
ADA13 41 THE USEOF THE MAOT PIOOPHY FOR HE CONSTRUCTON I
OF ADA PROGRAM(U) NOYAL SINAL AND RADA
E AR HMENT MALVRN (NO IAND) 0 FIKESR ROC 83

UNCLASSFID RSRH -83OAR DR ICFR _ 007 0/ 12

~mummuimuimo

Em mmhhmuEliphmmh

111111..0
1111- 1L.

II I' 3 1.8

,1.25 1 1. 6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

t'A

~z ~4N

.ew

~Y

0 A M

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report No 83009

TITLE: The Use of the MASCOT philosophy for the construction of Ada programs

AUTHOR: FICKENSCHER, G

DATE: OCTOBER 1983

The development of computer based systems poses major problems on the people
involved. Both, MASCOT (the official design methodology of the UK Ministry of
Defence for real-time systems) and Ada (the official programming language of
the US Department of Defence for embedded computer systems) claim to offer a
solution to the majority of these problems. MASCOT is a programming support
environment which is independent of a particular programming language, but it
defines its own runtime kernel for parallel execution of different program
parts. Ada, on the other hand, offers language constructs to express parallelism
of program parts, but Ada enforces a particular design methodology with its
language rules.

This paper investigates whether it is feasible to combine the MASCOT methodology
with the programming language Ada. It demonstrates a possible implementation of
a MASCOT Construction Data Base in Ada, and it explains the combination of
MASCOT and Ada by using a simple example

AcceF'qion 7or

U:.: •

I'. Ditribt 1,/

Availab'lity Codes

!Avail and/or

Dist Special

Copyright
C

Controller HMSO London
1983

S83116

CONTENrS

1. Introduction 1-1
2. Structure of the Document 2-1
3. Evaluation of MASCOT with Respect to Ada 3-1

3.1 MASCOT Overview 3-1

3.2 Ada Overview 3-2
3.3 The MASCOT Machine 3-5

3.3.1 Constructing 3-7
3.3.1.1 Production of System Element Templates 3-7

3.3.1.1.1 IDA Templates 3-3
3.3.1.1.2 Root Templates 3-9

3.3.1.2 Creation and Destruction of System Elements 3-9
3.3.1.3 Forming and Deleting Subsystems 3-13
3.3.1.4 Command Interpreter J-t0

3.3.2 Controlling 3-11
3.3.3 Scheduling 3-11

3.3.3.1 Scheduler 3-11
3.3.3.1.1 Adjustments to the Priority of an Activity 3-11
3.3.3.1.2 The Selection of an Activity at the Start of a Slice 3-11
3.3.3.1.3 Tne Duration of a Slice 3-12
3.3.3.1.4 End of Slice Action 3-12

3.3.3.2 3yncnronisation 3-13
3.3.3.3 Timing 3-13
3.3.3.4 Activity Suspension and Termination 3-13

3.3.4 Device Handling 3-13
3.3.5 Monitoring 3-14
3.3.6 Interacting 3-14

3.4 Activities 3-15
3.5 Inter-Communication Data Areas 3-15
3.6 Subsystems 3-16
3.7 Frozen and Evolutionary Systems 3-17

3.7.1 Frozen Systems 3-17
3.7.2 Evolutionary Systems 3-16

4. A Solution 4-1
4.1 The Construction Data Base 4-1

4.1.1 Data Structure of the MASCOT Development System 4-2
4.1.1.1 Basic Types 4-2
4.1.1.2 Type Summary 4-2

4.1.1.2.1 Types of Entries 4-2
4.1.1.2.2 Parameter Types 4-3

4.1.1.3 List Types 4-3
4.1.1.4 Tne Types of the Parameters 4-4
4.1.1.5 The Type "MASCOTSystem" 4-5
4.1.1.6 The Type "subsystem" 4-5
4.1.1.7 The Type "activity" 4-6
4.1.1.8 Tne Type "IDA" 4-6
4.1.1.9 The Type "roottemplate" 4-7
4.1.1.10 The Type "IDA.template" 4-7
4.1.1.11 The Type "data type" 4-8

4.1.2 The ACP Diagram 4-b
4.1.2.1 The Type "node" 4-9
4.1.2.2 The Type "arc" 4-9
4.1.2.3 The Construction Procedure for the ACP Diagram 4-10

4.1.3 Creation of Data Types 4-10
4.1.4 Creation of IDA Templates 4-11
4.1.5 Creation of Root Templates 4-11

Contents

1 .1

4.1.6 Forming of Subsystems 4-11

4.1.7 Forming of the Main Program 4-12

4.1.8 The Main Program of the Construction Process 4-13

4.2 Data Types of the IDAs 4-15
4.3 The Form of IDA Templates 4-16

4.3.1 Channel Template 4-16
4.3.2 Pool Template 4-17

4.4 The Form of Root Templates 4-17
4.5 Implementation of Roots and IDAs 4-10

4.5.1 Roots 4-19

4.5.2 IDAs 4-19

4.6 Creation of IDAs 4-21
4.7 The Form of Subsystems 4-22

4.8 The Form of the Main Program with Subsystems 4-24

4.9 The Form of the Main Program without Subsystems 4-25
5. Final Remarks 5-1

6. References 6-1

APPENDICES
Appendix 1: Programs for Construction of Data Base
Appendix 2: An Example

Contents

1. Introduction

The development of complex computer based systems poses major problems to the
people involved. MASCOT (Modular Approach to Software Construction Operation
and Test) serves as both a methodology and a tool set to overcome managerial and
technical difficulties. MASCOT is claimed to be independent of programming
languages. However, MASCOT provides a runtime kernel and its use implies
several restrictions on the programming language used to implement a particular
computer based system.

MASCOT presents no problems if used in conjunction with a programming language
that does not have built-in tasking facilities. As the example of C3RAL 66
shows, a language may have to be extended to meet the raquirements of MASCOT but
the extensions do not influence the semantics of the sequential part of the
language. The compiler of the "extended language" can only be used in a !IASCOT
environment.

Ada must not be :hanged in any way (refer [2 1) and Ada provides its own
tasking facilities which cannot be superseded by the semantics of a given
runtime kernel. However, an Ada program is not required to contain Ada tasks.
Thus, it is possible to provide an alternative runtime environment tnat supports
concurrency with Ada program units other than Ada tasks (refer L 2 J, subchapter
1.1.1 (i)) provided that the program units themselves conform with the language
rules. This means that the program units must be main programs in the Ada
terminology. The resulting MASCOT system is similar to that using CDRL 66.

Nevertheless, it is worth-while to investigate whether it is possible to utilize
the complete Ada language, which is intended for writing large systems, in
zonjunction with the MASCOT philosophy, which is proved to be a reascnable
design instrument for large systems. This piper offers a solution to the
problem.

-1-1 -

2. Structure of the Document

In chapter 3 MASCOT is evaluated with respect to Ada. The evaluation is made
taking initial thoughts and solutions from [3 3.

An initial implementation of a MASCOT Machine in an Ada environment is given in
chapter 4. The solution, however, only considers a Frozen System and is to be
looked at as a proposal. It is not tested because of the non-availability of an

Ada compiler. The related Ada programs are listed in Appendix 1.

Chapter 5 serves as conclusion.

The use of the MASCOT philosophy in an Ada environment is demonstrated by a

simple example. Its detailed description and the source codes of the various
program units are given in Appendix 2.

I4
[

m-2-1-1

3. Evaluation of MASCOT with Respect to Ada

3.1 MASCOT Overview

A full description of the MASCOT approach is neither possible nor desirable
here, for that the reader is referred to [1). It is, however, worth outlining
the basic ideas of the MASCOT concepts for the reader who is not already

familiar with MASCOT.

The central idea of MASCOT is to handle the implementation of complex realtime
systems by providing a method to deal with the concurrency. This method
decomposes the system into a set of sequential processes (called "activities")
each of which operates in parallel with the others, none having knowledge of the
others.

Data to be shared between Activities is placed in Inter-Communication Data Areas
(IDAs). Activities are not allowed to access the data directly. Instead a set
of access procedures is specified for each IDA, and Activities call these
procedures. The procedures resolve contentious concurrent accesses by

implementing critical regions, which provide mutual exclusion. MASCOT provides
several primitives in its runtime kernel to implement the critical regions.

MASCOT defines two kinds of IDAs:

(a) Channels

A Channel is used to pass data i the form of messages bctween
Activities. A Channel has two unidirectional interfaces: an input
interface used by Activities that produce messages, and an outpit
interface used by Activities that consum? messages. There can be in
accumulation of unconsumed messages within a Channel. A Channel might
provide additional interfaces for monitoring purposes.

(b) Pools

A Pool holds data for reference purposes. A Pool can have many

different interfaces for many different purposes.

Only the designers of IDAs are concerned with parallel execution. The designer
of an Activity is concerned with the sequenti3l operations of tha Activity
itself and only needs to know the procedural interfices of the respective IDAs
and the structure of their data. This approach facilitates the testing of
Activities in a test harness.

Because an I/0 device either produces data or consumes data it can be connected
to an Activity via a Channel. Conceptually devices can be looked at as special
Activities. The runtime kernel allows to connect interrupts to devices.

MASCOT does not specify how an overall system is to be decomposed into
Activities and IDAs. It provides a notation for expressing the design in the
form of an Activity Channel Pool (ACP) Diagram.

The method by which the application system is constructed is defined by MASCOT.
Recognising that systems will often contain several essentially identical
Activities or IDAs, "templates" are used for the code of Activities (called
"Root templates") or IDAs. Several instances can then be created from each
template.

- 3-" "

The correct connectivity of the system is checked when it is built from Root
instances and IDAs. A Root template specifies the IDA templates it operates on.

To allow a hierarchical composition of larger systems Activities and IDAs can be
subsumed to a "Subsystem". Then, some of the IDAs are private to the Subsystem.
Others form the interfaces to other Subsystems and will be referred to as
"Subsystem-IDAs" (called SIDAs). A Subsystem is allowed to consist of one
Activity only. Thus, from a more general point of view, an application is built
from Subsystems.

MASCOT defines two modes of construction: "frozen" and "evolutionary".
Construction of a frozen system is equivalent to conventional system building.
An evolutionary system is one where construction (and dismantling) can occur in
the system while it is running. Only Subsytems can be formed, started, stoppei,
and removed online.

MASCOT defines a runtime kernel which provides a set of primitives to tne
application system. These are concerned with sychronisation, mutual exclusion,
timing, scheduling, device handling, controlling Subsystems and monitoring. A
particular MASCOT development system might not support all these facilities. A
minimum compulsory subset, however, is defined.

The essential elements of MASCOT are:

(a) a method of decomposing a system into independent, in parallel
executable parts with procedural interfaces, and a notation (the ACP
diagram) which the application system can be derived from. This metnod
inzorporates I/O devices easily.

(b) a method of construction involving templates and various defined
checks.

(c) a definition of a runtime kernel that supports the application system.

3.2 Ada Jverview

For a full description of the Ada programming language the reader is referred to
E 2]. It is, however, worth outlining some of the basic ideas of Ada for thC
reader who is not familiar with Ada.

Ada was developed for the US Department of Defense to meet the urgent need for
reliable implementations of embedded computer systems. The user of Ada thinks
in terms of data types and operations on these types during the implementation
of his particular system and not in terms of sequential functions. Moreover,
the idea that a system should be composed of almost independent parts (modules)
led to a concept of extensive modular programming in Ada.

Ada'a package concept was derived from the ideas of abstract data types and
extensive modularisation. A package consists of a well-defined interface
(specification) visible to the user of the package and of an implementation part
(body) hidden from the user of the package. The designer of the package can
restrict the use of objects derived from visible data types.

Packages can form all or part of a project library as can subprograms
(specification and/or body), generic units, and instances (instantiations) of
generic units. Subprograms are procedures and functions in the usual sense.

- 3-2-

Library units are compiled separately.

The visible parts (interfaces) of library units can be imported by compilation
units by naming the units needed in a special clause, called context clause, at
the start of a compilation. The compiler then ensures that the interfaces are
strictly obeyed by the user.

Because of the strong typing incorporated in Ada a method was introduced to
parameterise packages and subprograms. Such packages and subprograms are said
to be generic and are really templates from which actual units can be derived by
instantiation. Possible parameters are data objects, data types, and
subprograms. It is possible to restrict the use of objects of given generic
data types from within the generic unit itself. An instantiation provides the
actual parameters.

Libraries provide for the bottom-up development of software systems written in
Ada. To provide a top-down approach also, Ada allows a user to specify
subunits. These subunits are not library units. Therefore the specifications
of the respective "visible" parts must be given within library units (parent
units) and their bodies must be declared as separate from the parent units. The
bodies are then compiled separately and must mention their parent units.
Possible subunits are the bodies of subprograms,' of packages, and of tasks.
Subunits have direct access to all objects declared in or visible to their
parent units.

The compilation of units must follow a set of rules. Specifications have to be
compiled prior to their bodies. Parent units have to be compiled prior to their
subunits. Imported library units have to be compiled prior to those libriry
units mentioning them in a context clause. If a compilation unit is recompiled,
all dependent units must be recompiled.

Because of Ada's commitment to abstract data types tasks are treated as data
types with certain restrictions. A task is specified either as a task object,
then only one task object of an anonymous task type is created, or as a tasK
type, when several task objects of the same type can be declared. A task body
is associated with each task (type) specification. The oody defines the
sequence of statements executed by the respective task object.

A task object is implicitly activated at its point of declaration. Tasks are
terminated, when they have executed their last executable statement anJ no
dependent task is still active, or, when they have selected a terminate
alternative in a selective wait statement and the scope in which they are
declared is left. Tasks can be explicitly aborted by other tasks via an aborL
statement.

Communication between tasks is achieved in two different ways:

(a) tasks communicate through objects which are in their visible scope;

(b) tasks communicate via entry calls and associated accept statements.

The first approach is very unsafe because concurrent accesses to the objects arz
not resolved. The language, however, provides a pragma SHARED to identify such
shared objects. If an object is marked to be shared, mutual exclusion is
implicitly achieved in accessing such an object.

The second approach implements a bidirectional message handling via a mechanism
called rendezvous. Tasks specify a set of entries, which can be looked at as
messages boxes, in their task (type) specification. If a task wants to deliver

-3-3-

a message to another task, it executes a statement which calls the respective
entry. If a task wants to consume a message, it executes an accept statement
which names the respective entry declared in its specification. The performance
of a rendezvous is an indivisible operation during which the two tasks are said
to be in rendezvous.

Three different kinds of entry calls exist:

(a) normal entry call (commonly called an entry call)

A task calls the entry of another task. If the called task is waiting
at an associated accept statement, the rendezvous will be performed
immediately. Otherwise the calling task will wait.

(b) conditional entry call

The rendezvous must either be performed immediately-or abandoned. Only

if the called task is waiting at an associated accept statement, the
rendezvous will be performed. If the entry call is abandoned, the
calling task executes a specified sequence of statcments.

(c) timed entry Call

The rendezvous must be performed within a given time frame. If th3
called task fails to arrive at an associated accept statement within
the time frame, the entry call is abandoned, and the calling task

executes an optional sequence of statements.

Two kinds of accept statements exist:

(a) accept statement

When a task reaches an accept statement, and an entry call is already
pending, the rendezvous is performed by executing an optional sequenc
of statements. Otherwise the task waits until a call of the associated
entry happens.

(b) selective wait

A selective wait statement contains at least one accept alternative,
which consists of an accept statement. In addition it may contain

either a terminate alternative (only one), or one or more delay
alternatives, or an else part; these three possiblities are mutually
exclusive.

An optional condition is associated with each alternative. If tha
condition is true, the alternative is said to be open and can be
chosen. If there is no condition, the alternative is always open. The
way an open alternative is chosen is arbitrary.

The else part is chosen, if no alternative is open.

Delay alternatives are chosen, if an accept alternative cannot be
chosen in a given time frame. An optional sequence of statements is
then executed.

The terminate alternative can only be chosen, if no other alternative

is open and 1he task is allowed to terminate.

- 3 - -

Tasks waiting at an entry are served first-in first-out. Tasks, however, can
have a static priority. The priority is not evaluated in the case of a
rendezvous. It is, however, possible to implement particular strategies using
the conditions of selective wait statements.

It is possible to connect entries to interrupts. This is done by using a so
called representation specification for a particular entry. The effect of the
connection is left to the particular implementation.

The language does not specify the scheduling of tasks. In particular, the only
way to schedule tasks explicitly is by use of a delay statement. The execution
of a task is suspended at least for the duration specified by the delay
statement.

