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ABSTRACT

Recent work by the authors and others has demonstrated the connections

between the dynamic programming approach to optimal control theory and to two-2 j

person, zero-sum differential games problems and the new notion of viscosity "

solutions of Hamilton-Jacobi PDE's introduced by M. G. Crandall and P. L.

Lions. In particular, it has been proved that the dynamic programming

principle implies that the value function is the viscosity solution of the

associated Hamilton-Jacobi-Bellman and Isaacs equations. In the present work,

it is shown that viscosity super- and subsolutions of these equations must

satisfy some inequalities called super- and subdynamic programming principle

respectively. This is then used to prove the equivalence between the notion

of viscosity solutions and the conditions, introduced by A. Subbotin,

concerning the sign of certain generalized directional derivatives.
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DIFFE1REIAL GA fS, OPTML CO0TROL AND DITIONAL DERIVATIVES

OF VISCOSITY SOLUIONS OF BELLMAN'S AND ISAAS' EUTICNS

P. L. Lions I and P. E. Souganidis2

INTE0DU/ICN

Recent wrk by the authors and others has dcwnstrated the connections

between the dynamic programming approach to optial control theory problem

and to two-person, zero-sum differential games and the new notion of "vis-

cosity" solutions of Hamiltn-Jaccbi partial differential equations intro-

duced by M. G. Crandall and P. L. Lions [6].

The formal relationships here are (cf. W. H. Fleming and R. Rishel [15],

R. Isaacs [18]): if the values of various optimal control problem and dif-

ferential gaies are regular, then they solve certain first order partial dif-

ferential equations with "min", "max", "max-win" or "win-max" type nonline-

arity. The problem is that usually the value functions are not aWxth enough

to make sense of the above in any obvious way. Many papers in the subject

have worked around this difficulty: see Fleming [12], [13], [14], Friedman

[15], [16], Elliott-Kaltcn [8], [9], Krassovski-Subbotin [20], Subbotin [28],

etc.

Recently, however, the new notion of "viscosity" solution for first

order partial differential equations was introduced by M. G. Crandall and

P. L. Lions [6]. (Also see M. G. Crandall, L. C. Evans and P. L. Lions [5]).

This solution was proved to be unique under some very general assumptions.

Moreover, it was observed by P. L. Lions [21] that the dynamic programming

condition for the value in control theory problem implies that this value

is the viscosity solution of the associated Hamilton-Jacobi-Bellman partial

1 niversiti Paris IX-Dauphine, Place de lattre de Tassigny, 75775, Paris,
Cedex 16, France.

2Lefchetz Center for Dynamical Systems and Division of Applied Mathematics,

Brown University, Providence, M1cde Island 02912. This work was supported
in part by Nitional Science Foundation Grant No. MS-8002946.

Sponsored by the United States AmW under Qmtract No. DAAG29-80-C-0041.
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differential equation. These considerations extend to the theory of differ-

ential games. It fillows, in particular, that the dynamic programming condi-

tions imply that the values are viscosity solutions of the associated Hamilton-

Jacobi-Isaacs partial differential equations. See P. Souganidis [261, [27]

for a proof of this based on both the Fleming and the Friedman definitions

of upper and lowtr values for a differential game, N. Barron, L. C. Evans

and R. Jensen [1] for a different proof for the Friedman definition, L. C.

Evans and P. Souganidis [11] for the Elliott-Kalton values in p , L. C.

Evans and H. Ishii [10] for the Elliott-Kalton values in bounded dcmains.

Same related papers are: P. L. Lions [23], P. L. Lions and M. Nisio [253,

I. Capuzzo Dolcetta and L. C. Evans [3], I. Capuzzo Doicetta [2], I. Ca-

puzzo Dolcetta and H. Ishii [4], H. Ishii [19], etc.

The present paper is concerned with the relation between the notion of

viscosity sub- and supersolutions of the Hamilton-Jacobi-Bellman and Isaacs

equatins and the sign which must be assumed at every point by certain gene-

ralized directional derivatives. In particular, we show that super- and sub-

solutions of Hailtcn-Jacobi-Bellman and Isaacs equations satisfy certain

inequalities vhich are related to the optimality principle of dynamic pro-

gramming. Under some assumptions this iplies a particular sign for cer-

tain generalized directional derivatives. Finally, this sign suffices to

characterize functions as viscosity super- and subsolutions of the appro-

priate equations. This is motivated by a work of A. Subbotin [28]. In

particular, Subbotin gives a necessary and sufficient condition for a func-

tion to be the value of a differential game. This condition, which is not

within the context of the viscosity solution, roughly says that at every

point certain generalized derivatives must have a particular sign. L. C.

Evans and H. Ishii (10], using a "blow-up" argument, showed that the value

of an infinite horizon control problem satisfies Subbotin's condition, as
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it applies to control problems. The techniques used here are different

than the ones in [10]. Cne direction of the equivalence claimed above is

straightforward. The other is closely related to the principle of dynamic

ixogrmning and requires sae arguments of P. L. Lions [22], [24], which

treat optical control problems of diffusion processes.

The paper is organized as follows: The rest of the introduction re-

calls the definition of the viscosity solution. Section 1 is devoted to

optimal control problem. Section 2 deals with differential gas. In the

Appendix we make sane observations concerning the existence of directional

derivatives of the value function. All the definitions and results from

other papers are recalled when necessary.

