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toal signals by using recursive estimation with vector quantization. The major accomplishments

presented ae an algorith. for joint estimation of excittio and vocal tract response, a pitck

* pulse location method using recursive leA squares etm ation, and a stop comsomat recogition

method uing recursive estmaion and vector qm tim.
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1. INTRODUCTION

During the course of this researc contract, estimation techniques for proces that contain

Gaussian moms amd jump components, and classilceation methods for transitional signals by usin&

recursive estimation with vector qusatization were studied. Thus signal processing tools have

pssil application to a wide range of phoysical signals, although this research studied their ane

for speech processing. The uqor accomplishments presented wre am algorithm for joint estima-

tim of excitation and vocal tract response, a pitch pulse location method using recursive least

sqares estimation, and a stop consonant recognition method using recursive estimation and vec-

tor qnustiuation.

JOINT ESTIMATION OF EXCITATION AND VOCAL TRACT RESPONSE

Historically, the development of estimation theory and signal modeling techniques have usa-

ally presumed that the processes involved had Gaussian statistics. Most atafy occurring

processes tend to he Gaussian. However, many man-made signals have additina components
4F

that can he characterized as harmonic structures or jump processes or impulsive noise. For exam-

pie, the rotating blade in an aircraft generates an artifact when the blade crosses the wing, like.

wisn the main rotor and tail rotor of helicopters produce signals depending on the orientation of

the fuselage, underwae acoustical signals from man-made sources, radar/soar returns generated

by pulsed sources, and in general any signal that has been processed is a nonlinear fashion are

within the class of mon-gausa signals.

Estimation techniques were developed for signals composed of a Gaussian morn component

and a jump process component driving a Kineaw system. In particular, simultaneous estimation of

the mystem parameters (ARMA) and the jump excitation were introduced. The technique evolved

from simple pain in noise detection to composite pulses and noise from an ARMA structured sys-

tem. A decision-diected approach was used to estimate the unknown prior statistics of the puls

process. A full description of then m chiques was presented in the lost ONR technical report,

14736-1, Feb. I06.
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In this studly, the estimation technique warn applied to speech signals attempting to improve

the estimate of pitch and vocal tract response. Most speech modeling techniques handle the

response and excitation separately. The semipedodic opening of the vocal chords emits a pulse of

air to excite the vocal tract (throat, tongue, and mouth) provides an example of jump and noise

excitation that has been much studied. The complex interaction of the vocal chords, vocal tract

and nose, warrant simultaneous estimation of the response function and the excitation.

PITCH DETECTION BY LEAST SQUARES LATTICE ALGORITHM

There are many advantages of recursive estimation techniques and particularly when imple-

mated in the form of a lattice liter. An overview of recursive least squares estimation and lat-

tice liters was presented in the second ONR technical report, M736-2, Jan. 1g84. Within the

Leaut Squares Lattice algorithm, a *likelihood' variable is calculated which indicated the

occurrence of unexpected or non-gauin components in the signal. The derivative of this vari-

able multiplied by other signal parameters appears to be a good detector of pitch pulses in speech.

The development and experimental results of thi pitch detection method are presented.

RESEARCH ON RECOGNITION OF STOP CONSONANT

Recursive Estimation and Vector Quantiation have been two very active areas of research

in the list few yeas. Each area has developed new mathematical tools for analyzing and charac-

terising signals. These techniques are trying to satisfy different objectives; adaptive signal model-

ing or eficient signal quantization, respectively. However there is a natural marriage of these two

powerful nathematical tools that often provides a more appropriate solution to problems in signal

modeling, coding, and classilcation.

For adaptive speech modeling, the time varying nature of speech requires that quickly

changing burst sounds as well as fairly steady vowels sounds be eficiently approximated. The

recursive orthogonalising properties of the ladder structure allow speech transitions to be tracked

precisely while still yielding consistent parameters for steady sounds. Recursive estimation Sen-

ersates a full signal model for each data sample causing a conuiderable increme in the number of

~ *'..*v*~*..*,~.* ~ % %' .. ... ' V %~ % %.* ~. --
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parameters handled. For coding and transmission of signals, the recursive estimationl generates a

goo signal model but the problem of efficieat paramneter enoding remains. In coding or

clanifcatiom applications, only a small number of 'stake. of the world' an.of interest rather than

the continuum of parameter values generated by RLS.

Vector Qunatization (VQ) desgn algorithm have been uaed to design low bit rate data

compression ad data classifiation systems. For speech recognition, vector quantization teh-

niques hav. been developed for speaker dependent and independent word recognition. VQ is well

suited for data compression or data clamllcation once the codewords have been determined from

a representative training data set.

Experiments on combining recursive estimation and vector quantization were began in ti

ONR contract. Using recursive estimation to track changing signal characteristics and vector

quantizations to systematically clam*f the resulting parameter, brings together adaptive proc...

ing, with limited state output. This idea wan lAna applied to speech for recognition of transitional

sounds, which are curreatly very dMiculi to distinguish. This approach acknowledges that speech

contains only a Suite number of ideatifiable sound units (in each language), but that som sonds

happen quite quickly. This type of elansilcation technique distinguishes transitional state in the

signal that are themselves of interest.

A clossilication scheme using parameter trajectory information wan developed that allows

transitional signal characteristics to be identified. The transitions in the data can be tracked

using recursive estimation rather than being coarsely approximated by LPC (or equivalent)

parnameterization from fixed speech windows. By having a signal model at every data sample,

the trajectory of the parameters can be readily determined. This new information msisted in

determining transitional components from steady state components.

A classifled vector quantization approach was also developed that allows quantization preci.

sinto be specified for various signal components. No longer must the steady state signalco-

pmnents, dominate the vector quantized state. The results for recognising stop consonats within

a limited test are very encouraging.
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4.4

2. JOINT ESTIMATION OF EXCITATION AND

VOCAL TRACT RESPONSE

2.1 INTRODUCTION

Many speech analysis techniques attempt to deconvolve the speech waveform into an excita.

tios component and a response function. The standard approach is to estimate the vocal tract

model parameters Arst and them the excitation sipal from the residual errors (or directly from a

bandlimited version of the original speech signal). A new approach for simultaneously identifying

the system model parameters and detecting the unobserved random pulse-type inputs has been

developed. A key component of this procedure is the application of a new decision-directed algo-

rithm to estimate the period of the pitch pulse process. This decision-directed algorithm incor-

porates an exact, recursive estimator to compute the rate of a discrete-time point process used to

Characterize the arrival times of the pitch pulse process. An overview of this approach is

presented here. The complete description was contained in the A ONR technical report,

M736-.

A common assumption of speech analysis is that a speech waveform can be modeled as the

output of a linear system driven by an approximately Gaussian noise part (for unvoiced speech)

plus a jump component, (periodic pukes for voiced speech). Typically, it is assumed that the

linear system used to model the vocal tract consists of an all-pole Alter (an autoregressive or AR

representation) whose coefficients are slowly time-varying. The all-pole model used to character-

ize the vocal tract and the mixed driving process (a white Gasian noise plus a puke process)

admits the representation

k A
it + E',,1-, - Ebinl.. + &SRI + 1 . (2.1)

where (I,) is the observed speech waveform, {ni} is a binary (0,1) sequence denoting the epochs

of the pitch pules, (vi) denotes a WGN process, and the coefficients *I and bi denote the model

coefficients. The estimation/dotection problem is to simultaneously estimate these coefficients

,,". "".



and to detect the occurrence of the pulses (i.e., to detect the events - 1). Standard least

squares techniques re used to estimate the Gi coefficients. The unique aspects of this analysis

consist of the approach used to detect the events a# - 1 and the joint estimation of the model

parameters and detection of the pulse input (excitation).

The estimation of the bi coefficients folows in a straightforward manner once the pulses

have been detected. The detection problem is rendered difficult by the absence of reliable

a priori information about the probability of the event a, - 1. The problem of binary detection

with unknown priors leads to the application of so-called decision-directed (DD) detectors. DD

detectors (DSj, (KD) use the results of the past decisions to estimate the rate (i.e., the a priori

probability) of the signal, which is used to adjust the parameters of the detector (assuming that

the previous decisions were correct). A method of dealing with nonstationary priors in a DD algo.

-. rithm was developed in ISMi. Specifically, the speech problem results in a pulse process that is

intermittent (present for voiced speech only), and, when present, is of a highly structured nature

(the pitch process exhibits a nearly periodic structure). An algorithm to simultaneously estimate

* the vocal tract parameters and to detect and estimate the pitch pulse waveform as well is

presented here.

% %% -.. . . ..... -,. .. 4 . .. ...-..... ;............. -...



-6-

3.2 DEIMION-DIRECTED DETECTOR

Consider a discrete-time point process (DTPP) (ng) for - 1,2,3,..., such that

Pr(n, 1 J B,-.) " 1 - Pr(n -0 1 B - X, (2.2)

where X, is the random rate of the process (in) sad Bi-, is the sigma Aeld generated by all the

factors that affect the probability of a pulse occurring at time 1-1. To simplify the development,

assume that the elect of the jump is restricted to isolated time points, bi . 0 for i > 0. The

prediction error process is £t.

, = Yg - if" Y, where Y, - Iu-,, t-I T  A - ad.. ,fh2.3)
The symbol ^ denotes the least squares estimate of the vector A. The detection problem is to

decide between the two hypotheses H0, noise only and H, pulse plus noise.

HI (2.4)

The Bayes decision rule with respect to ), is N,.

N I if (-),)(1, n,-O) < Xf ((, I ns-i)
N, - O, otherwise (2.5)

where f(' n4-0) ad f(I N -1) are the density functions of tg under hypotheses He sad H1 ,

respectively. The output of the detector is the sequence (Nj). Let Al denote the rate of N.

The philosophy of the DD approach is to estimate ), and to use this estimate for subsequent

operation. For the case where to -. N(0,1), the likelihood ratio test (LRT) of (2.5) assumes the

form

N , 0., < T( ) (2.6)

where To.) - b/2- Ilog X - log(-X)/ sad ); is an estimate of X,.

Suppose that the rate of N can be modeled as inite-state Markov chain with state vector

-i I,... , , where ,••p , < <p, with transition probabilities given by

-r( , - I a .- P,) - *,() (2.7)

with initial distributior i f. , I r where rj Pr(X ).

,. .-. ...- .............. ........ '.
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Define x, Izdt),..,z,()I' by

() -- , otherwise i -1,2...,m (2.8)

Thus, X - prxj. This formulation was first introduced by Segall [Sel. The vector x, can be

viewed as the state vector of a system obeying dynamics and observation equations of the form

XO++I - Q7xI + U1 (2.9)

N, -prx + E

where QS - (qj(8)). The processes {u,) and (Et) are Martingale Difference sequences with

respect to the family of sigma fields (B1) with B - (Nk,. . ., Njj, .•.. ,x+ 1).

