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ABSTRACT

Recent work by the authors and others has demonstrated the connections
between the dynamic programming approach to optimal control theory ;29 to two-QL/
person, zero-sum differential games problems and the new notion of viscosity‘
solutions of Hamilton-Jacobi PDE's introduced by M. G. Crandall and P. L.
Lions. In particular, it has been proved that the dynamic programming
principle implies that the value function is the viscosity solution of the
associated Hamilton~Jacobi-Bellman and Isaacs equations. In the present work,
it is shown that viscésity super- and subsolutions of these equations must
satisfy some inequalities called super- and subdynamic programming principle
respectively. This is then used to prove the equivalence between the notion
of viscosity solutions and the conditions, introduced by A. Subbotin,

concerning the sign of certain generalized directional derivatives.
N
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DIFFERENTIAL GAMES, OPTIMAL CONTROL AND DIRECTIONAL DERIVATIVES
OF VISCOSITY SOLUTIONS OF BELLMAN'S AND ISAACS' BQUATIONS :

P. L. I.i.orxs1 and P. E. Son.x;anidis2

INTRODUCTION

Recent work by the authors and others has demonstrated the connections
between the dynamic programming approach to optimal control theory problems
and to two-person, zero-sum differential games and the new notion of "vis-

e T

cosity" solutions of Hamilton-Jacobi partial differential equations intro- |
duced by M. G. Crandall and P. L. Lions [6].
The farmal relationships here are (cf.W. H. Fleming and R. Rishel (15], :
R. Isaacs [18]): if the values of various optimal control problems and dif-
ferential games are regular, then they solve certain first order partial dif-
ferential equations with "min", "max", “max~min" or "min-max" type nonline-
arity. The problem is that usually the value functimsare not smooth encugh
to make sense of the above in any obwvious way. Many papers in the subject
have worked around this difficulty: see Fleming (12], [13], (14), Friedman
{15], [16], Elliott-Kalton [8], [9], Krassovski-Subbotin [20], Subbotin (28],

T O

etc.

Recently, however, the new notion of "viscosity" solution for first
order partial differential equations was introduced by M. G. Crandall and
P. L. Lions [6]. (Also see M. G. Crandall, L. C. Evans and P. L. Lions (5]).
This solution was proved to be unique under same very general assumptions.
Moreover, it was observed by P. L. Lions [21] that the dynamic programming
condition for the value in control theory problems implies that this value
is the viscosity solution of the associated Hamilton-Jacobi-Bellman partial

1l.rniversit:é Paris IX-Dawhine, Place de lattre de Tassigny, 75775, Paris,
Cedex 16, France.

2Lefsd1etz Center for Dynamical Systems and Division of Applied Mathematics,
Brown University, Providence, Rhode Island 02912. This work was supported ;
in part by National Science Foundation Grant No. MCS~8002946. y

Sponsored by the United States Ammy under Contract No. DAAG29-80-C-0041. i A
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di fferential equation. These considerations extend to the theory of differ-
ential games. It follows, in particular, that the dynamic programming condi-
tions imply that the values are viscosity solutionsof the associated Hamilton-
Jacobhi-Isaacs partial differential equations. See P. Soujanidis [26], [27)] !
for a proof of this based on both the Fleming and the Friedman definitions h
of upper and lower values for a differential game, N. Barron, L. C. Evans '
and R. Jensen [1] for a different proof for the Friedman definition, L. C.

BEvans and P. Souganidis [11] for the Elliott-Kalton values in R, L. C. ,

Evans and H. Ishii [10] for the Elliott-Kalton values in bounded domains.
Same related papers are: P. L. Lions [23], P. L. Lions and M. Nisio [25]},
I. Capuzzo Dolcetta and L. C. Evans (3], I. Capuzzo Dolcetta (2], I. Ca-
puzzo Dolcetta and H. Ishii (4], H. Ishii [19], etc.

The present paper is concerned with the relation between the notion of
viscosity sub~ and supersolutions of the Hamilton-Jacobi~Bellman and Isaacs
equations and the sign which must be assumed at every point by certain gene-
ralized directional derivatives. In particular, we show that super- and sub-
solutions of Hamilton-Jacobi-Bellman and Isaacs equations satisfy certain
inequalities which are related to the optimality principle of dynamic pro-
graming. Under same assumptions this implies a particular sign for cer-
tain generalized directional derivatives. Finally, this sign suffices to
characterize functions as viscosity super- and subsolutions of the appro-
priate equations. This is motivated by a work of A. Subbotin [28]. 1In

particular, Subbotin gives a necessary and sufficient condition for a func-
tion to be the value of a differential game. This condition, which is not
within the context of the viscosity solution, roughly says that at every
point certain generalized derivatives must have a particular sign. L. C.
Evans and H. Ishii (10], using a "blow-up" argument, showed that the value

of an infinite horizon control problem satisfies Subbotin's condition, as
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it applies to control problems. The techniques used here are different
than the anes in [10]. One direction of the equivalence claimed above is
straightforward. The other is closely related to the principle of dynamic

programming and requires same arguments of P. L. Lions [22), ([24]), which
treat optimal control problems of diffusion processes.

L e e VA AT T W - A

The paper is organized as follows: The rest of the introduction re-
calls the definition of the viscosity solution. Section 1 is devoted to ;i
optimal control problams. Section 2 deals with differential games. In the
Appendix we make scme observations concerning the existence of directional
derivatives of the value function. All the definitions and results fram
cother papers are recalled when necessary.

We conclude the introduction with the definition of viscosity solutions.