An implementation of Ada must provide a runtime system to meet the requiremints
of the semantics of the built-in tasking.

3.3 The MASCOT lachine

The environment which supports MASCDT is a conceptual "!IASZJT :Machine" on un
the facilities neeJed to develop and run a MASCOT application are 3vaiible to
the user.

In a MASCOT Machine a set of software construction tools builds and maintains a
Construction Data Base, from ahich the application system is 2onstructe: raazy
for e!xecution. The MASCOT 7iachine may also provide control and moniterinz of
the system after it has been started.

Figure 3.3-1 shows the several facilities provided by the MASCCT !Iachin2. T:_
facilities fall into a number of groups. The following subchapters descr oc the
various groups and compare them with equivalent Ada features.

An implementation of the MASCOT Machina does not need to provide all facilities.
There is, however, a mandatory set of facilities which defines a Minimal 'IASCaT
Machine (refer Fig. 3.3-2).

-3-5-

-Constructing - Building Compiler, Linker
ENROL

-- CREATE
-- FORM

--------- Dismantling -------- CANCEL
-- DESTROY

DELETE

-- Controlling ---------------------------------- START

-- TERMINATE
HALT

-- RESUME

,-- Scheduling ----------------------------------- S2heiuler

Syn:hronising ------------- JOIN
f-- WAIT
:-- LEAVE
--STIM'

,-- Timing ----------------- Time-
f-- DELAY
f-- TIMEN9.;

f-- Suspending & Terminating --- SUSPEND

--tENDRD3T

Device Handling ------------------------------ Drivers

ft -- CONNECT
D.SCONNECT

-- STIN11?T
-- ENDHANDLER

-- Monitoring ------ Recording ----------------- RECORD

f-- Selecting -------------- SELECT

ftt-- EXCLUDE

ft--t---------------- Error Reporter

-- Interacting ---------------------------------- Command
Interpreter

Figure 3.3-1: The MASCOT Machine

-3-6-

I I

-- Constructing --------------- Building ---------- ENROL
-- CREATE

* :-- FORM
I I

Controlling ------------------------------------- START

Scheduling -------------------------------------- Scheduler

------- Synchronising - -- JOIN
1-- WAIT

LEAVE
I-- STIM

-- Device Handling

-------------------- Error Reporter

Figure 3.3-2: The Mlinimal MASCOT Machine

3.3.1 Constructing

Construction is the term used in MASCOT to cover the transition from the
detailed design description of a network (normally the ACP diagram) to the
implementation of that network as executable software. MASCOT requires that the
transition is achieved through operations that are consistent with the
modularity defined by the design.

The construction in MASCOT involves three clearly separable stages:

the specification of System Element Templates (SET) and their enrolment in
a Construction Data Base;

thz creation and destruction of System Elements (SE);

the formation and deletion of Subsystems.

3.3.1.1 Production of System Element Templates

The initial stage in the construction of software in MASCOT is the production of

SETs. This requires the MASCOT Machine user to:

-3-7-

... ,*I • - , ,; I • I I| II • 1 II I Il l I m l II

write a specification that expresses the internal details of the SET as
source text in a programming language;

ENROL the SET in the Construction Data Base, making it known to tne MASC3T
Machine for use in later stages of construction.

The act of enrolling a SET may involve compilation and link loading of the
source text. After enrolment the following information is available in th
Construction Data Base:

the name of the SET;

its connectivity constraints;

the places from which constituent parts can be retrieved.

A SET, once enrolled, remains known to the MASCOT Machine and is available for
use until it is cancelled when knowledge of it is destroyed by removal from the

Construction Data Base. Cancellation of a SET is only allowed if it is not

required by another SET. Cancellation is effected by the CANCEL facility.

Ada provides a facility to describe templates, called generics in Ada

terminology, of program units. An Ada implementation provides a kind of

construction data base, the project library, while an Ada compiler ensures the

correct connectivity of program units. MASCOT-like information is stored in th
project library. The enrolment of a SET is achieved in an Ada environment by

compiling it. Cancellation can only be achieved by using a library user pzckag
working on the project library. An entry in an Ada project library is replacea,

if a new entry with the same specification characteristics and the same name is

compiled.

There are three kinds of SETs in MASCOT: Channels, Pools, and Roots. But only

two kinds of SETs are considered by the MASCOT Machine, because Channels and

Pools are constructionally equivalent.

3.3.1.1.1 IDA Templates

The information in a SET for an IDA comprises:

its name and class (Channel or Pool);

a specification of its data area and the MASCOT control queues which it

requires;

the access mechanisms which define the operations allowed on the data area.

Provisions must be made for initialising IDAs.

The IDA structure can be achieved by using Ada packages. Moreover, this allows

easy initialisation. To provide the possibility of implementing different IDAs

using the same data types the definition of an IDA should be distributed over

two packages:

a package which specifies the abstract data type used by several IDAs;

a generic package which defines the data area, the particular SET works on,

-3-B-

and implements the access mechanisms of the particular SET.

3.3.1.1.2 Root Templates

The implementation of a Root is largely concerned with the expression of the
required algorithm. Its connectivity constraints must be formally defined in
terms of the number and type of the IDAs to which it must be connected when it
is used to form an Activity.

Therefore the information in a SET for a Root comprises:

its name, and the fact that it is a Root template;

ipecification of each formal IDA parameter (These are name and class of
the particular IDA with naming the access mechanisms needed to access this
IDA);

a specification of any constant value parameters;

the body of the Root (This is the processing algorithm expressed as a
program sequence. It includes calls on the access mechanisms specified in
the formal IDA parameters).

A Root may be a substantial progam with an own internal structure. Tha MASCOT
Machine only constrains the interfaces needed.

In Ada a Root template can be expressed as a subprogram. The data types of the
connected iDAs must be made visible to it. The access procedures to the iDAs
can be formal in terms of generic parameters. Tne implementation of the IDAs
and the IDA access procedures not needed are hidden from the Root template.

3.3.1.2 Creation and Destruction of System Elements

Users of a MASCOT 1achine must be able to create SEs necessary for the
Subsystems they wish to construct. The CREATE facility is handed the identity
of an enrolled SET and the name of the SE required. CREATE brings a Root or IDA
into existence using the SET, and may apply any IDA presets or initi3lisation
procedures at the same time. Information on the newly created SE is held in the
Construction Data Base for use in later stages of construction.

Using Ada, CREATE can be achieved by instantiating the generic template of a
SET. The SE is then held as a compilation unit in the project library. Becaus3
of Ada's visibility and compilation rules and because of Ada's tasking concept
the creation of IDAs private to Subsystems and the creation of Activities are to
be performed together with the formation of Subsystems.

A user may be allowed to destroy SEs which have previously been created. This
is effected by the MASCOT facility DESTROY. The destruction, however, is
conditional upon the named SEs not being in use in a formed Subsystem. In an
Ada environment this facility can only be provided, if a user package working on
the project library exists or if a SE is recompiled.

-3-9-

3.3.1.3 Forming and Deleting Subsystems

The final stage in the construction of software in MASCOT is the connecting of
SEa which have been previously created to build executable software whose
modularity is consistent with the ACP diagram. This is the FORM process and the
network fragment formed in a single operation is called a Subsystem.

The information required by the FORM facility is:

the name of the Subsystem to be formed;

a list of Activities, each Activity is supplied with the following
information:

the name of a previously created Root which is not already in use;

a list of previously created IDAs which satisfy the formal parameter
requirements of the respective Root template;

its actual value parameters.

A Subsystem is in the "idle" state after formation.

When a Subsystem is started, all its Activities are activated in parallel. in
an Ada program this effect can be achieved by calling a procedure which has
local tasks. After entering the called procedure all its local tasks are
activated in parallel. Therefore in an Ada environment a Subsystem is a
procedure with Activities as local tasks. A Subsystem can be tested
independently, if a test harness is provided which calls the procedure denoting
the Subsystem and produces or consumes data sent through the Subsystem-IDAs
needed by the Subsystem.

IDAs private to a Subsystem need not be visible outside the Subsystem. They arc
local packages of the procedure denoting the Subsystem. Therefore the formation
process must distinguish between private IDAs and Subsystem-IDAs. Aztivities
and private IDAs are created together with the formation of their Subsystem.

An important aspect of the Subsystem formation is the ability to check that
actual connections defined by each Activity do not violate the connectivity
constraints in the appropriate SETs. This is achieved easily in an Ada

environment because the compiler will perform all these checks.

Users may be allowed to delete Subsystems, which they have previously formed,
with the MASCOT facility DELETE. Only Subsystems in the "idle" state can be

deleted. Deletion can only be achieved by recompiling or by a library user
package working on the project library in an Ada environment. The constituent
SEs are not destroyed in either environment.

3.3.1.4 Command Interpreter

A MASCOT Machine may make the construction operations available either through a
procedural interface or through the Command Interpreter in an evolutionary

system.

An Ada Programming Support Environment (APSE) using the MASCOT philosophy must

-3 - 10 -

provide similar tools. A Command Interpreter, however, is part of an APSE. It
is to be amended to meet the requirements of MASCOT.

3.3.2 Controlling

A MASCOT Machine provides a set of facilities for controlling the execution of a
Subsystem. These facilities start, halt, resume, and terminate execution. They
are mandatory in evolutionary implementations but optional in frozen systems.

These functions are not applicable to an Ada environment, because tasks are

started implicitly at their point of declaration and cannot be halted or resumed

explicitly. Ada, however, provides an abort statement with which a task and all

its dependent tasks can be abandoned. A restart of an aborted task is not

possible.

3.3.3 Scheduling

A MASCOT Machine provides primitive operations for timing, synchronisation, and
control of execution of Activities. The selection of an Activity for execution
is controlled by a Scheduler.

3.3.3.1 Scheduler

An Activity is entered from the Scheduler and the period from control passing to
the Activity until control passes back to the Scheduler is known as a Slice.
Scheduling is defined in MASCOT in a manner which enables a set of algorithns to
be designed for each implementation. These algorithms determine priority
adjustments, Activity selection, Slice duration, and end of Slice action.

3.3.3.1.1 Adjustments to the Priority of an Activity

An Activity has a current priority which may influence Activity selection and
Slice termination. The initial value of the priority is determined before the
Activity commences its execution. It may be modified during processing.

Ada only allows static priorities of tasks using a special pra~ma. Thus,
priorities cannot be altered during program execution.

3.3.3.1.2 The Selection of an Activity at the Start of a Slice

The scheduling algorithm selects an Activity which is ready to run according to

the priority mechanisms.

A similar strategy is chosen by the scheduler provided by an Ada implementation.

-3-

The Ada Scheduler, however, also considers possible rendezvous.

3.3.3.1.3 The Duration of a Slice

A Slice may be ended by the Activity itself or as a result of actions following
an event external to the Activity. A MASCOT Machine may adopt either
co-oper3tive scheduling (Slices are only ended by Activities themselves) or
pre-emptive scheduling.

If an Ada program is not affected by interrupts, co-operative scheduling is
performed. If interrupts are handled within an Ada program, they are served
with the highest priority, and therefore pre-emptive scheduling is performed.

3.3.3.1.4 End of Slice Action

The scheduling algorithm determines, for each type of Slice termination, how the
Scheduler treats Activities whose Slice has ended, since the reason for Slice
termination may influence the Activity's entitlement to selection for a further
Slice.

In Ada the reason for a Slice termination has no influence on the selection of
the next action. The selection process only depends on the priorities of
possible rendezvous and of tasks ready to run.

While the MASCOT definition does not define in detail any of these algorithms,
an implementation of the MASCOT Machine precisely describes the algoritnms
chosen. Ada, however, prescribes the scheduling algorithms in the presence of
priorities.

Except when caused directly by an interrupt, Slice termination results from an
Activity calling one of the MASCOT primitive operations to provide:

Synchronisation;

Timing;

Activity Suspension and Termination.

Slice terminations in an Ada environment result from:

Entry Calls;

Execution of Accept Statements;

Execution of Delay Statements;

Termination of Tasks;

Interrupts.

- 3 - 12 -

3.3.3.2 Synchronisation

Sychronisation in MASCOT covers mutual exclusion of competing Activities, using
the primitives JOIN and LEAVE, and cross-stimulation of co-operating Activities,
using the primitives WAIT ad STIM. Explicit synchronisation is achieved by the
four primitive operations which operate on special objects called Control
Queues. Since synchronisation takes place only in respect of access to IDAs,
each Control Queue is conceptually part of an IDA's data structure.
Synchronisation primitive operations are encapsulated within an access
mechanism. The Control Queue is defined as an object on which the primitive
operations have effects (refer [1]), and which may be given a priority
specification to influence the scheduling algorithms.

Ada does not provide such primitive operations. Mutual exclusion is ensured if
two tasks are in a rendezvous. Cross-stimulation is achieved by entry calls and
accept statements. A Control Queue is not defined explicitly but it is
implicitly built by an entry declaration. It is, however, possible to formulate
the semantics of the MASCOT primitives in terms of Add.

3.3..3 Timing

MASCOT provides for two timing primitives, DELAY and TIT1END4J. An Activity may
stop processing for at least a specified period of Lime by issuing the DELAY
primitive which takes a singlc parameter expressing the delay pericJ. An Ada
task achieves the same effect by executing a delay statement.

The primitive, TLMENOW, returns the current absolute valae of tine in the same
units as used for the delay parameter. An Ada implementation provides the
function CLOCK in a predefined package CALENDAR which returns tne current value
of time.

3.3.3.4 Activity Suspension and Termination

The primitive, SUSPEND, is used by an Activity to return control to tne
Scheduler in order to achieve co-operative scheduling. The Activity stops
processing until it is next scheduled. Ada does not provide such a primitive.
The same effect, however, is achieved by executing a Jelay statement wllos2
duration is zero.

The primitive, ENDROOT, is called immediately after the last executable
statement of a Root so that the Activity defined by the Root can end correctly
if and when execution of its code is complete. An Ada task does not need such a
primitive. It terminates after execution of its last executable statement if
all its dependent tasks have terminated.

3.3.4 Device Handling

A system interacts with the external world through a set of peripheral devices
attached to the processors on which it is running. The primary functions of

-3 - 13 -

these devices is to act as sources or sinks of data, providing input and
receiving output. Normally an application system itself chooses when
input-output operations are to be performed. A realtime application system,
however, is driven by an external process and cannot in every case determine
itself when input-output operations must be performed. Therefore the system
must allow to be interrupted by external events and must serve those interrupts
immediately.

The MASCOT Machine provides facilities to enable devices to be handled in tne
manner appropriate to the application. In E 1] a model is described on whicn
the facilities are based, with such modifications as the special features of

particular implementations warrant.

Ada provides two facilities to communicate with the external world:

an Input-Output Interface;

th3 connection of task entries to interrupts.

Ada applications can easily adopt the MASCOT model of device handling.

3.3.5 Monitoring

MASCOT defines a mechanism for monitoring certain events in strict runtime
order. The definition (refer [1]) specifies that events to be monitored may
be selected, and how the monitoring is to be performed. A monitoring mechanis i
is not part of every kind of 1MASCOT Machine.

Ada does not define a mechanism for monitoring. However, the MASCOT monito-ing
mechanism can be adopted by an Ada environment in two different ways:

(a) during the construction of an application system monitoring facilit _s

may be implanted in the program code, and an interface provided for tnc

user according to the MASCOT model;

(b) an Ada Debug System may be constructed according to the MASCOT model.

The second alternative seems to be a better solution, beciuse monitoring should

only be used in the development phase of an application system.

3.3.6 Interacting

A Command Interpreter provides an operator with access to some of the MASCYT
facilities. It is always provided in implementations of an Evolutionary MASCOT
Machine but is optional in implementations of a Frozen Machine. The facilities
accessible through the Command Interpreter may be those for construction,
program control, and monitoring.

A Command Interpreter is also part of an Ada Programming Support Environment.
There is no reason why the Command Interpreter of an APSE should not provide
facilities similar to those of the Command Interpreter of a MASCOT Machine.

-3 - 14 -

3.4 Activities

In a MASCOT orientated application system Activities are independent processes
(tasks) which are interconnected via Inter-Communication Data Areas (IDAs).
Activities are created from Root templates (refer 3.3.1.1.2).

A Root template does not know the structure of the data passed to or from an IDA
using the particular access mechanism. However, to be able to write the body of
a Root template a programmer must assume the type of the formal parameters of
the particular access procedure.