A general estimator for this problem was developed in (Stj for the case where the transition

matrix, Qg, is not only time dependent, but is realization-dependent as well. Suppose the transi-

tion matrix is conditioned on F,, and admits the structure in (2.10).

(ui~tFj-), it N, - 1

,,(t) - I, (tF,,), if N, - 0 (2.10)

The matrices S - (*.jF.-)) and R, = {rij(1, l,..1)) thus define the dynamics of the Mar-

kov chain. Note that these matrices are conditioned on the past data, represented by Fl1 . The

estimator takes the form in (2.11).

Sjrdiap(p x,11. 1 - lpX1+111 M AlII_ 1 + P $T X11- -(PNIlf I- Ai"r'Xj1 1  - A X,11.. 1 _ Tx~~ _ rEl.' o (2.11)

A, - - (R, - s,) T disg(p)

The estimated rate is given by

II T I11 (2.12)

7 %A

.......... ....................... .. ..... .....
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2.3 APPLICATION TO PITCH DETECTION

Consider the waveform (el) defined by (2.3), and suppose that v, - N(0,1), b is a constant,

and (n4 ) is a DTPP that is pseudo-periodic, in the sense that, once a pulse occurs, the probability

of another pulse occurring soon is small, but increases as time progresses (an example of such a

process is the sequence of glottal pulses of voiced speech). Also, suppose that the repetition inter-

val (or pseudo-period) of this process may also be changing (e.g., as the pitch period is modulated,

as with a singing Yoke). The near periodicity of the signal may, however be directly incorporated

into the structure of the Qj matrix as introduced above. Define the elements of Q as follows:

I(J,,.,)+ Il - J(J,,o,)JZ ,(J,+ 11 J,), i - I, j - 1
l( 7,,ot in=l,j l

V-1, , ] + ]I i), i>1,
(J ,+](1*) , i-->l

q, (t) = II-I(J,.,,I V, =-'3,j--2 and (213)

,i-j+ 1,j>2 and
~i-mj-l,2 j <m

where io E (0, 1) is a constant;

fi. if J, <t < a,

0, otherwise (2.14)

is the indicator function;11 -,0,1 == 0,oterwise+ i~ (2.14)

JI"max N, -V. N. + 1, i< 2

is the last time (up to and including 1) that a pulse was detected; and

, 1 (2.16)
X, + ,

where the conditional expectation of the estimation error is

a.Er'( +  ) - prdiap(p) x,+Ij, - () 1 g (2.17)

9' -. ,""''''""" ""' - ".. .. '' i"''.. ." ' ,''- '."." ",-"". " , -" " " " "" ''' ''-.-.....,;'"''" -" - " .": .
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In addition to the estimation of the model parameters and the detection of the pitch epochs,

the speech analysis problem requires the estimation of the variance of the input noise process v1,

* 'and the tracking of slowly-varying model parameters. The pitch pulse is usually not of a single

4I sample time duration, but may persist for several sample times. Thus, the combined

estimation/detection estimator must be generalized to allow input noise variance estimation and

the estimation of composite pulses (i.e., pulses that persist for several time samples). The general-

ized algorithm is (2.18) where Y, and A are defined as in (2.3).

, = A, -+ P,Y, li, .I - y b (t -)N,_,] (2.18)

The matrix P, is given by

p, 1 p y pY_, J (2.19)
al 1P a,+ '1-l

The unnormalized intensity estimate of the composite pulse profile is

-() (S,) b,() (2.20)

S - S,_. + , I (et - (-I)N,.,) - S'l-I (2.21)

, b (t-1 + N, , - b ,(- (2.22)

asl

*. The parameters a,, a2. and as are the weighting factors for the model coefficients, the energy in

the deconvolved waveform, and the pulse intensity, respectively. The process Ng is given by

(2.5). Fig. 2.1 illustrates the block diagram of the joint estimation and excitation detection sys-

tem.

The operation of the system with these transition dynamics is essentially as follows. Once a

pulse is detected, the Markov chain is forced into its lowest state, pl; thus raising the threshold

and reducing the probability of false alarms over the interval immediately following the detection

of a pulse. Once the time interval a, - J, has elapsed, the Markov chain is restored to its state

at the time that the last pulse was detected. Fig. 2.2& illustrates the residual from the AR

.4t3::: ::::::::::::::: :::.::
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approximation and the adaptive threshold used to detect the pulses. Note that the residuals are

clearly non-gausuian. Fig. 2.2b shows the residuals after the detected pubes have been removed.

Fig. 2.2c shows the estimated pulse rate as defianed by (2.12). The dash line indicated the pulse

rate uncertainty as given by (2.17). The advantages of this procedure are: 1) the near-periodic

nature of the process may be explicitly modeled; and 2) the 'period" of the pulse train is adjusted

adaptively, and the probability of false alarms decreases as ol decreases.

The ability of this algorithm to track pitch period variation and detect unvoiced speech is

illustrated in Fig. 2.3. Fig. 2.3a is the beginning of the phrase * Thieves who rob .. ' . The

estimated pitch rate is shown in Fig. 2.3b; note the transition in pitch period and detection of

unvoiced regions. In this example the pitch puse was assumed to consist of three successive time

samples. The estimated weighting coefficients are illustrated in Fig. 2.4.

.--
"
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2.4 CONCLUSIONS

A new approach to the pitch detection problem of speech analysis has been presented. This
solution provides a mechanism to account for the structure of the pitch period, and thereby allows

a reduction in pitch detection errors (false alarm rate). The key feature of this procedure is a new

decision-directed algorithm that incorporates a finite-state Markov chain model for the rate of the

process, and provides an exact, recursive nonlinear estimator for the rate. The algorithm allows

the estimation of time-varying model parameters and the variance of the input WGN process.

The algorithm has been applied to samples of actual speech, and promising results have

been obtained. It should be emphasised that much more work must be performed in order to

validate this algorithm in actual speech analysis, but these preliminary results appear encourag-

ing.

A further description of this decision-directed method of estimating a joint noise and jump

process was presented in the first ONR project report, M736-1, Feb. 1983.

a,,,1
..V. 
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3. PITCH DETECTION BY LEAST SQUARES LATTICE

v -3.1 INTRODUCTION

A new method of pitch detection for speech has been developed that is based upon the

unnormalized pre-windowed least squares lattice algorithm. It is an extension of a previously stu-

died method JLI4 that involved the forward residuals and the so-called likelihood variable. By

incorporating information from the forward residual covarmance, well defined pitch pulse locations

are produced from which the period can easily be determined.

A well known pitch detection method (LPC-10) INSA! using the average magnitude

difference function is discussed in Section 3.2. The unnormalized pre-windowed least squares lat-

tice algorithm, which is fundamental to our approach, is summarized in Section 3.3. The new

method of pitch detection and the pitch variable is presented in Section 3.4. Simulation results

using sampled speech and comparisons are made with LPC-10 are in Section 3.5.

An efficient speech representation that captures the basic patterns in speech is essential for

speech transmission at low bit rates or for speech recognition. The most popular parametric

speech model consists of a linear filter with time varying coefficients driven by a time varying

excitatio process. The Linear Predictive Coding (LPC) [MGI, IRS1 model has an all pole filter

with regularly updated coefficients excited by either white noise or a periodic pulse sequence. The

fiter represents the time varying nature of the vocal tract. The filter parameters determine the

spectral characteristics of the resulting sound for both types of excitation. The periodic pulses

generate voiced sounds such as vowels while unvoiced or bis sounds are produced by the white

Ssnoise process. Thus, the important parameters of such a speech model are: (1) fiter coefficients,

(2) voiced or unvoiced decision, (3) period of the pitch pulses (if voiced), and (4) signal energy.

Based on the above parametric speech model, Fig. 3.1 displays the corresponding speech transmis-

sion system. The analysis component of the system determines the speech parameters which are

them encoded for transmission across the channel. At the receiver, a synthesis filter characterized

by the received coefficients is driven by the appropriate excitation process to generate a waveform

° -. * . *. . . .
:4.e e *OOvOe ,qs. m*, * ... .. ....... ...... •.... . ......... . ...
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which hopefully sounds like the original speech.

The temporal information carr.ed by the periodic pulses or the change from noise to pulses

is perceptually very important. The effect of errors in the excitation cause severe distortion in the

synthesized speech. Errors in estimating the filter coefficients cause changes in the spectrum of

the sound which tends to muffle the speech sound. Several techniques have been developed to

estimate the filter coefficients. Unfortunately, the periodic excitation component is the most

difficult to estimate. Our research activities in this area have been directed at better determina-

tion of the occurrence of pitch pulses.

3.2 STANDARD PITCH ESTIMATION TECHNIQUE

The pitch detection procedure used in LPC-10, the National Security Agency standard for

2400 bit per second speech transmission, was used as a benchmark for pitch period estimates, see

Fig. 3.2. The transmitter is comprised of the necessary components required to determine the

parameters of the above speech model. Note that the refection coefficients (RC), energy (RMS),

voiced/unvoiced (VUV) decision, and pitch for a segment of speech are encoded for transmission.

A speech segment is typically 180 samples (8000 Hz sampling rate).

The pitch information is obtained by a series of operations on the speech waveform as indi-

cated by Fig. 3.3. First, the speech is fltered by a low pas Butterworth filter (800 Hz

bandwidth). This output is then whitened by a low order adaptive inverse filter to remove the

speech formants. The average magnitude difference function (AMDF) of the resulting waveform

is then computed as in (3.1) where h is the low pas and inverse filtered speech and L is the

length of the speech segment [RSCFM.

"- -- (L-1),.. 0... (L-1) (3.1)

Deep nulls occur in F, at delays corresponding to the pitch period of a voiced sound having a

quasi-periodic structure. From this information, a pitch decision algorithm involving dynamic

programming determines the pitch period for the speech segment. The voiced/unvoiced decision

is made from a zero crossing analysis of the speech and the energy of the low pass fltered speech.

/:'.: .. . ...,... ... . .... :, .-... , • ..:. .,. .-, . ... . = ., . . . - ..;.-, .-...-.-. :,-.-
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3.3 PRE-WIDOWED LEAST SQUARES LATTICE

Since the pitch detection scheme utilizes parameters from the Least Squares Lattice estima.

tion algorithm, this algorithm will be briefly introduced here. The 'unnormalized" pre-windowed

least squares lattice algorithm [Leel was first derived from the well known multi-channel Levinson

(LWR) algorithm for stationary processes. A more complete description of recursive least squares

estimation is presented in [TJ. The LWR solution involves solving the so-called normal equations,

(3.2) recursively for the forward and backward predictor coefricients ej and b.

it.82 -II (3.2)b ,,0

The (ensemble) covariance matrix of the process is R and Rp' and R,' are the forward and back-

ward prediction error (i.e. residual) covariances. The forward and backward residuals e,,7 and

rpar are obtained from the predictor coerfcients and the process Y.