Definition 0.1 [6]. Let H: @ x RxR + R and z : 30 + R be continu-

ous functions, where Q is an open subset of RN A continuous function
u: fi+ R is a viscosity subsolution of
H(x,u,Du) =0 in Q

(0.1)
u(x) = z(x) on 30

P *
if u(x) < z(x) on 3N and, moreover, for every ¢ € C m')( ), if xoen
is a local max of u - ¢, then

(0.2) H(xg,ulxg) ,DWAxg)) < 0

A continuous function u : @ + R is a viscosity supersolution of (1.1), ton For
- 'RA&I E
if u(x) >z(x) on 32 and, moreover, for every ¢ €C (®), if x;, €Q B ml
‘need |
is a local min of u - ¢, then -cation

(*)C"('o) @) derotes the set of real valued infinitely many times continuously

differentiable functions (of compact support) defined on &. —vs3crivution/
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A continnous function u :

(0.3) H(xy,u(x,) Béixg)) > 0

is both sub- and supersolution of (1.1).
Definition 0.2 ([6]). Let H :ax [0,T) xRx R + R, z : 3a x [0,T] + R

7+ R is a visocosity solution of (1.1), if it

and \3°=ST+R be contimous functions, where 0 is an open subset of
lf‘. A viscosity subsolution (respectively, supersolution, solution) of

(0.4)

is a function u 60(61.{*)'(“) such that:

v

[ 3u

= + H(t,x,u,Du) = 0 in @ ={0,T]

it

u(x,t) = z(x,t)

[ u(x,0) = uj(x)

on 9 x(0,T]

on 4

(0.5) wu< z‘ on 3ax[0,T], u(x,0) < uo(x) in @

(respectively,

(0.6) u>z on 3ax[0,7), u(x,0) 1u°(x) in @

respectively (0.5) and (0.6)).
and, for every ¢ € C.(Qr).

if (x,tg) € Qp is a local max of u - @, then

(0.7)

)
32 (xgrtg) + Hltgxy,ulxy,tg) [Dé(xg,tg)) <0

(*) C@® 1s the set of continuous real valued functions defined on &.

(*) Q = gx (0,71, G =7 = [0,T].
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if (XO'tO)eoT is a local min of u - ¢, then
(0.8) %
-a-;_(xo,to) + H(to.xo,u(xo.to),DNxo,to)) >0

respectively (0.7) and (0.8)).

For a detailed account of the recent developments in the theory of vis-
cosity solutions as well as references, we refer to the book by P. L. Lions
[21) and the article by M. G. Crandall and P. Souganidis (7].

SECTION 1

In this section we consider Hamilton-Jacobi-Bellman equations associa-
ted with optimal control problems. In particular, we look at problems of
the form

u+ %1_? {-f(x,y)*Du~- 2x,y)} =0 in @

(1.1)
u=g on 20

where f is an open subset of RN,gGC(an),Y is some separable metric

space and f:ﬁxY-»RN' b(x,y): 9 x Y*R are contimious functions such

that

[ There exists a constant C > 0 such that

[£x,9) ], le(x,y)| <C for every (x,y) € T x Y
(1.2) ¢ and

|£(x,9)-£(%,9) |, | 2(x,9) ~2(R,¥) | < C|%-%]|
| for every (x,%,y) € UxA x ¥

(1.1) corresponds to an infinite horizon control problem for the details
we refer to [21] and W. Fleming and R. Rishel [15]) with dynamics given by




& = £x(),y(x) far 0<1

(1.3) x(0) =x€Q

where y : [0,0) + ¥ is measurable. For notatimmal simplicity in what fol-
lows let

(1.4) M= {y: [0,») +Y, y(-) measurable}.

Let u be the unique viscosity solution of (1.1l) if it exists. It is
known (P. L. Lions [21], I. Capuzzo Dolcetta and L. C. Evans [ 3], L. C.

Evans and H. Ishii [10]) that u satisfies the optimality principle of dy-

namic programming, that is

u(x) =inf{e_(t'\tx)u(x(t/\tx)) + [Mtxe-sz(x(s) y(s))asl for
(1.5) M 0

every t >0 and xeq’)

where, for x€ Q9 and y €M, tx=tx(y) is the exit time fram Q of

the solution of (1.3) for the particular x,y, i.e.,

(1.6) t = inf{t > 0 : x(t) € K - q)

The first result of this section concerns viscosity supersolutions of
(1.1) . In particular, we show that every viscosity supersolution of (1.1)
satisfies some inequality, which, in view of (1.5), may be called superop-

timality principle of dynamic programming. This was first proved by P.L. Lions

in [22), [24], in the general context of optimal stochastic control. Here we give

two proofs related to those given in [22]),[24), but slightly more adapted

(*) ras = min{r,s}

T =7

T P C FEI y 9> CHPTEVI IESS >  17,
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to the special situation at hand. The first proof uses the fact that a

viscosity supersolution of (l.l} is a viscosity supersolution of an ap-

propriately defined time dependent problem. The second proof is based on

the fact that a viscosity supersolution of (1.1) is a viscosity solution

of an obstacle problem, which can be solved easily using differential games.

The first step in both proofs is a localization argument introduced in (24].
‘ It consists of multiplying by suitable cut-off function. This allows us to
f reduce to the case q = R .

