AD'A137 417 THE USE OF THE MASCOT PHILOSOPHY FOR TFHE CONSTRUCTION
OF ADA PROGRAMS(U) ROYAL SIGNALS AND RADAR
ESTABLISHMENT MALVERN (ENGLAND) G FICKENSCHER OCT 83

UNCLASSIFIED RSRE-B3009 DRIC-BR-90207 F/G 9/2

10 Bk ka
o E7
=

B s s

T

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ROYAL SIGNALS AND RADAR ESTABLISHMENT
ReportNo g3009
TITLE: The Use of the MASCOT philosophy for the comstruction of Ada programs
AUTHOR: FICKENSCHER, G

DATE: OCTOBER 1983

y

The development of computer based systems poses major problems on the people
involved. Both, MASCOT (the official design methodology of the UK Ministry of
Defence for real-time systems) and Ada (the official programming language of

the US Department of Defence for embedded computer systems) claim to offer a
solution to the majority of these problems. MASCOT is a programming support
environment which is independent of a particular programming language, but it
defines its own runtime kernel for parallel execution of different program

parts. Ada, on the other hand, offers language constructs to express parallelism
of program parts, but Ada enforces a particular design methodology with its
language rules.

This paper investigates whether it is feasible to combine the MASCOT methodology
with the programming language Ada. It demonstrates a possible implementation of
a MASCOT Construction Data Base in Ada, and it explains the combination of
MASCOT and Ada by using a simple examplg,

e S e ————————)
Accession For

NTIT G g
o ATEAN RS)

Une - oo =

Juatey L T

By .
l@stributlm/ L
Availability Codes
" jAvail and/or
Dist Special

Al

Copyright
c

Controlter HMSO London
1963

- A

CONTENTS

1. Introduction 1-1
2. Structure of the Document 2-1
3. Evaluation of MASCOT with Respect to Ada 3-1
3.1 MASCOT Overview 3-1
3.2 Ada Overview 3-2
3.3 The MASCOT Machine 3-5
3.3.1 Constructing 3=7
3.3.1.1 Production of System Element Templates 3=-7
3.3.1.1.1 IDA Templates 3-3
3.3.1.1.2 Root Templates 3=9
3.3.1.2 Creation and Destruction of System Elements 3-9
3.3.1.3 Forming and Deleting Subsystems 3-13
3.3.1.4 Command Interpreter 3-10
3.3.2 Controlling 3-11
3.3.3 Schaduling 3-11
3.5.3.1 Scheduler 3=-11
3.3.3.1.1 Adjustments to the Priority of an Activity 3=11
3.3.3.1.2 The Selection of an Activity at the Start of a Slice 3-11
3.3.3.1.3 Tne Duration of a Slice 3-12
3.3.3.1.4 End of Slice Action 3=12
3.3.3.2 3ynchronisation 3-13
3.3.3.3 Timning 3=13
3.3.3.4 Activity Suspension and Termination 5-13
3.3.4 Device Handling 3-13
3.3.5 Monitoring 5=-14
3.3.6 Interacting 3-14
3.4 Activities 3-15
3.5 Inter-Communication Data Areas 3=15
3.6 Subsystenms 3-16
3.7 Frozen and Evolutionary Systems =17
3.7.1 Frozen Systens 5=17
3.7.2 Evolutionary Systems 3-18
41

4. A Solution
4.1

The Construction Data Base 4-1
4. 1 1 Data Structure of the MASCOT Development System 4-2
.1.1.1 Basic Types 4-2
.1.1.2 Type Summary L-g
4.1.1.2.1 Typ2s of Entries 4-2
4.1.1.2.2 Parameter Types 4-3
4.1.1.3 List Types 4-3
4.1.1.4 Tne Types of the Parameters by
4.1.1.5 The Type "MASCOT_System" 4-5
4.1.1.6 The Type "subsystem" 4-5
4.1.1.7 The Type "activity"™ 4-6
4.1.1.8 The Type "IDA" 4-b
4,1.1.9 The Type "root_template" 4-7
4.1.1.10 The Type "IDA template" 47
4.1.1.11 The Type "data type" 4.8
4,1.2 The ACP Diagram 4-8
4.1.2.1 The Type "node" 4-9
4.1.2.2 The Type "arc" 4.3 .
4,1.2.3 The Construction Procedure for the ACP Diagram 4-10 .
4.1.3 Creation of Data Types 4-10 .
4.1.4 Creation of IDA Templates 4-1n .
4.1.5 Creation of Root Templates ' 411

Contents

i

S

-
2

6 Forming of Subsystenms

7 Forming of the Main Program

8 The Main Program of the Construction Process
ata Types of the IDAs

he Form of IDA Templates

h

y,
4,
')

.
.
-

1
1
1
3.1 Channel Template
3.2 Pool Template
.4 The Form of Root Templates
.5 Implementation of Roots and IDAs
4.5.1 Roots
4.5.2 IDAs
4.6 Creation of IDAs
4.7 The Form of Subsystenms
4.8 The Form of the Main Program with Subsystems
4.9 The Form of the Main Program without Subsystems
5. Final Remarks
6. References
APPENDICES
Appendix 1: Programs for Construction of Data Base
Appendix 2: An Example

§,
4

T
1

& &

Contents

k=11
4-12
4-13
4-15
4-16
4-16
4-17
4-17
4-16
4-13
L-19
4-21
y-22
4-24
4-25
5-1

6-1

1. Introduction

The development of complex computer based systems poses major probleas to the
people involved. MASCOT (Modular Approach to Softwarz Construction Operation
and Test) serves as both a methodology and a tool set to overcome managerial and
technical difficulties. MASCOT is claimed to be independent of programming
languages. However, MASCOT provides a runtime kernel and its use implies
several restrictions on the programming language used to implement a particular
computer based system.

MASCOT presents no problems if used in conjunction with a programming language
that does not have built-in tasking facilities. As the example of CCRAL 66
shows, a language may have to be extended to meet ths requiremants of MASCTCT but
the extensions do not influence the semantic¢s of the s2quential part of the
language. The compiler of the "extended language" can only b2 used in a MASCOT
environment.

Ada must not be changed in any way (refer [2]) ani Ada provides its own
tasking facilities which cannot be superseded by the ssmantics of a given
runtime kern=21, However, an Ada program is not requirz2d to contain Ads tasks.
Thus, it is possibla to provide an 2lternative runtime environment tnat supports
conzurrenzy with Ada program units other than Ada tasks (r2fer { 2], subchapter
1.1.1 (i)) provided that the program units themseslves conform with the language
rules. This means that the program units must be main programs in th2 Ads
terminology. Th2 resulting MASCOT system is similar to that using CORAL %5.

Nevertheless, it is worth-while to investigate whether it is possible to utilize
the complete Ada language, which is intended for writing large systeas, in
conjunction with the MASCOT philosophy, which is proved to be a reascnable
design instrument for large systems. This paper offers 3 solution to the
problen.

-l el -

Al o d 2

-~ T YR e

-

-
oV

S R A B e S

o AR g YA

2. Structure of the Document

In chapter 3 MASCOT is evaluated with respect to Ada. The evaluation is made
taking initial thoughts and solutions froa [3 1.

An initial implementation of a MASCOT Machine in an Ada environment is given in
chapter 4. The solution, however, only considers a Frozen System and is to be
looked at as a proposal. It is not tested because of the non-availability of an
Ada compiler. The related Ada programs are listed in Appendix f1.

Chapter 5 serves as conclusion.

The use of the MASCOT philosophy in an Ada environment is d2monstrated by a
simple example. Its detailed description and the source codes of the various
program units are given in Appendix 2.

3. Evaluation of MASCOT with Respect to Ada

2.1 MASCOT Overview

AR full description of the MASCOT approach is neither possible nor desirable
here, for that the reader is referred to [1). It is, however, worth outlining
the basic ideas of the MASCOT concepts for the reader who is not already
familiar with MASCOT.

The central idea of MASCOT is to handle the implemaentation of complex realtima
systems by providing a method to deal with th2 concurrency. This method
decomposas the system into a set of sequantial processss (called "activities")
each of which operates in parallel with the others, none having knowleige of the
others.

Data to be shared batween Activities is plazed in Inter-Communication Data Areas
(IDAs). Activities are not allowed to access the data directly. Instead a set
of access procedures is specified for each IDA, and Activities call these
procedures. The procadurss resolve contentious concurrent accessss by
implenenting critical regions, which provide mutual exclusion. MASCOT proviides
several primitives in its runtime kernel to implement the criticszl regions.

MASCOT definzs two kinds of IDAs:
(a) Channels

A Channel is used to pass data 1 the form of messages botwaen
Activities, A Channel has two unidirectional interfaces: 2n input
interface used by Activities that produce messages, and an output
interface used by Activities that consum2 mz2ssiges. Thera can be an
accumulation of unconsumed messiges within 3 Channel. A Channel might
provide additional interfacas for monitoring purposas.

(b) Pools

A Pool holds data for reference purposses. A Pool can hive many
different interfaces for many different purposss.

Only the designers of IDAs are concerned with parallel execution. Th2 d2signer
of an Activity is concern2d with the sequential operations of th2 Activity
itself and only ne2ds to know the procedural interfices of the respe2tive IDAs
and the structure of their data. This approach facilitates the testing of
Activities in a test harness.

Bezause an 1/0 device either produzes data or consumes data it can be connac
to an Activity via a Channel. Conceptually devices c¢3an be looked at as spec
Activities. The runtime kernel allows to connect interrupts to deviz

MASCOT does not specify how an overall system is to be decomposed into
Activities and IDAs. It provides a notation for expressing the design in the
form of an Activity Channel Pool (ACP) Diagram.

The method by which the application system is constructed is defined by MASCOT.
Recognising that systems will often contain several essentially identical
Activities or IDAs, "templates™ are used for the code of Activities (called
"Root templates™) or IDAs. Several instances can then be created froa each
template.

-3-1-a-

The correct connectivity of the system is checked when it is built from Root
instances and IDAs. A Root template specifies the IDA templates it operates on.

To allow a hierarchical composition of larger systems Activities and IDAs can be
subsumed to a "Subsystem"™. Then, some of the IDAs are private to the Subsystem.
Others form the interfaces to other Subsystems and will be referred to as
"Subsystem-IDAs" (called SIDAs). A Subsystem is allowed to consist of one
Activity only. Thus, from a more general point of view, an application is built
from Subsystems.

MASCOT defines two modes of construcztion: "frozen" and "evolutionary".
Construction of a frozen system is equivalent to conventional system building.
An evolutionary system is one where construction (and dismantling) can occur in
the system while it is running. Only Subsytems can be formed, started, stopp=4d,
and removed online.

MASCOT defines a runtime kernel which provides a set of primitives to tne
application systsm. These are concerned with sychronisation, mutual exclusion,
timing, scheduling, device handling, controlling Subsystems and monitoring. A
particular MASCOT development system might not support all these facilities. A
minimum compulsory subset, however, is defined.

The essential elements of MASCOT are:

{(a) a method of decomposing a system into indepandent, in parallzl
executable parts with procedural interfaces, and a notation (the ACP
diagram) which the application system can be derived from. This metnod
incorporates 1/0 devices easily.

(b) a method of construction involving templates and various defin=3
checks.

(c) a definition of a runtim2 kernel that supports the application systen.

For a full description of the Ada programming language th2 reader is referred to
[2 1. It is, however, worth outlining some of the basic ideas of Ada for the
reader who is not familiar with Ada.

Ada was developed for the US Department of Defense to meet the urgent need for
reliable implementations of embedded computer systems. The user of Ada thinks
in terms of data types and operations on theses types during the implzmentation
of his particular system and not in terms of sequential funztions. Moreovar,
the idea that a system should be composed of almost independent parts (modules)
led to a concept of extensive modular programming in Ada.

Ada's package concept was derived from the ideas of abstract data types and
extensive modularisation. A package consists of a well-defined interface
(specification) visible to the user of the package and of an implementation part
(body) hidden from the user of the package. The designer of the package can
restrict the use of objects derived from visible data types.

Packages can form all or part of a project library as can subprograns
(specification and/or body), generic units, and instances (instantiations) of
generic units. Subprograms are procedures and functions in the usual sense.

-3 -2

Library units are compiled separately.

The visible parts (interfaces) of library units can be imported by compilation
units by naming the units needed in a2 special clause, called context clause, at
the start of a compilation. The compiler then ensures that the interfaces are
strictly obeyed by the user.

L SN

Because of the strong typing incorporated in Ad3s a method was introduced to
paramsterise packages and subprograms. Such packages and subprograms are said
to be generic and are really templates from which actual units can be derived by
instantiation. Possible parameters are data objects, data types, and
1 . subprograms. It is possible to restrict the use of objects of given gensric
data types from within the generic unit itself. An instantiation provides the |
actual parameters.

Libraries provide for the bottom-up development of software systems written in
Ada. To provide a top-down approach also, Ada allows a us2r to specify
subunits. These subunits are not library units. Therefore the specifications
of the respective "visible"™ parts must be given within library units (parent
units) and their bodies must be declared as separate froam the parent units. The
bodies are then compiled separately and must mention their parant units.
Possible subunits are the bodies of subprograns, of packages, and of tasks.
Subunits have direct access to all objects declared in or visible ¢o their
parent units.

The compilation of units must follow 32 set of rules. Specifications have to be !
compiled prior to their bodies. Parent units have to be compiled prior to thzir
subunits. Imported library units have to b2 conmpiled prior to those library
units mentioning tham in a context clause. If a compilation unit is rezompil=ad,
all dependent units must be recompiled.

Because of Ada's commitmasnt to abstract data types tasks are treated as data
types with certain restrictions. A task is specified either as 2 tasx object,
then only one task object of an anonymous task type is created, or as 2 tasxk
type, when several task objeats of the same type can be declarsd., A task body
is associated with each task (type) specification. The opody definzs tha
sequence of statemants executed by the respective t{ask object.

A task object is implicitly activated at its point of declaration. Tasks are
terminated, when they have executed their last executable statement ani no
dependent task is still active, or, wh2n they have selscted a terminzte
alternative in a selective wait statement and the scop2 in which they are
declared is left. Tasks can be explicitly aborted by other tasks via an abort
statement.

Coamunication between tasks is achieved in two different ways:
(a) tasks communicate through objects which are in their visible scope;
{b) tasks communicate via entry calls and associated accept statements.
The first approach is very unsafe because concurrent accesses to the objacts ar2
not resolved. The language, however, provides a pragma SHARED to identify such

| shared objects. If an object is marked to be shared, mutual exclusion is
F implicitly achieved in accessing such an object.

Tne second approach implements a bidirectional message handling via a mechanisa
called rendezvous, Tasks specify a set of entries, which can be looked at as -
messages boxes, in their task (type) specification. If a task wants to desliver

-3-3-

T

——

a message to another task, it executes a statement which calls the respsctive
entry. If a task wants to consume a message, it executes an accept statsment
which names the respective entry declared in its specification. The performance
of a rendezvous is an indivisible operation during which the two tasks are ssid
to be in rendezvous.

@ - m———

Three different kinds of entry calls exist:

i 48— 1

(a) normal entry call (commonly called an entry call)

A task calls the entry of another task. If the called task is waitiag
at an associated accept statement, the rendezvous will be performed
immediately. Otherwise the calling task will wait.

(b) conditional entry call

The rendezvous must either be parformed immediatesly‘'or abandoned. Only
if the called task is waiting at an associated accept statemant, tne
rendezvous will be performed. If the entry call is abandoned, the
calling task executes a specified sequence of statcments.

(¢) timed entry 2all

Th2e rendezvous must be performed within a given time frame. If th2
called task fails to arrive at an associated accept statemsnt within
the time frame, the entry call is abandoned, and th:2 calling task
exesutes an optional sequance of statements.

T AT SV Yy Vi <

Two kinds of accept statements exist:

rar e Sy T o AP

(a) accept statement

When a task reaches an accept statement, and an entry call is alreaijy
pending, the rendezvous is performed by executing an optionzl sequzncs
of statements. Otherwise ths task waits until a3 call of the associatad :
entry happens. i

(b) selective wait

A selective wait statement contains at least one azcept alternative,
which consists of an accept statement. 1In addition it may contain
either a terminate alternative (only one), or one or morzs del:zy
alternatives, or an else part; these three possiblities are mutually
exclusive.

An optional condition is associated with each alternative. If th2
condition is true, the alternative is said to be open and z2an be
chosen. If there is no condition, the alternative is always open. The
way an open alternative is chosen is arbitrary.

The else part is chosen, if no alternative is open.

Delay alternatives are chosen, if an accept alternative cannot b2
chosen in a given time frame. An optional sequence of statements is
then executed.

The terminate alternative can only be chosen, if no other alternative
is open and “he task is allowed to terminate. j

3-8 -

£

Tasks waiting at an entry are served first-in first-out. Tasks, however, can
have a3 static priority. The priority is not evaluated in the case of a
rendezvous. It is, however, possible to implement particular strategies using
the conditions of selective wait statements.

It is possible to connect entries to interrupts. This is done by using 3 so
called representation specification for a particular entry. The effect of the
connection is left to the particular implementation.

The language doess not specify thz2 scheduling of tasks. In particulzr, the only
way to schedule tasks explicitly is by use of 3 delay statement. Thz 2xecution
of 3 tasx is suspended at least for the duration specified by the delay
statement.

An implementation of Ada must provide a runtime system to m=2et the requirements
of the semantics of the built-in tasxinz.

3.3 The MASCOT MMazhine

- — - ———— - - -

Th2 environment which supports HMASCIOT is a conceptuzl "MASCOT lachinz2" on wnizn
the facilities nz2eded to develop and run a1 MASCOT application are available o
the user.

In = MASCOT Machine a set of softwara construziion tools builds and maintains =
Construcztion Data Base, from J#hich th= application syst2m is 2onstructad rzacy
for oxecution. The MASCOT 'fachine may also provide control and monitoring of
th2 system aftar it has bzsen startad.

Figure 3.3-1 shows the several facilities provided by the MASCTCT Machinz2. Tn
facilities fall into a3 numbar of groups. Tnhz following subchapters descrioc t
various groups and compare th2m wWith equivalent Ada feitures.

An implementation of the MASCZOT Machin2 does not nz2ed to provide a1l faciliti:

id-
Thar= is, howaver, a mandatory s=t of facilities which dz2fines a Minimal "MAS
Machine (refer Fig. 3.3-2).

-3-5.

- - —— " - e ;e W D D R e D R D D AR D S D A S S A P e WS S e am % D WD S P R e e e e W e e we - -

-- Constructing -e--<c--cee- Building =----cce-mce-- Compiler, Linker
H 1-- ENROL
: 1-- CREATE
i {-- FORM
]
1

|m————— ~-- Dismantling ~e-ecc--a CANCEL
{-~ DESTROY
{-= DELETE

~= Controlling =-c-ceccmccmemrcccrcerc e START
1=-- TERMINATE
1== HALT
\-- RESUME

-=- Sch2juling e--ceccmccrorccccrc e Schzgdular

-- Synczhronising e---e--cecea-- JOIN
i-- WAIT
i-- LEAVE

' -
== STIM

i-- DELAY
1-= TIMENDY

-- Suspending % Terminating --- SUSPEND
{=~ ENDRDOT

-~ Device Handling --ce-c-cccccccncrncrccnccccasa- Drivers
== Handlers
}-- CONNECT
1-=- DISCONNEZT
== STIMINT
1=~ ENDHANDLER

-= Monitoring =e---- Recording ------ccccemccaa- RECORD

]
]
l=- Selecting =--=--cmccccecac-- SELEZT
i !-- EXCLUDE
4
]
[}

e ettt S L L L LT Error Reportar

-~ Interacting --ecccccacccccacrccnccercenrnranaa Command
Interpreter

]
1]
1
'
]
'
[}
L]
t
i
1]
‘
]
]
i
[}
'
]
1
i
1
1
t
t
)
1
L]
]
1
1
]
[
'
'
1
1
)
1
]
]
[}
1
[}
|
)
1
i
-= Timing ==--cceccmccccnmenao Timer '
(
I
[}
L}
[}
)
'
1
]
)
1
1
1
\
1
1
1
L}
\
1
'
'
Ll
'
1
1
1
1
[}
'
1
|
i
i
i
1
1
i
1
1
[}
L]
:
i
[}
]

i
Figure 3.3-7: The MASCOT Machine d
1
)

-= Constructing «-cccecccccecca-a Building --=cccce-- ENROL
{=-- CREATE
{-- FORM

-= Controlling e-c-cecceccrcccccccacaccnccre e START

i== WAIT
== LEAVE
\== STIM

-~ Devicz Handling

! 1
' '
v ‘
['
T 1
]] '
vy !
[1
\))
v '
v '
v '
[})]
]] 1
o 1
[i
- g
T 1
[i
i le= Scheduling ee=eccaccccccmacccmmccacccmcncmccacaaaa Scheduler !
P :
v !
Vo '
Voo)
['
\]]
|] t
v .
Vo]
[}] 3
[]
1 1]]
Voo ‘
1 t]
[:
]]]
[i
1 t (]
oo '
R OO g U ey gy gt tecmcmrec—ac————— Error Reporter |
) !
' s

- - - . - - - - - - — Y . - — - - - - - - -

3.3.1 Constructing

Construction is the term used in MASCOT to cover the transition from the
detailed design description of a netdork (normally ths ACP diagram) to the
implemantation of that network as executable softwara. MASCOT reguires that the
transition is azhieved through operations that are consistent Wwith the
modularity da2fined by the design.

The 20nstruction in YASCOT involves three c¢cl2arly separable stages:

the specification of System Element Templates (3ET) and their enrolmant in
a Construction Data Base;

th2 creation and destruction of System Elemants (SE);

the formation and deletion of Subsystems.

3.3.1.1 Production of System Element Templates

The initial stage in the construction of software in MASCOT is the production of
SETs. This requires the MASCOT Machine user to:

-3-7a-

write a specification that expresses the internal details of the SET as
source text in a programming language;

ENROL the SET in the Construction Data Base, making it known to tne MASCOT
Machine for use in later stages of construction.

The act of enrolling a SET may involve compilation and link loading of the
source text. After enrolment the following information is available in th:
Construction Data Base:

the name of the SET;
its connectivity constraints;
the places from which constituent parts can be retrieved.

