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ABSTRACT

-1W considers,he flow of two immiscible fluids lyinq between concentric

cylinders when the outer cylinder is fixed and the inner one rotates. The

interface is assumed to be concentric with the cylinders and gravitational

effects are neglected. -We- present a numerical study of the effect of

different viscosities, different densities and surface tension on the linear

stability of the Couette flow. _u results indicate that with surface

tension, a thin layer of the less viscous fluid next to either cylinder is

linearly stable and that it is possible to have stability with the less dense

fluid lying outside. The stable configuration with the less viscous fluid

next to the inner cylinder is more stable than the one with the less viscous

fluid next to the outer cylinder. The onset of Taylor instability for one-

fluid flow may be delayed by the addition of a thin layer of less viscous

fluid on the inner wall and promoted by a layer of more viscous fluid on the
inner wall.

AMS (MOS) Subject Classifications: 76E05, 76T05, 76U05
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SIGNIFICANCE AND EXPLANATION

Steady two-fluid flows of immiscible density-matched fluids with

different viscosities arise in applications such as the pipeline transport of

oil with the addition of water, the formation of bicomponent fibers such as

nylons and modelling of the Earth's mantle. Such flows are typically

nonunique, even when the speeds involved are slow. However, experiments

usually result in very stable unique arrangements. In order to get an idea of

which interface positions are allowed for the 'Taylor Problem' we study the

linear stability of the concentric arrangement. We find that, in the absence

of gravity, a thin lubrication layer of the less viscous fluid, lying next to

either cylinder, is linearly stable. This aqrees with the experimental

observations. The fact that the less viscous liquid tends to shield the more

viscous fluid from shearing suggests that the use of two such fluids in

lubrication may be economical. We also study numerically the effect of

different densities and surface tension and find that the stabilizing effect

of this viscosity stratification can even overcome a destabilizing density

difference: the arrangement with the less dense fluid outside can be stable

if it is also the less viscous fluid and if this outer layer is thin.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced []
Justification

By
Distribution/

Availability Codes

L Avail and/or
IDist iSpecial

The responsibility for the wording and views expressed in this descriptive
sumry lies with NRC, and not with the authors of this report.

A. V.... .. . ... .. ,'..-. . ".-.



Pr- FWD '7- 4,11,. .P .7-J -J-ALA

TWO-FLUID COUETTE FLOW BETWEEN CONCENTRIC CYLINDERS

Yuriko Renardy and Daniel D. Joseph*

Introduction

We consider linear stability of the flow of two immiscible fluids separated by an

interface, lying between concentric rotating cylinders. In each fluid, the Navier-Stokes

equations for steady flow are assumed to hold. If we prescribe the ratio of the total

volume occupied by each fluid, then the interface is an unknown, across which the velocity

and normal and shear stresses are to be continuous. If the fluids have equal or nearly

equal densities, then a continuum of interface positions are allowed (Joseph, Renardy and

lenardy, 1983). However, this non-uniqueness is not borne out by the experiments of

Joseph, Nguyen and Beavers (1983) who use water and various oils as the two fluids in an

apparatus with the outer cylinder fixed. When the inner cylinder is rotated at even

moderate speeds, gravity effects appear negligible and a pattern consisting of two types

of cells is usually observed. one type consists mostly of oil rollers stuck to the inner

cylinder and rotating almost like a solid body, lubricated by a thin layer of water at the

outer cylinder. The second type consists mainly of water cells undergoing Taylor vortex

motions. These cells extend from the inner to the outer cylinder but, in some

experiments, are covered by a thin layer of oil at the outer cylinder. The two types of

cells alternate along the length of the cylinder. This flow is one of many steady

biccuponent flows where a study of the selection mechanism for the arrangement of the

fluids must be made. one way to study selection is to study stability and in this paper

we study stability by computing eigenvalues for the spectral problem associated with the

linear theory.