A Root template written in terms of Ada can be a generic procedure. The value
parameters then become the formal parameters of the procedure. The access
procedures to the IDAs used are given as generic formal parameters. To be able
to compile a Root template, i.e. to make it known to the "Construction Data
ease", the visible data types of the IDAs needed must be imported using a
context clause. Otherwise it will not compile without errors.

In terms of A1a a Root template comprises the following information:

its name;

a specification of the data types of those IDAs it will Jse, given in a
context clause;

a specification of access procedures, given as generic formal parameters;

a specification of constant value parameters, given as formal procedure
parameters of mode IN;

its body.

Many Activities can be createJ from a Root template. The creation process is
achieved by instantiating the generic procedure, which is the Root template, by
supplying generic actual parameters. The generic actual parameters 3re the
access procedures of the IDAs used by the particular Activity.

In terms of Ada, Activities are tasks. In a first approach such 3 task only
contains the call of the instantiated "Root procadure". Tasks are neither
compilation units nor library units and must therefore be enzapsul3t-j in
subprograms or packages. This poses further constraints on forming an
application system in Ada using MASCOT.

3.5 Inter-Communication Data Areas

MASCOT provides two kinds of Inter-Communication Data Areas (IDAs): Channels and
Pools. The MASCOT Machine treats them as constructionally equivalent (refer
3.3.1.1.1).

Because of the constraints brought in by the formulation of Root templates in an
Ada environment, an IDA must be split into two units: a definition of the data
types it uses and a definition of its implementation, which makes the access
mechanisms visible to Activities but hides the data area the IDA works on and
the implementation of the access mechanisms. Control queues are not needed ind
several IDA templates can use the same definition of data types.

-3 - 15 -

The data types of an IDA template are encapsulated in an Ada package. This
approach allows the implementation of an abstract data type with clearly defined
operations allowed on objects of this data type.

An IDA template itself is given as a generic package with no generic formal
parameters. The specification of that package only consists of the access
procedures visible to Roots. The data area an IDA is working on need not be
visible to a Root which uses the IDA.

Many IDAs can be created from one IDA template by instantiating it. A
disadvantage of the Ada approach is that any presets and initialisations of an
IDA's data area must be part of the IDA template because of Ada rules.

Because Channels serve as unidirectional interfaces and only store temporarily
the data items passed through them without processing the items, the data type
of a Channel can be a generic formal parameter of a Channel template. Several
different Channels can be created, which handle different data types, from a
single template definition. An Ada environment should therefore distinguish
between Channels and Pools.

The information in a Channel template comprises:

its name;

a specification of the data type it handles, given as a generic formal
parameter;

the access procedures which define the operations alloweJ on its dati area,
given in its visible part.

The information of a Pool template comprises:

its name;

a specification of the data types it handles, given as an imported packagc
in its context clause;

the access procedures, which define the operations allowed on its d3ta

area, given in its visible part.

Both templates hide the structure of their data areas, because this is not of
any importance to the particular Activities, and the presets and initialisation
procedures of their data areas.

3.6 Subsystems

Subsystems are formed out of Roots and IDAs (refer 3.3.1.3).

MASCOT knows two kinds of IDAs, if Subsystems are involved: Subsystem-IDAs and
IDAs private to Subsystems. The private IDAs need not be visible outside of the
particular Subsystem. Therefore the creation of private IDAs is performed
during the formation of Subsystems. Subsystem-IDAs must be created prior to tne
forming process.

Activities are Ad3 tasks (which are not compilation units). Therefore the
creation of Activities and the formation of Subprograms are performed together.

3 16 -

Activities are created directly from Root templates and not from Roots is
required by MASCOT, because private IDAs, needed for the forming of Roots, ar
not visible outside Subsystems.

The forming process must be supplied with the following informations:

the name of the Subsystem;

the names of the packages which define the data types of the IDAs involved;

the names of all already created Subsystem-!DAs;

the names of all IDA templates to form its private ID4s;

the names of all Root templates to create the Activities which the
Subsystem consists of;

each Activity to be created must bz supplied with the follo4ing
information:

its name;

its actual V31UC parameters;

the names of the access pro:eJures of the IDAs which it 4-.1 use.

Root templates and IDA templates can be used more than once as can
Subsystem-IDAs.

Tne formed Subsystem is a procedure in terms of Ad2. Subsystems c i also be
supplied with value pari.ncters.

3.7 Frozen and Evolutionary Systems

MASC3T knows two different implementations of the IASCOT Machine: a Frozen
Machine and an Evolutionary Machine.

3.7.1 Frozen Systems

The implementation of a Frozen MASCOT Aachine means that the application system
is fully constructed before a start command is issued. No changes of the syste
are allowed during runtime. This is the normal non-AASCCT way of constructing
an application system.

Using the MASCOT philosophy in combination with Ada the resulting application
system can be a main program in Ada terminology. The main program must ensurc
that all Activities execute in parallel at a given time. Therefore it cannot
call the procedures denoting Subsystems consecutively, because in this case
every Subsystem would be forced to complete its execution before another
Subsystem could start its execution. In the contrary the main program must
ensure that all Subsystems execute in parallel. This means that the c.lls of
the procedures denoting Subsystems must be encapsulated in tasks local to the
main program.

-3 - 17 -

Therefore a final construction stage is added to the construction stages defined
by MASCOT: the formation of a main program from already formed Subsystems.

3.7.2 Evolutionary Systems

An implementation of a MASCOT Machine which allows the set of Subsystems
constituting an application system to be changed during the execution of the
application system by the addition and/or deletion of Subsystems is said to be
Evolutionary. Such a MASCOT Machine is needed wherever an application system
must not be interrupted while exchanging erroneous parts or adding new features.
Consider, for example, an air traffic system. An Evolutionary System is also
very useful during the development of any application system (Frozen or
Evolutionary).

In an Evolutionary System Subsystems can be looked at as independent programs
which communicate via Subsystem-IDAs and execute under control of a special
runtime system which implements the related MASCOT features. The runtime system
contains a dynamic linker/loader to be able to add and remove the executable
code of Subsystems and link the Subsystems to the respective Subsystem-IDAs
online. If needed, also the executable code of Subsystem-IDAs can be added or
removed.

In Ada, Subsystems are procedures to which library packages implementing
.,ubsystem-IDAs are visible. Ada procedures can be main programs in the usual
sense. The means by which the execution of main programs is started is not
defined by the Ada language. Therefore it is possible to implement an executive
which operates like an Evolutionary MASCOT Machine and which treats Ada main
programs as Subsystems. However, care must be taken concerning Subsystem-IDAs.
Normally a Subsystem-IDA is used by more than one Subsystem. Therefore various
Ada main programs (Subsystems) mention the same Sybsystem-IDA in their context
clauses. Thus, according to the language rules, the code of a Subsystem is
elaborated as many times as it is mentioned in the context clause of a main
program and possibly loaded more than once. The code of a Subsystem-IDA,
however, should only exist once in the Evolutionary System. Therefore a special
linker/loader is needed to ensure that a Subsystem is linked to all respective
main programs (Subsystems) and only loaded and elaborated once.

Another solution, which treats the Subsystem-IDAs as main programs too, is not
feasible in Ada, because program units denoting Subsystem-IDAs must be visible
to the program units denoting Subsystems during compilation of the Subsystems to
resolve and check the respective connectivity requirements.

An Ada programming support environment should facilitate version control of
program units. Version control should include the ability of having different
versions of the body of a program unit but of still using only one specification
of the program unit. An Ada compiler only uses the specification of program
units for checking connectivity constraints and establishing proper connections
between program units (not always applicable for generic units and inline
subprograms). This means that after the recompilation of a body its previously
compiled version is not always to be made obsolete. A MASCOT Machine could
utilize this property, although it would not offer the full range of facilities
of an Evolutionary Machine, but it woul6 allow to exchange the codes of
Subsystems of a fixed set of Subsystems online. The solution needs

an Ada runtime system which allows to start, halt, resume, and terminate

tasks interactively according to the respective MASCOT rules leaving the

- 3 - 18 -

overall Ada program in a consistent and correct state (an Ada debug system

should offer such facilities anyway),

and

a dynamic linker/loader which allows to exchange bodies of program units
online.

An application system is then formed like a Frozen System. The author feels

that this approach is more appropriate concerning the Ada philosophy.

-3- 19 -

4. A Solution

The construction of Ada programs according to the MASCOT philosophy is possible.
Some restrictions, however, have to be obeyed by programmers. The construction
process is performed interactively, guided by the system. The system provides a
set of formats from which System Element Templates and System Elements can be
derived.

The proposed solution only deals with Frozen Systems and does not contain a
monitoring system or a command interpreter. The reqiirements for the monitoring
system and for the command interpreter can easily be derived from [1 1.
However, the proposed construction method can also be used for the construction
of Evolutionary Systems, the formation of the Subsystems being the last stage
then.

Eight construction stages are identified:

(1) Creation of the ACP Diagram;

(2) Definition of the types of those data objects, which will be h3ndled by
Inter-Communication Data Areas (IDAs), encapsulated in Ada packages;

(3) Definition of the interfaces provided by the various IDA templates as
specifications of generic Ada packages;

(4) Definition of the Root templates as specifications of generic Ada

procedures;

(5) Implementation of the bodies of the Root and IDA templates;

(6) Identification of Subsystem-IDAs and their instantiation;

(7) Formation of the Subsystems;

(8) Formation of the main program MASC3T_System.

If Subsystems are not considered, the stages (6) to (3) are performed as
follows:

(6) Instantion of the IDAs;

(7) Formation of the main program MASCOT-System.

IDAs and Roots can be tested in test harnesses after implemcntation of the
respective bodies.

4.1 The Construction Data Base

The definition of an ACP Diagram is the first stage of the construction of an
application system using the MASCOT philosophy. The ACP Diagram defines the set
of System Elements and the connections between them. However, an ACP Diagram
only serves as an interface between a Construction Data Base and the development
engineer.

The development engineer defines the ACP Diagram on a sheet of paper. An

-4-1-

interactive tool is used to provide this knowledge to the MASCOT development
system. The tool constructs an internal graph of the ACP Diagram which is part
of the Construction Data Base. The dialogue should be system driven to ensure
the correctness and completeness of th: !esign. Most parts of the construction
process are automatic generation processes with only a few manual interactions.
The final checks for correctness and completeness are performed by an Ada
compiler.

4.1.1 Data Structure of the MASCOT Development System

Every possible object in a MASCOT development system has to be represented by an
entry in the Construction Data Base. The following subchapters describe the
different types of entries in terms of Ada.

4.1.1.1 Basic Types

Class types are used for parameterising several System Elements. Systen
Elements and System Element Templates have names, called name string, and tbear
optional source codes are stored in files of name file name.

TYPE systemclasstype IS (withsubsystems , without-subsystems);
TYPE IDAclasstype IS (channel , pool);
SUBTYPE name string IS string;
SUBTYPE file name IS string;

4.1.1.2 Type Summary

4.1.1.2.1 Types of Entries

There must be a distinct type for every possible entry in the Construction Data
Base. Lists of entries should be formable, too.

TYPE subsystem;
TYPE access subsystem IS ACCESS subsystem;
TYPE subsystemlistelement;
TYPE access_subsystem-listelement IS ACCESS subsystemlist element;

TYPE activity;
TYPE accessactivity IS ACCESS activity;
TYPE activity_listelement;
TYPE accessactivity_listelement IS ACCESS activitylistelement;

-4 -2-

TYPE IDA(class : IDA class type);
TYPE access IDA IS ACCESS IDA;
TYPE IDA list element;
TYPE accessIDA list element IS ACCESS IDA list element;

TYPE root-template;
TYPE accessroot template IS ACCESS root templ3te;
TYPE root template list element;
TYPE access root_template list lement

IS ACCESS roottemplatelist-_eiement;

TYPE IDAtemplate(class : IDA class type);
TYPE aczessIDA_template IS ACCESS IDA-template;
TYPE IDA template list element;
TYPE access IDA_template list element

IS ACCESS IDA_templatelistelement;

TYPE dat3_type;
TYPE access data_type IS ACCESS data_type;
TYPE data type list element;
TYPE accessdata-type list element IS ACCESS data_type_listelement;

4.1.1.2.2 Parameter Types

Some of the entries are supplied with lists of parameters and of access
procedures.

TYPE parameter;
TYPE access parameter IS ACCESS parameter;
TYPE pirameter-list element;
TYPE accessparameterlist element IS ACCESS par3meter-list element;

TYPE access.procedure;
TYPE access_accessprocedure IS ACCESS accessprocedure;
TYPE access procedurelist element;
TYPE access access_procedure_listelement

IS ACCESS accessprocedure list element;

4.1.1.3 List Types

An object of a list type points to the list element it represents and to the
next element in the list.

TYPE subsystem listelement IS
RECORD

element : access_subsystem;
next : access subsystemlistelement NULL;

END RECORD;

-4-3-

TYPE activity_listelement IS
RECORD

element : accessactivity;
next : accessactivity_listelement := NULL;

END RECORD;

TYPE IDA list element IS
RECORD

element accessIDA;
next accessIDA list element := NULL;

END RECORD;

TYPE roottemplatelistelement IS

RECORD
element : accessroottemplate;
next : accessroot_template list element;

END RECORD;

TYPE IDAtemplatelist element IS
RECORD

element : accessIDAtemplate;
next : accessIDAtemplate list element;

END RECORD;

TYPE data typelistelement IS
RECORD

element accessdatatype;
next accessdatatype_listelement NULL;

END RECORD;

TYPE parameterlistelement IS

RECORD
element access_parameter;
next accessparameter listelement NULL;

END RECORD;

TYPE access_procedurelistelement IS
RECORD

element accessaccess_procedure;
next accessaccess _procedure listelement NULL;

END RECORD;

4.1.1.4 The Types of the Parameters

An object of either type "access_procedure" or "parameter" only contains a
formal name and the associated actual name because the correct interrelations of
other attributes (e.g. types, parameters of the access procedures) are checked
by the Ada compiler. The automatic generation system only needs to know the
names to be able to generate the proper format of the particular source code
frame.

-4 -4-

II ~ l - III I " / I 1

TYPE access procedure IS
RECORD

formal name string;
actual name-string;

END RECORD;

TYPE parameter IS
RECORD

formal : namestring;
actual : name-string;

END RECORD;

4.1.1.5 The Type "MASCOT-System"

An object of type "MASCOTSystem" is the head of the description of the
application system to be built. The system may or may not contain Subsystems.
The usual name of the system should be "MASCOT_System".

If the system contains Subsystems, the object points to a list of Subsystems n
Subsystem-IDAs. These lists are needed to build the correct context clause.

If the system does not contain Subsystems, the object points to a list of
Activities and IDAs. The construction of the associated program is then
performed in a similar way as the construction of a Subsystem.

TYPE MASCOTSystem(class system classtype) IS
RECORD

name : name_.string "MASCOTSystem";
file : filename;
CASE class IS

WHEN with subsystems :>
subsystems accesssubsystem list element;
subsystemIDAs accessIDAlist_.element;

WHEN withoutsubsystems =>
activities : accessativitylist element;
IDAs : accessIDA list element;

END CASE;

END RECORD;

TYPE accessMASCOTSystem IS ACCESS MASCOTSystem;

4.1.1.6 The Type "subsystem"

An object of type "subsystem" is the head of the description of a Subsystem. It
contains a pointer to a list of

parameters describing the optional value parameters of the Subsystem
together with their actual values;

Activities;

ii - 4 -5-

IDAs private to it;

Subsystem-IDAs.

The information is needed to build the proper context clause and to instantiate
the Activities and the private IDAs.

TYPE subsystem IS
RECORD

name : name string;
file : file name;
parameters : accessparameter list element;

activities : access-activity_listelement;

IDAs : accessIDA-listelement;
subsystemIDAs : accessIDAlistelement;

END RECORD;

4.11.7 The Type "activity"

An object of type "activity" describes an Activity as it is created within a

Subsystem. The following attributes are needed:

a pointer to the object which describes the Root template;

a list of parameters which associate the formal valu2 parameters of tie 1
Root template with the actual ones;

a list of access procedures which associate the generic formal procedures
of the Root template with the actual access procedures;

a list of the accessed IDAs (This list is for information only).