A SET, once enrolled, remains known to the MASCOT Machine and is available for
use until it is cancelled when knowledge of it is da2stroyed by removil from the
Construction Data Base. Cancellation of a SET is only allowed if it is not
required by another SET. Cancellation is effected by the CANCEL faczility.

Ada provides a facility to describe templates, called generics in Ada
terminology, of program units. An Ada implementation provides z xin2 of
construction Jdata base, the project library, while an Ada compiler ensures the
correct conn=ctivity of program units. MASCOT-like information is stored in the
projezt library. The enrolment of a SET is achieved in an Ada2 environmant by
compiling it. Cancellation c¢an only be achieved by using a library user pzckage
worxing on the project library. An entry in an Ada project library is replacea,
if 2 new entry with the same specification zharacteristics and the same nama2 is
coapiled.

There ars three kinds of SETs in MASCOT: Channels, Pools, ani Roots. But only

two kinds of SETs are considered by the MASCOT Machine, bezause Channsls ani
Pools are constructionally equivalent.

3.3.1.1.1 IDA Templates

The information in 2 SET for an IDA comprises:
its name and class (Channel or Pool);

a specification of its data area and the MASCZOT control quaues which it
requires;

the access mechanisms which define the operations allowsd on the data ares.
Provisions must be made for initialising IDAs,.
The IDA structure can be achieved by using Ada packages. Moreover, this allows
easy initialisation. To provide the possibility of implementing different IDAs
using the same data types the definition of an IDA should be distributed over
two packages:

a package which specifies the abstract data type used by several IDAs;

a generic package which defines the data area, the particular SET works on,

-3-8-

sz das L

i

B e —

and implements the access mechanisms of the particular SET.

3.3.1.1.2 Root Templates

The implementation of a Root is largely concerned with the expression of the
required algorithm. Its connectivity constraints must be formally defined in
terms of the number and type of the IDAs to which it must be connected whan it
is usad to form an Activity.

Therefore th2 information in a SET for a3 Root comprises:

its nam=, and the fact that it is a Root template;
ipecification of each formal IDA parameter (These ar2 name 3nd class of

the particular IDA with naming the access machanisms nesded to access this
IDA);
3 specification of any constant value parameters;
the body of the Root (This is the processing algorithm expressad 2s 3
program sequenze., It includes calls on the access mechanisms spacified in

the formal IDA parameters).

A Root may be a substantial progam with an own internal structure. Th2 MASCOT
Machine only constrains the intarfaces needad.

In Ada a Root tamplate can be expresszd as a subprogram. The data types of the
conrectad IDAs must be made visible to it. The access procedures to the IDAs
can be formal in terms of genzaric parameters. Tne implemsntation of tha2 IDAs
and the IDA accaess procedures not needed are hidden from the Root template.

3.3.1.2 Creation and Destruction of System Elements

Us2rs of a MASCOT Machine must be able to create SEs necessary for the
Subsystems they wish to construct. The CREATE facility is handed the identity
of an =nrolled SET and th= name of the SE required. CREATE brings 2 Root or IDA
into existence using the SET, and may apply any IDA presets or initialisation
procedures at the same time. Information on the newly creataed SE is h2ld in the
Construction Data Base for use in later stages of construction.

Using Ada, CREATE can be achieved by instantiating the gen2ric template of 13
SET. The SE is then held as a compilation unit in the project library. Becaus2
of Ada‘'s visibility and compilation rules and because of Ada's tasking concept
the creation of IDAs private to Subsystems and the creation of Activities are to
be performed together with the formation of Subsystems.

A usar may be allowed to destroy SEs which have previously been created. This i
is effected by the MASCOT facility DESTROY. The destruction, however, is
conditional upon the named SEs not being in use in a formed Subsystem. In an

Ada environment this facility can only be provided, if a user package working on
the project library exists or if a SE is recompiled.

“3-9 -

3.3.1.3 Forming and Deleting Subsystems

The final stage in the construction of software in MASCOT is the connecting of
SEs which have been previously created to build executable software whose
modularity is consistent with the ACP diagram. This is the FORM process and the
network fragment formed in a single operation is called a Subsystem.

The information required by the FORM facility is:
the name of the Subsystem to be formed;

a list of Activities, each Activity is supplied with the following
information:

the name of a previously created Root which is not already in use;

a list of previously created IDAs which satisfy the formal paramster
requirements of the respzctive Root template;

its actual value parameters.
A Subsystem is in the "idle" state after formation.

When a Subsystem is started, all its Activities are activated in parallel. I
an Ad2 program this effect can be achieved by calling a procedur=z which hsz
local tasks. After entering the called procedure all its loca2l tasks are
activated in parallel. Therefore in an Ada enviroam=2nt 3 Subsyst2m is 13
procedure with Activities as local tasks. A Subsystem can bz testad
independently, if a test harness is provided which calls the procedures densting
th2 Subsystem and produzes or consum2s data sent through th:s Subsystam-ID4is
needed by the Subsystem.

n
S

IDAs private to a Subsystem need not be visible outside the Subsystem. Thzay arc
local packages of the procedure denoting the Subsystem. Therefore the formation
process must distinguish between private IDAs and Subsystem-IDAs. Azstivities
and private IDAs are created together with the formation of their Subsystem.

An important aspect of the Subsystem formation is the ability to check thrat
actual connections defined by each Activity do not violate the connectivity
constraints in the appropriate SETs. This is achieved easily in an Ada
environment because the compiler will perform all thesz checks.

Users may be allowed to delete Subsystems, which they have praviousiy formad,
with the MASCOT facility DELETE. Only Subsystems in the "idle" state c3n be
deleted. Deletion can only be achieved by recoapiling or by a library uscer
package working on the project library in an Ada environment. The constituent
SEs are not destroyed in either environment.

3.3.1.4 Command Interpreter

A MASCOT Machine may make the construction operations available either through 3
procedural interface or through the Command Interpreter in an evolutionary
system.

An Ada Programming Support Environment (APSE) using the MASCOT philosophy must

-3 -1 -

e

provide similar tools. A Command Interpreter, however, is part of an APSE. It
is to be amended to meet the requireaments of MASCOT.

3.3.2 Controlling

A MASCOT Machine provides a set of facilities for controlling the execution of a
Subsystem. These facilities start, halt, resume, and terminate execution. They
are mandatory in evolutionary implamentations but optional inm frozen systems.

These functions are not applicable to an Ada environment, beciause tasks are
started implicitly at their point of declaration and cannot be halted or resumed
explicitly. Ada, however, provides an abort statement with which a1 task and all
its dependent tasks can be abandonz2d. A restart of an 3borted task is not
possible.

3.3.3 Schzduling

A MASCOT Machine provides primitive operations for timing, synchronisation, an3
control of a2xecution of Activities. The selection of an Activity for execution
is controlled by a Schzaduler.

35.3.3.1 Scheduler

An Activity is entered from the Schedulsr and the period from control passing to
the Activity until control passes back to the Schzduler is known as 2 Slice.
Sch2duling is defined in MASCOT in 2 manner which 2nibles 3 set of algorithms to
be designad for each implema2ntation. Th2se algorithms deteraine priority
adjustments, Activity selection, Slice duration, and end of Slicz action.

2.3.3.1.1 Adjustments to the Priority of an Activity

An Activity has a current priority which may influence Activity sel=2ction and
Slice termination. The initial value of the priority is determined bafore the
Activity commences its execution. It may be modified during processing.

Ada only allows static priorities of tasks using 3 special pragma. Thus,
priorities cannot be altered during program execution.

3.3.3.1.2 The Selection of an Activity at the Start of a Slice

The scheduling algorithm se2lects an Activity which is ready to run according to
the priority mechanisams.

A similar strategy is chosen by the scheduler provided by an Ada implementstion.

-3 =11 -

The Ada Scheduler, however, also considers possible rendezvous.

3.3.3.1.3 The Duration of a Slice

A Slice may be ended by the Activity itself or as a result of actions following
an event external to the Activity. A MASCOT Machine may adopt either
co-operative scheduling (Slices are only ended by Activities themselves) or
pre-emptive scheduling.

If an Ada program is not affected by interrupts, co-operative scheduling is

performed. If interrupts are handled within an Ada program, they are served
with the highest priority, and therefore pre-emptive scheduling is performed.

3.3.3.1.4 End of Slice Action

The scheduling algorithm determines, for each type of Slice termination, how the
Schaduler treats Activities whose Slice has ended, since ths reason for Slics
termination may influence thz Activity's entitlement to selection for a furthszr
Slice.

In Ada th2 reason for a Slice termination has no influence on th2 selection of
th2 next action. The seleztion process only dependis on the priorities of
possible rendezvous and of tasks ready to run.

While the MASCOT definition does not define in detail any of these algorithams,
an implementation of the MA3SCOT Machine precisely describss the algoritnms
chosen. Ads, however, prescribes the scheduling algorithms in the presence of
priorities.

Except when caused directly by an interrupt, Slice termination results from an
Activity calling one cf the MASCOT primitive operations to provide:

Synchronisation;
Timing;
Activity Suspension and Termination.
Slice terminations in an Ada environment result from:
Entry Calls;
Execution of Accept Statements;
Execution of Delay Statements;
Termination of Tasks;

Interrupts.

-3-12-

3.3.3.2 Synchronisation

Sychronisation in MASCOT covers mutual exclusion of competing Activities, using
the primitives JOIN and LEAVE, and cross-stimulation of co-operating Activities,
using the primitives WAIT ad STIM. Explicit synchronisation is achieved by the
four primitive operations which operate on special objects called Control
Queues. Since synchronisation takes place only in respect of access to IDas,
each Control Queuz is conceptually part of an IDA's data structure.
Synchronisation primitive operations are encapsulated within an access
mechanism. The Control Quecue is defined as an object on which the primitive
operations have effects (refer [1]), and which may be given a priority
specification to influence the schaduling algorithms.

Ada does not provide such primitive operatioas. MMutual e2xclusion is znsured if
two tasks are in a rendezvous. Cross-~stimulation is achieved by entry 2alls and
accept statements. Control Queuz is not defined explicitly but it is
implicitly built by an entry declaration. It is, howaver, possible to foraulate
the semantics of the MASCOT primitives in terms of Ada.

3.3.3.3 Tining

MASCOT provides for two timing primitives, DELAY and TIMENDU. An Activity may
stop processing for at least a specified period of tvimz by issuing thz DELAY
primitive which takes a singlc parameter 2xpressing the delay pericd. An Ada
task achieves tha2 same 2ffzct by exezuting 2 delay statemaent.

The primitive, TIMENOW, returns the current absoclute valuz of time in ths sam2
units as used for the delay parameter. An Ada iamplemantation provides tna
function CLOCK in a predefined package CALENDAR which returns ths current valus
of tima.

3.3.3.4 Activity Suspension and Termination

Tne primitive, SUSPEND, is used by an Activity to return control to tne
Scheduler in order to achieve co-op2rative schaduling. The Activity stops
prozessing until it is next scheduled. Ada do2s not provide such a primitive.
The same effect, however, is achieved by executing a delay statem2nt wids2
duration is zero.

The primitive, ENDROOT, is called immediately after the last executable
statema2nt of a Root so that the Activity d2fined by the Root cin end correzctly
if and when execution of its code is complete. An Ada task does not need such 3
primitive. It terminates after execution of its last oxezutable statem=nt if
all its dependent tasks have terminated.

3.3.4 Device Handling

A system interacts with the external world through a1 set of periphzeral devicas
attached to the processors on which it is running. The primary functions of

-3 13 -

these devices is to act as sources or sinks of data, providing input and
receiving output. Normally an application system itself chooses wh2n
input-output operations are to be performed. A realtime application systenm,
however, is driven by an external process and cannot in every case determine
itself when input-output operations must be performed. Therefore the systen
must allow to be interrupted by external events and must serve those interrupts
immediately.

The MASCOT Machine provides facilities to enable devices to be handled in tne
manner appropriate to the application. In [1] a model is described on whicn
the facilities are based, with such modifications as the special features of
particular implementations warrant.

Ada provides two facilities to communicate With the externzl world:
an Input-Output Interface;
thz connection of task entries to interrupts.

Ada applications can =asily adopt the MASCOT model of device handling.

3.3.5 Monitoring

MASCOT defines a machanism for monitoring certain events in strict runtims
order. The definition (refer [1]) specifies that events to be monitored may
be scelected, and how the monitoring is to be performed. A monitoring mechanisn
is not part of every kind of MASCOT Machine,

Adz does not define a mechanism for monitoring. However, the MASCOT monitoring
mechanism can be adopted by an Ada environment in two different ways:

(a) during the construction of an application system monitoring facilit:izs
may be implanted in the program code, and an interfaca provided for tnc
user according to the MASCOT model;

(b) an Ada Debug System may be constructed according to thz MASCOT modal.

Tne second alternative seems to be a better solution, becauss monitoring shouid
only be used in the development phase of an application system.

2.3.6 Intzracting

A Command Interpreter provides an operator with access to some of the MAST2T
facilities. It is always provided in implementations of an Evolutionary MASCTOT
Machine but is optional in implementations of a Frozen Machine. The facilities
accessible through the Command Interpreter may be those for construztion,
program control, and monitoring.

A Command Interpreter is also part of an Ada Programming Support Environment.

There is no reason why the Command Interpreter of an APSE should not provide
facilities similar to those of the Command Interpreter of a MASCOT Machine.

-3 - -

3.4 Activities

In a MASCOT orientated application system Activities are independent processes
(tasks) which are interconnected via Inter-Communication Data Areas (IDAs).
Activities are crzated from Root templates (refer 3.3.1.1.,2).

A Root template does not know the structure of the data passed to or from an IDA
using the particular access mechanism. However, to be able to write th2 body of
a Root template a programmer must assume the type of the formal parameters of
the particular access procedure.

A Root template written in terms of Ada can be a generic procedure. Th2 valu:z
parameters then b2come the formal paramaters of the procedure. The access
procedures to the IDAs us=d are given as generic formal parametars. To be able
to compile 2 Root template, i.e. to mMake it known to the "Construction Dzta
Base™, the visible data types of the IDAs needed must bz imported using a
context clause. Otherwise it will not compile without errors.

In terms of Ada 3 Root template comprises the following information:
its name;

32 spacification of the data types of those IDAs it will use, given in a
context clause;

a spacification of accass procedures, given as Zeneric formal paramatars;

a specification of constant value parameters, given as formal procadure
paramaters of mode IN;

its body.

Many Activities can be created from 3 Recot templatz2, The c¢creation prozza2ss is
achizsved by instantiating the generic procedure, which is the Root templzte, by
supplying generic actual parameters. The g2neric astual parametars arz2 the
accass procedures of the IDAs used by the particular Activity.

In terms of Ada, Activities are tasks. 1In a first approach such 2 task only
contains the call of the instantiated "Root procadure"™. Tasks ar2 n2ithor
compilation units nor library units and must thersfcre be 2nzapsulat.a in
subprograms or packages. This poses further constraints on forming an
application system in Ada using MASCOT.

MASCOT provides two kinds of Inter~Communication Data Areas (IDAs): Channels ind
Pools. The MASCOT Machine treats them as constructionally equivalent (refer
3.3.1.1.1).

Because of the constraints brought in by the formulation of Root templates in an
Ada environment, an IDA must be split into two units: a definition of the data
types it uses and a definition of its implementation, which makes the access
mechanisms visible to Activities but hides the data area the IDA works on and
the implemantation of the access mechanisms. Control quzues are not needed angd
several IDA templates can use the same definition of data types.

-3-15-

[— _, ——

?

The data types of an IDA template are encapsulated in an Ada package. This
approach allows the implementation of an abstract data type with clearly defined
operations allowed on objects of this data type.

An IDA template itself is given as a generic package with no generic formal
parameters. The specification of that package only consists of the access
procedures visible to Roots. The data area an IDA is working on need not be
visible to a Root which uses the IDA.

Many IDAs can be created from one IDA template by instantiating it. A
i disadvantage of the Ada approach is that any presets and initialisations of 2an
i IDA's data area must be part of the IDA template because of Ada rules.

Because Channels sa2rve as unidirectional interfaces and only store temporarily
the data items passed throuzh them without processing the items, the data typn
of a Channel can be a generic formzl parameter of a Channel template. Several
different Channels can be creatzd, which handle different data types, fron 2
single template definition. An Adz environment should therefore distinguish
between Channels and Pools.

The information in a Channel template comprises:
its nanme;

a specification of the data type it handles, given 3s a genszsric form:zl
paramster;

the access procedures which define the operations allowed on its data ares,
given in its visible part.

The information of a Pool templats comprises:
its name;

a specification of th2 data types it handles, given 3as an imported package
in its context clause;

the access procedures, which define the operations sllowed on its dsta
area, given in its visible part.

Both templates hid2 the structure of their data areas, because this is not of
any importance to the particular Activities, and the presets and initialisation
procadures of their Jdata areas.

) Subsystems are formed out of Roots and IDAs (rafer 3.3.1.3).

MASCOT knows two kinds of IDAs, if Subsystems are involved: Subsystem-IDAs and
IDAs private to Subsystems. The private IDAS need not be visible outside of the
particular Subsystem. Therefore the creation of private IDAs is performed

during the formation of Subsystems. Subsystem-1DAs must be created prior to the
forming process.

Activities are Ada tasks (which are not compilation units). Therefore the
creation of Activities and the formation of Subprograms are performed togaether.

-3 =16 -

e ee—

AP~

Activities are created directly from Root templates and not from Roots as
required by MASCOT, because private IDAs, needed for the forming of Roots, ar:
not visible outside Subsystems.

The forming process must be supplied with the following informaitiosns:
the name of the Subsystea;
the names of the packages which Jdefine the data types of the IDAs involved;
the names of all already created Subsystem-IDAs;
th2 names of all IDA templates to form its private IDis;

the nam=s of all Root templates to create the Activities which the
Subsystem consists of;

2ach Activity to be creata2d must b2 supplied with tae follodsing
informition:

its nane;
its actual value parameters;
the names of the access proczcedures of tne IDAs which it 4ill us=z.

Root templates and IDA templates can b2 us2d mora thar onz: as can
Subsystem-1IDAs.

Tne forma2d Subsystem is 3 procedurc in terms of Ada. Subsystisms ¢zn also be
suppliacd with valuz paraancters.

7 Frozen and Evolutionary Systeas

MASCOT knows two Jdifferent impleamsntutions of thz MASCIT Machins: 1 Frozen
Machine and an Evclutionary Machine.

3.7.1 Frozen Systems

The implemantation of a Frozen MASCOT Machinz means that the applization systen
is fully constructed beforz a3 start command is issued. HNo changes of the systen
are allowad during runtime. This is the normal non-MASCIT way of construcsting
an application systenm.

Using the MASCOT philosophy in combination with Ada the resulting application
system can be a main program in Ada terminology. The main program must aensurc
that 21l Activities exscute in parallel at a given time. Therefore it cannct
call the procedures denoting Subsystams 2onsecutively, because in this cass2
every Subsystam would be forced to complete its execution before another
Subsystem could start its execution. In tha contrary the main program must
ensure that all Subsystems execute in parallel. This means that the cu.lls of
the procedures denoting Subsystems must be encapsulated in tasks locil to ths
main program.

-3-17-

"""""-'-'--l-IlIlllllll-ll!!llllllIlllII!!ll!llllI'I..-........'-..--...-.-.-.-.-_‘r_“

T Y

Therefore a final consatruction stage is added to the construction stages defined
by MASCOT: the formation of a main program from already formed Subsystems.

3.7.2 Evolutionary Systems

An implementation of a MASCOT Machine which allows the set of Subsystems
constituting an application system to be changed during the execution of the
application system by the addition and/or deletion of Subsystems is said to be
Evolutionary. Such a MASCOT Machine is needed wherever an application system
must not be interrupted while exchanging erroneous parts or adding new features.
Consider, for example, an air traffic system. An Evolutionary System is also
very useful during the development of any application system (Frozen or
Evolutionary).

In an Evolutionary System Subsystems can be looked at as independent programs
which communicate via Subsystem-IDAs and execute under control of a special
runtime system which implements the related MASCOT features. The runtime system
contains a dynamic linker/loader to be able to add and remove the executable
code of Subsystems and link the Subsystems to the respective Subsystem-~IDAs
online. If needed, also the executable code of Subsystem-IDAs can be added or
removed.

In Ada, Subsystems are procedures to which library packages implementing
subsystem-IDAs are visible. Ada procedures can be main programs in the usual
sense. The means by which the execution of main programs is started is not
defined by the Ada language. Therefore it is possible to implement an executive
which operates like an Evolutionary MASCOT Machine and which treats Ada main
programs as Subsystems. However, care must be taken concerning Subsystem-IDAs.
Normally a Subsystem-IDA is used by more than one Subsystem. Therefore various
Ada main programs (Subsystems) mention the same Sybsystem-IDA in their context
clauses. Thus, according to the language rules, the code of a Subsystem is
elaborated as many times as it is mentioned in the context clause of a main
program and possibly loaded more than once. The code of a Subsystem-IDA,
however, should only exist once in the Evolutionary System. Therefore a special
linker/loader is needed to ensure that a Subsystem is linked to all respective
main programs (Subsystems) and only loaded and elaborated once.

Another solution, which treats the Subsystem-IDAs as main programs too, is not
feasible in Ada, because program units denoting Subsystem~IDAs must be visible
to the program units denoting Subsystems during compilation of the Subsystems to
resolve and check the respective connectivity requirements.

An Ada programming support environment should facilitate version control of
program units. Version control should include the ability of having different
versions of the body of a program unit but of still using only one specification
of the program unit. An Ada compiler only uses the specification of program
units for checking connectivity constraints and establishing proper connections
between program units (not always applicable for generic units and inline
subprograms). This means that after the recompilation of a body its previously
compiled version is not always to be made o9solete. A MASCOT Machine could
utilize this property, although it would not offer the full range of facilities
of an Evolutionary Machine, but it would allow to exchange the codes of
Subsystems of a fixed set of Subsystems online. The sclution needs

an Ada runtime system which allows to start, halt, resume, and terminate
tasks interactively according to the respective MASCOT rules leaving the

-3 -18 -

overall Ada program in a consistent and correct state (an Ada debug system
should offer such facilities anyway),

and

a dynamic linker/loader which allows to exchange bodies of program units
online.