We conclude the introduction with the definition of viscosity solutions.

Definition 0.1 [6]. Let H : 9x × x R and z : a9 - IR be continu-

ous functions, where 11 is an open subset of EN. A continuous function

u: 3 is a viscosity subsoluticn of

( H(x,u,Du) = 0 in n
(0.1)

i u(x) = z(x) on an

if u(x) < z(x) on an and, nmreover, for every * E C (a) , if xo E a

is a localmaxof u-tp, then

(0.2) H(x0 ,u(x 0) ,D (x0 )) < 0

A ciontinxous function u : 3 R I is a viscosity supersolution of (1.1) !on For
'RA&I

if u(x) >z(x) on an and, moreover, for every * E C(f), if xO E B jj
_ need [

is a l o c a l m n o f u - m t e n c ati on_ _

(*)C70 ) ) dentes the set of real valued infinitely many times cntinuously.differentiable functions (of compact suq~xort) defined on &. Avalailty-n Code

Avail and/o,
Dist Special

- - . __/
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(0.3) H(xu(xo),D !'xo )) > 0

A ontinuous function u • *R is a viscosity solution of (1.1), if it

is both sub- and supersolution of (1.1).

Definition 0.2 ([6]). Let H: fx [0,T] xRxI 4 R, z : ix[0,T] -+R

and u0 : *i. R be omntinuoms functions, %tere a is an open subset of

IF. A viscosity subsolution (respectively, supersolution, solution) of

(aut H(t,x,u,Du) - 0 in n x(0,T]

(0.4) u(xt) - z(xt) on 3f x (0,TI

u(x0) - U0 (x) on 0

is a function u C C(Q * ) '(* such that:

(0.5) u< z on 30 x (0,T), u(x,0) < u0 (x) in a

(respectively,

(0.6) u > z on 39 x 10,T), u(x,0) > u0 (x) in 0

respectively (0.5) Aud (0.6)).

and, for every # .C7(),

:if (x0 t) CQr is a local mx of u - to, then

(0.7) (x0,t 0 ) + n(t0,x0,u(x0,t 0 ) ,D(x0,t0)) <_ 0

(1) C() is the set of continuous real valued functions defined on 0.
(*)QT x (0,T], UT x ( 0,T).
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(respectively,

j if (x0,t0) E  is a localmin of u-P, then

(0.8) * IP

i j(X 0 ,to) + H(t0,x01u(x0~tOD*(X 01't0)) .

respectively (0.7) and (0.8)).

For a detailed account of the recent developwnts in the theory of vis-

cosity solutions as well as references, we refer to the book by P. L. Lions

[21) and the article by M. G. (randall and P. Souganidis [71.

MCiOC 1

In this section we consider Hamilton-Jacibi-Sellman equations associa-

ted with optimal control problems. In particular, we look at problems of

the forn

(.u + (-f(x,y).Du - L(x,y)} =0 in 9

u=g on M

where 92 is an open subset of 3P, g E C(3fl), Y is some separable netric

space and f : i x Y- 3R, t(x,y) flxYR are contim s functions such

that

There exists a constant C > 0 such that

If(x,y) I,L(x,y)I _C for every (x,y) E ix y
(1.2) and

If(x,y)-f(,y) I, It(xy)-,(Ry) I cCjx-kj
forevery (x,,R,y) E I-ax y

(1.1) corresponds to an infinite horizon control problem ftr the details

we refer to [211 and W. Fleming and R. Rishel [151) with dynamics given by
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(13= f'x(t),y(r)) for 0 < T

(1.3) x(0) = x E a

%here y [0,) Y is measurable. For notational simplicity in what fol-

lows let

(1.4) M = {y : [0,-) - Y, y(.) measurable}.

Let u be the unique viscosity solution of (1.1) if it exists. It is

known (P. L. Lions [21], I. Capuzzo Dolcetta and L. C. Evans [ 3], L. C.

Evans and H. Ishii [10]) that u satisfies the optimality principle of dy-

naruc progrming, that is

(if.5) ft) Uf{e- X(tAtx)? + J e (x(s)ly(s))ds1 for

1.5)yt 0 and xEa*)

where, for x E a and yE M, tx= tx(Y) is the exit time fran a of

the solution of (1.3) for the particular x,y, i.e.,

(1.6) t = inf{t > 0 : x(t) E IN 1)

The first result of this section concerns viscosity supersolutions of

(1.1). In particular, we show that every viscosity supersolution of (1.1)

satisfies sane inequality, which, in view of (1.5), may be called super

timality principle of dynamic programming. Tnis was first proved by P.L. Lions

i [22], [24], in the general context of optimal stochastic control. Here we give

two proofs related to those given in [22], [24], but slightly more adapted

(*) rAs= min{r,s)

... . " II i I II m i i Im ml . ...... . i ' -
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to the special situation at hand. The first proof uses the fact that a

viscosity supersolution of (1.1) is a viscosity supersolution of an ap-

propriately defined time dependent problem. The second proof is based on

the fact that a viscosity supersolution of (1.1) is a viscosity solution

of an obstacle problem, which can be solved easily using differential games.

The first step in both proofs is a localization argument introduced in (24].

It consists of multiplying by suitable cut-off function. This allows us to

reducetothecase a- RN.
We have

Propositicn 1.1. Let v E C() be a viscosity supersolution of (1.1).