The equations for our numerical computations are given in Part I. Some asymptotic

results for short waves are presented in Part II following the ideas of Hooper and Boyd

*Department of aerospace Engineering, 107 Akerman Hall, 110 Union Street, S.E.,
University of Minnesota, MN 55455
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(193). They consider unbounded Couette flaw but their mathod of analysis applies locally

at any interface with a viscosity jump. Hoopr and Boyd showed that In the absence of

surface tension, the flow is unstable to sufficiently short waves which have wave-vector.

parallel to the basic flow. The growth rates of these disturbances, however, tend to sero

as the waves got shorter. They found that these short-wave instabilities are not

suppreesed by viscosity as they are in one-fluid flows, but by surface tension. A density

difference can stabilise or destabilize them but not as effectively as surface tension.

In Part XI, we have given a similar analysis for disturbances whos wave-vectors are

perpendicular to the basic flow. Our results include surface tension, density differences

and Pentrifulgl effects. We have correlated our numerical results with the asymptotic

formal .

When mrface tension is effective, the longer waves can cause instability and if

periodic boundary conditions are imposed, then this yields a familiar type of instability

in wbhich the Interaction of a finite number of nodes determines what type of solutions

bSfurcate from the unstable one (N. Renardy and Joseph, 1903). However, when surface

tension is not effective, then we have an unusual instability in which the flow is

unstable to all short waves below a certain critical size. This type of instability may

play a role in the formation of imlsions.

in Part I, we give numerical results for two situations: low Reynolds numbers and

Taylor numbers near a critical one. We find that in the preferred configurations, a thin

layer of the less viscous fluid may lie next to either cylinder. Our results contradict

the selection principle based on minimizing the viscous dissipation in the restricted

class of annular layers of two fluids which do not vary along the axis of the cylinder.

The solution of this mininization problem (Joseph, Nguyen and Beavers, 1963) consists of

the less viscous fluid lying on the inner cylinder, no matter which cylinder rotates. In

fact, our numerical results indicate that a narrow stable layer of the less viscous fluid

on the inner cylinder is "sorew stable than that on the outer cylinder. It is also of

interest that the instability leading to Taylor vortices in one-fluid flows may be

-2-
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nullifLd by adding a lubrication layer of the less viscous fluid at the inner cylinder

and that instability may be created by adding a thin layer of more viscous fluid at the

inner cylinder.

Part I. 8tability ewuations and numerical solution.

We use cylindrical coordinates (r,O,z) where the a-axis Is the axis of cylinders of

radii R, and R2. we consider the stability of a circular Couette flow of two fluids,

lying between the cylinders. The azimuthal velocity field is given by Vi(r) - Air +

Bi/r, I = 1,2, where i - I refers to the 'inner' fluid, occupying I 4 r 4 D and I - 2

refers to the 'outer' fluid, occupying D 4 r 4 R2. The unperturbed interface is at

radius D. The angular velocities of the cylinder are 2i, the viscosities are Ul  and

the densities are pi .

A- ) n2

1 1~ 2- 2

D R31  2 - Q1)12/q

12 2 2D- 2 2 -1

92  (2 - A1)a/q

q = ( - - + to(-
R 2 D 0

we superimpose an infinitesimal disturbance

(u(r),v(r),w(r);p(r)) exp(-i at + isa + in)

so that in each fluid, the avier-Stokes equations yield,
2

i(- a + !!I)w AM +.! V "(12 rw')I- n2 -asW) (1)
r P r 2r

i(- a+ M) Eu- e- _ + VO(lu)' (n 2 + 1)2_ 02u _1n) (2)r r r r 2 u T 2
r r
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h~ La I 2 - 2 2inu
S+ )v + 2Au - - V (r I')' - n+1)m- a2v +--- -) (3)4r rr 2rr r

d ret. v - P/p. Zncompresibility yields

(ru)' + inv + riaw- 0 (4)

Tm interface in also perturbed and the following conditions hold at r - D (s Nguyen and

Joe%*, 1903). (.1 denotes the difference "1 - "2 across r - D.

(1) Continuity of velocityt Iu] _ 0, [v 0, i(_ + ) [v]
DD2

ii) Continuity of stresses:

ian Iu] + (R] - 0

M(- a + )([P] - 2v[u-)1 + -[P1] - (n 2 "1 + C
2 ) _ 0

D D2

V2(D)
where T in the surface tension and P' - P r Boundary conditions at the solid ares

u - 0, v = 0, w - 0 at r - R, and R2 .