We have ’
Proposition 1.1. Let v € C(?) be a viscosity supersolution of (1.1). l

Then, for every t > 0 and x € @, we have k
- taty .
(L.6) vix) » infte (%) vx(tat 2) + [ e u(x(x) ,y(s))as)
. 0

Proof 1. The first step in the proof is to modify the problem so that it

is defined in R'. To thisend, for 5§ > 0 let @, be defined by

§

96={x€9: B <%- and dist(x,3Q) > 6§}
Moreover, choose £,© € C*(RY) such that: 0<€<1 on §, 0<g<l,

6/2
on nN\ﬁs/. Then the function ¥ : K'+ R which is defired by

£20 on R~@,,., 9 =1 ona neighborhood of suppt, 0 <® <1 and ©Z0

v(x) =

(W) (x) in &
0 in R\gq

is a viscosity supersolution of the problem

(1.7) Ex)0 + %{-e(x)f(x,y) DI-£(x) 4(x,y)} =0 in R.




Next for t > 0 fixed consider the initial value problem

w

38 * ;&p {=&(x) £(x,y) *Dw=£(x) R(x,y)} + E(x)w =0 in Q

(1.8)
wix,0) =¥(x) in R

In view of the results of [6] and [21], (1.8) has a unique viscosity so-
lution w € C(R'x [0,t]) given by

| | , N . |
(1.9) w(x,8) = inf{v(x(s))e fo“"“”"‘ + f e K“"“”d" >x (1) y(1))ar}
M 0

‘where x(:) is the solution of

& = - gx(1) £X(1),y(V) for O <t <t

x(0) = x

v, however, is a viscosity supersolution of (1.8). The uniqueness es-
timates of [6) imply ’

V(x) > wix,s) for every (x,s) € R x [0,t]

Next cheerve that for x €2 and y €M, if t <t then Xx(s) = x(s)
for 0 <8 <t, where x(°) is the solution of (1.3), provided that ¢ is
sufficiently small. Moreover, x(-)€{x € @ : £(x) = 1}. These ocbservations
together with (1.9) imply (1.6) for t < tx. If t itx’ choose tnftx.
Then

v(x) > inf{V(x(tn))e't“ + | e ®ux(s),y(s))ds}
yeM 0

!
*
t
:
!




As n + = we obtain (1.6), since v € C(R).

Proof 2. (Obstacle problem method). Here, in order to exhibit the main
ideas, for simplicity,we are going to assume @ = o . The generai case
follows by appropriate use of the localization technique explained in
Proof 1.

It is easy to see that v is the unique viscosity solution of the

problem

v+ min{;g{-f(x,y) v-4x,y)}, v} =0 in B
which can be rewritten as

(1.10) v + rzn%g 3%? {-f(x,y,2) ‘Dv-h(x,y,2)} = 0 in ®

with 2 = {1,2} and

0, if z=1

E(X,Y,Z) =
fix,y), if z=2

vix), if z=1

h(x,y,2) =
-x,y}, if z=2

(1.10) corresponds to an infinite horizon differential game, thus v must
satisfy the dynamic programming principle, as it is shown in the first part
of L. C. Evans and H. Ishii (10].

We need same more notation. In particular, let

N={z: [0, -2, z(*) measurable}

Moreover, denote by T the set of mappings o : N -+ M, which, for
e\;ezy t > 0, satisfy the following condition:

Y

% ' e
: I T T
Bt . o R A, .




If z(x) =£.s) for a.e. 0 < s < t, then

alz](s) =alz]l(s) for a.e. 0<s<t

In view of Theorem 3.1 of [10], for every t > 0, we cbtain

t
(1.11) v(x) = inf sug {I e-sﬁ(i(s) ,alz) (s) ,z(s))ds + e_tV(;C(t))}
a€El 2€ 0

where for xeRN,ZEN and o €T, x() is the unique solution of

-~

g_g= ~£(x(s) ,alz] (s) ,2(s)) for O < s

x(0)

x
Choose Z € N such that z = 2. Then (1.11) implies

t
v(x) > inf {v(x(t:))e-t + [ e ‘% (x(1),alz] (1))dr}.
~ a€l | . 0

since, in this case, x(+) is the solution of (1.3). But

{alz] : a €T} M

thus the result.
The next proposition deals with viscosity subsolutions of (1.1). 1In
particular, we show that a viscosity sybsolution of (1.1) satisfies an in-

equality, which we call the suboptimality principle of dynamic programming.

The proof relies on the fact that viscosity subsolutions of (1.1) are vis-

cosity subsolutions of an appropriately define time dependent problem.
We have

Proposition 1.2. Let w € C(R) be a viscosity subsolution of (1.1).

Then, for every xeRN and t > 0, we have




ety
W(x(tAtx)) +I e " 2(x(s) .y(s))ds}
0

(1.12) Wi < inf e (tAtx)

Proof. Here we give the proof in the case Q= RN For the general case,
one has to use first a localization argument as in Proof 1 of Proposition
1.1.

For t >0 consider the problem

3z _ .
-a—s-+ x}t'a&c {-f(x,y)Dz=2{x,y) } +2=0 in Qt

2(x,0) =w(x) in R .
w is a viscosity subsolution of this problem, therefore, for every x € BN '
-t t s
w(x) < z(x,t) = inf{w(x(t))e ~ + [e Ux(s) ,y(s))ds}
M 0

The above are justified as in Proof 1 of Proposition 1.1.

Next we want to use Propositions 1.1 and 1.2 to obtain a kind of infini-
tesimal version of the super- and sub optimality principle of the dynamic
programming, satisfied by viscosity super- and subsolutions of (1.1). To
do this, we have to assume that we work with sub- and supersolutions which

are locally Lipschitz. Moreover, we need to introduce same notation.
(1.13) (FL) (x) = col(£(x,¥),%(x,y)) : y € Y}

We have:
*
Theorem 1.3. let v € Cgéi(n) (*) be a viscosity supersolution of (1l.1).