Then, for every t > 0 and x E , we have

(1.6) vlx) > if{e-(tAtx)v(x(tAtX,)) + f t x e - s L(x(x) ,y(s))d s }

M f

Proof 1. The first step in the proof is to modify the problem so that it
Ni

is defined in 3. To this end, for 6 > 0 let a be defined by

l6 = {x E n : lxi < 1 and dist(x,af) > 6}

Moreover, choose QP E C7(R such that: 0 < < 1 on Q, 0 < < 1,

0 on an a neighborhood of supp, 0 <_P<1 and <P_0

on 3RW -?ff/4 Thn thie function V : 3RN-~ 3R which is defired by

'(x) { (tv)(x) in P
0 in 3R~

is a viscosity supersolution of the problem

(1.7) *(x) + sup{-&(x) f(x,y) Dd-&(x) t(x,y) = 0 in I N.
y1EY

Si----------, . ,.- - "



Next for t > 0 fixed cocmsider the initial value problem

-+ sup {-(x)f(x,y) "Dw-(x) I(x,y) }+ &(x)w = 0 in Qt

w(x,0) = Z'(y) in

In view of the results of [6] and [21], (1.8) has a unique viscosity so-

lution we C(Ix [O,t]) given by

(1.9) w(x,s) - inf{v(i(s))e) o. fd , i:+ e t(x(r) ,y(r))du}
M 0.

mre x.) is the solution of

dx.- &(X(T))f (XI(T),y)) for 0 < T < t

I(0) - x

v, hver, is a viscosity supersoluticn of (1.8). The uniqueness es-

timAtes of 161 inply

v() >w(x,s) for every (x,s) c ex (O,t]

Next observe that for x E and yEM, if t < tx, then i(s) =x(s)

for 0 1 s I t, %here x(*) is the solution of (1.3), provided that 6 is

sufficiently small. Mreover, x(-)E{x E Q &(x) = 1}. These observations

together with (1.9) imply (1.6) for t < t x. If t > t x , dioose tn+tx -

Then

V(X) > inf~vlx(t n ) )e - 't n + e ( x(s) ,y(s))dis)

ye4

~t
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As n- - weobtain (1.6), since vEC().

Proof 2. (Obstacle problem method . Here, in order to exhibit the nain

ideas, for sinplicity, we are going to assume a = P0. The generai case

follows by appropriate use of the localization tedhnique explained in

Proof 1.

It is easy to see that v is the unique viscosity solution of the

v + min(fs(-f(x,y) -Dv-L(x,y) 1, -v) = 0 in

which can be rewritten as

(1.10) v + {-f(x,y,z) .Dv-h(x,y,z) 1 0 in

with Z = {1,21 and

( ,y,z) - 10, if z = 1

1f.(x,y), if z = 2

(xyZ) v(x), if z=l

1-(x,y), if z= 2

(1.10) corresponds to an infinite horizon differential game, thus v must

satisfy the dynamic programning principle, as it is shown in the first part

of L. C. Evans and H. Ishii (10].

We need some mrore notation. In particular, let

N = (z [0,-) - Z, z(-) measurable)

Moreover, denote by r the set of nappings a: N M, which, for

every t > 0, satisfy the following condition:
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If z(x) = C[s) for a.e. 0 < s < t, then

a (z](s) = a[z](s) for a.e. 0 < s < t

In view of Theorem 3.1 of (101, for every t > 0, we obtain

(1.11) v(x) = inf mm{ ,e(k(s),a [z] (s) ,z(s) ) ds + e-t v(x(t))}
caEr iENf0

where for x E , z E N and a E r, k() is the unique solution of

wd -f(x(s),a[z](s),z(s)) for 0 < sI (0) = x

Choose E N such that z 2. Then (1.11) inplies

-t
v(x) > inf {v(x(t))e + e-(%(X(T),e[Z](]))dT}.

aE r f'

since, in this case, x(.) is the solution of (1.3). But

{afzl] : a E r)c M

thus the result.

The next proposition deals with viscosity subsolutions of (1.1). In

particular, we show that a viscosity subsoluticn of (1.1) satisfies an in-

equality, which we call the suboptimality principle of dynamic progranmng.

The proof relies on the fact that viscosity subsolutions of (1.1) are vis-

cosity subsolutions of an appropriately define& time dependent problem.

We have

Proposition 1.2. Let w E C(---) be a viscosity subsolution of (1.1).

Then, for every x E R and t > 0, we have

, . , 2 .- . . ,,:



(1.12) w(x) < inf {e- (tAtX)W(X(tAtX) + X e-S(x(s).(s) ) ds)
M f0

Proof. Here we give the proof in the case s = IN. For the general case,

one has to use first a localization argument as in Proof 1 of Proposition

1.1.

For t > 0 consider the problem

{ ,+ rax {-f(x,y). Dz-x,y) I + z = 0 in

z(x,0) = w(x) in IR

w is a viscosity subsolution of this problem, therefore, for every x E N

w(x) <z(xt) = inf{w(x(t))e -t + (e-s x(s),y(s))ds}
MJ

The above are justified as in Proof 1 of Proposition 1.1.

Next we want to use Propositions 1.1 and 1.2 to obtain a kind of infini-

tesimal version of the super- and sub optimality principle of the dynamic

programming, satisfied by viscosity super- and subsoluticns of (1.1). To

do this, we have to assume that we work with sub- and supersolutions which

are locally Lipschitz. Moreover, we need to introduce some notation.