We now describe our diocretization scheme. Nquations (1) and (4) are used to

eliminate w and p from equations (2) and (3). A Chebyschev polynomial expansion (Orszag,

1971) is used for u,v,w and p. If n+1 and n Chebyschev polynomials are used for u and v

respectively, then the total number of unknowns is 4n+2. Squation (2) can then be

truncated after the n-4th degree because of the presence of r4uiv and r3v"' . quation

(3) should be truncated after the n-3rd degree because of the presence of r3 u"l' and

r 2 v . The resulting system of linear equations for a were solved with an INSL routine

on VIX/VIM 11/780 in complex double precision. The computations were checked against

Table 2 in Krzeger, Grone and Dilrima (1966), Hooper and Boyd's asymptotics for large n

and the asymptotics in Part 11 for large a .

When the two fluids are identical, the presence of the interface introduces a

neutrally stable eigonvalue for each n and a (called the 'interfacial' oigenvalue by Yih

(1967)) in addition to the eienvalues for one-fluid flow (called 'Taylor' eigenvalues in

-4-
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vart 111). in Part III, we track the behavior of the interfacial and Taylor eigenvalues

as the viscosities, densities, surface tension and volume ratio are changed.

Part 11. Asymptotic analysis for short wave disturbances.

Hooper and Boyd (1983) restrict their asymptotic analysis to two dimensions with

coordinates (xy) where x is the direction of the stream. They consider disturbances in

normal modes proportional to exp (iax) for large a or short waves, And expand the stream

2
function and the interfacial eigenvalue in powers of 1/a . The perturbation problems

which arise from this procedure are uniquely solvable. Since our stream is in the

azimuthal direction, we must replace a by n/r. The results of Hooper and Boyd apply

when n is large and centrifugal effects are neglected. Centrifugal effects considered

here, however, play the same role as gravity in their analysis. (We note that a factor

a should multiply the gravity term below (16) in their paper). For large n, we find

that O - 2512n 2(4) -(l -
m 2 )

t V(D)n + i( • -) 2

iC- 2 [f~± ~ +-
D D )~ 2(4) (im

where f nF(r-1) 3 n
bb

F D
2 V2 (D)

2b3I V

8 DbT

m - 1P 2' r - p1/P 2

We can also do short-wave asymptotic, for disturbances perpendicular to the (r,8)

plane. We consider axisymmetric (n - 0) disturbances proportional to exp(iaz) and

introduce the following dimensionless variables: R - a(r-D), T - 2 1t/D 
2 , Z - bz/D.

Assuming now that the disturbance is proportional to exp(ia1 CT + ialZ) where

N NN% -5-
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b/D - a * this transformation yields the following six conditions at R - 0 as

41 + a

(1) Jul - 01 (2) [Mu/R) - 0; (3) -ia 1 CIv) - u(I-S)

(4) uti] I pa2 u/R 2 1 0 1 (S) !aSv/R) -0,

2 2(6)1I [(i3 ';/l3 - 3 W;)u/)I + 4VID ll,.. .1 [ !L(u] [p] - Ib2 0

where L iSS2R2-1 .

The equations of motion and continuity with 3/ae - 0 are now expanded about R - 0

for large aI and, as in the analysis of Hooper and loyd,
u1

0 201

C1

a1

where the seroth-order velocity satisfies L3u0 _ 0 in each fluid. We find that 1 in

determined by u0 where

eR(a + a1IR + a2 R2) for R < 0

00 -R 2 fr)
e (b0 + bI R + b2R) for R > 0

1 0 3 2lis1C au
To leading order, v V and (p] - (33u/9R3 - §u/3R] + 23 I to) "Five

2V(D)D De

of the coefficients in u0 can be found in term of the sixth by using the interface

conditions (1), (2), (4), (5) and (6). Condition (3) yields co = 0 and an equation for

Ci:

-ic 1  b [VLu , u0 (2- }

1 V()D 0O OIm

-6-
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From this we find that

aIF(r-1) 3
where f - - M

Part III. Numerical results.