Then, for every x € Q, it is:

(1.14) v(x) + lim sup {‘”—x”Lé’Eiifl-z} > 0
8v0 (£,2) €(FL) (x) -

0,1

(*) C15c®) denotes the set of real valued (locally) Lipschitz continuous
functions defined on &




and the inequality is achieved as 5¢0 uniformly on campact sets.

Proof: For x € @ fixed let K be the Lipschitz constant of v in a ball
of radius C centered at x, where C is given by (1.2). Moreover, as-
sume that 0 < 6§ < 1 is small enough so that § < t . In view of Proposi-
tion 1.1, we have:

)

i
!
- {6 ‘s !
sup | V) -e vix+ | £(x(s),y(shds) _ 1 f ™% ux(s) ,y(s))ds} >0 §
M 0 !
}
. =8 1 s '
12 v+ e‘“sﬁp“'—l-i-—e"‘ = "*“;IO——'-“—’-LM" (e))ds) _ %Jo z(x,Y(s))ds, ";
2 ) "o | {
2 - (k1)C6 - C (14 25 }
YO 1 {8 |
3[ £f(x,y(x))ds, 3 f L(x,y(s))ds] € (FL) (x) ;
0 0

The above inequality implies

1

[

vi) +e°  sup

(£,2) €(FL) (%)

-5
vx) -y (xt8) "’é"*“f’— zi} > 4K +1) C26-C(14+S— a-l

Letting &+0 we obtain the result. The uniformity claimed in the state-
ment is an immediate conseguence of the fact that the above also holds
for every y € B in a neighborhood of x of radius C/2.

As a consequence of Theorem 1.3 we have
Corollary 1.4. lLet ve crli) be a viscosity supersolution of (1.1).

Then, for every x € @, it is:

(1.15) vix) + sup T v -vixkst) o |

(£,2)E(FL) (x) [5+0 8

>0




and the inequality is achieved as 640 uniformly on camwpact sets.
Remark 1.5. In the second part of fd L. C. Evans and H. Ishii proved that
if {f(x,y) : y € Y} is convex and 1(x,y) = O, then a locally Lipschitz

viscosity supersolution of (1.1) satisfies

)
inf lim € vixrsE)v(x) _ o
YEY 5350 § -

which, under their assumptions, is equivalent to (1.15). As mentioned in the

Introduction, they used a "blow-up” argument. The proof we give here is based
campletely on Proposition 1.1 and Theorem 1.3.

Proof of Corollary 1.4: (1.14) implies that there is a subseguence 8y +0

as k- such that |

v(¥) +lim  sup M‘k@ -z| > 0
k+» (£,2)€(FL) (x k -

Then for ¢ > 0 fixed but arbitrary there is a ky = ky(e) > 0 such that

vix) + V)-vixtsd) 2] s -

sup
(£, 0 €(FL) (x)' S
for k lkO‘
Next for each k _>_k0 choose (fk,zk) € (FL)(x) such that

v(x)-*v‘(s:i-g(fk) = s lv(mwgfék_g ) z,

(£,2) €(FL) (%)
The campactness of (FL) (x) implies that along same subsequence of 6k+0
(which again for simplicity is denoted by §) we have

This, together with the Lipschitz property of v, inplies




-14-
|
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and, therefore, the result.

Remark 1.6. It is of same interest to know whether, in the case at hand, ‘

(1.15) holds with Tim replaced by Llim. | |
Far the case of a viscosity subsolution of (1.1) we have:

Theorem 1.7. Let w € C‘l:,i‘ﬂ’ be a viscosity subsolution of (1.1). Then,

for every x € g, we have

(1.16) v + T swp [W(x)-:(xﬂsf) _ zli 3
5§40 (£,0€(FL) (x) |-
and
(1.17) wix) +  sup T (e weesn) li 0
(£,2)E(FL) (x) 640 | . 5 )

and thé inequality is achieved as 6+0 unifarmly on campact sets.
Proof: (1.17) follows immediately from (1.16). To prove (1.16) cbserve

that, in view of Proposition 1.2, we have:

6
) 'e-sw(’“[ e -fé e ax(s) ,y(s))ds < 0
. <

5¢0

and, therefore

8
-5 _ 1 )
0

2 e.s-l
< (R#1)CT8 + C (1-0—;—)

for every y €M, whex K is the Lipschitz constant of w in the ball of

radius C centered at x:
In view of the general geametrical fact




6 ————
{(%'-f f(x.y(S))ds.sl-Ioz(x.y(s))ds) : Yy € M =co {{£(x,y),e(x,y)) : y €Y}
0

(1.18) implies

-6 _
1e L +e sup

§ (£,2)€ (FL) (X)

s

where 0(1) + 0 as 6+0 and thus (1.16). The uniformity follows fram the
fact that all the above holdswith the same constants for all points in an
appropriate neighborhood of x.

Combining Corollary 1.4 and Theorem 1.6 we obtain
Carollary 1.8. Let ue Co’l(@) be a viscosity solution of (1.1). Then

(1.19) u® + sup |Im E‘_’i’_'%‘fi‘ﬂ -¢| =0, vx€Q
(£, %) € (FLYx)} 6+0

We conclude this section with a result which is the inverse of Corollary
1.5 and Theorem 1.7. In particular, it says that (1.15) and (1.17) together
with appropriate boundary conditions characterize contimous functions as
viscosity super-respectively subsolution of (1.1). We have ‘

Proposition 1.9. (a) Let v € C(n) satisfy (1.15) for every x € 2. Then

v satisfies (0.3) with H as in (l.1).