(1.13) (FL)() =W {(f(x,y) ,(x,y)) 1 y E Y}

We have:

Theorem 1.3. Let v E C0(' ) N be a viscosity supersolition of (1.1).

Then, for every x E , it is:

(1.14) v x) + lim sup ivx-~+f - > >0
j+0 (f,)E(FL) (x)

N*CC)J) denotes the set of real valued (locally) Lipschitz continuous

functions defined on

's-'
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and the inequality is achieved as 1+0 unifomly on ompact sets.

Proof: For x E A fixed let K be the Lipschitz constant of v in a ball

of radius C centered at x, where C is given by (1.2). Moreover, as-

sume that 0 < a < 1 is small enmgh so that 6 < t x . In view of Proposi-

ticn 1.1, we have:

uppv(xl-e- v+x +6 fx0f , (s)- - (,_

I6

' 

-6

2() e - o9(~~)d

S(K+l)C 26 - C (1+ e_

But

0 ~6 f
il 8 "  1)dslE C()(x)

The above inequality implies

1-e vx) + e v(x)-v(x+6f) _ , C6K+l)2 6 (l

6 (f,L) E(FL) (x) 6 -- 6

Letting 6+0 we obtain the result. The uniformity claimed in the state-

ment is an immediate consequence of the fact that the above also holds

for every y E R in a neighborhood of x of radius C/2.

As a onsequence of Theorem 1.3 we have

Iorollary 1.4. Let v E q' 162) be a viscosity supersolution of (1.1).

Then, for every x E R, it is:

(1.15) v(x) + SUP )E v(x)-6f) > 0
(f , t) E (FL) (x) | 0
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and the hvxfeqality is achieved as 6+0 uniformly on campact sets.

Remark 1.5. In the second part of rid L. C. Evans and H. Ishii proved that

if {f(x,y) : y E Y} is convex and t(xy) 0, then a locally Lipschitz

viscosity supersoluticn of (1.1) satisfies

nf lira e- 6v(x+6f)-v(x) <0

YCY -6 6

hich, under their assumptions, is equivalent to (1.15). As mentined in the

Introduction, they used a "blow-up" argument. The proof we give here is based

cc1etely on Proposition 1.1 and Theorem 1.3.

Proof of Corollary 1.4: (1.14) implies that there is a subsequence 6k+0

as k- suchthat

v(x) + lira sup v (.Y- v (x+ 6k~f ) > >0
v x) k- ((f,Q)(FL) (XI 6k

Then for c > 0 fixed but arbitrary there is a o = k(E) > 0 such that

V (X) + SUf 2)( V(Xfx)-V(x+81. > -(f , 9) E(FL) (YJ 6

for k i Ic0.

Next for each k > choose (fklk) C (FL)(x) such that

Mv(x +6 1.k) -k= Supv(x) -V(X+&)
Sk (f I ) E(FL)(WxI "k

The compactness of (FL) (x) inmplies that alcog sa subsequence of 600

(which again for simplicity is denoted by 6k) we have

(fk ~(f I t) E (FL) (x)

This, together with the Lipschitz property of v, implies

- -- I
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v(x) + "i {v0(x). -v(x + )' o

and, therefore, the result.

Remark 1.6. It is of owe interest to know whether, in the case at hand,

(1.15) holds with IM replaced by lir.

For the case of a viscosity subsoluticz of (1.1) we have:

Theoren 1.7. let w E C O'(a) be a viscosity subsoJution of (1.1). Then,

for every xE , we have

(1.16) w (X) + =lM su fw(x-wx+af) Z < 0
6+0 (f,JEI(FL (x) a

and
(1.17) W W)+ SUP ME W ) -w(x) (x+f) <0

(f,L)E(FL) (x) 6+0

and the inequality is adieved as 6+0 uniformly on ctapct sets.

Proof: (1.17) follows imnediately from (1.16). To prove (1.16) observe

that, in view of Proposition 1.2, we have:

~w~x+Jf~x~s) ,ys)f) e-S.(x(s) ,y(s))ds- < 06fo 0

and, therefore

11 1 1 -e 6w + (-wx) -wlx+ f (x,y (s)l)ds) 1 6
(1.18) ) + e76 w ( -O.o X(x,y(s))ds

2 e 1
< (K+1)C 6 + C (14--- 6

for every y E M, whewe K is the Lipschitz constant of w in the ball of

radius C centered at x.

In view of the general geometrical fact
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{( f(x,y(s))dst (x,y(s))ds) : y E M cO{(f(x,y),(x,y)) y E Y}
0 0

(1.18) implies

I-e'w(x) + e-6 sup W W -w(x-df) - 1 )

(f , )E (FL) () ~ ~ o
where 0(l) -. 0 as 640 and thus (1.16). The uniformity follows from the

fact that all the above holdswith the same constants for all points in an

appropriate neighborhood of x.

Combining Corollary 1.4 and Theorem 1.6 we obtain
0,1

Ccrollary 1.8. Let u E Cc(n) be a viscosity solution of (1.1). Then

(fL)E(FLXX~ 6+0 1 1(1.19) u(x) + sup lir u)-x4.f) t 0VE

We conclude this section with a result which is the inverse of Corollary

1.5 and Theoren 1.7. In particular, it says that (1.15) and (1.17) together

with appropriate boundary conditions characterize continuous functions as

viscosity super-respectively subsolution of (1.1). We have

Pro-psition 1.9. (a) Let v E C(b satisfy (1.15) for every x E Q. Then

v satisfies (0.3) with H as in (1.1).