An application system is then formed like a Frozen System. The author feels
that this approach is more appropriate concerning the Ada philosophy.

P,

s o

4. A Solution

The construction of Ada programs according to the MASCOT philosophy is possible.
Some restrictions, however, have to be obeyed by programmers. The construction
process is performed interactively, guided by the system. The system provides a
set of formats from which System Element Templates and System Elements can be
derived.
The proposed solution only deals with Frozen Systems and does not czontaiin a
monitoring system or a command interpreter. The reqiirements for tne monitoring
system and for the command interpretar can easily be derived from [1].
However, the proposed construction method can also be used for the construction
of Evolutionary Systems, the formation of the Subsystems being the last stage
then.
Eight construction stages arz identified:

(1) Creation of the ACP Diagranm;

(2) Definition of the types of thoses data objects, whizh will be haniled by
Inter-Communication Data Areas (IDAs), encapsulatzd in Ada pazkages;

(3) Definition of the interfaces provided by the various IDA templates as
spacifications of generic Ada packages;

(4) Defini-tion of the Root templates as specifications of generic Ada
procadures,;

(5) Implementation of thz bodies of the Root and IDA teamplates;
(6) Idantification of Subsystem~IDAs and th2ir instantiation;

(7) Formation of the Subsystems;

(8) Formation of the main program MASCOT_System.

If Subsystems are not considered, the stages (6) to (3) are performed as
follows:

(6) Instantion of the IDAs;
(7) Formation of the main program MASCOT_System.

IDAs and Roots c¢can be tested in test harnesses after implemcntation of the
respective bodies.

The definition of an ACP Diagram is the first stage of the construction of an
application system using the MASCOT philosophy. The ACP Diagram defines th: set
of System Elements and the connections between them. However, an ACP Diagran
only serves as an interface between a Construction Data Base and the devalopment

engineer.

The development engineer defines “he ACP Diagram on a sheet of paper. An

S TR

interactive tool is used to provide this knowledze to the MASCOT development
system. The tool constructs an internal graph of the ACP Diagram which is part
of the Construction Data Base. The dialogue should be system driven to ensure
the correctness and completeness of th: l!esign. Most parts of the construction
process are automatic generation processes with only a few manual interactions.
The final checks for correctness and completeness are parformed by an Adsx
compiler.

4,1.1 Data Struczture of the MASCOT Development System

Every possible object in a MASCOT development system has to be represented by an
entry in the Construction Data Base. The following subchapters describz the
different types of entries in terms of Ada.

4.1.1.1 Basic Types

Class types are used for parameterising several System Elements. Systen
Elements and System Element Templates have names, called name_string, and thzir
optional source codes ar2 stored in files of name file name.

TYPE system class_typ2 IS (with subsystems , without_subsystems);
TYPE IDA_class_typs IS (channel , pool);

SUBTYPE name_string IS string;

SUBTYPE file nams IS string;

4.1.1.2 Type Summary
4.1.1.2.1 Types of Entries

Thare must be a distinct type for every possible entry in the Construction lata
Base. Lists of entries should be formable, too.

TYPE subsystem;

TYPE access_subsystem IS ACCESS subsystem;

TYPE subsystem_list_element;

TYPE access_subsystem list_element IS ACCESS subsystem_list_element;

TYPE activity;

TYPE access activity IS ACCESS activity;

TYPE activity list_element;

TYPE access_activity_list_element IS ACCESS activity list_element;

R

iy

TYPE
TYPE
TYPE
TYPE

TYPE
TYPE
TYPE
TYPE

IDA(class : IDA_class_type);

access_IDA IS ACCESS IDA;

IDA_ llst element;

access_ 1DA _list_element 13 ACCESS IDA_list_element;

roop_template;

access_root_template IS ACCESS root_templite;
root_template_list_el=ment;

access _root_template list_~lement

IS ACCESS root _template_ lls. eiement;

TYPE
TYPE
TYPE
TYPE

IDA_template(class : IDA_class_typa);
access_IDA_template IS ACCESS IDA _template;
IDA template list_element;

2ccess_IDA tenplate list_element

I3 ACCESS IDA _template_ list _clement;

TYPE
TYPE
TYPE
TYPE

4.1.1.2.2

data_type;

access_data_typa IS ACCESS data_type;

data typu list_element;

access_data_typa list_elament IS ACCESS data_type_list_

(4
(D
b
0]
=]
W
]
lad

Parameter Typ2s

Some of th2 eontries ars suppiied with lists of paramatzars and of acczss
prozcedures.

TYPE
TYPE
TYPE
TYPE

TYPE
TYPE
TYPE
TYPE

IS

parameter;

access_parameter [S ACCESS parameter;

parameter_list_element;

access _parameter list_element IS ACCESS parameter list_elemsnt;

ss_access_procedure IS ACCESS access_proczedursa;
ss_procedure_list_element;

S5_azcass p"o*edure list_element

ESS a ~c=ss_p"o~edur°_11st_alen°nt;

ss_procedure;
_P

4,1.1.3 List Types

An object

of a list type points to the list elemsnt it represents and to the

next elemant in the list.

TYPE subsystem list element IS
RECORD
element : access_subsystenm;
next : access_subsystem list_element := NULL;

END RECORD;

]

TYPE activity list_element IS

RECORD
element : access activity;
next : access_activity list_element := NULL;

END RECORD;

TYPE IDA_list_element IS

RECORD
element : access_IDA;
next : access_IDA_list_element := NULL;

END RECORD;

TYPE root_template list_element IS

RECORD
element : access _root_template;
next : access root_template_list_element;

END RECJRD;

TYPE IDA_template_list element IS

RECORD
element : access IDA_ template;
next : access_IDA_template_list_elemant;

END RECORD;

TYPE data_type_list_element IS

RECORD
element : access_data_type;
next : access_dats_type_list_element := NULL;
END RECORD;
TYPE parameter_list element IS
RECORD
element : access_parameter;
next : access_parameter_list element := NULL;
END RECORD;
TYPE access procedure_list element IS
RECORD
element : access access_procedure;
next i access_accsss procedure_list element := NULL;

END RECORD;

4.1.1.4 The Types of the Parameters

An object of either type "access_procedure”™ or "parameter" only contains a
formal name and the associated actual name because the correct interrelations of
other attributes (e.g. types, parameters of the access procedures) are checked
by the Ada compiler. The automatic generation system only needs to know the
names to be able to generate the proper format of the particular source code
frame.

-4 -4 -

TYPE access procedure IS
RECORD
formal : name string;
actual : name_string;
END RECORD;

TYPE parameter IS
RECORD
formal : name_string;
actual : name_string;
END RECORD;

4.1.1.5 The Type "MASCOT_System"

An object of type "MASCOT_System"™ is the head of the description of the
application system to be built. The system may or may not contain Subsystanms.
The usual nam2 of the system should be "MASCOT System".

If ths system cont2ins Subsystems, the object points to 3 list of Subsystams and
Subsystem-IDAs. These lists are needed to build the correct context 2~l3ausa.

If the system does not contain Subsystems, the object points to 3 list of
Activities and IDAs. The construction of the issociated program is then
perfornad in a similar way as the construction of a Subsystam.

TYPE MASCOT_System(class : system class_typz) IS
RECORD
name : name_string := "MASCOT_System";
file : file name;
CASE class IS
WHEN with_subsystems =>
subsystems ! 3ccess_subsystem list_element;
subsystem IDAs : access_IDA_list element;
WHEN without_subsystems z>
activities : 1access_agtivity list elemant;
IDAs : access_IDA_list element;
END CASE;
END RECORD;

TYPE access_MASCOT_System IS ACCESS MASCOT System;

4,1.1.6 Tnhe Type "subsystem"
An object of type "subsystem" is the head of the description of a Subsystem. It
contains a pointer to a list of

parameters describing the optional value parameters of the Subsystem
together with their actual values;

Activities;

e ———————— e et s < <

IDAs private to it;
Subsystem-IDAs.
The information is needed to build the proper context clause and to instantiate

the Activities and the private IDAs.

TYPE subsystem I3

RECORD
name ! name_string;
file ¢ file_name;
paramaters ! access_parameter _list_element;
activities : access_activity_ Tist elen nt;
IDAs : aCCess_;DA_}lst_glenent,
subsystem iDAs : access_IDA_list_element;

END RECORD;

4.1.1.7 Tne Typ2 "activity"
An object of type "activity"™ describes an Activity as it is created within 3
Subsystem. The following attributes are needed:

a pointer to the object which describzs the Root template

a list of parameters which associate the formal valuz parameters of the
Root template with the actual ons=s;

a list of access procedures which associate the generic formal procadurses
of the Root template with the actual access procedurss;

a list of the accessed 1DAs (This list is for information only)

TYPE activity IS

RECORD
name : name_string;
root : access_root_template
paramsiers : access_parameter list element;
access_proczdures : access access_p"ocedura list_elemant;
IDAs ! azcess_IDA_list_element;

END RECORD;

4.1.1.8 The Typ=s "IDA"

An object of type "IDA" describes an IDA, whather Subsystem-IDA or IDA private
to a Subsystem. The object must be constrained to denote whether it describes a
Channel or a Pool. The component "file _nanme" contains an eapty string, if the
IDA is an IDA private to a Subsystem. The following attributes are needed:

a pointer to the object which describes the IDA template;
a list of the objects which denote the packages defining the data typ=as

-l - p -

= ey - o—— e

g g gy

.y

used by the IDA (normally this list only consists of one eleament);

if it is a Channel, a list of the generic actual parameters associated with
ths generic formal parameters of the template.

TYPE IDA(class : IDA_class_type) IS

RECORD
name ! name_string;
file : file_name;
template : access _IDA_template(class);

data_types : access_data_type_list_element;
CASE class IS

WHEN pool => NULL;
WHEN channel => parameters : access_parameter_list clement; i
END CASE; \

END RECORD;

4.1.1.9 Tne Typz "root_template"

An object of type "root_template" describzs a Root template. The following

attributes are neceded:
the name of the file which contains the source code of the spacification;
the name of the file which contains the sourze code of the boly;
a list of its formal value parameters;

a list of generic formal procedures which denote the access proceadures to
IDAs;

a list of the objects which denote the packages defining the Jdata types
used by possible IDAs.

TYPE root_template IS

RECORD
name : name_string;
sp2¢ i file name;
bodie t file_name;
parameters : access_parameter list element;
access_proceduras : access_access_procedure list_elemant;
data_types : access_data_type_list_element;

END RECORD;

4.1.1.10 The Type "IDA_template"

An object of type "IDA_template" describes an [DA template. The object must be
constrained to denote whether it is a Channel or a Pool. The following
attributes are needed:

the name of the file which contains the source code of the specification;

ST .

the name of the file which contains the source code of the boidy;
a list of the access procedures which are provided;

if it is a Channel, a list of its generic formal parameters;

if it is a Pool, a list of objects which denote the packages defining th:

data types used (normally this list consists of only one element).

TYPE IDA_template(class : IDA_class_type) IS

RECORD
name : name_string;
spec : file name;
bodie t file name;

access_procedures : access_access_procedure_list_element;
CASE class IS
WHEN pool => data_types : access_data_type list_element:
WHEN cnannsl => parameters : access_parameter_list_element;
END CASE;
END RECORD;

4.1.1.11 The Type “"data_type"

An object of type "data_type" denotes the specification of types of thosz2 data
objects handled by IDAs. If an abstract data type is not considered, the
attribute "body" contains an empty string, because a body is not needed in this
case.

TYPE data_type IS

RECORD
naze : name_string;
spec ! file_ name;

bodic : file_ name;
END RECORD;

4.1.2 The ACP Diagram

An ACP Diagram is a directed graph. Activities and IDAs are the nodes, access
procedures of the IDAs are the arcs. The arcs are directed, because some access
procedures deliver data to IDAs, some deliver data from IDAs. Pools can have
bidirectional access mechanisms, but it can be assumed that the main purpose of
these access mechanisms is unidirectional. Consider an access to a pool, where
the questioner provides a key to receive proper data, or vice versa,

The graph of an ACP Diagram describes the whole MASCOT_System. Subsystems are
subgraphs. Subsystem-IDAs are owned by more than one subgraph.

The first step towards the MASCOT System is the construction of a graph which
denotes the ACP Diagram of the MASCOT System. The nodz types are given by type
"node_class type", the arc types by type "arc_class_type". An arc always starts
at a node of type "act" (activity). "From"™ means that the Activity raceives

-4 -8 -

data from the connected IDA.

TYPE node_class_type IS (act , channel , pool);
TYPE ar:_class_type IS (from , to);

e e e,

TYPE node(class : node_class_type);

TYPE access_node IS ACCESS node;

TYPE node_list_element;

TYPE access node_list_element IS ACCESS node_list_element;

TYPE arc;
TYPE access_arc IS ACCTESS arc;

TYPE arc_list_elzment;

TYPE access_arc_list_element IS ACCESS arc_list_element;

The list of nodes forms the ACP Diagram. Every node is associzted with 3 list 1
of arcs. Thes implementation of the graph does noat contain any informition aboul
Sabsystams.

4.1.2.1 Thz Typs "node" |

An object of typ2 "nole" contzins the following information: h

its name «#hich is tne name of the future System Flemont;

a list of thosz ires which start or end at th2 node;

its 2lass.

TYPE node IS
RECORD
name : nime_string;
arss @ azcass_arc_list_elemant;
class : node_class_type;
END RECORD;

TYPE node_list_elzment IS

RECORD
element : access_node;
next : access_node_list_element := NULL;

END RECORD;

4,1.2.2 The Type "arc"

An object of type "arc" contains the following information:

its name which is the name of the future access procedure;

its direction (this information is used to create a picture of thz ACP
Diagram automatically);

its source which is always an Activity;

its sink which is always an IDA.

TYPE arc 1S
RECORD
name : name_string;
direction : arc_class_type;
source ! access_node;
sink : agcgess_node;

END RECORD;

TYPE arc_list_element IS

| RECORD
elemsnt : access_arc;
next ¢ access_arc_list_element;

END RECORD;

! 4.1.2.3 The Construction Prozedure for the ACP Diagram

The ACP Diagram is constructed with the procedure "construct ACP Diagrsm". Tnac
ACP Diagram is delivered as a list of nodes (Activities and IDAs). The firs:
phase of tha construction process is the input of the various nodes. Th:z second
phis2 is the input of the arcs which are the access procedures of IDAs anZ ar:
called by the Activities. Every node has a 1list of arcs. Tnerefore every avc
is stored twice: at the node that is an Activity and at the node that is an 1D:.

The procedure has the following interface:

WITH text_io, construction_d=2ta base_typss;
USE text_io, construction data base_ typ2s; '

PROCEDURE construct_ACP Diagram(head : OUT access_nod2 list_element);

4.1.3 Creation of Data Typs=s

Every IDA is connected with 3 package which defines the types of the data
objects needed by the access procedures of the IDA. Various IDAs can share thez
same data type definitions. The Construction Data Base contains 2 list of thos>2
packages. The list is constructed with the procedure "form_data_types".

The interface of the procedure is:

WITH text_io, construction data_base_types;
USE text_io, construction data_base_types;

PROCEDURE form data_ types
(data_types list : OUT access_data_type_list_element);

-4 -10 -

—

4.1.4 Creation of IDA Templates

A list of all IDA templates is created with the procedure "form_IDA templates”.
Every template is supplied with a list of its access procedures. When inputting
the access procedure names, care must be taken to 2nsure that they are thz2 same
as the names of the access procedures used in the ACP Diagram. Such a3 check
cannot be performed by this procedure, because one template can be used to
create several IDAs and because this procedure has no access to the ACP Diagram.

In the case of a Pool template the list object is supplied with the proper
element wnich describas the data types used by its access procedures. In the
case of 2 Channel template the list object is supplied with formal data types
(and operations on tham).

The interface of the procedure is:

WITH text_io, construction_data_base_types;
USE text_io, construction_data_base_types;

PROCEDURE form_IDA_templates

(data_types_list : access_data_type list element;
IDA_template_list : JUT access IDA_teaplate_list_element);

4.1.5 Crzation of Root Templates
A list of Root templat2s is created with the procejure "form_root_templates".
Every template is supplied with a3 list of

the packages which define the data types used by the various i1ccess
procadures to IDAs;

formal access procedures to IDAs;
formal valu2 parameters of the Root tenmplate.
The interface of the procedure is:

WITH text_io, construction_data_base_types;
USE text_io, construction_data_base_types;

PROCEDURE form_root_templates

(data_types_list : access_data type list_eloment;
root_template_list : OUT access_root_template_list_element);

4.1.6 Forming of Subsystems

Subsystems are formed with the procedure "form Subsystems®™. If no Subsystems
are considered, the procedure delivers an empty list of Subsyst=ms.
If Subsystems are considered, the forming process consists of four phases:

-4 -1 -

(1) Construction of the Subsystems

A Subsystem is constructed by naming the Activities which it consists
of. A chack is made to ensure that an Activity is only used once. The
IDAs which belong to a Subsystem can then be derived from the ACP
Diagram automatically. Every Subsystem is supplied with a list of
formal value parameters.

(2) Forming of the Activities

Activities are created from Root templates by supplying the template
with the actual value parameters and with the actual access proz=zdures
to IDAs. A check is made to ensurz that the actuzl access procedures
are equivalent to those mentioned in the ACP Diagram.

(3) Forming of the Subsystem-IDAs and the IDAs private to Subsystams {

IDAs are created from IDA templates. The system determines whether ian
IDA is private to a Subsystem or whether it is a Subsystem-IDA. 1If tne
template is a Channsl template, the IDA is supplied with the name of
the proper data type definition and with the actual data typas. &
check is made to ensure that the class of the IDA given in thes ACP
Diagram and the class of the IDA template match.

— -

(4) Supplying every Activity with a3 list of those IDAs connscted to it

Every Activity is supplied with a list of those IDAs to which it has
access.

The interface of the procedure is:

WITH text_io, construction data base types;
USE text_io, construction data_base_types;

PROCEDURE form_Subsystems
(data_types_list : access_data_type list_element;
IDA_template list : access IDA_template_list_elemant;
root_template list : access_root_template list_element;
ACP_Diagram : access_node_list_element;
subsystem list : OUT access_subsystem list_element);

4.1.7 Forming of the Main Program

The main program is formed with the procedure "form_ !NASCOT_Systeam". The
procedure consists of two independent parts.

If Subsystems are considered (the list of Subsystems is not empty), every
Subsystem is supplied with its actual value parameters and a list of all
Subsystem-IDAs is constructed.

If Subsystems are not considered, Activities and IDAs are formed according to
the ACP Diagram. The forming process is similar to that performed during
forming of Subsystems.

The interface of the procedure is:

-4 <12 -

=

WITH text_io, construction data_base types;
USE text_io, construction_data_base_types;

PROCEDURE form_ MASCOT_System

(data_types_list : access_data_type list_element;
IDA_template list : access_IDA template list element;
root_template list : access_root_template list _element;
subsystem list : IN OUT access_subsystem list_ element;
ACP_Diagram 1 access_node_list _element;

MASCOT System object : OUT access_MASCOT System);

4.1.8 The Main Program of the Construction Process

Tha2 main program of the construction process of the Construction Datz Base calls
successively th2 several subprograms which implement the various construction
stages. It only implements the first gensration of an application program using
the MASCCT philosophy. The programs with whizh this generation 2an bs cnanged
are ndt described in this paper.

The subprograms "genzarate_..._ fram2" tha2n build the frames of all System
Elements and System Element T2mplates. The implementations of the subprograms
arz not described in this report, because machine depandent file accesses have
to be performed. Howzver, an implem2ntation can easily be derived froa the
frames given in the following subchapters.

The Construction Data Base is held in main memory during the construction
process. The subprograms "save MASCIT_Systeam" and "save ACP_Diagram" stors the
whole Data Base on mass storage to allow further work on the Data Base. Tnese
subprograms are hzavily machine dependent and their implem2sntation is tharefore
not given in this report.

-4 - 13 -

Al

TN R T

WITH construction_data base_types;

WITH construct ACP Diagram;

WITH form MA: 0T System;

WITH form Subsystems;

WITH form data types;

WITH form__ IDA _templates;

WITH forq_roop_;emplates.

WITH generate_data_types_frame, generate_root_templates_ frame,

generate_;DA;Eémplate;_frame, generate_subsystem frame,
generate_main program_ frame;

WITH save MASCOT_System;
WITH save_| "ACP Dlag"aﬂ,
USE constru*tlon data_base types;

PROCEDURE construct_data_base

is
ACP_Diagram : access_node_list _element;
MASCOT_System_object : access_MASCOT_System;
data_types_list : access_data_type_list_element
IDA_template_list T access_ " IDA _template_ list elemont,
root_template_list : access_ " root _template_ lis< _elemnent;
subsystem_list : access_§ubsys em_list_ alement;

BEGIN

construct_ACP _Diagram(ACP_Diagram);

form_data_types(data_types_list);
generate_data types_frame(data_types_list);

form IDA_templates(data_types list , IDA_template_list);
generate IDA_templates_ frame(IDA _template list);

form root_templates(data types list , root_template list);
genarate_root_templates_frame(root_template_list);

form Subsystems(data types_list ,
IDA_teamplate_list ,
root_template list ,
ACP_Diagram ,
subsystem list);

generate_subsystem frame(subsystem_list);

form MASCOT_System(data types list ,
IDA_template list ,
root_template list ,
subsystem_list ,
ACP_Diagram ,
MASCOT_System_object);
genzrate_main_program_. frame(MASCOT _Systam_object);

save MASCOT System(MASCOT System object , data_typas_list ,
IDA_template_list , root_template_list);
save_ACP_Diagram(ACP_Diagram);

END construct_data_base;

-4 - 14 -

T T I L AL T

L.2 Data Types of the IDAs

Activities communicate with each other via IDAs. An IDA provides a procedural
interface for that purpose. Because IDAs store data passed through them either
permanently (in the case of Pools) or temporarily (in the case of Cnannels) in 3
private data area, the procedural interface of an IDA is a set of aczess
procedures to this data area.