TYPE activity IS
RECORD

name : namestring;
root accessroottemplate;
parame.ers : access_parameterlist_element;
access_procedures : access_access_procedurelistelement;
IDAs : accessIDAlist.element;

END RECORD;

4.1.1.8 The Type "IDA"

An object of type "IDA" describes an IDA, whether Subsystem-IDA or IDA privat2
to a Subsystem. The object must be constrained to denote whether it describes a
Channel or a Pool. The component "file name" contains an empty string, if the
IDA is an IDA private to a Subsystem. The following attributes are needed:

a pointer to the object which describes the IDA template;

a list of the objects which denote the packages defining the data types

-4 -6-

used by the IDA (normally this list only consists of one element);

if it is a Channel, a list of the generic actual parameters associated with

the generic formal parameters of the template.

TYPE IDA(class : IDA classtype) IS
RECORD

name : namestring;
file : filename;
template : accessIDAtemplate(class);
datatypes : access.data_type_list_element;
CASE class IS

WHEN pool => NULL;

WHEN channel :> parameters : access_p3rameter list element;

END CASE;
END RECORD;

4.1.1.9 Tne Type "roottemplate"

An object of type "root_template" describes a Root template. The following

attributes are needed:

the name of the file which cont3ins the source code of the spe:ification;

the name of the file which contains the source code of the body;

a list of its formal value parameters;

a list of generic formal procedures which denote the access procedures to

IDAs;

a list of the objects which denote the packages defining the lata types

used by possible IDAs.

TYPE roottemplate IS
RECORD

name : name string;
spec : file name;

bodie : filename;
parameters : access_parameter list-element;

access_procedures : access accessprocedure list element;
data types : access-datatypelist-element;

END RECORD;

4.1.1.10 The Type "IDA-template"

An object of type "IDAtemplate" describes an IDA template. The object mist be
constrained to denote whether it is a Channel or a Pool. The following
attributes are needed:

the name of the file which contains the source coda of the specification;

-'4-7 -
4 - 7

the name of the file which contains the source code of the body;

a list of the access procedures which are provided;

if it is a Channel, a list of its generic formal parameters;

if it is a Pool, a list of objects which denote the packages defining thc
data types used (normally this list consists of only one element).

TYPE IDAtemplate(class : IDAclass-type) IS
RECORD

name : namestring;
spec : filename;
bodie : file-name;
accessprocedures : accessaccessprocedurelistelement;
CASE class IS

WHEN pool => datatypes access datatypelistelement:
WHEN cnannel > parameters accessparameterlist element;

END CASE;
END RECORD;

4.1.1.11 The Type "datatype"

An object of type "data type" denotes the specification of types of those data
objects handled by IDAs. If an abstract data type is not considered, the
attribute "body" contains an empty string, because a body is not needed in this
case.

TYPE data type IS
RECORD

name : name-string;
spec : file name;

bodic : filename;
END RECORD;

4.1.2 The ACP Diagram

An ACP Diagram is a directed graph. Activities and IDAs 3re the nodes, access
procedures of the IDAs are the arcs. The arcs are directed, because some access
procedures deliver data to IDAs, some deliver data from IDAs. Pools can havo
bidirectional access meenanisms, but it can be assumed that the main purpose of
these access mechanisms is unidirectional. Consider an access to a pool, where
the questioner provides a key to receive proper data, or vice versa.

The graph of an ACP Diagram describes the whole MASCOTSystem. Subsystems are
subgraphs. Subsystem-IDAs are owned by more than one subgraph.

The first step towards the MASCOTSystem is the construction of a graph which
denotes the ACP Diagram of the MASCOT System. The node types are given by type
"node class type", the arc types by type "arc_classtype". An arc always starts
at a node of type "act" (activity). "From" means that the Activity receives

-4-8-

data from the connected IDA.

TYPE node classtype IS (act , channel , pool);
TYPE arc class_type IS (from , to);

TYPE node(class : node_classtype);
TYPE access node IS ACCESS node;
TYPE node_listelement;
TYPE access_nodelistelement IS ACCESS node listelement;

TYPE arc;
TYPE access arc IS ACCESS arc;
TYPE arc list-element;
TYPE access arclist element IS ACCESS arclistelement;

Th= list of nodes forms the ACP Diagram. Every node is associated with a list
of arcs. The implementation of the graph does not contain any information aboit
Sabsystens.

4.1.2.1 Thia Type "node"

An object of typc "noJe" contains the following information:

its name which is tne name of the future System Element;

a list of those ircs which start or end at the node;

its class.

TYPE node IS
RECORD

name : narme string;
arcs : access arclistelement;
class node_classtype;

END RECORD;

TYPE node list element IS
RECORD--

element access-node;
next :access node list element NULL;

END RECORD;

4.1.2.2 The Type "arc"

An object of type "arc" contains the following information:

its name which is the name of the future access procedure;

its direction (this information is used to create a picture of the AZP
Diagram automatically);

-4-9-

its source which is always an Activity;

its sink which is always an IDA.

TYPE arc IS
RECORD

name : namestring;
direction : arcclasstype;
source : access node;
sink : access node;

END RECORD;

TYPE arc list element IS
RECORD

element : accessarc;
next access arc list element;

END RECORD;

4.1.2.3 The Construction Procedure for the ACP Diagram

The ACP Diagram is constructed with the procedure "construct ACP Diagram". Tnc
ACP Diagram is delivered as a list of nodes (Activities and-IDas). Tho first
phase of the construction process is the input of the various nodes. Thr second
phase is the input of the arcs which are the access procedures of IDAs anj ar-
called by the Activities. Every node has a list of arcs. Therefore every 6-:
is stored twice: at the node that is an kctivity and at the node that is an .A.

The procedure has the following interface:

WITH text io, construction databasetypes;
USE text io, construction data base typos;

PROCEDURE constructACP Diagram(head : OUT access nod-elist element);

4.1.3 Creation of Data Types

Every IDA is connected with a package which defines the types of thc data
objects needed by the access procedures of the IDA. Various IDAs can share tha
same data type definitions. The Construction Data Base contains a list of thos2
packages. The list is constructed with the procedure "form data_types".

The interface of the procedure is:

WITH textio, constructiondatabasetypes;
USE text io, construction_data_basetypes;

PROCEDURE formdatatypes
(data types-list : OUT access datatype_list element);

- 4 - 10 -

4.1.4 Creation of IDA Templates

A list of all IDA templates is created with the procodure "form._IDAtemplates".

Every template is supplied with a list of its access procedures. When inputting
the access procedure names, care must be taken to ensure that they are the same
as the names of the access procedures used in the ACP Diagram. Such a check
cannot be performed by this procedure, because one template can be used to
create several IDAs and because this procedure has no access to the ACP Diagram.

In the case of a Pool template the list object is supplied with the proper
element wnich describes the data types used by its access procedures. In the
case of a Channel template the list object is supplied with formal data types
(and operations on them).

The interface of the procedure is:

WITH text io, construction data base types;
USE text io, construction databasetypes;

PROCEDURE formIDA templates
(datatypes list : access datatypelistelemnnt;
IDA_template_list OUT accessIDAtemplate list element);

4.1.5 Cr3ation of Root Templates

A list of Root templates is created with the procedure "form root templates".
Every template is supplied dith a list of

the packages which define the data types used by the various -ccess

procedures to IDAs;

formal access procedures to IDAs;

formal value parameters of the Root template.

The interface of the procedure is:

WITH text io, construction data b3se_types;
USE textio, construction database_types;

PROCEDURE form roottemplates
(datatypes_list : accessdatatype_listelement;
root template-list : OUT accessroottemplatelist element);

4.1.6 Forming of Subsystems

Subsystems are formed with the procedure "form Subsystems". If no Subsystems

are considered, the procedure delivers an empty list of Subsystems.

If Subsystems are considered, the forming process consists of four phases:

-4 -11-

LkI

(1) Construction of the Subsystems

A Subsystem is constructed by naming the Activities which it consists
of. A chack is made to ensure that an Activity is only used once. The

IDAs which belong to a Subsystem can then be derived from the ACP

Diagram automatically. Every Subsystem is supplied with a list of
formal value parameters.

(2) Forming of the Activities

Activities are created from Root templates by supplying the template
with the actual value parameters and with the actual access procedures
to IDAs. A check is made to ensure that the actual access procedures

are equivalent to those mentioned in the ACP Diagram.

(3) Forming of the Subsystem-IDAs and the IDAs private to Subsystems

IDAs are created from IDA templates. The system determines whether an
IDA is private to a Subsystem or whether it is a Subsystem-IDA. If tne
template is a Channel template, the IDA is supplied with the name of
the proper data type definition and with the actual data types. A

check is made to ensure that the class of the IDA given in the ACP
Diagram and the class of the IDA template match.

(4) Supplying every Activity with a list of those IDAs connected to it

Every Activity is supplied with a list of those IDAs to which it has

access.

The interface of the procedure is:

WITH textio, constructiondatabasetypes;
USE text io, constructiondata basetypes;

PROCEDURE form Subsystems
(datatypeslist : access data type_list element;
IDA template list : accessIDAtemplate list element;
roottemplatelist access roottemplatelistelement;

ACP Diagram : access node list element;
subsystem list : OUT acoess _ubsystemlistelement);

4.1.7 Forming of the Main Program

The main program is formed with the procedure "formMASCOT_System". The
procedure consists of two independent parts.

If Subsystems are considered (the list of Subsystems is not empty), every
Subsystem is supplied with its actual value parameters and a list of all
Subsystem-IDAs is constructed.

If Subsystems are not considered, Activities and IDAs are formed according to
the ACP Diagram. The forming process is similar to that performed during

forming of Subsystems.

The interface of the procedure is:

- 4 - 12 -

-

WITH- te t , c ns..ton da a.a-yp sV;

WITH textio, constructiondata base types;
USE text_io, oonstruction_.data base-types;

PROCEDURE formMASCOTSystem
(datatypes list access_data-type_list element;
IDA_templatelist accessIDA_templatelist element;
roottemplatelist accessroottemplatelisTelement;
subsystemlist IN OUT access subsystemlistelement;
ACPDiagram access node list element;
MASCOT Systemobject OUT accessMASCOTSystem);

4.1.8 The Main Program of the Construction Process

The main program of the construction process of the Construction Data Base calls
successively the several subprograms which implement the various construction
stages. It only implements the first generation of an application program using
the MASCOT philosophy. The programs with which this generation can be cnanged
are not described in this paper.

The subprograms "generate ... frame" then build the frames of all System
Elements and System Element Templates. The implementations of the subprograms
are not describei in this report, because machine dependent file accesses have
to be performed. However, an implementation can easily be derived from the
frames given in the following subchapters.

The Construction Data Base is held in main memory during the construction
process. The subprograms "saveMASCOT System" and "saveACPDiagram" store the
whole Data Base on mass storage to allow further work on the Data Base. Tnese
subprograms are heavily machine dependent and their implementation is thereforc
not given in this report.

- 4 - 13 -

WITH construction databasetypes;
WITH constructACP _Diagram;
WITH form MAlOT. System;

WITH form-ubsystems;
WITH form__datatypes;
WITH formIDAtemplates;
WITH formroot templates;WITH generate_datatypesframe, generateroot_templatesframe,

generateIDA-templatesframe, generate-subsystemframe,
generate_main_program__frame;

WITH saveMASCOTSystem;
WITH saveACP_Diagram;
USE construction-databasetypes;

PROCEDURE construct data base
IS

ACP Diagram access node list element;
MASCOTSystemobject accessMASCOTSystem;
datatypeslist access-data_type_list element;
IDAtemplatelist accessIDAtemplatelistelement;
roottemplatelist access root template list element;
subsystemlist accesssubsystemlist element;

BEGIN
constructACPDiagram(ACP_Diagram);

formdatatypes(datatypes list);
generatedata_typesframe(datatypes list);

form_IDAtemplates(dat3_types__list , IDA templatelist);
generate_IDAtemplates_frame(IDAtemplate_list);

formroottemplates(data_types list , roottemplate list);
generateroottemplates_frame(root templatelist);

form Subsystems(data types list
IDA_template_list
root templatelist
ACP Diagram
subsystem list);

generatesubsystemframe(s'bsystem list);

formMASCOTSystem(data_typeslist
IDAtemplate-list
roottemplate-list
subsystem list ,
ACP Diagram ,
MASCOTSystemobject);

generate-main_programframe(MASCOT_System_object);

save MASCOTSystem(MASCOTSystem_object , datatypes list
IDAtemplatelist , root_template list);

saveACPDiagram(ACPDiagram);
END constructdatabase;

- 4 - 14 -

4 .2 Data Types of the IDAs

Activities communicate with each other via IDAs. An IDA provides a procedural
interface for that purpose. Because IDAs store data passed through them either
permanently (in the case of Pools) or temporarily (in the case of Cnannels) in a
private data area, the procedural interface of an IDA is a set of access
procedures to this data area.

Activities are created from Root templates. A Root template need not know with
which IDA a derived Activity will be connected. The Root template, however,
must specify access procedures to a set of possible IDAs in a formal manner
because of Ada rules. The types of the data objects passed with these formal
procedures must also be known by the Root template. An Activity derived from a
Root template can then be only connected with such IDAs whose access procedures
can be matched with the formal procedures of the Root template.

IDAs are created from IDA templates. IDA templates already provide the
procedural interface of the future IDA. The template also implements the data
arza of the future IDA. Therefore the types of the data objects passed :Irougn

the future IDA must be already known by the IDA Lemplate.

PACKAGE (name of datatypes> IS

-- declaration of the data types (or abstract data type)

-- used by IDAs

END <name of datatypes>;

Figure 4.2-1: Frame of a Package containing data types
for IDAs

The definition of the p3rticula, data types must therefore be visible to :DA
template as well as to Root zemplate. To ease the construction of thE
application system the definition of the data types of a single IDA should
therefore be subsumed under a single package specification in terms of Ada. An
IDA template then names exactly one definition of data types in its context
clause, a Root template names as many as there are connections with particuir
IDAs for a derivable Activity. It may be that the types of objects pass2l
through different IDAs are equivalent. Therefore different IDA templates can
share the same definition of data types.

An Ada package can define an abstract data type which consists of any number of
type definitions and a set of allowed operations on the types. Such abstract
data types can easily be handled if the MASCOT philosophy is used. In this case
a package body is needed additionally to the package which defines the data
types of an IDA.

-4 - 15 -

-............................

4.3 The Form of IDA Templates

Ada provides the facility to specify templates of program units with its generic

concept. Procedural interfaces, as needed by an IDA template, can only be

formed by using packages. Therefore an IDA template will be a generic package
in an Ada environment.

4.3.1 Channel Template

In Ada it is possible to restrict the use of objects of particular types. Such
types are called (limited) private types and can only be declared in package
specifications. The only operations available for objects of private types

outside the declaring package are assignment, test for equality, and operations
which are expressed as procedures/functions and which are declared in the same
package specification. The assignment operation and the test for equality are
not available for objects of limited private types. Generic formal types c n be

declared as private. Only assignment, test for equality, and associated generic
formal subprograms are available for objects of those formal types within the
generic unit.

GENER:C

TYPE channel data IS PRIVATE; -- type of those data objects
-- passed through the Channel;
-- perhaps more generic formal
-- parameters are needed to provide
-- oper3tions on tne data objects

PACKAGE <name of Channel template> IS

-- declaration of the access_procedures

END <name of Channel template>; -- specification

Figure 4.3-1: Frame of the Specification of a Channel Template

A MASCOT Channel does not process data passed through it. To ensure mutual
exclusion of competing Activities and to allow the delivery of more than one
object to be passed before an object is consumed by an Activity, data objects
must be stored temporarily in a private data area. The characteristics of the
type of an object is not of any interest to the Channel. To allow temporary
storage, assignment must be available for objects within the Channel. Therefore
the type of these objects can be private (hidden from the Channel).

A template which denotes a Channel therefore does not need to be associated with
a package which defines the data types of the future IDA but must have a generic
formal parameter which denotes the type of the object passed through the

- 4 - 16 -

Channel. Perhaps more than one generic formal parameter is needed for that
purpose.

Figure 4.3-1 shows the format of the specification of a Channel template.

4.3.2 Pool Template

According to the MASCOT philosophy a Pool is intended to hold data for a long
period of time. A Pool processes the data objects more or less to be able to
store or retrieve them in an efficient manner'.

W--ITH (name of package that defines the data type>;

1 USE <name of package that defines the data type>;

GENERIC

PACKAGE <name of Pool template> IS

-- declaration of the access procedures

END <name of Pool template>; -- specification

Figure 4.3-2: Frame of the Specification of
a Pool Template

The procedures, which implement a Pool in an Ada environment, must bc allowed to
perform all possible operations on data objects delivered to them. Therefore

the types of the data objects must not be hidden from a Pool. Because a
template already implements the behaviour of the future Pool, the types of tte
data objects must be made visible to the template.