-P." m Mr + t 61 ITa 4 r- 5IT-# + bd P-p+ 1 (3.3)

In the derivation of the LWR algorithm, the mesa square prediction error is minimized or

.equivalently the following orthogonality property is satisfied at each order-update recursion (E

denotes expectation).

E(e,,.r P,)- 0 T-p < k _< T-1 (3.4)

When the desired filter order N is obtained, the recursions terminate resulting in only O(N') com-

putations compared to O(NO) required to simply invert R,.

It can be shown that the LWR algorithm leads naturally to a lattice filter structure that

computes the forward and backward residuals. However, the relection coefficients are faird

(time-independent) since the recursions are strictly an order-update solution for a stationary pro-

cen with known second order statistics R. As a consequence, the LWR lattice solution is inca.

pable of tracking statistical variations.

Z L. C On.a.L.
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C, .t

Consequently, the pre-windowed lattice algorithm was developed to track nonelationary

processes without any knowledge of the underlying statistics. Because the statistics are assumed

unknown, the sum of squared prediction errors weighted by X is minimized instead.

k=8

The exponential forgetting factor, ) (0<) _.1), permits more rapid tracking of statistical varia-

tions in the process. The resulting solution extends the LWR solution to include time-update

recursions so that the reflection coefficients become time varying in general.

In order to introduce the time-update expressions, subscript T has to be appended to the

coefficients to indicate that they are time-dependent. The forward and backward predictor

coefficients become a*. and b,,r. The sample covariance of the process, Rp,T is defined as in

(3.6).

i" 

l • • , ItT.

R.T - Y7Tr e.T where Y,.T - (3.6)0 O . v ,:-,

An ,uxiliary set of coefficients is necessary to facilitate the time-update expressions. The

particular quantity of interest is known as the likelihood variable, 7Y, r, and acts like an adaptive

weighting factor involving previous data.

S,.r =I .I - I R, UT' . .. T-, I (3.7)

The resulting algorithm is denoted pre-windowed since the data matrix (3.6) assumes that data

prior to Ma is exactly zero. Without going into the detaib of the derivation, we now discuss the
4

algorithm and the corresponding lattice structure of Fig. 3.4.

The input/output expressions for the forward and backward residuals of each lattice section

use K 1, . and K.,+ 1 ., the forward and backward reflection coefficients.

Se~, ,y" = ep. 7 - A'-'.r rp. 7 1  (3.8)

r, t,T-" -rX. Kg i,re,.r

The lattice structure and (3.8) follow directly from the LWR solution except that in this case, the

4 acoefficients are time dependent (denoted by the subscript T). The order-update expressions for

% %

a... 9.. 

~ m o . ps ,# s
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the forward and backward residual covariances also follow from the Levinson solution.

R;+ ,,r R;. r -K;,.r A,+ ,,r (3.9)
R p+ . -- R .r- K #+ ir &A + tr

The sample partial correlation coefficient (PARCOR) is the At :,r. When appropriately normal-

ized, the partial correlation coefficient becomes the reflection coefficients which have the desirable

numerical feature of being bounded by * 1.

K +l.7 - A,.r R,+ r K,+1 r - AP+ 1. R RP-j 1  (3.10)

Here R,-, and R-'1-1 are the matrix inverse of Rpr and R, .-. , respectively. The order-update

expressions for the covariances (3.9) are employed initially when the time index is not greater

than the desired filter length N.

The remaining recursions in the algorithm involve the likelihood variable and represent the

major difference between the LWR solution and the adaptive lattice solution. The PARCOR

variable can also be time-updated.

AP + - )6 AP+,.r-1 + Cep. rp, r 1 / (1 - I,-iT-1) (3.11)

When the time index exceeds the filter order, the covariances are time-updated instead as in

(3.12).

4 R;+i. r X R;+ i.,. 1 + e,'+ ,r 1(1 - 1,r.,) (3.12)

SR;+ ..- X R+1.7-1 + ,;, 1 /(. - ,r)

The likelihood variable is updated as in (3.13).

7, ,r inP-. r.+ rj r;y (3.13)

It can be shown that the range of 7,.r is between zero and one.

The complete set of order and time-update recursions of the unnormalized pre-windowed

adaptive lattice algorithm with exponential weighting are given by (3.8) to (3.13).

% %'~-' % ' % % . . ... . .

P e l
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3.4 PITCH DETECTION BASED ON LEAST SQUARES LATTICE

The method of pitch prediction is an extension of previous results ILMI obtained with the

unnormalized pre-windowed lattice algorithm of Section 3.3. This previously studied scheme util-

U'" ized information contained in the forward residuals and the likelihood variable to determine pitch

pulse locations in the speech waveform. The results were promising since well defined pitch pulses

could be identified. However, in addition to these desired pulses, spurious less dominant ones

were also present. Removing these from the waveform required a high degree of heuristic factors

that resulted in limited success.

The new method of pitch detection enhances the previous results by employing the forward

residual covariance. Consequently, more clearly defined pitch pulses can be obtained so that less

heuristic factors are required to identify the desired pulse locations. The significance of the lattice

. variables used in the pitch estimation process; forward residuals, likelihood variable, forward

residual covariance is discussed.

Forward Residualm

Consider a data sequence yk where the time index k ranges from a finite time in the past

(denoted zero) to the present time T. The pl order forward residual ep,T is then defined as the

difference between the actual value jt and a linear least squares estimate V rl r-i,r-p that

S.- involves only p previous data samples (yT-,.... T-).

ep -M r -Url r-i,r-p (3.14)

This estimate results from the projection of Ur on the space spanned by the p previous measure-

ments. The coefficients for a linear predictor are 4p.r,k.

U rT T-i.T-p ==- 
8 ,.T, lI-i (3.15)

Now, e,.7 represents the new information in yT that is not present in the p previous meas-

urements. As a result, it can provide information concerning waveform changes that may not be

as obvious in the original process. It is precisely this feature of the residuals that is important for

pitch detection. If one observes a voiced segment of speech, the quasi-periodic structure is easily

. . . . .. .* . %-' ' ,- ~., :...-.. ..... ,:%. .............- .. ...... . ,.... ... . ...... .... -.........
z- .0 ' or ." :,.e, , -" ,--"," .,- " ,-:,"' -"-"", ,"'"", , . :; """""" ;'""- ; " " : ' " " / ," - " '"'
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seen. However, it is difficult to consistently identify waveform locations from which to reliably

extract the pitch period. This occurs since there is a high degree of correlation between speech

samples IRSCFMI.

Since the residuals are a whitened form of the speech process, they provide more clearly

defined events from which to identify the pitch period. There is much other information con-

tained in the residuals, extraneous to pitch detection, that must be removed or masked. This

function is provided by the likelihood variable and the forward residual covariance. Since e,r is

not truely a whitened process, ie. innovations and since as much uncorrelation as possible is

required, only the highest order residual eNr is considered. The true innovations involve all past
S:.-

data, Uo, . . •, yT-1.

Likelihood Variable

The definition of the likelihood variable from (3.7) in terms of the sample covariance

Rp.T is (3.16).

_ _ T- R-T YT: where YTT [ r T -316)

For a (zero mean) Gaussian process, the p'5 order likelihood function is p(Y:T-,) whee Rp is

the ensemble covariance of the process.

"2. _ ! P(Yrr-,) - (2 71-p/2 I RP 1 -1/2 exp( -1/2 Yr:T.. 1~p' Yr:rp ) (3.17)

Thus 'p, called the likelihood variable is an estimate of the exponent of the likelihood function.

Although not obvious from this result, it has been shown (by simulation) that -pYr is a good indi-

cator of deviations from a Gaussian distribution ILM, ML]. This is of course desirable for pitch

detection since the speech model consists of a Gaussian component for unvoiced segments and a

non-Gaussian quasi-periodic component for voiced segments. Thus, sudden changes in - ,r

should indicate the onset of voiced segments in speech. In fact, simulation results show that ypr

does change significantly for voiced speech segments.

The likelihood variable detects general statistical deviations (see Section 3.5). Consequently

-.' 4other speech characteristics such as plosives, which are not quasi-periodic, are also detected by
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Nevertheless, promising results have been obtained by multiplying together the forward

residual signal and the derivative of 7t,r. Simulations have shown that much of the extraneous

information contained in the forward residuals is removed to expose well defined pulse locations

from which to identify the pitch period. However, as mentioned before, spurious pulses generally

*- remained which were then removed by a combination of thresholding and an exponentially decay-

ing function that basically extracts the largest peaks over the waveform. These heuristic methods

can be reduced by the enhanced pitch detection method. The new method which utilizes the for-

* ward residual covariance further reduces the occurrence of these spurious pulses

without thresholding.

The role of the forward residuals is important since y,.r corresponds precisely to their nor-

malized sum (squared).

7,,r- Rg,.p C T+ h-p (3.18)

Thus 'Y, r contains information from p measurements see (3.16). For the same reason that *N.r

is used, only the highest order quantity 7N v. is used for pitch detection; simulations have shown

that '7N T produces better results (than lower orders) - namely well defined pitch pulse locat s.

Forward Resldual Covarlawce

Recall the time-update expression for the forward residual covariance is (3.19).

R; ,.r - X R; .1r- + Cp ,T 1 1 - -1,.T-1) (3.19)

It is essentially the sum of the present and all previous (exponentially weighted) forward residuals

squared. Since, the effect of the initial order-update recursion becomes negligible, especially with

the exponential "forgetting" factor, X, the effect of the initial order-update (3.9) can be ignored.

Simulations indicate that the effect of 7p, r-i on R;,.T-1 is small and can be ignored.

r
- ,.r -- X er- k e,+.1, (3.20)

h-O

As a consequence of this lengthy memory, the covariance does not change signifcantly except for
,'V

,. .-.

• t .* '** ' * 4.
.

** . *. . * -*- .
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large (magnitude) increases in the residuals. This may occur, for example, when the variance of

the underlying process increases as in the case of voiced segments of speech. Furthermore, the

covariance does not change much for decreases in the residuals. The degree of change is affected

directly by the value of X, the memory factor in the algorithm.