Activities are created from Root templates. A Root template need not know with
which IDA a derived Activity will be connected. The Root template, however,
must specify access procedures to a set of possible IDAs in a formal mannzar
bacause of Adz rules. The types of the data objects passed with these formal
procedures must also be known by the Root template. An Activity derived from a
Root template can then be only connected with such IDAs whose access procedures
can be matched with the formal procedures of thz Root template.

IDAs are created from IDA templates. IDA templates already provids the
procedural interface of the futurs IDA. The template also implements th2 data
arza of the future IDA. Therefore the types of the data objects passed tiaroughn
the future IDA must be already «xnown by the IDA template.

[

- " - = —— = - = - - - -

PACKAGE <name of data types> IS

; ;
i '.
' \
\ -- declaration of the dats typ2s (or abstract dzta type) |
J -~ used by IDAs ;
; :
i END <namz of data_types>; ;
] I
t 1

- — " - W P o = e = = = = - = = e e = - - -

1 1
i]
i Figure U.2-1: Frame of a Package containing data types '
| fcr IDAs |
L]]
1]

- - - - - = L R = e > = = = P - = = - — -

Tne definition of the particula~ data types must therefore be visible to IDA
templats as well as to Root iemplate. To ease the construction of the
application system the definition of the data types of a single IDA should
therefore be subsumed under a single package specification in terms of Ada. An
IDA t=mplate then names exactly one definition of data types in its zontexe
clause, a Root template nam2s 3s many as thare are connections with particular
IDAs for a derivable Activity. It may be that the types of objects passc2?
through different IDAs are equivalent. Therefore different IDA templates can
share the same definition of data types.

An Ada package can define an abstract data type which consists of any number of
type definitions and a set of allowed operations on the types. Such abstract
data types can easily be handled if the MASCOT philosophy is used. In this case
a package body is needed additionally to the package which defines the data
types of an IDA.

-4 - 15 -

4.3 The Form of IDA Templates

Ada provides the facility to specify templates of program units with its generic
concept. Procedural interfaces, as needed by an IDA template, can only be
formed by using packages. Therefore an IDA template will be a Zeneric package
in an Ada environment.

4.3.1 Channel Template

In Ada it is possible to restrict the use of objects of particular types. Such
types are called (limited) private types and can only be declared in packaze
specifications. The only opsrations available for objects of private types
outside the declaring package are assignment, test for equality, and operations
which are expressed as procedures/functions and which are declared in th2 same
package specification. The assignment operation and the test for equaliiy are
not available for objects of limited private types. Gensric formal types cin be
declared as private. Only assignment, test for equality, and associzted generic
formal subprograms are available for objects of those formal types within the
generic unit.

GENERIC

i
]
t
i
TYPE channel_data 1S PRIVATE; -- type of thosz data objects 1
-~ passad through the Channel; i

-- perhaps more generic formal \

-- paramaters are needed to provide |

-- operiations on tne data objects !
g

]

1

]

]

]

L]

1

]

]

PACKAGE <name of Channel template> IS
-- declaration of the access_procedures

END <name of Channel template>; -- specification

A MASCOT Channel does not process data passed through it. To ensure mutual
exclusion of competing Activities and to a3llow the delivery of more than one
object to be passed before an object is consumed by an Activity, data objects
must be stored temporarily in a private data area. The characteristics of the
type of an object is not of any interest to the Channel. To allow temporary
storage, assignment must be available for objects within the Channel. Therefore
the type of these objects can be private (hidden from the Channel).

A template which denotes a Channel therefore does not need to be associzted with
a package which defines the data types of the future IDA but must have a generic
formal parameter which denotes the type of the object passed through the

-4 - 16 -

T

Channel. Perhaps more than one generic formal parameter is needed for that
purpose.

Figure 4.3-1 shows the format of the specification of a Channel template.

4.3.2 Pool Template

According to the MASCOT philosophy a Pool is intended to hold data for a long
period of time. A Pool processes the data objects more or less to be able to
store or retrieve them in 3n efficient manner.

WITH <nime of packagze tnat defines the data type>;
USE <name of packag2 that defines the data type>;

GENERIC
PACKAGE <nams of Pool template> IS

-~ declaration of the aczess procedurss

[42]

ND <name of Pool templated>; -~ spaczification

- - - - - = W= W W . - - -

‘ H
{ Figure 4.3-2: Frame of the Specification of H
H a Pool Template \
) |

- 4 - ———— " > .= - - T = Y S Y D = A e R R g e W e = e W e e e

Th2 procedures, which implement a Pool in an Ada environment, must be 3llow2d to
parform all possible operations on data objects deliverasd to them. Tharefore
ths typ2s of the data objects must not be hidden from a1 Pocl. Beczusz 3
template already implements th2 bzhaviour of thz future Pool, th2 types of the
data objects must ba made visible to the template,

In Ada a Pool template is a generic package which has no gena2ric fornmal
parameters but which mentions the package defining the data types of the future
Pool in its context clause.

Figurzs 4.3-2 s1ows the format of the specification of a Pool tamplate.

4.4 The Form_of Root Templatzs

Commuriication between Activities is only allowz2d via IDAs. The actuil
communication links are built up during the creation of Activities. The
particular IDAs are named during this process.

An Activity is an active part of an applicaiton system, wher2as an IDA is a
passive part, because an IDA only becomes active, if one of its access

-4 =17 -

procedures is invoked by an Activity. Therefore the templats of an Activity is
a generic procedure in an Ada environment (There are no generic tasks in Ada).

WITH <list of data types>; -~ all packages declaring the data types
-~ of IDAs used by the root must be

-~ mentioned here

USE <list of data types>;

-~ declaration of the formal procedural interfacs to IDAs

)

]

]

]

]

]

1

]

1

]

H

1 GENERIC
i

)

[]

:

; PROCEDURE <nams of Root template> -- (formal parameters, if any)
) .

)
:

———— -~ — > = - - == G D G =y S U M e = e e A T - M G e e

Because of Ada rules the access procedures to possible IDAs must be known by thc
Root template. To allow a certain amount of param2terisation those prozedurs2s
are genaric formal paramsters of the template.

The typ2 of data objects which are passed by thz access procedures shaoulid also
be parameterisable but this would restrict the use of objects derived from thos:
types because of Ada rules. A Root, howaver, creates and processss thos=2 dats
objects. Therefore their types cannot be private (hidden from the RoO:
template) as they should be to allow 3ll kinds of types as actuzl parametars for
the generic formal types, but they must be fully known. Tnis means that the
definitions of the data types of 311 accessible IDAs must bs made visible Lo the
Root template.

Unfortunately this approach restricts the derivation of Activities from tha Roos
template, because an Activity can then only communicats via IDAs whose accoess
procedures match the generic formal procedures of the particular Root templzte,

The format of the specification of a Root template is shown by Figure 4,4-1,

Access procedures and data types form the interfaces of Activities zand IDAs to
their particular surroundings. Their implementations are hidden from each
other. However, some restrictions are to be obeyed.

4.5.1 Roots

All features of Ada can be used for the implementation of a Root template.
Conmunication with other parts of the system should only be made, however, by
using the formal access procedures to IDAs. Tasks also should not be used
within a2 Root template because according to the MASCOT philosophy the only tasks
are Activities which are derived from Root templates.

PROCEDURE <name of Root tocmplated> -- (formal parameters, if any)
IS

-~ declaration of local objects

-- body of the Root template

H
4
1
[}
)
]
]
)
]
BEGIN H
'
]
+
|
END <name of Root templzate>; =-- body ‘

|

The value pzrameters of a3 Root template can be used, for example, to s=lect
special strat2gies in accessing IDAs.

4.5.2 IDAs

IDAs are the interfaces betw2en Activities. Activities are 2xecuted in
parallel. The implementation of an IDA must 2nsure that no conflicts arisz
batween Activities while accessing thes data area. Access to a data arz3
therefore must b2 embedded in critical regions. Ada offers the razndezvous
machanism for that purpose.

MASCOT provides the four primitives JOIN, LEAVE, WAIT, and STIM for the
implementation of critical regions. The primitives operate on speciial objects
called control quesues. If an Activitiy wants to talk to an IDA, it perforas a
JOIN operation on the associated control queue. After successful communication
it LEAVEs the control quaue. The primitive JOIN indicates the entrance into a
critical region, the primitive LEAVE the end of a critical region. The
primitives STIM and WAIT are used for cross stimulation. If an Activity has
successfully written into the data area of an IDA it performs a STIM operation
on the associated control queue to indicate that data objects are available in
the data area. If an Activity wants to read data from the data area of an IDA
it performs a WAIT operation to test whether thesre are data objects available in
the data area.

The implementer of Activities (or Root templates) should not be concerned with
those primitives. Therefore the calls of the primitives are embadded in the

-4 -19 -

access procedures of IDAs. The MASCOT philosophy in an Ada environment should
facilitate the same approach. The package which implements an IDA therefore
only provides a procedural interface. The implementations of the procedures
must ensure mutual exclusion of Activities which want to access the data area of
an IDA. On the other hand, Ada procedures are reentrant. Therefore it is
possible, for example, to calculate access strategies before entering a
particular critical regior, or, even more, to decide that mutual exclusion is
not necessary (for example, if a read only access is considered).

PACKAGE BODY <name of Channel/Pool template> IS

-- declaration of the data area that either temporarily
-- holds data items sent through the Channel of stores
-~ data items hold in the Pool

-- declaration of the bodies of the access_procedures

-- initialisation of the Channel/Pool

i :
(] [}
(] 1
(]]
]]
[}]
4]
H \
] [}
] 1
' \
H -- declaration of the task that implements the Channel/Pool |
1 1
\ |
] 1
]]
[t
] []
[}]
' H
) 1
]]
] I
[} 1
i END <name of Channel/Pool template>; =-- body]
]]
] t

- - - - = = Y S e e -

- - - - - " - - - - - - — - - - " e = - e - o - -

Control queues are kinds of semaphores. The JJIN and LEAVE primitives ara the P
and V primitives respectively. The only possible implemsntation of a semaphcre
is its implementation as a task with two entries in an Ada environment.
Tnerefore, if JOIN and LEAVE are to be implemented, the respective control gqueu:z
must be expressed as a task.

TASK control_queus IS
ENTRY join;
ENTRY leave;

END control queue;

TASK BODY control queue IS
BEGIN
LOOP
ACCEPT join;
ACCEPT leave;
END LOOP;
END control_queue;

Such a task is needed for every control queue in the application system. This
would result in heavy context switching and would slow down the systen
performance.

The primitives WAIT and STIM must be implemented in a similar manner. The

-4 - 20 -

solution, however, is more complicated in their case. Therefore another
approach should be considered.

If a task calls an entry and the called task is not able to accept the entry
call immediately, the calling task is blocked and has to wait until the call is
accepted. The primitives JOIN and LEAVE therefore become obsolete in an Ada
environnent. On the other hand an accept statement contains an optional
sequence of statements for whose execution mutuial exclusion is ensured.
Therafore the access procedures of an IDA should be transformed into entry calls
of a task. This task then handles all operations on the data area of an IDA.

An Activity, however, does not know that its accesses to IDAs are treated in ’
this way.

¢ Consider the following example of a Channel which only passes one data object at
[a time. The task which implements the behaviour of the Cnannel then looks like 1
as follows:]

TASK channel IS
ENTRY put(x : IN item); ;
ENTRY get(x : OUT item); ;
END channel;

TASK BODY channel IS \
store_x : item;

BEGIN
LOGP
ACCEPT put(x : IN item) DO
store_x := X;
END;
ACCEPT get(x : OUT item) DO
x := store_x;
END;
END LOOP;

END channel;

Although this example is very simple, very complicated strategi=s for azce
an IDA's data area are implemantable. The reader is referred to { 3]
more detailed discussion. Alternative solutions are also considered in [< 3,

but the solution shown in this paper is the one more suitsd to Ada.

-

The data area of an IDA is built from the types defined in 2 special pizkage for
every IDA. Initialisation of the data area must be performad by the IDA itself.
Therefore initialisation routines must be implemented within the packag= body of
the IDA template.

4.6 Creation of IDAs

The creation of an IDA is achieved by instantiating the package, which denotes
the particular IDA template. Generic actual parameters must be provided for tne
instantiation process. A Pool template does not have generic formal paramaters
therefore no actual ones must be supplied. In the case of a Channel the actusl
data types must made visible and the generic formal parameters must be matchad
with the actual ones. Figure U4.,6-1 shows the two kinds of instantiations.

-4 .21 -

{ WITH <name of package that defines the data type>;
i\ USE <name of package that defines the data type>;

1
)
! PACKAGE <name of Channel> IS

' NEW <name of Channel template> (channel data => <actual type>);
1

I

]]
)]
i PACKAGE <namsz of Pool> IS !
! NEW <name of Pool templated; !
] 1
! 1]

- - - - - - - = = - > > Y = = - h R e e -

Ada instantiations can be library units as well as the generic units they are
derived from. Subsystem-IDAs must be addressable by several Subsystems, bzcause
they do not belong to any one Subsystem. In Ada they have to bz library units
and are instantiated as such. But note: If two Subsystem-IDAs wWith exaztly the
samz behaviour and data types are needed in an application system, tn2
respective template must be instantiated twice. One instantiation crezt2s
exactly one library unit. Mentioning them in various context zlauses does not
multiply their codes.

"

IDAs private to a3 Subsystem n=2ed not to bs visible outside the Subsyszten.
Therefore they are instantiated within the code of a Subsystem.

4.7 The Form of Subsystems

- - - - - - - - a - - - -

Clossly related Activities and the respective IDAs are subsumed unde~ 2a
Subsystem. Subsystems coamunicate through those IDAs (Subsystem-IDAs) wnizh
form th2 communication links between Activities belonging to differ=ant
Subsystems. They are not part of a Subsystem.

A Subsystem is a procedure in an Adi environment, because it is diraztly invokad
by the main program and it has not to provide a large interface to its
surroundings except to allow it to be called. A Subsystem has an optional list
of formal value parameters. Value parameters can be used, for example, to
select special strategies within a Subsystem or to supply the encapsulated
Activities with actual value paramaters.

Subsystem-IDAs are library units. A Subsystem which communicates via a
particular Subsystem-IDA must import this Subsystem-IDA in its context clause.

The IDAs private to a Subsystem are instantiated in the same manner as
Subsystem-IDAs within the Subsystem. The packages defining the data types of
these IDAs and the respective IDA templates must be imported by the Subsystem in
its context clause.

-4 -22 -

E
;
i
|
!
i

- - - i Ty S P S Y D D D R T e Ay P D W D D e T T L O P P D 5 T WD T AR S e W e e W WP P W T R R

WITH <list »f the data type specifications of the private IDAs>;
WITH <list of templates of those IDAs private to the Subsystem>;
WITH <list of to be used Root templates>;

WITH <list of the Subsytem-~IDAs>;

USE <list of the data type specifications of th2 private IDAs>;
USE <list of templates of those IDAs private to the Subsystem>;
USE <list of to be used Root templates>;

USE <list of th2 Subsystem-IDAs>;

PROCEDURE <name of Subsystem> -- (formal parameters, if any)
IS

-~ instantiate private IDAs according to the following schema:

1
]
]
)
L]
4
]
t
13
]
L]
]
)
]
]
(]
)
1
)
]
)
[]
4
)
]
1
'
t
1
-=== Channel: '
}
]
]
)
]
H
)
1
1
t
]
)
)
]
]
)
1
[
}
i
|
1
1
1
i
'
!
1
1)
]
1
1

———— PACKAGE <name of Cnannel> IS

-———- NEW <name of Channel template> (channel data

———— => <actual type>);

- 1
---- Pool: I
———- PACKAGE <name of Pool> IS

—— NEW <name of Pool tesmplated;

-- form th= Activities according to thz following schena:
~-== TASK <name of Activity>;

~-=-- TASK BODY <nam= of Activity> IS

------ instantiate proper Root according to following sahema:
------ PROCEDURE <name of Activity> Root IS
------ NEW <nam2 of Root %templata> (<formal parameters> :
...... 2> <actual paramatersd); |
—— \
---~ BEGIN :
———— i
———— <name of Activity> Root -- (actual parameters, if any) :
; i
+
\

~«== END <name of Activity>; -- body

BEGIN

\
;
'
NULL; -- may be replaced by monitor operations ‘
\
END <name of Subsystem>; \

1

]

Activities are executing in parallel competing for access to IDAs. Ada offers a
tasking concept to express parallelism. Tasks cannot be library units.
Therefore tasks denoting Activities are embedded into Subsystems. A Subsystem
declares as many different tasks as it contains Activities.

According to MASCOT Activities are created from Roots and Roots from Root
templates. These two steps are performed in one in an Ada environmsnt. A
proper Root template is instantiated within the task denoting the particulsr
Activity. This instantiation is similar to the creation of a Root in a MASCOT
environment. The instantiation proczsss is supplied with the proper actual
access procedures to the respective IDAs to replace the generic formal ones of
the Root template. The Activity-task then simply calls the instantiatzg
Root-procecdure by supplying actual value parameters.

An alternative could be to instantiate Root templates outside 3 Subsystznm to be
able to use the same instance of a Root template twice and to bz fully in
accordance with the MASCOT philosophy. This se=ms to be possible beczause
procedures are reentrant in Ada. Tne first disadvantage, howsvar, is that locsl
variables of an instance then only exist once which can lead to strange effectis.
The second one is that all IDAs must also be instantiated outside the
Subsystens.

A Subsystem must mention all Root templates which will be us=2d in its contax
clause.

The declared tasks denoting Activities are initiated in parallel before the
Subsystem starts the execution of its own list of statements. Normially this
list only contains a NULL statemaent, because the Subsystem must await tn:
completion of the Activity-tasks. However, the list of statements can consist
of monitor operations. In this case Root as well as IDA templates must offer
respective interfaces.

The overall format of a Subsystem is shown by Figure 4.7-1.

4,8 The Form of the Main Program with Subsystems

Subsystems execute in parallel at the system level. Therefore they are embedic3
in Ada tasks. The main program declares as many tasks as Subsystems exist. Tn2
body of such a task comprises only on2s statement: the call of the procedurc
which denotes the particular Subsystem. Every procedure call is supplied witn
actual parameters for the valuz parameters of the particular Subsystem. Trc
main prozram mentions 3ll Subsystems in its context clause.

The m3ain program does not need to execute statements its=2lf because it must
await the completion of the Subsystem-taskxs anyway. Its statement list
therafore only comprises the NULL statement. On the other hand monitor
operations can be performed easily by the main program instead of executing 2
NULL statement. This case, however, must be considered by the implementations
of the various parts of the systenm.

The forming of the main program is the last step in creating an application
system according to the MASCOT philosophy in an Ada environment. After this
step the whole system must have been compiled. The compilation is the last
check for correctness of the program, especially of the interfaces. The firs:
check is performed during the building of the Construction Data Bas-.

-4 -2y -

l"F-"-""-'-"-""-'-'--'-'-l."-l'l-'I-.llUl--'--'H-I--I--I-I!--lu-.-u-u-rgf

Ada defines a strict compilation order. Therefore the various parts of the
system have to be compiled in the following order: packages which define the
data types of IDAs -> IDA templates -> Root templates =-> instantiations of thoss
IDA templates from which Subsystem-IDAs are derived -> Subsystems -> main
program. However, every part can be compiled after its completed coding as long
as the correct compilation order is ensured.

]
[]
[}
]
i
[]
[}
]
]
]
[}
[]
\
[}
\
[]
[}
[}
]
?
[}
[}
]
!
]
\
[}
[}
]
\
[}
]
]
[}
]
[
\
]
)
t
[}
1
[}
[
[]
]
[}
]
[}
[}
)
]
1
1)
[}
]
[]
[}
]
]
[]
]
\
]
]
]
[}
i
1
]
[}
]
[}
]
\
!

WITH <list of all Subsystems>;

PROCZDURE MASCOT_System
I3

-- declare 11l Subsystems as tasks according to the following schama:

---- TASK <namz of Subsystem>_task;

[}

]

[}

]

i

‘

!

I

]

]

]

]

\

i

‘ -=-~- TASK BODY <nam2 of Subsystem>_task IS
H --~- BESGIN
] ————
:
]
]
[}
)
)
]
E
i
]
t
'
i
i

——— <name of Subsystem> -~ (aztual param2ters, if any)

---=- END <nam= >f Subsystem>_task;
BESIN
NULL; -- may be replaced by monitor opzritions

SND MASCOT_System;

- - - ———— 4 W P = = T N A S TP D W W P W P T - - -

i |
! Figure 4.8-1: Frame of the Main Program Consisting of Subsystems '
1] [}
L 1

Forming a main program without Subsystems is just like forming 3 Subsystem
despite the fact that Subsystem-IDAs ara not concernzd (refar Subchaptar 4.7).

The compilation order is: packages which define the data types of IDAs -> IDA
templates -> Root templates -> main program.

-4 -25 -

]
[
WITH <list of data type specifications for IDAs>; g
WITH <list of IDA templates>; '
WITH <list of Root templates>;)
USE <list of data type specifications for IDAs>; '
USE <list of IDA templates>; i
USE <list of Root templates>; '

]

]

PROCEDURE MASCOT_System
IS

-- instantiate IDAs according to the following schema:

~--- Channel:

———— PACKAGE <name of Chann=sl> IS

——— NEW <name of Channsl template> (channel dava

———— => <aztual type>);

---- Pool:

-—— PACKAGE <namz of Pool> IS
———— NEd <name of Pool templated;

-- form th2 Activities according to the following schama:

---- TASK <name of Activity>;

~--- TASK BODY <name of Activity> IS

------ instantiate proper Root according to the following schema:

------ PROCZDURE <name of Activity> Root IS
------ NEd <nam2 of Root template> (<formzl paramaters>
...... 2> <actusl pzramatersd>);

R

———— <name of Activity> Root -- (actual paramzters, if any)
———— ’

-=== END <name of Activity>,

BEGIN
NULL; -~ may be replaced by monitor operations

END MASCOT_System;

i
---- BEGIN i
j
'

5. Final Remarks ' "

MASCOT is a good methodology for the decomposition of large systems into smaller
parts. It enables systems designers to handle a system in an easier way.
However, MASCOT introduces an own view on parallelism within an application
program. This complicates the use of the MASCOT philosophy in combination with
a programming language which offers tasking facilities.