In Ada a Pool template is a generic package which has no generic forial
parameters but which mentions the package defining the data types of the future
Pool in its context clause.

Figure 4.3-2 shows the format of the specification of a Pool template.

4.4 The Form of Root Templates

Communication between Activities is only allowed via IDAs. The actual
communication links are built up during the creation of Activities. The
particular IDAs are named during this process.

An Activity is an active part of an applicaiton system, whereas an IDA is a
passive part, because an IDA only becomes active, if one of its access

-4 - 17 -

procedures is invoked by an Activity. Therefore the template of an Activity is
a generic procedure in an Ada environment (There are no generic tasKs in Ada).

WITH <list of data types>; -- all packages declaring the data types

-- of IDAs used by the root must be

-- mentioned here
USE <list of data types>;

GENERIC

-- declaration of the formal procedural interface to IDAs

PROCEDURE <name of Root template> -- (formal parameters, if any)

Figure 4.4-1: Frame of the Specification of a Root Template

Because of Ada rules the access procedures to possible IDAs must be known by thV:
Root template. To allow a certain amount of parameterisation those procedures

are generic formal parameters of tne template.

The type of data objects which are passed by the access procedures snoulJ alsc

be parameterisable but this would restrict the use of objects derived from those

types because of Ada rules. A Root, however, creates and processes those data

objects. Therefore their types cannot be private (hidden from the RoDt
template) as they should be to allow all kinds of types as actual parameters for

the generic formal types, but they must be fully known. Tnis means that tn:

definitions of the data types of all accessible IDAs must be made visible to the

Root template.

Unfortunately this approach restricts the derivation of Activities from the Roct

template, because an Activity can then only communicate via IDAs whose access
procedures match the generic formal procedures of the particular Root template.

The format of the specification of a Root template is shown by Figure 4.4-1.

4.5 Implementation of Roots and IDAs

Access procedures and data types form the interfaces of Activities and IDAs to
their particular surroundings. Their implementations are hidden from each
other. However, some restrictions are to be obeyed.

- - 18 -

4.5.1 Roots

All features of Ada can be used for the implementation of a Root template.
Communication with other parts of the system should only be made, however, by
using the formal access procedures to IDAs. Tasks also should not be used
within a Root template because according to the MASCOT philosophy the only tasks
are Activities which are derived from Root templates.

PROCEDURE <name of Root tamplate> -- (formal parameters, if any)

Is

-- declaration of local objects

BEGIN

-- body of the Root template

END <name of Root template>; -- body

Figure 4.5-1: Frame of the Body of a Root Template

The value parameters of a Root template can be used, for example, to select
special strategies in accessing IDAs.

4.5.2 IDAs

IDAs are the interfaces between Activities. Activities are executed in
parallel. The implementation of an IDA must ensare that no conflicts 3rise
between Activities while accessing the data area. Access to a data area

therefore must be embedded in critical regions. Ada offers the rendezvois

mechanism for that purpose.

MASCOT provides the four primitives JOIN, LEAVE, WAIT, and STIM for the

implementation of critical regions. The primitives operate on special objects
called control queues. If an Activitiy wants to talk to an IDA, it performs a
JOIN operation on the associated control queue. After successful communication
it LEAVEs the control queue. The primitive JOIN indicates the entrance into a
critical region, the primitive LEAVE the end of a critical region. The

primitives STIM and WAIT are used for cross stimulation. If an Activity has
successfully written into the data area of an IDA it performs a STIM operation
on the associated control queue to indicate that data objects are available in

the data area. If an Activity wants to read data from the data area of an IDA

it performs a WAIT operation to test whether there are data objects available in

the data area.

The implementer of Activities (or Root templates) should not be concerned with

those primitives. Therefore the calls of the primitives are embedded in the

- 4 - 19 -

V

access procedures of IDAs. The MASCOT philosophy in an Ada environment should
facilitate the same approach. The package which implements an IDA therefore
only provides a procedural interface. The implementations of the procedures
must ensure mutual exclusion of Activities which want to access the data area of
an IDA. On the other hand, Ada procedures are reentrant. Therefore it is
possible, for example, to calculate access strategies before entering a
particular critical region, or, even more, to decide that mutual exclusion is
not necessary (for example, if a read only access is considered).

PACKAGE BODY <name of Channel/Pool template> IS

-- declaration of the data area that either temporarily
-- holds data items sent through the Channel of stores
-- data items hold in the Pool

-- declaration of the task that implements the Channel/Pool

-- declaration of the bodies of the accesshprocedures

BEGIN

-- initialisation of the Channel/Pool

END <name of Channel/Pool template>; -- body

Figure 4.5-2: Frame of the Body of a Channel/Pool Template

Control queues are kinds of semaphores. The JOIN and LEAVE primitives are the P
and V primitives respectively. The only possible implementation of a semaphcre
is its implementation as a task with two entries in an Ada environment.
Therefore, if JOIN and LEAVE are to be implemented, the respective control qjeuz
must be expressed as a task.

TASK control_queue IS
ENTRY join;
ENTRY leave;

END control_queue;

TASK BODY control_queue IS
BEGIN

LOOP
ACCEPT join;
ACCEPT leave;

END LOOP;
END controlqueue;

Such a task is needed for every control queue in the application system. This
would result in heavy context switching and would slow down the system
performance.

The primitives WAIT and STIM must be implemented in a similar manner. The

- 4 - 20 -

solution, however, is more complicated in their case. Tnerefore another
approach should be considered.

If a task calls an entry and the called task is not able to accept the entry
call immediately, the calling task is blocked and has to wait until the call is
accepted. The primitives JOIN and LEAVE therefore become obsolete in an Ada
environment. On the other hand an accept statement contains an optional
sequence of statements for whose execution mutual exclusion is ensured.
Therefore the access procedures of an IDA should be transformed into entry calls
of a task. This task then handles all operations on the data area of an IDA.
An Activity, however, does not know that its accesses to IDAs are treated in

this way.

Consider the following example of a Channel which only passes one data object at
a time. The task which implements the behaviour of the Cnannel then looks like
as follows:

TASK channel IS
ENTRY put(x : IN item);
ENTRY get(x : OUT item);

END channel;

TASK BODY channel IS

store x : item;
BEGIN

LOOP
ACCEPT put(x : IN item) DO

store-x := x;
END;

ACCEPT get(x : OUT item) DO
x :: storex;

END;
END LOOP;

END channel;

Although this example is very simple, very complicated strategies for a:cessing
an IDA's data area are implementable. The reader is referred to [3] for a
more detailed discussion. Alternative solutions are also considered in j 3,
but the solution shown in this paper is the one more suited to Ala.

The data area of an IDA is built from the types defined in a special paokage fo-
every IDA. Initialisation of the data area must be performed by the IDA itself.
Therefore initialisation routines must be implemented within the package body of
the IDA template.

4.6 Creation of IDAs

The creation of an IDA is achieved by instantiating the package, which denotes
the particular IDA template. Generic actual parameters must be provided for tne
instantiation process. A Pool template does not have generic formal parameters
therefore no actual ones must be supplied. In the case of a Channel the actu31
data types must made visible and the generic formal parameters must be matched
with the actual ones. Figure 4.6-1 shows the two kinds of instantiations.

- 4 - 21 -

WITH (name of package that defines the data type>;
USE <name of package that defines the data type>;

PACKAGE <name of Channel> IS
NEW <name of Channel template> (channel-data => <actu3l type>);

PACKAGE <name of Pool> IS
NEW <name of Pool template>;

Figure 4.6-1: Frames of Subsystem-IDAs

Ada instantiations can be library units as well as the generic units they are
derived from. Subsystem-IDAs must be addressable by several Subsystems, bec3use
they do not belong to any one Subsystem. In Ada they have to b3 library units
and ire instantiated as such. But note: If two Subsystem-IDAs with exactly the
same behaviour and data types are needed in an application system, tn
respective template must be instantiated twice. One instanti3tion creat2s
exactly one library unit. Mentioning them in various context clauses does not
multiply their codes.

IDAs private to 3 Subsystem need not to be visible outside the Subsyztem.
Therefore they are instantiated within the code of a Subsystem.

4.7 The Form of Subsystems

Closely related Activities and the respective IDAs are subsumed unJe- a
Subsystem. Subsystems communicate through those IDAs (Subsystem-IDAs) wnhit
form the communication links between Activities belonging to different
Subsystems. They are not part of a Subsystem.

A Subsystem is a procedure in an Ada environment, because it is directly invoked
by the main program and it has not to provide a large interface to its
surroundings except to allow it to be called. A Subsystem has in optional list
of formal value parameters. Value parameters can be used, for example, to
select special strategies within a Subsystem or to supply the encapsulated
Activities with actual value parameters.

Subsystem-IDAs are library units. A Subsystem which communicates via a
particular Subsystem-IDA must import this Subsystem-IDA in its context clu3se.

The IDAs private to a Subsystem are instantiated in the same manner as
Subsystem-IDAs within the Subsystem. The packages defining the data types of
these IDAs and the respective IDA templates must be imported by the Subsystem in
its context clause.

- 4 - 22 -

WITH <list of the data type specifications of the private IDAs>;
WITH <list of templates of those IDAs private to the Subsystemw;
WITH <list of to be used Root templates>;
WITH <list of the Subsytem-IDAs>;
USE (list of the data type specifications of th3 private IDAs>;
USE <list of templates of those IDAs private to the Subsystem>;
USE <list of to be used Root templates>;
USE <list of the Subsystem-IDAs>;

PROCEDURE <name of Subsystem> -- (formal parameters, if any)
Is

-- instantiate private IDAs according to the following schema:

Channel:

PACKAGE <name of Channel> IS
NEW <name of Channel template> (channel data

=> <actual type>);
Pool:

PACKAGE <n3me of Pool> IS
NEW (name of Pool template>;

-- form the Activities according to the following schema:

TASK <name of Activity>;

TASK BODY <name of Activity> IS

instantiate proper Root according to following schema:

PROCEDURE <name of Activity>Root IS
NEW <nama of Root template> (<formal parameters>

-> <actual parameters>);

BEGIN

<name of Activity>_Root -- (actual parameters, if any)

--- END <name of Activity>; -- body

BEGIN

NULL; -- may be replaced by monitor operations

END <name of Subsystem>;

Figure 4.7-1: Frame of a Subsystem

- 4 - 23 -

Activities are executing in parallel competing for access to IDAs. Ada offers a
tasking concept to express parallelism. Tasks cannot be library units.
Therefore tasks denoting Activities are embedded into Subsystems. A Subsystem
declares as many different tasks as it contains Activities.

According to MASCOT Activities are created from Roots and Roots from Root
templates. These two steps are performed in one in an Ada environment. A
proper Root template is instantiated within the task denoting the particular
Activity. This instantiation is similar to the creation of a Root in a MASCOT
environment. The instantiation process is supplied with the proper actual
access procedures to the respective IDAs to replace the generic formal ones of
the Root template. The Activity-task then simply calls the instantiatea
Root-procedure by supplying actual value parameters.

An alternative could be to instantiate Root templates outside a Subsystem to be
able to use the same instance of a Root template twice and to be fully in
accordance with the MASCOT philosophy. This seems to be possible because
procedures are reentrant in Ada. Tne first disadvantage, however, is that iozial
variables of an instance then only exist once which can lead to strange effects.
The second one is that all IDAs must also be instantiated outside the
Subsystems.

A Subsystem must mention all Root templates which will be used in its context
clause.

The declared tasks denoting Activities are initiated in parallel before the
Subsystem starts the execution of its own list of statements. Normally this
list only contains a NULL statement, because the Subsystem must await tn3
completion of the Activity-tasks. However, the list of statements can consist
of monitor operations. in this case Root as well as IDA templates must offer
respective interfaces.

The overall format of a Subsystem is shown by Figure 4.7-1.

4.8 The Form of the Main Program with Subsystems

Subsystems execute in parallel at the system level. Therefore they are embedjdc
in Ada tasks. The main program declares as many tasks as Subsystems exist. Tn:
body of such a task comprises only one statement: the call of the procecur:
which denotes the particular Subsystem. Every procedure call is supplied with
actual parameters for the value parameters of the particular Subsystem. T n
main program mentions all Subsystems in its context clause.

The main program does not need to execute statements itself because it mist
await the completion of the Subsystem-tasks anyway. Its statement list
therefore only comprises the NULL statement. On the other hand monitT -

operations can be performed easily by the main program instead of executing 3
NULL statement. This case, however, must be considered by the implementations
of the various parts of the system.

The forming of the main program is the last step in creating an application
system according to the MASCOT philosophy in an Ada environment. After this

step the whole system must have been compiled. The compilation is the last

check for correctness of the program, especially of the interfaces. The first
check is performed during the building of the Construction Data Base.

- 4 - 24 -

F'W
"

Ada defines a strict compilation order. Therefore the various parts of the
system have to be compiled in the following order: p3ckages which define the

data types of IDAs -> IDA templates -> Root templates -> instantiations of those

IDA templates from which Subsystem-IDAs are derived -> Subsystems -> main

program. However, every part can be compiled after its completed coding as long

as the correct compilation order is ensured.

WITH <list of all Subsystems>;

PROCEDURE MASCOT-System
IS

-- declare all Subsystems as tasks according to the following schema:

---- TASK <name of Subsystem>_task;

TASK BODY <name of Subsystem>.task IS

-----BEIN

<name of Subsystem> -- (actual parameters, if any)

---- END <name of Subsystem>_task;

BEGIN

NULL; -- may be replaced by monitor operations

END 'AASCOTSystem;

Figure 4.8-1: Frame of the Main Program Consisting of Subsystems

4.9 The Form of the Main Program without Subsystems

Forming a main program without Subsystems is just like forming a Subsystem
despite the fact that Subsystem-IDAs are not concerned (refer Subchapter 4.7).

The compilation order is: packages which define the data types of IDAs -> IDA

templates -> Root templates -> main program.

- 4 - 25 -

WITH <list of data type specifications for IDAs>;
WITH <list of IDA templates>;
WITH <list of Root templates>;
USE <list of data type specifications for IDAs>;
USE <list of IDA templates>;
USE <list of Root templates>;

PROCEDURE MASCOTSystem
IS

-- instantiate IDAs according to the following scnem2:

-- Channel:
-- PACKAGE <name of Channel> IS

NEW <name of Channel template> (channel data
=> <actual type>);

Pool:

PACKAGE <name of Pool> IS
-- NE4 <name of Pool template>;

-- form the Activities according to the following schema:

-- TASK <name of Activity>;

TASK BODY <name of Activity> IS

instantiate proper Root according to the following szhomn.:

--- PROCEDURE <name of Activity> Root IS
NE4 <name of Root template> (<formal parameters>

-> <actual paramcters>);

---- BEGIN

---- <name of Activity>_Root -- (actual parameters, if any)

END <name of Activity>;

BEGIN

NULL; -- may be replaced by monitor operations

END MASCOTSystem;

Figure 4.9-1: Frame of the Main Program without Subsystems

- - 26 -

5. Final Remarks

MASCOT is a good methodology for the decomposition of large systems into smaller
parts. It enables systems designers to handle a system in an easier way.
However, MASCOT introduces an own view on parallelism within an application
program. This complicates the use of the MASCOT philosophy in combination with
a programming language which offers tasking facilities.

This paper has combined the programming language Ada and the MASCOT philosophy.
It has found that the MASCOT philosophy is applicable to the development of Ada
programs. However, the communication mechanisms of MASCOT are based on very
basic synchronisation mechanisms using binary semaphores. Ada offers a more
advanced solution with its rendezvous concept. A rendezvous actually implements
a critical region. Therefore MASCOT's synchronisation primitives are already
embedded in Ada's rendezvous. Their explicit use in an Ada program is neither
recommended nor reasonable, because it would result in a very strange
programming style.

MASCOT introduces a kind of controlled separate compilation including the check
for correctness of interfaces with its template and construction data base
concepts. Ada offers these facilities with its separate compilation concept and
its generic concept. The construction of test beds and the simulation of the
behaviour of parts of an application system are also easily possible in an Ada
environment. However, Ada's views are slightly different, and more checks are
performed, for example, type checking. Therefore the unchanged mapping of
MASCOT's view should not be done because some power of Ada may be lost then.

A MASCOT system is composed of Activities and interfaces (IDAs) between them.
An Ada program is a set of procedures which are successively called by a main
program (procedure). Some procedures can contain parallel activities to quicken

computation.