This is a desirable feature, not shared by the likelihood variable, since the covariance can

detect a specific event of the waveform. Thus it beconv-s possible to consistently track recurring

-/i large-magnitude increases in the speech waveform. By further masking (multiplying time signals

together) the forward residuals with the derivative of the covariance, a single event in each period

of the voiced segment can then be emphasized and therefore be more easily detected. In fact,

simulation results show that employing the covariance does enhance significantly the pitch pulse

locations. Consequently, the need for thresholding is reduced and windowing can be used instead

of an exponentially decaying function.

Simulation results also show that the highest order covariance Rk.r provides better results

than lower orders; this appears to be related to the reduced correlation of the forward residuals

,-,. N. Y.

Method ot Pitch Detection

The fundamental concepts underlying the new method of pitch detection have now been dis-

cussed. Those concepts can be combined into a single pitch detection variable. Recall that the

likelihood variable detects changes in the process statistics. Consequently, it's derivative (i.e. irst

order time difference) indicates the intensity of those changes.

fYN.T - 'IN.T - 7NT-1 (3.21)

If the forward residuals are multiplied by (3.21), then statistical changes in the process can be

emphasized. However, since (3.21) detects more events than that required for pitch detection, the

residuals are multiplied by the derivative of the forward residual covariance.

ERNT - RmT - R,.T.71  (3.22)

This will then emphasize only those statistical changes that also include an increase in variance.

Thus the complete pitch detection variable, denoted UN., is (3.23).

% .... . . . ..... , ............ .. .................... ..... .... , ........... . . ... .. ............. ... ,



qN. - POS ( ei.r &Y.Nr 6Rk.r ( (3.23)
where POS simply retains positive results of the quantity in parentheses.

Equation (3.22) clearly indicates a specific event in each period of a voiced speech

waveform, see Section 3.5. For unvoiced speech, pitch pulses are not produced by (3.22) so that

the need for separate voiced/unvoiced decision logic is eliminated. A summary of the (scalar

case) pre-windowed lattice algorithm with (3.20) to (3.23) incorporated follows on the next page.

..,
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* SUM-MARY s PITCH DETECTION VARIABLE

UNNORMAIZED PRE-WINDO WED LATTICE ALGORITHM

Initialiation:

R~ Ro - aPriori estimate N lter oder

For each observation YT, T 2!O:

9%7y to.T m 7-jT = O Ro*,y- Rs.7-X R,.. 1 + yT y?

For 0O.... min (N,T) -1:

*A, 4  , \ ). + A,4 .- 1 + ep, tp-,1( -IP171

7P. T -i r.., + rp!: / R;, r

6,41.? - e,,r - Kp?1* iT ,,r-i r,+ i.7 r r, 7 - K#+ , r ep, r

If T <N then:

-s,1 R;* 7r - K,'4 i,7rap A, 1 r

p1 .? r R. - K'+ i r&p , 1 . 7

Else:

Rp R; 1.7 - X Rp',1 .,T1 + 6P2jy/(1 -i,r-,)

P. Rp+1 ; 1.,7-1 + t, 1. r T 7,)

7TN.7 m 7N-I.T - A7 /RN,?

67N, 7 - v T, - 7'T.T-1 ORt~ r R, RI

'iN.r POS 46Rkjr 6'7Nv, eN7)

es



3.6 SPEECH DATA RESULTS

Some simulation results obtained with the new pitch detection approach using the variable

qiN, r are presented. The following phonetically balanced sentences, developed by the Advanced

Research Projects Agency (DARPA), were studied.

File 1: 'cats and dop each hate the other' ; male speaker

File 2: 'the pipe began to rust while new' ; female speaker

Both sentences were sampled at 8000 Hz. with 16-bit integer quantization. The analysis lattice

employed in the simulations had the following parameter specifcations; RO',1 - R' ,I - 100,000,

S.99, and N - 10. This value of X corresponds essentially to a window length of 100 samples

which greatly exceeds the filter length N used.

File 1

The speech waveform of File 1 is shown in Fig. 3.5. The voiced segments are clearly visible

as those areas of (relatively) large magnitude. The first 2000 samples of this sentence which

corresponds to the word 'cats' is examined in detail. The consonant 'c' is visible beginning at

about sample 300 while the onset of the vowel 'a' occurs near sample 700, see Fig. 3.6. The

unvoiced letters 'ts' are not visible in this plot. The segment of interest for pitch detection is the

vowel /a/ since it corresponds to a quasi-periodic voiced segment of speech. The goal is to

extract the pitch information from this segment. The variables used in qN, T are shown separately

then the full pitch estimate.

The ten reflection coefficients KN r are shown in Fig. 3.7. This combined reflection

coefficient KN. r corresponds to SIGN ( K, 7 KjI ) where SIGN simply applies the sign of Kk.r

(which is the same as Kkr - see (3.10)) to the product in parentheses. A sudden change occurs in

all coefficients at the location of 'c' which is due to a change in the likelihood variable "TN.r

(caused by a change in the process statistics), whose influence on KMr is through (3.10)-(3.12).

The periodic structure of the coefficient waveforms is caused precisely by the periodic nature of
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the voiced segment 'a'. In fact, this periodicity appears in all lattice variables, which is not

surprising since they each contain some combination of the forward residuals.

The forward residual eNr is shown in Fig. 3.8 and its covariance Rky in Fig. 3.9. Both of

* these variables appear in the pitch detection variable f1N,.. We observe that eN.r does

correspond to a partially "whitened" version of the speech waveform of Fig. 3.6. CeTtain events

are emphasized more than others so that the periodic structure is well defined. It is this result

that permits clearly defined pitch pulses to be exposed when 5 NTr is appropriately masked by

67N,r and 6Rk. r . From the covariance waveform, the periodic structure consists of very abrupt

increases and exponentially decaying decreases (due to X). In addition, 'c' produces very little

change in the waveform which is desirable for pitch detection. Both of these results are of course

due to variance changes occurring in the original speech waveform.

The likelihood variable -INr waveform is displayed in Fig. 3.10. It is seen that both 'c' and

'a' significantly affect YIN, r or, in other words, 7N.T detects (equally well) both types of statistical

variations; the onset of the unvoiced plosive 'c' and the voiced vowel 'a'. This is desirable for
-'I,

pitch detection but, as mentioned previously in Section 4, there is in a sense more information

than necessary.

Next, &IN,r and 6R,r are presented in Figs. 3.11 and 3.12, respectively. As expected from

Fig. 3.9, the dominant pulses of 6Rr.r are positive and little emphasis is placed on 'c'; such is not

the case with 67N.T However, when the forward residuals are masked by these quantities, well

defined pitch pulse locations are obtained with relatively few spurious pulses as indicated in Figs.

3.13 and 3.14. Fig. 3.15 shows further improvement when 6 7Nr masks 6RNr, but even better

results are obtained when both &IN,r and 6R',T mask the forward residual eN r as shown in Fig.

3.16.

.". A more detailed look at qN.T for samples 1000 - 1400 shows the quasi-periodic structure of

'', Fig. 3.17. Note that the less dominant pulses in any period of qNN (if they exist) tend to

cluster about the desired dominant pitch pulse locations. Hence the need for thresholding is

reduced since windowing can be used to extract a pitch pulse location centered near the cluster.

-AN
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For comparison with pitch resul obtained with LPC-10, Fig. 3.18 displays a portion of VN.r

(samples 00 - 1800). The upper row of numbers corresponds to the pitch periods obtained with
•q9

the new method and the lower row contains those determined by the LPC-10 algorithm; the dot-

ted lines indicate the boundaries of the 180 sample frames for which the LPC-10 pitch periods

were obtained. The new method using VN.r provides results comparable to those of the NSA

standard.

The words 'and dogs' (samples 3000 - 5000), from the same sentence (File 1), shown in Fig.

3.19 were also analyzed. The onset of 'a' is visible at about sample 3200 with 'o' beginning at
about 4600; the highly sinusoidal structure of the nasal 'rn' nges from 3500 to 4600 and the two

consonants 'd' actually occur as one at about sample 4500 ('p' is not visible in this plot). Here

the q11Nr does not produce (significant) pitch pulses for much of the highly sinusoidal structure of

the nasal 'n', see Fig. 3.20. However, by examining more closely the range 3600 - 4400 and by

changing scales, pitch pulse locations are indeed present, Fig. 3.21. Thus increased dynamic

range results from the new pitch detection method which is a direct consequence of the product

£N. T 67N. T 6R,T. This result is in a sense a trade-off required to obtain such well-defined pitch

pulses. Nevertheless this effect is not a problem since pitch pulse locations can be determined on

a local basis by windowing (e.g. 50 - 200 samples) so that the range of 1N,T over a window length

is relatively small.

File 2

The pitch period of female speakers is typically less than that of male speakers so that it is

generally more dificult to consistently determine. From the second sentence, the onset of the

word 'while' is displayed in Fig. 3.22. The consonants 'wh' are barely noticeable so that the onset

of the vowel T occurs almost immediately at sample 1700. Good results are obtained with 7 N T,

Fig. 3.23 and 3.24. The results concur with those of LPC-10, see Fig. 3.25.

._9
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8.6 CONCLUSIONS

As a consequence of the lattice 1ilter algorithm, the information needed to compute the

pitch period i available at each time instant. On-line pitch detection is therefore possible and

moreover additional parallel processing is not needed to determine pitch pulse locations. That is,

the recursions required to compute the reflection coefficients that characterize the parametric

speech model also compute simultaneuooly the pitch variable. Furthermore, the voiced/unvoiced

decision is inherent in the masking technique; either a pitch pulse is present (voiced) or it is not

(unvoiced).

As an extension of previous results using the likelihood variable, the new method minimizes

the need for thresholding since more distinct pitch pulses are generated. As a consequence of this,

the exponentially decaying function used to determine the period can be replaced by a simpler

windowing technique.
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4. RESEARCH ON RECOGNITION OF STOP CONSONANTS

4.1 INTRODUCTION

Current speech recognition techniques can accurately determine the vowels within a particu-

lar word since vowels are of relatively long duration and change character slowly. Within the

.) class of consonants, the stop consonants are hard to distinguish due to their short duration and

transient nature. In order to recognize these transitional sounds, an estimation technique that can

track the changes is necessary. The approach presented here utilized the recursive exact least

square lattice estimation algorithm to determine an autoregressive model (hence a spectral

representation) of the speech. This recursive algorithm updates its representation at every speech

sample using exponentially weighted past data. Thus it is possible to track the spectral changes

in the speech without much time smearing. The experiments performed here on natural speech

data were motivated by an attempt to better characterize the fast transitions that occur in stop

consonants. A representation based on trajectories of appropriate speech parameters was

developed and analyzed.