We compute the growth and decay rates, in(a), for the stability of Couette flow of

two fluids. we consider two flow reimes. The first, treated under (a) and (b) below, is

flow at small Reynolds numbers. Rere, if either fluid filled the flow, the one-fluid flow

would be linearly stable. The only mode which can become linearly unstable for the two-

fluid flow is the interfacial mode. The second, treated under (c) below, is flow at

higher Reynolds numbers where, if the outer fluid filled the flow, the one-fluid flow

would be at a critical Taylor number where linear stability is lost. Here, in addition to

the interfacial eigenvalues, the eigenvalues associated with the one-fluid flows can

become unstable. This type of loss of stability leads to bifurcation and, finally, to the

tesselation of stable (highly viscous) and unstable (Taylor cells in the low-viscosity

liquid) regions observed in the experiments of Joseph, Nguyen and Beavers. For each flow

regime, we determine which arrangement of the components is stable and the volume ratios

of the stable configurations.

(a) Stability of Couette flow of two fluids for low Reynolds numbers neglecting

surface tension and density difference.

We compute the growth rates for the following range of variables:

Q a 1, a2 a 0, P 2 - 1, m - 0.2 to 6, R1 W 1, R2 - 2, p1 a p2 = 1, the Reynolds number

Re - V(R1 ) (R2 - R1 )/v 1  ranges from 0.5 to 5, a ranges from 0.01 to 50 and n from 0 to

50. Under these conditions, we find that the configuration with a sufficiently thin layer

of the less viscous fluid, situated next to either cylinder, is stable.

The response to long waves (small a and low n) is as follows. The axisymmetric

mode becomes insignificant as a * 0 since in that limit, there is no disturbance. For

- ."..-7-
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a < 0.1 and small Reynolds numbers, the growth rate im(o) is proportional to a 2 Re when

n - 0 and to ne when n * 0 * The growth rates in this asymptotic range are shown in

figures 1 and 2. In figure 1, the less viscous fluid is situated next to the inner

cylinder and hence the modes displayed are stable (in (a) < 0) if the interface is close

enough to R1 - 1. The situation is reversed in figure 2. In both figures, modes 10 and

20 show the short-wave asymptotic behavior in which the stable range of interface

positions, as well an the maximum growth rates, diminish with n (or a ). Disturbances of

the stable configurations with the less viscous fluid inside ha' ej.i larger decay rates

than that with less viscous fluid outside.

Trends similar to those exhibited in figures 1 and 2 are Aited in figures 3 and 4

for a - 1.0. The stable ranqe of Interface radii Is slightly, ,sot greatly,

reduced. Figure 4 clearly shows that, for a = 2, the dependence of im(a) on n at modes

20 and 40 scales with I/n 2 over most of the interface positions. Zn both figures, the

relative errors of the asymptotic values at D - 1.5 fall from about 50% at mode 9 to 8% at

mode 20.

Figures S and 6 give growth rates for a = 10. For fixed small values of n and large

a, we find that
D3 (1-u) 2 2 D 2

c 7-1  - (1 - -) and
1 (14;)2 m 2

2B1 
2 € 1  2

cno I + 01 C- 4 1
~(- ' 1 1 -4

In fiqures 5 and 6, modes n = I to 3 lie in between modes 0 and 4 and the growth

rates of all the modes between 0 and 4 are numerically close. These figures display some

qualitative features of large a asymptotics, but a - 10 is not high enough to be in

the short-wave asymptotic range for m = 0.4 or 2. In addition, the lar P- the viscosity

difference m, the lower is the value of a at which this asymptotic range is attained.

For example, at a - 6, the relative errors range from 30% at a = 10, 16% at a - 20

and 8% at a = 40, whereas at m 2 (figure 6), these errors are doubled and at m - 0.4

-8-
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(figure 5), they are quadrupled. As noted by Hooper and Boyd, the short-wave asymptotics

breaks down when the interface is too close to R, or RV

From our computations, we conclude that the largest growth and decay rates arise in

the order-one range of a for medium n and for small m. For example, mode 9 at * - 1,

a - 0.2, attains triple the growth rate attained at m - 0.4 (figure 3) and, in turn, that

mode at m - 0.4 attains a larger magnitude than at m - 2 (figure 4). We may also conclude

from a comparison of decay rates that the stable flows with thin fluid inside are 'more'

stable than those with thin fluid outside.

