPE
PRINT *,TNAME(I),TSPEED(I),

1 TCOST(I),(ITAPE(I,K),K-1,5)
243 CONTINUE
C*** PRINT CARD READER'S NAME, SPEED, COST AND CHANNEL CONNECT

PRINT *,RNAME,RSPEED,RCOST,
1 (IREAD(K),K-1,5)

C*** PRINT LINE PRINTER'S NAME, SPEED, COST AND CHANNEL CONNECTIONS
PRINT *,PNAME,PSPEED,PCOST,

1 (IPRINT(K),K-1,5)
C*** PRINT IF SOFTWARE MONITOR IS DESIRED

PRINT *,SANSWR
C*** PRINT START TIME, STOP TIME, AND QUEUES IF DESIRED

IF (SANSWR .EQ. -Y-) THEN
PRINT *, ISDAY, ISHOUR, ISMIN, SSEC
PRINT *,JSDAY,JSHOUR,JSMIN,SSSEC

PRINT *,(ISWMQ(I),I1,5)
END IF

C*** PRINT IF HARDWARE MONITOR IS DESIRED
PRINT *,HANSWR

C*** PRINT START TIME, STOP TIME, TIMERS AND COUNTERS IF DESIRED
IF (HANSWR .EQ. -Y-) THEN

PRINT *,IHDAY,IHHOUR,IHMIN,HSEC
PRINT *, JHDAY, JHHOUR, JUMIN, SHSEC
PRINT *,RATEHW
PRINT *,IHTIM1,IHTIM2,(IHWCNT(I),I1-,3)

END IF

C*** INITIALIZE SIMULATION VARIABLES

C*** MAKE THE INPUT QUEUE HAVE 0 RESOURCES AT START OF PROGRAM
CALL ALTER(1,-1)

C*** MAKE THE HOLD QUEUE HAVE 0 RESOURCES AT START OF PROGRAM
CALL ALTER(2,-I)

D-6

C*** CONFIGURE MODEL TO HAVE THE RIGHT NUMBER OF CPUS
NCPUS - NCPUS - 1
CALL ALTER(3,NCPUS)

C*** MAKE THE OUTPUT QUEUE HAVE 0 RESOURCES AT START OF PROGRAM

CALL ALTER(4,-l)

C*** INITIALIZE SPOOLERON FLAG
XX(1) - OFF

C*** INITIALIZE S/W MONITOR FALG
XX(2) - OFF

C*** INITIALIZE NUMBER OF MEMORY PARTIONS
XX(3) - NPARTS

C*** INITIALIZE PARTITION SIZES AND STATUS
DO 5 I-1,XX(3)

PART(I,1) - PART2(I)
PART(I,2) - FREE

5 CONTINUE
TEMP - XX(3) + I
DO 6 I-TEMP,20

PART(I,1) - 0.
PART(I,2) - BUSY

6 CONTINUE

C*** INITIALIZE THE CPU TO RUN AT 100% CAPACITY
C*** NOTE: WHEN S/W MON IS RUNNING IT GETS SET TO 95% BY SSMON

XX(5) - 1.0
C*** INITIALIZE RELATIVE CPU RATIO

XX(6) - USPEED
C*** INITIALIZE TIME SLICE (IN SECONDS)

XX(7) - TSLICE

C*** INITIALIZE NUMBER OF TAPE DRIVES
XX(9) - NTAPE

C*** INITIALIZE NUMBER OF AVAILABLE TAPE DRIVES
XX(1O) - XX(9)

C*** INTALIZE TAPES SPEED AND STATUS
DO 7 I-1,XX(9)
TAPE(I,l) - TSPEED(I)
TAPE(I,2) - FREE
TAPE(I,3) - 0.

7 CONTINUE
C*** INITIALIZE TAPES CHANNEL CONNECTIONS AND SPEED

DO 11 I=I,XX(9)
DO 60 K-1,5
TAP(I,K) = ITAPE(I,K)

60 CONTINUE
TAP(I,6) - TSPEED(I)

D-7

TAP(I,7) - 0.
11 CONTINUE
C*** INITIALIZE NEXT TAPE

XX(24) - 0.

C*** INITIALIZE JOB SCHEDULER IN EXECQ FLAG
XX(11) - OFF

C*** INITIALIZE OSPOOLERON FLAG
XX(12) - OFF

C*** INITIALIZE CPU TIME REQUIRED FOR JOB SCdEDULER
XX(13) - 3.0

C*** INITIALIZE CPU TIME FOR INPUT SPOOLER TO EXECUTE
XX(14) - .001

C*** INITIALIZE INPUT SPOOLER STATUS TO A NEW JOB
XX(15) = 0.0

C*** INITIALIZE OUTPUT SPOOLER STATUS TO A NEW JOB
XX(16) - 0.0

C*** INITIALIZE BLOCK SIZE (BYTES)
XX(17) - 1024.

C*** INITIALIZE CARD READER SPEED (CARDS/MINUTE)
XX(18) - RSPEED

C*** INITIALIZE CARD RECORD SIZE (BYTES)
XX(19) - 80.

C*** INITIALIZE CARDS PER BUFFER
XX(20) - NINT((XX(17) / XX(19)) - .5)

C*** INITIALIZE CARD READER SPEED AND CHANNELS
DO 64 1-1,5

CARD(I) - IREAD(I)
64 CONTINUE

C*** INITIALIZE NEXT DISK
XX(21) - 1

C*** INITIALIZE NUMBER OF DISK DRIVES
XX(22) - NDISK

C*** INITIALIZE DISKS CONNECTIONS AND SPEEDS
DO 8 I-,XX(22)

DO 61 K-1,5
DISK(I,K) - IDISK(I,K)

61 CONTINUE
DISK(I,6) - DSPEED(I)

8 CONTINUE

C*** INITAILIZE NUMBER OF CHANNELS
XX(23) - NCHAN

C*** SET CHANNEL DATA RATE FLOW
DO 65 I-I,NCHAN

ITEMP = CSPEED(I)
ITEMP2 " 30 + I
CALL ALTER (ITEMP2, ITEMP)

D-8

65 CONTINUE

C*** INITIALIZE PRINTER SPEED (LINES PER MINUTE)
XX(25) - PSPEED

C*** INITIALIZE LINE RECORD SIZE (BYTES)
XX(26) - 132.

C*** INITIALIZE LINES PER BUFFER
XX(27) - NINT(XX(17) / XX(26) - .5)

C*** INITIALIZE LINE PRINTER CHANNEL CONNECTIONS
DO 62 1-1,5

PRNTR(I) - IPRINT(I)
62 CONTINUE

C*** INITIALIZE H/W MONITOR FLAG
XX(30) - OFF

C*** INITIALIZE CPU COUNTER FOR H/W MONITOR
X(31) - 0.

C*** INITIALIZE CPU SUM FOR H/W MONITOR
XX(32) - 0.

C*** INITIALIZE H/W MONITOR START/STOP TIME AND INTERVAL
IF (HANSWR .NE. -Y-) THEN

C* INTIALIZE TO INFINITE AND NO PROBE CONNECTIONS
XX(33) - 999999999.
XX(34) - 999999999.
XX(35) - 999999999.
IPROBE(1) - 0
IPROBE(2) - 0
IPROBE(3) - 0
IPROBE(4) - 0
IPROBE(5) - 0

ELSE
XX(33) - (IHDAY * 86400.) + (IHHOUR * 3600.) +

I (IHMIN * 60.) + HSEC
XX(34) - (JHDAY * 86400.) + (JHHOUR * 3600.) +

I (JHMIN * 60.) + SHSEC

XX(35) - RATEEI
IPROBE(l) - IHTIMI
IPROBE(2) - IHTIM2
IPROBE(3) - IIICNT(1)
IPROBE(4) - IIHCNT(2)
IPROBE(5) - IIMCNT(3)

END IF

C*** INITIALIZE CPU START TIME FOR H/W MONITOR
XX(36) - -1.0

C*** INTIALIZE CPU FIN TIME FOR H/W MONITOR
XX(37) - 0.

C*** INITIALIZE TOTAL CPU TIME USED BY INPUT SPOOLER
XX(40) - 0.

D-9

C**INITIALIZE TOTAL CPU TIME USED BY OUTPUT SPOOLER
XX(41) - 0.

C** INITIALIZE TOTAL CPU TIME USED BY JOB SCHEDULER
XX(42) - 0.

C*** INITIALIZE S/W MONITOR START/STOP TIME AND QUEUES
IF (SANSWR .NE. Y') THEN

XX(43) - 999999999.
XX(44) - 999999999.
IQ(I) 0
IQ(2) =0

IQ(3) =0

IQ(4) =0

IQ(5) =0

ELSE
XX(43) - (ISDAY * 86400.) + CISHOUR * 3600.) +
1 (ISMIN * 60.) + SSEC
XX(44) - (JSDAY * 86400.) + (JSHOUR * 3600.) +
1 (JSMIN * 60.) + SSSEC
DO 98 1-1,5

IQ(I) - 134MQ(I)
98 CONTINUE

END IF

C*** OPEN JOB STREAM FILE
OPEN(UNIT-l11,FILE-=TAPEII',STATUS-'OLD',

1 ACCESS--SEQUENTEAL-,FORM--FORI.ATTED-)

C** OPEN ACTIVITY LOG FILE
OPEN(UNIT12,FILE=TAE2,STATUS-NEM,

I ACCESS--SEQUENTIAL-,FORM--FORMATTED-)

IF (SANSWR .EQ. -Y-) THEN
C*** OPEN S1W MONITOR DATA FILE

OPEN(UNIT=14, FILE-=TAPE14 ,STATUS='NEIC,
1ACCESS--SEQUENTIAL-,FORM--FORMATTED-)

C*** SCHEDULE START OF S/N MONITOR
CALL SCHDL(21,XX(43),ATRIB)

END IF

IF (HANS.JR .EQ. -Y-) THEN
C*** OPEN H/N MONITOR DATA FILE

OPEN(UNIT-13, FILE-'TAPEI3,STATIS-'NEW',
IACCESS--SEQUTIAL,FORM-FORMATTED-)

C*** SCHEDULE START OF H/N MONITOR
CALL SCHDL(20,XX(33),ATRIB)

C*** SCHEDULE STOP OF H/N MONITOR
CALL SCHDL(20,XX(34),ATRIB)

D-1 0

END IF

DO 860 1-1,44

PRINT *,'XX(',I,') = ",XX(I)
860 CONTINUE

C*** SCHEDULE THE READING OF THE FIRST JOB'S ATRIBUTES
CALL SCHDL(I,0.,ATRIB)

RETURN

990 PRINT *,-ERROR IN OPENING CONFIG FILE IOSTAT = ',IOS
RETURN

999 PRINT *,-ERROR IN READING CONFIG FILE IOSTAT = ",IOS
RETURN
END

D-1I

mob--

C *

C DATE: 5 DEC 1983 *

C VERSION: 1.0 *
C *
C NAME: EVENT *

C EVENT NUMBER: N/A *
C FUNCTION: CALLS DIFFERENT EVENTS ACCORDING TO THE *

C EVENT NUMBER PASSED. *
C FILES READ: NONE. *

C FILES WRITTEN: NONE *

C EVENTS CALLED: 1 - 24
C CALLING EVENTS: ALL *

C SUBROUTINES CALLED: NONE. *

C CALLING SUBROUTINES: ALL *

C *
C AUTHOR: DAVID L. OWEN *

C HISTORY: N/A *

C *

SUBROUTINE EVENT(I)
COMMON/SCOMl/ ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP

1,NCLNR,NCRDR,NPRNTNNRUN,NNSET,NTAPE,SS(100)
1,SSL(100),TNEXT,TNOW ,XX(100)

GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
1 18,19,20,21,22,23,24),I

C*** ARRIVAL OF JOB AT CARD READER
1 CALL ARVL

RETURN

C*** PUT INPUT SPOOLER INTO HOLD QUEUE
2 CALL ISPO

RETURN

C*** PUT JOB INTO INPUT QUEUE
3 CALL ENTI

RETURN

C*** PERFORM CPU BURST
4 CALL CPU

RETURN

C*** LOAD JOB SCHEDULER INTO EXECUTE QUEUE
5 CALL LJSCH

RETURN

C*** LOAD OUTPUT SPOOLE INTO SYSTEM

D-12

6 CALL LOSPL
RETURN

C*** USER JOB COMPLETE
7 CALL JCOMP

RETURN

C*** PERFORM DISK I/O
8 CALL DISKS

RETURN

C*** PERFORM TAPE I/O
9 CALL TAPES

RETURN

C*** USER JOB TIME-OUT
10 CALL TIMEO

RETURN

C*** READ CARDS INTO BUFFER
11 CALL RCARD

RETURN

C*** DISK TRANFER COMPLETED
12 CALL DCOMP

RETURN

C*** TAPE I/O COMPLETION
13 CALL TCOMP

RETURN

C*** FULL BUFFER
14 CALL FULLB

RETURN

C*** FIND CHANNEL
15 CALL CHANL

RETURN

C*** DISK/TAPE TRANSFER
16 CALL DTRAN

RETURN

C*** FINISHED PRINTING BUFFER
17 CALL FPRNT

RETURN

C*** COMPLETION OF JOB SCHEDULER
18 CALL JSCOM

RETURN

D-13

It
= - " - - '" " I Il~ ' -- -- F Ill IIIF I I I[-J" :" "J "1 " I II il

: '

i' " ' ' " "1 =,, i,

C*** WRITE ACCOUNTING DATA TO DISK FILE
19 CALL ACTLG

RETURN

C*** H/W MONITOR COLLECTION
20 CALL IWMON

RETURN

C*** LOAD S/W MONITOR INTO HOLD QUEUE
21 CALL LSMON

RETURN

C*** END OF S/W MONITOR TRACE
22 CALL ESMON

RETURN

C*** WRITE S/W MONITOR DATA TO DISK

23 CALL SMON
RETURN

C*** PRINT BUFFER
24 CALL PBUFF

RETURN

END

D-14

C *
C DATE: 5 DEC 1983 *

C VERSION: 1.0 *

C *
C NAME: ARVL *
C. EVENT NUMBER: 1 *

C FUNCTION: READS JOBS ATTRIBUTES AND SCHEDULES THE*
C THE ARRIVAL TIME OF THE JOB *

C FILES READ: WORKDES. *
C FILES WRITTEN: NONE. *

C EVENTS CALLED: 3 *

C CALLING EVENTS: NONE. *

C SUBROUTINES CALLED: NONE. *

C CALLING SUBROUTINES: NONE. *

C *

C AUTHOR: DAVID L. OWEN *

C HISTORY: N/A. *

C *

SUBROUTINE ARVL
COMMON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNOWII,MFA,MSTOP

1,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
1,SSL(100),TNEXT,TNOW ,XX(100)
COMMON/UCOM1/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNT(10), DSTRT(IO), DSUM(10),DFIN(1O),

1 CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM

C READ ATRIBUTES FROM WORKLOAD FILE
50 READ (UNIT-11,FMT-1,END999,ERR-999)(ATRIB(I),I.,10)
1 FORMAT(12X,FIO.4,1X,F1O.O,iX,F3.O,1X,F3.0,lX,F2.O,iX,F2.0,

1 1X,F4.0,IX,F5.0,IX,F4.O,IX,F4.O)

C*** IF THE JOB REQUIRES 0 CPU TIME THEN REJECT JOB
C*** AND READ NEXT JOB'S ATRIBUTES

IF (ATRIB(3) .LE. 0.0) THEN
PRINT *,'JOB REJECTED: REQUESTED 0 CPU TIME'
PRINT *,(ATRIB(I),I-I,21)
GOTO 50

END IF

C*** CONVERT HOURS TO SECONDS FOR ARRIVAL TIME
ATRIB(1) - ATRIB(1) * 3600.

C*** CONVERT CPU TIME TO THE RELATIVE SPEED OF THE CPU
ATRIB(3) - ATRIB(3) * XX(6)

D-15

C**** CALCULATE OTHER ATRIBUTES

DO 5 1-11,24

ATRIB(12) " 0.0
5 CONTINUE
C*** I/O TIME USED - 0

C*** CPU TIME LEFT CPU TIME REQUIRED
ATRIB(18) - ATRIB(3)

C*** SET ATRIB(21) TO ARRIVED WHEN S/W MON NOT ON
ATRIB(21) - 99.

C**** SCHEDULE JOB ARRIVAL AT PROPER TIME
CALL SCHDL(3,ATRIB(I) - TNOW ,ATRIB)

999 RETURN
END

D-16

C *

C DATE: 5 DEC 1983 *
C VERSION: 1.0 *
C *
C NAME: ISPO

C EVENT NUMBER: 2 *
C FUNCTION: INITIALIZES INPUT SPOOLER AND PUTS *
C SPOOLER INTO HOLD QUEUE *
C FILES READ: NONE. *
C FILES WRITTEN: NONE. *
C EVENTS CALLED: NONE. *
C CALLING EVENTS: NONE. *
C SUBROUTINES CALLED: NONE. *
C CALLING SUBROUTINES: NONE. *
C *
C AUTHOR: DAVID L. OWEN *
C HISTORY: N/A. *
C *

SUBROUTINE ISPO
COMMON/SCOMI/ ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA

1, MS TOP, NCLNK, NCRDR, NPR NT, NNRUN, NNSET, NTAPE, SS (100)
1,SSL(100),TNEXT,TNO ,XX(100)
COMMON/UCOMI/A(IO0), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNT(lO), DSTRT(1O), DSUM(1O),DFIN(1O),
1 CCNT(5), CSUM(5), CFIN(5), CSIRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM

REAL AA(24)
PARAMETER (SPLER-2.)

C*** SET ATRIBUTES FOR INPUT SPOOLER

C** ARRIVAL TIME - TNOW
AA(l) - TNOW

C** JOB NAME - 999 (DUMMY NUMBER FOR INPUT SPOOLER)
AA(2) - 999.

C** MEMORY SIZE NEEDED IS 4K
AA(4) - 4.0

C*** SET JOB TYPE TO INPUT SPOOLER
AA(11) - SPLER

C CPU TIME USED - TOTAL CPU TIME USED BY INPUT SPOOLER
M(12) - XX(40)

C
C*** INITIALIZE OTHER ATRIBUTES TO 0

AA(3) - 0

D-17

AA(5) - 0
AA(6) - 0
AA(7) - 0
AA(8) - 0
AA(9) - 0
AA(10) - 0
DO 11 1-13,24

AA(I) - 0
11 CONTINUE

C*** INTITIALIZE ATRIB(21) TO ARRIVED WHEN S/W MON NOT ON
AA(21) - 99.

C* * * PUT INPUT SPOOLER INTO HOLD QUEUE
CALL ENTER(2,AA)

RETURN
END

D-18

C *

C DATE: 5 DEC 1983 *
C VERSION: 1.0 *
C *
C NAME: ENTI *

C EVENT NUMBER: 3 *
C FUNCTION: ENTERS JOB INTO INPUT QUEUE AND CALLS *
C EVENT 1 TO SCHEDULE NEXT JOB *
C FILES READ: NONE. *
C FILES WRITTEN: NONE. *
C EVENTS CALLED: I *
C CALLING EVENTS: 1 *
C SUBROUTINES CALLED: NONE. *
C CALLING SUBROUTINES: NONE. *
C *
C AUTHOR: DAVID L. (C!EN *
C HISTORY: N/A. *
C *

SUBROUTINE ENTI
COMMON/SCOMI/ ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA

1,MSTOPNCLNR, NCRDR,NPRNT,NNRUN,NNSET,NTAPE, SS(100)
1,SSL(100),TNEXT,TNOJ ,XX(100)
COMMON/UCOMI/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(10,7), DCNT(10), DSTRT(IO), DSUM(IO),DFIN(IO),
1 CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUH,
1 PCNT, PSTRT, PFIN, PSUM

C*** PUT JOB INTO INPUT QUEUE
PRINT *,'NEW USER JOB IN SYSTEM-

C****** PRINT ATRIBUTES FOR DEBUG PURPOSES
PRINT *,(ATRIB(I),I-1,20)

C
CALL ENTER(1,ATRIB)

C*** SCHEDULE THE NEXT JOB ARRIVAL BY CALLING ARVL
CALL SCHDL(1,O)

RETURN
END

D-19

.4. -

C *
C DATE: 5 DEC 1983 *

C VERSION: 1.0 *

C *

C NAME: CPU *

C EVENT NUMBER: 4 *
C FUNCTION: DETERMINES WHAT TYPE OF JOB IS GETTING *

C THE CPU TIME SLICE AND CALLS APPROPRIATE *

C ROUTINE TO HANDLE CPU EXECUTION *

C FILES READ: NONE. *

C FILES WRITTEN: NONE. *

C EVENTS CALLED: NONE. *
C CALLING EVENTS: NONE. *
C SUBROUTINES CALLED: USER, SPOOL, OSPOL, SSMON, *
C AND JSCHD*

C CALLING SUBROUTINES: NONE. *
C *
C AUTHOR: DAVID L. OWEN *

C HISTORY: N/A. *

C *

SUBROUTINE CPU
COMMON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA

1, MSTOP, NCLNR, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(10)
1,SSL(100),TNEXTTNOW ,XX(100)
COMMON/UCOMI/A(I00), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(10,7), DCNT(IO), DSTRT(IO), DSUM(IO),DFIN(10),
1 CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM

PARAMETER (USR-1 .O,SPL-2.O,OSPL-3.O,SWMNT=4.O,JSC=5.0)

C*** CPU-START-TIME - TNOW
Xx(4) - TNOW

C*** IF H/W MONITOR - ON, THEN H/W-MON-CPU-CNT = H/W-MON-CPU-CNT + 1
IF (XX(30) .EQ. 1) XX(31) = XX(31) + I

C*** CHECK TO SEE IF JOB TYPE = USER
IF (ATRIB(1J) .EQ. USR) CALL USER

C*** CHECK TO SEE IF JOB TYPE - INPUT SPOOLER
IF (ATRIB(11) .EQ. SPL) CALL SPOOL

C*** CHECK TO SEE IF JOB TYPE - OUTPUT SPOOLER
IF (ATRIB(Il) .EQ. OSPL) CALL OSPOL

C*** CHECK TO SEE IF JOB TYPE S/W MONITOR

D-20

IF (ATRIB(I1) .EQ. SIMNT) CALL SSMON

C*** CHECK TO SEE IF JOB TYPE - JOB SCHEDULER
IF (ATRIB(I1) .EQ. JSC) CALL JSCHD

C*** IF JOB .NE. ONE OF THE ABOVE THEN THERE IS AN ERROR
IF ((ATRIB(11) .XT. 5) .OR. (ATRIB(1I) .LT. 1.)) THEN

PRINT * *********************
PRINT *,-*** ERROR: ILLEGAL JOB TYPE
PRINT * ***
PRINT *,'JOB TYPE ,ATRIB(Il)

END IF

RETURN
END

D-21

C *

C DATE: 5 DEC 1983 *

C VERSION: 1.0 *
C *
C NAME: LJSCH *
C EVENT NUMBER: 5 *
C FUNCTION: SETS ATTRIBUTES FOR JOB SCHEDULTER AND *
C LOADS JOB INTO HOLD QUEUE *
C FILES RFAD: NONE. *
C FILES WRITTEN: NONE. *
C EVENTS CALLED: NONE. *

C CALLING EVENTS: 7, 12, 17, 22 *
C SUBROUTINES CALLED: NONE. *
C CALLING SUBROUTINES: NONE. *

C *
C AUTHOR: DAVID L. OWEN *

C HISTORY: N/A. *

C *

SUBROUTINE LJSCH
COMMON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNO ,II,MFA

IMSTOP,NCLNR,NCRDR,NPRNT,NNRUNNNSET,NTAPE,SS(100)
1,SSL(IO0), TNEXT,TNOW,XX(100)
COMMON/UCOMI/A(100), PART(20,2), TAFE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNT(1O), DSTRT(1O), DSUM(IO),DFIN(1O),
1 CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRTRFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM

REAL AAA(24)

C*** PUT JOB SCHEDULER INTO EXECUTE QUEUE
C** FIRST SET UP ATRIBUTES FOR JOB SCHEDULER

AAA(1) - TNOW
AAA(2) - 888
AAA(11) - 5.
AAA(12) - XX(42)

DO 20 111-3,10
20 AAA(III) - 0.

DO 21 111-13,24
21 AAA(III) - 0.

C*** INITIALIZE ATRIB(21) TO ARRIVED WHILE S/W MON NOT ON
AAA(21) - 99.

C** NOW PUT JOB SCHEDULER IN EXECQ
CALL ENTER(18,AAA)

D-22

C**SET JSCHED IN EXECQ FLAG TO TRUE
XX(11) =1.0

RETURN
END

D-2 3

C *

C DATE: 5 DEC 1983 *

C VERSION: 1.0 *

C *

C NAME: LOSPL *
C EVENT NUMBER: 6 *

C FUNCTION: SETS ATRIBUTES TO OUPUT SPOOLER AND *
C LOADS JOB INTO HOLD QUEUE *
C FILES READ: NONE. *
C FILES WRITTEN: NONE. *
C EVENTS CALLED: NONE. *

C CALLING EVENTS: NONE. *

C SUBROUTINES CALLED: NONE. *
C CALLING SUBROUTINES: NONE. *

C *

C AUTHOR: DAVID L. OWEN *
C HISTORY: N/A. *
C *

SUBROUTINE LOSPL
COMMON/SCOMI/ ATRIB(100),DD(100),DDL(100),DTNOW ,II,MFA

1,MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
1, SSL(100) ,TNEXT, TNOW ,XX(100)
C'MMON/UCOMI/A(100), PART(20,2), TAPE(20,3)
COMMON'UCOM2/DISK(1O,7), DCNT(1O), DSTRT(1O), DSUM(10),DFIN(10),
I CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM

REAL AA(24)
PARAMETER (OSPL3.O,ON1.O)

C

C*** SET OSPOOLERON FLAG TO ON
XX(12) = ON

C*** SET ATRIBUTES FOR INPUT SPOOLER
C
C** ARRIVAL TIME - TN(O

AA(l) - TNOW
C** JOB NAME - 998 (DUMMY NUMBER FOR OUTPUT SPOOLER)

AA(2) - 998.
C** MEMORY SIZE NEEDED IS 4K

AA(4) = 4.0
C

C*** SET JOB TYPE TO INPUT SPOOLER
AA(1I) - OSPL

C
C*** SET CPU TIME USED - TOTAL CPU TIME USED BY OUTPUT SPOOLER

AA(12) - XX(41)

D-24

I.. .

C
C*** INITIALIZE OTHER ATRIBUTES TO 0

AA(3) - 0
AA(5) - 0
AA(6) = 0
AA(7) - 0
AA(8) - 0
AA(9) - 0
AA(10) - 0
DO 11 I'13,24

AA(I) - 0
11 CONTINUE

C*** INITIALIZE ATRIB(21) TO ARRIVED WHILE S/W MON NOT ON
AA(21) - 99.

C*** PUT OUTPUT SPOOLER INTO HOLD QUEUE

CALL ENTER(7,AA)

RETURN
END

D-25

C *
C DATE: 5 DEC 1983 *
C VERSION: 1.0 *
C *
C NAME: JCOMP *
C EVENT NUMBER: 7 *
C FUNCTION: FREES RESOURCES AFTER JOB COMPLETE *
C FILES READ: NONE. *
C FILES WRITTEN: NONE. *
C EVENTS CALLED: 5 *
C CALLING EVENTS: NONE. *
C SUBROUTINES CALLED: NONE. *
C CALLING SUBROUTINES: USER *
C *
C AUTHOR: DAVID L. OWEN *
C HISTORY: N/A. *
C *

SUBROUTINE JCOMP
COMMON/SCOMI/ ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA

1,MSTOP,NCLNR,NCRDR,NPRNT,NNUN,NNSET,NTAPE,SS(1O0)
1 ,SSL(100),TNEXT,TNOW, XX(100)
COMMON/UCOMl/A(1OO), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(IO,7), DCNT(IO), DSTRT(1O), DSUM(IO),DFIN(IO),

I CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
I PCNT, PSTRT, PFIN, PSUM

PARAMETER(FRE-O.O, BUSY=1.O)

C*** CPU-TIME-USED - CPU-TIME USED + (TNOW - CPU-START-TIME)
ATRIB(12) = ATRIB(12) + (TNOW - XX(4))

C*** MOVE JOB TO OUTPUT QUEUE
CALL ENTER (1O,ATRIB)

C*** FREE CPU, I.E. RELEASE A JOB FROM THE EXECUTE QUEUE
CALL FREE(3,1)

C*** FIND MEMORY PARTION USED AND FREE IT
DO 5 III-1,XX(3)

IF (PART(III,I) .EQ. ATRIB(14)) THEN
PART(III,2) = FRE
GOTO 10

END IF
5 CONTINUE

C*** IF THIS STATEMENT IS REACHED A PARTION WAS NOT FOUND
PRINT *,-ERROR - UNABLE TO FIND MEMORY PARTION TO FREE-

D-26

I

PRINT *,-JOB ATRIBUTES ARE-
PRINT *,(ATRIB(I),I-I,20)
PRINT *,'MEMORY PARTIONS ARE'
DO 6 J=l,XX(3)

PRINT *,PART(J,1),PART(J,2)
6 CONTINUE

RETURN

C*** FREE TAPES
10 NTAPE = 0

DO 15 IIII,XX(9)
IF (TAPE(III,3) .EQ. ATRIB(2)) THEN

NTAPE = NTAPE + i
TAPE(III,2) - FRE

C*** INCREMENT NUMBER OF AVAILABLE TAPE DRIVES
x(1o) - XX(1o) + I

END IF
15 CONTINUE

C*** CHECK TO SEE THAT YOU FREE THE RIGHT NUMBER OF TAPES
IF (NTAPE .NE. NINT(ATRIB(6))) THEN

PRINT *,-ERROR - FREED -,NTAPE,- TAPES-
PRINT * SHOULD BE -,ATRIB(6),- TAPES-

END IF

C*** LOAD JOB SCHEDULER INTO EXECQ IF IT ISN-T ALREADY
IF (XX(1I) .NE. I.) THEN

CALL LJSCH

XX(1I) = 1.0
END IF

RETURN
END

D-27

C
C DATE: 5 DEC 1983
C VERSION: 1.0
C
C NAME: DISKS
C EVENT NUMBER: 8
C FUNCTION: FREES CPU, FIGURES OUT WHICH DISK TO *

C GO TO AND PUTS JOB INTO DISK QUEUE*
C FILES READ: NONE.
C FILES WRITTEN: NONE.*
C EVENTS CALLED: NONE.
C CALLING EVENTS: NONE.
C SUBROUTINES CALLED: NONE.
C CALLING SUBROUTINES: SPOOL, OSPOOL, USER
C
C AUTHOR: DAVID L. OWEN
C HISTORY: N/A.
C*

SUBROUTINE DISKS
COMMON/SCOM1/ ATRIB(100),DD(1O0),DDL(100),DTNOJ,II,MFA

1,MS:JP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
A 1,SSL(100),TNEXT,TNOW1,XX(1O0)

COMMON/UCOMl/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNTC1O), DSTRT(1O), DSUM(lO),DFIN(IO),

I CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM

PARAMETER (ON - 1.0)

C*** CALCULATE CPU-TIME-USED AND CPU-TIME-LEFT
ATRIB(12) - ATRIB(12) + (TNOIW XX(4))
ATRIB(18) - ATRIB(18) - ((TNOW -XX(4)) *XX(5))

C*** START-I/O - TNOW
XX(8) - TNOW

C*** FREE CPU
CALL FREE(3,I)

C*** NEXT DISK - X.X(21)
NDISK - NINT(XX(21))