(b) Let we C(p) satisfy (1.17) for every x € 9. Then w satisfies
(0.2) with H as in (1.1).

Proof: (a) For ¢ €C (@) let x) € R be a local minimm of v-o.

We want to show that
vixy) + ys\gl-f(xo,y) ‘Dé(xg,y) + &(x5,y)} > O

But for § sufficiently small we have

-l

- oy




¢ {X5) - ¢(xg+61) vixy) v (xy+5£)
3 22—

- ¢ for all (£,0)€ (FL) (%)

This inequality and (1.15) imply

vix,) + sup {-f:Dd(xq) - 2}>0
"0 (£,9 € (FLXx,) " -
Finally, since
SUpA = Sup\
AEA  r€cOA

we have the result.
(b) The proof is similar to the one of part (a), therefore we omit it.

Remark 1.10. All the results of this section extend to several other cases
including time-dependent problems. The type of statements that one cbtains
are similar tothe anes of Section 2.
SECTION 2

In this section we consider Hamilton-Jacobi equations which are rela-
ted to theory of two-player: zero-sum differential games. Since in Section
1 we loocked at stationary problems, here to show the generality of the argu-
ments involved, we work with time dependent ones, in particular, we consider
the following problems
r_:_g + inf sup(-f(t,x,y,z) -DU - ¢(t,x,y,2)} =0 in qx(0,T]

yeY z€Z _
(2.1) { U(x,t) = glx,t) on 3qx{0,T]

LU(x.O) = uy(x) in Q@
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(
Ag + sup inf{-f(t,x,y,z) .V - o(t,x,y,2)} =0 in qx(0,T)
* 2z yey

(2.2) 4 Vix,t) = gix,t) on 3 x [0,T)

| V(x,0) =uy(x)  ing ;

where Y,Z are campact sets and £ : [0,T] xQx¥x2 +:RN, 2: [0,T] x @ x
Yxz +R, g: 3ax(0,T] + R, uy : @+ R are bounded cantinuous functions.

Moreover, they satisfy

[ There exists a constant C > 0 such that

|£(t,x,y,2) |, [2(t,x,¥,2) | <C for every (t,x,¥,2)€[0,T]xQ ¥Yx2

(2.3) { and

|f(t,x,y,z)-f(€,?2,y,z) |, | 2(t,%,¥,2)~2(€,%,y,2) | 5C(|t-t:.| + |x-&|)

L for every (t,x,y,2), (eliIYIz) € [0,T] x AxY x2

(2.1) and (2.2) correspond to a finite horizon two-player, zero-sum

differential game (for details we refer to W. Fleming [12],(13],[14], Elliott
and Kalton (8], A. Friedman ([16],(17]) with dynamics given by

g%= £(t,x(7),y(1),2z{(7)) for T -t <t <T.

(2.4),_,

x(T-t) =x € Q
where y : (¢,T] + ¥, z : [t,T] +2 are measurable functions. Before we
continue we need to introduce some notation. In particular, for 0 <t <T
define

M(t) = {y : [t,T] *Y measurable}

N(t) {z : [t,T] * 2 measurable!}




Moreover, denote by TI(t),a(t) the sets of mappings o : N(t) + M(t),
B : M(t) + N(t) respectively with the following property
For each s suwchthat t <s<T
If z(1) = z(x) for a.e. t <t <8, then

alz)(x) = al2](x) for a.e. t <t <8

JIf y(t) = (1) for a.e. t <1 <s, then

Blyl () = Blyl(r) for a.e. t<t <S8

h
N

Let U,V be the unique viscosity solutions of (2.1),(2.2) respective-
ly if they exist. It is known (L. C. Evans and P. Souganidis [11] for @ = R,
L. C. Evans and H. Ishii {10] for stationary problems) and it follows fram the

results of this section for other cases that U,V satisfy the optimality prin-

ciple of dynamic programming, that is
([ For (x,t)€Qx (0,7) and 6§ >0 such &<t

(T-t+6) Aty
{ f v(s,x(s) ,y(s) ,8lyl(s))ds +

V(x,t) = inf sup

BEA(T-t) yeM(T-t) ’‘T-t

+ U(x((T-t+8) At x) ’ T—((T—t+6)Atx))}
(2.5) j and

V(x,t) = sup inf L(s,x(s) ,a{z](s) ,z(s))ds +

(T-t+8) Aty
3!
€I (T-t) zeEN(T-t)

-t

+ V(x({T-t+§) Atx) ;s T=((T-t+s) Atx) }

\

where, for x € Q, x(+) is the solution of (2.3)T_t with the appropriate
y(-),z(.) funcitons and t. is the exit time from o x (0,T) of x(-).

The first result of this section concerns viscosity supersolutions and




subsolutions of (2.1) and (2.2). In particular, we show that they satisfy
same inequalities, which, in view of (2.5), may be called super- and sub-

optimality principle of dynamic programming. All the results are going to

be stated as they apply to the general problems (2.1) and (2.2), the proofs,

however, for simplicity are going to be given only for the special case

a=R. To obtain the most general results one has to use the localization

argument, which was described in the course of the proof of Proposition 1.1.
We have

Proposition 2.1. Let v,w € C('Gr) be viscosity super-respectively subsolu-
tion of (2.1) respectively (2.2). For every (x,t) € ax(0,T) and § > 0
such that § < t, we have
(2.6) v(x,t) > inf sup
BEA(T-t) YEM(T-t)
+ V(X ((T-t+s) Atx) ’ T-('I‘—t+6)Atx)) }

(T-t+8) Aty
{[ L(s,x(s) ,y(s) ,8lyl(s))ds +

-t

(2.7) w(x,t) < sup inf
A€l (T-t) zEN(T-t)

(T-t+6) Aty
{I (s, x(s), alz](s),z(s))ds +

T-t

+ w(x(T-t+§) Atx) s T=((T-t+6) Atx))}

Proof: Here we prove only (2.6), since (2.7) is proved in exactly the same
way. As mentioned above we are going to assume Q=RN.