(b) Stability of Couette flow of two fluids for low Reynolds numbers. The influence

of surface tension and density differences.

Surface ten&ion stabilizes short wave interfacial disturbances and destabilizes

longer waves. Centrifugal forces, in the absence of surface tension, will produce

stability if the more dense fluid is outside. However, with surface tension, it is

possible to achieve stability when the denser fluid is inside. This can, of course, only

happen if the centrifugal force is not too large and gravity is neglected. Under these

conditions, if surface tension is large enough to stabilize the short waves but not so

large that the long waves are unstable, then stability is possible at all a and n with

the denser fluid inside. One example is T - 1, r - 2, m - 2, D - 1.9, 112 - 1, p2 - 1 .

Figure 7 shows a graph of -im(a) versus a, showing stability. Figure 8 shows a graph

of in(a) versus a at zero surface tension, showing that modes become unstable for large

a .

(c) Stability of Couette flow of two fluids near a critical Taylor number. Zero

surface tension and density difference.

We study the onset of Taylor instat'lity associated with modes n - 0 and 1. We also

study the higher modes (n > 1) for which the Taylor modes are stable. In the classicial

Taylor problem for one fluid, the most unstable mode is the axisymmetric (n - 0) one.

The Taylor number is defined as Ta - 4AI (R - R 1) 4/V where

A 1 (R 1 2 2 R22)/(R1 - R2 2). When A2 - 0, C1 " 1, P1 - 1, R2 - 2, 0l - 02 " 1, the

-9-
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axisymetric mode becomes unstable for Ta close to Tcr where Tcr(RI/R 2 )2 _ 1549.59 and

a - 3.16 (Krueger, Gross and DiPrima, 1966). We fix V2 - 0.0146 and vary v 1 so that if

the outer fluid occupied the whole annulus, (i.e. D - R1 ) the growth rate for the

axisymetric Taylor mode is near criticality. We note that this choice of V, implies

N' that the in(a) for the axisymmetric mode passes through zero when D - P1 as in figures

9-12. With this choice of parameters, we study how the growth rates vary with D.

We consider two situations: the less viscous fluid is at the inner (a < 1, figures 9

and 10) or at the outer (m > 1, figures 11 and 12) cylinder. Intuition would suggest that

when a > 1, the flow will become more and more stable as D increases because of the

presence of increasingly larger amounts of more viscous (stable) fluid. This expectation

is not realized. Figures 11 and 12 show that various modes become unstable as thick fluid

is added. Similarly, intuition would suggest that when a < 1, we should have instability

for increasing D because more and more thin fluid replaces thick fluid. Figures 9 and 10

show that we actually stabilize the flow by adding less viscous fluid near the inner

wall. This stabilization near D - I is associated with the stability of narrow layers

near the inner cylinder and could be called 'lubrication' stabilization associated with

the layer of thin fluid on the inner cylinder.

A new feature close to or above a critical Taylor number is that the ir(o) for the

interfacial eigenvalue need not be single-valued. That is, the graph of inra) versus D

for an interfacial eigenvalue which begins at D - R1 with in(a) - 0 can proceed to match

to a Taylor eigenvalue at D - R2 and a second branch satisfying in(a) - 0 at D - R2 can

match to a Taylor eigenvalue at D - R 1 . Figures 10 and 11 show mode 1 to have such

branches. In figure 10, the Taylor eigenvalue for mode I is unstable at D - R2 and in

figure 11, it is stable at D - R2 . The behavior of the higher (n > 1) modes, for which

the Taylor modes are very stable, is as described in part (a).

For n - 0, the equations yield a real-valued problem for ic, ip, iu, iv and iv.