C*** SET JOB ATRIB(19) TO THE DISK USED
ATRIB(19) - NDISK + 20

C*** UPDATE NEXT DISK
IF CXX(21) GCE. XX(22)) THEN

D-28

XX(21) = I
ELSE

XX(21) = XX(21) + 1
END IF

C*** AWAIT DISK
CALL ENTER(23,ATRIB)
RETURN

END

D-29

C *
C DATE: 5 DEC 1983 *

C VERSION: 1.0 *
C *

C NAME: TAPES *

C EVENT NUMBER: 9 *

C FUNCTION: FREES CPU, FIGURES OUT WHICH DISK TO *

C USE, AND PLACES JOB IN SMALLEST CHAN Q *

C FILES READ: NONE. *
C FILES WRITTEN: NONE. *
C EVENTS CALLED: NONE. *

C CALLING EVENTS: NONE. *

C SUBROUTINES CALLED: NONE. *

C CALLING SUBROUTINES: USER *

C *
C AUTHOR: DAVID L. OWEN *

C HISTORY: N/A. *
C *

SUBROUTINE TAPES
COMMON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA

1,MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
1,SSL(100),TNEXT,TNOW ,XX(100)
COMMON/UCOMl/A(10), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNT(1O), DSTRT(IO), DSUM(1O),DFIN(IO),

1 CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PS RT, PFIN, PSUM
COMMON/UCOM3/TAP(1O,7), TCNT(1O), TSTRT(IO), TSUM(10),TFIN(1O)

INTEGER CHL, CHNL

PARAMETER (ON = 1.0)

C*** CALCULATE CPU-TIME-USED AND CPU-TIME-LEFT
ATRIB(12) - ATRIB(12) + (TNOW - XX(4))
ATRIB(18) = ATRIB(18) - ((TNOW - XX(4)) * XX(5))

C*** START-I/O - TNOW
XX(8) - TNOW

C*** FREE CPU BY RELEASING A JOB FROM THE EXECUTE QUEUE
CALL FREE(3,1)

C*** FIND NEXT TAPE DRIVE ASSIGNED TO THAT JOB

C** MAKE SURE YOU DON'T GO INTO INFINITE LOOP
DO 5 I-1,XX(9)

D-30

IF (XX(24) .GE. XX(9)) THEN
XX(24) - 1
ELSE
XX(24) - XX(24) + 1.0

END IF

NTAPE - NINT(XX(24))

IF (TAPE(NTAPE,3) .EQ. ATRIB(2)) GO TO 10

5 CONTINUE

C*** IF THIS STATEMENT WAS REACHED THEN THEIR ARE NO TAPES ASSIGNED
C*** TO THE JOB

PRINT *,'ERROR: TAPES NOT ASSIGNED TO tHIS JOB'
PRINT *,(ATRIB(K),K-I,21)
RETURN

C*** SET JOB ATRIB(19) TO THE TAPE USED
10 ATRIB(19) - NTAPE + 10

C*** FIND FIRST CHANNEL TAPE IS CONNECTED TO
DO 1 I-1,XX(23)

IF (TAP(NTAPE,I) .EQ. 1.0) THEN
CHNL - I
CSIZE - NNQ(30 + CHNL)
ATRIB(20) = CHNL
GO TO 2

END IF
1 CONTINUE

C*** IF THIS STATEMENT IS REACHED THEN THE TAPE IS NOT CONNECTED
C*** TO ANY CHANNEL

PRINT *,'ERROR: TAPE NOT CONNECTED TO ANY CHANNEL'
PRINT *,'TAPE - ,NTAPE
PRINT *,'TAPE CHANNELS ARE'
PRINT *,(TAP(NTAPE,I),I4I,XX(23))
RETURN

C*** FIND THE SMALLEST CHANNEL QUEUE WHICH THE TAPE CAN USE
2 ICHNL = CHNL

DO 15 CHL-ICHNL,XX(23)
IF (TAP(NTAPE,CHL) .EQ. ON) THEN

IF (NNQ(304CHL) .LT. CSIZE) THEN
CHNL - CHL
CSIZE - NNQ(304CHL)
ATRIB(20) - CHNL

END IF
END IF

D-31

15 CONTINUE

C** AWAIT CHANNEL
CALL ENTER(25,ATRIB)
RETURN

END

D-3 2

C *

C DATE: 5 DEC 1983 *
C VERSION: 1.0 *

C *
C NAME: TIMEO *

C EVENT NUMBER: 10 *
C FUNCTION: FREES CPU AND PLACES JOB BACK INTO *
C EXECUTE QUEUE *
C FILES READ: NONE. *
C FILES WRITTEN: NONE. *
C EVENTS CALLED: NONE. *

C CALLING EVENTS: NONE. *
C SUBROUTINES CALLED: NONE. *

C CALLING SUBROUTINES: USER *

C *
C AUTHOR: DAVID L. OWEN *

C HISTORY: N/A. *
C *

SUBROUTINE TIMEO
COMMON/SCOMI/ ATRIB(100),DD(00),DDL(00),DTNOW ,II,MFA

1,MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
1,SSL(100),TNEXT,TNOW ,XX(100)
COMMON/UCOMl/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNT(1O), DSTRT(1O), DSUM(IO),DFIN(1O),

I CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM

C*** CALCULATE CPU-TIME-USED AND CPU-TIME-LEFT
ATRIB(12) - ATRIB(12) + (TNOW - XX(4))
ATRIB(18) - ATRIB(18) - ((TNOW - XX(4)) * XX(5))

C*** FREE CPU BY RELEASING A JOB FROM THE EXECUTE QUEUE
CALL FREE(3,1)

C*** PLACE JOB BACK INTO EXECUTE QUEUE
CALL ENTER(4,ATRIB)

RETURN
END

D-33

** ******** ***** * *** ***** * *** ** ******** * *** *** * **** ** *** **

C *
C DATE: 5 DEC 1983 *

C VERSION: 1.0 *
C *
C NAME: RCARD *

C EVENT NUMBER: 11 *
C FUNCTION: FREES CPU AND READS CARDS INTO BUFFER *

C FILES READ: NONE. *
C FILES WRITTEN: NONE. *

C EVENTS CALLED: 14 *

C CALLING EVENTS: 16 *
C SUBROUTINES CALLED: NONE. *
C CALLING SUBROUTINES: NONE. *

C *
C AUTHOR: DAVID L. OWEN *
C HISTORY: N/A. *
C *

SUBROUTINE RCARD
COMMON/SCOMI/ ATRIB(100),DD(I00),DDL(I00),DTNOW,II,MFA

1, MS TOP, NCLNP, NCRDR, NPR NT, NNRUN, NNSET, NTAPE, SS(100)
1,SSL(100),TNEXT,TNOW ,XX(tOO)
COMMON/UCOMI/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNT(10), DSTRT(10), DSUM(IO),DFIN(IO),
1 CCNT(5), CSUM(5), CFIN(5), CSTT(5), RCNT,RSTRT,RFIN,RSUM,
I PCNT, PSTRT, PFIN, PSUM

PARAMETER(ON - 1.0)

C*** UPDATE CPU TIME USED
AIRIB(12) - ATRIB(12) + (TNOW - XX(4)) * XX(5)

C*** UPDATE NUMBER OF CARDS LEFT TO READ
IF (ATRIB(7) .LE. XX(20)) THEN

AMIB(7) - 0.
ELSE

ATRIB(7) - ATRIB(7) - XX(20)
END IF

C*** FREE CPU
CALL FREE(3,1)

C*** IF H/W MON IS ON THEN UPDATE READER AND CHANNEL DATA
IF (XX(30) oEQ. ON) THEN

RCNT - RCNT + 1
IF (RSTRT .NE. -1.0) THEN

IF (RFIN .LT. TNOW) THEN
RSM - RSUM + RFIN - RSTRT

D-34

RSTRT -TNOW
END IF

ELSE
RSTRT -TNOW

END IF

RFIN2 - ((XX(20) / XX(18))* 60) + TNOW
IF (RFIN2 .GE. RFIN) THEN

RFIN - RFIN2
END IF

NCHL -NINT(AIRIB(20))
IF (CS1'RT(NCHL) .NE. -1.0) THEN
IF (CFIN(NCHL) .LT. TNOW) THEN

CSUM(NCHL) - CSUM(NCHL) + CFIN(NCHL) -CSTRT(NCHL)

CSTRT(NCHL) - TNOW
ELSE
CCNT(NCHL) - CCNT(NCHL) + 1

END IF
ELSE
CSTRT(NCHL) - TNOW
CCNT(NCHL) - CCNT(NCHL) + 1

END IF

IF (RFIN2 .GT. CFIN(NCHL)) THEN
CFIN(NCHL) - RFIN2

END IF
END IF

C** SCHEDULE COMPLETION OF LOADING BUFFER

CALL SCHDL (14,(XX(20) /XX(18)) *60,ATRIB)

RETURN
END

D-3 5

C
C DATE: 5 DEC 1983
C VERSION: 1.0
C*
C NAME: DCOMP*
C EVENT NUMBER: 12*
C FUNCTION: FREES CHANNEL AND DISK AFTER DISK *

C TRANSFER.
C FILES READ: NONE.*
C FILES WRITTEN: NONE.*
C EVENTS CALLED: 5*
C CALLING EVENTS: 16
C SUBROUTINES CALLED: NONE.*
C CALLING SUBROUTINES: SPOOL*
C
C AUTHOR: DAVID L. OWEN*
C HISTORY: N/A.*
C

SUBROUTINE DCOMP
COMMON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNU.4,IIMFA

1,MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
1,SSL(100),TNEXT,TNOW4,XX(100)
COMMON/UCOM/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(l0,7), DCNT(I0), DSTRT(10), DSUM(1O),DFIN(10),
1 CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTmT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM

PARAMETER (ON - 1.O,USR - 1.0.SPL-2.O,OSPL-3.O,FRE-O.0)

C*** FREE CHANNEL OF THE PORTION TFAT THE JOB WAS USING
NCHL -30 4ArRIB(20)
ITEMP -NINT(USERF(1))

CALL FREE(NCHL, ITEMP)

C*** FREE DISK
NDSK -ATRIB(19)
CALL FREE(NDSK,1)

C*** UPDATE I/O TIM USED
ATRIB(13) - ATRIB(13) + (TNOW - XX(8))

C*** IF JOB TYPE - USER
IF (AIRIB(11) .EQ. USR) THEN

C* UPDATE TIME OF LAST I/O (CPU-TIM-REQ -CPU-TIM-LEFT)

ATRIB(16) - ATRIB(3) - ATRIB(18)
C* PUT JOB BACK INTO EXECUTE QUEUE

D-3 6

CALL ENTER(3,ATRIB)
RETURN

END IF

C*** IF JOB TYPE IS INPUT SPOOLER
IF (AT IB(Il) .EQ. SPL) THEN

C** CHECK FOR COMPLETION OF SPOOLING
IF (ATRIB(7) .EQ. 0.) THEN

C* SPOOL STATUS - 0
XX(15) - 0.0

C******** NEED TO PUT CPU TIME FOR SPOOLER IN HERE

C** FREE JOB FROM INPUT QUEUE
CALL FREE(i,1)
IF (NNQ(1) .NE. 0) THEN

C** PUT SPOOLER BACK INTO EXECUTE QUEUE
CALL ENTER(3,ATRIB)
ELSE

C** SPOOLERON - 0
xx(I) 0 0

C** FIND MEMORY PARTION USED AND FREE IT
DO 5 III=I,XX(3)

IF (PART(III,l) .EQ. ATRIB(14)) THEN

PART(III,2) = FRE
GOTO 10

END IF
5 CONTINUE

C*** IF THIS STMT IS REACHED A PARTION WAS NOT FOUND
PRINT *,-ERROR - UNABLE TO FIND MEMORY PARTION TO FREE-
PRINT *,'JOB ATRIBUTES ARE'
PRINT *,(ATRIB(I),I=1,18)
PRINT *,MEMORY PARTIONS ARE-
DO 6 J=1,XX(3)

PRINT *,PART(J,1),PART(J,2)
6 CONTINUE

RETURN

10 CONTINUE
C*** PUT JOB SCHEDULER INTO EXECQ (IF NOT ALREADY THERE)

IF (XX(II) .NE. ON) THEN
XX(11) - ON
CALL SCHDL(5,O, ,ATRIB)

END IF
END IF

ELSE
C** SPOOL STATUS = 2 (READY TO READ MORE CARDS)

XX(15) - 2.0
C* PUT SPOOLER BACK INTO EXEC QUEUE

CALL ENTER(3,ATRIB)

D-37

END IF
RETURN

END IF

C*** IF JOB TYPE IS OUTPUT SPOOLER
IF (ATRIB(1I) .EQ. OSPL) THEN

C** OSPOOL STATUS - READY TO PRINT BUFFER
XX(16) = 1.0

C** PUT OUTPUT SPOOLER BACK INTO EXECQ
CALL ENTER(3,ATRIB)
RETURN

END IF

C*** IF JOB TYPE IS NOr USER OR SPOOLER OR OUTPUT SPOOLER THEN
C*** AN ERROR HAS OCCURRED

PRINT *,'ERROR: ILLEGAL JOB TYPE IN DCOMP-
PRINT *,(ATRIB(1),I=1,21)

RETURN
END

D3

D-38

C*
C DATE: 5 DEC 1983
C VERSION: 1.0
C
C NAME: TCOMP*
C EVENT NUMBER: 13
C FUNCTION: FREES CHANNEL AFTER TAPE 10 COMPLETION
C FILES READ: NONE.
C FILES WRITTEN: NONE.*
C EVENTS CALLED: NONE.*
C CALLING EVENTS: 16
C SUBROUTINES CALLED: USERF*
C CALLING SUBROUTINES: NONE.*
C
C AUTHOR: DAVID L. OWJEN
C HISTORY: N/A.*
C

SUBROUTINE TCOMP
COMMON/SCOMI/ ATRIB(lOO),DD(100),DDLC100),DTNOA ,II,MFA

1,MSTOP,NCLNR,NCRDRNPRNT,NNRUN,NNSET,NTAPE,SS(1OO)
1,SSL(100),TNEXT,TNO.J,XX(100)
COMMON/UCOM1/A(100), PART(20,2), TAPE(20,3)

COHMON/UCOM2/DISKklO,7), DCNT(10), DSTRT(1O), DSUM(1O),DFIN(lO),
I CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUN,
1 PCNT, PSTRT, PFIN, PSUM
COMMON/UCOM3/TAP(10,7), TCNT(1O), TS LRT(1O), TSUM(1O),TFIN(1O)

C* UPDATE TIME OF LAST TAPE I/O (CPU-TIM-REQ - CPU-TIM-LEFT)
ATRIB(17) - ATRIB(3) - ATRIB(18)

C*** FREE CHANNEL OF THE PORTION THAT THE JOB WAS USING
NCHL =30 + ATRIB(20)
ITEMP NINT(USERF(1))
CALL FREE(NCHL, ITEMP)

C*** UPDATE 1/O TIME USED
ATRIB(13) - ATRIB(13) + (TNO4 - XX(8))

C* PUT JOB BACK INTO EXECUTE QUEUE

CALL ENTER(3,ATRIB)
RETUR N

END

D-39

C *
C DATE: 5 DEC 1983 *

C VERSION: 1.0 *
C *
C NAME: CHANL *

C EVENT NUMBER: 15 *

C FUNCTION: FINDS SMALLET CHANNEL QUEUE THAT IS *

C CONNECT TO DISK, CARD READER, OR PRINTER *

C FILES READ: NONE. *

C FILES WRITTEN: NONE. *

C EVENTS CALLED: NONE. *
C CALLING EVENTS: 11 *

C SUBROUTINES CALLED: NONE. *

C CALLING SUBROUTINES: OSPOL, SPOOL *

C *

C AUTHOR: DAVID L. OWEN *

C HISTORY: N/A. *

C *

SUBROUTINE CHANL

COMMON/SCOMI/ ATRIB(100),DD(100),DDL(100),DTNOW,II, MFA
I,MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
1, SSL(100),TNEXT,TNOW ,XX(i00)
COMMON/UCOMI/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(IO,7), DCNT(IO), DSTRT(IO), DSUM(IO),DFIN(1O),

I CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
I PCNT, PSTRT, PFIN, PSUM
COMMON/UCOM4/CARD(6),PRNTR(6)

INTEGER CHL, CHNL

PARAMETER (ON - 1.0, USR-1.O, SPLR,40.O, OSPLR-41.O)

C*** IF IT IS A DISK NEEDING THE CHANNEL
IF ((ATRIB(19) .GT. 20) .AND. (ATRIB(19) .LE. 30)) THEN

NDISK - NINT(ATRIB(19) - 20)

C*** FIND FIRST CHANNEL DISK IS CONNECTED TO
DO 1 I-1,XX(23)

IF (DISK(NDISK,I) .EQ. 1.0) THEN
CHNL = I
CSIZE = NNQ(30 + CHNL)
ATRIB(20) - CHNL

GO TO 2
END IF

1 CONTINUE

C*** IF THIS STATEMENT IS REACHED THEN THE DISK IS NOT CONNECTED

D-41

C *

C DATE: 5 DEC 1983 *

C VERSION: 1.0 *
C *

C NAME: FULLB *
C EVENT NUMBER: 14 *
C FUNCTION: FREES CHANNEL AFTER BUFFER HAS BEEN *
C LOADED BY CARD READER *

C FILES READ: NONE. *
C FILES WRITTEN: NONE. *
C EVENTS CALLED: NONE. *

C CALLING EVENTS: 1 *
C SUBROUTINES CALLED: USERF *
C CALLING SUBROUTINES: NONE. *

C *

C AUTHOR: DAVID L. OWEN *
C HISTORY: N/A. *
C *

SUBROUTINE FULLB
COMMON/SCOMI/ ATRIB(100),DD(100),DDL(100),DTNcM,II,MFA

i,MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE, SS(100)
1,SSL(IO0),TNEXT,TN(,XX(100)
COMMO'!/UCOMI/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNT(1O), DSTRT(1O), DSUM(IO),DFIN(IO),

I CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM
COMMON/UCOM4/CARD(6),PRNTR(6)

PARAMETER (ON-I.O, OFF-O.O, NE4=O.O, BFULL=1.O, BEMPT-2.0)

C*** SET SPOOL-STATUS TO BUFFER FULL
.KX(15) - BFULL

C*** FREE CHANNEL OF THE PORTION THAT THE CARD READER WAS USING
NCHL = 30 + ATRIB(20)
ITEMP = USERF(1)
CALL FREE (NCHL,ITEMP)

C*** PUT SPOOLER BACK INTO EXECUTE QUEUE
CALL ENTER(3,ATRIB)

RETURN
END

D-40

C*** TO ANY CHANNEL
PRINT *,'ERROR: DISK NOT CONNECTED TO ANY CHANNEL'
PRINT *,'DISK = ",NDISK
PRINT *,-DISK CHANNELS ARE-
PRINT *,(DISK(NDISK,I),I=I,XX(23))
RETURN

C*** FIND THE SMALLEST CHANNEL QUEUE WHICH THE DISK CAN USE
2 ICHNL - CHNL

DO 10 CHL-ICHNL,XX(23)
IF (DISK(NDISK,CHL) .EQ. ON) THEN

IF (NNQ(304CHL) .LT. CSIZE) THEN
CHNL = CHL

CSIZE = NNQ(30-$CHL)
ATRIB(20) - CHNL

END IF
END IF

10 CONTINUE

C*** AWAIT CHANNEL
CALL ENTER(25,ATRIB)
RETURN
END IF

C*** IF IT IS THE CARD READER THAT NEEDS THE CHANNEL
IF (ATRIB(19) .EQ. SPLR) THEN

ATRIB(19) - SPLR

C*** FIND FIRST CHANNEL CARD READER IS CONNECTED TO
DO 4 I-I,XX(23)

IF (CARD(I) .EQ. 1.0) THEN
CHNL - I
CSIZE - NNQ(30 + CHNL)
ATRIB(20) = CHNL
GO TO 5

END IF
4 CONTINUE

C*** IF THIS STATEMENT IS REACHED THEN THE CARD READER IS NOT
C*** CONNECTED TO ANY CHANNEL

PRINT *,'ERROR: CARD READER NOT CONNECTED TO ANY CHANNEL'
PRINT *,'CARD READER CHANNELS ARE'
PRINT *,(CARD(),I-I,XX(23))
RETURN

C*** FIND THE SMALLEST CHANNEL QUEUE WHICH THE CARD READER CAN USE
5 ICHNL - CHNL

DO 6 CHL-ICHNL,XX(23)
IF (CARD(CHL) .EQ. ON) THEN

IF (NNQ(304CHL) .LT. CSIZE) THEN

D-42

DFIN2 =DISK(NDSK,6) + TNOW
IF (DFIN2 GCE. DFIN(NDSK)) THEN

DFIN(NDSK) - DFIN2
END IF

NCHL - NINT(ATRIB(20))
IF (CSTRT(NCHL) .NE. -1.0) THEN
IF (CFIN(NCHL) .LT. TNOW) THEN
CSUM(NCHL) - CSUM(NCHL) + CFIN(NCHL) -CSTRT(NCHL)

CSTRT(NCHL) - TNOW
ELSE
CCNT(NCHL) - CCNT(NCHL) + 1

END IF
ELSE
CSTRT(NCHL) - TNOW
CCNT(NCHL) -CCNT(NCHL) + 1

END IF

IF (DFIN2 .GT. CFIN(NCHL)) THEN
CFIN(NCHL) - DFIN2

END IF
END IF

C*** SCHEDULE COMPLETION OF DISK TRANSFER
CALL SCHDL(12,DISK(NDSK,6) ,ATRIB)

RETURN
END IF

C*** IF IT IS A TAPE TRANSFER
IF ((ATRIB(19) .E. 20.0) .AND. (ATRIB(19) -GT. 10.)) THEN

NTAPE - NINT(ATRIB(19) - 10)

C*** IF H/W MON IS ON THEN UPDATE TAPE AND CHANNEL DATA
IF (XX(30) .EQ. ON) THEN

TCNT(NTAPE) - TCNT(NTAPE) + 1
IF (TSTRT(NTAPE) .NE. -1.0) THEN

IF (TFIN(NTAPE) .LT. TNOW) THEN
TSUM(NTAPE) -TSUM(NTAPE) + TFIN(NTAPE) -TSTRT(NTAPE)

TSTRT(NTAPE) -TNOW

END IF
ELSE

TSTRT(NTAPE) - TNOW
END IF

TFIN2 - TAP(NTAPE,6) + TNOW
IF (TFIN2 .GE. TFIN(NTAPE)) THEN

TFIN(NTAPE) - TFIN2

D-4 6

END IF

NCHL = NINT(ATRIB(20))
IF (CSTRT(NCHL) .NE. -1.0) THEN

IF (CFIN(NCHL) .LT. TNOW) THEN
CSUM(FCHL) - CSUM(NCHL) + CFIN(NCHL) - CSTRT(NCHL)
CSIRT(NCHL) - TNOW

ELSE
CCNT(NCHL) - CCNT(NCHL) + 1

END IF
ELSE
CSTRT(NCHL) - TNOW
CCNT(NCHL) - CCNT(NCHL) + 1

END IF

IF (TFIN2 .GT. CFIN(NCHL)) THEN
CFIN(NCHL) = TFIN2

END IF
END IF

C*** SCHEDULE COMPLETION OF TAPE TRANSFER
CALL SCHDL(13,TAP(NTAPE, 6),ATRIB)

RETURN
END IF

C*** IF JOB NEEDS TO READ CARDS THEN CALL RCARD
IF (ATRIB(19) .EQ. SPLR) THEN

CALL SCHDL(11,O.O,ATRIB)
RETURN

END IF

C*** IF JOB NEEDS TO PRINT CALL PBUFF
IF (ATRIB(19) .EQ. OSPLR) THEN

CALL SCHDL(24,O.O,ATRIB)
RETURN

END IF

END

D-47

END IF

END

D-44

CHNL CHL
CSIZE " NNQ(30CHL)
ATRIB(20) - CHNL

END IF
END IF

6 CONTINUE

C*** AWAIT CHANNEL
CALL ENTER(25,ATRIB)
RETURN
END IF

C*** IF IT IS THE LINE PRINTER THAT NEEDS THE CHANNEL
IF (ATRIB(19) .EQ. OSPIR) THEN

ATRIB(19) - OSPLR

C*** FIND FIRST CHANNEL LINE PRINTER IS CONNECTED TO
DO 20 I-I,XX(23)

IF (PRNTR(I) .EQ. 1.0) THEN
CHNL - I
CSIZE N NNQ(30 + CHNL)
ATRIB(20) - CHNL
GO TO 25

END IF
20 CONTINUE

C*** IF THIS STATEMENT IS REACHED THEN THE LINE PRINTER IS NOT
C*** CONNECTED TO ANY CHANNEL

PRINT *,-ERROR: LINE PRINTER NOT CONNECTED TO ANY CHANNEL'
PRINT *,'LINE PRINTER CHANNELS ARE'
PRINT *,(PRNTR(I),I1,XX(23))
RETURN

C*** FIND THE SMALLEST CHANNEL QUEUE WHICH THE LINE PRINTER CAN USE
25 ICHNL - CHNL

DO 30 CHL-ICHNL,XX(23)
IF (PRNTR(CHL) .EQ. ON) THEN

IF (NNQ(30+CHL) .LT. CSIZE) THEN
CHNL - CHL
CSIZE - NNQ(30CHL)
A1IB(20) - CHNL

END IF
END IF

30 CONTINUE

C*** AWAIT CHANNEL
CALL ENTER(25,ATRIB)
RETURN

D-43

C *
C DATE: 5 DEC 1983 *

C VERSION: 1.0 *

C *
C NAME: FPRNT (FINISHED PRINTING) *
C EVENT NUMBER: 17 *

C FUNCTION: FREES CHANNEL AFTER PRINTING BUFFER. *

C IF THERE IS NO MORE PRINTING TO BE DONE *
C THEN THE OUPUT SPOOLER IS RELEASED FROM *

C THE SYSTEM , THE PARTITION IS FREED AND *

C THE JSCHD IS LOADED. *

C FILES READ: NONE. *
C FILES WRITTEN: NONE. *

C EVENTS CALLED: 5 *

C CALLING EVENTS: 24 *

C SUBROUTINES CALLED: USERF *
C CALLING SUBROUTINES: NONE. *
C *
C AUTHOR: DAVID L. OWEN *

C HISTORY: N/A. *
C *

SUBROUTINE FPRNT
COMMON/SCOM1/ ATRIB(1O0),DD(100),DDL(100),DTNOW ,II ,MFA

1,MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(1O0)

1,SSL(100),TNEXT,TNO ,XX(100)
COMMON/UCOMI/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNT(1O), DSTRT(1O), DSUM(IO),DFIN(1O),

1 CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,

1 PCNT, PSTRT, PFIN, PSUM

PARAMETER (ON = 1.O,FRE-O.O)

C*** FREE CHANNEL OF THE PORTION THAN THE LINE PRINTER WAS USING
NCHL = 30 + ATRIB(20)
ITEMP - USERF(l)
CALL FREE(NCHL, ITEMP)

C** CHECK FOR COMPLETION OF OUTPUT SPOOLING
IF (ATRIB(8) .EQ. 0.) THEN

C* OSPOOL STATUS - 0
XX(16) - 0.0

C******** NEED TO PUT CPU TIME FOR SPOOLER IN HERE

C** FREE JOB FROM OUTPUT QUEUE
CALL FREE(4,1)
IF (NNQ(4) .NE. 0) THEN

C** PUT OUTPUT SPOOLER BACK INTO EXECUTE QUEUE
CALL ENTER(3,ATRIB)

D-48

.L*

ELSE
C** OSPOOLERON - 0

XX(12) - 0.
C** FIND MEMORY PARTION USED AND FREE IT

DO 5 III-1,XX(3)
IF (PART(III,I) .EQ. ATRIB(14)) THEN

PART(III,2) - FRE
GOTO 10

END IF
5 CONTINUE

C*** IF THIS STMT IS REACHED A PARTION WAS NOT FOUND
PRINT *,'ERROR - UNABLE TO FIND MEMORY PARTION TO FREE'
PRINT *,'JOB ATRIBUTES ARE'
PRINT *,(ATRIB(I),I-1,18)
PRINT *,'MEMORY PARTIONS ARE'
DO 6 J-1X.X(3)

PRINT *,PART(J,1),PART(J,2)
6 CONTINUE

RETURN

10 CONTINUE
C*** PUT JOB SCHEDULER INTO EXECQ (IF NOT ALREADY THERE)

IF (XX(11) .NE. ON) THEN
XX(11) - ON

CALL SCHDL(5,0.,ATRIB)
END IF

END IF
ELSE

C** SPOOL STATUS - 2 (READY TO READ MORE CARDS)
XX(16) - 2.0

C* PUT SPOOLER BACK INTO EXEC QUEUE
CALL ENTER(3,ATRIB)

END IF
RETURN

END

D-49

C*

C DATE: 5 DEC 1983 *
C VERSION: 1.0 *
C *
C NAME: JSCOM (JOB SCHED COMPLETION) *
C EVENT NUMBER: 18 *
C FUNCTION: FREES CPU. SINCE JOB SCHEDULER IS *
C ALSO CORE RESIDENT THERE IS NO MEMORY *
C PARTITION TO FREE. *
C FILES READ: NONE. *
C FILES WRITTEN: NONE. *
C EVENTS CALLED: NONE. *
C CALLING EVENTS: NONE. *
C SUBROUTINES CALLED: NONE. *
C CALLING SUBROUTINES: JSCHD *
C *
C AUTHOR: DAVID L. OWEN *
C HISTORY: N/A. *
C *

SUBROUTINE JSCOM
COMMON/SCOMI/ ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA

1, MSTOP, NCLNR, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(100)
1,SSL(100) ,TNEXTTNOW ,XX(100)

C*** FREE CPU BY RELEASING JOB FROM EXECUTE QUEUE
CALL FREE(3,1)

C*** UPDATE CPU TIME USED BY JOB SCHEDULER
XX(42) - XX(42) + (TNCW - XX(4))

RETURN
END

D-50

C *
C DATE: 5 DEC 1983 *
C VERSION: 1.0 *
C *

C NAME: DTRAN *
C EVENT NUMBER: 16 *
C FUNCTION: PERFORMS A DISK OR TAPE TRANSFER IF *

C NECESSARY. IF A CARD IS TO BE READ OR *
k A LINE TO PRINTED rHEN THE APPROPRIATE *

C SUBROUTINE IS CALLED *
C FILES READ: NONE. *
C FILES WRITTEN: NONE. *

C EVENTS CALLED: 11, 12, 13, 24 *
C CALLING EVENTS: NONE. *
C SUBROUTINES CALLED: NONE. *

C CALLING SUBROUTINES: NONE. *
C *
C AUTHOR: DAVID L. OWEN *

C HISTORY: N/A. *
C *
C******** *** ** ***** ** ***** * **** * **** ** * *** ***** ** * ** ** ***

SUBROUTINE DTRAN
COMMON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA

1,MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
1,SSL(100),TNEXT,TNOW ,XX(100)
COMMON/UCOMl/A(l00), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNT(1O), DSTRT(1O), DSUM(IO),DFIN(lO),
I CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM
COMMON/UCOM3/TAP(1O,7), TCNT(1O), TSTRT(1O), TSUM(1O),TFIN(10)
COMMON/UCOM4/CARD(6),PRNTR(6)

PARAMETER (ON - 1.0, SPLR,40.O, OSPLR=41.O)

C*** IF IT IS A DISK TRANSFER
IF ((ATRIB(19) .GE. 21.) .AND. (ATRIB(19) .LE. 30.)) THEN

NDSK - NINT(ATRIB(19) - 20)