Mapping MASCOT onto Ada totally changes the Ada way of constructing a system and
writing Ada programs becomes unnecessarily complicated. It is therefore
recommended not to use the entire MASCOT methodology for the development of Ada
programs, even though the author believes it to be possible. However, some
concepts of MASCOT (for example: the use of clearly defined interfaces between
tasks whose implementation is hidden from the tasks, and the monitoring concept)
are very reasonable and should be taken as requirements for the development of
an Ada programming support environment.

-5r

6. References

1 I MASCOT Suppliers Association
The Official Handbook of MASCOT
5 December 1980

[2] Reference Manual for the Ada Programming Language
ANSI/MIL-STD 1815 A
January 1983

1 3] C1719 - Further Ada Studies
Use of MASCOT in the Mapse
Document No: 01719/REP/10 issue I
August 1982

.

-6-1-

APPENDICES

Appendix I lists the codes of the Ada programs which are used for the initial
building of the Construction Data Base which deoribes an application system.
The contents of Appendix 1 are:

construction data basetypes Al-I
construct ACT Diagram A1-6
finddata type Al-9
find node Al-10
find-root Al-11
findIDA template Al-12
match_parameters Al-13

match_procedures Al-14
formdata types Al-16
form IDA templates Al-17
form roottemplates Al-20
form Subsystems Al-23
formMASCOT_System A1-33
construct data base AI-39

Appendix 2 describes a simple example. The contents cf Appendix 2 are:

1. The ACP Diagram A2-I
2. Tne Construction Data Base A2-3

2.1 The Example with Subsystems A2-3
2.2 The Example without Subsystems A2-11

3. Data Types of the IDAs A2-12

4. The IDA Templates A2-12
4.1 IDA Template 1 A2-12
4.2 IDA Template 2 A2-13
4.3 IDA Template 3 A2-15

5. The Root Templates A2-16
5.1 Root Template 1 A2-1b
5.2 Root Template 2 A2-17
5.3 Root Template 3 A2-17

6. Subsystem-IDAs A2-18

7. Subsystems A2-18
8. The Main Program with Subsystems A2-20
9. The Main Program without Subsystems A2-21

Appendices

PACKAGE constructiondatabasetypes
IS

TYPE system classtype IS (with-subsystems , without_subsystems);
TYPE IDAclasstype IS (channel , pool);
SUBTYPE name_string IS string;
SUBTYPE filename IS string;

TYPE subsystem;
TYPE accesssubsystem IS ACCESS subsystem;
TYPE subsystemlist element;
TYPE access_subsystemlistelement IS ACCESS subsystemlistclement;

TYPE activity;
TYPE access activiy IS ACCESS activity;
TYPE activity_list element;
TYPE access activity_listelemont IS ACCESS activity list element;

TYPE IDA(class : IDA class type);
TYPE access IDA IS ATCESS IDA;
TYPE IDA list element;
TYPE access IDA list element IS ACCESS IDA list element;

TYPE root template;
TYPE access root template IS ACCESS roottemplate;
TYPE root_te.mplate_listelement;
TYPE a:cess root template list element IS

ACCESS roottemplate_list elament;

TYPE iDAtemplate(class : IDA class type);
TYPE azcess_IDA template IS ACCESS IDA-templite;
TYPE IDAtemplate_list_element;
TYPE accessIDAtemplatelist element IS ACCESS IDA template list elonent;

TYPE data_type;
TYPE accessdata_type IS ACCESS datatyp2;
TYPE data type list element;
TYPE access_data_typ:_list_element IS ACCESS datatypelist_element;

TYPE parameter;
TYPE access parameter IS ACCESS parameter;
TYPE parameter listelement;
TYPE access parameter list element IS ACCESS parametor list element;

TYPE access procedure;
TYPE access accessprocedure IS ACCESS accessprocedure;
TYPE accessprocedurelist-element;
TYPE access access_procedura list-element IS

ACCESS access-procedure list element;

- Al - -

TYPE subsystemlist-element IS
RECORD

element : access-subsystem;
next : accesssubsystem list element NULL;

END RECORD;

TYPE activity_listelement IS
RECORD

element access, activity;
next accessactivitylist-element NULL;

END RECORD;

TYPE IDA list-element IS
RECORD

element access IDA;
next access IDA list element NULL;

END RECORD;

TYPE roottemplatelistelement IS
RECORD

element access root template;
next access root template_list element;

END RECORD;

TYPE IDA templatelist-element IS
RECORD

element access IDAtemplate;
next accessIDAtemplate-list element;

END RECORD;

TYPE datatypelistelement IS
RECORD

element accessdata_type;
next access dstatypelistelement NULL;

END RECORD;

TYPE parameterlistelement IS
RECORD

element accessparameter;
next access_parameter list element NULL;

END RECORD;

TYPE access_procedurelistelement IS
RECORD

element accessaccess_procedure;
next accessaccessprocedurelist element NULL;

END RECORD;

- Al - 2 -

TYPE access-procedure IS
RECORD

formal : namestring;
actual : namestring;

END RECORD;

TYPE parameter IS
RECORD

formal : namestring;
actual : name string;

END RECORD;

TYPE MASCOTSystem(class systemclasstype) IS
RECORD

name namestring "MASCOTSystem";
file file name;
CASE class IS

WHEN with-subsystems =>
subsystems : access subsystem list-element;

subsystemiDAs : accessIDA listelement;
WHEN without subsystems =>

activities access activity list element;
IDAs accessIDAlistelement;

END CASE;
END RECORD;

TYPE accessMASCOTSystem IS ACCESS MASCOTSystem;

-Al -3-

TYPE subsystem IS
RECORD

name : name string;
file : file name;
parameters : access_parameterlist element;
activities : accessactivity_listielement;
IDAs : accessIDAlistelement;
subsystemIDAs : accessIDAlist element;

END RECORD;

TYPE activity IS
RECORD

name : name string;
root : access root template;
parameters : access_parameterlistelement;
access procedures : access access procedurelist element;
IDAs : accessIDA list element;

END RECORD;

TYPE IDA(class : IDAclasstype) IS
RECORD

name name string;
file filename;
template access IDA template(class);
datatypes access data_typelist element;
CASE class IS

WHEN pool => NULL;
WHEN channel => parameters : accessparameterlist element;

END CASE;
END RECORD;

TYPE roottemplate IS
RECORD

name name string;
spec filename;
bodie file_name;
parameters : accessparameter list-element;
access_procedures : access accessprocedure list element;
data types : access data_type_list_element;

END RECORD;

TYPE IDA template(class : IDAclasstype) IS
RECORD

name : name_string;
spec : file name;
bodie : filename;
access_procedures : access access_procedure listelement;
CASE class IS

WHEN pool => datatypes access_.data_type_listelement;
WHEN channel > parameters access_parameter list element;

END CASE;
END RECORD;

- Al - 4 -

TYPE datatype IS
RECORD

name namestring;
spec filename;
bodie filename;

END RECORD;

TYPE nodeclasstype IS (act , channel , pool);
TYPE arc_class_type IS (from , to);

TYPE nodu(class : node classtype);
TYPE access node IS ACCESS node;
TYPE node list element;
TYPE access node list element IS ACCESS node list element;

TYPE arc;
TYPE access arc IS ACCESS arc;
TYPE arc list element;
TYPE access arclist element IS ACCESS arc list element;

TYPE node IS
RECORD

name : name string;
arcs : accessarclistelement;
class : node classtype;

END RECORD;

TYPE node list element IS
RECORD

element access node;
next access node list element NULL;

END RECORD;

TYPE arc IS
RECORD

name : name string;
direction : arc classtype;
source : accessnode;
sink : access node;

END RECORD;

TYPE arc list element IS
RECORD

element access-arc;
next access arc list element;

END RECORD;

END constructiondatabasetypes;

- Al - 5 -

WITH textjo, constructiondata basetypes;
USE textio, constructiondatabase_types;

PROCEDURE constructACP Diagram

(head : OUT access nodelistelement)
Is

tail : access node list-element := NULL;
work , work2 : accessnode;
last , last2 : natural;
item , item2 : string(l .. 80);
class : node class type;
direction : arc class type;
accproc : accessarc;

PACKAGE nodetype io IS NEW enumeration io(enum => node classtype);
PACKAGE arc_type_io IS NEW enumeration-io(enum => arcclasstype);
USE nodetypeio , arctypeio;

PROCEDURE find node(name string ; act node : OUT access node);

PROCEDURE append(actnode IN OUT accessnode;
proc IN OUT access arc);

PROCEDURE findnode(name string ; actnode : OUT accessnode)
IS

work accessnode list element;
BEGIN

work head;
LOOP

EXIT WHEN work.element.name'last = name'last
AND THEN
work.element.name(1 .. work.element.name'last)

= name(1 .. name'last);
work := work.next;

END LOOP;
act node := work.element;

END find_node;

PROCEDURE append(act node : IN OUT access-node;
proc : IN OUT access-arc)

iS
work access arc list element;

BEGIN
work act node.arcs;
IF work = N ULL
THEN

actnode.arcs := NEW access arc list element'(element => proc,
next => NULL);

ELSE

WHILE work.next /z NULL
LOOP

work := work.next;
END LOOP;
work.next := NEW accessarc.listelement'(element 0) proc,

next => NULL);
END IF;

END append;

BEGIN

- Al - 6 -

head :=NULL;

set-input(standard input);

set output(standard output);

put_line("Start: Construction of ACP Diagram");

put_line("'Start: Node Input");

LOOP
put-line("Give Name of System Element");
get line(item , last);
EXIT WHEN item(l)

put-line("Give Class of System Element Cact/pool/channel)");
get(class); skip_line

work :=NEW access-node'(class => class,
name => item.(1 last),
arcs => NULL);

IF head NULL
THEN

head NEW access node list elernent'(element => work,
next => NULL);

tail haad;
ELSE

tail.next :=NEW access node list element'(elenent => work,
next => NULL);

tail :=tail.next;
END !F;

END LOOP;

put_line("End: Node Input");

put_line("Start: Arc Input");

LOOP
put-line("Give Name of Activity");
get line(item , last);
EXIT WHEN item(1) =11

find-node(item(l . last) , work);

LOOP
put-line("Give Name of Access Procedure");
get line(item , last);
EXIT WHEN item(l)

put-line("Give Direction (from/to)");
get(direction); skip _line

put-lineC"Give Name of IDA");
get-line(item2 , last2);

find node(item2(l .. last2) , work2);

-Al - 7-

aceproc NEW accessarc'(name 0) item(. last),

direction => direction,
source => work,

sink => work2);
append(work , accproc);
append(work2 , accproc);

END LOOP;

END LOOP;

putline("End: Arc Input");

put_line("End: Construction of ACP Diagr3m");

END constructACPDiagram;

Al

WITH construction data base types;
USE construction-data7base types;

PROCEDURE find data_type
(ist 3ccess data type list element;
name string;
pointer OUT access-data_type)

work 3ccess-dat3 type list element;

BEG IN

work list;
WHILE work /= NULL
LODP

E XTT WHEN na-ne'1ast =work.element.n3MC'last
AND THEN
narne(l..nameiast) work.elemTent.nameC1..n3me'last);

work : worK.nl xt;

END LOOP;

1F work = NULL
THEN

pointer NULL;
ELSE

point~r workc.element;
END IF;

END find-dati-type;

-Al-9

WITH constructionTdata base types;
USE constructiondatabasetypes;

PROCEDURE find-node
(ACP _Diagram : accessnodelistelement;
class : node_classtype;
name : string;
pointer : OUT access node)

IS

work accessnodelistelement;

BEGIN

work :: ACPDiagram;
WHILE work 7= NULL
LOOP

EXIT WHEN class = work.element.class

AND THEN
(name'last : work.element.name'last
AND THEN
namc(1..name'last) work.element.nama(1..name'Iast));

work := work.next;
END LOOP;

IF work = NULL
THEN

pointer := NULL;
ELSE

pointer :: work.element;
END IF;

END findnode;

- Al - 10 -

WITH construction data base types;
USE construction-data-base-types;

PROCEDURE find root
(list access -root-template list element;
name string;

ISpointer OUT access-root template)

work access_root_template list-element;

BEGIN

work list;
WHILE work /= NULL
LOOP

EXIT 4HEN name'laSt =work.element.name'last
AND T'HEN
name(II-naie'last) woric.ele-nent.narne~l..narne'last);

work :=work.next;
END LOOP;

IF work =NULL
THEN

poir.,3r NULL;
E LSE

pointer work.element;
END 1F;

END find-root;

- Al - 11 -

WITH constructiondatabasetypes;
USE construction data basetypes;

PROCEDURE findIDAtemplate
(list : accessIDAtemplatelistelement;
name : string;

pointer : OUT accessIDA
template)

work accessIDAtemplatelist element;

BEGIN

work list;
WHILE work /z NULL
LDOP

EXIT WHEN name'last work.element.name'last
AND THEN
name(l..name'last) work.element.name(1..nane'last);

work := work.next;
END LOOP;

IF work = NULL
THEN

pointer NULL;
ELSE

pointer work.elenent;
END IF;

END findIDA template;

-Al- 12-

WITH constructiondata basetypes;
USE constructiondata-base types;

PROCEDURE matchparameters
(list access__parameter listelement;
para list OUT accessparameter_listelement)

IS

pars_name string(l 80);
paralast natural;
list tail access parameter list element;
tail accessparameter list-_element;

BEGIN

list tail list;
parilist, NULL;
WHILE list-tail /= NULL
LD2P

put line("Give Name of Actual Parameter for Form i Par~meter '"
& list tail.element.formnsl(1..list tail.elecent.formul'iast)
& ,,, ,,).

getline(para_name , para last);
IF paralist NULL
THEN

paralist
NEW access parameter list element'(

element => NEW access_parameter'(

formal :> list t~il.elenet.formil
(T

list :ail.*lent.feal'Lst',

actual => par? name(1 parslast);,
next :> NULL);

tail := pars_list;
ELSE

tail.next
NEW access parameter list elenent'(

element => NEW access_parameter'
forrial :> list tsil.el~ment.fomjl

(1 ..
list tiil.element.fcrii:f'last),

actual => paran3.me(l .. para_last)),
next => NULL);

tail := tail.next;
END IF;
list tail := list tail.next;

END LOOP;

END matchyarameters;

- AI - 13 -

WITH construction -data -base -types;
USE construction-data-base-types;

PPJCEDURE match procedures
(li71t access -access procedure list ele-nent,;
arc -list access-arc-list-element;
proc-list OUT access access_procedure-list element,)

is

proc name str-ing(l 80);
proc_last natural;
tail access access prozcedure list element;
list tail access access-procedurE-list elecoent,;
arc tail access arc list element;

BEGIN

list tail list;

proc list NULL;

WHILE list-tail /= NULL

put line("34ive Namne of Actual Access Frocedure for Foral Po
& is t-tail elernen. form al (1. .list t.,ilI eiem-ent.fri I.,
& "I");

get line(proc namie , proc-last);
aro tail :=arc _list;

WHILE arc-tail /= NULL
LOOP

EXIT WHEN proc last z arc -tail.eleo.it.nami'ast
ANE THEN
proc-name(l..proc-last) =arc tail.elemrnt.nam-

(1. .procliast);
arc tail arc tail.next;

END LOOP;

IF arctail =NULL
THE

put-line(t'Actual Acce.ss Procedure with Names'~
& proc-rame(l .. proc-last) & "I does not. c~t)

E LSE
IF proc list =NULL

THE£N
proc list

N'EW access -access_ procedure-list-elem"ent'(
element => NE4 access accesspocdr'

formal => list tallntformi.

actual => proc-nacme(I.proc last"),
next => NULL);

tail := proc_list;
ELSE

tail.next
NEW access -maccess_proedure 'ilist-elemcent'(

ele ent => NEW access- access_procedurte'(
formal:)> li st-t 1 1iel em :t. o-mc

-Al - 14-

list._tail.element.formal135t),

next => NLL);actual => proc-name~l. .proc name)),

tail tail.next;
END IF;

list-tail :=list tail.next;
END IF;

END LOOP;

END matz i procedures;

-Al -15-

WITH textio, construction-databasetypes;
USE textio, constructiondatabase types;

PROCEDURE form datatypes
(datatypes list : OUT accessdatatypelist_ lement)

Is
name : string(l .. 80);
last : natural;
answer : character;
tail : accessdatatypelistelement;
list element : accessdata_type;

BEGIN
set input(standardinput);
setoutput(staniardoutput);

put_line("Start: Input Data Types");
datatypeslist := NULL;