For £ >0 choose £,0EC (R suwhthat 0<g<1,0<¢<1,g:=1
on [e,T-el, £ 20 on (-=,€2]U(T-5,=, ¢ =1 on [7T-31, ¢ 20 on
(~=/£JUIT-§ ) . Moreover, let v: R xR »R be defined by

. ¢(s)v(x,s) if T>s>0
v(x,s) =

0 if s <0 or s>T

% gy RTINS T

e—r

T R

RN




It is easy to check that v is a viscosity supersolution of the problem

0913 + inf supl-E(s)£(s,x,y,2)-D0 - E(s) Us,x,y,2)} =0 in R
YEY 2€Z

Next let¢ T >t > & >0 be fixed. Then v is also a viscosity super-

solution of
W . N
3t inf sup{-&(x) £(s,x,y,Z)DN + E(s)-.;g - &(s) (s, x,y,2} =0
YEY z€2 1
(2.8) in R, (0,T-t+5)

W(x,s,0) = v(x,s) in ]

If WE C(RN"Ix [0,T-t+8)) is the unique viscosity solution of (2.8),

the unigueness estimates of [6] imply
v(x,t) > W(x,t,6)
Moreover, the results of L. C. Evans and P. E. Souganidis [11]) give
-t+§
W(x,t, §) =inf sup {r E(T-t+6-t (p)) 2(T-t+&-t(p),3:(p) ,y(P) , Blyl () dp
BEA(T-t) yeM(T-t) /T-t

+ V(X(T~t+6) , t(T-t+6))}

where for y € M(T-t) and 8 € AT-t), x(-), t(*) are the solution of

r -y

%= E(T-t+ 6t (0) )£ (T-t+5-t(0), (p),y(p),Blyl (p)) far T-t<p< T-t+6
<dt _ - < T-t+ 6
- - g(T-t+5-t(p)) for T-t<p< T-t
L:'c('r-t) =x, t(T-t) = t

As ¢+0 the above observations imply the result, since as ¢+ 0

x(0) + x(0) uniformly on [T-t,T-t+s]

- . . - i,
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vhere x(.) is the solution of (2.4)T_t

The next proposition considers subsolutions of (2.1) anu supersolutions
of (2.2). Since the proof of the results is exactly the same as the proof
of Proposition 2.1, we amit it.

Proposition 2.2. let v,w € CQ;) be viscosity sub-respectively superso-

lution of (2.1) respectively (2.2). For every (x,t)e & x (0,T) and 6>0
such that § < t, we have
(T-t+8) Aty

(2.9) v(x,t) < inf

sup f Us,x(s) ,y(s),B(yl(s))ds +
BEA(T-t) YEM(T-t) ‘T-t

+ v(x((Tt+8) at ), T-(T-t+8) At )) ) }

and
{T-tHE) Aty
(2.20) w(x,t) > sup inf {I 1(s,x(s) ,a(z])(s) ,z(s))ds +
€T (T-t) 2eN(T-t) ‘T-t

+ w(x((T-t+9$) Atx) ¢ T=((T=t+§) Atx) })}

Next we want to use Proposition 1.1 to cbtain a kind of infinitesimal
version of the super- and suboptimality principle of the dynamic programming.
To do this we have to assume, as in Section 1, that we deal with locally
Lipschitz viscosity super- and subsolutions. Before we state the results
we need same notation. We have:

Por (t,x,y) € (0,T) x QxY
(2.1D

(FL) (t,x,y) = co{(f(t,x,y,2),)(t,x,y,2)) : z € Z}




T T e e g e =T s s

For (t,x,2z) € (0,T) x Ox2

(2.12)
(FL) (t,x,2z) = co {f(t,x,y,2) t,x,y,2)) : y € ¥}

The result is
Proposition 2.3. Let v,w €Cg&l:(nx(0,'r)) n C(dr) be super=respectively

subsolution of (2.1)-respectively (2.2). Then for every (x.,t) €2 x(0,T)

we have

(2.13) lim sup inf

80 YEY (£, %) E(FL) (T-t,x,2)

wix,t) w(x+sf,t~8) _, } 50
iy -

and

(2.14) Tim sup

640 z€Z (£, R)€E (FL) (T-t,x,2) $

inf W(Xrt) "W(X‘"&f,t"&) . -2 }: 0

with the inequalities being achieved as ' §+0 uniformly on camwpact sets.
Proof: Here we show only (2.13), since (2.14) follows in a similar way.
For a fixed (x,t) € @x(0,T) let K be the Lipschitz constant of v

in a neighborhood of (x,t). For & >0 sufficiently small it is

T-t+ 6 <&
X

for every y € M(T-t), 8 € A(T-t), and this uniformly for every x in a
neighborhood of x. (2.6) then :implies

v(x,t) -v(x(T-t+s) ,t-8) _ lrﬁ-u-s
T

sup inf o ; 3
-t

€A (T-t) yeM(T-t)