C*** IF H/W MON IS ON THEN UPDATE DISK AND CHANNEL DATA
IF (XX(30) .EQ. ON) THEN

DCNT(NDSK) - DCNT(NDSK) + I
IF (DSTRT(NDSK) .NE. -1.0) THEN

IF (DFIN(NDSK) .LT. TNOW) THEN
DSUM(NDSK) !)SUM(NDSK) + DFIN(NDSK) - DSTRT(NDSK)
DSTRT(NDSK) - TNOC

END IF
ELSE
DSTRT(NDSK) TNOW

END IF

D-45

C *

C DATE: 5 DEC 1983 *

C VERSION: 1.0 *

C *

C NAME: ACTLG (ACTIVITY LOG) *

C EVENT NUMBER: 19 *

C FUNCTION: WRITE ACOUNTING DATA TO THE ACCOUNTING *
C LOG *

C FILES READ: NONE. *
C FILES WRITTEN: ACTLOG *
C EVENTS CALLED: NONE. *

C CALLING EVENTS: NONE. *
C SUBROUTINES CALLED: NONE. *

C CALLING SUBROUTINES: NONE. *
C *

C AUTHOR: DAVID L. OWEN *
C HISTORY: N/A. *

C *

SUBROUTINE ACTLG
COMMON/SCOMI/ ATRIB(100),DD(100),DDL(I00),DTNOW,II,MFA,MSTOP

1, NCLNR, NCRDR, NPR NT, NNRUN, NNSET, NTAPE, SS(100)
1,SSL(1O0),TNEXT,TNOW ,XX(1OO)
COMMON/UCOM1/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNT(IO), DSTRT(1O), DSUM(1O),DFIN(1O),
I CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
I PCNT, PSTRT, PFIN, PSUM

C*** SET DEPARTURE TIME TO TNOW
ATRIB(15) - TNOW

C WRITE ARRIVAL TIME, JOB NAME, CPU TIME REQUIRED, MEMORY, PRIORITY,
C ALLOCATABLE DEVIECES NEEDED, CARDS, LINES, DISK BLOCKS,
ALLOCATAB LE
C DEVICE BLOCKS, JOB TYPE, CPU TIME USED, I/O TIME USED, MEMORY SIZE
C USED, AND DEPARTURE TIME TO THE ACOUNTING DATA FILE

PRINT *,*************** WRITING ACT DATA NOW *********
PRINT *,(ATRIB(),11,15)

WRITE (UNIT-12,FMT-2,ERR-990)(AIRIB(I),I-1,15)

2 FORMAT(IX,F15.4,IX,FIO.O, IX,F5.0, lX,F5.O, IX,F5.0, IX, F5.0,
1 1X,F6.O, IX,F6.0, 1X,F6.O,1X,F6.0,lX,F2.0,IX,FIO.3,IX,
1 FIO.3,1X,F6.1,1X,F15.4)

RETURN

990 PRINT *,'ERROR IN WRITING TO ACCOUNTING DATA FILE'

RETURN

D-51

END

D-52

C *
C DATE: 5 DEC 1983 *
C VERSION: 1.0 *

C *
C NAME: HWMON (HARDWARE MONITOR) *
C EVENT NUMBER: 20 *
C FUNCTION: WRITE HARDARE MONITOR DATA. RESECTS *

C COUNTERS AND TIMERS. SCHEDULES NEXT TIME *

C TO RECORD H/W MONITOR DATA *
C FILES READ: NONE. *

C FILES WRITTEN: HRDMON *
C EVENTS CALLED: 20 *

C CALLING EVENTS: NONE. *
C SUBROUTINES CALLED: NONE. *

C CALLING SUBROUTINES: NONE. *
C *

C AUTHOR: DAVID L. OWEN *
C HISTORY: N/A. *
C *

SUBROUTINE HWMON
COMMON/SCOMI/ ATRIB(I00),DD(100),DDL(100),DTNOW,II,MFA,MSTOP

1,NCLNR,NCRDR,NPRNT, NNRUN, NNSET,NTAPE,SS(100)
i,SSL(i00),TNEXT,TNOW ,XX(100)
COMMON/UCOMl/A(1O0), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(IO,7), DCNT(1O), DSTRT(1O), DSUM(10),DFIN(IO),
1 CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM
COMMON/UCOM3/TAP(1O,7), TCNT(IO), TSTRT(IO), TSUM(10),TFIN(IO)

COMMON/UCOM6/IPROBE(5)

DIMENSION TIMER(2) ,ICNTER(3)

PARAMETER(OFF.O.O, ON=I.O, ST,-1.0)

C*** CHECK TO SEE IF IT TIME TO START H/W MONITOR
IF (XX(33) .EQ. TNOW) THEN

PRINT *,-START OF H/W MON-
XX(30) - ON

C** INITIALIZE START TIMES, STOP TIMES, COUNTS AND SUMS
RSTRT - ST
PSTRT - ST

XX(36) - ST
XX(37) - 0.0
RSUM - 0.0
PSUM - 0.0
XX(31) - 0.0
RCNT - 0.0
PCNT - 0.0
XX(37) - 0.0

D-53

RFIN - 0.0

PFIN - 0.0
DO 60 1-1,10

DSTRT(I) - ST

TSTRT(I) - ST

DSUM(I) = 0.0

TSUH(I) = 0.0
DFIN(I) - 0.0
TFIN(I) - 0.0

DCNT(I) - 0.0

TCNT(I) - 0.0

60 CONTINUE
DO 61 1-1,5

CSTRT(I) - ST

CSUM(I) = 0.0
CCNT(I) = 0.0
CFIN(I) = 0.0

61 CONTINUE

CALL SCHDL(20,XX(35),ATRIB)
RETURN

END IF

C*** IF H/W MON IS ON THEN

IF (XX(30) .EQ. ON) THEN

C*** CALCULATE CPU TIME
IF (XX(36) .NE. -1.0) THEN

IF (KX(37) .GT. TNOW) THEN

XX(32) = XX(32) + TNOW - XX(36)
XX(36) = TNOW

ELSE
XX(32) - XX(32) + XX(37) - XX(36)
XX(36) - -1.0

END IF
END IF

C*** CALCULATE CARD READER TIME
IF (RSTRT .NE. -1.0) THEN

IF (RFIN .GT. TNOW) THEN
RSUM - RSUM + TNOW - RSTRT
RSTRT - TNOW

ELSE
RSUM - RSUM + RFIN - RSTRT
RSTRT = -1.0

END IF
END IF

C*** CALCULATE LINE PRINTER TIME
IF (PSTRT .ME. -1.0) THEN

IF (PFIN .GT. TNU.,) THEN

D-54

PSUM - PSUM + TNOW - PSTRT

PSTRT - TNOW
ELSE

PSUM - PSUM + PFIN - PSTRT

PSRT - -1.0

END IF
END IF

C*** CALCULATE DISK TIME
DO 50 1-1,10
IF (DSIRT(l) .NE. -1.0) THEN

IF (DFIN(I) .GT. TNOW) THEN
DSUM(I) = DSUM(I) + TNOW - DSTRT(I)

DSTRT(I) TNOW
ELSE

DSUM(I) - DSUM(I) + DFIN(I) - DSTRT(I)

DSTRT(I) - -1.0
END IF

END IF
50 CONTINUE

C*** CALCULATE TAPE TIME
DO 51 1-1,10
IF (TSTRT(I) .NE. -1.0) THEN

IF (TFIN(I) .GT. TNOC) THEN
TSUM(I) = TSUM(I) + TNOW - TSTRT(I)

TSTRT(I) - TNOW

ELSE
TSUM(I) - TSUM(I) + TFIN-(I) - TSTRT(I)

TSTRT(I) = -1.0
END IF

END IF
51 CONTINUE

C*** CALCULATE CHANNEL TIME
DO 52 1-1,5
IF (CSTRT(I) .NE. -1.0) THEN

IF (CFIN(I) .GT. TNOW) THEN
CSUM(I) - CSUM(I) + TNOW - CSTR7(I)

CSTRT(I) - TNOW

ELSE
CSUM(I) - CSUM(I) + CFIN(I) - CSTRT(I)

CSTRT(I) - -1.0
END IF

END IF
52 CONTINUE

C*** GET TIMER VALUES OF TIMER PROBES
DO 700 1-1,2

IF (IPROBE(I) .EQ. 1) THEN
TIMER(l) - XX(31)
GOTO 700

D-55

END IF
IF (IPROBE(I) EQ. 2) THEN

TIMER(l) = RSUM
GOTO 700

END IF
IF ((IPROBE(I) ,GE. 11) .AND. (IPROBE(I) .LE. 20)) THEN

TIMER(I) - TSUM(IPROBE(1)-1O)
COTO 700

END IF
IF ((IPROBE(1) .GE. 21) .AND. (IPROBE(I) .LE. 30)) THEN

TIMER(I) = DSUM(IPROBE(l)-20)
GOTO 700

END IF
IF ((IPROBE(1) ,GE. 31) .AND. (IPROBE(I) .LE. 35)) THEN

TIMER(I) - CSUM(IPROBE(1)-30)
GOTO 700

END IF
C*** IF NONE OF THE ABOVE THEN PROBE NOT CONNECTED

TIMER(I) = 0.0

700 CONTINUE

C*** GET COUNTER VALUES OF COUNTER PROBES
DO 710 1=3,5

K- I-2
IF (IPROBE(I) .EQ. 1) THEN

ICNTER(K) = NINT(XX(32))
GOTO 710

END IF
IF (IPROBE(I) ,EQ. 2) THEN

ICNTER(K) = NINT(RCNT)
GOTO 710

END IF
IF ((IPROBE(I) .GE. 11) .AND. (IROBE(I) .LE. 20)) THEN

ICNTER(K) - NINT(TCNT(IPROBE(1)-10))
GOTO 710

END IF
IF ((IPROBE(I) .GE. 21) .AND. (IPROBE(l) .LE. 30)) THEN

ICNTER(K) = NINT(DCNT(IPROBE(I)-20))
GOTO 7.0

END IF
IF ((IPROBE(I) .GE. 31) .AND. (IPROBE(1) .LE. 35)) THEN

ICNTER(K) = NINT(CCNT(IPROBE(I)-30))

GOTO 710
END IF

C*** IF NONE OF THE ABOVE THEN PROBE NOT CONNECTED
ICNTER(K) - 0.0

710 CONTINUE

PRINT *,******** WRITING HWMON DATA NOW ***********

PRINT *,TNOW ,TIMER(1),TIMER(2),(ICNTER(I),I-1,3)

D-56

C*** WRITER H/W MONITOR DATA TO DISK
WRITE(UNIT-13,FMT=3,IOSTAT-IOS,ERR-990'-NOW,TIMER(),TI ER(2),
1 (ICNTER(I),Iml,3)

3 FORMAT(1X,F15.4,IX,F8.3,1X,F8.3, 1X,I5,lX,15,IX,I5)

C*** RESET CPU COUNT, AND CPU SUM
IF (XX(37) .LE. TNOW) THEN
XX(31) = 0.

ELSE
XX(31) = 1.0

END IF
XX(32) - 0.

C*** RESET READER COUNT, AND READER SUM
IF (RFIN .LE. TN0W) THEN
RCNT = 0.

ELSE
RCNT = 1.0

END IF
RSUM = 0.

C*** RESET PRINTER COUNT, AND PRINTER SUM
IF (PFIN .LE. TNOW) THEN
PCNT - 0.

ELSE
PCNT - 1.0

END IF
PSUM - 0.

C*** RESET TAPE COUNT, AND TAPE SUM
DO 12 Il,10

IF (TFIN(I) .LE. TNOW) THEN
TCNT(I) - 0.

ELSE
TCNT(I) = 1.0

END IF
TSUM(I) - 0.

12 CONTINUE

C*** RESET DISK COUNT, AND DISK SUM
DO 9 1-1,10

IF (DFIN(I) .LE. TNOe/) THEN
DCNT(I) - 0.

ELSE
DCNT(I) - 1.0

END IF
DSUM(I) - 0.

9 CONTINUE

C*** RESET CHANNEL COUNT AND CHANNEL TIME

D-57

DO 10 1-1,5
IF (CFIN(l) .LE. TNOW) THEN
CCNT(I) - 0.

ELSE
CCNT(I) - 1.0

END IF
CSUM(I) - 0.

10 CONTINUE

C*** CHECK TO SEE IF IT TIME TO TURN OFF THE H/W MON
IF (XX(34) .LE. TNOW) THEN
PRINT *,'TURNING OFF H/W MON NOW'
XX(30) - OFF
RETURN

ELSE
C*** SCEDULE NEXT RECORDING OF H/W MONITOR DATA

CALL SCHDL(20,XX(35),ATRIB)
RETURN

END IF

C*** END OF IF H/W MON IS ON
END IF

RETURN

990 PRINT *,'ERROR IN WRITING TO 1l/W MON-
PRINT *,'IOSTAT ",IOS
RETURN

END

D-58

mill"

C *

C DATE: 5 DEC 1983 *

C VERSION: 1.0 *

C *

C NAME: LSMON (LOAD S/W MONITOR) *

C EVENT NUMBER: 21 *

C FUNCTION: LOADS S/W MONITOR INTO HOLD QUEUE *

C FILES READ: NONE. *

C FILES WRITTEN: NONE. *

C EVENTS CALLED: NONE. *
C CALLING EVENTS: NONE. *

C SUBROUTINES CALLED: NONE. *

C CALLING SUBROUTINES: INTLC *

C *

C AUTHOR: DAVID L. OWEN *

C HISTORY: N/A. *

C *

SUBROUTINE LSMON
COMMON/SCOMI/ ATRIB(100),DD(100),DDL(I00),DTNCW, II,MFA

I,MSTOP,NCLNR,NCRDR,NPRNT, NNRUN,NNSET, NTAPE,SS(100)
1,SSL(100),TNEXT,TNOW, XX(IO0)
COMMON/UCOMI/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(IO, 7), DCNT(IO), DSTRT(IO), DSUM(10),FIN(IO),
1 CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM

REAL AA(24)
PARAMETER (SWMN4.O,ON-".O)

C*** SET ATRIBUTES FOR S/W MONITOR

C** ARRIVAL TIME = TNOW
AA(1) - TNOW

C** JOB NAME - 997 (DUMMY NUMBER FOR S/W MONITOR)
AA(2) - 997.

C** MEMORY SIZE NEEDED IS 4K
AA(4) - 4.0

C*** SET JOB TYPE TO INPUT SPOOLER
AA(11) - SWMN

C*** INITIALIZE OTHER ATRIBUTES TO 0
AA(3) - 0
AA(5) - 0
AA(6) = 0
AA(7) - 0

AA(8) - 0
AA(9) - 0
AA(10) - 0
DO 11 1-12,24
AA(I) - 0

D-59

11 CONTINUE

C*** INITIALIZE ATRIB(21) TO ARRIVED WHILE S/W MON NOT ON
AA(21) - 99.

C*** PUT S/W MON INTO HOLD QUEUE
CALL ENTER(21,AA)

RETURN
END

D-60

C *

C DATE: 5 DEC 1983 *
C VERSION: 1.0 *
C *
C NAME: ESMON (END OF S/W MONITOR TRACE) *
C EVENT NUMBER: 22 *

C FUNCTION: TERMINATES S/W MONITOR TRACE AND FREES *
C MFMORY PARTITION. IF NECESSARY IT WILL *

C LOAD JOB SCHEDULER. *

C FILES READ: NONE. *
C FILES WRITTEN: NONE. *
C EVENTS CALLED: 5 *
C CALLING EVENTS: NONE. *

C SUBROUTINES CALLED: NONE. *

C CALLING SUBROUTINES: SSMON *

C *

C AUTHOR: DAVID L. OWEN *

C HISTORY: N/A. *
C *

SUBROUTINE ESMON
COMMON/SCOMI/ ATRIB(iO0),DD(100),DDL(100),DTNOW,II,MFA

1,MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
1,SSL(100),TNEXT,TNOW ,XX(100)
COMMON/UCOMI/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(IO,7), DCNT(IO), DSTRT(1O), DSUM(IO),DFIN(IO),
1 CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
I PCNT, PSTRT, PFIN, PSUM

PARAMETER(FRE-O.O, BUSY-1.O, OFF-O.O)

PRINT *,'END OF SOFTWARE MONITOR TIRACE'

C*** TURN OFF S/MON ON FLAG
XX(2) - OFF

C*** SET CPU RATIO BACK TO 100%
XX(5) - 1.0

C*** FIND MEMORY PARTION USED AND FREE IT
DO 5 III-1,XX(3)

IF (PART(III,I) .EQ. ATRIB(14)) THEN
PART(III,2) - FRE
GOTO 10

END IF
5 CONTINUE

C*** IF THIS STATEMENT IS REACHED A PARTION WAS NOT FOUND
PRINT *,'ERROR - UNABLE TO FIND MEMORY PARTION TO FREE'
PRINT *,'JOB ATRIBUTES ARE'
PRINT *,(ATRIB(I),I-1,20)

D-61

PRINT *,'MEMORY PARTIONS ARE'
DO 6 J-1,XX(3)
PRINT *,PART(J,I),,PART(J,2)

6 CONTINUE
RETURN

C*** LO)AD JOB SCHEDULER INTO EXECQ IF IT ISN-T ALREADY
10 IF (XX(11) .NE. 1.) THEN

CALL LJSCH
XXCI1) =1.0

END IF

RETURN
END

D-6 2

C *

C DATE: 5 DEC 1983 *

C VERSION: 1.0 *
C *
C NAME: SMON (S1W MONITOR) *
C EVENT NUMBER: 23 *

C FUNCTION: RECORDS S/W MONITOR DATA *
C FILES READ: NONE. *
C FILES WRITTEN: SFTMON *
C EVENTS CALLED: NONE. *
C CALLING EVENTS: NONE. *
C SUBROUTINES CALLED: NONE. *
C CALLING SUBROUTINES: NONE. *
C *

C AUTHOR: DAVID L. OWEN *
C h[STORY: N/A. *

C *

SUBROUTINE SMON
COMMON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNO ,II,MFA

1, MSTOP NCLNR, NCRDR, NPRNT, NNR UN, NNSET, NTAPE, SS(100)
1,SSL(100),TNEXT,TNOW,XX(100)
COMMON/UCOM1/A(100), PART(20, 2), TAPE(20, 3)
COMMON/UCOM2/DISK(1O,7), DCNT(lO), DSTRT(IO), DSUM(10),DFIN(Io),
I CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM
COMMON/UCOM5/IQ(5)

CHARACTER NAMES(42)*15
DATA NAMES/'JOB ARRIVAL -,-INPUT QUEUE -,

1HOLD QUEUE -,-EXEC QUEUE -,"OUPUT QUEUE -,

I'ARVL SPOOL ', ARVL OSPOL -,-ARVL S/WMON
I'ARVL JSCHED -,-JOB FINISHED -,-NOT USED
1-TAPE 1 QUEUE ,TAPE 2 QUEUE -,-TAPE 3 QUEUE -,

I-TAPE 4 QUEUE ,TAPE 5 QUEUE -,-TAPE 6 QUEUE -,

I-TAPE 7 QUEUE -TAPE 8 QUEUE -,-TAPE 9 QUEUE ",
I-TAPE 10 QUEUE -,'DISK I QUEUE -,-DISK 2 QUEUE -,

I-DISK 3 QUEUE -,-DISK 4 QUEUE -,-DISK 5 QUEUE -,

I-DISK 6 QUEUE -,-DISK 7 QUEUE -,-DISK 8 QUEUE ",
I-DISK 9 QUEUE -,-DISK 10 QUEUE -,-CHAN 1 QUEUE -,

I-CHAN 2 QUEUE -,-CHAN 3 QUEUE -,-CHAN 4 QUEUE ",
I-CHAN 5 QUEUE -,CPU -,-GENERAL CHAN ,

VNOT USED -,-NOT USED -,-SPOOL QUEUE ,

VOSPOOL QUEUE -/

C*** CHECK TO SEE IF IT IS ONE OF THE 5 QUEUES BEING MONITORED
KQ - NINT(ATRIB(21))
IF ((KQ .EQ. IQ(1)) .OR. (KQ .EQ. IQ(2)) .OR. (KQ .EQ. IQ(3))

1 .OR. (KQ .EQ. IQ(4)) .OR. (KQ .EQ.IQ(5))) THEN

C*** CALCULATE TIME IN QUEUE

D-63

TIME - TNOW - ATRIB(22)

C*** TABLE LOOK UP FOR QUEUE NAMES

C*** CREATE INTEGER INDEXES TO LOOK UP NAMES
C*** NOTE: NEED TO OFFSET BY ONE BECAUSE ARRAY STARTS AT 1 NOT 0

IQUEUE - NINT(ATRIB(21) + 1)
IFROM - NINT(ATRIB(?l) +1)
ITO - NINT(ATRIB(24, + 1)

PRINT *,WRITING S/W MON DATA NOW'
PRINT *,'JOB- ',ATRIB(2),' Q- -,NAMES(IQUEUE)," TIME . -,

I TIME,- FROM- -,NAMES(IFROM),(TO- ',NAMES(ITO)

WRITE (UNIT-14,FMT-1,IOSTAT=IOS,ERR-990)NAMES(IQUEUE),TIME,
NAMES(IFROM),NAMES(ITO)

FORMAT(IX,A15,IX,F8.3,IX,A15,IX,A15)

R -TURN
E iD IF

C* IN FOR DEBUG ONLY
IF (AflIB(21) .EQ. 99.) THEN
PRINT *,'JOB ENTERED QUEUE BEFORE S/W MON WAS TURNED ON
ELSE
PRINT *,'SWMON NOT MONITORING THIS QUEUE'
PRINT *,-Q IS -,NAMES(KQ+I)
END IF
RETURN

990 PRINT *,'ERROR IN WRITING TO S/W MON DATA FILE'
PRINT *,-IOSTAT - ,IOS
RETURN
END

D-64

C *
C DATE: 5 DEC 1983 *

C VERSION: 1.0 *
C *
C NAME: PBUFF (PRINT BUFFER) *

C EVENT NUMBER: 24 *
C FUNCTION: PRINTS BUFFER TO LINE PRINTER *
C FILES READ: NONE. *
C FILES WRITTEN: NONE. *
C EVENTS CALLED: 17 *

C CALLING EVENTS: 16 *
C SUBROUTINES CALLED: NONE. *
C CALLING SUBROUTINES: NONE. *
C *
C AUTHOR: DAVID L. OWEN *
C HISTORY: N/A. *
C *

SUBROUTINE PBUFF
COMMON/SCOMI/ ATRIB(100),DD(100),DCL(100),DTNOW,II,MFA

1,MSTOP,NCLNR,NCRIR,NPRNT,NNRUN, NNSET,NTAPE, SS(100)
1,SSL(100),TNEXT,TNOW,XX(100)
COMMON/UCOMl/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNT(lO), DSTRT(IO), DSUM(IO),DFIN(1O),
1 CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM

PARAMETER(ON- 1.0)

C*** UPDATE CPU TIME USED
ATRIB(12) - ATRIB(12) + (TNOW - XX(4)) * XX(5)

C*** UPDATE NUMBER OF LINES LEFT TO PRINT
IF (ATRIB(8) .LE. XX(27)) THEN

ATRIB(8) - 0.
ELSE

ATRIB(8) - ATRIB(8) - XX(27)
END IF

C*** FREE CPU
CALL FREE(3,1)

C*** IF H/W MON IS ON THEN UPDATE PRINTER AND CHANNEL DATA

IF (XX(30) .EQ. ON) THEN
PCNT - PCNT + 1
IF (PSTRT .NE. -1.0) THEN

IF (PFIN .LT. TNOW) THEN
PSUM PSUM + PFIN - PSTRT
PSTRT - TNOW

END IF
ELSE

D-65

PSTRT - TNOW
END IF

PFIN2 - ((XX(27) /XX(25))* 60) + TNO4
IF (PFIN2 .GE. PFIN) THEN

PFIN - PFLN2
END IF

NCHL = NINT(ATRIB(2C))
IF (CSTRT(NCHL) MNE. -1.0) THEN
IF (CFIN(NCHL) .LT. TNO.J) THEN

CSUM(NCHL) - CSUN(NCHL) + CFIN(NCHL) -CSTRT(NCHL)

CSTRT(NCHL) - TNcJA
ELSE
CCNT(NCHL) -CCNT(NCHL) + I

END IF
ELSE

CSTRT(NCHL) =TNO1A

CCNT(NCHL) -CCNT(NCHL) + 1
END IF

IF (PFIN2 GCT. CFIN(NCHL)) THEN
CFIN(NCHL) -PFIN2

END IF
END IF

C** SCHEDULE COMPLETION OF PRINTING BUFFER
CALL SCRUL (17,(XXC27) /XX(2S)) *60,ATRIB)

RETURN
END

D-66

C *

C DATE: 5 DEC 1983 *
C VERSION: 1.0 *

C *

C NAME: ATAPE (ASSIGN TAPES) *
C EVENT NUMBER: N/A *
C FUNCTION: ASSIGNS TAPE DRIVES TO JOB *
C FILES READ: NONE. *

C FILES WRITTEN: NONE. *
C EVENTS CALLED: NONE. *

C CALLING EVENTS: NONE. *
C SUBROUTINES CALLED: NONE. *
C CALLING SUBROUTINES: JSCHD *
C *

C AUTHOR: DAVID L. OWEN *
C HISTORY: N/A. *
C *

SUBROUTINE ATAPE
COMMON/SCOMI/ ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA

1,MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
i,SSL(100),TNEXT,TNGW, XX(1OO)
COMMON/UCOMI/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNT(10), DSTRT(1O), DSUM(1O),DFIN(1O),

I CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
I PCNT, PSTRT, PFIN, PSUM

PARAMETER(FREE = 0.0, BUSY - 1.0)

C*** ACQUIRE NUMBER OF TAPES REQUESTED
DO 10 III-I,A(6)

C** FIND FREE TAPE
DO 5 JJJ=1,XX(9)

IF (TAPE(JJJ,2) .EQ. FREE) THEN
TAPE(JJJ,2) - BUSY

TAPE(JJJ,3) = A(2)
C* DECREMENT NUMBER OF AVAILABLE TAPE DRIVES

XX(1o) - XX(1o) - 1
GOTO 10

END IF
5 CONTINUE

C IF THIS STATEMENT IS REACHED THEN TAPES WERE NOT ASSIGNED
PRINT *,'UNABLE TO ASSIGN TAPES PROPERLY'

10 CONTINUE

RETURN
END

D-67

C *
C DATE: 5 DEC 1983 *
C VERSION: 1.0 *

C *
C NAME: JSCHD (JOB SCHEDULER) *

C EVENT NUMBER: N/A *

C FUNCTION: ASSIGNS RESOUCES TO JOBS IN THE HOLD *
C QUEUE AND THEN SENDS JOB TO EXECUTER QUEUE*
C FILES READ: NONE. *

C FILES WRITTEN: NONE. *
C EVENTS CALLED: 18 *
C CALLING EVENTS: 4 *

C SUBROUTINES CALLED: ATAPE *
C CALLING SUBROUTINES: NONE. *

AUTHOR: DAVID L. OWEN *

HISTORY: N/A. *
C *

SUBROUTINE JSCHD
COMMON/SCOMI/ ATRIB(1O0),DD(iO0),DDL(1O0),DTNOW,II,MFA

1,MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
1,SSL(100),TNEXT,TNOW ,XX(10)
COMMON/UCOMI/A(IO0), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(IO,7), DCNT(IO), DSTRT(10), DSUM(lO),DFIN(IO),
1 CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM

PARAMETER(ON - 1.0, FREE-O.O, BUSY=1.O)

C*** PRINT JOB SCHEDULER STARTED
CXXXXXPRINT *,'JOB SCHEDULER IS NOW EXECUTING'
C*** PRINT MEMORY PARTIONS
CXXXXXPRINT *,'MEMORY PARTIONS ARE'
CXXXXXPRINT *,(PART(I, i),PART(I,2),I=I,XX(3))
CXXXXXPRINT *,'TAPES ARE'
CXXXXXPRINT *,(TAPE(I,1),TAPE(I,2),TAPE(I,3),II,XX(9))
C
C*** FOR I i, NUM-IN-HOLD QUEUE DO

III = i
15 IF (NNQ(2) .EQ. 0) GOTO 10

IF (III .GT. NNQ(2)) GOTO 10

C*** COPY THE ATRIBUTES OF THE JOB
CALL COPY(III,2,A)

C*** PRINT WHAT JOB LOOKING AT FOR DEBUG PURPOSES
CKXXXXXPRINT *,'TRYING TO FIND RESOURCES FOR:'
CXXXXXPRINT *,(A(K),K-1,20)

D-68

-i -"'I I I I '- ... - ..

C** WHILE JJJ .LE. NUM-OF-PARTIONS

DO 5 JJJ-I,XX(3)

C* CHECK TO SEE IF PARTION IS L\RGE ENOUGH AND FREE

IF ((PART(JJJ,I) .GE. A(4)) .AND.
1 (PART(JJJ,2) .EQ. FREE)) THEN

C

CXXXXXPRINT *,-PARTION -,JJJ, - IS GOOD-
C
C* CHECK TO SEE IF ENOUGH TAPE DRIVES ARE AVAILABLE

IF (XX(1O) .GE. A(6)) THEN

CXXXXXPRINT *,'ENOUGH TAPES, ACQUIRE RESOURCES-
C* GET JOB FROM HOLD QUEUE

CALL RMOVE(III,2,A)

C ACQUIRE MEMORY PARTITION
C*** PRINT WHAT PARTION USED FOR DEBUG
CXXXXXPRINT *,'PARTION ',JJJ,'USED'

PART(JJJ,2) - BUSY
C MEMORY-SIZED-USED - PARTION SIZE

A(14) - PART(JJJ,1)
C ACQUIRE TAPES

CALL ATAPE
C*** PUT JOB INTO EXEC QUEUE

CALL FILEM(5,A)

C*** PRINT MEMORY PARTIONS
CXXXXXPRINT *,'MEMORY PARTIONS ARE'

CXXXXXPRINT *,(PART(l, 1),PART(1,2),I=I,XX(3))
CXXXXXPRINT *,'TAPES ARE'

CXXXXXPRINT *,(TAPE(I,i),TAPE(I,2),TAPE(l,3),Ii ,XX(9))

C* FOUND RESOURCES SO GO TO NEXT JOB IN HOLD QUEUE

GOTO 15

END IF

END IF

5 CONTINUE

C*** THIS STATEMENT REACHED ONLY IF JOB NOT ALLOCATED
C*** IF JOB NOT ALLOCATABLE THEN WRITE SO
CXXXXXPRINT *,'JOB NOT ALLOCATED'
C*** INCREMENT POINTER IN HOLDQ

III - III + i
C*** GO BACK AND CHECK NEXT JOB

GOTO 15

10 CONTINUE

C*** IF H/W MON = ON, THEN COLLECT TIMER DATA
IF (XX(30) .EQ. ON) THEN

IF (XX(36) .NE. -1.0) THEN
IF (XX(37) .LT. TNOW) THEN

D-69

XX(32) - XX(32) + XX(37) -XX(36)

XX(36) - TNOJ
END IF

ELSE
XX(36) - TNOW

END IF

UFIN2 -XX(13) + TNOA
IF (UFIN2 .GE. KX(37)) THEN

XX(37) - UFIN2

END IF

END IF

C
C*** SET JSCHED IN EXECQ FLAG TO FALSE

XX(1i) 0 .