LOOP
putline("Give Name of Data Types");
getline(name , last);
EXIT WHEN name(1) =

putline("is Data Type an Abstract Type? (Y/N)");
get(answer); skipline;
CASE answer IS

WHEN 'Y' 'y' =>
list element :=

NEW accessdatatype'(
name => name(1 .. last),
spec :> "file." & name(1 last) & ".spac",
bodie => "file." & name(1 last) & ".bo~y");

WHEN4 OTHERS =>

list element .=
NEW accessdatatype'(

name => name(1 .. last),
spec :> "file," & name(1 . last) & ".spec",
bodie => "");

END CASE;

IF datatypeslist NULL
THE14

data_typeslist NEW accessdatatypelistelement'(
element => list element,
next :> NULL);

tail := datatypeslist;
ELSE

tail.next := NEW access datatype list element'(
element => list element,
next => NULLT;

tail tail.next;
END IF;

END LOOP;

putline("End: Input Data Types");

END form-datatypes;

- Ai - 16 -

WITH textio, constructiondata-basetypes;
WITH find data type;
USE text_io, constructiondata basetypes;

PROCEDURE formIDAtemplates
(data typeslist : access datatype_listelement;
IDA_template list : OUT accessIDAtemplate_listelement)

IDA-name string(1 .. 80);
IDA last natural;
IDAclass IDAclasstype;
procname string(1 80);
proclast natural;
data-name : string(1 80);
data last : natural;
access data : access data type;
answer : character;
proc _listhead
proc list tail accessaccessprocedure listelement;

channelparametershead
channelparameters tail accessparameterlistelement;
tail access__IDAtemplateiistelement;
IDA element access IDAtemplate;

PACKAGE !DA classtype io IS NEW enumeration io(IDA class_type);

USE IDAclasstyp_io;

BEGIN
set input(staniard input);
set-output(standard output);

put line("Start: Input IDA Templates");
IDA templatelist := NULL;

LOOP
putline("Give Name of IDA Template");
getline(IDA name , IDA last);
EXIT WHEN IDA_name(1) = '*';

put line("Give Class of IDA Template (pool/channel)");
get(IDA_class); skip_line;

put_line("Start: Input Access Procedure Names");
proclist head := NULL;

LOOP
putline("Give Name of Access Procedure");
get line(procname , proc_last);
EXIT WHEN proc name(1) =

IF proclisthead = NULL
THEN

proclisthead
NEW access access_pronedurelistelement'(

eleient => NEW access_a3cessprocdure'(

formal > proc name(i..proc_last),
actual => ""),

next => NULL);

- Al - 17 -

proc__listtail proclist-head;
ELSE

proclisttail.next
NEW accessaccessprocedurelistelement'(

element => NEW accessaccess-procedure'(
formal => procname(1..proclast),
actual => ""),

next => NULL);
proclisttail := proclisttail.next;

END IF;
END LOOP;

putline("End: Input Access Procedure Names");

CASE IDA class IS
WHEN pool =>

LOOP
putline("Give Name of Pool Data Type");
getline(data name , datalast);
finddata type(datatypes_list

,

data name(l .. data last)

access-data);
EXIT WHEN access data /z NULL;
put line("There is no Data Type with Name '"

& data name(. data-last) & "'");
END LOOP;

WHEN channel =>
putline("Start: Input Formal Channel Data Types");
putline("Is the Channel supposed to Work"

& " on an Abstract Data Type? (Y/N)");
get(answer); skip line;

CASE answer IS
WHEN 'N' 1'n' =>

putline("The Formal Channel Data Type"
& "is 'channel data'");

channelparameters-head :=
NEW access parameter list element'(

element :> NEW accessparameter'(
formal => "channel data",

actual => ""),

next => NULL);

WHEN OTHERS =>

channel_parametershead :z NULL;

LOOP
putline("Give Name of Parameter");

get line(data name , data last);

EXIT WHEN data name(l) : h;

IF channel_parametershead NULL

THEN

channelparametershead
NEW accessparameter list element'(

element :> NEW accessparameter'(
formal :> data name

(1..data3lst),

actual :) ""),

next :> NULL);

- Al - 18 -

channel_parameters_tail := channelyparameters-head;

ELSE
channel_parameters tail.next

NEW access_parameterlist element'(

element => NEW accessparameter'(

formal => data name

(1..data_last),

actual => ""),

next => NULL);

channelparameters tail := channelyparameters-t3il.next;

END IF;
END LOOP;

END CASE;

putline("End: Input Formal Channel Data Types");

END CASE;

CASE IDA class IS
WHEN pool :>

IDA element
NEW accessIDAtemplate'(

class :> pool,
name => IDA name(1 .. IDA last),
spec => "fiTe." & IDA nam-e(1..IDA last) & ".spec",
bodie => "file." & IDA_name(1..IDAlast) & ".body",
access_procedures :> proc_list__haad,
datatypes => NE4 access datatype_list eletent'(

element :> access data,
next => NULL));

WHEN channel :>
IDA element

NEW access IDA template'(
class :=> channel,
name :> IDA name(1 .. IDA last),
spec => "file." & IDAname(1..IDA last) & ".spcc",
bodie => "file." & IDA name(l..IDA-last) & ".body",
accessprocedures => proc_list__head,
parameters :> channel_parametershead);

END CASE;

IF IDAtemplatelist NULL
THEN

IDA_templatelist NEW access_IDAtemplate list elcment'(

element => IDA element,
next => NULL);

tail := IDAtemplate_list;

ELSE
tail.next := NEW accessIDA templatelistelement'(

element => IDA element,
next :> NULL);

tail := tail.next;
END IF;

END LOOP;

put_line("End: Input IDA Templates");

END formIDAtemplates;

- Al - 19 -

WITH text io, construction-data-base-types;
WITH find-data-type;
USE text-io, construction-data-base-types;

PROCEDURE form-root-templates
(data -types-list :access-data-type-list-element;

is ~ root-template-list :OUT access-root-template list element)

root name :stringl .. 80);
root~last :natural;
tail :access-root ~template-list-element;
para-name :string(l . 80);
para last :natural;
para-list head
para -list -tail access _parameter-list-element;
proc-name string(l . 83);
proc last natural;
proc-list-head
proc list tail access access_procedure list element;
data,_name string(l . 80);
data last natural;
data list head
data list -tail access-data-type-list elemnent;
ac-cess-data access-data-type;

BEGIN
set -input(standard_input);
set-output(standard-output);

put line("Start: Input Root Templates");
root template list :=NULL;
LOOP7

put-line("Give Name of Root Template");
get line~root name , root._last);
EXIT WHEN root name(l) '

put-lineC"'Start: Input Names of Formal Value Parameters");
para list -head :=NULL;
L03P7

put-line("Givc N3ame of Formal Value Parameter");
get_line(parzi_-nan: , para -last);
EXIT WHEN para_name(1)= 19

IF para_list-head NULL
THEN

para list head
NEW access_parameter list element'(

element z> NE74 access_parameter'(
formal => Para -nane~l. .par3_last),
actual =>""

next => NULL);
para-list-tail :=para list head;

ELSE
para list tail.next

NEW accessyarameter list element'(
element => NEW access parameter'C

formal => para -name~i. .para_last),
actual 0)")

next => NULL);

-Al - 20

para-list-tail para list tail.next;
END IF;

END LOOP;
put_line("End: Input Names of Formal Value Parameters");

put-line("Start: Input Names of Formal Access Procedures");
proc_list-nead := NLL;
LOOP

put-line("Give Name of Formal Access Procedure");
get line(pron _name , proc last);
EXIT WHEN proc name(l) ''

IF proc lisL-head NULL
TH-EN

proc list head-
NE 4 access access_proceiure list-element'(

element => NE4 access acc2ess_procedure'(
formal => proc -na-c(1. .proc last),

next => NULL);acul=

proc-list-tail :=proc list head;
ELSE

proc list tail.next
NEW access access_ procedure -list -element'(

element => NEd access acQcess proccdure'(
formal => proc-nam3(1. .proc-.last),

next => NULL); 2U =

proc -list-tail :=proc list tail.n,.xt;
END IF;

M~4 LOOP;
put-line("End: Input Names of Formil Access Proocc ur'es");

put lin2("S3tart: Input Names of Data Types");
data -list-_head := ULL;
LOOP

put_line("Zive Name Of Data Type");
get-line(data-namc , data l3st);
EXIT 4HEN data-name(1) =11

find data type(data-typzs_list
data -nane(l . data-last)
access data);

IF acc-ess-data zNULL-
THEN

put-line("'There is no Data Type of Nam3 '

& data-name(1 . data-last) &"')
ELSE

IF data -list-head NULL
THEN

data list head
NE1W access data type list element'(

element => access-3ata,
next. => NULL);

data-list-tail :=data-list-head;
ELSE

data list tail.next
NEWj access -data -type_list element'(

element ~)access data,

Al - 21-

next => NULL);
data list-tail data-list-tail.next;

END IF;
END IF;

END LOOP;
put line("End: Input Names of Data Types");

IF root template list =NULL
THEN

root template list
N-Ew access-root_template -list-element'(

element => NEW ac:!ess-root-template'(
name => root -name(l. .root-last),
spec => "Ifile." &

root-name(1. root-last) &
".spec",

bodie => "file." &
root name(l. .root last) &
".body",

parameters => para_list! .- a ,
access procedures => pro-_list hea,:,

net =>NLL;dat3_types => data list heatJ),

tail root-template-list;
ELSE

tail.next
NE4 access-root_template-list-element'(

element => NE4 3ccess-r'oot-templclte'(
name => root -name(l. .root-last),
spec => "1file."1 &

root -name(1..root last)/ &
". Spe-111

bodie => "file." & __ _t

root-name(l. .root-last)&
1. body",

parameters => par3_list_- h3d,
access-procedures => proc_list-he3C:,
data_types => data list head),

next => NULL);
tail tail.next;

END IF;
END LOOP;

put-line("End: Input Root Templates");

END form root templates;

- Al -22-

WITH text io, construction data base types;
WITH find datatype , find node , find root , findIDA template;
WITH matci_parameters , match_procedur-es;
USE textio, constructiondatabasetypes;

PROCEDURE form Subsystems
(datatypes-list : access datatype_listelement;
IDAtemplatelist : accessIDAtemplate listelement;
roottemplatelist : access roottemplatelistelement;
ACPDiagram : access_nodelistelement;
subsystem_list : OUT access_subsystem-list-element)

IS
answer character;

subsystemname string(1 .. 80);

subsystemlast natural;

tail accesssubsystemlistelement;

para_listhead accessparameterlist element;

act list_head access activity_listelement;
subsystem_1DA_list_head ,
IDA list hed : accessIDA list element;
subsystemobject access subsystem;

PROCEDURE get parameters(head OUT access_parameter list element);

PROCEDURE get activities

(ACPDiagram accessnodelistelement;

subsystem list access_subsystemlist _element;
rootlist : access_roottemplate_listelement;
head OUT accessactivitylistelemcnt);

PROCEDURE get_IDAs
(ACPDiagram access nodelistelement;
act-head access activity list element;
template list access IDAtemplate_listelement;
IDA head: OUT accessIDA list-element;
sub-IDA-head OUT access_IDAlist_element;
data-typeslist access datatype_list element);

PROCEDURE add IDAs to activity
(ACPDiagram accessnode list element;
act-head IN OUT access activity_listelement;
IDA head access IDA list element;
subIDA nead accessIDA list element);

PROCEDURE get_parameters(head : OUT accessparameter list element)
Is

tail access parameterlistelement;
paraname string(1 .. 80);
para last natural;

BEGIN
put_line("Start: Input Name of Formal Value Parameters");
head := NULL;

LOOP
putline("Give Name of Value Parameter");
get line(para name , para last);
EXIT WHEN par-;name(1)

- Al - 23 -

IF head NULL
THEN

head NEW access_parameter list element'(
element => NEW accessyarameter'(

formal 0> parsi -name(l..pa-last),
actual => ")

next => NULL);
tail head;

ELSE
tail.next

NEW access-parameter -list -element'(
element => NEW access-paramet.er'(

formal => para name(l..para-last),j
actual => ")

EN~ai~tanext;) NULL);

END LOOP;

put line("End: Tnpat Names of Formal Value Parameters");

END get-parameters;

PRD-,EDURE get activities
(ACP_-Diagram access-node -list -element;
subsystem list access sibsystem list element;
root -list access root-template-list-element;
head OUT1 access activitiy list element)

is

tail access activity list element;
act name stringTi 8o); -

act-last natural;
root last ntranl 8)
rootlame natral;
act-object access-activity;
access act access node;
acc ess ,root access root -template;
para-list access_paramater-list -element;
proc-list access access pro eG-i.e list element;

FUNCTION test-used
(name string;
subsystem-list access-subsystem list element)

RETURN boolean
is

subsystem -tail access -sibsystem_list -element;
act -tail access-activity list elemerht;

BEGIN
subsystem tail subsystem list;
WHILE subs'ystem-tail /= NULL
LC OP

act tail :=subsystem tail-activities;
WHILE act tail /~NU1L
LOOP

IF narnellast act-tail.element.name'last
AND THEN
name(.l..n3Me'last) =act-tail.element.name(l..namne'last)

THEN
RETURN true;

-Al -2~4-

END IF;
act tail := acttail.next;

END LOOP;
subsystemtail := subsystem tail.next;

END LOOP;
RETURN false;

END test-used;

BEGIN
putline("Start: Form Activities");
head := NULL;

LOOP
putline("Give Name of Activity");
get line(act name , act_last);
EXIT WHEN act name(1) '*';

IF testused(actname(1..actlast) subsystemlist)
THEN

putline("Activity '" & act name(1..act last)
& "' is already jszi");

ELSE
find-node(ACPDiagram , act

actname(1..act last) , access a3t);
IF access act = NULL
THEN

putline("Activity '" & act name(1..actlast)
& "' does not exist");

ELSE
LOOP

put_line("Give Name of Root Template")
get_line(rooLname , rootlast);
find root(root list , root name(1..root last)

access root);
EXIT WHEN accessroot /= NULL;

put_line("Root Template '" & root name(1..root last)
& "' does not exist");

END LOOP;
actobject

NEW access activity'(
name :> actname(1 .at_last);
root :> access root,

parameters => NULL,
accessprocedures => NULL,
IDAs => NULL);

match_parameters(accessroot.parameters , paralist);
act object.parameters := para_list;

matchprocedures(accessroot.accessprocedures
access-act.arcs , proc_list);

actobject.accessprocedures := proclist;

IF head NULL
THEN

head NEW access activity_list_element'(
element :> act object,
next => NULL);

tail head;

- Al - 25 -

ELSE

tail.next := NEW access activity_list element'(

element => actobject,
next => NULL);

tail := tail.next;
END IF;

END IF;
END IF;

END LOOP;

put line("End: Form Activities");

END get activities;

PROCEDURE get IDAs
(ACPDiagram accessnode list element;
act-head access-activityTist-element;
template list access IDAtemplatelist;
IDA head OUT accessIDA list element;

sub IDA head OUT access IDA list element;
d3tatypeslist accessdatatypelist element)

IS
act-tail access-activitylistelement;

access act access node;
arc head access arc list element;
access IDA-node access-node;

IDA name string(l .. 83);
IDA-last natural;
access template access IDA-template;
IDA object accessIDA;
IDA tail
sub-IDA tail accessIDA list element;

paralist access_parameter list element;
data-name string(l .. 80);
data last natural;
access-data access data_type;

FUNCTION test used
(name string;
IDA list accessIDA list element;
sub IDA list access IDA list element)

RETURN boolean
IS

work accessIDA list element;

BEGIN
work IDA list;
WHILE work 7z NULL
LOOP

IF name'last = work.element.name'last
AND THEN
name(l..name'last) work.element.name(l..name'last)

THEN
RETURN true;

END IF;
work := work.next;

END LOOP;
work := subIDA list;
WHILE work I: NULL
LOOP

- Al - 26 -

IF name'last = work.element.name'last
AND THEN
name(l..name'last) =work.element.name(l..name'135t)

THEN
RETURN true;

END IF;
work :=work.next;

END LOOP;
RETURN false;

END test-used;

FUNCTION test subIDA
(act_list access activity-list-element;
IDA -node access-node)

RETURN boolean
is

act -tail acces_aCtivity_list;
arc -list access-arc-list-element;

BEGIN
arc -list IDA-node.arcs;