This paper has combined the programming language Ada and the MASCOT philosophy.
It has found that the MASCOT philosophy is applicable to the development of Ada
programs. However, the communication mechanisms of MASCOT are based on very
basic synchronisation mechanisms using binary semaphores. Ada offers a more
advanced solution with its rendezvous concept. A rendezvous actually implements
a critical region. Therefore MASCOT's synchronisation primitives are already
embedded in Ada's rendezvous. Their explicit use in an Ada program is neither
recommended nor reasonable, because it would result in a very strange
programming style.

MASCOT introduces a kind of controlled separate compilation including the check
for correctness of interfaces with its template and construction data base
concepts. Ada offers these facilities with its separate compilation concept and
its generic concept. The construction of test beds and the simulation of the
behaviour of parts of an application system are also easily possible in an Ada
environment. However, Ada's views are slightly different, and more checks are
performed, for example, type checking. Therefore the unchanged mapping of
MASCOT's view should not be done because some power of Ada may be lost then.

A MASCOT system is composed of Activities and interfaces (IDAs) between them.
An Ada program is a set of procedures which are successively called by a main
program (procedure). Some procedures can contain parallel activities to quicken
computation.

Mapping MASCOT onto Ada totally changes the Ada way of constructing a system and
writing Ada programs becomes unnecessarily complicated. It is therefore
recommended not to use the entire MASCOT methodology for the development of Ada
programs, even though the author believes it to be possible. However, some
concepts of MASCOT (for example: the use of clearly defined interfaces between
tasks whose implementation is hidden from the tasks, and the monitoring concept)
are very reasonable and should be taken as requirements for the development of
an Ada programming support environment.

-5 1=

6. References

{ Y J MASCOT Suppliers Association
The Official Handbook of MASCOT
5 December 1980

(2] Reference Manual for the Ada Programming Language
ANSI/MIL-STD 1815 A Ik
January 1983

{ 3 1C1719 - Further Ada Studies
Use of MASCOT in the Mapse i
Document No: C1719/REP/10 issue 1 !
August 1982 :

-6 -1 -

APPENDICES

Appendix 1 lists the codes of the Ada programs which are used for the initial
building of the Construction Data Base which decribes an application system,
The contents of Appendix 1 are:

construction_data_base_types Al-1

construct_ACP Diagram A1-6

find_data_type A1-9

find_node A1-10
find_root Al-11
find IDA_template Al-12
match_parameters A1-13
patch_procadurss Al-14
form_data_types A1-16
form_IDA_templates A1-17
form_root_templates A1-20
form_Subsystems A1-23
form MASCOT_Systam A1=33
construct_data base A1-323

w
"3
«

Appandix 2 describes 3 simple examplz., The conta2nts ¢f Appondix 2

1. Tn2 ACP Diagram A2-1
2. Tne Construction Data Base A2-3
2.1 The £xample with Subsystems h2-3
2.2 The Example without 3Subsystams A2-1
3. Data Types of th2 IDAs A2-12
4., The IDA Templates AZ-12
4,1 IDA Template 1 A2-12
4,2 IDA Template 2 A2-13
4.3 IDA Template 3 A2-15)
5. Th=2 Root Templates A2-10
5.1 Root Template 1 A2-15
5.2 Root Template 2 A2-17
5.3 Root Template 3 A2-17
6. Subsystem-IDAs A2-18
7. Subsysteas A2-18
8. The Main Program W“ith Subsysteams A2-22
9. The Main Program without Subsystems A2-21

Appendices

PACKAGE construction_data_base_types
IS

TYPE system_class_typs IS (with_subsystems , without_subsystems);
TYPE IDA_class_type IS (channel , pool);

SUBTYPE name_string IS string;

SUBTYPE file name IS string; !

TYPE subsystem;

TYPE access_subsystem IS ACCESS subsystem;

TYPZ subsystem list element;

TYPE access_subsystem_list element IS ACCE3S subsystem list_zlement;

TYPE access_activity IS ACCESS sctivity;
tivity_list_element;
cess_altivity_list_elemant IS ACCESS activity list_element;

TYPE
TYPE
TYPZ
TYPE a

DA(class : IDA_class_type);
ccess_IDA IS ACCESS IDA;
0

W e

A_list_element;
cess_IDA list_element I3 ACCESS IDA list elamant;

TYPZ root_template
TYPZ access_root tgmplato IS ACCESS root_template;
TYPZ root tanplace list_element;
TYPE 3ccess_root_ empla“a _list_elemznt 13
ACCESS root tamplate_list_element; f

TYPE IDA template(class : IDA_class_type);

TYPE access_IDA_template IS ACCESS IDA_template;
TYPE IDA_template_list_element; M
TYPE access IDA_template_list_element IS ACCESS IDA_template list_elensnt

-

TYPE data_ typs;

TYPE access_data_type IS ACCE3S data_typ:;

TYPE data_type_list_element;

TYPE access_data_typa list_element I5 ACCESS data_typs_list_element;

TYPE parameter;

TYPZ accass_parametar IS ACCESS parameter;

TYPE paramater_list_element;

TYPE access_parameter_list element IS ACCESS parametar list element;

TYPZ access_procedurs;
TYPE 3ccess a"“ess_procedu?e IS5 ACCESS accass_procedurs;
TYPE access_procedure_list_element;
TYPE access _access_procedurs list_element IS
ACCESS access_procedure_list_element;

- Al « 1 -

TYPE subsystem list element IS

RECORD
element : access_subsystem;
next : access_subsystem list element := NULL;

END RECORD;

TYPE activity_list_element IS
RECORD
elemant : access_activity;
next : access_activity list _element := NULL;
END RECORD;

TYPE IDA_list_element IS
RECORD
element : access IDA;
next : access_IDA_list_element := NULL;
END RECORD;

TYPE rcot_template list_element IS

RECORD
elemsnt : access_rool_tamplate;
next : access_root_templats list_element;

END RECORD;

TYPE IDA_template_list_element IS
RECORD
element : access IDA template;
next : access_IDA template list_element;
END RECORD;

TYPE data_type_list_elemznt IS

RECORD
element : access_data_type;
next ¢ access_data_type_list_element := NULL;
END RECORD;
TYPE parameter_list_element IS
RECORD
element : access_paramster;
next ¢ access_parameter list_element := NULL;
END RECORD;
TYPE access_procedure_list element IS
RECORD
element : access access_procedurs;

next : access_access_procedure_list_element
END RECORD;

- Al -2 -

:= NULL;

TYPE access_procedure IS
RECORD
formal : name_string;
actual : name_string;
END RECORD;

TYPE parameter IS
RECORD
formal : name_string;
actual : name_string;
END RECORD;

TYPE MASCOT_System(class : system_class_type) IS
RECORD
name : name_string := "MASCOT_Systea";
file : file name;
CASE class IS
WHEN with subsystems =>
subsystems ! access_subsystem list_element;
subsystem_iDAs : access IDA_list_element;
WHEN without_subsystems =>
activities : access activity list element;
IDAs : access:IDA_}ist:kleﬁgnt;
END CASE;
END RECORD;

TYPE access MASCOT_System IS ACCESS MASCOT_System;

- A1 -3 -

TYPE subsystem IS

RECORD
name : name_string;
file : file_name;
parameters : access_parameter_list element;
activities : accessZéctivity_}ist_plement;
IDAs : access_IDA_list element;
subsystem IDAs : access_IDA_list_element;

END RECORD;

TYPE activity IS

RECORD
name ¢ name_string;
root : access_root_template;
parameters ¢ access_parameter list_element;
access_procedures : access_access_prozedure_list _element;
IDAs i access_IDA_list_element;

END RECORD;

TYPE IDA(class : IDA_class_type) IS

RECORD
nama : name string;
file : file name;
template : access IDA template(class);

data_types : access data type_list_element;
CASE class IS

WHEN pool => NULL;
WHEN channel => parameters : access_parameter_list element;
END CASE;

ERD RECORD;

TYPE root_template IS

access_procedures :

CASE class 1S
WHEN pool =

RECORD
name : name_string;
spec file name;
bodie file name;
parameters : access_paramet2r_list_element;
access_proceduras : access_access_procedure_list_elemant;
data_types : accass_data_type_list_element;
END RECORD;
TYPE IDA_template(class : IDA_class_type) IS
RECORD
name : name_string;
spac : file name;
bodie : file name;

access_access_procedure_list_element;

> data_typas : access_data_type list_element;

WHEN channel => parameters : access_parameter_list_element;

END CASE;

END RECORD;

- Al -l -

TYPE data_type IS
RECORD
name : name string;
spec : file_name;

bodie : file name;

END RECORD;

TYPE
TYPE

TYPE
TYPE
TYPE
TYPE

TYPE
TYPE
TYPE
TYPE

TYPE

node_class_type IS (act , channel , pool);
arc_class_type IS (from , to);

node(class : node_plass_type);

access_node IS ACCESS node;

node_list_element;

access_node_list_element IS ACCESS node_list_elemant;

arc;

access_arc IS ACCESS arc;

arc_list_element;

access_arc_list_elemaent IS ACCESS arc_list_element;

nodz IS

RECORD

name : name_string;
arcs @ access_arc_list_element;
class : node_class_type;

END RECORD;

TYPE

node_list_element IS

RECORD

elemant : access_node;
next : access_node list_element := NULL;

END RECORD;

TYPE arc IS
RECORD
name : name_string;
direztion : arc_class_type;
source ! access_node;
sink ¢ accass_node;

END RECORD;

TYPE

arc_list_element IS

RECORD

element : access_arc;
next : access_arc_list_element;

END RECORD;

END construction_data_base_types;

- Al = § -

i

|

WITH text_io, construction data base_types;
USE text_io, construction data_base_types;

PROCEDURE construct ACP Djagraa
(head : OUT access_node_list_element)
1s
tail : access_node_list_element := NULL;
work , work2 : access_node;
] last , last2 : natural;
item , item2 : string(1 .. 80);

class : node_class_type;
direction ¢ arc_class_type;
accproc : access_arc;

PACKAGE node_type_io IS NEW enumeration_io(enum => node_class type);
PACKAGE arc_type_io IS NEW enumeration_io(enum => arc_clas;_type);
USE node_type io , arc_type_io; :

PROCEDURE find_nocde(name : string ; act_node : OUT access_node);

PROCEDURE append(act_node : IN OUT access_node;
proc : IN OUT access_arc);
PROCEDURE find node(name : string ; act_node : OUT access_node)
Is
Work : access_node list_element;
BEGIN
Wwork := head;
LOOP
EXIT WHEN work.element.name’last = name’last
AND THEN
work.elemant.name(1 .. work.element.name'last)
= name(?! .. name’'last);
WOrK ::z work.next;
END LOOP;
act node := work.element;

END find_node;

PROCEDURE append(act_node : IN JUT access_node;
proc : IN OUT access_arc)
1s
work : access_arc_list_element;
BEGIN
work := act_node.arcs;
IF work = NULL

THEN

act_node.arcs := NEW access_arc_list_element'(element => proc,

next => NULL);

ELSE

WHILE work.next /= NULL

Loop

work := work.next;
END LOOP;

work.next :=z NEW access_arc_list element'(element => proc,

next => NULL);
END IF;
END append;

BEGIN

head := NULL;

set_input(standard_input);
set_output(standard_output);

put_line("Start: Construction of ACP Diagram");
put_line("Start: Node Input");

LOJP
put_line("Give Name of System Element™);

get_line(item , last);
EXIT WHEN item(1) = '"#¢;

put_lina("Give Class of System Element (act/pool/channel)");
get(class); skip_line

work := NEW access_node'(class => class,

name => item(1 .. last),
arcs => NULL);

IF head = NULL

THEN
head := NEW access_node_list_element'(element => work,
next => NULL);
tail := hz2ad;
ELSE
tail.next := NEW access_node list_element'(element => work,
next => NULL};
tail := tail.next;
END IF;
END LOOP;

put_line("End: Node Input");
put_line("Start: Arc Input");
LO0P
put_line("Give Name of Activity"™);
get_line(item , last);
EXIT WHEN item(1) = *#';
find_node(item(1 .. last) , work);
LOOP
put_line("Give Name of Access Procedure");
get_line(item , last);
EXIT WHEN item{1) = '®';

put_line("Give Direction (from/to)");
get(direction); skip_line

put_line("Give Name of IDA");
get_line(item2 , last2);

find node(item2(1 .. last2) , work2);

-AM-7-

o —— e

|
1
1
!_.
|

3}

} aceproc := NEW access_arc'(name => item(1 .. last), |
direction => direction,
source => work,
sink => work2);

append(work , accproc);
append(work2 , accproc);

END LOOP;
END LOOP; j
put_lina("End: Arc Input");

put_}ine("End: Construction of ACP Diagram");

END construct ACP_Diagram;

WITH construction_data base_types;
USE construction data base types;

PROCEDURE find_data_type
(list : access_data type list element;
name : string;
pointer : OUT access_data_type)

1s
work @ access_data_type list element;
BEGIN

work := list;
WHILE work /= NULL
LOJP
EXIT WHIN name'last = work.element.namo'last
AND THEN

name{1..n1m2'last) = work.elemant.name(1..namz'last);

WOr< s Work.naxt,
END LOOP;

IF work = NULL
THEN
pointer :
ELSE
pointzar := work.z2il2ment;
END IF;

1]
o
c
L
c

END find_data_type;

- Al -9 -

e e o sl —

- ——

WITH construction_data base_types;
USE construction data_base_types;

PRICEDURE find_node
(ACP_Diagram : access_node_list_element;

class : node_class_type;
namae : string;
pointer : OUT access_node)

1s

work : access_node_list element;

BEGIN

work := ACP_Diagram;
WHILE work /= NULL

LOOP
EXIT WHEN class = work.zlement.class
AND THEN
(name'last = work.elemen*.name'last
AND THEN

nam2(1..n3ame'last) = work.element.nam=2(1..name'last)};
work = work.naxt;

END LOOJP;
IF work = NULL
THEN
pointer := NULL;
ELSE
pointer := work.element;
END IF;

END find node;

- AV = 10 -

i
1
3
!
i
t
!
i

WITH construction_data_base_types;
USE construction_data_base_types;

PROCEDURE find_root
(list ! access_root_template list element;
name : string;
pointer : OUT access_root template)

{ WOrk : access_root_template_list_element;
BEGIN

L work := list;
WHILE work /= NULL
LOOP
EXIT WHEN name'last = work.element.name'last
AND THEN
name(1,.name'last) = work.element.name(1..name'last);
work = wWwork.next;
END LOOP;

IF work = NULL
THEN
poirzar := NULL;
ELSE
pointer := workK.elemant;
END IF;

END find_root;

F

WITH construction data base_types;
USE construction_data base_types;

PROCEDURE find_IDA_template
(list : access_IDA_template_list_element;
name : string;
pointer : OUT access_IDA_template) ;

P

work : access 1DA template list element;
BEGIN {

work := list;
WHILE work /= NULL
LJ0OP X
EXIT WHEN name'last = worx.element.name'last
AND THEN
nam=(1..name'last) = work.element.name(1..name’last);
WOrkKk := work.next; |
END LOOP; 4

IF work = NULL
THEN
pointer := NULL;
ELSE
pointer := work.element;
END 1IF;

END find IDA_template;

- Al - 12 -

wITH construction data_base types;
USE construction_data_base_types;

PROCEDURE match_parameters

list_tail := list;
para_list := JULL;
WHILE list_tail /= NULL
LOCoP

& nvn);

IF para_list = NULL
THEN
para_list :=
NEW access_parameter li
element => NEW 2

next => NULL)
tail :=z para_list;
ELSE
tail.next :=
NEW access_paramster li
elemant => NEW 3

naxt => NULL)
tail := tail.next;

END IF;

list_tail := list_tail.next;

END LOOP;

END match_parameters;

access_parameter_list element;
OUT access_parameter_list_element)

(list
para_list
IS
para_name string(1 80);
para_last natural;
list tail : access_parameter_list_element;
tail access_parameter_list_element;
BEGIN

put_line("Give Namz of Actual Parameter for Formali Parameter "
& list_tail.element.formal(l..list_tail.clement.formal'last)

get lina(para_name , para_last);

st_element'(
ccess_pirameter'(
formal => list_tail.elemsnt.formil
(1
list_tail.2lem2nt.formal’last},
actuzl => par>_nane(para_liast),,

st_element'(
ccess_parametar'(
formal => list tiaii.elcmant.formil
v
list_tail.element.formal'last),
actual => para_nimz(para_last)),

- At - 13 -

.

AR Lkee,

WITH construction data base_types;
USE construction_data_base_types;

PRICEDURE match_procedures
(list 1 access_access_procedure_list_element;
arc_list : access arc_list_element;

proc_list : OUT access_access_procedure_list_glement)

1S
proc_nam2 : string(1l .. 80);
proc_last : natural;
tail : access_access_precedure_list_eledent;
list_tail : access_access_procedure_list element;
arc_tajil : access_arc_list _element;

BEGIN

list_tail := lisi;
proz_list := NULL;

WHILE list_tail /= NULL
LOOP
put _line("Give Names of Actual Access Procedure for Formal Procziurs '"
- § list tail.element.formal{l..list tail.2lemant.formzl'lasz,

& ""l);
get_line{procz_nams , proc_last);
arc_tail = arcz_list;

WHILE arc_tail /= NULL

LOOP
EXIT WHEN proc_last = arc tail.element.name'las:
ANC THEN
proc_name(1..pro:_las:) = arc_tail.elemsnt.nime
(1..proz_lasti;
ars tall :=z 3r2 tail.na2xt;
END LOOP; -
IF arc_tail = NULL
THEN
put_lin2("Actual Access Procedure with Nawe "
& proc_rame(1 .. proc_last) & "' do2s not exist");
ELSE -

IF proc_list = NULL
THZN
proc_list :=
NEW access_access_procedure_list_elemant'(
eiement => NEW access access prozedura'(
formal => Tist_tail.elumynt.formal
1
list_tail.element.formal'ic=t ',
actual => proc_namsz(1..proc_last}),
next => NULL);
tail := proc_list;
ELSE
tail.next :=
NEW access_access_procedure_list_element'(
element => NEW access_access_procedure'(
formal => list_tail.e

ro
]
2]
1)
o]
o
|

D

3

)
.

- A - 1y -

(v ..
list_tail.elemant.formal'last),
actual => proc_name(1..proc_name)),
next => NULL);
tail := tail.next; i
END IF;

list_tail := list_tail.next; i
END IF; !
END LOOP;

END m3tlh_procediures;

o

e e ——— e —— e+ -

- Al - 15 -

WITH text_io, construction data base types;
USE text_io, construction_data base_ types;

PROCEDURE form_data_types
(data_types_list : OUT

access_data_type_list_clement)

IS
name : string(1 .. 80);
last : natural;
answer : character;
tail ! access_data types list _element;

list_element : access_data_type;
BEGIN

set_input(standard_input);

set_output(standard output);

put_line("Start: Input Data Types");

data_types_list := NULL;

LOOP

put_line("Give Name of Data Types");

get_line(name , last);
EXIT WHEN nam=(1) = '#';

put_line("Is Data Types an Abstract Type? (Y/N)");

get{answer); skip_line;
CASE answer IS
WHEN 'Y' | 'y' =>
list_element :=
NEW access_data_type

'

name => name() .. last),
spec => "file." & name(1 .. last) & ".spzc",

bodie => "fil
WHEN OTHERS =>
list_element :=

e."™ & name(1 .. last) & ".body");

NEW access_data_type'(
name => nzame(l .. last),
spec => "file." & name(1 .. last) & ".sp=2",

bodie => "%);
END CASE;

IF data_typass_list = NULL
THEN

data_types_list := NEW acc

tail := data_types list;
ELSE

ess_data_typs_list_element'(
element => list element,
next => NULL);

tail.next := NEW access_data_type_list_element'(
element =z> list element,

next

tail := tail.next;
END IF;

END LOOP;

=> NULLY;

put_line("End: Input Data Typas");

END form_data_types;

e ¥

P R s S vyt

WITH text_io, construction_data base_types;

WITH find_data

_type;

USE text_io, construction_data_base_types;

PROCEDURE form_IDA_templates
(data_types_list :

IS
IDA_name
IDA_last
IDA class
proc_name
proc_last
data_pame
data last
access_data
answer
proc_list_h
prOC_;lSt_}

IDA_template_list

: string(1 .. 80);

access_data type_list_element;

: OUT access IDA template list_element)

: natural;
: IDA_class_type;
: string(1 .. 80);
¢ natural;
: string(1 .. 80);
: natural;
acc2ss_data_type;
character;
=ad ,
ail : access_access_procedure_list _element;

channel paramsters_head ,
ameters_tail : access_parameter_list_elemant;
: access_IDA_teamplate_list element;
access_IDA_template;

channel par
tail
IDA_clement

PACKASE IDA_class_type_io IS NEW enumeration_io(IDA class_type);
USE IDA_class_typz_io;

BEGIN
set_input(s

tandard_input);

set_output(standard output);

put_line("S
IDA_templat

LOJP

tart: Input IDA Templates");

e_list 1= NULL;

put_line("Give Name of IDA Template");
gep_lzna(IDA_name , IDA_last);
EXIT WHEN IDA name(1) = t#r;

put_line("Give Class of IDA Template (pool/channal)");
get(IDA_class); skip_line;

put_line("Start:

proc_list head := NULL;

LOOP

Input Access Procedure Names");

put_line("Give Name of Access Procedure");
get _ 1ine(proc name , proc_last);
EXIT WHEN proc name(1) = '#';

IF proc_list _head = NULL

THEN

proc_list head :=
NEW access_access _procedure_list_element' (
element => NEW access _access_procedure (

formal => proc_name(1..proc_last),
actual => ""),

next => NULL);

- A1 -7 -

—— e e

proc_list_tail :=z proc_list_head;
ELSE
proc_list_tail.next :=
NEW access_access_procedure_list_element'(
element => NEW access_access_procedure’(

formal => proc_name(1..proc last),

actual => ""),

next => NULL);
proz_list_tail := proc_list_tail.next;
END IF;
END LOOP;

put_lins("End: Input Access Procedure Names");