C*** SCHEDULE COMPLETION OF JOB SCHEDULER
CALL SCHDL(18,XX(13),ATRIB)

C
RETURN
END

D-70

C
C DATE: 5 DEC 1983*
C VERSION: 1.0
C
C NAME: OSPOL (OUTPUT SPOOLER)*
C EVENT NUMBER: N/A*
C FUNCTION: SPOOLS JOB ON DISK TO THE PRINTER
C FILES READ: NONE.*
C FILES WRITTEN: NONE.*
C EVENTS CALLED: 8, 15*
C CALLING EVENTS: 4
C :J'BROUTINES CALLED: NONE.
C CALLING SUBROUTINES: NONE.
C
C AUTHOR: DAVID L. OWvEN
C HISTORY: N/A.*
C

SUBROUTINE OSPOL
COMMON/SCOM1/ ATRIB(100))DD(100),DDL(100),DTNOW,II,MFA

1,MSTOP,NCLNR ,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
1,SSL(IOO),TNEXT,TNOW4,XX(100)
COMMON/UCOMl/A(100), PART(20,2), TAPE(20,3)
COkMON/UCOM2/DISK(1O,7), DCNT(1O), DSTRT(1O), DSUM(1O),DFIN(10),
1 CCNT(5), CSUM(5), CFIN(5), CS DIT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSI.RT, PFIN, PSIJM

PARAMETER (OSPIJRs41.O,ON=1 .0,OFF-0.0,NEW-0.0,BFULw1 .O,BEMPT-2.O)

C*** IF H/W MON IS ON THEN COLLECT CPU TIMER DATA
IF (XX(30) .EQ. ON) THEN

IF (XX(36) .NE. -1.0) THEN
IF (XX(31) .LT. TNOWV) THEN

XX(32) - XX(32) + XX(37) -XX(36)

XX(36) - TNdIW
END IF

EL.S E
K(X(36) - TNCIJ

END IF

LFIN2 -XX(14) + TNOWI
IF (UFIN2 .GE. XX(37)) THEN

XX(37) - UFIN2
END IF

END IF

C*** IF START OF NEWJ JOB SPOOLING
IF (XX(16) .EQ. NEWJ) THEN

IF (NNQ(4) NE. 0) THEN

D- 71

CALL COPY(1,4,A)

C* * * SET NUM-LINES IN INPUT SPOOLER ATRIB - JOB'S NUM-CARDS
ATRIB(8) - A(8)

C*** SCHEDULE CPU COMPLETION, THEN LOAD BUFFER FROM DISK
CALL SCHDL(8,XX(14) ,ATRIB)
RETURN

END IF
END IF

C*** IF BUFFER IS FULL
IF (XX(16) .EQ. BFULL) THEN

C*** SET ATRIB(19) TO LINE PRINTER
ATRIB(19) - OSPLR

C*** ACQUIRE CHANNEL FOR CARD READER PRIOR TO PRINTING
CALL SCHDL(15,XX(14),ATRIB)
RETURN

END IF

C*** IF BUFFER IS EMPTY
IF (XX(16) .EQ. BEMPT) THEN

C*** SCHEDULE CPU COMPLETION THEN LOAD BUFFER FROM DISK
CALL SCHDL(8,XX(14),ATRIB)
RETURN

END IF

RETURN
END

D-72

C*
C DATE: 5 DEC 1983*

C VERSION: 1.0
C*
C NAME: SPOOL (INPUT SPOOLER)
C EVENT NUMBER: N/A*
C FUNCTION: SPOOLS JOB ON TO DISK FROM THE READER
C FILES READ: NONE.*
C FILES WRITT~EN: NONE.
C EVENTS CALLED: 8, 15
C CALLING EVENTS: 4
C SUBROUTINES CALLED: NONE.
C CALLING SUBROUTINES: NONE.*
C*
C AUTHOR: DAVID L. OWEN*
C HISTORY: N/A.
C

SUBROUTINE SPOOL
t COMMON/SCOMI/ ATRIB(100),DD(100),DDL(100),DTNOd ,II,MFA

1,MSTOP,NCLNR,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
1,SSL(100),TNEXT,TNW ,XX(100)
COMMON/UCOMI/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(10,7), DCNT(1O), DSTRT(10), DSUM(1O),DFIN(1O),
1 CCNT(5), CSUM(5), CFIN(5)) CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
I PCNT, PS IXT, PFIN, PSUM
COMMON/UCOM4/CARD(6) ,PRNTR(6)

PARAMETER (SPLRm4O.O,ON=1.O,OFF=O.O,NBJ=O.O,BFULL-1 .O,BEMPT=2.O)

C*** COLLECT CPU TIMER DATA FOR H/W MONITOR
IF (XX(30) .EQ. ON) THEN

IF (XX(36) .NE. -1.0) THEN
IF (XX(37) .LT. TNOW.) THEN
XX(32) - XX(32) + XX(37) -XX(36)

XX(36) - TNOW
END IF
ELSE
XX(36) - TNOW.

END IF

UFIN2 - XX(14) + TNOW
IF (UFIN2 .GE. XX(37)) THEN

XX(37) - UFIN2
END IF

END IF

C*** IF START OF NEW1 JOB SPOOLING
IF (XX(15) .EQ. NmvJ) THEN

D-7 3

IF (NNQ(1) .NE. 0) THEN
C*** ACQUIRE CARD READER ???????????

CALL COPY(1,I,A)
PRINT *,'SPOOLING NEW JOB'
PRINT *,(A(I),I-1,21)

C*** SET NUM-CARDS IN INPUT SPOOLER ATRIB = JOB'S NUM-CARDS
ATRIB(7) = A(7)

C*** SET ATRIB(19) TO CARD READER
ATRIB(19) - SPLR

C*** SCHEDULE CPU TIME OF CPU COMPLETION, THEN ACQUIRE CHANNEL
CALL SCHDL(15,XX(14),ATRIB)
RETURN

END IF
END IF

C*** IF BUFFER IS FULL
IF (XX(15) .EQ. BFULL) THEN

C*** SCHEDULE CPU COPMLETION THEN DO I/O
CALL SCHDL(8,XX(14),ATRIB)
RETURN

END IF

C*** IF BUFFER IS EMPTY
IF (XX(15) .EQ. BEMPT) THEN

C*** SET ATRIB(19) TO CARD READER
ATRIB(19) = SPIR

C*** SCHEDULE CPU COMPLETION THEN GET CHANNEL
CALL SCHDL(15,XX(14),AIRIB)
RETURN

END IF

RETURN
END

D-74

C *
C DATE: 5 DEC 1983 *

C VERSION: 1.0 *
C *

C NAME: SSMON (START S/W MONITOR TRACE) *
C EVENT NUMBER: N/A *

C FUNCTION: FREES CPU AND STARTS S/W MONITOR TRACE *

C FILES READ: NONE. *
C FILES WRITTEN: NONE. *

C EVENTS CALLED: 22 *
C CALLING EVENTS: 4 *

C SUBROUTINES CALLED: NONE. *

C CALLING SUBROUTINES: NONE. *
C *
C AUTHOR: DAVID L. OWEN *

C HISTORY: N/A. *
C *

SUBROUTINE SSMON
COMMON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNOW ,II,MFA

1,MSTOP,NCLNR ,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
1,SSL(100),TNEXT,TNW ,XX(100)

PARAMETER (ON-1.O)

PRINT *,-*** START OF SOFTWARE MONITOR TRACE-

C*** T!'.N S/W MON ON FLAG TO ON
XX(2) - ON

C*** SET THE CPU RATIO TO 95% OF ITS PRESENT SPEED
XX(5) = .95

C*** FREE CPU
CALL FREE(3, I)

C*** SCHEDULE END OF S/W MONITOR TRACE
CALL SCHDL(22,XX(44)-TNOW ,ATRIB)

RETURN
END

D-75

C *
C DATE: 5 DEC 1983 *

C VERSION: 1.0 *
C *
C NAME: USER (USER CPU BURST) *
C EVENT NUMBER: N/A *

C FUNCTION: PERFORMS A TIME BURST ON A USER JOB. *
C CALCULATES ENDING TIME OF BURST.
C DETERMINES WHY BURST ENDED AND CALLS *

C APPROPRIATE ROUTINE. *

C FILES READ: NONE. *
C FILES WRITTEN: NONE. *

C EVENTS CALLED: 7, 8, 9, 10 *
C CALLING EVENTS: 4 *
C SUBROUTINES CALLED: NONE. *

C CALLING SUBROUTINES: NONE. *

C *
C AUTHOR: DAVID L. OWEN *
C HISTORY: N/A. *

C *

SUBROUTINE USER
COMMON/SCOMI/ ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA

1,MSTOP,NCLNR, NCRDR,NPRNT,NNRUN,NNSET, NTAPE, SS(100)
1,SSL(10O),TNEXTTNOW,XX(100)
COMMON/UCOMI/A(100), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(1O,7), DCNT(IO), DSTRT(1O), DSUM(IO),DFIN(10),
I CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
1 PCNT, PSTRT, PFIN, PSUM

PARAMETER(ON - 1.0)

REAL IOTIM

C*** CALCULATE INTERMEDIATE VARIABLES I/O-TIME, TAPE-TIME, CPU-TIM-LEFT
C*** JOB-COMPLETE-TIME, AND TIME-OUT-TIME
C** IOTIM - TIME OF NEXT DISK I/O
C** TTIME - TIME OF NEXT TAPE I/O
C** CTIME - TIME WHEN JOB WOULD BE COMPLETED IF NO I/OS OR TIMEOUTS
C** TIMEO - TIME WHEN TIME SLICE WOULD BE OVER
C** CTU - CPU TIME LEFT

C*** CPU-TIM-USED - CPU-TIME-REQUIRED - CPU-TIME-LEFT
C*** THIS IS DIFFERENT FROM ATRIB(12) BECAUSE ATRIB(12) INCLUDES
C*** SPOOLER CPU TIME AND I/O CPU TIME

CTU - ATRIB(3) - ATRIB(18)

C*** CHECK TO MAKE SURE YOU DON'T DIVIDE BY 0 FIRST
IF (ATRIB(9) .NE. 0) THEN

C*** I/O-TIME- TIME-LAST-10 + TIME-BEIWEEN - (ROUND OFF ERROR)

D-76

IOTIM - ATRIB(16) + (ATRIB(3) / ATRIB(9)) - .0000000001
ELSE

IOTIM = 9999999.
END IF

IF (ATRIB(IO) .NE. 0) THEN
C*** TAPE-TIME - TIME-LAST-TAPE + TIME-BETWEEN-TAPE - (ROUND OFF ERR)

TTIME = ATRIB(17) + (AIRIB(3) / ATRIB(10)) - .0000000001
ELSE

TTIME - 9999999.
END IF

C*** JOB COMPLETE TIME = TNOW + CPU-TIME-LEFT
CTIME = CTU + (ATRIB(18) / XX(5))

C*** TIME-OUT-TIME - TNOW + TIME-SLICE
TIMEO = CTU + XX(7)

C*** CHECK FOR DISK I/O

C** IF I/O TIME LESS THAN TAPE, JOB COMPLETE AND TIME OUT THEN
IF ((IOTIM .LE. TTIME) .AND. (IOTIM .LT. CTIME) .AND.
1 (IOTIM .LE. TIMEO)) THEN

C** SCHEDULE TIME OF DISK REQUEST
CALL SCHDL (8,(IOTIM - CTU),ATRIB)

C** IF H/W MON = ON, THEN COLLECT TIMER DATA
IF (XX(30) .EQ. ON) THEN

IF (XX36) .NE. -1.0) THEN
IF (XX(37) .LT. TNOW) THEN

XX(32) - XX(32) + XX(37) - XX(36)
XX(36) - TNOW

END IF
ELSE

XX(36) - TNOW

END IF

UFIN2 - (IOTIM - CTU) + TNOW
IF (UFIN2 .GE. XX(37)) THEN

XX(37) = UFIN2

END IF

END IF

RETURN
END IF

C*** CHECK FOR TAPE I/O

IF ((TTIME .LE. CTIME) .AND. (TTIME .LE. TIMEO)) THEN

D-7 7

C*w SCHEDULE TIME OF TAPE REQUEST
CALL SCHDL (9,(TTIME - CTU),ATRIB)

C** IF H/W MON - ON THEN COLLECT TIMER DATA
IF (XX(30) .EQ. ON) THEN

IF (XX(36) .NE. -1.0) THEN
IF (XX(37) .LT. TNOW) THEN

XX(32) = XX(32) + XX(37) - XX(36)

XX(36) - TNOW
END IF

ELSE
XX(36) - TNOW

END IF

UFIN2 = TTIME - CTU + TNOW
IF (UFIN2 .GE. XX(37)) THEN

XX(37) = UFIN2

END IF

END IF

RETURN
END IF

C*** CHECK FOR JOB COMPLETE

IF (CTIME LE. TIMEO) THEN

PRINT *,'USER JOB WILL BE COMPLETED WITH THIS BURST-

Ck** SCHEDULE COMPLETION OF JOB
CALL SCHDL(7,(ATRIB(18) / XX(5)),ATRIB)

C** IF H/W MONITOR - ON, THEN COLLECT H/W MONITOR DATA
C** IF H/W MON - ON THEN COLLECT TIMER DATA

IF (XX(30) .EQ. ON) THEN
IF (XX(36) .NE. -1.0) THEN

IF (XX(37) .LT. TNOW) THEN
XX(32) - XX(32) + XX(37) - XX(36)
XX(36) - TNOW

END IF
ELSE
XX(36) - TNOW

END IF

UFIN2 - (ATRIB(18) / XX(5)) + TNOW
IF (UFIN2 .GE. XX(37)) THEN

XX(37) , UFIN2

END IF

END IF

RETURN

D-78

I

END IF

C*** TIME OUT

C*** IF IT LS NONE OF THE ABOVE CONDITIONS IT MUST BE A TIME-OUT

C** SCHEDULE TIME-OUT
CALL SCHDL (1O,XX(7),ATRIB)

C*** IF H/W MON IS ON THEN COLLECT CPU TIMER DATA
IF (XX(30) .EQ. ON) THEN

IF (XX(36) .NE. -1.0) THEN
IF (XX(37) ,LT. TNOW) THEN
XX(32) - XX(32) + XX(37) - XX(36)
XX(36) = TNOW

END IF
ELSE

XX(36) - TNOW
END IF

UFIN2 - XX(7) + TNOW
IF (UFIN2 .GE. XX(37)) THEN

XX(37) , UFIN2
END IF

END IF

RETURN

END

D-79

C *
C DATE: 5 DEC 1983
C VERSION: 1.0 *
C *

C NAME: USERF (USER FUNCTI)N) *
C EVENT NUMBER: N/A *
C FUNCTION: CALCULATES THE PORTION OF THE CHANNEL *
C THAT THE PARTICULAR I/O DEVICES IS USING. *
C FILES READ: NONE. *

C FILES WRITTEN: NONE. *
C EVENTS CALLED: NONE. *
C CALLING EVENTS: 13, 14, 17 *

C SUBROUTINES CAL'.ED: NONE. *
C CALLING SUBROUTINES: NONE. *
C *

C AUTHOR: DAVID L. O]EN *

C HISTORY: N/A. *
C**

FUNCTION USERF(I)
COMMON/SCOM1/ VTRIB(IOO),DD(100),DDL(100),DTNOW,II,MFA

1,MSTOP,NCLN ,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100)
i,SSL(1OO),TNEXT,TNOW ,XX(100)
COMMON/UCOMI/A(IO0), PART(20,2), TAPE(20,3)
COMMON/UCOM2/DISK(IO,7), DCNT(10), DSTRT(IO), DSUM(IO),DFIN(IO),
1 CCNT(5), CSUM(5), CFIN(5), CSTRT(5), RCNT,RSTRT,RFIN,RSUM,
I PCNT, PS_-RT, PFIN, PSUM
COMMON/UCOM3/TAP(1O,7), TCNT(IO), TSTRT(1O), TSUM(IO),TFIN(IO)
COMMON/UCOM4/CARD(6), PRNTR(6)

PARAMETER (SPLJ = 40.0, OSPLR = 41.0)

C*** IF IT IS A .-*4g USING THE CHANNEL
IF ((ATRIB(19) .GE. 11.) .AND. (ATRI3(19) .LE. 20.)) THEN

J = ATRIB(19) - 10

C*** CALCULATE THE PORTION OF THE CHANNEL THE TAPE IS USING
IF ((J .GE. 1) .AND. (J .LE. XX(9))) THEN

USERF - NINT(1 / TAP(J,6))
ELSE

PRINT *,-ERROR : ILLEGAL TAPE'
PRINT *,(ATRIB(K),K=1,20)

END IF
RETURN

END IF

C*** IF IS A DISK USING THE CHANNEL
IF ((ATRIB(19) .GT. 20.) .AND. (ATRIB(19) .LE. 30.)) THEN

J ATRIB(19) - 20

D-80

I

C*** CALCULATE THE PORTION OF THE CHANNEL THE DISK IS USING
IF ((J .GE. 1) .AND. (J .LE. XX(22))) THEN

ITEMP - NINT(l / DISK(J,6))

USERF = ITEMP

ELSE

PRINT *,'ERROR ILLEGAL DISK'
PRINT *,(ATRIB(K),K=1,20)

END IF

RETURN
END IF

C*** IF IS THE CARD READER USING THE CHANNEL
IF (ATRIB(19) .EQ. SPLR) THEN

C*** CALCULATE THE PORTION OF THE CHANNEL THE DISK IS USING

ITEMP = NINT(l / ((:X(20)/XX(18)) * 60))
L:SERF = ITEMP

RETURN

END IF

C*** IF IS THE LINE PRINTER USING THE CHANNEL
IF (ATRIB(19) .EQ. OSPLR) THEN

C*** CALCULATE THE PORTION OF THE CHANNEL THE DISK IS USING
ITEMP = NINT(I / ((XX(27)/XX(25)) * 60))

USERF = ITEMP

RETURN
END IF

C*** IF IT IS NONE OF THE ABOVE THEN THERE IS AN ERROR
PRINT *,'ERROR: TRYING TO ACCESS CHANNEL WITH ILLEGAL DEVICE'

PRINT *,(ATRIB(K),K-I,20)
RETURN

END

D-81

'AD-AI38 116 CPESIM 11: A COMFUTER SYSTEM l IMULATION FOR COMIPUTER 3/7
PERFORMANCE EVALUATION USE(U) RIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. D L OWEN

UNLSIID DEC 83 AFIT/GCS/EE/83D-iG F/U 9/2 N

'EhhhhhhhhhhhE
EhhhhhhhhhhhhE
EhhhhhhhhhhhhE
EhhhhhhhhhhhhE
EhhhhhhhmhhmhE
EhhhhhhhhhhhEE.

T- L

ILI11111jW.
V11 11 U,,4

51.8
'LA

IO- RESOLUTION T CHART

NATIONAL BUREAU OF STANDARDS-I1963-A

K ,,..'...

DATE: 5 DEC 1983
VERSION: 1.0

NAME: SIMS
FUNCIEON: PERFORMS NETWORK PORTION OF CPESIM II *

FILES READ: NONE.
FILES WRITTEN: NONE.
NETWORKS: MAIN JOB FLOWJ, OUTPUT SPOOLER, DISK,

AND CHANNEL NETWORKS*

AUTHOR: DAVID L. OWEN
HISTORY: N/A.

GEN,DAVID L. LWEN,ABC COMPUTER SIMUATION,12/05/83;
LIMITS, 40, 24,300;
PRIORITY/3,HVF(11)/2,LVF(5);
NETIWORK;

RESOURCE/INQ(1),1; INPUT QUEUE
RESOURCE/HOLDQ(1),2; HOLD QUEUE
RESOURCE/EXECQ(1) ,3; EXECUTE QUEUE
RESOURCE/OUTQ(1),4; OUTPUT QUEUE
RESOURCE/DU1(1),5; DUMMY 1 QUEUE
RESOURCE/DUM2(),6; DUMM4Y 2 QUEUE
RESOURCE/DUM3(),7; DUMMY 3 QUEUEREORC/U4()8 DMY4 UU
RESOURCE/DUM(),9; DUMMY 4 QUEUE
RESOURCE/DUM(),9; DUMMY 5 QUEUE
RESOURCE/DUM(1),1O; DUMMY 6 QUEUE
RESOURCE/TPQ(),11; TAPE 1 QUEUE
RESOURCE/TPQ2(l),12; TAPE 2 QUEUE
RESOURCE/TPQ3(l),13; TAPE 3 QUEUE
RESOURCE/TPQ5(1),14; TAPE 5 QUEUE
RESOURCE/TPQ5(1),15; TAPE 5 QUEUE
RESOURCE/TPQ6(1),16; TAPE 6 QUEUE
RESOURCE/TPQ7(l),18; TAPE 7 QUEUE
RESOURCE/TPQ9(l),19; TAPE 8 QUEUE
RESOURCE/TPQ1(1),9; TAPE 90 QUEUE
RESOURCE/TPQ1O(1),21; TAPE 10 QUEUE
RESOURCE/DSQ1(1),22; DISK 1 QUEUTE
RESOURCE/DSQ2(l),22; DISK 2 QUEUE
RESOURCE/DSQ4(1),23; DISK 3 QUEUE
RESOURCE/DSQ5(1),24; DISK 4 QUEUE
RESOURCE/DSQ5(1),25; DISK 5 QUEUE
RESOURCE/DSQ6(l),26; DISK 6 QUEUE
RESOURCE/DSQ(1),28; DISK 7 QUEUE
RESOURCE/DSQ9(l),28; DISK 9 QUEUE
RESOURCE/DSQ1(),9; DISK 10 QUEUE
RESOURCE/DSQO),3; DISKNE 10 QUEUE
RESOURCE/CNLQ1(O),32; CHANNEL 1 QUEUE

D-82

7.7 ,

RESOIRCE/CNLQ3(O),33; CHANNEL 3 QUEUE
RESOURCE/CNLQ4(O),34; CHANNEL 4 QUEUE
RESOURCE/CNLQ5(0),35; CHANNEL 5 QEUE

ATTRIBUTES

ATRIB(1) ARRIVAL TIME
ATRIB(2) JOB NAME
ATRIB(3) CPU TIME REQUIRED
ATRIB(4) MEMORY

; ATRIB(5) PRIORITY
ATRIB(6) ALLOCATABLE DEVICES NEEDED
ATRIB(7) CARDS

; ATRIB(8) LINES
ATRIB(9) DISK BLOCKS

; ATRIB(1O) ALLOCATABLE DEVICE BLOCKS
- ATRIB(11) JOB-TYPE 1. USER JOB

2. INPUT SPOOLER
3. OUTPUT SPOOLER

4. S/W MONITOR
. ; A5. JOB SCHEDULER
- ; ATRIB(12) CPU TIME USED

.- ; ATRIB(13) 1/0 TIME USED

; ATRIB(14) MEMEORY SIZE USED
AThRIB(15) DEPARTURE TIME
ATRIB(16) TIME OF LAST I/O

; ATRIB(17) TIME OF LAST TAPE I/O
; ATRIB(18) CPU TIME LEFT
; ATRIB(19) ASSIGNED DISK
; ATRIB(20) ASSIGNED CHANNEL

ATRIB(21) QUEUE NAME (USED WITH S/W MONITOR)
; ATRIB(22) TIME (TIME JOB ENTERED QUEUE)
; ATRIB(23) INPUT-FROM (WHERE JOB CAME FROM PRIOR TO QUEUE)

' ; ATRIB(24) OUTPUT-TO (WHERE JOB WILL GO AFTER QUEUE)

; XX VARIABLESI XX() SPOOLERON (INPUT SPOOLER IN SYSTEM)
XX(2) - SWMON FLAG

; XX(3) - NUMBER OF MEMORY PARTITIONS
. ; XX(4) - CPU START TIME

; Xx(5) - CPU RATIO FOR S/W MON (1.0 - S/W MON OFF, .95 - S/W MON ON)
.; X(6) - RELATIVE CPU SPEED

' ; XX(7) - TIME SLICE
; XX(8) - START I/O

all D-83

*. . ** S .

" " "e ~ t -4 ° o*-.". " -° - . . - -.,°" o ."° . . . ,• "- -. • . °" * % " * °

; XX(9) NUMBER OF TAPE DRIVES
XX(1O) NUMBER OF AVAILABLE TAPE DRIVES

; XX(11) JOB SCHEDULER IN EXECQ (0 - TRUE, 1 = FALSE)
XX(12) OSPOOLERON (OUTPUT SOOLER IN SYSTEM)
XX(13) CPU TIME REQUIRED FOR JOB SCHEDULER TO EXECUTE
XX(14) CPU TIME FOR INPUT SPOOLER TO EXECUTE

; XX(15) INPUT SPOOLER STATUS (0 -START OF JOB,
•XX(1;1 -WRITE BUFFER TO DISK, 2 - READ CARDS INTO BUFFER)
XX(16) OUTPUT SPOOLER STATUS (0 -START OF JOB,

1 - PRINT BUFFER, 2 - LOAD BUFFER FROM DISK)
XX(17) BLOCK SIZE (BYTES)
XX(18) CARD READER SPEED (CARDS PER MINUTE)
XX(19) CARD RECORD SIZE (BYTES)
XX(20) CARD PER BUFFER (CALCULATED FROM XX(17) AND XX(19))
XX(21) NEXT DISK

; XX(22) NUMBER OF DISK DRIVES
XX(23) - NUMBER OF CHANNELS

; XX(24) - NEXT TAPE
XX(25) - PRINTER SPEED (LINES PER MINUTE)
XX(26) - LINE RECORD SIZE (BYTES)
XX(27) - LINES PER BUFFER (CALCULATED FROM XX(17) AND XX(26)

XX(30) - H/W MONITOR (0 - OFF, 1 - ON)
; XX(31) - CPU COUNT FOR H/W MON

XX(32) CPU TIMER FOR H/W MON
XX(33) - H/W MONITOR START TIME
XX(34) - H/W MONITOR STOP TIME
XX(35) - HOW OFTEN H/W MONITOR RECORDS DATA
XX(36) CPU START TIME FOR H/W MON
XX(37) - CPU FINISH TIME FOR H/W MON

; XX(40) - TOTAL CPU TIME USED BY THE INPUT SPOOLER
XX(41) - TOTAL CPU TIME USED BY THE OUTPUT SPOOLER
XX(42) - TOTAL CPU TIME USED BY THE JOB SCHEDULER
XX(43) - S1W MONITOR START TIME

. XX(44) - s/W MONITOR STOP TIME
;-n

; BEGIN NEIWORK

,."

ENTER,l; JOB ARRIVAL, ASSIGN ATTRIBUTES
P GOON,2;

ACT/1,O.,,GON2; PUT JOB IN INPUT QUEUE
ACT/2,0,XX(1).NE.1,SPO; SPOOLER IDLE, PUT IN HOLD QUEUE

SPO ASSIGN,XX(1)-1; FLAG INDICATING SPOOLER LOADED
ACT;
EVENT,2; LOAD SPOOLER IN HOLD QUEUE

- TERM;

r.D8 e. D-84

V.