(b) Let w E C(s) satisfy (1.17) for every x E n. Then w satisfies

(0.2) with H as in (1.1).

Proof: (a) For * E C'(9)" let x0 E D be a local mininun of v-0.

We want to show that

v(x 0 ) + sup {-f(X0 ,y)' D(x 0 ,y) + i(x0 ,y)} > 0
yEY

But for 6 sufficiently small we have
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Oxo ) - #(Xo+6f) v(x o ) -v(xo+6f)
- - 6 z for all (f, )E (FL) (x,)

This inequality and (1. 15) imply

v(x 0 ) + sup {-f.D(x 0 ) - >

FiLUy, sinoe

sup = sup)
XEA )EooA

we have the result.

(b) The proof is'similar to the one of part (a), therefore we Omit it.

Remark 1.10. All the results of this section extend to several other cases

imluding time-dependent problems. The type of statements that one obtains

are similar tothe ones of Section 2.

SOMCK 2

In this section we consider Hailton-Jaobi equations tddih are rela-

ted to theory of two-player, zero-sum differential games. Since in Section

1 we looked at stationary problems, here to show the generality of the argu-

ments involved, we work with time dependent ones, in particular, we consider

the foUling probleus

au + inf sup{-f(t,x,y,z) .DU - £(t,x,y,z)} = 0 in nx(0,T]

at yEY aEZ

(2.1) U(x,t) = g(x,t) on anx[0,T]

U(x,O) = Uo(x) in a

and

I
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RV + sup inf {-f (t,x,y,z) .DV - L(tx,y,z) } = 0 in Qx(0,T]
at zEZ YEY

(2.2) V(x,t) = g(x,t) on 3 x [0,T]

V(x,O) = u0 (xW in n

where Y,Z are cauact sets and f: [0,T] x5xY xZ+ 1W, z : [0,T] x "x

YxZ 3R , g : 30x (0,T] + J, u 0 : - IR are bonded contnuous functins

breover, they satisfy

There exists a constant C > 0 such that

If(t,x,y,z) I, (t,x,y,z) ( <C for every (t,x,y,z)E[0,T]xl YxZ

(2.3) and

If(t,x,y,z)-f(te,y,z) I, I(t,x,Y,z)-L(t,x,Y,z) I SC(It-l + Ix-At)

for every (t,x,y,z), (E,i,y,z) E [0,T]x xyxZ

(2.1) and (2.2) correspond to a finite horizon two-player, zero-sum

differential game (for details we refer to W. Fleming [12], [13], [14], Elliott

and Kalton (8], A. Friedman [16],[17)) with dynamics given by

(24 f(r,x(r) ,y(r) ,z(T)) for T - t < r < T.
(2.4 _t

x(T-t) =x C 11

%here y : (t,T] - Y, z : [t,T] - Z are measurable functions. Before we

continm we need to introduce some notation. In particular, for 0 < t < T

define

M(t) = {y : [t,T] -Y measurable)

N(t) = {z : It,T] *Z measurable)

..... MUM

A-.L
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Moreover, denote by r(t),(t) the sets of mappings a : N(t) M(t),

o : M(t) b- N(t) respectively with the following property

For each s such that t < s < T

I If z(t) =  () for a.e. t <t _s, then

c[z](T) - 0 [i](T) for a.e. t <_ s

and ~ If ~()=j()for a.e. t. < x < s, then

B[Y)(T) = [(Y](T) for a.e. t <_ <S

Let U,V be the unique viscosity solutions of (2.1), (2.2) respective-

ly if they exist. It is kax (L. C. Evans and P. Souganidis [111 for 0 = IR

L. C. Evans and H. Ishii (101 for staticriary problems) and it follows from the

results of this section for other cases that U,V satisfy the optimality prin-

ciple of dynamic progra ming, that is

For (x,t)E n x (0,T) and 6 > 0 such 6 < t
r (T-t+6) AtX

V(xt) = inf sup { t(s,x(s),y(s),B[y) (s))ds +
OE, 'T-t) yeM (T-t) ;-

+ U(x((T-t+6)At2, T-((T-t+6)At2)}

(2.5) and
r(T-t+6) Atx

V(x,t) = sup inf { (s,x(s) ,o(zl (s),z(s))ds +
ap (T-t) zEN (T-t) JT-t

+ V(x((T-t+6) At2, T-((T-t+6) Aty) }

%here, for x C n, x(.) is the solution of (2.3) Tt with the appropriate

y(.),z(.) funcitcns and t x  is the exit time fromn x (0,T) of x(-).

The first result of this section concerns viscosity supersolutions and
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absolutions of (2.1) and (2.2). in particular, we show that they satisfy

some inequalities, which, in view of (2.5), may be called super- and sub-

optimality principle of dynamic programming. All the results are going to

be stated as they apply to the general problems (2.1) and (2.2), the proofs,

however, for simplicity are going to be given only for the special case

a = 3P. To obtain the most general results one has to use the localization

argument, which was described in the course of the proof of Proposition 1.1.