The region of first and second formant (spectral peak) where each vowel typically occurs

was determined by Peterson and Barney IPB]. Diphthongs follow a trajectory within a known

region between the vowels. The current understanding of speech perception has not clearly

identified whether spectral characteristics are sufficient to distinguish transient consonants such as

stops. If the parameterization for stops was dependent on the following (preceding) vowel, the

task of automatic speech recognition would be more difficult. The results of Stevens and Blum-
4q4

stein IBSI indicate that the place of articulation for stop consonants is cued by spectral properties

in the 10 to 20 milliseconds period initiated by the burst onset. Their studies indicate that the

spectral properties of this short time interval appear to be invariant of the following vowel. This

burst onset of the stops lasts less than 160 speech samples at an 8 kHz. sampling rate. Once the

formant transition has started, the transition is dependent on the following vowel but can be used

as a context dependent cue for determination of the consonant, if the voicing condition is already
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known. Fast estimation techniques are necessary to determine the speech spectra over such a

short time interval.

The fast recursive exact least square lattice algorithm developed by Morf et al. ILMI esti-

mates the signal spectral by fitting an autoregressive model. By determining a new estimate for

every speech sample using an exponential weighting of past data allows the estimates to keep up

with the short time signal characteristics. Section 4.2 describes the recursive lattice estimation

algorithm. This algorithm was applied to natural speech words from a set of Diagnostic Rhyme

Test word. The voiced stops /b/, /d/ and /g/ followed by various vowels, spoken by a single

male speaker were examined in detail.

The process of clustering observations should be insensitive to a transformation of variables

provided the distance metric is appropriately changed. Thus a clustering in the space of reflection

coeficients with a suitable metric is equivalent to frequency domain clustering. The technique

called Vector Quantization (VQ) was used in this study to perform the clustering of parameters.

The standard VQ algorithm is presented in Section 4.3. Experiments applying the technique of

vector quantization, appropriately modified, have determined a suitable parameterization for dis-

tinguishing the stop consonants. These modifications to the standard VQ technique are discussed

in Sections 4.6 and 4.7.

Section 4.4 discusses the results of applying the standard VQ method to consonant-vowel

words. Section 4.5 looks at the differences in the same vowel spoken in different words. Section

4.6 introduces an augmented parameterization that includes information about reflection

coefficient trajectories that can assist in classifying stop consonants. Section 4.7 presents a new

Classified Vector Quantization method and its application to consonant-vowel words. Section 4.8

summarizes the results of our procedure to recognize the voiced stops, /b/, /d/, /g/. A summary

and discussion of future research is in Section 4.9.

i.%
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4.2 RECURSIVE LATTICE ESTIMATION ALGORITHM

An alternative parameterization of an autoregressive model is in terms of reflection

coefficients {pi), in the lattice filter structure. The lattice structure can be related to the transfer

function of an acoustical tube formed from connected cylinders of differing diameters. The propa.

gation of acoustic waves down the tube experiences reflections and transmissions at each discon-

tinuity. The reflection coefficients of the lattice filter structure can be related to the signal propa-

gation across a discontinuity in the acoustic tube model. Furthermore, the reflection coefficients

can be interpreted as correlation coefficients between the signals in the two paths of the lattice

structure. Thus the process of estimating reflection coefficients is similar to orthogonalizing the

observed signal with respect to its delayed version. This is one reason why spectral estimation by

reflection coefficients has been shown to adapt quickly. These techniques have been used success-

fully in speech analysis and synthesis, fast adaptive equalization and spectral estimation.

-. Recently developed techniques by Morf et al. JLMI recursively update reflection coefficient

.4 estimates as new data samples are observed with exponential decay of past data. This algorithm

* solves for the exact least squares fit to the observed data. The square root normalized algorithm,

(4.1), has a very compact notation and normalizes all signals to unit variance at each stage. The

response of this algorithm to synthetic signals with time varying characteristics and to speech

phrases was first studies in [MLj.

-V'l' ' ., r - P.0+ .+., T-1 (4.1)

- 170,T-i - Pe+ I,T.VS,

The tracking ability of the algorithm can be seen from the first four reflection coefficients

computed from the first 40 ms. of 'did' and 'bid', see Fig. 4.1. The burst of the /d/ or /b/ and

the transition to the steady vowel /i/ is seen in the time waveform. The pitch pulses cause

momentary fluctuations in the coefficient values. The initial trajectories of the reflection
%

• 4 • " " ' " " e - " . " • " ' " ' ' " " ' " " - , " , ' - " " - " - d / , ' " .' .
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coefficients are seen to be different, particularly at higher than first order. Yet they all converge

to similar values after the onset burst as the vowel sound stabilizes. Note that the vowel oscilla-

tion commences at about the same time in both words. The rise of the rst reflection coefficient

is different during the burst onset. The second reflection coefficient is more steady in 'b' and

changes suddenly at the beginning of voicing oscillation. The third and fourth coefficients have

different values for the different stop consonants. Certain similarities were noted in the reflection

coefficient trajectories for all the trial words starting with 'b', and likewise for 'd'. The reflection

coefficients determine a spectral representation so the formants (spectral peaks) can be estimated.

The second formant illustrates a rising trend for 'b' with less of a change for 'd'. The acoustic

models for the stop consonants differentiate each by the slope of the second formant.

% '

*.

i

"--'-*-,% "* ', -~~~~~~~~~~. .. .........- ....... '--.-' . '.... ..-.. .... . .. ,,.,, L.,,.
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4.3 VECTOR QUANTIZATION

Vector quantizers have been used for waveform and voice coding systems. Our application

of the vector quantization technique is to perform a clustering of speech sounds into categories

that can be identified with vowels and consonants. First the general framework of Vector Quanti-

zation is presented. A vector quantizer maps input vectors drawn from the M-dimensional

Euclidean space RM into a finite set (codebook) of reproduction vectors (codewords) contained in

the space RK. A vector quantizer (VQ) is described by the input vector dimension (M), the

reproduction vector dimension (K), the number of reproduction vectors (N), the set of reproduc-

tion vectors C - {1, i - 1,2, • • • N), and the mapping of the input space into the set of repro-

duction vectors W(x). In our studies the reproduction vector is of the same dimension as the input

vector, M m K.

A VQ used to compression speech for tra,.smission requires two functional blocks: an

encoder, which views the input vector x and generates the index of the reproduction vector

specified by 4(x); and a decoder, which uses this index to generate the reproduction vector i. A

* VQ can be used to communicate over a digital channel by placing the encoder at the transmitter

and the decoder at the receiver and sending the index of the codeword across the channel. For

speech compression, each input LPC vector is mapped into a codeword of log2N bits per vector.

The bit rate is log 2N bits times the rate of generation of LPC vectors. As the bits per vector

increases, the codebook size grows exponentially requiring a similar increase in computational

effort and storage at both the encoder and decoder. The decoder stores the codebook and per.

forms the simple task of looking up the reproduction vector indexed by the encoder. The encoder

has the more complicated task of partitioning the input space into a collection of bins according

to 4(x), one bin for each reproduction vector in the codebook, and determining in which bin an

input vector is contained.

Y we define a distortion measure d(x;*) which represents the penalty or cost associated with

reproducing a vector x by 1, then the best mapping 4(x) is the one which selects as the reproduc-

tion vector for x the codeword A, that minimizes d(x;*). With such a minimum distortion or

.............................................................. .......... "-............".
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nearest neighbor mapping, the encoder operates by computing d(x;i) for i- 1,2, • • • N, and

then selecting the value of i (by a full search) for which d(x;1i) is minimized. This implies that

the bin associated with a particular codeword £t is the set of input vectors for which 2i is the

minimum distortion codeword.

Vector quantization applied to LPC voice coders is used to encode and decode the autore-

gressive model generated by an LPC analysis of a speech frame. (The coding of the excitation

parameters is not considered here.) The LPC speech model is shown in (4.2).

V/(1 + sGZC1 + a2z-' "" + az-') - qlA(z) (4.2)

The order p used here is 10. Once the model parameters (, al, a2, " " * a,) have been obtained,

they are coded by means of vector quantization. The input vector x to the VQ is the vector

[a aI &2 . ajr of model parameters. Each codeword is a vector Iij &., .i" IT that

represents a reproduction model (4.3).

a,/(i+ iijZ-i + i.2Z-2 + i,.,zr) - &440,(z) (4.3)

The distortion measure chosen for LPC vocoding is the modified Itakura-Saito distortion. It

can be regarded as a measure of the dissimilarity between the power spectrum I a/A (eis) 1 of the

input model and the power spectrum j &/A (ej) 12 of the reproduction model. For this case of

antoregressive models, the distortion can be expressed as

,* i.rR(x ,~
* d(xz*) = ' C " + ln& - lno 2 - 1 , (4.4)

where i, is the vector I1 d,' " a.. 6,.P r and R(x) is a p+ 1 by p+ 1 Toeplitz correlation

* matrix with elements (r,(k-j), kj - 0, 1, p.

(4.5
',.) - tiU /A (ei*)12.J5*--U (4.6)

Since the last two terms in (4.4) do not depend on A,, they can be ignored when finding the

nearest neighbor of an input vector. Thus the encoding can be performed by computing

A£1R(x)$1 /&2+ lna& for each i 1,2, • • N and picking the codeword that minimizes this quan-

.. , .- ... ,,,-. . ..'.. -..- '.%............................-.--..-...".."'.......". .':.':+-. ....-...... ".. + ." " - "-"... .--



tity. This quantity can be efficiently computed in the following manner.

(rt(O)r.,(O)+ 2 1 r,(m)r,,(m)j/+ 1n0; (4.6)

m-0

Since the computation of distortion between an input vector and each reproduction vector,

d(x;i,) must be calculated often, (4.6) is used to speed up the computations. Thus the codewords

are stored as the following p+ 2 scalar quantities.

r,,(O)/& , 2r,,(l)/e4, 2r,(2)/&? , ... , 2rt(p)/(4, ln. (4.7)

The standard VQ algorithm proceeds by performing the following operations for every vec-

tor in the training sequence, see Fig. 4.2. First, find the codeword that is closest to each input

vector and compute the average IS distortion for all of the data. Second, for all the input vectors

. .. that are encoded into a particular codeword, compute the centroid of the region and define it as

the new codeword. If the decrease in distortion is above a threshold, repeat the process again on

: all of the training sequence. Otherwise, if the size of the codebook is below the desired number,

then generate additional codewords as perturbed versions of existing codewords.