'4

'" N'a. ; ' '""""' """"" """"" " ""

GON2 GOON, 1;
ACT/3,O,XX(2).NE.1,QINP; LOAD JOB IMEDIATELY INTO INPUT QUEUE
ACT/4,0,XX(2).EQ.1; STORE DATA FOR S/W MONITOR
ASSIGN,ATRIB(21)-l1.0;
ASSIGN,ATRIB(22)-TNOW;
ASSIGNATRIB(23)-O.O;
ASSIGNATRIB(24)-2.0;
ACT;

QINP AWAIT(l),INQ/1,1; WAIT IN INPUT QUEUE

TRANSFER JOB TO HOLD QUEUE
* . ACT/5,0,XX(2).NE.1,JT;

ACT/6,0,XX(2).EQ.1;

EVENT,23; RECORD DATA ON S/W MON FILE
JT ASSIGN,ATRIB(l1)-1; SET JOB TYPE -0 USER JOB

ASSIGNATRIB(23)-l.0; SET 'INPUT FROM' TO INPUT QUEUE
ACT/7,O, ,GON3;
ENTER.2; INPUT SPOOLER
ASSIGN,ATRIB(23)-5.0; SET 'INPUT FROM' TO INPUT SPOOLER
ACT/8O0.0, ,GON3;
ENTER7; OUTPUT SPOOLER
ASSIGNATRIB(23)-6.0; SET 'INPUT FROM' TO OUTPUT SPOOLER
ACT/9,O,,GON3;
ENTU121; S/W MONITOR
ASSIGN,ATRIB(23)-7.0; SET 'INPUT FROM' TO S/W MONITOR

* GON3 GOONJl;

ACT/10,0,XX(2).NE.1,GON4; IF 51W MON NOT ON, GO TO GON4
*ACT/11,O,XX(2).EQ.L; IF S1W MON ON) STORE DATA FIRST

ASSIGNATRIB(21)-2.0;
ASSIGN ,ATRIB(22)-TNcIW;
ASSIGN,ATRIB(24)-3 .0;
ACT;

GON4 GOON;

Z. ACT/22,0.,,QHLD;
ACT/23O0.,XX(11).NE.1,ET5; IF JSCHED NOT LOADED IN EXECQ

ET5 EVENT,5; THEN LOAD JOB SCHED
TERM;

QULD AWAIT(2),HOLDQ/,I; WAIT IN HOLD QUEUE

TERM;

QUEUE(5); DUMMY QUEUE SO THAT CAN RECORD
ACTI78,O.0; 51W MONITOR DATA BEFORE GOING TO
GOON,l; EXECUTE QUEUE

ASSIGN,ATRIB(23)-2.0; SET 'INPUT FROM' TO HOLD QUEUE
IF S/W MON NOT ON rHEN GO STAIGHT

D-8 5

ACT/12,0,XX(2).NE.1,GON5; TO THE GOON NODE

ACT/13,0,XX(2).EQ.1; IF S/W MON ON THEN
EVENT,23; WRITE DATA TO DISK AND GO TO GOON NODE
ACT/14,O, ,GON5;
ENTER,4; RETURN OF JOB AFTER TIMEOUT
ASSIGN,ATRIB(23)-3.0; SET 'INPUT FROM' TO EXEC QUEUE
ACT/15,0,,GON5;
ENTER,3; RETURN OF JOB AFTER DISK I/O
ASSIGN,ATRIB(23)-ATRIB(20)+30; SET 'INPUT FROM' TO THE CHANNEL
ACT/16,O, ,GON5;
ENTER,18; INSERTION OF JOB SCHEDULER
ASSIGNATRIB(23)-8.0; SET 'INPUT FROM' TO JOB SCHEDULER
ACT/17,0,,GON5;
ENTER,5; RETURN OF JOB AFTER TAPE I/O
ASSIGN,ATRIB(23)-ATRIB(20)+30; SET 'INPUT FROM' TO INPUT QUEUE

GON5 GOON,1;

ACT/18,OXX(2).NE.1,QEXC; IF S/W MON NOT ON THEN PUT
JOB INTO QEXEC

ACT/19,0,XX(2).EQ.1; IF S/W MON ON THEN
ASSIGNATRIB(21)-3.0;
ASSIGN,ATRIB(22)-TNOW;
ASSIGNATRIB(24)-36.O;
ACT;

QEXC AWAIT(3),EXECQ/1,1; WAIT IN EXECUTE QUEUE FOR CPU
ACT/20,O,XX(2).NE.1,ET4; IF S/W MON NOT ON THEN GO TO ET4
ACT/21,O,XX(2).EQ.1; IF S/W MON ON THEN
EVENT,23; WRITE S/W MON DATA TO DISK BEFORE

-, ACT; GOING TO ET4

ET4 EVENT,4; PERFORM CPU BURST
TERM;

OUTPUT SPOOLER NETWORK

ENTER,1O; ENTER USER JOB AFTER COMPLETION
* ACT/24;

GON6 GOON;
ACT/25,0,,GON7; PUT JOB INTO OUTPUT QUEUE
ACT/26,0,XX(12).NE.1; OUTPUT SPOLER NOT IN SYSTEM SO
EVENT,6; LOAD SPOOLER
TERM;

GON7 GOON,1;
ACT/27,0.,XX(2).NE.1,QOUT; S/W MON NOT ON
ACT/28,0.,XX(2).EQ.1; S/W MON ON SO RECORD DATA IN ATRIB
ASSIGN,ATRIB(21)-4.0;

D-86

Y :Z" ",!",N-"-", -:, -""'", . ""''"" , , " "". , " ." " -_ - "" , ;

let ASSIGN,ATRIB(2 2)TNOW
* --'ASSIGN,ATRIB(23)-36.O0;

ASSIGNATRIB(24)-9.0;
ACTI29;

QOUT AdAIT(4),OUTQ/1;
ACTOXX(2).NE.1,ET19; IF S/W MON NOT ON THEN GO TO ET19
ACTO,XX(2).EQ.1; IF S/W MON ON THEN
EVENT,23; WRITE S/W MON D&Tik TO DISK BEFORE
ACTI3O; GOING TO ET19

* -ET19 EVENT, 19;

TERM;

; DISK NETIWORKS

ENTER.23,1;

ACT/80,O.,XX(2).NE.1,GON8; IF S1W MON NOT ON GO TO GON8
ACT/81,0.,XX(2).EQ.1; IF S/W MON ON THEN RECORD ATRIBUTES
ASSIGNATRIB(2l)-ATRIB(19); DISK WAITING FOR
ASSIGN,ATRIB(22)TNOW;
ASSIGN,ATRIB(23)-36.O; CPU
ASSIGNATRIB(24)-37.O; GENERAL CHANNEL

DECIDE WHICH DISK TO GO TO
GON8 GOON,l;

ACT(1)/31,0.0ATRIB(19).EQ.21,DK1;
ACT(1)/32,0.0ATRIB(19).EQ.22 ,DK2;

* ACT(1)/33,0.0,ATRIB(19).EQ.23,DK3;
* ACT(1)/34,0.0,ATRIB(19).EQ.24,DK4;

ACT(1)/35,O.0,ATRIB(19) .EQ.25,DK5;
ACT(1)/36O0.0,ATRIB(19) .EQ.26,DK6;
ACT(1)/37,0.0,AIIRIB(19).EQ.27,DK7;
ACT(1)/38,0.0,ATRIB(19).EQ.28,DK8;
ACT(1)/39,0.0,ATRIB(19).EQ.29,DK9;
ACT(1)/40,O.0,ARIB(19).EQ.30,DK10;
ACT(1)141,O.0, ,ERR1;

DK1 AWAIT(21),DSQ1/1;
AACT,O,XX(2).NE.1,D1; IF SIW MON NOT ON THEN GO TO Dl

ACTO,XX(2).EQ.1; IF S1W MON ON THEN
* .EVENT,23; WRITE S1W MON DATA TO DISK BEFORE

ACT/42; GOING TO Dl
Dl EVENT,15;

ACT/43;
TERM;

DK2 AMAIT(22),DSQ2/1;
toACTOXX(2).NE.1,D2; IF S1W MON NOT ON THEN GO TO D2

ACT,O,XX(2).EQ.1; IF S/W MON ON THEN

D-8 7

EVENT,23; WRITE S/W MON DATA TO DISK BEFORE
*ACT/44; GOING TO D2

60..D2 EVENT,15;
ACT/45;
TERM;

DK3 AWAIT(23),DSQ3/1;
ACT,O,XX(2).NE.1,D3; IF S1W MON NOT ON THEN GO TO D3
ACT,O,XX(2).EQ.1; IF S1W MON ON THEN
EVENT, 23; WRITE S1W MON DATA TO DISK
ACT/46;

:2D3 EVENT, 15;
ACT/47;
TERM;

DK4 AWAIT(24),DSQ4/1;
ACT,O,XX(2).NE.1,D4; IF S1W MON NOT ON THEN GO TO D4
ACTO,XX(2).EQ.1; IF S1W MON ON THEN
EVENT,23; WRITE S/W MON DATA TO DISK
ACT/48;

D4 EVENT, 15;
ACT/49;
TERM;

DK5 AWAIT(25),DSQ5/1;
ACT,O,XX(2).NE.1,D5; IF S1W MON NOT ON THEN GO TO D5
ACT,O,XX(2).EQ.1; IF S/W MON ON THEN
EVENT,23; WRITE S1W MON DATA TO DISK
ACT/49;

D5 EVENT, 15;
ACT/ 50;
TERM;

DK6 AWAIT(26) ,DSQ6/1;

a:ACT,O,XX(2).NE.1,D6; IF S/W MON NOT ON THEN GO TO D6
ACT,O,XX(2).EQ.1; IF S/W MON ON THEN
EVENT,23; WRITE S/W MON DATA TO DISK

ACT/5i;
a,.D6 EVENT, 15;

ACT/52;
TERM;

DK7 A&AIT(27),DSQ7/1;
ACT,OXX(2).NE.1,D7; IF S1W MON NOT ON THEN GO TO D7
ACT,O,XX(2).EQ.1; IF S/W MON ON THEN
EVENT.23; WRITE 51W MON DATA TO DISK
ACTI53;

D7 EVENT, 15;
ACT/54;
TERM;

DK8 AWAIT(28),DSQ8I1;
-~.ACT,O,XX(2).NE.1,D8; IF S/W MON NOT ON THEN GO TO D8

D-88

ACT,O,XX(2).EQ.1; IF S/W MON ON THEN
EVENT, 23; WRITE S1W MON DATA TO DISK
ACT/55;

D8 EVENT, 15;

TERM;

DK9 AWAIT(29),DSQ9/1;

ACT,OXX(2).NE.1,D9; IF S1W MON NOT ON THEN GO TO D9
ACT,O,XX(2).EQ.1; IF S1W MON ON THEN
EVENT,23; WRITE S/W MON DATA TO DISK
ACT/si;

D9 EVENT,15;
ACT/58;
TERM;

DK10 AWAIT(30) ,DSQ1O/1;
ACTO,XX(2).NE.1,D1O; IF S/W MON NOT ON THEN GO TO D10
ACT,O,XX(2).EQ.1; IF S1W MON ON THEN
EVENT,23; WRITE S/W MON DATA TO DISK
ACT/60;

D10 EVENT,15;
ACT/61;
TERM;

ERR1 TERM; ERROR ROUTINE TO GO HERE

CHANNEL NETWORKS

ENTER,25, 1;
ACT/82,O.,XX(2).NE.1,GON9; IF S/W MON NOT ON GO TO GON9
ACTI83O0.,XX(2).EQ.1; IF S1W MON ON THEN LOAD ATRIBUTES
ASSIGN,ATRIB(2l)-ATRIB(20)+30; CHANEL WAITING FOR
ASSIGN,ATRIB(22)-TNOW;
ASSIGN,ATRIB(23)-ATRIB(19); I/O DEVICE
ASSIGN,ATRIB(24)-3.O; EXEC QUEUE

DECIDE WHICH CHANNEL TO GO TO
GON9 GOON,I;

ACT(1)/62,0.O,ATRIB(20).EQ.1,CHl;
ACT(1)/63,0.0,ATRIB(20).EQ.2,CH2;
ACT(I)/64,O.0,ATRIB(20).EQ.3,CH3;
ACT(1)/65,O.O,ATRIB(20) .EQ.4,CH4;

p ACT(1)/66,O.O,ATRIB(20) .EQ.5,CH5;
ACT(1)/67,O.O, ,ERR2;

CR1 AWAIT(31),CNLQ1/USERF(l);
ACT,O,XX(2).NE.I,C1; IF S/W MON NOT ON THEN GO TO Cl
ACT,O,XX(2).EQ.1; IF S/W MON ON THEN
EVENT,23; WRITE S1W MON DATA TO DISK

D-8 9

ACT/68;
.**.Cl EVENT,16;

. -- ACT/69;
TERM;

CH2 AWAIT(32),CNLQ2/USERF(l);
ACTO,XX(2).NE.1,C2; IF S/W MON NOT ON THEN GO TO C2
ACT,O,XX(2).EQ.1; IF S/W MON ON THEN
EVENT,23; WRITE S/W MON DATA TO DISK
ACT/70;

C2 EVENT,16;
ACT/71;
TERM;

-* -CH3 AWAIT(33),CNLQ3/USERF(l);
ACT,O,XX(2).NE.1,C3; IF S/W MON NOT ON THEN GO TO C3
ACT,O,XX(2).EQ.1; IF S/W MON ON THEN

gEVENT,23; WRITE S1W MON DATA TO DISK
ACT/72;

C3 EVENT,16;
ACT/73;
TERM;

CH4 AWAIT(34),CNLQ4/USERF(1);
ACTOXX2).NE.1,C4; IF S/W MON NOT ON THEN GO TO C4
ACT,O,XX(2).EQ.1; IF S1W MON ON THEN
EVENT,23; WRITE S1W MON DATA TO DISK
ACTI74;

* C4 FVENT, 16;
ACT! 75;
TERM;

CH5 AWAIT(35),CNLQ5/USERF(l);
ACT,O,XX(2).NE.1,C5; IF S/W MON NOT ON THEN GO TO C5
ACT,O,XX(2).EQ.1; IF 51W MON ON THEN
EVENT,23; WRrTE S/W MON DATA TO DISK
ACT/ 76;

C5 EVENT, 16;
ACT/77;
TERM;

*.ERR2 TERM; ERROR ROUTINE TO GO HERE

END;
INIT, 0,600000;
MONTR,CLERA,20. ,20.O;
FIN;

D-90

C*
C DATE: 5 DEC 1983 *
C VERSION: 1.0
C
C NAME: SETUP *
C FUNCTION: READS IN AVAILABLE HARDWARE EQUIPMENT *
C LIST, QUERIES USER ON CONFIGURATION *
C DESIRED AND THEN WRITES CONFIG FILE *
C FILES READ: TYPES *
C FILES WRITTEN: CONFIG *
C SUBROUTINES CALLED: NONE. *
C CALLING SUBROUTINES: NONE. *
C *
C AUTHOR: DAVID L. OWEN *
C HISTORY: N/A. *

C*

PROGRAM MAIN(TYPESCONFIG)

DIMENSION DSPEED(1O),DCOST(1O),TSPEED(1O),TCOST(10),
1 CSPEED(5),CCOST(5),RSPEED(5),RCOST(5),PCOST(5),PSPEED(_),
1 USPEED(5),UCOST(5),PART(20),ICHANL(5),IDISK(10,6),
1 ITAPE(10,6),IREAD(6),IPRINT(6),ISMQ(5),IIHWCNT(5)
CHARACTER DNAME(1O)*20, TNAME(1O)*20, CNAME(5)*20,

REAL HSEC
" ~1 RNAME (5)'2 O, PNAME (5)'20,UNAE(5)2, SANdR* 1, HANSvJR*I

PRINT *,'OPENING FILES'

C*** OPEN INPUT FILE WHICH CONTAINS THE TYPES OF DEVICES
OPEN(UNIT-15,FIE-'TYPES ,STATUS-'OLD',ERR-990, IOSTAT-IOS,
1 ACCESS--SEQUENTIAL-,FORM--FORMATTED-)

C*** OPEN CONFIG FILE WHICH WILL CONTAIN THE COMPUTER CONFIGURATION

OPEN(UNIT-1 1, FILE-'CONFIG, STATUS-'NE - ,ERR-990,
1 IOSTAT-IOS,ACCESS-'SEQUENTIALV,FORM-'FORMATTED)

PRINT *,-FILES OPENED-

C*** READ NUMBER OF DIFFERENT TYPES OF DISKS
READ(UNIT-15, FMT-100,ERR-999)NUMD

C*** READ DISK TYPES IN
DO 1 I-1,NUMD

READ (UNIT-15,FMT-1O1,ERR-999)DNAME(I),DSPEED(I),DCOST(I)
1 CONTINUE

C*** READ NUMBER OF DIFFERENT TYPES OF TAPE DRIVES
READ(UNIT-15, FMT-100,ERR-999)NUMT

C*** READ TAPE TYPES

L ,D-91

F: ° Q " "- "" ' "°° "" • "a"e , - .. - .-." - ° -" -" .

DO 2 I-1,NUMT
READ (UNIT,15,FMT-101, IOSTAT=IOS, ERR-999)

1 TNAME(I),TSPEED(I),TCOST(I)
2 CONTINUE

C*** READ NUMBER OF DIFFERENT TYPES OF CHANNELS
READ (UNIT-15,FMT-1O0,ERR-999,IOSTAT=IOS)NUMC

C*** READ CHANNEL TYPES
DO 3 I-1,NUMC
READ (UNIT-15,FMT-1OI,ERR-999,IOSTAT-IOS)CNAME(I),
1 CSPEED(I),CCOST(l)

3 CONTINUE

1% C*** READ NUMBER OF DIFFERENT TYPES OF CARD READERS

READ (UNIT,15,FMT,100,ERR-999,IOSTAT-IOS)NUMR
C*** READ CARD READER TYPES

DO 4 I-1,NUMR
READ (UNIT-15,FMT-1O1,ERR-999,IOSTAT-IOS)RNAME(I),iI RSPEED(1) ,RCOST(1)

4 CONTINUE

C*** READ NUMBER OF DIFFERENT TYPES OF LINE PRINTERS
READ (UNIT-15,FMT-100,ERR=999, IOSTAT-IOS)NUMP

C*** READ PRINTER TYPES
:" DO 5 I-1,NUMP
. READ (UNIT-15,FMT-1O1,ERR-999,IOSTAT-IOS)PNAME(I),

1 PSPEED(I),PCOST(I)
i 5 CONTINUE

. C*** READ NUMBER OF DIFFERENT TYPES OF CPUS
READ (UNIT-15,FMT-1O0,ERR-999, IOSTAT-IOS)NUMU

C*** READ CPUS TYPES
DO 6 I-1,NUMU
READ (UNITm15,FMT-1O1,ERR-999,IOSTAT-IOS)UNAME(I),
1 USPEED(I),UCOST(I)

6 CONTINUE

PRINT*(
PRINT *,

": C*** CPU S

C*** QUERY USER ON TYPE OF CPUS
7 PRINT *,-WHICH TYPE OF CPU WOULD YOU LIKE-

DO 8 I-1,NUMU
PRINT *I,-. ,UNAME(I), SPEED ',USPEED(I),
-1 COST - $,UCOST(I)

8 CONTINUE
'. PRINT*,

PRINT *,-ENTER TYPE (1,2,..) "
READ *,ICPU

D-92

. . ..

IFTqT R11-77- 7. Tt 7~ 7! T -7.* .- -

,

n' ((ICPU .LT. 1) .OR. (ICPU .GT. NUMU)) THEN
- PRINT 4 ,'ILLEGAL CPU TYPE'"'.-. <": OTO 7

END IF

PRINT *, -

" C*** QUERY USER ON NUMBER OF CPUS

55 PRINT *,'ENTER NUMBER OF CPUS DESIRED (MAX 99): -

READ *,NCPUS
IF ((NCPUS .GT. 99) .OR. (NCPUS .LT. 1)) THEN

PRINT *,'ILLEGAL NUMBER OF CPUSV

GO TO 55
END IF

PRINT * -

C*** QUERY USER ON TIME SLICE
56 PRINT *,' ENTER TIME SLICE (IN SECONDS): -

READ *,TSLICE

IF ((TSLICE .LT .0001) .OR. (TSLICE .GT. 99999.)) THEN
PRINT *-TIME SLICE RANGE .0001 TO 99999. SECONDS-

GOTO 56
END IF

PRINT ,
PRINT * -

C*** MEMORY PARTITIONS
******************************* * *

C*** QUERY USER ON NUMBER OF MEMORY PARTITIONS
9 PRINT *,'ENTER NUMBER OF MEMORY PARTITIONS DESIRED (MAX 20) -

READ *,NPARTS

IF ((NPARTS .GT. 20) .OR. (NPARTS .LE. 0)) THEN
PRINT *,'ILLEGAL NUMBER OF MEMORY PARTITIONS'

GOTO 9

END IF
PRINT *

C*** QUERY USER ON SIZE OF MEMORY PARTITIONS

PRINT *,'ENTER PARTITION SIZES IN K'
DO 10 I1,NPARTS

PRINT *,-PARTITION(',I,') SIZE (IN K) : -

READ *,PART(I)
PRINT *, -

10 CONTINUE

PRINT * -

PRINT *

C*** CHANNELS ***

D-93

C*** QUERY USER ON NUMBER OF CHANNELS
14 PRINT * ,ENTER NUMBER OF CHANNELS DESIRED (MAX 5) :

READ *,NCHAN

IF ((NCHAN .LE. 0) .OR. (NCHAN .GT. 5)) THEN

PRINT *,'ILLEGAL NUMBER OF CHANNELS'
GO TO 14

- END IF

. DO 13 K-1,NCHAN

. .' ~PRINT*,
,-'",C*** QUERY USER ON TYPE OF CHANNELS

11 PRINT *,-WHICH TYPE WOULD YOU LIKE FOR CHANNEL(',K,'):

DO 12 I-1,NUMC
PRINT *,I,-. -,CNAME(I),- DATA RATE . -,

1 CSPEED(I),- COST =$-,CCOST(I)
12 CONTINUE

PRINT *,-ENTER TYPE (1,2,..)-
READ *,ICHAN
IF ((ICHAN .LT. 1) .OR. (ICHAN .GT. NUMC)) THEN

PRINT *,'ILLEGAL CHANNEL TYPE-
GOTO 11

END IF
ICANL(K) - ICHAN

13 CONTINUE

PRINT * -

PRINT * -

*. C*** DISKS

c*** QUERY USER ON NUMBER OF DISKS
" . 15 PRINT *,-ENTER NUMBER OF DISKS/DRUMS DESIRED (MAX 10) :

READ *,NDISK

IF ((NDISK .LE. 0) .OR. (NDISK .GT. 10)) THEN
PRINT *,-ILLEGAL NUMBER OF DISKS-
GO TO 15

END IF

DO 20 K-I,NDISK
PRINT *,

QUERY USER ON TYPE OF DISKS
16 PRINT *,'WHICH TYPE OF DISK WOULD YOU LIKE'

DO 17 I-1,NUMD
PRINT *,I,-. ,D';AME(I), SPEED -,DSPEED(I),

I'- COST $',DCOST(I)
17 CONTINUE

PRINT * -

D-94

..:.,, . .- ,... , -, , . ,... .-. •- . . ,

PRINT *,-ENTER TYPE (1,2,..) FOR DISK -,K,-:
READ *,IDSK
IF ((IDSK .LT. 1) .OR. (IDSK .GT. NUMD)) THEN

PRINT *,'ILLEGAL DISK TYPE'
GOTO 16

END IF
IDISK(K,6) - IDSK

C*** GET CHANNEL CONNECTIONS
PRINT *,'ENTER CHANNEL CONNECTIONS FOR DISK ,K
PRINT 0 - CHANNEL NOT CONNECTED TO DISK'
PRINT *, 1 - CHANNEL CONNECTED TO DISK'
PRINT *," -

DO 19 J-1,5

IF (J .LE. NCHAN) THEN
18 PRINT *,-CHANNEL ,J,- (0/1): -

READ *,JJ
IF ((JJ .EQ. 0) .OR. (JJ -EQ. 1)) THEN

IDISK(K,J) - JJ
ELSE
PRINT *,'ILLEGAL INPUT'
GOTO 18

END IF
ELSE

IDISK(K,J) - 0
END IF

19 CONTINUE

20 CONTINUE

PRINT * -

PRINT *,1

C*** TAPES

C*** QUERY USE ON NUMBER OF TAPES
21 PRINT *,-ENTER NUMBER OF TAPES DESIRED (MAX 10) :

READ *,NTAPE

IF ((NTAPE .LE. 0) .OR. (NTAPE .GT. 10)) THEN
PRINT *,-ILLEGAL NUMBER OF TAPES-
GO TO 21

END IF

DO 26 K-1,NTAPE
PRINT *, '

C*** QUERY USER ON TYPE OF TAPES
22 PRINT *P'WHICH TYPE OF TAPE WOULD YOU LIKE'

DO 23 I-I,NUMT
PRINT *,I,-. ",TNAME(I), SPEED - ,TSPEED(I),

. COST $',TCOST(I)

D-95

• % o ,"°," ". ". "... ...".". .".
"~~~~~~~....."..... ".. ."........"... .. ,...-... .. ,.....' .' X .'%,:*.'*%

23 CONTINUE
PRINT 2,
PRINT * ,ENTER TYPE (1,2,..) FOR TAPE -,K,-:
READ *ITAP
IF ((ITAP .LT. 1) .OR. (ITAP .GT. NLNT)) THEN

PRINT *,'ILLEGAL TAPE TYPE
GOTO 22

END IF
ITAPE(K,6) - ITAP

C*** GET CHANNEL CONNECTIONS
PRINT *,'ENTER CHANNEL CONNECTIONS FOR TAPE ,K
PRINT *, 0 - CHANNEL NOT CONNECTED TO TAPE'
PRINT *, 1 - CHANNEL CONNECTED TO TAPE'
PRINT *, i
DO 25 J-1,5
IF (J .LE. NCHAN) THEN

24 PRINT *,-CHANNEL -,J,' (0/1):
READ *,JJ
IF ((JJ .EQ. 0) .OR. (JJ .EQ. 1)) THEN

ITAPE(K,J) - JJ

ELSE
PRINT *,'ILLEGAL INPUT'
GOTO 24

la,. END IF
ELSE

ITAPE(K,J) - 0
END IF

25 CONTINUE

26 CONTINUE

PRINT *, -

PRINT *, "

-2 * ***

C*** CARD READER

C*** QUERY USER ON TYPE OF CARD READER
27 PRINT * ,WHICH TYPE OF CARD READER WOULD YOU LIKE-

DO 28 I-1,NUMR
PRINT *,I,. ,RNAME(I), SPEED - ,RSPEED(I),

" COST - $,RCOST(I)
-. 28 CONTINUE

PRINT * -

PRINT *,-ENTER TYPE (1,2,..) OF CARD READER DESIRED
READ *,IRDR
IF ((IRDR .LT. 1) .OR. (IRDR .GT. NUMR)) THEN

PRINT *,-ILLEGAL CARD READER TYPE-
GOTO 27

END IF
IREAD(6) - IRDR

D-96

S°%

C GET CHANNEL CONNECTIONS
, PRINT *,'ENTER CHANNEL CONNECTIONS FOR CARD READER'

PRINT *7 0 - CHANNEL NOT CONNECTED TO CARD READER'

PRINT * 1 1 - CHANNEL CONNECTED TO CARD READER'
PRINT *, -

DO 30 J-1,5
IF (3 .LE. NCHAN) THEN

29 PRINT *,-CHANNEL -,J,' (0/1): -

READ *,JJ
IF (.4J EQ. 0) .OR. (JJ EQ. 1)) THEN

IREAD(J) - JJ
ELSE

PRINT *,'ILLEGAL INPUT-
GOTO 29

END IF
ELSE

-' IREAD(J) - 0

END IF

30 CONTINUE

PRINT * -

PRINT * -

C*** LINE PRINTER** ********** *************************** ************ ***

C*** QUERY USER ON TYPE OF LINE PRINTER
31 PRINT *,-WHICH TYPE OF LINE PRINTER WOULD YOU LIKE-

"- DO 32 1=I,NUMP

i:PRINT *,I,O. L,PINME(I), SPEED P ,PSPEE(I),
1,. 1 COST - $",PCOST(l)

32 CONTINUE
PNPRINTETY'.'i PRINT *,-°ENTER T-'-PE (1,2,..) OF LINE PRINTER DESIRED

.. READ *, IPNTR
b.-.. IF ((IPNTR .LT. 1) .OR. (IPNTR .GT. NUMP)) THEN
.: PRINT *,'ILLEGAL LINE PRINTER TYPE'

GOTO 31
END IF

" IPRINT(6) - IPNTR

SC*** GET CHANNEL CONNECTIONS

PRINT *,'ENTER CHANNEL CONNECTIONS FOR LINE PRINTER'
PRINT ', 0 - CHANNEL NOT CONNECTED TO LINE PRINTER'
PRLNT 1 1 - CHANNEL CONNECTED TO LINE PRINTER'
PRINT * "
DO 34 J-1,5
IF (3 .LE. NCHAN) THEN

33 PRINT *,'CHANNEL -,J, (0/1):
READ *,JJ
IF ((JJ .EQ. 0) .OR. (JJ .EQ. 1)) THEN

K D-97

[% ' 7 '' ' " " -' v - -... " _ ; ,- - ' * - "'"'''- ' '' ", ' ' "', ' ' , "- _ , ,- - -

IPRINT(J) - JJ

ELSE
PRINT *,'ILLEGAL INPUT'
GOTO 33

END IF
ELSE

IPRINT(J) " 0
END IF

34 CONTINUE

PRINT *-
PRINT *,

C*** SOFTWARE MONITOR

C*** QUERY USER IF HE WANTS TO USE SOFIWARE MONITOR
PRINT *,'DO YOU WISH TO USE THE SOFiWARE MONITOR (Y/N)-
READ *,SANSWR
IF (SANSWR .EQ. -Y-) THEN

PRINT *,'ENTER STARTING TIME OF S/W MONITOR'
PRINT *,-DAY HOUR MINUTE SECOND-

*'.- READ *, ISDAY, ISHOUR,ISMIN, SSEC
PRINT *,'ENTER STOPPING TIME'

Ia PRINT *,'DAY HOUR MINUTE SECOND'
READ *,JSDAY,JSHOURJSMIN,SSSEC

35 PRINT *,'YOU CAN MONITOR UP TO FIVE OF THE FOLLOWING QUEUES-
PRINT *, 1. INPUT 2. HOLD 3. EXEC 4. OUTPUT'
PRINT *,'11. TAPE 1 12. TAPE 2 13. TAPE 3 14. TAPE 4'
PRINT * 15. TAPE 5 16. TAPE 6 17. TAPE 7 18. TAPE 8'
PRINT * 19. TAPE 9 20. TAPE 10 21. DISK 1 22. DISK 2'
PRINT *,-23. DISK 3 24. DISK 4 25. DISK 5 26. DISK 6'

-5 PRINT *,27. DISK 7 28. DISK 8 29. DISK 9 30. DISK 10'

PRINT *,-31. CHAN 1 32. CHAN 2 33. CHAN 3 34. CHAN 4"
PRINT *,"35. CHAN 5 36. NO QUEUE DESIRED-

PRINT * -

DO 36 1-1,5
PRINT *,'ENTER QUEUE NUMBER :
READ *,IQ
IF (((IQ .GE. 1) .AND. (IQ .LE. 4)) .OR.

1 ((IQ .GE. 11) .AND. (IQ .LE. 36))) THEN
ISWMQ(I) - IQ

ELSE
PRINT *,-ILLEGAL QUEUE-
GOTO 35

END IF

4..36 CONTINUE

. END IF

PRINT *, -
PRINT *,

.Zj D-98

. --° •
-.N . . . , . . ., . " , ' . . '. ' .-, . . .' . , , ..- . -.. " -.-. . - - ' . '- ' ,

4..

* HARDWARE MONITOR

C*** QUERY USER IF HE WANTS TO USE HARDWARE MONITOR
PRINT *,-DO YOU WISH TO USE THE HARDWARE MONITOR (Y/N)-
READ *,HANSWR
IF (HANSWR .EQ. -Y-) THEN

PRINT *,'ENTER STARTING TIME OF H/W MONITOR'
PRINT *,'DAY HOUR MINUTE SECOND'
READ *,IHDAYIHHOUR, IHMIN,HSEC
PRINT *,-ENTER STOPPING TIME-
PRINT *,'DAY HOUR MINUTE SECOND'

READ *, JHDAY, JHHOUR, JHMIN, SHSEC
75 PRINT *,'ENTER H/W MONITOR SAMPLE RATE (IN SECONDS) -

-* READ *,RATEHI
IF (RATEHW .GT. 99999) THEN

PRINT *,'DATE RATE TO LARGE, MAX RATE IS 99999
GOTO 75

END IF
37 PRINT *,-YOU CAN HAVE IWO TIMERS AND FIVE COUNTERS-

PRINT *,-CONNECTED TO THE FOLLOWING DEVICES:'
PRINT *,- 1. CPU 2. READER 3. PRINTER'
PRINT *,ll. TAPE 1 12. TAPE 2 13. TAPE 3 14. TAPE 4'

PRINT *,5. TAPE 5 16. TAPE 6 17. TAPE 7 18. TAPE 8'
PRINT *,-19. TAPE 9 20. TAPE 10 21. DISK 1 22. DISK 2'
PRINT *,23. DISK 3 24. DISK 4 25. DISK 5 26. DISK 6"
PRINT *,'27. DISK 7 28. DISK 8 29. DISK 9 30. DISK 10'
PRINT *,"31. CHAN 1 32. CHAN 2 33. CHAN 3 34. CHAN 4'
PRINT *,'35. CHAN 5 36. NO DEVICE DESIRED'

PRINT *, -

PRINT *,-ENTER NUMBER OF DEVICE FOR TIMER(1): -

READ *,ICNT
IF (((ICNT .GE. 1) .AND. (ICNT .LE. 3)) .OR.

((ICNT .GE. 11) .AND. (ICNT .LE. 36))) THEN
IHTIM1 - ICNT

ELSE
PRINT *,-ILLEGAL DEVICE-
GOTO 37

END IF
PRINT *,-ENTER NUMBER OF DEVICE FOR TIMER(2): "
READ *,ICNT
IF (((ICNT .GE. 1) .AND. (ICNT .LE. 3)) .OR.

1 ((ICNT .GE. 11) .AND. (ICNT .LE. 36))) THEN
IHTIM2 - ICNT

C'. ELSE

PRINT *'ILLEGAL DEVICE'
GOTO 37

END IF

DO 38 1-1,3
I%

D-99

I"

.. q % 9m2 % - '* .* . ' . .~ . . . - " **- , *.' " % .,. .,,
"

% , ,% '..'.