We have

Proposition 2.1. Let v,w E C(!;) be viscosity super-respectively subsolu-

tion of (2.1) respectively (2.2). For every (x,t) E Q × (O,T) and 6 > 0

such that 6 < t, we have

(f(T-t+6) Atx
(2.6) v(x,t) p inf SUP £(s,x(s) ,y(s) ,[y] (s))ds +

-EA(T-t) yEM(T-t) T-t'

+ V(X( (T-t+6)Atx), T-(Tt+6)At2))

and

S(T-t+6) ̂ tx
(2.7) w(x,t) < sup inf { t(s,x(s) , az] (s) ,z(s))ds +

otE r (T-t) zEN (T-t) T-t

+ w(x(T-t+6)Atx) , T-((T-t+6)At ))}

Proof: Here we prove only (2.6), since (2.7) is proved in exactly the sane

way. As mentioned above we are going to assume a = RN.
For ie > 0 choose ,EC7( ) such that 0 < & -

on [c,T-], 0 on (-C,/21 U (T- ,c), * 1 on ([,T-S-], - 0 on

(-,U][T- -E). Moreover, let V : R x IR -- P be defined by

(S) V(xS) if T > S > 0

if s < 0 or s > T

SPUN=
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It is easy to check that v is a viscosity supersoluticn of the problem

V(s)- + inf sup{-&(s)f(s,x,y,z)-DU - &(s)t(s,x,y,z)} = 0 in 3R l
at yEY zEZ

Next let T > t > 6 > 0 be fixed. Then v is also a viscosity super-

solution of

aWf- + inf sup(-(x) f(s,x,y,z).DW + Qs)L- - &(s)eX(s,x,y,z)} = 0

(2.8) in X?+ I

W(x,s,0) = v (x,s) in I

If W E C(I N x [0,T-t+6]) is the unique viscosity solution of (2.8),

the uniqueness estimates of [6] imply

v(xt) > W(xt,6)

Moreover, the results of L. C. Evans and P. E. Scuganidis [11] give

-t+6

W(x,t, 6) =inf sup { & (T-t+ 6-t (p) j(T-t+&-t(p),k(p) ,y(P) ,0[y] (P)) dp
OEA (T-t) yEM(T-t) T-t

+ V(X(T-t+6), t(T-t+6))}

uitere for y E M(T-t) and .E A'T-t), (.), t(.) are the solution of

=(T-t+ 6-t (p)) f (T-t+ 6-t (p) (p) , y(P) 8B(y] (P) for T-tY< ( YT-t+6

dt -= -(T-t+6-t(p)) for T-t<P< T-t+6

ic(T-t) = x, t(T-t) = t

As c+0 the above observations imply the result, since as c + 0

x(0) x(0) uniformly on (T-t,T-t+6]

I mil " 4
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vhere x(.) is the solution of (2.4)T-t

The next proposition considers subsoluticns of (2.1) anu supersolutions

of (2.2). Since the proof of the results is exactly the sane as the proof

of Proposition 2.1, we aoit it.

Proposition 2.2. Let vw E C(QT ) be viscosity sub-respectively superso-

luticn of (2.1) respectively (2.2). For every (x,t)e FA x (0,T) and 6>0

such that 6 < t, we have

S(T-t+6) ^tx
(2.9) v(x,t) < inf sup t(s,x(s) ,y(s) ,8(y] (s))ds +

EA (T-t) yEM(T-t} Tt-r

+ v(x((T-t+6) At2 ,T-(T-t+6) At2)) }

and

S(T-t+4) tx

(2.10) w(x,t) > sup inf { Tt (s,x(s) ,[z] (s) ,z(s))ds +
cer (T-t) zEN(T-t) T-t

+ w(x( (T-t+6) Aty), T-( (T-t+6) Atx )) }

Next we want to use Proposition 1.1 to obtain a kind of infinitesimal

version of the super- and suboptimality principle of the dynamic programming.

To do this we have to assume, as in Section 1, that we deal with locally

Lipechitz viscosity super- and subsolutions. Before we state the results

we need sme notation. We have:

(or (t,x,y) E (0,T) x Oxy
(2.11)

S(FL) (t,x,y) = i{(f (t'x'y'z) , (t'x'y'z)) :z E Z}

and

I I I I III • "' ~ ii 4' -"- ' - - l'
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(2.1) For (t,x, z) E (0,T) x S1x Z

(2.12)

i(FL) (t,x,z) = co {(f(t,x,y,z) Z(t,x,y,z)) : y E Y}

The result is

0~,1Proposition 2.3. Let v,w E C'loc ( 1 x (0,T)) n C( Y be super-respectively

subsolution of (2.1)-respectively (2.2). Then for every (x,t) E flx(0,T)

we have

4yEY (f, ) E(FL) (T-t,x,z) 6

and

(2.14) im sup inf Zwx,)-w(,t-6) 0

6+0 ZEZ (ft)E(FL) (T-t,x,z) 6-_

with the inequalities being achieved as' 640 uniformly on compact sets.

Proof: Here we show only (2.13), since (2.14) follows in a similar way.