Hence, io is either a real number or appears in complex conjugate pairs. In the latter

case, the two eigenvalues have equal imaginary parts. This behavior is shown in figures 9

-10-
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to 12. For exaIMPle, in tiqure 9, for R4C D C 1.3, the n -0 Oigenvalues are in

conJugate pairs. Near 0D , 1.3, the WO~u splits. One branch become increasingly

unstable and at D - R2 is the unstable Taylor sigenvalue for one-fluid flow with

~~ . - 0.0132. The second branch become stable for 1.3 C D C R2 and since

in(O) - 0 at D R N2 this branch is the interfacial eigenvalue.

%
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ALPHA=O0. 1
0.005[ ; , , -- 1-T--

0.004

0.000

0.00

-0.001

1.00, 1.1 . . . . . . . . .

44

Growth rate versus Interface position with azimuthal wave number (n) as a parameter.

0, r - 1, a - 0.4; The less viscous fluid is on the inner cylinder. .?egative

In (a) corresponds to stability. When surface tension is absent, the flow is unstable

at any D R I R or R ) if n is large enough. Mode 0 is insignificant under graph

scales.
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ALPHA=O0. 1

0.003517~ -

I s

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
INTERACE RADIUS (D)

S.' 

Figure 2

Growth rate versus interface position when the less viscous fluid is on the outer

cylinder. T - 0, r - 1, a - 2. The stable modes near the outer cylinder have loes

stability than the stable modes near the inner cylinder Cef figure 1) because the decay

rates of stable disturbances are such smaller.
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S ALPHA= 1 .0

0.005

0.004

0.000

-0.002

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
INTERACE RADIUS (D)

Figure 3

Growth reto curvee when the les viscou, fluid ig inside. T 0, r - ,m-0.4.
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ALPHA= 1

4.0F

~.2.5.

~1.0

1.0 1.1 1.2 1.5 1.4 1.5 1.8 1.7 1.8 1.9 2.0

Figure 4

Growth rat* curves when the less viscous f laid is outside. T - 0, r - 1, a - 2. The

decay rateq of stable disturbances are an order of magnitude smaller than in figure 3.
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ALPHA= 10

I I
15 20

I / 4

: 10

-10 L ;

I. I
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

IN TRFACE RADIUS (D) -

Grofth rat" when lenm vlsmoou fluid Is Imide. ?T  
0 r - 1, a - 0.4.
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ALPHA= 10

7 
% '4'
.4

%4

* 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.6 1.9 2.0

DhInWACI RADIUS (D)-_ __

Figure 6

Growth rate" when less-visaous fluid is outside. T 0* r~t-1 a -2
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D= 1.9

IV

0o 2 4 a a AL0I 12 14 16 16 20

Wigur. 7

De"a rates for the situation with the more dense fluid in the region between R, and

Dm1.9. T 1n, r -2, ai2. All mods are stable.
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D=1.9
50 x 10'

0

-60

-200 % 2

0 2 4 6 8 10 12 14 16 18 20
APBA

Figure 8

Growth rat"s for flovs.shown In figure 7 when surface tension in zero. T 0, r -2,

m-2. All mesare unstable to sufficiently small (large a) disturbances.
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Figure 9

Qraeth rat*$ for various modes when the parameters are close to critical for Taylor
Instability. 1 0, r - 1, a - 0.9. Thick fluid ies next to the outer cylinder. The

addition of thin fluid at the Inner cylinder surprisingly stabilize@ the flow.
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Figure 11

Growth rates when the loe viscous fluid lies next to the outer cylinder. T - 0, r - 1,

a a 1.08. The amount of less viscous fluid decreases as D increases but various modes are

unstable except when most of the gap is occupied by the more viscous fluid. At D P1,

mode 0 is at a critical Taylor number and mode 1 is slightly below.
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ALPHA=3. 16

-0.2

A0.,

-0.2 _ _ _ _ _ _

.0.4

Growth rates when the thin fluid is outside. T -0, r -1, a -2. The flow is stable

AS when the thick fluid fills the annulus (D - R2 =2) and is at criticality when thin fluid

* fills it (D - R - 1). However, the addition of thick fl.uid1 at the inner cylinder can

actually destabilize the flow unless the thick fluid occupies most of the annulus.
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