PRINT *,'ENTER DEVICE NUMBER OF COUNTER(-,I,-):
* READ *,ICNT

IF (((ICNT .GE. 1) -AND. (ICNT .LE. 3)) .OR.
1 ((ICNT .GE. 11) -AND. (ICNT .LE. 36))) THEN

IIHtCNT(I) - ICNT
ELSE

PRINT *,'ILLEGAL DEVICE'
GOTO 37

END IF
38 CONTINUE

END IF

PRINT* -

PRINT *

C*** WRITE DATA TO CONFIGUARATTON FILE

C** NUMBER OF CPUS
WRITE (UNIT-il FMT-iOO, IOSTAT-IOSERR-999)NCPUS

C*** TYPE OF CPU
WRITE (UNIT-i1,FM4T-iO1 ,IOSTAT-IOS,ERR-999)
1 UNAME(ICPU),USPEED(ICPU),UCOST-(ICPU)

C*** TIME SLICE
WRITE (NT1, FMT-i 12, IOSTAT-IOS,ERR-999)TSLICE

C*** WRITE NUMBER OF MEMORY PARTITIONS
C**WRITE (UNIT-11,FMT-iOO,IOSTAT-IOS,ERR-999)NPARTS
C**WRITE SIZE OF MEMORY PARTITIONS

DO 40 I-1,NPARTS
WRITE (UNIT-ii,FMT-104,IOSTAT-IOS,ERR-999)I,PART(I)

40 CONTINUE
C*** WRITE NUMBER OF CHANNELS

WRITE (UNIT-li, FMT-L 00, IOSTAT-IOS,ERR-999)NCHAN
C*** WRITE CHANNEL'S NAME, SPEED AND COST

DO 41 I-,NCHAN
WRITE (UNIT-il,FMT4Oi1,IOSTAT'IOS,ERR-999)

1 CNAME(ICHANL(I)),CSPEED(ICHANL(I)),CCOST(ICHANL(I))
41 CONTINUE
C*** WRITE NUMBER OF' DISKS

WRITE (UNIT-1i,FMT4100, EOSTAT-IOS,ERR-999)NDISK
C**WRITE DISKoS NAME, SPEED, COST AND CHANNEL CONNECTIONS

DO 42 I-1,NDISK
* *WRITE (UNIT-il,FMT-i05,IOSTAT-IOSERR-999)

1 DNAME(IDISK(,6)) ,DSPEED(IDISK(I,6)) ,DCOST(IDISK(I,6)),
*1 (IDISK(I,K),K-1,5)

42 CONTINUE
C*** WRITE NUMBER OF TAPES

WRITE (UNIT-ii,FMT-lOO, IOSTAT-IOS,ERR-999)NTAPE
* *C*** WRITE TAPE'S NAME, SPEED, COST AND CHANNEL CONNECTIONS

* DO 43 I1NTAPE
WRITE (UNIT-11,FMT-105, IOSTAT-IOS,ERR-999)

D-100

I TNALME(ITAPE(I,6)) ,TSPEED(ITAPE(I,6)) ,TCOST(ITAPE(I,6)),
1 (ITAPE(I,K),K-1,5)

43 CONTINUE
C*** WRITE CARD READER-S NAME, SPEED, COST AND CHANNEL CONNECTIONS

WRITE (UNIT-11,FMT-105, IOSTAT-IOS,ERR-999)
1 RNAME(I.READ(6)).,RSPEED(IREAD(6)),RCOST(IREAD(6)),

C 1*WRT (IREAD(K), K-1, 5)
C** WRTELINE PRINTER-S NAME, SPEED, COST AND CHANNEL CONNECTIONS

WRITE (UNIT-I1,FMT-105,IOSTAT-IOS,ERR-999)
1 PNAME(IPRINT(6)),PSPEED(IPRINT(6)) ,PCOST(IPRINT(6)),
1 (IPRINT(K),K-1,5)

C*** WRITE IF SOFTWARE MONITOR IS DESIRED
WRITE (UNIT-11,FMT-106,IOSTAT-IOS,ERR-999)SANSWR

C*** WRITE START TIME, STOP TIME, AND QUEUES IF DESIRED
IF (SANSWR .EQ. -Y-) THEN

WRITE (UNIT-11,FMT-107, IOSTAT-IOS,ERR-999)
1 ISDAY, ISHOUR, ISMIN, SSEC
WRITE (UNIT-11,FMT-108, IOSTAT-IOS,ERR-999)

1 JSDAY,JSHOUR,JSMIN,SSSEC
WRITE (UNIT-11,FMT-109,IOSTATiIOS,ERR-999)(ISWMQ(I),I-1,5)

END IF
C*** WRITE IF HARDWtARE MONITOR IS DESIRED

WRITE (UNIT-11,FMT-106, IOSTAT-IOS,ERR-999)HANSWR
C*** WRITE START TIME, STOP TIME, TIMERS AND COUNTERS IF DESIRED

IF (HANSWR .EQ. -Y-) THEN
WRITE (UNIT-11,FMT-110,IOSTATnIOS,ERRin999)

*1 IHDAY,IHHOUR,IHMIN,HSEC

kv 0WRITE (UNIT-il, FMT-1 11, IOSTATWIOS , ERR-999)
1 JHDAY,JHHOUR ,JHMIN, SHSEC

* WRITE (UNIT-11,FMT"102,IOSTATIOS,ERR-999)RATEIJ
WRITE (UNIT-il, FMT-1 09, IOSTAT-IOS ,EIRR999)

I IHTIMI,IHTIM2,(IWCNT(I),In1,3)
END IF

100 FORMAT(I2)
101 FORMAT(A20,lX,F1O.4,lX,F8.2)
102 FORMAT(1i/W MON SAMPLE RATE-,T22,F10.4)
103 FORMAT(15)
104 FORMAT(-PARTITION -,12,T22,FlO.4)

j105 FORMAT(A20,lX,FlO.4,lX,F8.2,lX,5(lX,Il))
106 FORMAT(AI)
107 FORMAT(-S/W MONITOR START-,T22,3(14,lX),F8.4)
108 FORMAT(-S/W MONITOR STOP-,T22,3(I4,lX),F8.4)
109 FORMAT(5(I2,lX))
110 FORMAT('H/W MONITOR START-,T22,3(I4,1X),F8.4)
111 FORMAT('H/W MONITOR STOP-,T22,3(I4,lX),F8.4)
112 FORMAT(-TIME SLICE-,T22,F10.4)

GOTO 800

990 PRINT *,ERROR IN OPENING FILE IOSTAT - ',IOS
GO TO 800

999 PRINT *,ERROR IN READ IOSTAT - ',IOS

D-101

800 CONTINUE
• .'STOP
* END

SD-.1

pD-o0

.".

Appendix E

CPESIM II

Instructor Manual

E-1

Contents

List of Figures E-3

List of Tables E-4

1.0 Introduction E-5

1.1 CPESIM II Output to Students E-6
1.2 Student Inputs to CPESIM II E-7
1.3 Student Input for Grading E-8
1.4 Structure and CPESIM II Simulation . E-9
1.5 Paper Organization E-9

2.0 Workload Generation E-11

2.1 Workload Specification E-11
2.2 Program Execution E-13
2.3 Event Stream File EVSTR E-13
2.4 Other CRSTR Output E-11

3.0. Configuration Definition E-28

3.1 Hardware/Software Architecture Def . . E-28
3.2 Hardware and Software Monitors E-30
3.3 Generating a CONDES File E-31

4.0. Simulation Execution E-56

4.1 File Storage E-56
4.2 Simulation Execution E-56
4.3 Modifying the Simulation Run Time . . . E-57

5.0. Simulation Output E-60

5.1 Accounting Data -
5.2 Software Monitor Data E-60

V 5.3 Hardware Monitor Data E-60

•E.2

,..' E-2

I a ...
-

" " " " " - " "' '' ' '' , 4.. " " " " " "

List of Figures

Figure Page

1. CPESIM II System Structure...........E-10

2. Example of WRKDES File..............E-26

3. Cyber JCL to Execute CRSTR.............E-2 7

4. "User" Interface Procfil.............E-53

5. Typical TYPES File.................E-54

6. Typical Condes File................E-55

7. Cyber JCL to Load Dummy Files..........E-58

8. Cyber JCL to Execute Simulation...........E-59

E-3

" , .. -~~ - -: y.*-U S

List of Tables

Table Page

1 1. Workload Creation Input E-15

2. Event Stream (EVSTR) Format E-22

3. EVSTR Format For Job Records E-25

4. Configuration Input E-32

5. Types Input E-46

6. ACTLOG Record Format E-61

7. SFTMON Record Format E-62

8. HRDMON Record Format E-63

'E-

° E--

'4,
'-9

° * ."

CPESIM II

Instructor Manual

1.0 Introduction

CPESIM II consists of a simulation of a major

computer system and its operating environment. It was
% designed for use as a laboratory aid to allow students to

* .apply Computer Performance Evaluation (CPE) tools and
techniques to a "real" computer system. The use of an
actual system for such studies is impractical for several
reascns. First, due to the overhead and disruption caused
by some measurement tools, their use in a real system f.r
classroom purposes may be prohibited by computer center
personnel. Second, if measurement data is available it may
not be academically useful. That is, the system may be
operating as it should (thus providing no problem solving
opportunities), or it may contain several interacting

problems which, although realistic, cannot practically be

resolved by a student as a one-quarter course project.
Third, if the data does allow the student to analyze a
problem and recommend a solution, it is unlikely that the

computer center will allow tie implementation of the

solution (or of several conflicting solutions from several
students). CPESIM II solves these constraints be providing
a simulated environment in which the student can gather
whatever data is desired, analyze the data and recommend a
solution, implement the solution (at an appropriate cost),
and then analyze the modified system to verify whether or

not the solution was effective.

CPESIM II consists of two parts. The heart of
CPESZM II is a computer simulation (written in SLAM) of a
large-scale computer system processing a workload, which

executes on a host machine (e.g., the CYBER). Because it is

a simulation, there are many simplifications and limitations
which restrict its representation of reality. The second

part of CPESIM II is a simulated operating environment for

the computer system. This includes a computer-generated
workload, a written scenario, budgetary constraints, and

system data in a form that can be manipulated and analyzed

by the student, playing the part of a CPE analyst and/or DP

manager.

E-5

..- .
-...

. . ..

o

IThe written scenario provides the student with
operating details about the particular computer installation
he or she is to investigate. The instructor c)nfigures the
hardware, operating system, and workload to illustrate a
particular problem or situation. Measurement data is then
provided to the student as requested for analysis and
decision making on a periodic basis (e.g., weekly). In
order to force the student analyst to make tradeoffs, only a
subset of the available data can be accessed during a given
period, and an appropriate cost is associat:d with each
student request.

1.1 CPESIM II Output To Students
I

Many types of information are available to the
student to aid in the analysis. Some of these are free and
automatic. Some must specifically be requested. There is a
cost associated with many. Some are mutually exclusive.
The student must choose what data he wants and how he wants

r- to use it. This section briefly describes the outputs

available and directs the student to further information.

Manufacturer's Data - Literature (of varying value)
describing hardware and software features is available in
printed form.

Installation Documentation - In-house documentation
of the local configuration, parameter values, modifications,
problems, etc., may be available in printed form. These are
specific to a given problem and will be provided as a
separate handout.

Accounting System Data - The computer's accounting
system files are available at no cost to the student as disk
files on the host computer. Such data is in raw firm, and
the format is defined in the manufacturer's literature for
the appropriate operating system.

Hardware Monitor - A hardware monitor exists for the
simulated computer. However, such a monitor may have to be
purchased or leased. Particular probe points and sampling
periods must be specified by the student. As with a real
hardware monitor, there is no effect on system performance.
The output data is available as a disk file on the host
computer.

Software Monitor - A software monitor is available
for the simulated computer. However, it may have to be

E-6

7 7- --,.-, '" .-- '''2'.".-.': -." " "'- --- ",'. , .. .- -" ' ' "" ""

purchased or leased. As with real software monitors, these
monitors require memory, runtime, and other system overhead
to operate. Output data is available as disk files on the
host computer.

Budget Reports - Periodic written summaries of the
dollars spent will be available to the analyst.I
1.2 Student Inputs to CPESIM II

One of the advantages of a simulation is that the

students can make changes to the system. Thus, there are a
number of inputs that the student may (or must) provide to
CPESIM II (as well as some that he cannot). This section
briefly describes the CPESIM II inputs available to the
student.

Workload - Students have no control over the
workload. The instructor does control the workload and may
choose to vary it as the situation dictates (e.g., in
response to a student initiated "user education program").

Interview Requests - Student analysts can submit
written questions ti installation personnel. Questions may
or may not be answered. Charges for personnel time spent
answering questions will be assessed to the student's
account.

Monitor Purchase - Student analysts can submit
purchase orders for the purchase of lease of any available
hardware or software monitors.

Monitor Input Parameters - If the software monitor
is desired then the students must provide the simulation the
starting time, stopping time, and the queues to be
monitored. If the hardware monitor is chosen then the
starting time, stopping time, sample rate, counter probes,
and timer probes must be specified. The student can input
these parameters by using the "User" interface while making
the configuration file.

Reconfiguration Requests - Students may request
reconfiguration of existing hardware and operating system
parameters. Personnel costs to reconfigure will be
assessed. Degradation of system performance because of such
changes will be frowned upon by installation management.

Purchase of System Options Additional hardware or

operating system modules may be purchased by submitting an

E-7

appropriate purchase order. Costs will be assessed directly
to the student account. Information on current cost and
availability will be provided with each particular project.

Personnel Hiring - Requests for hiring additional
installation personnel (e.g., for an additional shift) or
for overtime authorization may be submitted. If approved,
costs will be assessed directly to the student account.

1.3 Student Input For Grading

Of course, choice of grading technique is the
prerogative of each individual instructor. However, this
section describes one set of student inputs that may be used
for that purpose.

Final Report - This represents the single most
important input to the student's final grade. The report
should be typewritten with drawings, tables, and graphs of
professional quality. The report should consist of two
parts. Part 1 is the Analyst's Report. This should include
a clear statement of the problem as perceived, a systems
analysis and description, stated hypothesis of the specific
problem, analysis done to confirm (or deny) the hypothesis,
recommended solution, and verification that the implemented
solution solved the problem. Also, included should be a
cost analysis and recommendations for the future. Part II
is the Student's Critique. This should include an
evaluation of the simulation as a learning tool along with a
discussion of problems encountered and recommended changes.

Interim Reports - Various interim reports cay be
required throughout the quarter, depending on the s enario.
These should be of the same quality as the final report and
will count toward the project grade.

Software Tools - Some specific software tools (e.g.,
data reduction packages) may be required during the quarter.
These will specifically count toward the project grade. For
any other tools that the student might develop, the source
code should also be submitted. These programs will
influence the project grade.

Oral Presentation - Each team will be required to
make a final oral pre3entation to the class and possibly an
interim report as well. Although an important purpose of
the oral report is to share each team's analysis and
findings with the rest of the class, presentation is a
graded part of the project and should be done in a

E-8

"..: '.-. . -?:> :-,: i. . / .. a t. , . -i : . . .: _ . : i.- -: - -.< -? i i . .4

* •

professional manner.

1.4 Structure and CPESIM II Simulation

Figure 1 provides an overview of the CPESIM II
system structure. The system can be divided into two
sections. The first phase consists of generating two files,
CONDES and EVSTR, needed by the simulation itself. CONDES

.- is a file of parameters describing the simulated computer
system. CONDES is created by a series of questions and
answers from the user interface program (SETUP) prior to the
simulation run. EVSTR is a file of synthetic job
parameters, one record for each job, that provides a
workload for the simulated system. Although EVSTR can come
from anywhere (including the accounting log from a real
computer), the program CRSTR provides a means of generating
the workload from a set of workload description parameters,

.stored in file WRKDES. This program is very useful for
generating artificial workloads for many uses other than
CPESIM II. File WRKDES in turn, can be input from cards or
from a permanent disk file.

to execute the simulation itself. In the second phase the
actual simulation programs, SIMS and SIMF, are used along
with CONDES and EVSTR as input to generate performance data
files ACTLOG and, optionally, HRDMON and SFTMON.

1.5 Paper Organization

The remainder of this report discusses the two
phases in greater detail. Chapters 2 and 3 discuss the
workload generation and configuration definition of phase I,
respectively. Chapter 4 discusses the phase 2 execution of
the simulation.

"o.

E-9

L!0

WR4DES WRKD -

- CCrrf. IVT ;.)e-

S.r

dK L

Fig 1. CPESIM Il S3ystem Structure

.

2.0 Workload Generation

This section describes the workload generatton
process. It should be noted that this procedure can be used
independently of the rest of CPESIM II to generate workloads
for any simulation such as statistical data analysis,
simulated operating systems, etc. The output workload
consists of a sequence of simulated "Jobs" where each job
consists of a job identifier, an arrival time, and a series
of computer resource requirements (e.g., CPU time, memory,
etc.). These job parameters are based on user specified
frequency distributions and associated parameters for each
resource. These distributions can be changed at any time
throughout a standard 24 hour day. The system can generate
up to seven days of workload, but the sequence of
distributions must be identical for each day (i.e., each day
is statistically the same).

2.1 Workload Specification

Table 1 defines the input card images necessary to
generate a workload. The actual generation program (CRSTR)
reads these images from a disk file with local filename
WRKDES. Thus, the user can load WRKDES from an actual card
deck, or can create or change this file interactively. All
of the input fields on all the cards are in a free-form
format. This means that the information on the input cards
does not need to be in a particular column. However, the
order of the data is critical. Most of the information
required is formatted so that a key word indicates the
contents of the fields which follow it. The end of a card
terminates a value for a field, but has no other effects.
All fields must be separated by at least one space. All
numerical information is entered as "real" numbers. This
means all numbers must have a decimal point and a zero. If
a decimal point is not present, the code which edits the
input will generall', reject the number, or assume a decimal
point - not necessarily where it ought to be. All input
fields have default values which are used if an input value
has an error. Otherwise all data fields in a card should be
used. A card may be dropped from the input if it is not
required. A card is the basic input unit, and it consists
of a keyword followed by a series of data fields. These
logical cards may actually occupy more han one physical
card.

The first card in this file, which is optional, is
the DAY card, depicted in Table 1A. This card merely
specifies the number of days of workload to be generated.

E-1I

"°.-

The second card is the SED card (Table IB). This
card specifies a seed for the random number generator.
Program CRSTR uses this seed to generate several seeds for
the different parameter distributions.

The third card of interest, shown in Table 1C is the
TIM card. This card specifies a time (in decimal hours) at
which the workload generating distributions are to be
changed. These records must be in ascending time sequence
in the workload creation deck. The parameter cards are thus
interspersed among the TIM cards. The parameters which are
defined prior to the first TIM card go into effect at hour
0.00 and continue to be in control unless another record
defining the parameter appears. If more than one definition
of the same parameter appears, the last definition for that
time period is used. Only distributions that are changed by
cards following this one will actually be changed. Other
distributions will continue as they were before the
specified TIM card. Any number of TIM cards my be included
in a single 24-hour day. This same pattern of distribution
will be used for each day of the workload.

The final card type is the parameter card. One of
these cards, described in Table 1D, is used to specify each
distribution. The first field specifies the variable to
which the distribution is applied. The parameter options

* . for the first field are listed in Table 1E. The second
field specifies the distribution type, and the following
fields list the distribution parameters. The allowable
distribution types and required parameters are listed in
Table 1E. Some of the data on the logical cards is in the
form of probability distributions. The distributions are
sequences of numbers structured as follows:

probability-of-the value the value . . .

probability-of-the value the value *

The sequence of number pairs is followed by an asterisk to
indicate the end of the sequence (all variable length
sequences of information are followed by an asterisk). The
sequence may be spread across as many physical cards as
desired. There are two types of distributions which may be
specified in this manner. They are a probability density
function or a cumulative distribution function. If a
probability density function is specified, then the
probabilities must add up to 1.0. If a cumulative

*" distribution function is specified, then the first entry
must be for the zero probability (even it is zero), the

E-12

.. •* . * *~

'- --'- . " -, .'- ." .' " -. '. '. -' - --- . '." '- -' - . ----- " '" " ' ' "- ' - .-- " -; " ' " -- ". .- -
. . .. •,. - - . . . -. , , ". ' . . , -f . ' ='' " ' - , -,

,. -% .. , " , .- .. . , . .- . . = , -.. -. . - -. .. -.-

probabilities must be specified in ascending order, and the
last probability must be 1.0.

Figure 2 illustrates an example of the WRKDES file
for generating one day's data. The interarrival time card
with a mean of 481 minutes followed by a TIM 8.0 Is used to
keep any jobs from arriving before 8:00. Thereafter all
distributions are defined. The TIM 16.0 followed by the INT
card with mean of 481 results in no job arrivals after 1600.

2.2 Program Execution

The sequence of workload specification cards
described in Section 2.1 must be presented to the generating
program CRSTR as a disk file under local filename WRKDES by
copying a card deck from INPUT or attaching an appropriate

-* permfile. The generating program itself, CRSTR, must be
attached, as well as the system SIMSCRIPT library SIM2LIB.
The output file from CRSTR has local filename EVSTR, and
should be requested as a permanent file and declared as an
80 character f4le to the Cyber Record Manager. The CRSTR

program can then be executed. Finally, the output file
EVSTR should be cataloged. Figure 3 illustrated the Cyber
control cards used in this sequence. The relation of data
and program files can be seen in Figure 1.

2.3 Event Stream File EVSTR

The output of the workload generating program is a
file EVSTR which is basically a sequence of arriving jobs
sorted in order of arrival time. However, this file is
intended as an input event stream to the main CPESIM II
program, and actually consists of three event types:
POWER.UP, JOB.ARRIVAL, and SWITCH.OFF, as described in Table
2. Each record is terminated by an "*". The first record,
POWER.UP, and the last record, SWITCH.OFF, were used in the
original CPESIM II, and are no longer used. They can be
left in the file or be excluded as desired. The remaining
records each represent an arriving job. The first field
contains the character string JOB.ARRIVAL, and the remaining
fields contain parameters for that job as defined in Table
2. The EVSTR file format is indicated in Table 3 for use by
other programs. Note that this file is written by a
SIMSCRIPT program, and arrival times less than one do not
include a leading zero, hence the file may not be readable
as is by a PASCAL program (if any jobs arrive prior to
1 :OOAM).

E-1 3

77 777 7.7.777.. . . .-

2.4 Other CRSTR Output

In addition to the event stream file, CRSTR also
prints a workload description to the line printer (Cyber
OUTPUT file). This information reflects the input WRKDES
information, nicely formatted, as well as the total numoer
of jobs created and the last day jobs arrived.

-E1

E-1

.N

.-..

7 A77

Table 1-A WORKLOAD CREATION INPUT;
DAY CARD (OPTIONAL)

FIELD CONTENTS VALUE(S),7 DEFAULT COMMENTS

1Record Type DAY (Req) NOTE

*2 Num of Days Integer 7.0 NOTE 2

NOTE 1: Indicates a day card. Used to identify the number
of days the workload is to be created.

NOTE 2: The number of days a workload is to be created for.

* * E-1 5

Table I-B WORKLOAD CREATION INPUT;
SEED CARD (OPTIONAL)

FIELD CONTENTS VALUE(S) DEFAULT COMMENTS

1 Record Type SED (Req) NOTE 1

2 SEED REAL 0.0 NOTE 2

NOTE 1: Indicates a random number generator seed card.
Used to specify different starting seed for
workload random number generation.

NOTE 2: The starting seed to be used.

-E-

;..

--.- E-1 6

.,

Table 1-C WORKLOAD CREATION INPUT;

TIME CARD (OPTIONAL)

• .

FIELD CONTENTS VALUE(S) DEFAULT COMMENTS

1 Record Type TIM (Req) NOTE 1

2 Cutoff/Start Hour Real 0.0 NOTE 2

NOTE 1: Indicates a time change input card. Used to
delimit sections of a day when distrobutions

apply.

NOTE 2: The hour at which the distributions prior to this
card are replaced by the distributions which follow
it. If a distribution is not replaced, it
continues to control the output parameters. All
distributions are initialized to default values at
hour 0.0. When the input deck is read, the time

of day is initialized to 0.0.

E-1 7

-'p.

Table l-D WORKLOAD CREATION INPUT;
PARAMETER CARDS

FIELD CONTENTS VALUE(S) DEFAULT COMMENTS

1 REC TYPE See Table I-E (Required)

2 Distribution See Table I-F EXPONENT NOTE i

Name

3 Distribution See Table I-F 1.0
Parame ters

NOTE 1: The distribution which governs the parameter
indicated by the record type.

E-18

. S b I

° .. "~

Table 1-E PARAMETER VALUES FOR

FIELD I OF PARAMENTER CARDS

PARAMETER NAME COMMENTS

- INT Interarrival time in minutes

CPU CPU time in seconds

MEM Memory required in 1K blocks

PRI Priority in integer values greater

than 1. Higher priority , lower

value.

MTS Number of allocatable devices

CRD Number of input cards

LIN Number of output lines

DIS Number of system disk blocks

TAP Number of allocated device blocks.

E 1

E--

,.. ...

,°%;

.". . . .

Table I-F DISTRIBUTIONS AVAILABLE

FOR WORKLOAD DESCRIPTION

DISTRO NAME PARAMETERS COMMENTS

BETA XPOWER X-IPOWER Generates a beta disto-

buted real numbers where

XPOWER - power of x and
X-IPOWER = power of (l-x)

BINOMIAL TRIALS PROB3UC Generates integers repre-

senting the number of suc-
cess in TRAILS independent
trials when the probabil-

ity of success is PROBSUC.

ERLANG MEAN K Generates Erlang distri-
buted numbers with MEAN
and K

EXPONENT MEAN Generates Exponentially

distributed numbers with

MEAN.

GAMMA MEAN K Generates a Gamma distibut-
ed numbers with MEAN, and K

LOGNORMAL MEAN 4TDDEV Generates Lognormally dis-
tributed numbers with MEAN
and standard deviation
STDDEV.

NORMAL MEAN STDDEV Generates Normally distri-
buted numbers with MEAN and
standard deviation, STDDEV.

. -

E--

"-.- 20.. .

Table 1-F DISTRIBUTIONS AVAILABLE
FOR WORKLOAD DESCRIPTION (CONTINUED)

DISTRO NAME PARAMETERS COMMENTS

POISSON MEAN Genera-es loisson distri-
buted numbers with MEAN.

UNIFORM L"kL HVAL Generates Uniformly distri-
buted numbers form LVAL to
HVA L.

WEIBULL SHAPE SCALE Generates numbers from a
Weibull distribution with a

SHAPE parameter and a SCAZE

parameter.

STEP VPROB VAL Generates numbers from the
values specified by VAL
with probabilities VPROB.
The VPROB values must form

a probability distribution
function or cumulative dis-
tribution function. A *

must terminate the string
of numbers.

LSTEP VPROB VAL Generates numbers linearly
interprated from the values

specified by VAL with prob-
abilities VPROB. The VPROB
values must form a valid
cumulative distribution

function. A * must termin-

ate the string of numbers.

E-21I

.% %

.€...........

, . --, . . ,- - - . -,,- . - * * ~- J ,. : -* . , . . . -. . . :. : - .4 :: -

or T

Table 2-A EVENT STREAM (EVSTR) FORMAT
POWER UP EVENT (Note 1)

FIELD CONTENTS VALUE(S) COMMENTS

1 Event Type POWER.UP Indicates the starting

time of the computer

2 Start Up Time Real = 0 The time at which the

computer is to start

processing in hours

3 Record Term. *

NOTE 1: This card is no longer used by CPESIM II to start

the
computer. It will not affect the simulation an .

can be left in the EVSTR file.

E-2 2

%," .*

Table 2-B EVENT STREAM (EVSTR) FORMAT
JOB ARRIVAL EVENT

FIELD CONTENTS VALUE(S) COMMENTS_

1 Event Type JOB.ARRIVAL Indicates arrival of a

J(b for the computer to

process.

2 Arrival time Real 0 Arrival time in hours.

3 Job Name Integer Unique job indentifier.

4 CPU Time Integer CPU time required in

seconds.

5 Memory Integer Blocks of memory needed.

6 Priority Integerl Job priority. Lower
value - higher priority.

7 Allocatable Integer Number of devices

Devices required.

8 Cards Intger Number of input cards.

9 Lines Integer Number of lines outputed

10 Disk Blocks Integer Number of disk blocks

job reads/writes.

11 Allocatable Integer Number of blocks job
Device Blocks reads/writes to allocat-

ed devices.

12 Record Term *
-.

'5-. . 5.' .

Table 2-C EVENT STREAM (EVSTR) FORMAT
SWITCH OFF EVENT (Note 1)

FIELD CONTENTS VALUE(S) COMMENTS

1 Event Type SWITCH.OFF Indicates the stopping

time of the computer

2 Start Up Time Real - 0 The time at which the

computer is to stop
processing in hours

3 Record Term. *

NOTE 1: CPESIM II no longer uses this card to process the

end of the job stream. The simulation ignores
this card and can be left in EVSTR.

E-24

.". ..-

Table 3 EVSTR Format For Job Records

FIELD VARIABLE ---- FORMAT ______

1JOB.ARRIVALI A12 (left justified)

2 Arrival Time FlO.4,1X

3Job Name I1O,LX

4 CPU Time 13,1X

5 Memory 13,1X

6 Priority 12,1X

7 Alloc. Devices 12,1X

8Cards 14,1X

9 Lines 15,1X

10 Disk Blocks 14,1X

11 Alloc. Device Blocks 14,1X

12 1 A

E-2 5

dq- .- , . .

* b ,,.- ~ , *. o

SED 680
DAY 1.0
INT STEP 1.0 481.0*
TIM 8.0
INT EXPONENT 3.0
CPU EXPONENT 160.0
MEM LSTEP 0.0 10.0 0.1 16.0 0.19 20.C

0.19 25.0 0.029 30.0 0.32 35.0
0.38 50.0 0.57 63.0 0.76 70.0
0.76 100.0 0.855 124.0 0.95 150.0
0.95 190.0 1.0 205.0*

PRI STEP 1.0 2.0 *
MTS STEP 1.0 0.0 *
CRD EXPONENT 10.0
LIN EXPONENT 10.0
DIS EXPONENT 1000.0
TAP STEP 1.0 0.0 *
TIM 13.0
CPU EXPONENT 500.0
TIM 16.0
INT STEP 1.0 481.0.0

Fig 2. Example of WRKDES File

E-26

- ~ ~ 7 777~.~~

CP2, STCB. T780510, HARTRUM, 53450
ATTACH, WRKDES, WRKDS1, ID-EE752.
ATTACH, SIM2LIB, ID-CACI, SN=SYSTEM.
ATTACH, CRSTR, CRSTR, ID-LEWIS.
REQUEST, EVSTR, *PF.
FILE(EVSTR, FL=80)
CRSTR, SIMU9-EVSTR, SIMU5 - WRKDES.
RETURN, CRSTR.
REWIND, EVSTR.
CATALOG, EVSTR, WRKLD1, ID-EE752, RP-90,XR-TCH.
COPYYSBF, EVSTR, OUTPUT.
*EOF

Fig 3. Cyber JCL to Execute CRSTR

E-2 7

3. Configuration Definition

* In addition to an input workload, the CPESIM II
simulator also needs to know the current system
configuration. This section describes how the user

specifies the configuration. The simulation program uses a
configuration file with the local name CONDES. This file
can be entered from a remote terminal. The CONDES file
contains information on the hardware devices (disks, CPU,
etc.), hardware interconnections, operating system
parameters (partition sizes, etc), hardware monitor
connections, and software monitor parameters. This section
discusses each of these areas.

3.1 Hardware/Software Architecture Definition

:The first records of interest in the CONDES file define
the hardware, operating system parameters, and
interconnections of the computer system being simulated.

These records are defined in Table 4A through 4K, and must
be entered in the file in the order listed in Table 4L.
These records, as indicated in the first field of each, deal
with the CPU, with memory, with each IOC (I/O channel), and
with each I/O device.

The first three records deal with the cpu. The first
4. record indicates the number of cpus that will be in the

simulation. The second contains the cpu name, the cpu ratio
which is used to simulate relative speeds of different
processors, and the cpu cost. If the ratio has a value of
1.0 each job will require the same amount of CPU time as is
specified in that job's resource requirement in the EVSTR
file. A faster processor would be simulated by using a CPU
ratio of a less than 1.0. Thus this parameter is the ratio
of the actual processing time to the requested processing
time. Typically this value would be initially set to 1.0,
then varied on later runs to reflect replacement of the CPU
with a faster or slower (and cheaper) CPU. The third
record, sets the round robin time quantum. This parameter
sets the number of seconds that each job will execute before
yielding the CPU to another job. Note that if a job
requests an I/O before this time is reached it will yield
the CPU at that time. By setting this parameter to a very
large number, FIFO service can be modeled. CAUTION: Since
this simulation distributes disk and tape I/Os evenly across
a job's runtime, if the average time between I/O requests is
less than the round robin time quantum, then for most jobs
the latter parameter becomes irrelevant, and the system will
behave as though it uses FIFO.