For a fixed (x,t) E Q x (0,T) let K be the Lipschitz constant of v

in a neighborhood of (x,t). For 6 > 0 sufficiently small it is

T - t + 6<

for every y E M(T-t), E A(T-t), and this uniformly for every x in a

neighborhood of x. (2.6) then :implies

SUP inf {v(xt)-v(x(T-t+6) t-6) - 1 t-t+6

BEA(T-t) yEM(T-t) 6 6ETt t(s,x(s),y(s),B[Y](s))ds}>0

But

sup inf < inf sup < inf sup
8OE (T-t) yEM(T-t) -- YQ4(T-t) 86a(T-t)- yEY BEA (T-t)
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Therefore, in view of (2.3),(2.4), we have

inf SUP {v(x, t) -v(x+6 f ,t-6) _ I > 0 (i)
yEY (f,)(FL)_(T-t,x,y) _ 6 - I

where 0(1) - 0 as 6+0 uniformly for (x,t) ,in a compact set. Here we

used the fact that for y E Y

(1T-t f(T-t,x,y, [y] (s))s,{T t  £(T-t,x,y, [y] (s))ds)E(FL) (T-t,x,y)

for every a E A(T-t).

Letting 6+0 we obtain the result.

As a consequence of Proposition 2.2 we have

0,1Corollary 2.4. Let v,w E Cl (Q x (O,T)) n C(Z) be super-respectively

subsoluticns of (2.1)-respectively (2.2). Fbr every (x,t) E x (0,T)

we have

(2.15 inf up v(x,t)-v(x+6f,t-6) - > 0

yEY (f,I)E(FL)(T-t,xy) 
6+O1

and

Lw(t)-w(x+6ft-6)
(2.16) SUP inf I m- £x<_)

zEZ (f,z)E(FL) (T-t,x,z) 6+0 6

with the inequalities being achieved as 6+0 uniformly on compact sets.

Since Corollary 2.3 follows from Proposition 2.2 in the sane way that

Corollary 1.4 follows from Theorem 1.3 we omit its proof.

We continue with a proposition and a corollary concerning viscosity

sub- and supersolutions of (2.1) and (2.2) respectively. Since these re-

sults follow fran Proposition 2.2 the same way as Proposition 2.3 and Cor-

ollary 2.4 follow from Proposition 2.1 we omit their proof. We should also

remark, however, that one can obtain these results directly from Proposition

4 -Lt
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2.3 and Corollary 2.4, by observing that a viscosity subsolution (superso-

lutian) of (2.1)((2.2)) is a viscosity subsoluticn (supersolution) of (2.2)

((2.1)). We have:

Proposition 2.5. Let v,w E C01 ,(slx'0,T)) n c(Z) be sub- respectively

supersolution of (2.1) respectively (2.2). Then for every (x,t) E s x (0,T)

we have

(2.17) -m sup inf v(xt)-v(x+6f,t-6) - < 0
6+0 zEZ (fA)E(FL)(T-t,x,z) 6 I

and

(2.18) lir inf SUP w(xt)-w(x+6ft-6) -£ > 0
6+U yEY (f,L)E(FL)(T-t,x,y)I 6 I-

with the inequalities being achieved as 640 uniformly on compact sets.

Corollary 2.6. Let v,w.E CO ((0 ,T)) n C(%) be sub-respectively super-

solutions of (2.1) respectively (2.2). For every (x,t) E 17x(O,T) we have

___ Jv(xlt)-v(x4-&f,t-6) ..9.
(2.19) sup inf 6_ < 0

zEZ (f,L)E(FL) (T-t,x,z) S+-

and

(2.20) inf sup j- w(x,t)-w(x+6f,t-6) £.J >

yEY (f,Z)E(FL) (T-t,x,y) 6+0 6

with the inequalities being achieved as 6+0 uniformly on compact sets.

The next result is the inverse of Corollary 2.4 and Corollary 2.5. In

particular, it says that (2.15),(2.16),(2.19) and (2.20) together with ap-

propriate boundary conditions characterize continuous functions as viscosity

super- and subsolutions of (2.1) and (2.2).

We have:
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Proposition 2.7. (a) Let v E CMfl (0,T)) satisfy (2.15). Then v also

satisfies (0.9) with H as in (2.1).

(b) Let w E C(S1 x (0,T)) satisfy (2.16). Then w also satisfies (0.8)

with H as in (2.2).

(c) Let v E C(Q x (0,T)) satisfy (2.19). Then v also satisfies (0.8)

with H as in (2.1).

(d) Let w E C(Q x (0,T)) satisfy (2.20). Then w also satisfies (0.9)

with H as in (2.2).

Since the proof is similar to the proof of Proposition 1.9(a), we omit

it.

We conclude this setion which is an immediate consequece of Corollary

2.4 and Proposition 2.7. We have
JN

Corollary 2.8. SuROse that fr every (t,xp) E [0,T]x6xIt it is

(2.21) sup inf(-f(t,x,y,z)-p - t(t,x,y,z) } =
zEZ yEY

- inf sup{-f(t,x,y,z)-p - t(t,x,y,z) }

yEY zEZ
_0,1i,

Then a function u E C(Qr) n CO 1I x (0,T)) is a viscosity solution of

-+ sup inf{-f(t,x,y,z).Du - 1(t,x,y,z)} = 0 in c2x(0,T)
zEZ yEY

u(x,t) = g(x,t) on 3P x [0,T]

u(x,0) = uO (x) in &

if and only if u satisfies (2.15), (2.16) and the correct boundary conditions.

Remark 2.9. A result analogous to Corollary 2.8 is proved by Subbotin [28] but

not in the context of viscosity solutions. In particular, in [28] (2.15) and

E f 11 Im I .I . . .. . . . I
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(2.16) are neessary and sufficient conditions for a locally Lipschitz con-

tinuous function to be the value of a positional differential gafe, under

the assumption that L = 0 and Q = IN. Corollary 2.8 also implies in view

of the results of [261,[27], [10],[11],l1], that notion of the value of a po-

sitional differential game is the same as the value of differential game in-

troduced by W. Fleming, A. Friedman and N. Elliott and J. Kaltn.