2(s,x(s) ,y(s) «8lyl(s))ds} _>_0

But

sup inf < .inf sup < inf sup
BEA(T-t) YEM(T-t) yeEM(T-t) BEA(T-t)  yEY BEA (T-t)




Therefore, in view of (2.3),(2.4), we have

vix,t) vix+sf,t-8) _ o, 0(1)
= >

inf sup
YEY (£,2)€(FL) (T~t,x,y)

where 0(1) + 0 as 6+0 uniformly for (x,t),in a compact set. Here we
used the fact that for y € Y
1(E-t+6 1 [T-t+8
(G—F £(T-t,x,y,8[y] (s)ds, 3 L(T-t,x,y,B8 [y] (s))ds)€E (FL) (T-t,x,Y)
T-t T-t
for every 8 € A(T-t).
Letting 6+0 we obtain the result.
As a consequence of Proposition 2.2 we have

Corollary 2.4. Let v,wé€ Cgé:cl(n x (0,T)) n C(EI,) be super-respectively

subsolutions of (2.l1)-respectively (2.2). For every (x,t) € Qx(0,T)

we have

(2.15)  inf sup Ijj_n'""(x:t)"g(x%f,t—é) v l>0
YEY (£,2)€(FL) (T-t,x,y) 640

and

(2.16)  sup inf Lim{¥(X, £ (0488, £6) -’zl <0
2€2 (£,2)€(FL) (T-t,x,2) 530

with the inequalities being achiewved as : 6+0 uniformly on campact sets.

Since Corollary 2.3 follows fram Proposition 2.2 in the same way that

Corollary 1.4 follows fram Theorem 1.3 we amit its proof.

We continue with a proposition and a corollary concerning viscosity \
sub- and supersolutions of (2.1) and (2.2) respectively. Since these re-
sults follow fram Proposition 2.2 the same way as Proposition 2.3 and Cor-
ollary 2.4 follow from Proposition 2.1 we omit their proof. We should also i

remark, however, that one can obtain these results directly from Proposition |
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2.3 and Corollary 2.4, by observing that a viscosity subsolution (superso-

lution) of (2.1) ((2.2)) is a viscosity subsolution (supersolution) of (2.2)

((2.1)). We have: :
Proposition 2.5. Let v,w¢€ Cgé‘(ﬂ x{0,T)) n C(c_)r) be sub~ respectively

supersolution of (2.1) respectively (2.2). Then for every (x,t) € 2x(0,T)

we have

(2.17) Tim swp inf "("'t""‘”g‘Sf't“" -2l<o0
8§40 2€Z (f,3)€(FL) (T-t,x,2) -

and

(2.18)  lim inf sup wix,t) lxt6f,t28) _ o f 5 o
30 yeY (£,2)€(FL) (T-t,x,y) 6 -

with the inequalities being achieved as 640 uniformly on compact sets.
Corollary 2.6. Let v,w.€ c(]’o'cl(nx(o,w)) n C(ﬁr) be sub-respectively super-

solutions of (2.1) respectively (2.2}. For every (x,t) € 2x(0,T) we have

(2.19) sup inf lim v(x,t) ~vx+sf, t=8) _, | . 0 '
z€Z2 (£,2)€(FL) (T~t,x,z) §+0 6 -
argd |
(2.20) int sup Tim | Wix,8) cwlxkSf, £78) —1} > 0
YEY (£, ) €(FL) (T-t,x,y) &+0 $ =

with the inequalities being achieved as §+0 uniformly on compact sets..
The next result is the inverse of Corollary 2.4 and Corollary 2.5. In

particular, it says that (2.15),(2.16),(2.19) and (2.20) together with ap-

propriate boundary conditions characterize continuous functions as viscosity

super- and subsolutions of (2.1) and (2.2).

We have:

B )
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Proposition 2.7. (a) Let v €C(® x (0,T)) satisfy (2.15. Then v also ;1

satisfies (0.9) with H as in (2.1).
(b) Let w €C(Qx(0,T)) satisfy (2.16). Then w also satisfies (0.8) “
with H as in (2.2).
(c) Let v€C@®x(0,T) satisfy (2.19). Then v also satisfies (0.8) i

with H as in (2.1).
(@ Let w€ C(ax(0,T)) satisfy (2.20). Then w also satisfies (0.9)

with H as in (2.2).

Since the proof is similar to the proof of Proposition 1.9(a), we amit 1

it. :
we conclude this section which is an immediate consequence of Corollary '
2.4 and Proposition 2.7. We have

Corollary 2.8. Suppose that for every (t,x,p) € [0,T]xﬁx:RN it is

(2.21) sup inf{-f(t,x,y,2)-p - 2(t,Xx,y,2)} =
Z€Z y€&Y |

= inf sup{~f(t,x,y,2)-p - 2(t,x,y,2)} :
YEY z€2 : i

Then a function u € c(ar) n C(])o'.:::Lm x(0,T)) is a viscosity solution of

[ 2 ] ' .

5 * sw inf {~f(t,x,y,2)-Du - &(t,x,¥,2)} =0 in qx(0,T)
z€Z2 y&Y

u(x,t) = g(x,t) on 32 x [0,T]

Lu(x,O) =uo(x) in @

if and only if u satisfies (2.15),(2.16) and the correct boundary conditions.

Remark 2.9. A result analogous to Corollary 2.8 is proved by Subbotin (28] but

not in the context of viscosity solutions. In particular, in [28]) (2.15) and

L




(2.16) are necessary and sufficient conditions for a locally Lipschitz con-
tinuwous function to be the value of a positional differential game, under
the assumption that £: 0 and 2 = R'. Corollary 2.8 also implies in view
of the results of [26},([27), [10],[11],[1], that notion of the value of a po-
sitional differential game is the same as the value of differential game in-
troduced by W. Fleming, A. Friedman and N. Elliott and J. Kalton.