E-28

¢...7;. ' , ° .°.'. v . , . ,7. . . .'-,

The second set of records describes the memory
partitions of the simulated computer. The first card lists
the number of memory partitions that the system will have
(maximum of 20 partitions). The number of memory partitions
also determines the multiprogramming level. Each job
(except the job scheduler) is allocated a memory partition
prior to being released into the execute queue. Since the

' - job scheduler is always core resident in system memory, the
multiprogramming level is one plus the number of memory
partitions. After the number of memory partitions is
entered, the size of each partition is entered (one per
record). The size of the memory partitions are entered in
terms of 1024 byte blocks. The order of the memory
partitions IS important. When the job scheduler executes it
tries to fit the tob in the first free memory partition. If
the partition is not large enough it looks at the next
partition, followed by the next, until a partition of
sufficient size ;s found or there are no more available
partitions. Because of this searching algorithm the

partitions should be listed in ascending order by size. By
having them listed in this way, the smallest available

. partition will be used for each particular job. Also note,
if a job requires more memory than is available in the
largest memory partition, the job will sit in the hold queue
until the end of the simulation.

The next set of records define the Input/Output
Controllers (lOCs). The first record defines the number of
controllers that the simulation will have. A maximum of
five lOCs can be defined in any one simulation run. The
next records specify the IOC name, the data transfer rate,
and the cost. The rate will be in terms of standard data
blocks per second. The data rate must be specified as an
integer *.umber of data blocks since fractions of blocks are
not allowed. The IOC data transfer rate is the maximum
number of blocks that an IOC can handle from I/0 devices at
one particular time. For example, if an IOC with a transfer
speed of 100 blocks per second is connected to three devices
with device transfer speeds of 40 blocks per second, two of
those devices could be active simultaneously with no delay,
while a transfer over the third device would have to put in
the IOC queue.

After the definition of the lOCs, the I/O devices are
defined. The first group of I/0 devices defined are
unallocatable I/) devices (disks and drums). The first
record wlll specify the number of unallocated devices
(maximum of 10). The following records will define each
individual I/0 device. The first field is the name of the
device. The second field is the data transfer rate. This
fiell must be specified in terms of the amount of time (in

E-29

l"

seconds) required to transfer a 1K block of data. The third
field represents the cost of the device. The last five
fields define the connection of the device with te lOCs. A
"l" in field 1 will indicate that the device is connected to
the the first channel, where as a "0" wil' indicate the

.' device is not connected to the IOC. Tie next 4 fields
represent LOCs 2 through 5, respectively. There must be one

"- channel definition card for each allocatable device.

The next group of I/0 device definition cards define
the allocatable I/0 devices (tapes). The allocatable I/0
devices are defined in exactly the same manner as the
unallocatable I/0 devices.

The third type of I/O device defined is the card
reader. The first field is the name of the card reader. The
second and third fields define the speed and cost of the
card reader. The card reader's speed is de2ined in terms of
cards read per minute. The simulation then calculates the
transfer rate by dividing the 1K block size by the card
record size (80 bytes). This result is then truncated to an
integer and divided into the card reader speed. The result
is now in terms of how long it takes to load a 1K buffer.
This result is then multiplied by 60 to get the transfer
rate in seconds instead of minutes. The last five fields
define the interface between the reader and the IOCs. The
format for the channel connections is the same as the
unallocatable devices.

The last I/0 device defined is the line printer. The
line printer's name, speed, and cost are represented by the

first three fields. The line printer's speed is defined in
Nterms of lines per minute. Like the card reader, the

transfer rate of the printer is calculated by finding the
number of 132 byte lines that can fit in the IK buffer and
dividing by the number of lines per minutes. This result is
then converted to a transfer rate in terms of seconds. The
last five fields define the channel connections in the same
way as the previous I/0 devices.

3.2 Hardware and Software Monitors

The present configuration of the simulation requires
that the software and hardware monitors be defined in the
CONDES file. The software monitor requires four cards to
define its parameters. A 'Y' in the first card tells the
simulation if the software monitor is desired. If the
software monitor is desired then the next three cards will

define the monitor's parameters. (NOTE: If the software
monitor is not desired then the next three cards are not

9! inserted into the CONFIG file and the hardware monitor cards

E-30

" ' - . E.-.3

*-.". * ~ \ * ~ * .. .\

. .. . 7 . . N .. *.*-** * - o . ,

follow the 'N' card for the software ronitor.) The second
and third cards define the starting ai.i stopping time of the
monitor. These cards have four fields which correspond to
the desired day, hour, minute and second for the starting or

stopping time 3f the monitor. NOTE: T e starting ti:e is

the time at which the monitor is entered into the hold
queue. The actual monitor trace will not start intil the

monitor is executed by the cpu. The fourth card defines the
five queues which will be monitored. The software monitor
can monitor any queue in the simulated system. The number
of the desired queue is entered into each of the five
fields. The queue numbers are listed in Table 4-J. If less

than five queues are to be monitored any illegal queue
number can be substituted in one of the queue fields.

The definition of the hardware monitor is similar to
the software monitor. The first card tells the simulation
if the hardware monitor is desired. If the monitor is
desired the next two cards specify the starting and stopping
times. The last card defines the two timer probes and the

three counter probes. These probes can be connected to the
cpus, IOCs and I/O devices. If one or more probes is not
desired, then an illegal probe connection point is entered
into that probe's field. Legal probe points are listed in
Table 4-K.

3.3 Generating a CONDES File

The CONDES file must have the records in the proper
format and in the order listed in Table 4-L. These records
can be entered by hand or they can be generated by using the
"User" interface. The file SETUP provides this "USER"
interface. This file reads the hardware descriptions from a
file called TYPES. From the data provided by TYPES, the
user will be queried about the types and quantities of
various pie:es of equipment. From the user's responses a

CONDES file will be generated. This file can then be used
as input to the simulation. Figure 4 shows the PROCFIL used
to execute the "User" interface. The file TYPES must be
stored on disk prior to its being called. Typically the
instructor will control the TYPES file. He would list all
the scenario hardware in this file. By contr. lling the

file, the students can choose only "legal" pieces of
equipment from which to define their system. The format for
the TYPES file is listed in Table 5-A through 5-F. The
order of the cards must be as specified in Table 5-G.
Figure 6 illustrates the contents of a typical CONDES file
generated by SETUP using the TYPES file listed in Figure 5.

E-31

.z _.I.

Table 4-A CONFIGURATION INPUT;

CPU CARDS

NUMBER OF CPUS CARD

FIELD VARIABLE FORMAT COMMENT

1 Num of CPUs 12

'.1

CPU DEzCRIPTION CARD

FIELD VARIABLE FORMAT COMMENTS

1 Name of CPU \.20,1X

2 CPU Ratio FIO.4,1X Relative CPU speed.

.5 twice as fast as 1.0

3 CPU Cost F8.2,lX Cost of each CPU in $.

CPU TIME SLICE CARD

FIELD VARIABLE FORMAT COMMENTS

1 TIME SLICE A20,1X Indicates time slice
card

2 Time Slice FIO.4 Round robbin time

quantum.

E-32

-s-

.. p

Table 4-B CONFIGURATION INPUT;

MEMORY CARDS

iNUMBER OF MEMORY PARTITIONS

FIELD VARIABLE FORMAT COMMENTS

1 Number of 12 Maximum of 20 aemory
Partitions partitions

MEMORY PARTITION SIZE CARD (One for Each Partition)

FIELD VARIABLE FORMAT COMMENTS

1 Name of A20,IX
Partition

2 Partition F10.4 Size in terms of 1024
Size byte blocks

quantum.

E-33

Table 4-C CONFIGURATION INPUT;
CHANNEL CARDS

NUMBER OF CHANNELS

FIELD VARIABLE FORMAT COMMENTS

1 Number of 12 Maximum of 5 channels
Channels

CHANNEL DESCRIPTION CARD (One per Channel)

FIELD VARIABLE FORYAT COMMENTS

1 Name of A20,IX
Channel

2 Channel Data FIO.4,1X Number of 1K blocks
Rate channel can transfer in

in one second.
40

3 Channel Cost F8.2,lX Cost of channel in $.

* * -E-34

% , - . . .

I."

Table 4-D CONFIGURATION INPUT;

DISK CARDS

NUMBER OF DISKS

FIELD VA.IABLE FORMAT COMMENTS

1 Number of 12 Maximum of 10 disks

Disks

DISK DESCRIPTION CARD (One per Disk)

FIELD VARIABLE FORMAT COMMENTS

1 Name of A20,IX
Disk

2 Disk Data FlO.4,1X Time in seconds to
Rate transfer a 1K block of

data.

3 Disk Cost F8.2,1X Cost of disk in $.

4 Channel 1 I1,IX 1 indicates disk con-
Connection nected to channel I

5 Channel 2 Il,lX 1 indicates disk con-

Connection nected to channel 2

6 Channel 3 I1,IX I indicates disk con-

Connection nected to channel 3

7 Channel 4 Il,IX I indicates disk con-
Connection nected to channei 4

8 Channel 5 I1, X 1 indicates :isk con-
, Connection nected to channel 5

E-35

p °..I

4i, . ," .' :" - "'""" . " .'? , ." " . ." ""'' " ' " " " ; ": 4. .. " - ''" '" -. " " "

Table 4-E CONFIGURATION INPUT;

TAPE CARDS

NUMBER OF TAPES

FIELD VARIABLE FORMAT COMMENTS

1 Number of 12 Maximum of 10 tapes

Tapes

TAPE DESCRIPTION CARD (One per Tape)

FIELD VARIABLE FORMAT COMMENTS

1 Name of A20,IX

Tape

2 Tape Data F1O.4,1X Time in seconds to

Rate transfer a 1K block of
data.

3 Tape Cost F8.2,1X Cost of tape in $.

4 Channel I Il,lX 1 indicates tape con-
Connection nected to channel 1

5 Channel 2 I1,IX 1 indicates tape con-
Connection nected to channel 2

6 Channel 3 II,1X 1 indicates tale con-
Connection nected to channel 3

7 Channel 4 I1,IX 1 indicates tape con-
Connection nected to channel 4

8 Channel 5 II,IX 1 indicates tape con-
Connection nected to channel 5

E-36

h .7%

Table 4-F CONFIGURATION INPUT;

CARD READER DESCRIPTION CARD

FIELD VARIABLE FORMAT COMMENTS

1 Name of A20,1X
Card Reader

2 Card Reader FlO.4,1X Number of cards read
Data Rate per minute

3 Card Reader F8.2,1X Coit of reader in $.

Cost

4 Channel 1 II,IX . 1 indicates connected

Connection to channel 1

5 Channel 2 IlIX 1 indicates connected
Connection to channel 2

6 Channel 3 Il,lX 1 indicates connected
Connection to channel 3

7 Channel 4 Il,IX 1 indicates connected
Connection to channel 4

8 Channel 5 II,IX I indicates connected
Connection to channel 5

E-37

°.N

70 7-7 7w 70 7w
v

-
r

Table 4-G CONFIGURATION INPUT;

LINE PRINTER DESCRIPTION CARD

FIELD VARIABLE FORMAT COMMENTS
V .

1 Name of A20,lX

Line Printer

2 Line Printer FIO.4,1X Number of line- printed
Data Rate per minute

3 Line Printer F8.2,1X Cost of printer in $.

Cost

4 Channel 1 IlIX 1 indicates connected

Connection to channel 1

5 Channel 2 IlIX 1 indicates connected
Connection to channel 2

6 Channel 3 IlIX 1 indicates connected
Connection to channel 3

7 Channel 4 Il,IX 1 indicates connected
Connection to channel 4

8 Channel 5 IllIX 1 indicates connected

Connection to channel 5

E-38

,~~~. ,. .'... ,........ . . ,. . ,- .. ; .

p7

Table 4-H CONFIGURATION INPUT;

SOFTWARE MONITOR CARDS

SOFTWARE MONITOR EXECUTION CARD

' FIELD VARIABLE FORMAT COMMENTS

1 S/W Monitor Al 'Y' indicates that the
Desired monitor is desired.

'N' indicates not

desired.

SOFTWARE MONITOR START UP CARD

(Required if S/W Monitor Card is Y')

FIELD VARIABLE FORMAT COMMENTS

Starting Day T22,14,1X Starting day of run.

2 Starting Hour 14,1X Starting hour of run.

3 Starting Min. 14,1X Starting minute of run.

4 Starting Sec. F8.4 Starting second of run.

SOFTWARE MONITOR TERMINATION CARD

(Required if S/W Monitor Card is 'Y')

FIELD VARIABLE FORMAT COMMENTS

1 Stopping Day T22,14,1X Stopping day of run.

2 Stopping Hour 14,1X Stopping hour of run.

3 Stopping Min. 14,1X Stopping minute of run.

4 Stopping Sec. F8.4 Stopping second of run.

E-39

,.. . : -:-:-:: ::: :: .; •:) :i :: i. :-i - . - .- -. - , i .. .:- '. i . . . :-:;, .:- - *- : --

Table 4-H CONFIGURATION INPUT;
SOFTWARE MONITOR CARDS (Con-inued)

SOFTWARE MONITOR QUEUE CARD
(Required if H/W Monitor Card is 'Y')

FIELD VARIABLE FORMAT COMMENTS

1"Queue #1 12,1X First queue to be

monitored. See Table 4-J

2 Queue #2 12,1X Second queue to be
monitored. See Table 4-J

Queue #3 12,1X Third queue to be

monitored. See Table 4-J

4 Queue #4 12,1K Fourth queue to be
monitored. See Table 4-J

5.Queue #5 12,IX Fifth queue to be

monitored. See Table 4-J

0.

E-4

___ ___ .,1 ~ ~

- ww . .,.. _ - . -v , "

I.

Table 4-1 CONFIGURATION INPUT;
HARDWARE MONITOR CARDS

.1 HARDWARE MONITOR EXECUTION CARD

FIELD VARIABLE FOR.: T COMMENTS

1 H/W Monitor Al 'Y' indicates that the

Desired monitor is :esired.
'N' indicates not

'.." desired.

* HARDWARE MONITOR START UP CARD

(Required if H/W Monitor Card is 'Y')

FIELD VARIABLE FORMAT COMMENTS

1 Starting Day T22,I4,1X Starting day of run.

2 Starting Hour 14,1X Starting hour of run.

3 Starting Min. 14,1X Starting minute of run.

4 Starting Sec. F8.4 Starting second of run.

HARDWARE MONITOR TERMINATION CARD
(Required if H/W Monitor Card is 'Y')

FIELD VARIABLE FORMAT COMMENTS

1 Stopping Day T22,I4,1X Stopping day of run.

2 Stopping Hour 14,1X Stopping hour of run.

3 Stopping Min. 14,1X Stopping minute of run.

4 Stopping Sec. F8.4 Stopping second of run.

E-4 1

% 2 I

-. .

I

Table 4-I CONFIGURATION INPUT;
.. . HARDWARE MONITOR CARDS (Continue)

HARDWARE MONITOR SAMPLE RATE CARD
(Required if H/W Monitor Card is 'Y')

FIELD VARIABLE FORMAT COMMENTS

1 Sampler Rate T22,FlO.4 How ofter the monitor
will record data and

clear counter and timers

HARDWARE MONITOR PROBE CARD
(Required if H/W Monitor Card is 'Y')

FIELD VARIABLE FORMAT COMMENTS

1 Timer #1 12,1X First timer probe con-

nection. See Table 4-K-V

2 Timer #2 12,1X Second timer probe con-

nection. See Table 4-K

3 Count #1 12,1X First counter probe con-
nection. See Table 4-K

4 Count #2 12,1X 2nd counter probe con-

nection. See Table 4-K

5 Count #3 12,1X Third counter probe con-

nection. See Table 4-K

E-42

. . -- - - - .

- .~~** . *

Table 4-J CONFIGURATI)N INPUT;
SOFTWARE MONITOR QUEUES

QUEUE # QUEUE NAME QUEUE # QUEUE NAME

1 INPUT 2. HOLD
3. EXEC 4. OUTPUT

11. TAP- 1 12. TAPE 2
13. TAPE 3 14. TAPE 4
15. TAPE 5 16. TAPE 6
17. TAPE 7 18. TAPE 8

19. TAPE 9 20. TAPE 10
21. DISK 1 22. DISK 2

23. DISK 3 24. DISK 4
25. DISK 5 26. DISK 6

27. DISK 7 28. DISK 8

29. DISK 9 30. DISK 10
31. CHAN 1 32. CHAN 2

33. CHAN 3 34. CHAN 4

35. CHAN 5
36. NO QUEUE DESIRED

E-43

Table 4-K CONFIGURATION INPUT;

HARDWARE MONITOR PROBE POINTS

QUEUE # QUEUE NAME QUEUE # _QUEUE NAME

1. CPU 2. READER

3. PRINTER II. TAPE 1

12. TAPE 2 13. TAPE 3

14. TAPE 4 15. TAPE 5

16. TAPE 6 17. TAPE 7

18. TAPE 8 19. TAPE 9

20. TAPE 10 21. DISK 1

22. DISK 2 23. DIS,' 3

24. DISK 4 25. DISK 5

26. DISK 6 27.)ISK 7

28. DISK 8 29. DISK 9

30. DISK 10 31. CHXN I

32. CHAN 2 33. CHAN 3

34. CHAN 4 35. CHAN 5

36. NO DEVICE DESIRED

-.

E-4

. ,,. "' . ., .. -. ' i- . -. L- " .. .> -.i --' . . - .. . -. ,-. . . . " " ' "

Table 4-L CONFIGURATION IN 'UT;

ORDER OF INPUT CARDS

CARD NAME COMMENTS

NUMBER OF CPUS

CPU DEC'IPTION
CPU TIME SLICE
NUMBER OF PARTITIONS

MEMORY PARTITION SIZE ONE PER PARTITION
NUMBER OF CHANNELS

CHANNEL DESCRIPTION ONE PER CHANNEL
NUMBER OF DISKS
DISK DESCRIPTION ONE PER DISK

NUMBER OF TAPES
TAPE DESCRIPTION ONE PER TAPE
CARD READER DESCRIPT.

LINE PRINTER DESCRIPT.
SiW MONITOR EXECUTION
S/W MONITOR START UP MANDITORY IF EXECUTION WAS

INDECATED BY 'Y' IN EXECUTION CARD
S/W MONITOR MANDITORY IF EXECUTION WAS

TERMINATION INDICATED BY 'Y' IN EXECUTION CARD

S/W MONITOR QUEUE MANDITO.Y IF EXECUTION WAS

INDICATED BY 'Y' IN EXECUTION CARD
H/W MONITOR EXECUTION

, H/W MONITOR START UP MANDITORY IF EXECUTION WAS

INDICATED BY 'Y' IN EXECUTION CARD
H/W MONITOR MANDITORY IF EXECUTION WAS

TERMINATION INDICATED BY 'Y' IN EXECUTION CARD
H/W MONITOR SAMPLE M . ,DITORY IF EXECUTION WAS

RATE INDICATED B 'Y' IN EXECUTION CARD
H/W MONITOR PROBE MANDITORY IF EXECUTION WAS

INDICATED BY 'Y' IN EXECUTION CARD

E-45

•-.

.. '...

Table 5-A TYPES INPUT;
DISK CARDS

NUMBER OF DISKS TYPES

FIELD VARIABLE FORMAT COMMENTS

1 Number of 12
Disks Types

DISK DESCRIPTION CARD (One Per Type)

FIELD VARIABLE FORMAT COMMENTS

1 Name of A20,IX
Disk

o2 Disk Data F1O.4,1X Time in seconds to
Rate transfer a 1K block of

data.

,...Disk Cost F8.2,IX Cost of disk in $.

E-46

m%

Table 5-B TYPES INPJT;fi TAPE CARDS

NUMBER OF' TAPE TYPES

*FIELD -VARIABLE FORMAT _COMMENTS

1Number of 12
Tape Types

TAPE DESCRIPTION CARD (One Per Type)

FIELD VARIABLE FORMAT COMMENTS- -____

1Name of A20,1X
Tape

2 Tape Data F1O.4,1X Time in seconds to
Rate tz-ansfer a 1K block of

d ata.

3 Tape Cost F8.2,1X Cost of tape in $

E-47

Table 5-C TYPES INPUT;
CHANNEL CARDS

NUMBER OF CHANNEL TYPES

FIELD VARIABLE FOMT-- COMMENTS

Z__________ FOMTN_ ______

1Number of 12
Channel Types

CHANNEL DESCRIPTION CARD (One P,:r Type)

FIELD VARIABLE FORMAT COMMENTS

1 Name of A20,1X
Channel

2 Channel Data FIO.4,lX Number of 1K blocks
Rate ch'.nnel can transfer in

in one second.

3 Channel Cost F8.2,lX Cost of channel in $

E-48

Table 5-D TYPES INPUT;
CARD READER CARDS

NUMBER OF CARD READER TYPES

-".'FIELD VARIABLE FORMAT COMMENTS

- 1 Number of 12
Reader Types

CARD READER DESCRIPTION CARD (One Per Type)

FIELD VARIABLE FORMAT COMMENTS

I Name of A20,1X
Card Reader

2 Card Reader FIO.4,1X Number of cards read

Data Rate per minute

3 Card Reader F8.2,IX Cost of reader in $
Cost

E-49

't

b77

Table 5-E TYPES INPUT;

LINE PRINTER CARDS

NUMBER OF LINE PRINTER TYPES

FIELD VARIABLE FORMAT COMMENTS

. 1 Number of 12
Printer Types

LINE PRINTER DESCRIPTION CARD (One Per Type)

FIELD VARIABLE FORMAT COMMENTS

1 Name of A20,IX

Line Printer

2 Line Printer FIO.4,1X Number of lines printed

Data Rate per minute

3"Line Printer F8.2,1X Cost of printer in $.
Cost

E

-- E-5

Table 5-F TYPES INPUT;

CPU CARDS

NUMBER OF CPU TYPES CARD

FIELD VARIABLE FORMAT COMMENTS

1 Number of 12
CPU types

CPU DESCRIPTION CARD (One Per Type)

FIELD VARIABLE FORMAT COMMENTS

1 Name of CPU A20,1X

2 CPU Ratio FIO.4,1X Relative CPU speed.
.5 twice as fast as 1.0

3 CPU Cost F8.2,1X Cost of each CPU in $.

E-51

Table 5-G TYPES INPUT;
ORDER OF INPUT CARDS

CARD NAME COMMENTS

NUMBER OF DISK TYPES

* DISK DESCRIPTION One Per Type

NUMBER OF TAPE TYPES

TAPE DESCRIPTION One Per Type

NUMBER OF CHANNEL TYPES

CHANNEL DESCRIPTION One Per Type

NUMBER OF READER TYPES

CARD READER DESCRIPTION One Per Type

NUMBER OF PRINTER TYPES

LINE PRINTER DESCRIPTION One Per Type

NUMBER OF CPUS

CPU DESCRIPTION One Per Type

E-52

. . . .

-. * . • E -5

.

-1 71 v

.PROC SETUP.
ATTACH, TYPES.
REWIND,TYPES.
ATTACH, SETUP.

-:REQUEST, CONFIG, *PF .
- . FTN5, I=SETUP,LO=O,ANSI=O,DB.

CONNECT, INPUT,OUTPJT.
LGO.
CATALOG, CONFIG, CONF IG,RP-999.
RETURN,TYPES, SETUP, INPUT,OUTPUT,CONFIG.

Fig 4. "User" Interface Procfil

H -1 E-53

-. . . w.-
.. . . ° ° ° ° o_ - . . . ". -_

w 3
DISK 1 0.0328 1000.00
DISK 2 0.0656 500.00
DRUM 1 .0108 3000.00
1
TAPE 1 0.0725 250.00
2
CHANNEL 1 5J0.O0 1100.00
CHANNEL 2 200.00 620.00
2
CARD READER 1 80.00 30.40
CARD READER 2 1000.00 400.00
2
PRINTER 2 1000.00 500.00
LASER PRINTER 4000.00 3000.00
2
CPU 1 1.00 1110.00
CPU 2 .95 4000.00

Fig 5. Typical TYPES File

E-54

L.,-N

2
CPU 1 1.0000 1110.00STIME SLICE 1.0000
5

PARTITION 1 4.0000
PARTITION 2 100.0000
PARTITION 3 100.0000

-*I PARTITION 4 200.0000
PARTITION 5 700.0000

12
CHANNEL 2 200.0000 620.00

I CHANNEL 1 500.0000 1100.00
2

DISK 2 .0656 500.00 1 1 0 0 0
DRUM 1 .0108 3000.00 0 1 0 0 0

TAPE 1 .0725 250.00 1 1 0 0 0
CARD READER 2 1000.0000 400.00 1 0 0 0 0
LASER PRINTER 4000.0000 3000.00 1 0 0 0 0
y
S/W MONITOR START 0 12 0 0.0000
S/W MONITOR STOP 2 0 0 0.0000

3 1 11 31 36
S. N

Fig 6. Typical CONDES File

E-5

.

..............

4.0 Simulation Execution

With the WRKDES and CONDES files available, the
actual simulation can be run. Section 5 discusses the

* simulation output. However, since the output files must be

- cataloged as part of the execution run and are typically

printed at that time, the JCL associated with the simulation

output is presented in this section.

4.1 File Storage

In order to allow students to develop and use

software data analysis tools, the out-ut files from the
simulation should be stored as perm f.les. This output
consists of three files for each student group. Because of
directory limitations under NOS-BE, the following approach

is suggested to prevent loss of the simulation output due to
a full directory. A dummy perm file is created for each

student group before the simulation run. Note that each
could specify its own protection password at this point if
such security were felt to be needed. Then at the end of

the simulation run, the output files are cataloged as cycles
* 2, 3, and 4 of this dummy file. Typically a retention time

of 5 days might be specified. This accomplishes two things.
First, it is necessary to delete cycles 2, 3, and 4 before

" the next run, as the cyber is limited to five cycles of any

ffilename. Second, it forces the students to decide what

data is really worth saving in machine form, copying and

saving those files themselves, and allowing unused data to
leave the system. Figure 7 shows the JCL to create dummy
files for three student groups.

4.2 Simulation Execution

The JCL for a simulation run is shown in Figure 8.
It is necessary to attach the network portion of the model
(SIMS), the discrete portion of the model (SIMF), as well as

the CONDES file and the EVSTR file. In order to record data
to the accounting file, the hardware monitor file, and the
software monitor file, three files have to be requested for

permanent file space. After the execution of the model, the
three files will be permanently stored on the disk. The
data is now ready for further data reduction.

E-56

6s

Typically (in the CPE course) one run is made per
week. During the first few weeks, only one run per class is
made while the students gather sufficient data for decision

- ;. making. Once the students want to change the configuration,
. -or look at different variables with the monitors, then a

separate run is required for each group. Because of the run
- times involved, the running of the program should be done by

the instructor.

4.3 Modifying the Simulation Run Time

The simulation is presently set up to run from 0 to
600,000 seconds of simulated time (approximately 7 days).
If it is desired to run the simulation at sum other amount
of time then the file SIMS has to be modified. The only
card that has to be modified is the "INIT" card, which is
the third card from the end of the file. The INIT card has
the following format:

INIT,start-time,stop-time;

where start-time and stop- ime are real variables
representing the precise second that the simulation is ti
start and stop.

iE

.

"'."- -'E-57

* ,*.*'-, ---*- - i. . ..

*Iw -7--- 7~-.------~ ~~- ~ -. .

CP4,STCSB. T780510, HARTRUM, 53450
REQUEST, A, *PF.

* REQUEST, B, *PF.
REQUEST, C, *PF.
COPYCR, INPUT, A.
COPYCR, INPUT, B.
COPYCR, INPUT, C.
CATALOG,A,GROUP1,ID=EE752,RP=90,XR-XXX.

CATALOG, B , GROUP2 I ID-EE752 ,RP-90, XR-XXX.
C:ATALOG, C, GROUP3 ,ID-EE7 52 ,RP=90, XR=XXX.

a *EOR

GROUP 1 DATA.
*EOR
GROUP 2 DATA.
* EOR
GROUP 3 DATA.

fro *EOR
*EOF

Fig 7. Cyber JCL to Load Dummy Files

E-58

OWE,T70,IO200,CM220000. T830617,OWEN, 55533
ATTACH, PROC , SLAMPROC , ID-AFIT, SN=AFIT.
ATTACH, S EMS, S IMS.
ATTACH, SIMF, SIMF.
ATTACH,TAPE 11, TAPE 11.
REQUEST, TAPE 12,*PF.
REQUEST, TAPE 13, *PF.
REQUEST,TAPE14,*PF.
ATTACH, TAPE1S, CONFIG.
FTN5(E-SIMF,ANSI=O).
BEGIN,SLAMII,PROC,MLGO,PMD=l,PL-10000,MAP=PART,ISIMS.;!
CATALOG, TAPE 12 ,ACTLOG.
CATALOG,TAPE13, HRDMON.
CATALOG ,TAPE 14, SFTMON.
*EOR
*EOF

Fig 8. Cyber JCL to Execute Simulation

E-59

5.0 Simulation Output

There are three basic o*tput files generated by SIMS
and SIMF. This section briefly addresses these three files.

5.1 Accounting Data

The accounting data is generated directly by every
run of the simulation. This file is under the local
filename of TAPEI2. There is one record f)r each job that
has gone through the system. The record content and format
is listed in Table 6. At the end of t:he simulation the
local accounting file (TAPEI2) is catiloged as ACTLOG. The
file is now ready for post processing by the student.

5.2 Software Monitor Data

Software monitor data is generated only if the
CONDES file has requested the software monitor. The monitor
records the length of time a lob spends in a queue, where
the job came from and where the job is going after exiting
the queue. The monitor will record the data for all the
jobs that go through the five queles specified in the CONDES
file. The software monitor file will be cataloged as SFTMON
at the end of the simulation run. The record content and
format is listed in Table 7.

5.3 Hardware Monitor Data

Hardware monitor data is generated only if the
CONDES file has requested the hardware monitor. The
hardware monitor records the amount of time that a timer
probe was energized, a:-.d the number of times that a counter
probe was energized. The counters and timers are reset
after every hardware monitor sample rate cycle. At the end
if the simulation the file is cataloged as HRDMON. The
record content and format is listed in Table 8.

E-60

".

Table 6 ACTLOG Record Format

-S.l

FIELD VARIABLE FORMAT

I Arrival Time 1X,F15.4,lX

2 Job Name F10.O,1X
3 CPU Time F5.0, 1X

4 Memory F5.0,1X
5 Priority F5.0,IX
6 Alloc. Devices F5.0,1X

7 Cards F6.O,1X
8 Lines F6.0,1X
9 Disk BlocKs F6.0,1X

10 Alloc. Device Blocks F6.0,1X
11 Job Type (Note 1) F2.0,IX
12 CPU Time Used FIO.3,1X

13 I/O Time Used FlO.3,1X
14 Memory Size Used F1O.3,1X

15 Departure Time F15.4

Note 1: ACTLOG only records user jobs so Job Type is
always 1.0.

E-6 1

I

.7

Table 7 SFTMON Record Format

FIELD VARIABLE FORMAT

1 Queue Name 1X,A15,IX

2 Time in Queue F8.3,IX

3 Where Job Came From A15,1X

* 4 Where Job is Going A15

E-62

9!ii

Table 8 HRDMON Record Format

FIELD VARIABLE FORMAT

1 -ime of Recording IX,F15.4,1X

2 Timer II 1 F8.3,1X

3 Timer .# 2 F8.3,1X

4 Counter # 1 15,IX

5 Counter # 2 15,1X

5 Counter # 3 15

-.

'

,"E-63

hpendix F

CPESIM II

Student Manual

F-i

.-

.