Pjaark 2.10. A remark analogous to Remark 1.6 holds here too.

f
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APPENDIX

In view of Remark 1.6 and Remark 2.10, we want to make same (classical)

observations concerning the existence of directional derivatives of the value

function of optimalcontroland differential games problem. For simplicity

here we investigate the case of an infinite horizon optimal control problem

in 1P. In particular, we deal with the existence of

irn v(x+hX) - v(x)

h+O h

for all x, X E IE? , where v is the value function. Using the notation of

Section 1 let us also assume:

Forevery xEIr, yEy and hE JR

If(x+,y) - f(x,y) - Df(xy).hl I IhI c(Ihl)

(1) and

I £(x+h,y) - £(x,y) - D .R(xy).h < IhIc(IhI)

where c(IhI) -o as IhI -+0

For every y(.) E M, let

(2) J(x,y) = Fe - s P(x(s),y(s))ds

where x(.) is the solution of (1.3) with x(0) = x. Moreover, let

(3) v(x) = inf J(x,y)
yEM

In view of the discussion in Section 1 and the references given there, v

is the value function of the associated optimal control problem.
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We have

Proposition A.1. Assue that (1.2) and (1) hold with

(4) 1 > p,IDf (xY)I

(x,y)'E#xY

let v begivenby (3). Then

1.im v (x+hx) - v (x)

h+O

exists for every x, X E IN and

(S) i im v(xchx)-v (x) -in~f im L-xdYn):yC 1  xy)vh+3 h F-7 3 .Yn 6 M, J(x,Y,)u Vlx)

Proof: The proof is a oonsequee of the following lemma.

Laum A.2 Let w(x) = inf wi (x) with w,Vw i  and
i

satisfying:

satiy3? 1 -- there exist -(x) such that
aw1

(6) lira(w) 3w1(x1ot
h - (x) I 16(h) 0
I. h 40

T he + W(u w(x) for all x and is eqal to
h 40

(7) h+0m w(xchiO-w(x) = inf ! m w in W wi (x) -1 w(X)I

In view of our hypotheses, v and J(. ,y) satisfy the a of

Laum 2. Therefore here we only prove the lemma. We have:

Proof of Lamna 2: Let in be a seqene such that

w n(x) w(x) as n-

Thn
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APPNDIX

In view of Remark 1.6 and Remark 2.10, we want to make sae (classical)

observations concerning the existence of directional derivatives of the value

function of optimaloontroland differential games problems. Fbr simplicity

here we investigate the case of an infinite horizon Optimal control Problem

in IP. In particular, we deal with the existence of

lir v(x+hx) - v(x)

h+O h

for all x, X E , where v is the value fniction. Using the notation of

Section 1 let us also assume:

Fbr every xEN, yEY and hE R

If(x+h,y) '" f(xy) - Dxf(xy).hl <_ lhlc(lhI)

(1) and

I Z(x+h,y) - ,(x,y) - Dx.L(x,y).hl ._ IhI (Ihl)

where c(IhI) -P0 as IhI -P0

For every y(.) E M, let

(2) J(x,y) = Fe-S (x(s),y(s))ds

where x(.) is the solution of (1.3) with x(0) = x. Moreover, let

(3) v(x) = inf J(xy)
YEM

In view of the discussion in Section 1 and the references given there, v

is the value function of the associated optimal control problem.

. • 0 *
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We have

Proposition A.1. Asmwe that (1.2) and (1) hold with

(4) 1 > SUP IDyf(xy)l
(x,y) EIRNx Y

Let v be given by (3). Then

v (x+hX) - v (x)

h+O

existsfor. eve x, XE P and

(s) h1im v(x+hx) -v(x) = inf l J ')3 : YnEM' J(n) v (x)j

Proof: The proof is a oons e of the following lemma.

LuaA.2 Let w(x) = inf w (x) with w,wv eqdbcmded,e,%xirxtinutzs and
i

satisfyin:

EVX ,I t = here exist -(x) such that

(6) w(x+hx) - w(x) -aw I. h) - 0

h Tx h40

Then lir w(x+h4 w(x) exists for all x and is eal toh 4+ h

(7) lim -i---- li LW~ : wi (x) _1 WX
hO+ h 1  " x n2w

In view of our hypotheses, v and J(-,y) satisfy the assumptions of

Lmma 2. Therefore here we only prove the lemma. We have:

Proof of Lenma 2: Let i n be a sequence such that

wln(x) -w(x) as n*-

Then

J/4
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w(ohX) -w(x(x) wn( -w hn

~W()~I6(+ (x) twWx)-xx
' --- h + 'h "

Qt + win W ~-W(x3
un (4 46 (h)

n- 
X

Therefore

where a is the right hand side of (7). For the other direction, let h >0

be such that hn4O as n -. Choose in suc that

n

Then, in view of the assum*icns,

v I( +v(x) as n.-

We have

which implies

< lir v(x+hx)-v(x)
-R h

and thus the result.

Reuark 3. Results analogous to the above also hold for finite horizon con-

trol probleme and differential games. In the finite horizon case, one does

not have to assme (4).

" - -. -- - - - - - - - - - - - - , -. - -'i. . . - -_, . . .. , .;
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