APPLICATION TO SPEECH RECOGNITION

For the speech recognition task, the VQ technique is used to cluster the LPC speech models

into a few characteristic types. The use of the Itakura-Saito distortion measure provides a means

to cluster observed LPC models based on the distance between their spectra. After establishing

the VQ codebook on a training set, an unknown observation can be encoded so its closeness (dis-

tortion) to each codeword can be determined.

The LPC modeb used in this study are parameterized by reflection coefficients rather that

predictor coefficients as in (4.2). The recursive lattice estimation technique was used to determine
4/

a new LPC model for every speech sample rather than the common approach of once every 128 to

256 samples. The efficient computation of the IS distortion measure (4.6) uses the speech correla-

tion function. The reflection coefficients can be transformed into a normalized correlation

• % -C * . . . . . . . . . . . . .. .

in % .P , ',,4.' . ,,, • " . , , .,' ", , "•. " ~:f~ . L • " ~ . . . * .- . .• . ... . - . . . . . . " .- .-



sequence, instead of using (4.5).

The process of encoding a speech sequence once codewords have been established proceeds

in the following manner.

(i) Recursive lattice algorithm is applied to the speech sequence. Each speech sample gen-

crates a set of reflection coefficients, {kj,k 2,...,kjo).

(ii) The reflection coefficients are transformed into the normalized correlations {r8 (1),...,r 5 (10)).
10

* (iii) Calculate a9 - fJ(-kj2 ).

.j11

• .. (iv) The input vector x becomes (1n9 ,1,r,(l),....(I0)).

(v) For each codeword, the distortion (4.6) is computed using x and the codeword description
*4. 

.
(4.7).

'. (vi) The codeword with the lowest distortion is the reproduction vector 1i and is associated with

that speech sample.

.1°7

-I
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4.4 ANALYSIS OF ENTIRE WORDS

In order to better understand the effect of the lattice VQ on spoken words, our studies
. a

began by examining entire words. The square root normalized recursive least square lattice algo.

, rithm was applied to the speech signal. A short time constant, X=159/160 was used to track the

fast variations in the speech waveform, particularly during the stop consonant portion. A set of

ten reflection coefficients were determined for every speech sample. The reflection coefficients

were transformed into normalized correlation coefficients of order ten so that the standard VQ

algorithm could be used to obtain the codewords. The results of studying the two words 'bad'

and 'bat' are presented in this section. Each word was sampled at 8 Khz. and converted to a 12

bit integer. The duration of each word was more than 4500 samples so that more than 4500 vec-

tori were used in the determination of the codebook. This is contrary to the standard LPC

method of determining a single speech model vector for blocks of 128 to 256 speech samples.

The standard VQ approach uses the Itakura-Saito distortion measure to indicate how well

the codewords fit the input data. Another distortion measure was used to compare codewords.

The difference between the log of the spectra associated with the codewords was computed, called

the spectral difference measure. The limit of perceptual difference in two (autoregressive) spectra

was determined for subjective studies to be 2 db spectral difference.

The standard VQ algorithm was used to find codebooks of size four and eight for the entire

word, 'bad' and 'bat'. When four codewords were used, the word 'bad' was encoded into these

codewords as shown in Fig. 4.3. This figure shows which codeword was chosen (vertical axis) for

each time sample (horizontal axis). From Fig. 4.3 and 4.4, the speech waveform and the VQ par-

tition can be compared. Generally, there were two codewords for the vowel /a/, the other two

representing the other parts of the words. No codeword was determined that represented the stop

consonant /b/. Here the codewords could not be used to distinguish the silence, the first stop

consonant, the vowel, or the final consonant. For these four codewords, the itakurs-Saito distor-

tions were .165 and .170, respectively and the difference between codewords are all greater than 3

db, so the four codewords are distinct.

b,''.-% .,--,. ... ,-,,-. ,.-.....,-. ..-.. i.. .. _............... ..... ........... .-... .
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When eight codewords were determined, the vowel part was more accurately determined but

again a clear identification of the silence and the consonant were not make. The distributions of

codewords, Fig. 4.6 and 4.6 show that three codewords represented the different stages of the

vowel. In Fig. 4.5 for the words 'bad', codewords one and five are used alternatively during the

vowel. This happens because these codewords are only 2.1 db spectral difference apart and hence

not perceptually distinguishable entities. Similarly codewords three and seven are 2.3 db apart.

Thus although the IS distortion for 'bad' has dropped to .099 for eight codewords from .165, the

additional codewords try to refined the specification of the vowel rather than distinguish other

parts of the words. The spectral differences between the codewords is given in Table 1.

From the above experiments, we could not determine the codewords for the various parts of

the words. Therefore, the steady state vowel part was extracted from each word and studied

separately.

41
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.000 3. 977 4.385 6. 770 2. 153 3. 890 5. 347 5. 500

3. 977 . 000 3. 649 8, 047 3.645 5.261 3. 932 6. 891

4.385 3,649 .000 9,563 5.322 7.423 2.353 8.321

6.770 8.047 9.563 .000 6.015 6.559 10.319 3.376

2.153 3.645 5.322 6.015 .000 3.453 5. 23 5.403

3. 880 5. 261 7. 423 6. 59 3. 453 .000 7. 954 4. 906

5. 347 3. 932 2. 353 10. 319 5. 823 7. 954 ,000 9. 277

3.500 6.891 8.231 3.376 5.403 4.806 9.277 .000

spectral differences (db) of 8 codewords for /bad/

.000 8.381 5.954 9.669 3.591 7.109 6.439 10. 039

8.381 •000 .196 ;2.609 7.264 3.008 4.150 4.317

5.954 5.196 .000 6.804 5.908 3.142 4.018 7.722

9.669 2.609 6.904 .000 7.773 4.933 4.357 1.966

3. 591 7. 264 5. 908 7. 773 . 000 6.740 4. 700 7. 661

7. 109 3. 008 3. 142 4.933 6. 740 . 000 4.356 6.252

6.439 4.150 4.018 4.357 4.700 4.356 .000 4.533

10.039 4.317 7.722 1.966 7.661 6.252 4.533 .000

spectral differences (db) of 8 codewords for /bat/

Table I

d
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4.5 ANALYSIS OF VOWELS

Since the vowels dominated the previous experiments, the steady state vowel parts of

several different words were studied to find the general codewords representing the vowels. From

the words, 'bad', 'bat' and 'gat' the steady state vowel portions were extracted for a training

sequence to generate a codebook for the vowel /a/. Similarly the steady state parts in the words

'bid', 'bit', 'did', 'dip' was used for the vowel /i/ and 'boast', 'bowl', 'dole', and 'ghost' was used

for the vowel /o/. When only one codewords was determined for each vowel, the codewords were

surprisingly similar. Table 2 shows that the codewords for different vowels differ between 3 and

4.4 db. For words containing the same vowel, the codewords for the same vowel sometimes

differed as much as the difference between //, /o/ and /i/ in Table 2.

TABLE 2: Spectral difference between vowels

Codeword /a/ /o/ Il

/a/ 0.00 4.39 3.29

/o/ 4.39 0.00 3.00

/i/ 3.29 3.00 0.00

When four codewords were used for the steady state part of the vowels, the codewords for

the same vowel in different words were often different, see Fig. 4.7, 4.8 and 4.9. Often a vowel

was split into two codewords, one for the beginning and another for the end. For /i/, the begin-

ning of the vowel is represented by codewords 3 and 4, and the end of the vowel is codewords I

and 2. Some of the four codewords were quite similar, for example in /o/ codewords I and 2 and

codewords 2 and 4 are less than 2 db apart, see Fig. 4.9. When eight codewords were used for the

/a/ vowel, many of them were very similar, see Table 3, therefore it is appropriate to use four

codewords to represent different stages of the same vowel.
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.000 1.660 2.508 2.989 &

1.660 .000 3.673 1.88

N- 2. 508 3. 673 .000 4. 064

2.989 1. 6e8 4.064 .000

4.00 spectral differences

3.00

-' ,# 2.00

! .00
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Figure 4.9

.000 2. 69 2. e53 2.4- .78 2.078 2638 3 424

2.369 -.003 3.743 3.458 P. 7?5 1.607 3.583 3.56

2.853 3. 743 .000 3.310 2.557 3.085 1.039 3.450

2.468 3.458 3.310 *00 1.610 2.643 3.178 2.783

1.718 2.795 2.557 1.610 .000 2.304 2.707 2.902

2. 078 1. 607 3. 035 2.643 2.304 .000 2. 839 3. 139

2.638 3. 533 1. 039 3. 178 2. 707 2.939 .000 3. 585

3. 424 3. 545 3. 450O 2. 783 2. 902 3. 135 3. 585 . C00

spectral differences (db) of 8 codewords for /a/

Table 3
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These codebooks for the respective vowels were tested to see if they could distinguish the

correct vowel. When the training sequences of the vowels was encode by each codebooks, a IS

distortion was determined, see Table 4. The IS distortion for a vowel codebook on the wrong

vowel was at least four times higher than for the correct vowel. Therefore, it is not very difficult

to distinguish the vowel in each word using the standard VQ technique.

TABLE 4: Itakura-Saito distortion between vowels

Vowel /a/ /o/ /i/

codebook /a/ .058 .460 .340

codebook /o/ .418 .062 .490

codebook /i/ .365 .447 .082

P

4.

.4
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4.6 MODIFIED VQ WITH TRAJECTORY INFORMATION

From the previous results, the vowels are not hard to distinguish because they are relatively

stationary and of long duration. However, the stop consonants (like 'b', 'd' and 'g') are transient

in nature and are of short duration, typically less than 20 ms. (160 samples). Using a LPC based

VQ system that determines speech model parameters every 128 (to 256) samples would not yield

enough information to identify these very short sounds. From studies in acoustic phonetics, it is

known that the formant trajectories of these consonants follow different paths. If the parameteri-

zation used to represent speech sounds included information about formant trajectories, these

transitional sounds would be easier to identify. As seen in Section 3, the trajectories of the

reflection coefficients were different for the beginnings of the words 'did' and 'bid'. A steep

change occurred during the initial consonant while during the steady state vowel, very slowly

4changing coefficients resulted. By incorporating this trajectory information in the speech parame-

terization, recognition of transitional sounds should be improved.