S-. ..

Contents

List of Figures....................F-3

List of Tables......................F-4

I. Introduction......................F-5

CPESIM II Output to Students.........F-7
Student Inputs to CPESIM II..........F-8
Student Input for Grading..........F-10

II. ABC BITBUCKET Computer System.........F-12

Introduction to the ABC Computer......F-12
Hardware Specification...........F-13
Software Specification...........F-19
Accounting Data.................F-28
Software Monitor................F-29
Hardware Monitor..............F-32

III. Modifying the ABC Computer Conifuration .. F-34

Executing the Configuration Program F-34
Trouble Shooting................F-35

F-2

List of Figures

Figure Page

, . . " '1. Typical Job Flow...F-21

F-3

. .Fgue ag

List of Tables

Table Page

1. ACTLOG Record Format..............F-28

2. SFTMON Record Format..............F-30

3. Possible SFTMON Names..............F31

4. HRDMON Record Format..............F-33

F-4

CPESIM II
Student Manual

I. Introduction

CPESIM II consists of a simulation of a major

computer system and its operating environment. It was

designed for use as a laboratory aid to allow students to

apply Computer Performance Evaluation (CPE) tools and

techniques to a real" computer system. The use of an

actual system for such studies is impractical for several

reasons. First, due to the overhead and disruption caused

by some measurement tools, their use in a real system for

classroom purposes may be prohibited by computer center

personnel. Second, if measurement data is available it may

not be academically useful. That is, the system may be

operating as it should (thus providing no problem solving

opportunities), or it may contain several interacting

problems which, although realistic, cannot practically be

resolved by a student as a one-quarter course project.

Third, if the data does allow the student to analyze a

problem and recommend a solution, it is unlikely that the

computer center will allow the implementation of the

solution (or of several conflicting solutions from several

students). CPESIM II solves these constraints be providing

*a simulated environment in which the student can gather

F-5

.". .F.-.

L.

whatever data is desired, analyze the data and recommend a

solution, implement the solution (at an appropriate cost),

and then analyze the modified system to verify whether or

not the solution was effective.

CPESIM II consists of two parts. The heart of

CPESIM II is a computer simulation (written in SLAM) of a

large-scale computer system processing a workload, which

executes on a host machine (e.g., the CYBER). Because it is

a simulation, there are many si-lifications and limitations

which restrict its represen:ation of reality. The second

part of CPESIM II is a simulated operating environment for

the computer system. This includes a computer-generated

workload, a written scenario, budgetary constraints, and

system data in a form that can be manipulated and analyzed

by the student, playing the part of a CPE analyst and/or DP

manager.

The written scenario provides the student with

operating details about the particular computer installation
6' A

he or she is to investigate. The instructor configures the

hardware, operating system, and workload to illustrate a

particular problem or situation. Measurement data is then

provided to the student as requested for analysis and

decision making on a periodic basis (e.g., weekly). In

order to force the student analyst to make tradeoffs, only a

F-6

p . ~ ~ * ---

',S.

" - subset of the available data can be accessed during a given

period, and an appropriate cost is associated with each

student request.

CPESIM II Output To Students

Many types of information are available to the

"-" student to aid in the analysis. Some of these are free and

automatic. Some must specifically be requested. There is a

cost associated with many. Some are mutually exclusive.

The student must choose what data he wants and how he wants

to use it. This section briefly describes the outputs

available and directs the student to further information.

Manufacturer's Data - Literature (of varying value)

describing hardware and software features is available in

printed form.

Installation Documentation - In-house documentation

of the local configuration, parameter values, modifications,

problems, etc., may be available in printed form. These are

specific to a given problem and will be provided as a

separate handout.

Accounting System Data - The computer's accounting

system files are available at no cost to the student as disk

files on the host computer. Suc' data is in raw form, and

the format is defined in the manufacturer's literature for

the appropriate operating system.

Hardware Monitor - A hardware monitor exists for the

F-7

~~~~~.............................°- .,-.o ' •• ... ..... .. ,'. , ,-. *•".,",,-



simulated computer. However, such a monitor may have to be

purchased or leased. Particular probe points and sampling

K" periods must be specified by the student. As with a real

hardware monitor, there is no effect on system performance.

The output data is available as a disk file on the host

computer.

Software Monitor - A software monitor is availible

for the simulated computer. However, it may have to be

purchased or leased. As with real software monitors, these

monitors require memory, runtime, and other system overhead

to operate. Output data is available as disk files on the

host computer.

Budget Reports - Periodic written summaries of the

dollars spent will be available to the analyst.

Student Inputs to CPESIM II

One of the advantages of a simulation is that the

students can make changes to the system. Thus, there are a

number -f inputs that the student may (or must) provide to

CPESIM II (as well as some that he cannot). This section

briefly describes the CPESIM II inputs available to the

student.

Workload - Students have no control over the

workload. The instructor does control the workload and may

choose to vary it as tie situation dictates (e.g., in

4i response to a student initiated "user education program").

F-8

............... .. .........................................'. ... --. ......-.......



7. -7 . . . . . .

Interview Requests - Student analysts can submit

written questions to installation personnel. Questions may

or may not be answered. Charges for personnel time spent

answering questions will be assessed to the student's

account.

Monitor Purchase - 'tudent analysts can submit

* ;purchase orders for the purchase of lease of any avaLlable

hardware or software monitors.

Monitor Input Parameters - If the software monitor

is desired then the students must provide the simulation the

starting time, stopping time, and the queues to be

monitored. If the hardware monitor is chosen then the

starting time, stopping time, sample rate, counter probes,

and timer probes must be specified. The student can input

these parameters by using the "User" interface while making

the configuration file.

Reconfiguration Requests - Students may request

reconfiguration of existing hardware and operating system

parameters. Personnel costs to reconfigure will be

assessed. Degradation of system performance because of such

changes will be frowned upon by installation management.

Purchase of System Options - Additional hardware or

operating system modules may be purchased by s-bnitting an

appropriate purchase order. Costs will be issessed directly

to the student account. Informition on current cost and

F-9

. .. -



- 7- .. - -- 7

availability will be provided with each particular project.

Personnel Hiring - Requests for hiring additional

installation personnel (e.g., for an additional shift) or

for overtime authorization may be submitted. If approved,

costs will be assessed directly to the student account.

Student Input for Grading

Of course, choice of grading technique is the

prerogative of each individual instructor. However, this

section describes one set of student inputs that may be used

for that purpose.

Final Report - This represents the single most

important input to the student's final grade. The report

should be typewritten with drawings, tables, and graphs of

professional quality. The report should consist of two

parts. Part I is the Analyst's Report. This should include

a clear statement of the problem as perceived, a systems

analysis and description, stated hypothesis of the specific

problem, analysis done to confirm (or deny) the hypo:hesis,

recommended solution, and verification that the implemented

solution solved the problem. Also, included should be a

cost analysis and recommendations for the future. Part II

q is the Student's Critique. This should include ian

evaluation of the simulation as a learning tool along with a

discussion of problems encountered and recommend.od changes.

Interim Reports - Various interim reports may be

F-10



required throughout the quarter, depending on the scenario.

These should be of the same quality as the final report and

will count toward the project grade.

Software Tools - Some specific software tools (e.g.,

data reduction packages) may be r~iquired during the uarter.

These will s-ecifically count toward the project grade. For

any other tools that the student might develop, the source

code should also be submitted. These programs will

influence the project grade.

Oral Presentation - Each team will be required to

make a final oral presentation to the class and possibly an

interim report as well. Although an important purpose of

the oral report is to sh~re each team's analysis and

findings with the rest -. the class, presentation is a

graded part of the project and should be done in a

professional manner.

F-lI



II. American Business Computer (ABC)
fBITBUCKET Computer System

Introduction to the ABC Computer

The ABC computer system was designed to provide

flexiblity in providing custom computing power to any

organization. This system co.nsists of a variety of

hardware and software options, which car be configured in

many ways to tailor the BITBUCKET to the computing needs of

the individual installation. This document provides

abbreviated specifications of both the hardware components

and the software options available to the ABC customer.

F-12

.. *E.- -.- *



/AD- i38 i6 CPESIM 11: A COMPUTER SYSTEM SIMULATION 
FOR COMPUTER 4/4

PERFORMANCE EVALUATION USE(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.- D L OWEN

UNCLASSIFIED DEC 83 AFIT/GCS/EE/83D-16 F/G 9/2 NLEhhhhhhhhhIEI
Ehhhhhhhhhhhhi



.;. -.'

':::'::: a III I1
4511 1.8 1IjJ0 -

.-.-. 1 11- . 1114 , ' 2.

1.25 1111 1.4 111111.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

--" "

,*4*%

4,, .

"?.'.



.

7.

Hardware Spectifications

Model 2000 CPU

The Model 2000 represents ABC's standard Central

Processing Unit. The Model 2000 provides for an extensive

instruction set, with an average execution speed of 4

microseconds per instruction.

Model 3000 CPU

The Model 3000 provides the same capabilities as the

Model 2000 except for a faster speed. The Model 3000

* .. average execution time is 3 microseconds.

- . -  Model 20 Core Memory

The primary main memory unit for the BITBUCKET

system is the Model 20, 96K word module. This multi port

memory allows connection to up to 5 ZOCs and up to 99 CPUs.

The module can be expanded to have a up to 20 partitions of

1000K words apiece.

Models 3110 and 3117 Input/Output Controllers

The ABC Input/Output Controllers (IOCs) are

sophisticated I/O chanaels, each capable of interfacing

several peripheral devices to main memory.

Model 3110 is a byte-multiplexed channel capable of

multiplexing up to 10 devices, each with a maximum transfer

rate of 2.5k bytes per second. The primary function of this

channel is to provide an overlapped interface for the

system's card readers and line printers.

F-13

4.e

.* .. .

". ' ...... .......-. ;--- .......-. . . ... ,.. . -,..-...).... ... . .. :'..".'b....'...."""-""..".'.:.'



7.-W W 7. - -

Model 3117 is a high speed multiplexor channel

capable of multiplexing several block-oriented devices such

as magnetic tapes, disks, and drums. Up to ten high speed

.devices can be connected to each 3177. Each device can

transfer data at a rates up to 500K bytes/second. The

channel itself is capable of transferring 500K bytes per

second, and can multipl-x the transfer of multiple blocks as

long as the sum of the data rates of the devices concerned

are within the transfer rate of the channel. This

controller requires interconnection to an accessed disk or

drum during speed and rotational latency. In the case of

high speed drums (e.g. Model 2700) the controller is

* dedicated during the entire delay period. For the slower

disks (e.g. Model 2714), the wait time can be multiplexed

between several disks as long as the total transfer rate of

the multiple disks is less than --he maximum transfer rate of

the IOC.

Model 2700 Drum

Fixed head per track

Rotational speed - 3600 rpm

Capacity - 7K per track

- 25 Active tracks

Transfer speed - 410K bytes/second

F-14

,°

4 v * . *m ... 4l.



--. -"-"

. *-' Model 2714 Disk

-Consists of a controller and one single-spindle

disk drive, connects directly to I0o

-Data storage capacity of each drive is 20.48

million bytes

-Access arrangement: each drive provides access to

200 recording cylinders via a column-type access mechanism

with 20 vertically aligned read/write heads, 1 per disk

4% * surface. Each cylinder position provides access to 102,400

bytes of storage.

-Disk pack: each drive accommodates one IBM 2316 or

equivalent disk pack which contains 11 disks and provides 20

recording surfaces

-Head position time:

Track to Track - 30 ms

Average - 74 ms

Max - 156 ms

-Transfer rate: 312,000 bytes per second

-Rotational speed: 3600 rpm

*Model 6051 Magnetic Tape DrIve

.4' The Model 6051 has been one of ABC's standard

workhorse models for many years. Although of lower density

and slower speed than more recent entries, the 6051's low

" "cost and high reliability account for its continued

popularity in many systems. Since the Model 6051 uses

F-15

°.

7- 

'.

-67-o.7-1.



industry standard 9 track 1/2 inch magnetic tape, it

utilizes the same physical medium as all other ABC tape

drives, thus requiring an inventory stock of only one tape

-Tape: Standard 1/2-inch magnetic tape

2400-ft reels.

-Tracks : Nine-track

-Density: 800 bits-per-inch

-Encoding: NRZ

-Speed: 37.5 inch/sec

-Transfer rate: 30,000 bytes/sec

-Gap size: 0.5 inch between blocks

-Physical Dimensions: 19" x 48"

Model 6110 Magnetic Tape Drive

The Model 6110 is ABC's standard high speed 9-track

tape drive. The high transfer rate of 120,000 bytes per

second combined with reliablity of 800 bpi density make the

4- Model 6110 an effective tape storage drive. ABC's patented

_" Quicloc mechanism speeds tape mounting.

-Tape: Standard 1/2-inch magnetic tape

S., 2400-ft reels.

-Tracks : Nine-track

4 L-Density: 800 bits-per-inch

-Encoding: NRZ

-Speed: 150.0 inch/sec

F-16

. & * ..x...



-Transfer rate: 120,000 bytes/sec

-Gap size: 0.5 inch between blocks
.

S. -Physical Dimensions: 19" x 36"

Model 7001 Magnetic Tape Drive

The Model 7001 is ABC's top of the line high speed

9-track tape drive. Although actual effective data storage

capacity depends on block size used, due to the need of a .4

inch interblock gap, the Model 7001 allows a capacity of 40

-' million bytes. ABC's patented Quicloc mechanism speeds tape

#, mounting. The Model 7001 has proven itself as a highly

reliable tape drive in many installions.

-Tape: Standard 1/2-inch magnetic tape

2400-ft reels.

-Tracks Nine-track

-Density: 1600 bits-per-inch

-Encoding: NRZ

-Speed: 150.0 inch/sec

Transfer rate: 240,000 bytes/sec

-Gap size: 0.4 inch between blocks

-Physical Dimensions: 19" x 42"

Model 2920 Card Reader

Standard card reader reads industry standard 80

column cards. Read rate is 1000 cards per minute. The

input rack holds 5000 cards.

4

-. ,

F-

o.O . . . . . .



Model 1200 Line Printer

Standard tractor-feed train li-e printer. Prints

1000, 132 character lines a minute.

F

.°

V°.

'9



SOFTWARE SPECIFICATION

There are two lifferenc operating systems that can

be run on the ABC computer. These operating systems can

handle either a single cpu configuration or a multiple cpu

configuration.

Batch Uniprocessor Multi-Programming System (BUMPS)

BUMPs is ABC's multiprogramming operating system

in:ended for use in a batch environment with a single

processor. BUMP's comes as standard equipment for the ABC

*. computer. This operating system is described in more detail

in the following sections.

System Jobs

The BUMPs operating system consists of a nucleus

which is core resident, requires 96K words, and includes

such tasks as memory loading, input/output control, and

processor scheduling. In addition there are three system

programs which DO have impact on the flow of user programs.

The Job Scheduler, although core resident (in the 96K

nucleus), must go through the execute queue like any other

job. The Input Spooler and the Output Spooler are not

normally core resident and must acquire resources in the

Hold queue like any other user job. The operation of these

programs and the resources they require is described in

4greater detail below.

V F-19
).

. , ., , , , ,, , .o, -, , ,•--,--,o -'- -€.....--.- -€ ..... . .v.. - . . '... .. . .- . .. . .



Job Flow

A typical user program gets into the system through

the input spooler (Figure 1). After the job Is spooled it

is placed into the hold queue to await resources. The job

scheduler examines the jobs in the hold queue, according to

• .the job priorities and the time the job entered the hold

queue, and allocates memory partitions and allocatable I/O

devices to each job. After the job is allocated it proceeds

-P. to the execute queue. When the cpu is free it takes the

highest ranking job in the execute queue and performs a cpu

burst. Job ranking in the execute queue is done by job

type. The job scheduler gets the highest priority, followed

by the software monitor start-up job, output spooler, input

spooler and user jobs, respectively. The cpu burst lasts

until one of four things happen: an T/O was issued for an

allocatable I/O device, an I/O was requested issued for an

unallocatable device, a timeout occurred, or the job

finished. If an allocatable device I/O request occurred

then the job gets placed in the smallest channel queue which

is connected to the requested I/0 device. The I/O is

performed, the channel is freed, and the job is placed back

into the execute queue. If an unallocatable device I/O

occurred the job gets placed in the proper device queue.

Once the device has been acquired the job is placed in the

smallest channel queue which is connected to the device.

F-20.eN:



'V.)

~~1A

CL u

VIA

F-2



The I/0 is then performed. After completion of the I/O the

4channel and the device are freed and the job is placed back

into the execute queue. If a timeout occurred then the job

is placed back into the execute queue to wait for another

time slice. If the job is completed the job is placed in

the output queue and waits for the output spooler to print

the Job. Also at that time, the memory partition used and

the allocatable devices assigned to the job are released

back to the operating system.

Input Spooler

The input spooler takes the user's programs in the

card reader and spools them onto the disk. When a new job

arrives at the input queue the operating system checks to

see if the input spooler is already in memory. If the

spooler is no: in memory it is placed in the hold queue and

must compete for resources and cpu time like any other job.

The input spooler requires a memory partition of 4K before

proceeding to the execute queue. When the input spooler

acquires the cpu, it first schedules an I/O to read the 8C

byte cards into a 1K system buffer. After the buffer is

loaded the spooler is placed back into the execute queue.

The next time the spooler gets the cpu the buffer is spooled

- . to the disk. This two step process continues until the

entire job is spooled. At that time the operating system

checks to see if there are any more jobs in the input queue.

F-22

vP



The input spooler continues until all the jobs in the input

,lueue are spooled. The input spooler is then released from

the system and the memory partition is returned to the

operating system. The input spooler requires .001 seconds

of cpu time every time it acquires the Cpu.

Output Spooler

The output spooler takes the job's output fil- wrich

is stored on disk and prints it. Whenever a job arri ._ at

the output queue, the operating system checks to see -he

output spooler is loaded. If necessary the output spooler

will be placed in the hold queue. It will wait for a memory

partition of at least 4K before it will proceed to the

n ' execute queue. When the output spooler first executes it

will perform an I/O which will load a 1K system buffer from

the disk file. The spooler will be placed back into the

execute queue so that it can print the buffer in the form of

132 byte lines. This process continues until the entire job

has been printed. Like the input spooler, the output

spooler continues to spool until its associated queue is

empty. In order to set up a transfer, the output spooler

consumes .001 seconds of cpu time every time it acquires the

cpu.

- F-23



4.7

%. %.d1

Job Scheduler

The job scheduler allocates memory partitions and

illocatable I/O devices (tapes) to jobs in the hold queue.

The job scheduler is loaded in the execute queue (if it is

not already) every time a new job arrives in the hold queue

or when resources are freed (after each user's job, spooler

or software monitor completion). The job scheduler is

always core resident as part of the operating system and

does not count against the multiprogramming level. When the

job scheduler obtains the cpu, it looks at every job in the

hold queue to see if it can assign resources. Resources are

assigned to jobs according to a priority system. The job

scheduler ranks the jobs according to the job's priority

attribute. This attribute is 3art of the jou's input

parameters. If there is a tie, the jobs are arranged

according to the hold queue arrival time. ;ach job in the

hold queue is analyzed according to this priority scl;eme.

The job scheduler first che:ks to see if a memory partition

is free which can handle the job. If a memory partition is

free the scheduler thens checks to see If there are enough

allocatable I/0 devices free. Only if both conditions are

met, is the job assigned resources and taken from the hold

queue and placed into the execute queue. The job scheduler

requires 3 cpu seconds every time that it executes and no

I/0 time.

F-24



Static Partition Memory Management

With this memory manager, the user may specify up to

20 memory partitions of various size. Partitions are

defined in terms of 1K work increments. The memory manager

users a First Fit algorithm. When the job scheduler

executes it starts with first free memory partition,

checking to see if the job will fit. If necessary, the job

scheduler will check all free memory partitions.

Process Scheduler

The process scheduler selects jobs from the execute

queue for the cpu to perform a cpu burst. The process

scheduler uses a priority round robin scheme. Job; in the

execute queue are ordered first by their job type and then

by the time they entered the queue. The job scheduler has

the highest priority, followed by the the software monitor

start-up job, output spooler, input spooler and user jobs,

respectively. When the cpu becomes free the process

scheduler takes the highest priority, longest waiting job

out of the execute queue. The job will execute until its

- * time quantum is used up, a I/0 was issued or the job

completes. If a time out occurs the job will be placed back

of the execute queue. If a I/O occurs before the time-out,

the job will do the I/0 then go to the back in the execute

F-25

..

. *SS . . S*



- . .n

queue. The process scheduler is part of the operating

*- system nucleus a:id consumes no visible resources.

1/0 System

To facilitate I/O data flow, all data transfers are

done in fixed IK blocks. The high speed multiplexed ABC

Input/Output Controllers (IOCs) a'low concurrent block

transfers to or from several devices if the sum of the

,device effective transfer rates is within the transfer rate

capability of the IOC itself. Each I/O request results in

the transfer of a block of data from the specified devices,

even if only a small portion of the block is requested. In

crder to make such a transfer, both the device and the IOC

must be available. When an I/O is issued, the job first

acquires the appropriate I/O device. If the device is busy,

it must wait in the device queue. The device queues use a

FCFS algorithm. After the job seizes the device, it tries

to allocate an IOC which is connected to the device. If all

the 1OCs are running at capacity, then the job will wait in

the smallest of the channel queues. Only after the I/O

device an, the channel are free is the data transfer

started. Where possible, the I/O scheduler cries to

|* distribute usage across the system of disks and drums.

Each lob can have 4 types of I/O. First it must

read all of the spooled cards from the disk. It must write

all output printer lines to the disk file (for latter

F-26

"~~~~~~~~~~~~~~~~~~~........,.... ....... ...... ,"'...... .. . . , . ....... , ....... ",



*.-r ."o -..-

transfer by the Output Spooler). In addition each job

requires a number of tape I/Os and a number of disk/drum

I/Os.

Batch Multiprocessor Multi-Programming System (BMMPS)

The BMMPS operating system is exactly like the BUMPS

operating system, except for the multiple processors. BMMPS

can have a maximum of 99 cpus connected at one time. There

is still only one execute queue from whic.. all the cpus

acquire jobs to process. All the cpus in the system are the

same and can process any job.

-

-. i.'w .'



--

,- ACCOUNTING DATA

The ABC computer records accounting data on every

user job that goes through the computer. The accounting

file contains one record per job. The contents and the

• . format of the accounting file kACTLOG) is listed below in

Table 1.

Table 1 ACTLOG Record Format

FIELD VARIABLE FORMAT

1 Arrival Time 1X,F15.4,lX
2 Job Name FIO.O,1X
3 CPU Time F5.0,IX
4 Memory F5.0,1X
5 Priority F5.0,1X
6 Alloc. Devices F5.0,1X
7 Cards F6.O,1X
8 Lines F6.0,1X
9 Disk Blocks F6.0,1X
10 Alloc. Device Blocks F6.0,1X
11 Job Type (Note 1) F2.0,1X
12 CPU Time Used F10.3,1X
13 I/O Time Used F1O.3,1X
14 Memory Size Used F10.3,1X
15 Departure Time F15.4

Note 1: ACTLOG only records user Jobs so Job Type is
always 1.0.

-..°

:.,--,, ..-.:2 j • . . . . . . . . ......, .. , , ..-. . .



SOFTWARE MONITOR

The software monitor is like any other job in the

ABC computer system. It is entered into the system and must

compete for computer resources. The monitor is loaded into

the hold queue at the user specified starting time. It sits

4 in the hold queue until a partition of at least 4K is

available. It is then placed in the execute quet. until it

can acquire the cpu. When the monitor acquires the cpu it

starts the tracing of jobs through five user specified

.queues. The software monitor then releases the cpu back to

the operating system. Once the trace has started the

monitor will record data about every job that enters one of

the five queues. The queue name, the time spent in the

queue, where the job came from, and where the job is going,

-' is recorded every time a job leaves a queue. When the
-p

'J software monitor is monitoring queues and recording data,

it puts an extra burden on the system. The s-ftware monitor

"auses the cpu to run at 95% efficiency. When the scheduled

stopping time of the monitor occurs, the memory partition is

freed and the cpu goes back to running at full efficiency.

The software monitor writes its data to a file called SFTMON

which is available for post processing. The contents and

format of the records are list in Table 2.

71

F-29



Table 2 SFTMON Record Format

FIELD VARIABLE FORMAT- COMMENTS

1 Queue Name 1X,A15,1X See Note 1

2 Time in Queue F8.3,1X In seconds

3 -. here Job Came From A15,1X See Note 1

4 Where Job is Going A15 See Note 1

NOTE 1: See Table 3 for possible contents of these
variables.

F- 30



-

Table 3 Possible SFTMON Names

VARIABLE NAME COMMENTS

JOB ARRIVAL
INPUT QUEUE
HOLD QUEUE
EXEC QUEUE
OUTPUT QUEUE
ARVL SPOOL Input Spooler arrival in system.
ARVL OSPOOL Output Spooler arrival in system.
ARVL S/WMOM S/W Monitor arrival in s 'stem.
ARVL JSCHED Job Scheduler arrival in execute queue.

JOB FINISHED Job Completed.
TAPE 1 QUEUE
TAPE 2 QUEUE
TAPE 3 QUEUE
TAPE 4 QUEUE
TAPE 5 QUEUE
TAPE 6 QUEUE
TAPE 7 QUEUE
TAPE 8 QUEUE
TAPE 9 QUEUE
TAPE 10 QUEUE
DISK 1 QUEUE
DISK 2 QUEUE
DISK 3 QUEUE
DISK 4 QUEUE
DISK 5 QUEUE
DISK 6 QUEUE
DISK 7 QUEUE
DISK 8 QUEUE
DISK 9 QUEUE
DISK 10 QUEUE
CHAN 1 QUEUE Channel 1 Queue.
CHAN 2 QUEUE

4t CHAN 3 QUEUE
CHAN 4 QUEUE
CHAN 5 QUEUE
CPU
GENEKAL CHAN Used only in "Where job is going",

because channel # not determine yet.
4. SPOOL QUEUE Input Spooler queue.

OSPOOL QUEUE Output spooler queue.

F-31



* . ° .•,•. , ° - ' .- k =. . "° *° ."

HARDWARE MONITOR

Unlike the software monitor, tne hardware monitor

does not use up the ABC computer resources. The hardware

monitor has its own timers, counters, and data recording

devices. It is an event driven monitor which can be

connected to any I/O device, channel, or cpu. The hardware

monitor has two timer probes and three counter probes.

These probes along with the starting time, the stopping

time, and the sample data rate are specified in the

configuration file. One limitation in the hardware monitor

is that the monitor treats multiple cpus as one. The timer

or counter connected to the cpus will be pulsed every time

any cpu is activated. The output of the hardware monitor is

written to a data file, called HRDMON, which is available

for post processing. The record contents and format is
'4"

-listed in Table 4.

.-
'.

°....

• .-. F-32

4 l

NJ



-.

Table 4 HRDMON Record Format

FIELD VARIABLE FORMAT

/

1 Time of Recording 1X,F15.4,lX

2 Timer # 1 F8.3,1X

3 Timer # 2 F8.3,1X

4 Counter # 1 15,lX

5 Counter # 2 15, X

6 Counter # 3 15

°F-.

.

a *- . * *. *



K." III. Modifying the ABC Computer Configuration

The ABC computer can be modified to any legal

configuration by using a simple question ard answer program.

This program will from the responses, generate a

*, configuration file. This file is then used as input to the

simulation.

Execiting the Configuration Program

The execution of the configuration setup program is

a simple four step process. By following these four steps

the configuration file will be generated and automatically

catalog as a permanent file.

Step 1 (sign on to the Cyber)

Step 2 ATTACH,PROCFIL,SETUP,ID-EE752

Step 3 BEGIN,SETUP

Step 4 (Answer questions as they appear
on the screen)

• . F-34

,.-



;1~b . -- - 2 - - -- -. -- - -- -

* ,." Trouble Shooting

The generation of the configuration file should work

under normal circumstances. If an error does -ccur it is

probably one of three things:

1. Character variables have to be enclosed in a single
quote (). Make sure you answer 'Y' or N when it is
appropriate.

2. If you get an error that states that there is no
room for the file called CONFIG, it means that you

already have 5 copies of the file. Fince the Cyber can
only hold five copies at one time, you need tr purge
one of the files. After you have purged a copy of the
CONFIG file, type "RETURN,SETUP,CONFIG,TYPES". You are
now reaady to start again.

3. The third possible error that might occur is if you
get disconnected from the terminal while in the middle
of the process. If this happens return all your files
and start again. If you do not return the files then

the procfil might abort because it will try to attach
the files again.

a..

F-35

*...

, a . *- ..•--** . ~ - a. . *~ r I



* .. VITA

Captain David L. Owen was born on 21 November 1956, in

- Cincinnati, Ohio. He graduated from high school in 1975, and

attended the United States Air Force Academy from which he

*. received the degree of Bachelor of Science in 197". Upon

graduation, he received a commission in the USAF. He served

as a manager of simulation software for the 6595th Shuttle

Test Group and the Shuttle Activation Task Force, Vandenberg

AFB, CA, until entering the School of Engineering, Air Force

Institute of Technology, in June 1982.

Perminate Address: 4939 Fields Ertel Rd
-I

Cincinnati, OH 45241

,q



UNCLASS I FI ED
SECURITY CLASSIFICATION OF THIS PAGE

3 .. REPORT DOCUMENTATION PAGE "p: ,,, / ,

Ia.. REPORT SECURITY CLASSIFICATION |lb. RESTRICTIVE "ARKINGS

2&k SECURITY CLASSIFICATION AUTHORITY 3. DiSTRIBUTION/AVA -ABILITY OF REPORT

U.'CLASSIFIED .^ .- roved for rublic release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE -istribution unl inmi ted.

A. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/EE/83D-1 6

6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineerinq AFIT/EI

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Air Force Institute of Techriolony
'.Irioht-Patterson AFU, Ohio 45433

Sm. NAME OF FUNOING/SPCNSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

St. ADDRESS ICity. State and ZIP Code) 10. SOURCE OF FUNDINC lOS.

PROGRAM PR JECT TASK WORK UNIT
ELEMENT NO. ".O. NO. NO.

11. TITLE (Include Security Classification)

See Box 19

12. PERSONAL AUTHOR(S)
1David I_ -Owen- Cant- HU/F

13n. TYPE Of REPORT 13b. TIME COVERED 1.DTE OF REPORT tYr.. Mo. Day)j 15. PAGE COUNT

,NSFROM TO 193 Decemter 1
16. SUPPLEMENTARY NOTATION

Dean ±.t r 4 Development

17, COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necyat&pdtqW4tVfui1t. ciiVber

FIELD GROUP SUB. GR. Computer Perfor ance Evaluation Computer Simulation

Computer Scienc- Education Simulation

19. ABSTRACT (Continue on reverse it neceuary and identify by block number)

Title: CPESIM II: A COIPUTER SYSTEV SIMULTI~fl FOR
C0TPUTER PERFORPAI;CE EVALUATIOti US-

Thesis Chairman: Thomas C. hartrum

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLAz SIFICATION

'.jPYCLASSIFIE O /
UNLIMITED S AME AS RPT. T OTIC USERS U.11'ASS I FI ED

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL
Ia C(Include Area Code,
Tnomas C. hlartrur 5lZ-b-35O AFIT/EPr

DD FORM 1473, 83 APR EDITION OF 1 A. 73 IS OBSOLETE. tl CL, S IF I E_,

. . . . . .. . . . . . . . . .,~ . - . - -"~.* . -* . .". . . ... .": - .. ."- . - .- .i -,'. .



rr

LL

li "