Remark 2.10. A remark analogous to Remark 1.6 holds here too.

L AU
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APPENDIX

In view of Remark 1.6 and Remark 2.10, we want to make samre (classical)
observations concerning the existence of directional derivatives of the value
function of optimalcontroland differential games problems. For simplicity
‘here we investigate the case of an infinite harizon optimal control problem
in R . In particular, we deal with the existence of

lim v(x+hy) - v(x)
h+0 h

for all x,x € RN, where v 1is the value function. Using the notation of

Section 1 let us also assume:
[ For every xeRN,yEY and h€ R

|£(x+h,y) = £(x,y) - DE(x,y)-h| < |hlel|h])
(1) < and

| 1lx+h,y) - x,y) - D, Ux,y) -h| < [h]|e(|h])

where €(|h|) » 0 as |h| + 0

.

For every y(:) € M, let
(2) J(x,y) = E e ° yx(s) ,y(s))ds
where x(.) is the solution of (1.3) with x(0) = x. Moreover, let
(3) v(x) = inf J(x,y)
YEM

In view of the discussion in Section 1 and the references given there, v

is the value function of the associated optimal control problem.

b}




We have

Proposition A.l. Assume that (1.2) and (1) hold with

(4) 1> sup  |D.f(x,y)]
(X,Y)GﬂxY x

Iet v be given by (3). Then

Lim v(ixHhX) - v(x)
ht0 R

exists for every x, X€ :RN and
v(3thx) =v(x) . s aJ(x )
Lim VX0V _ 5ne [1im K .y €M, 3 -+
s) Lin M {HE S n oy, (%) WV(x)
Proof: The proof is a consequence of the following lemma.

lawmaA.2 Let w(x) = inf wi(x) with w,vi equiboonded , equicontinuous and
il

satisfying:
i
vx EllN,le = 1 there exist aalx-(x) such that
© wooh - wioo Wl g o o
h x = hee
. wixthx) wix) .
Then ix:on*_——s———— existg for all x and is egual to
in .,
(7 Lim YOOV | gnelyim D 5y f Wt g 2 w0
hvo+ m= X

In view of our hypotheses, v and J(°,y) satisfy the assumptions of
Lemma 2. Therefore here we only prove the lenma. We have:

Proof of Lenma 2: Let i be a sequence such that

wln(x) +wix) as n+ =




APPENDIX

In view of Remark 1.6 and Remark 2.10, we want to make same (classical)
observations concerning the existence of directional derivatives of the value
function of optimalcontroland differential games problems. For simplicity
‘here we investigate the case of an infinite horizon optimal control problem
in ®'. In particular, we deal with the existence of

1im v(xthy) - v(x)
h+0 h

for all x,x € :RN,where v is the value function. Using the notation of

Section 1 let us also assume:
[ For every xERN,yGY and h€ R

| £(x+h,y) = £(x,¥) - Df(x,y)+h| < |hje(|h])
(1) and

| elx+h,y) - ux,¥) - D Ux,y)-h| < |h|e(|h])

where €(|h|) +0 as |h| +0

For every y(:) € M, let
() I(x,y) = [; e % ux(s) ,y(s))as
where x(.) 1is the solution of (1.3) with x(0) = x. Moreover, let
(3) v(x) = inf J(x,y)
yeM

In view of the discussion in Section 1 and the references given there, v

is the value function of the associated optimal control problem.

.




We have
Proposition A.l. Assume that (1.2) and (1) hold with

(4) 1> sup D f(x,y)|
(x,y)ERVxy *

let v be given by (3). Then
v(x+hX) - v(x)

lim
h+0

exists for every x, X€ B and

lim VHX =v(0) _ ooe (14 XY o ey g -+
®) hf-:‘)‘ h in | n_lf‘; ELBUD / ’ (:Sfyn)wv(x)
Proof: The proof is a consequence of the following lemma.

LemmaA.2 Let w(x) = inf wi(x) with w,wi equiboanded, equicontinuous and
i .

satisfying:
VXGRN,lx|=1 there exist ?al(x) such that
©6) 1 i
w(xi-hx:1 w(x) _:w(x) <&h) + 0
X h+0

Then 1'111:0“ w—(’i"’%—‘i"—"- exists for all x and is equal to

(N 1jm+"L(.’°_."h§_'ﬂ(_")_ .—.-mf{]_m__(x’ wr 2 WX
ht0

In view of our hypotheses, v and J(-,y) satisfy the assumptions of
Lemma 2. Therefore here we only prove the lemma. We have:

Proof of Lemma 2: Let in be a sequence such that

wln(x) +wi(x) as n+ e

S
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wohy) i wln(mhg)-wl"(x) 4 W00 i)
= h

in in
< F6ots(h) + e 200w |

. lim -3—:-1-3()“6(}1)
X
T D

T Moshowed

vwhere o is the right hand side of (7). For the other direction, let hh>°
be such that hpt0 as n + =, Choose i such that
'n h
vixthy) < v " (xdhx) < Vixth X)+ D as n o+
Then, in view of the assumptions,

vln(x) +vix) as n+ =

We have
P v | vosh ved | 1
et
which implies
a < lim _____x)_____V(x+h ) ~v(x)

and thus the result.

Remark 3. Results analogous to the above also hold for finite horizon con-
trol problems and differential games. In the finite horizon case, cne does

not have to assume (4).
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