CASE IDA_class IS
WHEN pool =>
LOOP
put_line("Give Name of Pool Data Typs");
get_ line(data name , data_last);
find_data_type(data_types_list ,
data_name(1 .. data_last) ,
access_data);
EXIT WHEN access data /= NULL;
put_line{"There is no Data Typs with Nams '™
& data_name(1 .. data_last) & "'");
END LOOP;

WHZIN channel =>
put_line("Start: Input Formal Channel Datz Typus");
put line("Is th2 Channel supposed to Work"
- & " on an Abstract Data Type? (Y/N)");
get(answer); skip_linz;

CASE answer IS
WHEN 'N' | 'n' =>
put_line("The Formal Channel Data Type"
& "is 'channel _data'");
channel parameters_head :=
NEW access_parameter list element'(
element => NEW access_paramater'(
formal => "channsl _data",
actual => ""),
naxt => NULL);
WHEN OTHERS =>
channel parameters_head := NULL;
LOOP
put_line("Give Name of Paramater");
get_line(data name , data_last);
EXIT WHEN data name(1) = '*';

IF channel parameters_head = NULL
THEN
channel parameters_head :=
NEW access_parameter_list_element'(
element => NEW access_parameter'(
formal => data name

(1..data_last),

actual => ""),
next => NULL);

- A1 - 18 -

channel_parameters tail := channel parameters_head; |
ELSE
channel parameters_tail.next :=
NEW access_parameter_list_element'(
element => NEW access_parameter'(
formal => data_name
(1..data_last),
actual => ""),

¢ —_— —_— —— o~

next => NULL);
channel_parameters_tail := channel parameters_tail.next;
END IF;
END LOOP;
END CASE; |

put_line("End: Input Formal Channel Data Typz=s");
END CASE;

CASE IDA_class IS
WHEN pool =>
IDA_element :=
NEW azcess_IDA template'(
class => pool, 4
name => IDA nam=2(1 .. IDA last), ;
spec => "file." & IDA nams(1..IDA_last) & ".sp=c", i
bodiz => “file." & IDA name(1..IDA_last) & ".body", |
access_procadures => proc_list_hzad, 1
data_types => NE4 access_data typz list_zlement’'(|

elemant => 3ccess_dalta,
next => NULL));

WHEN channel =>
IDA_element :=

NEW access_IDA template’(
class => channel,
name => IDA _name(1 .. IDA_last),
spec => "file." & IDA_name(1,.IDA_last) & ".sp22",
bodie => "file." & IDA name(1..IDA_last) & ".body",
access_procedures => proc_list_head,
parameters => channal_parameters_head); i

END CASE;

IF IDA_template list = NULL
THEN
IDA_template_list := NEW access_IDA_template list_element'(
element => IDA_eclement,
next => NULL);
tail := IDA_template list;
ELSE
tail.next := NEW access_IDA_template_list_element'(
element => IDA_glement,
next => NULL);

tail := tail.next;
END 1IF;
END LOOP;

put_line("End: Input IDA Templates");

END form_IDA_templates;

WITH text_io, construction_data base_types;
WITH find_data_type;
USE text_io, construction_data base types;

PROCEDURE form_root_templates

1S

(data_types_list : access_data_type list_element;
root_template_list : OUT access_root_template_list_element)
root_name : string(1 .. 80);
root_last : natural;
tail ¢ access_root_template_list element;
para_name : string(1 .. 80);
para_last : natural;

para_list_head ,

para_list tail : access_parameter_list_element;
proc_name : string(1 .. 80);

proc_last : natural;

proc_list_head ,

proc_list_tail : access_access_procedure_list_element;
data_name : string(1 .. 80);

data_last : natural;

data_list_head ,

data_list_tail : access data_type_list_element;

access data ¢ access_data_type;

BEGIN

set_input(standard_input);
set_output(standard_output);

put_line("Start: Input Root Templates");
root_template_ list := NULL;

LOOP

put_line("Give Name of Root Template");
get_line(root_name , root_last);
EXIT WHEN root_name(1) z '8

put_line("Start: Input Namss of Formal Valus Paramaters");
para_list_heac := NULL;
LOOP

put_line("Give Name of Formal Value Parameter");
get_line(para_nam2 , para_last);
EXIT WHEN para_name(1) = '#';

IF para_list_head = NULL
THEN
para_list_head :=
NEW access_parameter_list_element'(
element => NEW access_parameter'(
formal => para_name(1..para_last),
actual => "v),
next => NULL);
para_list_tail := para_list_head;
ELSE
para_list_tail.next :=
NEW access_parameter_list_element'(
element => NEW access_parameter'(
formal => para_name(1..para last),
actual => "), -
next => NULL);

- Al - 20 -

para_list_tail := para_list_tail.next;

END IF;

END LOOP;
put_line("End: Input Names of Formal Value Parameters");

put_line("Start: Input Names of Formal Access Procedures");
proc_list_nead := NULL;

LOOP
put_}ine("cive Nime of Formal Access Procedure");
get_line(pros_name , proc_last);

EXIT WHEN proc_name(1) = '#';

IF proc_list_head = NULL
THEN
proc_list_head :=
NEW access_access_procedure_list element'(
elemant => NEW access_actass_procedure’(
formal => proc_nam2(1..proc_last),
actuil => "),
naxt => NULL);
proc_list_tail := proc_list_head;
ELSE
proc_list_tail.next ;=
NEW access~3ccess_procedurg_list_plement'(
elemant => NEA4 access_accass_procedura’(
formal => proc_nama(1..prac_last),
astual => "),
next => NULL);
proc_list_tail := proc_list_tail.next;
END IF;

END LOOJP;
put_line("End: Input Names of Forazl Access Proceduras");

put_lin2("3Start: Input Names of Data Types");

data_list _head := NULL;

LOOP
put_line("Give Name of Data Type");
get_line(data_name , data_last); !
EXIT WHEN data_name(1) = '#';

find_data_type(data types_list ,
data_name(1 .. data_last) ,
access_data);

IF access_data = NULL

THEN
put_line("Ther= is no Data Type of Namz '"

& data_name(1 .. data_last) & "'");

ELSE
IF data list_head = NULL
THEN
data_list_head :=
NEW access_data_type_list_element'(
element 2> access_data,
next 2> NULL);
data_list_tail := data_list_head;
ELSE
data_list_tail.next :=
NEW access_data_type_list_element'(
element 2> access_data,

- Al = 21 -

next > NULL);
data_list_tail := data_list_tail.next;
END IF;
END IF;
END LOOP;
pup_line("End: Input Names of Data Types");

IF root_template list = NULL
3 THEN
root_template list :=
NEW access_root_template list_element'(
element => NEW access_root_template'(
name => root name(1..root last),
spec => "file." & B
root_nama(1..root_last) &
".spec",
bodie => "file." &
root_name(1..root_last) &

".bOdy",
parametars => para_list_tr2ac,
access_procedures => proc_list_heas,
data_types => data_list_heady,
next => NULL);
tail := root_template list;

ELSE
tail.next ::=
NEW access_root_template_list_element'(
element => NEW access_root_template'(

name => root_name(1l..root_last),

spec => "file." &
root_name(l..root_last; &
".Sp%c",

bodie => "file." &
root_name(1..root_last) &

"-dey",
parameters => para_list_head
access_procedures => pro2_list_heac
data_types => data_list_hea:l

next => NULL);
tail := tail.next;
END IF;
END LOOJP;

put_line("End: Input Root Templates");

END form_root_templates;

¥
A
Vs

WITH text_io, construction_data_base_types;

WITH find_data_type , find_node , find_root , find IDA_ templatz;

WITH match_parameters , match _procedures; .
USE text_io, construction data_bass_types;

PROCEDURE form Subsystems

(data_types_list : access_data_type_list_element; ‘
IDA_template_list access_IDA_template list_element;
root_template_list : access_root_template_list_element; ;
ACP_Diagram 1 access_node_list_element;
subsystem_list : OUT access_subsystem_list_element)
IS
answer : character; !
subsystem name : string(1 .. 80); ;
subsystem last : natural;
tail : access_subsystem_list_elemant; ‘
para_list_head 1 access_paramster_list_element; Y
et llst P»ad : access_activity list_element;
subsystem IDA_list_head ,
IDA_list_head 1 access_IDA_list_element;

subsystam _object : access_subsysten;

PROCEDURE get parameters(head : OUT access_paraametsr_list_elemsnt);

PROCEDURE get_activities

(ACP_Diagram : access_node_list_eleuent;
subsystem list : *cess_;ubsystem_llst_el_ment;
root_list : access_root_template list _slement;
head : OUT azcess_activity list_elemant);

PROCEDURE get_IDAs

(aC P _Diagram : access_node_list_element;
act_head . access act1v1ty list_element;
template_ list i oaccess_ " IDA _template Tist _element;
iDA_head : OUT access_IDA_list elem nt;
sub IDA h=ad : OUT access_ " IDA llst _elemsnt;

dat?_tyges_list . access data type list_elemant);

PROCEDURE add_IDAs to_activity

(ACP_Diagram : aczess_node_list_element;
act_head : IN OUT access_activity_list_elemanti;
IDA_head : access_IDA_ 115t elemant;

sub_IDA nead : aciess_ IDA list elanant).

PROCEDURE get parameters(head : OUT access_parameter_list_element)
1S

tail : access_parameter_list_element;

para_name : string(1l .. 80);

para_last : naturalj
BEGIN

put_line("Start: Input Name of Formal Value Paramesters");

head := NULL;

LOoP
put_line("Give Name of Value Parameter");
get _ line(para name , para_last);
EXIT WHEM para_name(1) = Ter,

- Al - 23 -

IF head = NULL

|

1

THEN ;
head := NEW access_parameter_list_element'(f1
element => NEW access_parameter'(i

formal => paras_name(l..para_last), ;1

actual => ""), .

next => NULL); i

tail := head; if
ELSE .

tail.next :=
NEW access_parameter_list_element’(
elemant => NEW access_parameter'(
formal =z> para_name(1..pars_last), |
actual => ""), ‘

next => NULL);
tail := tail.next; i
END IF; i
END LO0P;

put_line("End: Input Names of Formal Valus Paramsters");

e

END get_paramszters;

PRIZEDURE get_activities

(ACP_Diagram : access_node_list_element; ,
subsystem list : access_subsystem_list_element; x
root_list : access_root_template_list_eslement;
head : OUT access activitiy list elemen: .
15 - -7 |
tail : access _activity list _element;
act_name : string(1 .. 80); -
act_last : natural;

root_name : string(1 .. 30);
root_last : natural; i

act_objest : access_activity;

access act :© access node;

ac:ess:root : “cess-root _template;

para_list : access paramater list element;
proc_list : access_access_procesure list_slement;

t FUNCTION test used
(name : string;

g e e e et n e e -

subsystem_list : access_subsystem list_elemant)

RETURN boolean
Is

subsystem_tail : access_subsystem_list_elemant;

act_tail ! access_activity list elemant,
BEGIN

subsystem tail := subsystem_list;

WHILE subsystem tail /= NULL

LC2P

act_tail := subsystem tail.activities;
WHILE act_tail /= NULL

LOOP
IF name'last = act_tail.element.name'last
AND THEN
name(1..name'last) = act_tail.element.name(1..name"'last)
THEN

RETURN true;

END IF;
act_tail := act_tail.next;
END LOOP;
subsystem_tail := subsystem tail.next;
END LOOP;
RETURN false;
END test_used;

BEGIN
put_lina("Start: Form Activities");
head := NULL;

LOJOP
put_line("Give Name of Activity");
{ get_line(act_name , act_last);

EXIT WHEN act_name(1) = '#°;

IF test_used(act_namz(1..act_last) , subsystem list)
THEN
put_linz("Activity '" & act_name(1..act_last)
& "' is already ussd");
ELSE
find _node(ACP_Diagram , act ,
act_name(l..act_last) , access_alt);
IF access_act = NULL

THEN
put_line("Activity '" & act_name(l..act_last)
& "' dozs not exist");
ELSE
Loop
put_lin2("Give Nase of Root Template")
get_line(root_name , root_last);
find_root(root_list , root_nam=(1..root_last) ,
access_root);
EXIT WHEN access_root /= NULL;
put_line("Root Template '" & root_name(l..rooct_last)
& "' does not exist");
END LOOP;

act_object :=
NEW access_activity'(

name => act_name(1 .. act_last);
root => access_root,

parameters => NULL,

access_procedures => NULL,

IDAs => NULL);

match_parameters(access_root.parameters , para_list);
act_object.parameters := para_list;

match_procedures(access_root.access_procedures ,
access_act.arcs , proc_list);
act_object.access_procedures = proc_list;

IF head = NULL
THEN
head := NEW access activity list element’'(
element => act object,
next => NULD);

tail head;

- AVl -~ 25 -

ELSE

tail.next := NEW access_activity list_element’(

element => act_object,
next => NULL);

tail := tail.next,;

END IF;
END IF;
END IF;
END LOOP;

put_line("End: Form Activities");

END get_activities;

PROCEDURE get_IDAs
(ACP_Diagram
act_head
template_list
IDA_head
sub_IDA_head

: access_node_list_element;

: access_activity list_elenmant;
: access_IDA template list;

: OUT access_IDA_list_element;
: OUT access_IDA_list_element;

IS

data_types list : access_data_type_list_element)

act_tail
accass_act
arc_head

azcess_IDA node :

IDA_name

IDA last
access_template
IDA object
IDA_tail ,
sub_IDA tail
para_list
data_name
data_last
access_data

FUNCTION test_used
(name

: acee
: access_node;
coe

ss_activity_list_element;

n

ss_arc_list_element;
access_node;
string(1 .. 82);

: natural;
: access_IDA_template;
: access_IDA;

: access_;DA_list_element;

: access_parameter_list_elemant;
: string(1 .. 82); -

: natural;

access_data_type;

: string;

IDA_list : access_IDA list_element;
sub_IDA_list : access_IDA list_element)

RETURN boolean
I3

work : access_IDA_list_element;

BEGIN

work := IDA list;
WHILE work /= NULL

LOOP

IF name'last
AND THEN

= work.element.name'last

name(1..name'last) = work.element.name(1..name'last)

THEN

RETURN true;

END IF;

wOork := work.next;

END LOOP;

work :z sub_IDA_list;
WHILE work /= NULL

LOOP

i1F name'last = work.element.name'last
AND THEN
name(1..name'last) = work.element.name{(1..nams'last)
THEN
RETURN true;
END IF;
work := work.next;
END LOOP;
RETURN false;
END test_used;

FUNCTION test_sub_ IDA
(act_list : access_activity_ list_element;
IDA_node : access_node)
RETURN boolean
Is
act_tail : access_activity list;
arc_list @ azcess_arc_list_elemant;
BEGIN
ars_list := IDA node.arcs;
WHILE arc_list /= NULL
LJCP
act_tail := act_list;
WHILE act_tail /= NULL
LJ0OP
EXIT WHEN act_tail.element.name’last
= arc_list.elemant.source.nama'last
AND THEN
act_tail.element.name(1..act_tail.element.nam2'last)
= arc_list.element.source.nane
(1..arc_list.element.source.nama'last);
act_tall := act_tail.next;
END LOOP;
I7 act_tail = NULL
THEN
RETURN true;
END IF;
arc_list := arc_list.next;
END LOOP;
RETURN false;
END test_sub_IDAj;

BEGIN
put line("Start: Forming IDAs");
act_tail := act_head;

IDA head := NULL;
sub_IDA_nead :z NULL;
WHILE act_tail /= NULL
LOQP
find node(ACP Diagram , act ,
act_tail.element.name(1..act tail.element.name'last) ,
access_act);
arc_head :=z access_act.arcs;
WHILE arc_head /= NULL
Loop
access_IDA_node := arc_head.element.sink;
IF NOT test used(access IDA_node.name(l..access_IDA node.name'last),
IDA_head , sub_IDA_head)
THEN

- A1 - 27 -

LOOP
LOOP
put_line("Give Name of IDA Template for IDA '"
& access_IDA_node.name(1..access_IDA node.namz'ias:
&ﬂl"); -

get line(IDA_name , IDA_last);

find IDA_template(template_list ,
IDA nam=(1 .. IDA last) ,
access_template);

EXIT WHEN access_temp 23te /= NULL;

put_line{("IDA Template '" & IDA nam2(1..IDA_last)

& "' does not exist");

w

END LOOP;
EXIT WHEN ((access_IDA node.zlass = pool
AND access_teaplate.class = podi)
OR
(access_IDA_node.class = channel
AND IDA_template.class = channzl));
put_line("Class of IDA and IDA Template d> not match"),

END LOOP;
IF test_sub _IDA(act_heas , accass_IDA _node)
THEN

CASE 2ccess IDA node.class I3
WHEN pool =>
IDA object :=
NEW acomss_IDA'(
¢lass => pool,
name => access_IDA node.nzne
(1..access_IDA _node.nama'last,,
file => "file." %
accass_IDA_node.name
(1..3access IDA node.nam2'ias:),
template => access_template,
data_typ2s => access_template.data types);
WHEN cnannel =>
mitch _paramaters{access_template.paramsters ,
para_list);
LOOP
put_line{"Give Nzme of Dats Typz for Cnamnel
& access_IDA_nodz.nam2
(1..access IDA node.nam2'lasy:
™ n) ; - -
get_line(data_name , data_last);
find_data_type(data types list ,
data name(1..data_last)
accegs_data);
EXIT WHEN access _data /= NULL;
put line("Dat3 Typc '"™ & data_name(1..3
- & "' does not ex

1

~e \
EICRS

s

N

ERc]
1st"

-

]
END LOOP;
IDA_object :=
NEW acess_iDAa'(
class => channel,
name => access_IDA_node.name
(1..access_IDA node.nams'last),
file => "file." &
access_IDA node.name
(1..access_IDA_node.name'last],

- A1 - 28 -

, e

template => access_template,
data_types =>
NEW access_data_type_list_element'(
element => access_data,
next => NULL),
parameters => para_list);

END CASE;
IF sub_IDA head = NULL
THEN
sub_IDA head :=
NEW access_IDA_list_element'(
element => IDA_object,
next => NULL);
sub_IDA tail := sub_ IDA_head;
ELSE
sub_IDA_tail.next :=
NEW azcess_IDA_list_element'(
element => IDA object,
next => NULL);
sub_IDA_tail := sub IDA_tail.next;
END IF;
ELSE
CASE access_IDA _node.class I3
WHEN pocl =>
IDA_object :=
NEW access_IDA'(
class => pool,
namz => access_IDA_node.name
(1..3ccess_IDA_nodz.nam2'lasy),

file => v

tamplate => access_template, ,

data_types = 3ccess_temp13:e.i;;a_types): '
WAEN channel =>

mat:h_parameters(Access_template.parame:ers N
para_list);
L3DJP
put_lin2{("Give Name of Data Typz for Channel
% sccess_IDA_node.name
(1..access IDA node.name'last)
& nvn); - -
get_line(data_name , data_ last);
find_data_type(data_types_iist ,
data_name(1..data_last) ,
access_data); .
EXIT WHEN access_data /= NULL;
put_line("Data Type '" & data_name(l..dat3_last)}
& "' Jozs not exist");

A1)

END LOOP;
IDA_object :=
NEW access_IDA'(
class => channel,
name => access_IDA_node.name
(1..access_IDA_node.name'last), ,
flle :) ""' .
template => access_template, ;
data_types =>
NEW access_data_type list _element'(
elemant => access_data, .
next => NULL), i

- Al - 29 -

parameters =) para_list);

END CASE;
IF IDA_head = NULL
THEN
IDA_head := NEW access_IDA_list_element'(
element => IDA objeczt,
next => NULL);
IDA_tail := IDA_head;
ELSE

IDA_tail.next := NEW access_IDA_list_element'(
element => IDA_object,
next => NULL);

IDA_tail := IDA tail.next;

END IF;
END IF;
END IF;
arc_head := arc_head.next;
END LOOP;
act_taill := act_tail.next;
END LOOP;

put_line("End: Forming IDAs");

END get_ IDAs;

PROCEDURE add_IDAs_to_activity
(ACP_diagram : access_node_list element;
act_heacd : IN OUT access_activity list_zlemant;
IDA_head t access_IDA_list_element;
sub_IDA_head : access_IDA_list_element)

act_tail ¢ access_activity list_element;
access_act : access_node;

arc_head : agcess_arc_list_element;
act_IDA nead ,

act_IDA tail 1 access_1DA_list_element;
access_adt_IDA : access_IDA;

OO0
o @

PROCEDURE find_IDA

{ID4_head : access_IDA_list_element;
sub_IDA hezad : access_IDA_list_element;
namte : string;
pointer t access_IDA)
15
work : access IDA_list_element;
BEGIN

work := IDA_head;
WHILE work /= NULL

LOOP
EXIT WHEN name’last = work.elerent.name'last
AND THEN
name{1..name'last) = work.elemant.nam=(1..namelast);
work := work.next;
END LODP;
IF work /= NULL
THEN
pointer := work.element;
ELSE

work := sub IDA head;

- A1 - 30 -

WHILE work /= NULL

LOQP
EXIT WHEN name'last = work.element.name'last
AND THEN
name(1..name'last) = work.element.name(1..name'lasti);
work := worx.next;
END LOOP;
! IF work /= NULL
THEN
pointer := worxk.element; i
ELSE '
pointer := NULL;
END IF;
END IF;

END find_IDA;

BEGIN
act_tail := act_head;
WHILZ act_tail /= NULL
LOOP
find node(ACP_Diagram , act ,
act_tail.element.name(1..act_tail.element.name‘last) ,
access_act); 4
arc_h=zad := access_act.arcs;
act _IDA_head :=z NULL;
WHILE arc_head /= NULL
LOOP
find_IDA(IDA_head , sub_IDA_head ,
arc_head.element.sink.name
(1..arc_head.element.sink.name'last) , 3
ac:ess_act_IDA); ‘
IF act_IDA_head = NULL
THEN
act_IDA_head

NEW access_IDA_list element'(
element => access_act_IDA,
next => NULL);

act_IDA_tail := act_IDA_head;