The trajectory of a reflection coefficient was determined as a smoothed derivative. During

the vowels, the reflection coefficients had a ripple due to the pitch period. This ripple in the oth-

erwise steady reflection coefficient values had an undesirable influence in the modified VQ

approach. Thus a linear approximation over 15 sample points to the derivative of the reflection

coefficients was used for the trajectory information. The fluctuations due to the influence of the

pitch were smoothed out. The trajectories of the Irst and second order reflection coefficients,

denoted Ak, appeared to be the most indicative of changing signal characteristics so they were

included in the modified VQ technique. The standard VQ algorithm of Section 3 was modified so

that the codewords consist of two parts; the original correlation coefficients and the trajectory of

the reflection coefficients. The distortion measure used for the spectrum part in the modified VQ

was still the IS distortion. The Euclidean norm was used as the distortion measure for the two

reflection coefficient trajectories. The total distortion was the weighted sum of the IS distortion

and the Euclidean norm of the trajectories. The centroid (dki) was calculated as the averages of

the reflection coefficient trajectories. A weighting factor for the Euclidean norm was used to bal-
.'

. .. . - . . . . . - . . '..... .o.. . . . .- . ..- . 'J +.

. • • • _ , . • % , • • • . . . .. . . . . . .,. • • o • . . + -*... . - - 4.
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ance the two distortion measures. This factor is the ratio of the minimum IS distortion (M) to

twice the variance of the reflection coefficient trajectories (D).

MODIFIED VQ ALGORITHM

N = number of the input samples

Aki(n) = reflection coefficient trajectory at sample n

dki = codeword for reflection coefficient trajectories

IS - Itakura-Saito distortion

M = minimum IS distortion

Di = variance of reflection coefficient trajectories

INITIALIZING: dk= 0 dk2  0 M = 0

= N
Di N it== j(n i-,

ENCODING: choose the codeword that minimizes the total distortion

total distortion -IS+ 2DZ Akl-dkly+ 21D72 k2-dk2)

UPDATING: D, == -l (Aki-dk2)

fM - min IS distortion

avgdist(dki) -K- Aidi
total distortion = min IS+ -Lavdist(dk1 )+ 2aV di1(dk2)

.0...2 2~agitd 2

NEW CODEWORDS: compute the centroids of the standard VQ parameters and Ak,

TESTING: if relative decrease of distortion : threshold : go to splitting

else : go to encoding

SPLITTING: if number of codewords - size of codebook : stop

else : split codewords

go to encoding

% %
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The modified VQ approach was first applied to simulated data that represent the ideal

acoustical models of the stop consonants. The simulation of the sound 'ba' had two poles (750 Hz

and 1600 Hz) for the steady state vowel while the first formant went from 200 Hz to 750 Hz and

the second formant went from 1400 Hz to 1600 Hz in the first 20 ms (160 samples) of the transi-

tional part. The reflection coefficient trajectories were approximately constant in the transition

region and zero in the steady state region. The reflection coefficients of fourth order were com-

puted from the simulated data. When the size of the codebook was two, the result turned out to

be perfect, the two partitions were exactly the transitional part and the steady state part. Next

the considerably more difficult problem of real speech data was studied using this modi6ed VQ

approach.

In order to find the codeword for the consonant 'b', the beginnings of three words which

start with 'ba' ('bad', 'bat' and 'bank') was cascaded and used to generate the codebooks of size

eight of both modified and standard VQ (Table 5 and 6). The IS distortions were very close in

these two codebooks. The distributions of the modified codewords are in Fig. 4.10. Basically, one

,. codeword was used for the silence (codeword 3) and one for the transition (codeword 8). The

other six codewords represented the vowel. A consistent pattern of change from the codeword for

silence (3) to the same codeword (8) occurred at the transition time in all of these three words.

This effect was not seen in the standard VQ (Fig. 4.11). Instead, at the beginning of each word,

several codewords were used before reaching the vowel. It appeared that there were too many

codewords for the steady state parts, so the size of both codebooks was reduced to four. Surpris-

ingly, the difference of the vowel /a/ in different words was so important that three different code-

words were used for the same vowel in three different words. The other one represented the tran-

sitional parts while the leading silence was encoded as a vowel.

Going through exactly the same procedures but using 'gab', 'gaff' and 'gat' for 'ga', different

types of problems were encountered. In the case of eight modified codewords, there was one for

the silence and still too many for the vowel, but it was very 'unstable' at transient time. This did
,a

not happen in the standard VQ. But the standard VQ mapped most of the beginning of 'b' into

.% ~~ 1.31 * * ~ . *
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the silence. If four modified codewords were used, there was one for silence (codeword 1) aad the

Ssame two codewords (2,4) representing two stages of the vowel in three different words as in Fig.

4.12. This was better than that in 'ba'. But, it still alternated between two codewords (1,3) at

transient time again. The unstability persisted in the modified VQ but not in the standard VQ

(Fig. 4.13). Comparing Fig. 4.12 and 4.13, if the effects of the reflection coefficient trajectories is

included, the transition can be detected earlier at the beginning of each word. However, the stan-

dard VQ assigned all the samples of 'b' to the codeword for silence (1).

The differences of the same vowel in different words were very large so that many codewords

were used to represent the same vowel. To find the typical codeword for the stop consonants, the

strong influence of the following vowel had to be diminished. This lead to a classified VQ algo-

rithm where the number of codewords used for vowels was restricted so more codewords would be

determined for the transitional parts.

4.%

II

J ". -
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.686177 -. 262139 .279971 -. 378734
-. 123740 -. 177142 .446814 .433686
.309272*-01 -.247705

-.425619r-04 .230907e-03

.825386 -. 635448 -. 152013 -. 322850
-. 173931 -. 124693 .501873 .378517.-O
.642003e-02 .134824e-Ol

-. 665252-04 -. 983339e-04

.549098 .205957 .128860 .185963.-01
-. 615 57e-O! -. 715450e-OS -. 422913.-O -. 303090e-O
.337069.-O .369361e-O
.783153&-02 .155118e-02

.065827 -. 626488 -.694115.-OS -.363710
-. 280562.-OS -.295255 .182878 .330512
.873702.-O -. 123212

-. 1986339-03 .334887e-03

.745936 -. 389708 .157856 -. 375582

-. 143735 -. 144050 .442576 .357337
.532621e-01 -. 276019

-. 208266e-03 .372548*-03

.801377 -. 783747 -. 224615 -. 185121

.135996 .299482.-OS .357597 .100329

-. 591172.-OS -. 432891&-02
-. 3426359-04 .696324@-04

.798454 -. 434789 -. 258210 -. 345911
-.200801 -. 276570 .196048 .324956
A52234 .1645 90-02

-. 143626e-02 .124287&-02

.919844 -. 745508 -. 120656 -.946805&-O

.139044 .929787e-OS .106712 .111964

.153276 -. 637693.-Ol

.495ie2e-03 -. 602024.-02

Modified VQ codewords for /ba/

(last two entries are trajectories of reflection coefficients)

Table 5

.302182 .154637 .119021 .671577.-at

.235479.-OS -. 610938&-02 -. 876120-02 -. 1400609-01

-. 249855@-02 -. 3959590-02

.825190 -. 634324 -. 149558 -. 323153
* -. 173634 -. 123710 .502010 .395303.-OS

% .766131&-02 .106940e-O

.799472 -. 437694 -. 259345 -. 348869
-. 198813 -. 270308 .210387 .319895

.154158 .101171e-03

.873909 -.656325 -.64870e-Ol -. 357912

.212173@-02 -.274094 .187845 .333131

.765464*-01 -. 133481

.723796 -.335170 .202954 -. 385472
-. 133175 -. 154734 .441685 .385229
.460555.-01 -. 249998

.081331 -. 703175 -.224739 -. 184928

.136005 .300092.-OS .356547 .100334

-. 591125.-0 -. 386784.-02

.834675 -. 417306 -. 79347ly-01 -. 287117
-. 1C4307 -. 182997 .166795 .348844
.187232 -. 339953.-OS

.920311 -. 768690 -. 930438@-O1 -.923069.-Ol

.155437 .67706.e-O .105970 .117992

.159892 -. 8229156-O

, Standard VQ codewords for /ba/

Table 6
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4.7 CLASSIFIED VQ

A classified VQ design allows a time varying signals to be divided into different components

where each component is quantized to a desired accuracy. When VQ is applied to a spoken word,

the codewords represent primarily the vowel sounds since they are the longest and most station-

ary sounds, see Section 4.4. When only vowels are quantized, there is a difference between repeti-

tions of the same vowel in difference words. This difference can be similar to the difference
between nonvowel sounds and vowels. Since the stop consonants are short transitional sounds,

codewords must be explicitly allocated to represent them if they are to be identified. The

classified VQ approach separates consonant-vowel words into a few codewords for the vowel and a

few codewords for the silence, consonant and vowel transition.

The classification procedure uses codewords determined for a steady state vowel to separate

a word into a 'vowel' part and a 'transitional' part. This 'transitional' part is used to defined a

codebook that can identify the stop consonant, see Fig. 4.14. Four codewords were determined

for the steady state part of a vowel (using different words) as in Section 4.5. Then, the training

sequences of similar consonant-vowel words were encoded by that vowel codebook to find the best

codeword for each speech sample. If the distortion was below a certain threshold, the sample was

assigned to that codeword. If the distortion was above the threshold, the sample was put in a

'transitional' group. After this classifying procedure, the 'transitional' group contained the sam-

pies for silence, stop consonants and the beginnings of the vowel. A few sample points of the

steady state vowel part were occasionally included. A codebook for the transitional part was

designed so that four codewords could be forced for these transient sounds.

The steady state vowel parts of six words ('bad', 'bat', 'dab', 'gab', 'gaff' and 'gat') were

combined as the training sequence to design a codebook of size four for the vowel /a/ using the

standard VQ algorithm. The threshold for accepting each codeword was twice the average distor-

tion of that codeword. The training sequence of 'ba' was classified in this way where those sam-;.pies assigned to the fifth codeword are in the 'transitional' group, see Fig. 4.15. For 'bad' and

'bat' only, this group consisted of the first 500 samples from each word and very few of the vowel.

*5 .- ... - - .. .- .. - . .. ,. . . . -. \. 5 . . 5 - . . . . . . .
: '.- '. . .. . . .- -.-. - .. . "* "5.." ./ i:. i :, "": .
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But almost all the samples in 'bank' belonged to this 'transitional' group. The nasal consonant

'n' affects the vowel so that the steady state part of 'bank' was quite different from that in all the

other words, i.e. 'an' is different from 'a'. Therefore, only the beginning of the words 'bad' and

'bat' were used in the following study. Four codewords were designed for the transitional parts of

these two words using the standard and modified VQ algorithm, Fig. 4.16. Using the standard

VQ, there is one codeword for the vowel /a/ (2), one for the silence (1), one for the transition (3)

and the other one was between transition and steady state (4). The codeword for the vowel (2) in

this codebook was similar to one of the codewords in the codebook of /a/. The distributions of

those codewords using the modified VQ still has one for the silence (1), one for the transient part

(4) and one for the vowel (2). Codeword 3 represents a very few samples between the silent part

and transient part. In the very beginning of these words, the codeword for silence (1) and code-

word (3) alternate. This is natural occurrence since there is no definitive boundary between

silence and the stop consonant. Comparing the standard and modified VQ (Fig. 4.16), at the

beginning of each word the first sample not encoded into silence occurs earlier in the modified VQ

method. The modified algorithm can detect the transition from silence to consonant earlier than

the standard VQ.