ELSE

act_IDA_tail.next := NEW access_IDA element list'(

elemant => access_act_IDA,

next => NULL); :
act_IDA tail := act_IDA_tail.next; ;
END IF;
END LOOP; ;
act_tail.element.IDAs := act_IDA_head; !
act_tail := act_tail.next;
END LOODP; i

END add IDAs_to_activity;

I
! BEGIN

E set_input(standard_input);
.f

set_output(standard_output);

put_line("Start: Forming of Subsystems");
subsystem_list := NULL;

put_line("Are Subsystems Required? (Y/N)");
get(answer); skip line;

CA3E answer 1S

- Al - 31 -

WHEN 'N' | 'n' =>
NULL;
WHEN OTHERS =>

LooP
put_line("Give Name of Subsystem");
get_line(subsystem name , subsystem last);
EXIT WHEN subsystem name(1) = '#';

subsystem object :=
NEW access_subsystem’(1
name => subsysteq_name(1..subsysteq_last).
file => "file." & subsystem name(l..subsystem last),

H parameters => NULL,
activities => NULL,
IDAs => NULL,

subsystem IDAs => NULL);

get_parameters(para_list head);
subsystem_pbject.parameters = para_list_head;

get_activities(ACP_Diagram ,
subsystem list , i
root_tenmplate list ,
act_list_head);

get_IDAs(ACP_Diagram ,

act_list_head ,

IDA_template list ,

IDA_list_head ,

subsystam_IDA_list_head ,

data types_list);
subsystem_object.IDAs := IDA_list_head;
subsystem_object.subsystem_IDAs := subsystem IDA_list_ h=ad;

add_IDAs to_activity(ACP Diagram ,
act_list_head ,
ICA_list_head ,
subsystem IDA_list _head); |

subsystem object.activities := act_list_head;

IF subsystem_list = NULL
THEN

subsystem_list := NEW access_subsystem list_element'(
element => subsystem_object,
next => NULL); ,
tail := subsystem_list; |
ELSE ;
tail.next := NEW access_subsystem list_element'(
element => subsystam_object, i
next => NULL);

e ——

tail := tail.next;
END IF;
END LOOP;
END CASE;

put_line("End: Forming of Subsystems");

END form_Subsystems;

WITH text_io, construction_data_base_types;

WITH match_parameters , match_procedures;

WITH find IDA_template , find_data_type , find_root;
USE text_io, construction_data_base_types;

' PROCEDURE form_MASCOT_System

(data_types_list : access_data_type_ list_element;
IDA_template list : access_IDA_template list_element;
root template list : access_| " root _template_ list _element;
subsystem_llst : IN OUT access _subsystem_ list _element;
ACP_Diagram : access_node_list element;
MASCOT_System object : QUT access_MASCOT _System)

IS
sys_name : string(1 .. 80);
sys_last : natural;

BEGIN

set_input(standard_input);
set_output(standard_output);
put_line("Give Name of Main Program");

get_line(sys_name , sys_last);

IF subsysten list /= NULL

THEN
DECLARE
subsystem_tail : access_subsystem_list_element;
para_list : access_parameter_list_element;
sub_IDA_list : access_IDA_list_element;

PROCEDURE append sub_IDAs
(IDA 1list : access_IDA_list_element;

sub:}DA_}ist : IN OUT access IDA _list element)

IS
tail , work , work_tail : access_IDA_list_element;
BEGIN
IF sub_IDA_list = NULL
THEN
sub _IDA_list := IDA list;
ELSE
tail := sub_IDA_list;
WHILE tail.next /= NULL
LOOP
tail := tail.next;
END LOQOP;

work := IDA list;
WHILE work /= NULL
LOOP
work_tail := sub_IDA_ list;
WHILE work_tail /= NULL
LOooP
EXIT WHEN work.element.name'last
= work_tail.element.name'last
AND THEN
work.element.name(1..work.element .name'last)
= work_tail.element.name
(1..work_tail.element.name'last);
work_tail := work tail.next;
END LOOP;
IF work tail = NULL

- A1 - 33 -

THEN

tail.next := NEW access IDA_list_element'(
element => work.element,
next => NULL);
tail := tail.next;
END IF;
work := work.next;
END LOOP;
END IF;
END append_sub_IDAs;
BEGIN
put_;ine("Start: Forming of Main Program with Subsystems");

sub_IDA list := NULL;

subsystem_tail := subsystem list;
WHILE subsystem_tail /= NULL
LOOP

put_line("Subsystem '"
& subsystem_tail.element.name
(1..subsystem_tail.element.name'last)
& "': Input Actual Value Paramsters");
match_parameters{subsystem tail.element.parameters ,
para_list);
subsystem tail.element.parameters := para_list;
append_sub_ IDAs(subsystem tail.element.subsystem IDAs ,
sub_IDA list);
subsystem_tail :=z subsystem tail.next;
END LOOJP;

MASCOT_System object :=
NEW access MASCOT System'(

class => with_subsystems,

nams => sys name(1 .. sys_last),

file => "file." & sys name(1 .. sys_last),
subsystems => subsystem_list,

subsystem IDAs => sub_IDA list);

put line("End: Forming of Main Program with Subsystems");
END;
ELSE
DECLARE
act_head , act_tail : access_activity list_element;
IDA:head , IDA_tail : access_IDA_list_element;

node_tail : access_node_list_element;
template name : string(1 .. 80);
template last : natural;
access_template : access_IDA_template;
access root : access_root_template;
para_}?st : access_parameter_list_element;
data name : string(1 .. 80);
data_last : natural,;
access data : access data_type;
proc list : access_access_procedure_list_glement;
arc tail : access_arc_list element;
act IDA head ,
act_IDA_tail : access_IDA_list_element;

BEGIN

put_line("Start: Forming of Main Program without Subsystems");

- A1 - 34 -

i

o)

put_line("Start: Forming IDAs”);
node_tail := ACP Diagram; 1
IDA_head := NULL; !
WHILE node_yail /= NULL

LOOP
IF node_tail.element.class /= act
THEN ,
CASE node_tail.element.class I3 f
WHEN pool =>
LOOP
LOOP

put_line("Give Name of Template for Pool '"
& node_tail.element.name
(1 .. node_tail.element.nam2’last)
& N'");
get_line(template_name , template last); ;
find_IDA_template(IDA_template list ,
template name(1..template_last) ,
access_template);
EXIT WHEN access_template /= NULL;
put_line("IDA Template '" y
& template_name(1 .. template_last) .
& "' does not exist");

END LOOJP;
EXIT WHEN access_template.class = pool; y
put_line("IDA Template '"]
& template_name(1 .. template_last) (
& "' is not a Pool Template"); :

END LOOP;
IF IDA_head
THEN
IDA_head :=
NEW access_IDA list_element'(
element =>
NEW access_IDA'(

NULL

s

class => pool, :
name => ‘

node_tail.element.name(1..node_tail.element.name'last). i
file => ",

template => access_template,
data_types =>
access_template.data types),
next => NULL);
IDA_tail := IDA_head;
ELSE
IDA tail.next :=
NEW access_IDA_list_element'(

element =>
NEW access_IDA'(
class => pool,
name =>
node_tail.element.name(1..node_tail.element.name'last),
file >

template => access_template,
data_types =>
access_templ: 2.data_types),
next => NULL);
IDA_tail := IDA_tail.next;
END IF;

- Al - 35 -

WHEN channel =>

LOooP
LOOP
put_line("Give Name of Template for Channel '"
& node_tail.element.name
(1 .. node tail.element.name'last)
& nny, -
get_line(template_name , template last); ;4
find_IDA template(IDA_template list , !
template name(1..template_last) ,
access_template);
EXIT WHEN access_template /= NULL;
put_line("IDA Template '"
& template name(1 .. template_ last)
& "' does not exist");
END LOOP;

EXIT WHEN access_template.class = channel;
put_line("1DA Templats '"
& template _name(1 .. template last)
& "' is not a Cnannel Template");
END LOOP;
! put_line("Give Actual Types for Formasl Data Types");
] match_parameters(access_template.parameters ,
para list);
LooP -
put_line{"Give Name of Data Type");
get_line(data_name , data_last);
find_data_ type(data_types_list ,
data_name(1 .. data_last) ,
access data);
EXIT WHEN access_data_/= NULL;
put_line("Data Type '" & data_name(1..datz las:);
& "' does not exist");

END LOOP;
IF IDA_head = NULL
THEN
IDA_head := i
NEW access_IDA list_elemant'(
element =>
NEW access_IDA'(

class => channel,

name => X
node_tail.element.name(1..node_tail.element.name'last), 43

file => "y i

template => access_template, i

data_types => ‘
NEW access_data_typs_list_element’'(:
element => access_dats, i
next => NULL), E
parameters => para_list), ‘
next => NULL); 1
IDA_tail :=z IDA_head;
ELSE
IDA tail.next :=
NEW access IDA_list_element'(
element =>
NEW access_IDA'(
class 2> channel,
name =>

!
b
1]
{

- Al - 36 -

nod2 tail.element.name(1..node tail.element.name'last),
- file S LI
data_types =>
NEW access_data_type_list_element’'(
element => access_data,
next => NULL);
parameters => para_list),
next => NULL);
IDA_tail := IDA_tail.next;
END IF;
END CASE; I
END IF;
node_tail := node_tail.next;
END LOOP;
put_line("End: Forming IDAs");
put_line("Start: Forming Activities")
node_tail := ACP_Diagram;
act_head := NULL;
WHILE node_tail /= NULL
LOOP
IF node_tail.element.class = act
THEN |

LOJP
put_line("Give Nams of Template for Activity '"
& node_tail.element.nams]
{1..node_tail.element.name’last)
& uvn);
get_line(template_name , template last);
find root(rooct_template_list ,
template_name(! .. template_last) ,
access _rootj;
EXIT WHEN access_root /= dULL;
put_line("Root Template '" & templat2_nama{l..template_lasty) i
§ "' does not =2xist");
END LOOP;
put_lin2("Give Actual Value Parametsrs™)
match_parameters(access~root.parameters ' para_lis:);
put_line("Give Namess of Actual Access Procedures");
matcn_procedures(3:cess_root.ac:ess_pro:edures ,
node_tail.elemant.arcs ,
proc_list); !
act _IDA_head := NULL; .
arc_tail := node_tail.element.arcs; ,
WHILE arc_tail /= NULL '
LOJP
IDA_tail := IDA_head; (1}
WHILE IDA_tail /= NULL
LooP i
EXIT WHEN arc_tail.element.sink.nam="last
= IDA_tail.element.name'last
AND THEN ;
arc_tail.element.sink.name '
(1 .. arc_tail.element.sink.name'last)
= IDA_tail.element.name
(1 .. IDA_tail.el2ment.name'last);
IDA_tail := IDA_tail.next;
END LOOP; -
IF act_IDA_head = NULL

- A1 - 37 -

3

THEN
act_IDA head := NEW access_IDA_list_element'(
element => IDA_tail.element,
next => NULL);
, act_IDA tail :=z act_IDA head;
, ELSE
' act_IDA_tail.next := NEW access_1IDA_list_element'{

element => IDA_tail.element,
next => NULL);
‘ act_IDA_tail := act_IDA tail.next;
3 END IF;
arc_tail := arc_tail.next;
END LOJP;
IF act _head = NULL
THEN
act_head :=
NEW access_activity list_element'(

element =>
NEW access_activity'(

name =>
node_tail.element.name(1..node_tail.elemznt.nzme'last),
root => access_root,
paramsters => para_list,
access_proceadures => proc_lisy,
IDAs => act_IDA_head),
next => NULL);
act_tail := act_hs=ad;

ELSE
act_tail.next :=
NEW access acttivity list eslement'(
elemant => -
NEW access_activity'(

name => I
node_tail.elemant.name{1..node_tail.elemsnt.nams'last),
root => access_root,

parameters => para list, ‘
access_procedures => proc:}ist. s

IDAs => act_IDA_hezad),
next => NULL); l
act_tail := act_tail.next; 1
END IF; i
END IF; 1
node_tail := node_tail.next; '

END LOOP;

put_line("End: Forming Activities");

PRy

MASCOT_System_object :=
NEW access_MASCOT_System object'(

class => without_subsystems,
name => sys_name(1 .. sys_last),
file => "file." & sys_name(1 .. sys_last), i
activities => act_head, i
IDAs => IDA_head); .
put_line("End: Forming of Main Program without Subsystems");
END;
END IF;

END form MASCOT_ System;

WITH construction data base_types;

WITH construct ACP Dlagram,

WITH form | MASCOT _Systen;

WITH form ¢ Subsystems,

WITH form data types;

WITH form IDA_templates;

WITH form_root_;emplates,

WITH generate_data_types_frame, generate root_templates frame
generate_IDA _templates_frame, generate_subsystem frame,
generate_main program frame;

WITH save MASCOT _System;

WITH save_ TACP Dlagram,

USE construction _data_base_types;

PROCEDURE construct_data_base

IS
ACP_Diagram t access_node_list_elemant;
MASCOT_System_object : access MASuOT System,
data_types_list : ac»ess_data_typa_lxst_element;
IDA_template list ! access_IDA_template list_elemant;
root_template list i access root _template list_element;
subsystem_list { aceess subsystem list elam=nt,

BEGIN

construct_ACP Diagram(ACP_Diagram);

form_data_types(data_types_list);
generate_datq~types_frame(data_types_list);

form_IDA_templates(data_types_list , IDA_template list);
gensrate IDA_templates frame(IDA_template list);

form_root_templates(data_types_list , root_template list);
generate_root_templates_frame(root template list);

form_Subsystems(data_types_list ,
IDA_template list ,
root_template_list ,
ACP_Diagram ,
subsystem list);

generate subsystem frame(subsystem list);

form_MASCOT_System(data_types_list ,
IDA_template list ,
root_template_list ,
subsystem_list ,
ACP Diagram ,
MASCOT_System_object);
gensrate_main_ program frame(MASCOT_Systew object);

save_ﬂASCOT_System(MASCOT System_object , data _typas_list
IDA_template_list , ro.t_template_list);
save_ACP_Diagram(ACP D1agram)
END construct_gata_base.

- Al - 39 -

1. The ACP Diagram

The use of tne MASCOT philosophy in an Ada environment is demonstrated by i
simple example. Its ACP Diagram is shown below.

. . > - - - " " - -~ - = = -

L] 1]] 1 1
\]] 1 ' 1
¢4 Activity 1) csmemceeao- T > 0 Activity 2 0 |
\] - [} >] !] 1
] 1 T emwse- L] [] t]
| [] 0
| TEssssssSsTseee-] - esessstscswsee- 1
' ' IDA 1 |
] 1]) 1
] t]]
] 1]]
1 1 mmeseess l '
1 1]) 1 1
1]] t 4]
| v | : : ‘
!]) ¥ 1 [}
1)] 1] 1
i | "]
t messsssswmssss J i [
i iDA 2 ' : i
] - t { 1
1 '] 1
1 i !
. emmesesssses] 1
] ' 1 1
\ L] 1 1
; v | ‘
1 1 t
f 2 memosewSsscesmes 1 m—_——.- . e esesme- 1
]] 1 | i]]
[} + t ——————] 1 | [}
¢ 1 Activity 3 0 ceme---ee- > 1 mmemeeeees > 1 Activity 4 4 |
o ; : ! N
]]
| mmmmmmmcc———e= e ccccccc————a- ,
IDA 3

G v " S O™ e e W € - - Ay - = - Y - = Y m = -

Activity 1 generates a string and either puts this string into Pool iDA_2 or
sends a number to Activity 2. Activity 3 reads from Pool IDA_2 3nd senis 3
number either to Activity 2 or U4 depanding on th2 valuc of a coanstant paramater.

Activities 2 and Y4 only consume the messages. Tn: - codes arz equivalent.

1DA_2 stores the strings generating a key with which the strings can bde
retrieved. Reisders of IDA_2 are given precendence over writars, Activity 3
Zenerates a xey randoamly to retrieve the strings stored in IDA 2. IDA 1 is 13
fast channel storing several data objects temporarily. IDA_3 1s a very s.ow
channel., It can only hold one data object at a tim2. The data objects pass:aa
through IDA 1 and 3 are equivalent.

Tne ACP Diagram is transferred by the procedure "construct ACP Diagram" into a
chained list shown below. For easier reading the form of the list and of its
elements is not totally equivalent to the Ada implementation. Some necessary
references of the Ada data structure are dropped for this reason. A referanc-
is indicated by the sign "->". Strings are enclosed in quotes.

1 -

ACP_Diagram:

arc_list_3:

-> node_1

-> node_2

-> node_3

-> node_u

-> node_6

-> node 7

NULL

-> arc_2
NULL

=> arc_3
NULL

node_1:

node_2:

node

node A4:

node_5:

node 6:

node

- A2 -2

name: "Activity 1"
arcs: => arc_list 1

class: act

name: "IDA_1"
arcs: => arc_list 2
class: channel

name: "Activity 2"
ares: => arc_list 3

class: act

name: "IDA_2"
arcs: => arc_list 4
class: pool

name: "A
arcs: =7
class: act

name: "IDA 3"
arcs: => arc _list
class: channel

name: "hActivity 4"
arcs: =-> arc_list_

class: act

nexe:

element:
next:

arc_list_4: element: -> arc_2 arc_list _5: element: -> arc_HU
next: - next: -
i :
: i
-->: element: -> arc U -=->: element: -> arc 5
next: NULL next: -- -
1
arc_list_6: element: -> arc 6 =000 cescceccecenanae
naxt - ,
' -->: element: -> arc_6
---------------- ne NULL
N
-->: element: -> arc 7 arc_list 7: element: -> arc |
next: NJLL naxt: NJLL
arc_1: name: "put" arc 5: name: "pat"
dirsction: to T direction: to
source: -> node_1 source: -> nodz 5
sink: -> no.z_2 sink: -> node 2
arc_2: name: "update" arc_6: name: "put"
direction: <o direction: to
source: -> node 1 sourca: -> nodz_5
sink: -> node M4 sink: -> node 5
arc_3: name: "get" arc_7: name: "gaot"
direction: fron direction: from
source: -> node 3 scurce: -> ncile 7
sink: -> node:2 sink: -> nods ¢
arc 4: nama: "retrieve"
- direction: from
sourze: -> nod2_5
sink: -> node_u
2. Th2 Construction Data Basz
This chapter demonstrates the to b2 built loastruztion Data Ba PRV

possibilities of constructing an application system 2re snown:
Subsystams, secondly without Subsystems.

The entries of the Construction Data Base are groupad
This =ases the reading. However, the construction is psrformed in 2
way.

2.1 Tne Example with Subsystems

The Activities 1, 2, and 3 are subsumed under Subsystem 1. Activ:ity « 7

Subsystem 2. IDA 3 therefore is a Subsystem-IDA.

- A2 - 5 -

AD-A137 417 THE USE OF THE MASCOT PHILOSOPHY FOR THE CONSTRUCTION
OF ADA PROGRAMS(U) ROYAL SIGNALS AND RADAR
ESTABLISHMENT MALVERN (ENGLAND) G FICKENSCHER OCT 83
F/G 9/2

UNCLASSIFIED RSRE-B83009 DRIC-BR-90207

s B8 B2s
g 52 &
= . s IE
y

. = 2.0
s 512
—_— MI |8
=
lizs .4
=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

MASCOT_System: class:
name:
file:
subsystems:

subsystem_ list: element:
next:

-=>: element:

next:

with_subsystems
"MASCOT_System"

"file MASCOT_System"
~> subsystem list
subsystem IDAs: -> subsystem IDA_list

-> Subsystem 1

-> Subsystem 2
NULL

subsystem IDA list: element: -> IDA_3
next: NULL
Subsystem 1: name: "Subsystem 1"
file: "file.Subsystem 1"
paramsters: -> 51_parameter_list
activities: => S1_activity_list
IDAs: -> S1_IDA_list
subsystem IDAs: -> S1_subsystem IDA_ list
Subsystem 2: name: "Subsystem 2"
file: "file.Subsystem 2"
parameters: NULL
activities: => S2_activity_list
IDAs: NULL
subsystem IDAs: -> S2_subsystem IDA list
31_parameter_list: element: weececmcece—a- >: formal: "selector"
next: NULL actual: "50"
S1_activity list: element: -> Activity) S1_IDA list: element: -> IDA 1
next: - next: -
| ' L
? - ? c———— :
==>: element: => Activity 2 -=>: element: -> IDA 2
next: - next: NULL
g
;------- -
-=>: element: -> Activity 3
next: NULL

S1_subsystem_IDA_list: element: -> IDA_3
next: NULL

S2_activity_list: element: -> Activity U
next: NULL

S2_subsystem IDA_list: element: -> IDA_3
next: NULL

Activity_1: name: "Activity 1"
root: => Root_Template_1
parameters: NULL
access_procedures: -> Al_procs
IDAs: => A1_IDAs
Activity_ 2: name: "Retivity 2"
root: -> Root_Template_3
parameters: NULL
access_procedures: -> A2_procs
IDAs: -> A2_IDAs
Activity 3: name: "Activity_ 3"
root: -> Root_Template 2
parameters: -> A3 _paras
access_procedures: -> A3 _procs
IDAs: -. A3_IDAs
Activity_U4: name: "pctivity 4"
root: -> Root_Template 3
parameters: NULL
access_procedures: -> Ad_procs
IDAs: => AY4_IDAs
Al_procs: element: ----ecc~coco=c-- ~====>: formal: "write_pool”
next: - actual: "IDA_2.update"

‘ -=>: eleMent: ==-=e=wescacc-e--w-2)>: formal: "write_channel"
5 next: NULL actual: "IDA_!1.put"

T o VPR

5. “aA2-5-

-

A1_IDAs: element: -> IDA 2
next: --

[}

]

-=>: element: «> IDA 1
next: NULL

A2 procs: element: ------ ceemvecccncoan >: formal: "read_chznnel®
next: NULL actual: "IDA_1.get"