A similar approach was applied to the training sequence of 'ga' (from 'gab', 'gaff' and 'gat').

There were about 3000 samples in the 'transitional' group as in Fig. 4.17. Besides the beginnings

of those three words, some samples from the steady state part of 'gab' were included. These sam-

pies were used to design a codebook of size four. For the standard VQ , there was a codeword for

silence, for the transition, for the vowel, and one for these samples from the middle of the vowel

part of 'gab'. Codewords for the vowel were quite similar to those in the codebook for the steady

state /a/. For the modified VQ, the beginning of 'gat' was very different from those of 'gab' and

'gaff'. The codewords represent the silence, the transition, the vowel, and a codeword for the

beginning of 'gat'.

When the beginnings of 'dab' and 'dan' were encoded by the vowel codebook, the effect of

the nasalized vowel was seen again, see Fig. 4.18. The final part of the vowel in 'dan' was

'.
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influence by the following nasal consonant 'n' such that the distortion was more than twice the
p.m

expected distortion for that codeword. Therefore the end of the vowel in 'dan' was not included

in the 'transitional' group. In this case, the distributions of codewords in both the standard and

modified VQ were exactly the same. The smoothed derivatives of reflection coefficients did not

make any differences in this case.

The same experiments were repeated for different vowels; 'bo' (from 'boast', 'bone' and

'bowl'), 'do' (from 'dole', 'dough' and 'doze') and 'go' (from 'ghost', 'goat' and 'go'). The distri-

butions of the codewords for 'd' and 'g' in the standard and modified VQ were very similar. But

for 'b', they were significantly different at the very beginnings of each word.

In general, the classified VQ enabled us to have more codewords for the transitional parts.

Also, in some cases, the codebooks including the reflection coefficient trajectories could detect the

transient parts better than using the standard VQ only, Since these results were quite promising,

a test of recognizing stop consonants could be performed.

.42.
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4.8 RECOGNITION OF VOICED STOP CONSONANTS

The classified VQ approach was tested as a means of recognizing the voiced stop con-

sonants, /b/, /d/, and /g/. The codebooks were computed as in the previous section. The dis-

tortion was computed for each 'transitional' codebook applied to the beginning of a test word.

The test assumes that the corect vowel has been identified since the 'transitional' codebooks for
-p.

the various stop consonants depend on the following vowel.

V ,For each word beginning with 'ba', 'ga', or 'da', the transitional part was determined. The

standard and modified VQ codebooks for 'ha', 'ga' and 'da', were applied to each word to com-

pute the distortion, Table 7. The IS distortion using the wrong codebooks was at least twice that

using the right codebook. By choosing the codebook with the minimum IS distortion, the correct

stop consonant was always determined. Using the modified VQ, the correct consonant was chosen

but the contribution to the distortion from the reflection coefficient trajectories was not always

consistent. Most of the time, the IS component of the distortion dominated the distortion due to

the trajectory. This suggested that the weighting factor in this encoding process might need to be

changed.

"1 The same experiments were repeated on those words with vowel /o/ and /i/ and these

results are in Table 8 and 9. The standard VQ approach always chose the correct stop consonant.

Using the modified VQ, the results were correct except for the word 'boast' where the codebooks

for 'b' and 'd' were confused. and for the word 'gilt' where the total distortion for the codebooks

for 'b' was slightly less than for 'g'. In both cases, the IS component of the modified VQ distor-

tion indicated the correct consonant. However the distortion due to the trajectories was lower on

the wrong codebook. The total distortion was only slightly lower for the wrong codebook than for

the corect codebook. This points to a problem with the weighting factor that is used to combine

the two distortions.

Under the conditions of our study where the same word was used to train the VQ and test

for recognition, the correct consonant was identifiable once the following vowel was known. Most

of the silence prior to the spoken word was removed from the training sequence. However there



boast bone bowl ghost goat go- 90- dole dough doze
modified VQ

2661 .2640 .2085 .8164 .6889 .7310 .4602 .3767 .4335 total
'b- -.15461 .1425 .1354 .7019 .5820 .6219 .3233 .2343 .3019 IS

1.11491 .1143 .0915 .1597 .1514 .1293 .1304 .1355 .1343 dki

.12 .1289 .0549 .0694 .0625 .0888 .1433 .1494 .1290 dk2

1.2220 1.4526 .8148 .1718 .2423 .2032 1.1981 1.1766 .6278
g' 1.0646 1.2499 .7214 .0757 .1290 .1111 1.0673 1.0267 .5230

.2065 .2934 .0747 .0864 .1208 .0848 .1483 .1901 .0976

.1083 .1121 .1121 .1058 .1057 .0993 .1134 .1097 .1121

23091 .6452 .2833 .6297 .5329 .4601 .2171 .2005 .2170
'd' 14101 .5471 .2115 .5266 .4333 .3615 .1176 .1011 .1317

.756 .0845 .0624 .1079 .1071 .1052 .1025 .0950 .1027

.10431 .1117 .0812 .0983 .0922 .0920 .0964 .1038 .0679

standard VQ
'b' .0951 .0900 .1182 .6090 .5361 .5348 .2273 .1641 .2670 IS

g' 1.0259 1.1914 .6717 .0708 .1218 .1073 1.0545 .9934 .5215

'd' .1387 .5447 .2087 .5244 .4355 .3603 .1139 .0992 .1273

Table 8 Recognition results of stop consonants with vowel /o/

bid bit gill gilt did dip
modified VQ

.19115 .16165 .40434 .35715 .35072 .31618 total
'b' .12342 .08343 .31994 .26941! .26580 .24083 IS

.06166 .06748 .07797 .086981 .06890 .07170 dkl

.07380 .08896 .09083 .08850 .10093 .07900 dk2

.91977 .39164 .38283 367 1.05777 .63908

'g .72942 .30031 .26439 .23271 .89151 .49977.17145 .08522 .06536 .09456 .09846 .09863
.20925 .09745 .17113 1.17715 .23406 .18000

.29257 .62178 .61987 .38270 .19346 .19155
-d# .19427 .49728 .60658 .27590 .09713 .09969

.09342 .11707 .12942 .12069 .09438 .09432

.10318 .13196 .09718 .09292 .09827 .08942

standard VQ
'b' .10242 .08324 .32107 .27138 .26571 .24203 Is

0g .60865 .21629 .10809 .11140 .49456 .44875

d" .19532 .42107 .49734 .26494 .08861 .10056

Table 9 Recognition results of stop consonants with vowel /i/

...................................................
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was a short varying amount of silence in each word which often was represented by a codeword

H and thus added to the distortion. When the dtortions contributed by the samples encoded by

the codewords for silence were excluded from the average distortions, almost all the samples in

the stop consonant portions were thrown away if the wrong codebooks were used because most of

P the transitional parts were mapped into the codewords for silence. Thus, all the information from

the consonants was lost. If an appropriate way to exclude silence was possible, it would help in

the recognition the stop consonants.

bad bat gab gall dab dan
modified VQ

.14755 .16939 .40074 .40506 .30927 .39356 total
'b' .10520 .11550 .28296 .31468 .20882 .32280 IS

.03046 .02204 .11367 .06941 .08200 .03104 dkl

.05425 .08573 .12189 .11134 .11891 .11049 dlc2

.51074 .45589 .05414 .04417 .06483 .08720
g .48234 .43019 .03491 .02834 .05054 .06337

.02756 .02129 .01621 .01369 .01138 .02313

.02923 .03012 .02226 .01797 .01722 .02453

.55131 .48383 .07982 .09300 .02672 .04928

'd' .53016 .46423 .06391 .08152 .01234 .03168
.02037 .01633 .01405 .01042 .01400 .01596
.02193 .02288 .01777 .01254 .01477 .01925

standard VQ

'b' .07782 .10744 .14382 .15048 .09005 .18869 IS

% 'g' .53383 .43642 .03461 .02368 .05351 .07491

'd' .52963 .46376 .06092 .07958 .01207 .03073

Table 7 Recognition results of stop consonants with vowel /a/
Tabe

. '_':.". .. ."'. " , _'. ." ., ,'' ., ', '". . ,', :V : . ; ., , -" .' S ' " ' " .... .. .. .
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4.9 SUMMARY AND FUTURE WORK

IThis research effort has lead to an understanding of the combination of recursive estimation

'-p

with vector quantization. The ability to track quickly changing signal characteristics and classify

them into a small number of signal types, provides a powerful signal processing tool. The addi-

tional information provided by trajectories of coefficients was useful to separate steady state and

.* transitional signal segments. The classified VQ approach allows different signal segments to be

quantized (or clustered) into a varying number of levels. For speech recognition, particularly for

phoneme based approaches where quickly changing consonants must be identified, this method

appears very useful. A method of recognizing the *oiced stop consonants, /b/, /d/, and /g/ was
.4

developed and tested using this approach. For the limited data base of words, the method accu-

rately determined the consonant for various following vowels.

* Future research activities would include an investigation of the combined recursive estima-

tion and vector quantization for speech transmission, an extended look at the recognition problem

i to reduce the effect of the following vowel, and a recognition test using a larger data base. There

is considerable potential for theoretical developments in combined recursive estimation and quant-

ization, use of parameter trajectories for signal classification and 'adaptive' vector quantization

using the classification approach.
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g. SUML4ARY

During the course of this research contract, estimation techniques for processes that contain

Gaussiman oise and jump components, and classification methods for transitional signals by wing

recursive estimation with vector quantization wer studied. New theoretical techniques wr

developed and practia application conidered. Experience was gained in recursive estimation

and vector quantizatiou techniques and an investigation of their combined an was begun.

Three technical reports were issued during this project. The fint report, M735-1 presented

a detailed discussion of 'Simultaneous Jump Excitation Modeling and System Parameter FAtima-

tion'. The second report, M736-2 presented an overview of recursive lIas spuares estimation and

lattice fiers. This Iaina technical report is the third report and focused on pitch estimation and

stop consonant recognition. Here in this last report, the combination of recursive estimation and

vector quantization is studied for the firs time.

It is our intent to continue studying signal processing techniques, that utilize the fast track-

ing nature of recursive estimation and the efficient claseification features of vector quantization.

Hopefuy, future contracts wiN llowm us to continue this research.
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