A2_IDAs: element: -> IDA_}
next: NULL

A3_procs: element: eevecesnccccccccncao- >: formal: "read pool"
next: - actual: "IDA 2.retrieve"
]
?
-=>: element: -e-ecccncccccccaccaas >: formal: "write_channel 1"
next: -- actual: "IDA 1l.put"
]
]
? ~emoome
-=>: element: --cec-mcccccccaacaa. >: formal: "write_channel 2"
next: NULL actual: "IDA_3.put"
A3_paras: element: e=--cemcecccccca—ao- >: formal: "selector"
next: NULL actual: "selector"

A3_IDAs: element: -> IDA 2
next: --
1
'

1
I

=-->: eleaent: -> IDA_1
next: -

LD L Y L T T TPy

-=>: element: -> IDA_3
next: NULL

Al _procs: element: ~-c-ccccccao-- -==~==>: formal: "read_channel"
next: NULL actual: "IDA_3.get"

Ab_IDAs: element: -> IDA_3
next: NULL

- A2 -6 -

e

IDA_1: class: channel IDA_3: class: channel
name: "IDA_1" name: "IDA_3"
file: ne file: "file.IDA_3"
template: ~> IDA_Template_ 1 template: -> IDA_Template 3
data_types: -> I1_data data_types: -> 13 data
parameters: -> I1_paras parameters: -> 13 paras

IDA_2: class: pool
name: "IDA_2"
file: ne
template: => IDA_Template 2
data_types: -> I2_data

11_data: element: -> data_type_]1

next: NULL

I1_paras: element: =eveeececa- ~=====~-=>: formal: "channel_data"

next: NULL actual: "counter"

12 _data: elemant: -> data_type_2

next: NULL
I3 _data: element: -> data_type)
next: NULL
13_paras: element: =-~-ecececacscacaeazd: formal: "channel_data®

next: NULL

data_types_list: element:
next:

==>; elerent:
next:

actual

data_type !
]
]

data_type 2
NULL

data_type_1: name: "data type 1"
spec: "file data_type_l.spec"

bodie: """

data_type_2: name: "data_ type 2"
spec: "file.
bodie: """

data_type_2.spec"

: "counter"

IDA_template_list: element: -> IDA_Template_1
next: -

-=>: element: -> IDA_Template 2
next: --

'

[

-=>: element: -> IDA Template 3
next: NULL

IDA_Template 1: class: channel
name: "IDA_Template 1"
spec: "file.IDA_Template 1.spec”
bodie: "file.IDA Template_1.body"
access_procedures: -> IT1_procs
parameters: -> IT1_paras

IDA_Template 2: class: pool
name: "IDA_Template 2"
spec: "file.IDA Template_2.spzac"

u bodie: "file.IDA_Template_2.body"
= access_procedures: -> IT2 procs

data_types: -> 1T2_data

IDA Template_3: class channel
nane: "IDA_Template 3"
spec: "file.IDA_Template_ 3.spec"
bodie: "file.IDA Template_3.body"
access_procedures: -> IT3 procs
parameters: -> IT3 paras

IT1_proes: element: -=ceveceac--- ——————- >: formal: "put"

next: - actual: ""
H
'
-=>: element! =ceccvccacccccccncaa >: formal: "get"
next: NULL actual: ""

IT1 _paras: element: -~ec-weeceeecccemewce-co): formal: "channel data"
next: NULL actual: ""

i kot 4 o

-A2-8-

IT2 procs: element: >: formal: "update"

] next: -- actual: ""
|
£ - e - - - -
: :
: -~>: element: ---cecececececec-aal)>: formal: "retrieve"
% next: NULL actual: ""
: IT2_data: element: -> data_type_2
next: NULL
IT3 procs: element: —--ecceccmcacecaca- ~=>: formal: "put”
next: - actual: ""
1
]
;
-=>: element: =cecececccacaceacasad: formal: "get”
next: NULL attual: ""
IT3_paras: element: --e-=ce-e-e—es~ce-wod: formal: “"channel_data”
next: NULL actual: "v
Root_template list: element: -> Root_Template 1
next: -~
g
; P
-->: element: -> Root_Template 2
next: --
g
?-----
-=~>: element: -> Root_Template 3
next: NULL
Root_Template_1: name: "Root_Template 1"
spec: "file.Root_Template_1.spec"
bodie: "file.Root_Template 1.body"
parameters: NULL
access_procedures: -> RT1_procs
. data_types: => RT1_data
, Root_Template 2: name: "Root_Template_2"
;o ' spec: "file.Root_Template 2.spec"
A bodie: "file.Root_Template_2.body"
i parameters: => RT2_paras
3 access_procedures: -> RT2 procs
; data types: -> RT2_data

“A2 -9 - 4

ey e -

,_E

Root_Template_3: name: "Root_Template_3"

spec: "file.Root_Template_3.spec”
bodie: *file.Root_Template_3.body"
parameters: NULL

access procedures: -> RT3 procs

data_types: => RT3 data

RT1_procs: element: =--e-eeweccececo-w--=->: formal: "write_pool"

next: - actuazl: "»
]
;
-=>: element: =-evcecrmccccccccacao >: formal: "write channel®
next: NULL actual: "

RT1_data: element: -> data_type !
next: -

-->: element: -> data_type_2
next: NULL

RT2_paras: element: =ese--aececec-ceea-ea>: formal: "selector®

next: NULL actual: "»
RT2_procs: elament: =e~cecccmaccoac-- ~-=>: formal: "read_pool"
next: - actual: "
|
; cmcme——
-=>: element: ~cecccmcvcncccccrcaa >: formal: "write_channel 1"
next: - actual: ™"

o comDes .o --o-

~=>: element: --ec-ce-cecmcowec-ce-=>! formal: "writz_channel 2"
next: NULL actual: ""

RT2_data: element: -> data_type !
next: -
}
(]

==>: element: -> data_type_ 2
next: NULL

RT3 procs: element: -ecceccececceaceeec-2>: formal: "read_channel"
next: NULL actual: ""

T o S ey

RT3_data: element: -> data_type_!
next: NULL

2.2 The Examgie without Sugs!sgems

This Subchapter shows the head of the Construction Data Base, if Subsystems are
not concerned. The other entries of the data base are already shown by
Subchapter 2.1. The only exception is the entry "A3 Paras”.

MASCOT_System: class: without_subsysteas
name: "MASCOT_Systea"
file: "file.MASCOT_System"
activities: -> activity list
IDAs: -> IDA list

activity list: element: -> Activity 1
next: -

-->: elemant: -> Activity 2

-->: element: => Activity 3
next: --

-=>: element: -> Activity 4
next: NULL

A5_paras: element: ----c---- ceeccmce= ~-~>: formal: "selector"
next: NULL actual: "50"

IDA_list: element: -> IDA_1
next: -

-=>: element: => IDA_2 :
next: - i

-=>: element: -> IDA_3
next: NULL

it et

- A2 -1 -

3. Data Types of the IDAs

Two data type packages are used in the example. The first one represents the
types used by IDA 1 and 3, the second one the types used by IDA 2, and, of
course, by the respective Activities.
PACKAGE data_type_1 IS
SUBTYPE counter IS integer RANGE O .. 49;

END data_type_1;

PACKAGE qata_type 2 IS
TYPE store_counter IS
RECORD
number : integer;
text : string(1 .. 100);
END RECCRD;
SUBTYPE key IS integer RANGE 1 .. 100;

END data_type_2;

4. The IDA Templates

Tnere are three templates (one for every IDA) in the example. This approach is
chosen to show that Channel can share the same data type definition.

4.1 IDA Iemglggg_l

IDA Template 1 implements a Channel wnich can store up to one hundred data
objects of a non-abstract data type temporarily. Putting an object to the
Channel is impossible, if the data area is full. Getting an object from tne
Channel is impossible, if the data area is empty. The data objects are read in
the order in which the are put to the Channel. Readers and writers have equal

priority in accessing the Channel.

GENERIC
TYPE channel_data IS PRIVATE;
PACKAGE IDA_Template 1V IS

PROCEDURE put(x : IN channel data);
PROCEDURE get(x : OUT channel_data);

END IDA Template_ 1;

PACKAGE BODY IDA_Template_1 IS

size : CONSTANT integer := 100;

data_area : ARRAY () .. size) OF channel_data;
count : integer RANGE 0 .. size := 0;
in_index ,

out_index : integer RANGE 1 .. size := 1;

TASK t IS
ENTRY read (x : OUT channel_data);
ENTRY write(x : IN channel_data);)
END t; ;

TASK BODY t IS
BEGIN
LOOP
SELECT
WHEN count < size =>
ACCEPT write(x : IN channel_data) DO
data_area(in_index) := x;
END;
in_index := in_index MOD size + 1;
count := count + 1;
OR
WHEN count > 0 =>
ACCEPT read(x : OUT channel_data) DO
x := data_area(out_index);
END;
out_index := out_index MOD size + 1;
count := count - 1;
END SELECT;
END LOOP;
END ¢t;
PROCEDURE put(x : IN channel data) IS
BEGIN
t.write(x);
END put;
PROCEDURE get(x : OUT channel_data) IS
BEGIN
t.read(x);
END get;

END IDA_Template_ 13

4,2 IDA_ISmplagg_g

IDA Template 2 implements a Pool. The Pool has a data area with as many entries

as the range of the type "key" denotes. All entries of the data area ars preset
, with an initial value. After reading an entry it is reset to the initial value.
ps The key which prescribes the storage place of an object in the data area is
derived from the object itself. Readers have precendence over writers. Writers
overwrite already stored data objetcs.

~ A2 -13 -

WITH data_type_2;
USE data_type_2;

GENERIC
PACKAGE IDA Template_2 IS

PROCEDURE update (x : IN store_counter ; y : OUT key);
PROCEDURE retrieve(x : IN key ; y : OUT store_counter);

END IDA_Template_2;

PACKAGE BODY IDA Template 2 IS

data_area : ARRAY (1 .. key'last) OF store_counter ::=
(1 .. key'last =>
store_counter'(number => 0,
text => (1..store_counter.text'last) => ' ')));

TASK t 1S
ENTRY write(x : IN store_counter ; y : OUT key);
ENTRY read (x : IN key ; y : OUT store_counter);

N T L LT

END t;
TASK BODY t 1S
BEGIN
LOOP
SELECT
ACCEPT read(x : IN key ; y : OUT store_counter} DO
y := data_area(x);
data_area(x) :=
store_counter'(nuaber => 0, i
text => (1..store_counter.text'last) => ' ')); |
END; ‘
OR
WHEN read'count = 0 =
ACCEPT write(x : IN store_counter ; y : OUT key) DJ
y := x.number MOD key'last + 1;
data_area(y) := x;
END;
END SELECT;
END LOOP;
END t;

PROCEDURE update(x : IN store_counter ; y : OUT key) IS
BEGIN

t.write(x , y);
END update;

PROCEDURE retrieve(x : IN key ; y : OUT store_counter) 1S
BEGIN

t.read(x , y);
END retrieve;

END IDA Template_2;

IDA Template 3 implements a Channel. The Channel can only hold e¢cxactly one
object temporarily. Therefore reading and writing must follow eachother in a
strict order, starting with writing. The data objects which are passed throuzh
the Channel can be of any non-abstract data type.

GENERIC
TYPE channel_data IS PRIVATE;
PACKAGE IDA_Template_3 IS

PROCEDURE put(x : IN channel_data);
PROCEDURE get(x : OUT channzl_data);

END IDA Template_3;

PACKAGE BODY IDA_Template 3 IS
data area : channel_dzta;

TASK t IS
ENTRY read (x : OUT channel_data);
ENTRY write(x : IN channel_data);
END t;

TASK BODY t IS
BEGIN
LOJP
ACCEPT write(x : IN channel data) DO
data_area iz Xx; .
END;
ACCEPT read(x : OUT channel data) DO
X := data_area; -
END;
END LOJP;
END ¢%;

PROCEDURE put(x : IN channel data) IS

BEGIN -
t.write(x);

END put;

PROCEDURE get(x : OUT channel data) IS
BEGIN

t.read(x);
END get;

END IDA Template_3;

- A2 - 15 -

5. The Root Templates

Three Root templates are used by the example. Activity 2 and 4 are derived fronm
the same template.

5.1 Root Template 1

An Activity derived from Root Template 1 communicates with other Activities
through the formal procedures "write pool™ and "writs channel". 1In this exanmple
the procedures indicate accesses to 1DA_1 which is a Channel and to IDA_2 wnicn
is a Pool but this is not prescribed. Every IDA one of whose access prozedures :
matches one of the formal procedures can be used as communication link.

Root Template 1 generates an object called "pool_object". Depending on tne
result of a random generator which delivers either "true" or "false" the
procedures "write pool" or "write channel" are selected as communication links
respectively.

WiTH data_type 1 , data_type_2;
USE data_type_ 1 , data_type 2;

GENERIC
WITd PROCEDURE write_pool(x : IN store_counter ; v : OUT key);
W1TH PROCEDURE write_channel(x : IN counter);

PROCEDURE Root_Template_1;

PRJCEDURE Root_Template_1 IS
pool_object : store_counter;
pool key : key;
channel object : counter;

-- other declarations including the boolean function "random"

BEGIN

-- list of statements including the begin of a loop
-- and the generation of "pool object"

IF random
THEN
write_pool(pool_object , pool_key);
ELSE
channel object := pool_object.number MOD (counter'last + 1);

write_channz1(channel_object);
END IF;

-~ list of statements including the end of the above mentioned loop

END Root_Template 13

- A2 - 16 -

N

Root Template 2 communicates throuh three access procedures. It reads using the

procedure "read_pool" from an IDA depending on the value of a randomly generited

key "pool_key". The template selects either the procedure "write_channel_ 1" or

L : the procedure "write_channel_ 2" for passing messages depending on its value
parameter and on the “value of the read object "pool_object"”.

SETST Bal S0 e

WITH data_type 1 , data_type_Z2;
USE data_type_) , data_type 2;

GENERIC
WITH PROCEDURE read pool(x : IN key ; y : OUT store counter);
WITH PROCEDURE write_channel_1(x : IN counter);
WITH PROCEDURE write_channel 2(x : IN counter);

PROCEDURE Root_Template 2(selector : IN integer);

PROCEDURE Root_Template_2(selector : IN integer) IS

pool_object : store_counter;
pool_key : Key;
channel_object : counter;

-- other declarations
BEGIN

-- list of statements including the randomly generation of “pooi_xey"
-- and the begin of a loop

read_pool(pool_key , pool object);

IF pool_object.number > sslector AND selector <= (counter’last + 1)
THEN
channel object := pool_object.number MOD selector;
write_channel_2(channel_object);
ELSE
channel_object :=z pool _object.number MOD (counter'last + 1);
write_channal_1(channel_object);
END IF;

~-- list of statements including the end of the above amentioned loop

. END Root_Template_2;

5.3 _Root Template 3

Root Template 3 only reads messages using the procedure "read channel™ and
consumes them. -

WITH data_type 1;
USE data_type_}Y;

GENERIC
WITH PROCEDURE read_channel(x :
PROCEDURE Root_Template_3;
PROCEDURE Root_Template_3 15
channel object : counter;
-~ other declarations
BEGIN
-~ list of statements including
read_channel(channel _object);
-~ list of statements including

END Root_Template_3;

6. Subsystem-IDAs

Onz Subsystem-IDA is considered by the
Template 3 using a type of the package
formzl data type "channel data”.

WITH data_type 1,
USE data_type_1;

PACKAGE 1DA_3 IS

OUT counter);

the begin of a loop

the end of the above mentioned loop

example. IDA_3 is derived from IDA
"data_type_1" as definition for 1its

NEW IDA Template 3(channel_data => counter);

7. Subsystems

Tne Activities are subsumed under two Su
Subsystem 1, Activity 4 Subsystem 2.

bsystems. Activity 1, 2, and 3 foram
Subsystem 1 has a value parametar to

supply Activity 3 with a proper value for its value parameter.

..

WITH data_type_1 , data_type_2;

WITH IDA Template 1, IDA ,_Template_2;

WITH Root_Template 1 , Root_Template_2 , Root_Template_ 3;
WITH IDA_}.

USE data_type_1 , data_type_2;

USE IDA Template 1, IDA Template 2;

USE Root Template 1, RooQ_Template 2 , Root_Template_3;
USE IDA_B.

v

PROCEDURE Subsystem_1(salector : IN integer)
IS

PACKAGE 1DA_1 IS |
NEW IDA_Template_1l(channel_data => counter); |

PACKAGE IDA 2 IS |
NEW IDA_Template_2;

TASK Activity 1; |

TASK BODY Activity 1 IS
PROCEDURE Activity 1_Root IS
NEW Root_Template_l{(write_pool => IDA_2.update ,
write channel => IDA 1.put);
BEGIN
Activity 1 Root;
END Activity 1,

TASK Activity 2;

TASK BODY Activity 2 IS
PROCEDURE Activity 2 Root IS
NEW Root_Template 3(read channel => IDA_l.get);
BEGIN
Activity 2 Root;
END Activity_ 2;

TASK Activity 3;

TASK BODY Activity 3 IS
PROCEDURE Activity_3_Root IS
NEW Root_Template 2(read_pool => IDA_2.retrieve ,
write channel 1 => IDA_1l.put ,
write channel 2 => IDA_3.put);

BEGIN
. Activity 3 Root(selector);
END Activity 3;
BEGIN
NULL;

END Subsystem 1;

T S s

WITH Root_Template_3;
WITH IDA_3;
USE Root_Template_ 3;
USE IDA_3;

PROCEDURE Subsystem 2
Is

TASK Activity U;
TASK BODY Activity 4 IS

PROCEDURE Activity U Root 1S
NEW Root_Template_3(read_channel => IDA_3.get);

BEGIN
Activity 4 Root;

END Activity 4;
BEGIN
NULL;

END Subsystem_2;

8. The Main Prograns with Subsystems

The main program consists of two tasks which ¢311 the two Subsystems
respectively. Subsystem 1 is supplied with 3 proper actual value param=tar.

e R .

WITH Subsystem_1 , Subsystem 2;

PROCEDURE MASCOT_System
1S

TASK Subsystem_1_task;
TASK BODY Subsystem 1_task IS
BEGIN
Subsystem 1(50);
END Subsystem 1_task;
TASK Subsystem 2_task;
TASK BODY Subsystem 2 task IS
BEGIN
Subsystem 2;
END Subsystem 2 task;
BEGIN
NULL;

END MASCOT_System;

9. The Main Program without Subsystems

If no Subsystems are considered, the main program is formed like a Subsystem.
There is a task for every Activity. Every IDA must be created by instantiating
the proper teaplate. The root procedures must be supplied with proper actual
value parameters, if requested (for example, look at Activity 3).

-A2 - 21 -

WITH data_type_1 , data_type_2;

WITH IDA_Template_ ! , IDA_Template 2 , IDA_Template 3;
WITH Root_Template_1 , Root_Template_ 2 , Root_}empIEte_j;
USE data_type_1 , data_type 2;

USE IDA_Template 1 , IDA_Template 2 , IDA Template 3;
USE Root Template 1, Root Template 2 , Root_Template_3;

PROCEDURE MASCOT System IS

PACKAGE IDA_1 IS
NEW IDA_Template_1(channel_data => counter);

PACKAGE IDA_2 IS
NEW IDA Template_2;

PACKAGE IDA_3 IS
NEW IDA_Template_3(channel_data => counter);

L Wy b TSP T, tw —~ v =

TASK Activity 1;
TASK BODY Activity 1 IS
PROCEDURE Activity_1_Root IS
NEW Root_Template_l(write_pool => IDA_2.update ,
write_channel => IDA_l.put);

T T -

BEGIN .
Activity 1 _Root; |
END Activity 1;

TASK Activity 2;
TASK BODY Activity 2 IS
PROCEDURE Actlvity 2 _Root I3 !
NEW Root Template 3(read channel => IDA_1.get);
BEGIN
Activity_2 Root;
END Activity 2;

TASK Activity_3;
TASK BODY Activity 3 1S
PROCEDURE Activity_3 Root IS
NEW Root_Template_ 2(read pool => IDA_2.retrieve ,
write_channzl_ 1 => IDA l.put ,
write_channel 2 => IDA 3.put);

BEGIN
Activity_ 3 Root(59);
END Activity_3;

TASK Activity 43
TASK BODY Activity 4 IS
PROCEDURE Activity 4 Root IS
NEW Root_Template_ 3(read_channel => IDA_3.get);
BEGIN
Activity 4 Root;
END Activity U;

BEGIN
NULL3
END MASCOT_System;

s

DOCUMENT CONTROL SHEET

Unclassified

Overal) security classification of sheet URCIE R

{As far as possible this sheet should contain only unclassified inforsation, 1f it is necessary to enter
classified inforsation, the box concerned sust be marked to indicate the classification eg (R) (C) or (S))

1. DRIC Referance (if knoun) | 2. Originator's Reference | 3. Agency Reference 5. Report Security
Report 83009 .Chssdlcahon
5. Originator's Code (if 6. Originator (Corporats Author) Nase and Location
known)
Royal Signals and Radar Establishment
Sa. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location

Code (i f known)

1. Title
The Use of the MASCOT philosophy for the construction of Ada programs

7a. Title in Foreign Language (in the case of transiations)

7b. Presented at {for conference napers) Title, place and date of conference

8. Author 1 Surnase, initiais]| 9(a) Author 2 9(b) Authors 3,4... 10. Date pp. ref.

Fickenscher, G

11. Contract Nusber 12. Period 13. Project 14, Other Reference

15. Distritution statesent

Unlimited

Descriptors (or keyvords)

continue on separate piece of paper

Abstract The development of computer based systems poses major problems on the
people involved. Both, MASCOT (the official design methodology of the UK
Ministry of Defence for real-time systems) and Ada (the official programming
language of the US Department of Defence for embedded computer systems) claim
to offer a solution to the majority of these problems. MASCOT is a programming
support environment which is independent of a particular programming language,
but it defines its own runtime kernel for parallel execution of different
program parts. Ada, on the other hand, offers language constructs to express
parallelism of program parts, but Ada enforces a particular design methodology
with its language rules.

a4) N ARSI e - e 5

ke o

e

$80/48

Continued Summary

This paper investigates whether it is feasible to combine the MASCOT methodology
with the programming language Ada. It demonstrates a possible implementation of
a MASCOT Construction Data Base in Ada, and it explains the combination of
MASCOT and Ada by using a simple example.