ILE arc list /= NULL
LOOP

act tail :=act list;
WAILE act-tail 7= NULL

EXIT WHEN act tail.element.name'last
=arc list.element.soairce.namellast-

PND THEN
act tail.element.naMe(l..aCt-tail.ele-nent.nar-n las)

arc list.element.source.name
(l..arc list.ele.7ent.scurce.nallc 'iast);

act tail :=act tail.next;
END LOO5P;
I7 act tail NULL
THE N

RETURN true;
END IF;
arc -list :=arc list.next;

END LOOP;
RETURN false;

END test-subIDA;

BEGIN
put line("'Start: Forming IDAs");
act tail act head;
IDA head NULL;
subIDA head := NULL;
WHILE act tail /= NULL
LOOP

find-node(ACPDiagram , act
act-tail.element.name(l..act tail.elernent.name'last)
access-act);

arc head :=access act.arcs;
WHILE arc head /= NULL
LOOP

accessIDA -node :=arc _head.element.sink;
IF NOT test-used(accessIDA-node.name(l..access IDA-noie.na.ne'liafl,

IDA-head ,subIDA-head)

THEN

-Al -27-

LOOP
LOOP

put-line("Give Name of IDA Template for IDA '

& accessIDA-node.name(l..access-IDA noe.r'a--'is-,,

& IIII I) ;

get line(IDA -name I IDA -last);
find IDA template(template -list

IDA-name~l . IDA-last)
access template);

EXIT WHEN access temp ate /z NULL;
put line("IDA Template '"& IDA-name(l. .IDA-last)

& "'does not exist'1);

END LOOP;
EXIT WHEN ((accessIDA-node.class =pool

AND access template.class = pool)
OR
(accessIDA node.class =channel
AND IDA template.class =chann-Zl),;

put line("Class of IDA and IDA Template do not match');

END LOOP;

IF test -subI DA(act heaz , acc2Ss I.DA node)

THEN
CASE access IDA node.class IS

WHEN pool =>

IDA-obJect
NEW accessIDA'(

clas => pool,
name => access IDA nodo.n--m-e

file => "file."&
accessIDA noce.namc

(1..accessIDA node.n3Me?'la5',
te-mpl te => access template,
data -types => access template.data-types;',,

WHEN cnannel =>

match-parameters(access-templatea.parame-ters
para list);

put-line("3ive Nam-e of Data. Type for Cnanel2
& access IDA node.namna

& "

get -line(data-name ,data last,;
finJd dta-type(daJtB types list

data namc(1..data-last)
access data);

EXIT WHEN access data /= NULL;
put line("Dat3 Type ''I & data ni")1 .dta>s

& "' does not ex,.st'l;

END LOOP;
IDA object

NEW a e s s!D(
class => channel,
name => accessIDA node.nome

(l..accessIDA node.namen 'las*,

file => "file." &
accessIDA node.rname

-Al - 28-

template => access-template,
data types =>

NE54 access -data_type_list-element'(
element => 3ccess data,

next => NULL),
parameters => para list);

END CASE;
IF subIDA head NULL

THEN
sub IDA head

N EW access IDA list element'(

element => IDA object,
next = > NJL.L) ;

sub_-IDA -tail :=sub IDA head;

ELSE
sub_ DA tail.next

NEA 'access IDA list elemrent'(

element z> IDA object,

next => NULL);
sub_:DA tail :=subIDA-tail.next;

END IF;

ELSE
CASE accessIDA node.class IS

WHEN pool =>

IDAI-object
NE4 access_ DA'(

class => pool,
name => accessIDA node.naqc

f ile => fil
te2mplate => access template,
data -types => access-template.~ta typcs);

WHEN channel =>

match-parameters~access-temiplate.param.eters

para_list);
L33P

put_line("Si3ve Name of Data Typ2 for Channel
&access_IDA_node.n3,me

(1. .access_IDA_noie.nanme'last)
& tf;

get_line(data -name , data-last);
f2nd-data-type(Jata-types_ ist

data name(l. .data-last)
access data);

EXIT WHEN access data /= NULL;
put line("Data Type "I & data name(1. .1ata last)

& " does not exist"l);

END LOOP;
IDA object

N EW accessIDA'(

ClaSS => channel,
name => accessIDA node.name

(l..access_IDA_node.nane'last),
file => ,

template Z> aCcess-template,
data types =>

NEW access -data_type_list-element'(
element => access -data,
next => NULL),

-Al - 29-

parameters => paralist);
END CASE;

IF IDA head NULL
THEN

IDA-head NEW accessIDA list element'(
element => IDA objE2t,

next => NULL);
IDAtail := IDA head;

ELSE
IDA tail.next := NEW accessIDA list element'(

element => IDA object,
next => NULL);

IDA tail := IDA tail.next;
END IF;

END IF;
END IF;
arc head := arc head.next;

END LOOP;
act tail := act tail.next;

END LOOP;

putline("End: Forming IDAs");

END get_IDAs;

PROCEDURE addIDAs to activity
(ACP diagram : access node list element;
act head : IN OUT-access activitylistelement;
IDAhead : access IDA list element;
subIDA head : access IDA list element)

IS
act tail access activitylist_element;

access act : access node;
arc head -access arc list element;
act IDA nead
actIDA tail : access lDA list element;
access-actIDA : access-IDA;

PROCEDURE findIDA
:DA_head access IDA listelement;
sub IDA head accessIDA-list element;
name string;
pointer : accessIDA)

IS

work : accessIDAlistelement;
BEGIN

work :: IDAhead;
WHILE work /= NULL
LOOP

EXIT WHEN name'last = work.elerent.namr'last
AND THEN
name(l..name'last) 2 work.element.name(l..name'last);

work := work.next;

END LOOP;

IF work /= NULL
THEN

pointer := work.element;

ELSE
work := subIDA head;

-Al- 30-

WHILE work /= NULL
LOOP

EXIT WHEN name'last =work.element.namellast
AND THEN
name(l..name'last) work.element.name(l..name'last);

work :=work.next;
END LOOP;
IF work /= NULL
THEN

pointer work.element;
ELSE

pointer NULL;
END IF;

END IF;
END find-IDA;

BEGIN
act tail :=act bead;
WHIL E act tail 7= NULL
LOO&P

find node(ACPDiagram , act
act- tail.element.name(l..act-tail.element.name'last)
access act);

arc head :=access act.arcs;
act IDA head :=NULL;
WHILE arc bead /= NULL
LOO P

findIDA(IDA -bead , sub_-IDA-bead
arc head.eleent.sink.lare

(1..arc head.elemenr.sink.name'last)
access-actIDA);

IF actIDA bead NULL
TH ~EN _ _ _ __F

act IDA bead NEW accessIDA-list element'(
element => access actIDk,
next => NULL);

act_-IDA -tail actIDA-bead;
ELSE

actIDA-tail.next :=NEW accessIDA-element-list'(
element => access act I-DA,
next => NULL);

act_-IDA -tail :=actIDA-tail.next;
END IF;

END LOOP;
act -tail.element.IDAs :=act-lDA-bead;
act tail :=act-tail.next;

END LOP;

END addIDAs-to-activity;

BEGIN
set_input(standard input);
set-output(standard output);

put-line("Start: Forming of Subsystems");
subsystem-list :=NULL;
put-line("Are Subsystems Required? (YIN)");
get(answer); skip_line;

CASE answer IS

-Al - 31-

WHEN 'N' 1'n' =>
NULL;

WHEN OTHERS =>
LOOP

put_line("Give Name of Subsystem");
get_line(subsystem_,name I subsystemlast);
EXIT WHEN subsystemname(i)

subsystemobject
NEW accesssubsystem'(

name => subsystem name(l..subsystem__last),
file :> "file." & subsystemname(1..subsystemlast),
parameters => NULL,
activities => NULL,
IDAs => NULL,
subsystemIDAs => NULL);

get_parameters(paralist head);
subsystemobject.parameters para list head;

get a!tivities(ACPDiagram
subsystem list,
root templatelist
act list head);

getIDAs(ACPDiagram I
act list head
IDAtemplate list
IDA list head
subsystemIDA list head
datatypeslist);

subsystemobject.IDAs := IDA listhead;
subsystemobject.subsystem_IDAs subsystemIDA list head;

addIDAs to activity(ACPDiagram
act list head
IDA-list-head
subsystem IDA list head);

subsystemobject.activities := actlisthead;

IF subsystem list NULL
THEN

subsystem-list NEW access subsystem list element'(
element => subsystemobje t,
next :> NULL);

tail := subsystemlist;
ELSE

tail.next := NEW accesssubsystemlist elenent'(
element => subsystemobject,
next => NULL);

tail := tail.next;
END IF;

END LOOP;
END CASE;

putline("End: Forming of Subsystems");

END formSubsystems;

-Al - 32-

r~r WITH text io, construction-data-base-types;
WITH match parameters ,matchyprocedures;

WITH findI DA -template ,find-data-type , find-root;
USE text-io, construction-data-base-types;

PROCEDURE formMASCOTSystem
data-types-list access-data -type_list-element;
IDA -template list accessIDA-template-list-element;
root-template-list access root template-list-elemen.;
subsystem -list IN OUT access-subsystem-list-element;
ACP Diagram access -node -list element;
MASCOTSystem-object OUT access_MASCOTSystem)

sys-name :string(1 . 80);
sys_last :natural;

BEGIN
set input(standard input);
set~output(standard output);
put_line("Give Name of Main Program");
get_line(sys-name ,sys-last);

IF subsystem-list /~NULL
THEN

DECLARE
subsystemn tail access -subsystem -list element;
para_list access-parameter -list element;
subIDA list accessIDA-list-element;

PROCEDURE append subIDAs
(IDA list accessIDA list element;
subIDA-list IN OUT accessIDliteen)

tail , work , work-tail access IDA list elemnent;

IF subIDA list NULL
THEN

subIDA-list IDA-list;
ELSE

tail :=subIDA list;
WHILE tail.next /= NULL
LOOP

tail :=tail.next;
END LOOP;
work :=IDA_list;
WHILE work /= NULL
LOOP

work tail :=subIDA_list;
WHILE work-tail 7= NULL
LOOP

EXIT WHEN work.element.name'last
work tail.element.name'last

AND THEN
work.element.name(l. .work.element.name' last)

zwork tail.element.name
(1..work -tail.element.name'last);

work tail work-tail.next;
END LOOP;
IF work-tail NULL

-Al - 33-

THEN
tail.next NEW access IDA list element'(

element => work.element,
next :> NULL);

tail := tail.next;
END IF;
work := work.next;

END LOOP;
END IF;

END appendsubIDAs;
BEGIN

putline("Start: Forming of Main Program with Subsystems");

sub IDA list := NULL;
subsystem tail := subsystemlist;
WHILE subsystemtail /= NULL
LOOP

putline("Subsystem '"

& subsystemtail.element.name
(1.subsystemtail.element.name'last)

& "': Input Actual Value Parameters");
match_parameters(subsystemtail.element.prameters

paralist);
subsystemtail.element.parameters := para list;
appenisubIDAs(subsystemtail.element.subsyste __iDAs

sub IDA-list);
subsystemtail := subsystemtail.next;

END LOOP;

MASCOT Systemobject
NEi accessMASCOTSystem'(

class => withsubsystems,
name => sys_rame(1 .. sys_last),
file => "file." & sysname(1 .. syslast),
subsystems => subsystemlist,
subsystemIDAs => subIDAlist);

putline("End: Forming of Main Program with Subsystems");
END;

ELSE
DECLARE

act head , act tail access activity listelement;
IDA head , IDA tail accessIDA list element;
node-tail - accessnode list element;
templatename string(1 .. 80);
templatelast : natural;
access_template accessIDAtemplate;
access root accessroottemplate;
para_list access_parameterlistelement;
data name : string(l .. 80);
data last natural;
access data access datatype;
proc_list access-accessprocedurelist-element;
arc tail access arc list element;
actIDA head
act-IDA-tail access IDA list element;

BEGIN
putline("Start: Forming of Main Program without Subsystems");

- Al - 34-

put_line("Start: Forming IDAs");
node tail ACP Diagram;
IDA head NULL;
WHILE node-tail /: NULL
LOOP

IF node tail.element.class /: act
THEN

CASE node tail.element.class IS
WHEN pool =>

LOOP
LOOP

putline("Give Name of Template for Pool '"

& node tail.element.name
(.. node tail.element.nama'last)

& "'");
get_line(templatename , templatelast);
find IDA template(IDA template list ,

template name(1..template_last) ,

access_template);
EXIT WHEN accesstemplate /= NULL;
putline("IDA Template

& templatename(1 templatelast)
& "' does not exist");

END LOOP;
EXIT WHEN access template.class = pool;
putline("IDA Template "

& template name(1 .. template last)

& "' is not a Pool Template");
END LOOP;
IF IDA head NULL
THEN

IDA head
NEW access IDA list element'(

element =>
NEW access IDA'(

class :> pool,
name =>

node tail.element.name(1..node tail.element.name'last),
file => "",

template => access_template,
datatypes =>

accesstemplate.datatypes),
next => NULL);

IDA tail := IDAhead;
ELSE

IDA tail.next
NEW access IDA list element'(

element-:> -

NEW access IDA'(
class => pool,
name =>

node tail.element.name(1..node tail.element.name'last),
file :> "",
template :> accesstemplate,
datatypes :>

access_templE 3.data typas),

next :> NULL);
IDA tail IDA tail.next;

END IF;

- Al - 35 -

WHEN channel =>
LOOP

LOOP
put-line("Give Name of Template for Channel '

& node tail.element.name
(1 .. node-tail.element.name'last)

& 1111);
get_line~template name , template -last);
find IDA-template7(lDA-template-list

template -name(1..template last)
access-template);

EXIT WHEN access template /~NULL;
put-line("IDA Template "

& template-name(1 template_last)
& "I does not exist");

END LOOP;
EXIT WHEN access template.class =channel;
put-line("l1DA Template "

& template -name(1 . template -last)
& "I is not a Cnannel Template");

END LOOP;
put -line("Give Actual Types for Form,,! Data Type-s"l);
match- parameters~access-template.parameters

para list);
LOOP

put_linEI"Give Name of Data Type");
get line(data-name , data-last);
find-data-type(data-types-list

data-name(1 . data-last)
access data);

EXIT WHEN access-data /= NULL;

put-line("'Dat3 Type '" & data-namc(1. .dat-alast,
& "' does not exist");

END LOOP;
IF IDA head =NULL
THEN

IDA head-
N'E4 access_-IDA -list-elenent'(

element =>
NEW accessIDA'(

class => channel,
name =

node tail.element.name(l..node-tail.element..name'last),
file => ""l,

template => access-template,
data types =>
NEW access dat.a_type_list -ele.ncn1t'(

element => access data,
next :> NULL),-

parameters => para_list),
next 0) NULL);

IDA -tail :=IDA-head;
ELSE

IDA tail.next
VEW access_-IDA -list-element'(

element =>
NEW accessIDA'(

class => channel,
name Z

-Al - 36-

node-tail.element.name(l..node tail.element~name'last),
file = il
data -types =>
NEWd access data_type_list element'(

element => azcessdt,
next => NULL);

parameters => para-list),
next => NULL);

IDA-tail :zIDA-tail.next;
END IF;

END CASE;
END IF;
node tail :=node-tail.next;

END LOOP;

put-line("End: Forming IDAs");

put-line("'Start: Forming Activities")
node tail ACPDiagram;
act heuid NULL;
WHILE node-tail /= NULL
LOJP

IF node tail.element.class =act
THEN

LOOP
put_line("3ive Name of Template for Activ'ity

& node tail.element.name
(l..node tail.elementl.name'last)

& III"l);

get line(template -rname , template-last);
find-root(root-template-list

template -name(1 . template_last)
access root);

EXIT WHEN aczess root /= N~ULL;
put_line("Root Template "I & tenplate_name~l. .teinplatQ' last;

& "' does not exist");
END LOOP;
put line("Give Actual Value Parametersll)
match pararneters(access -root.parameters I para list.);
put line("Give Names of Actual Ac2cess Proc,2daro s");

matcn procedures(3ccess-root.acc-ess proce2dures

node-tail.element.arcs
proc list);

actIDA-head :=NULL;
arc -tail :=node-tail.element.arcs;
WHILE arc-tail /= NULL
LOOP

IDA tail :=IDA head;
WHILE IDA tail 7z NULL
LOOP

EXIT WHEN arc tail.element.sink.name'last
-IDA tail.element.name'iast

AND THEN
arc tail.element.sink.name

(..arc tail.element.sink.name'last)
-IDA tail.element.naime

(1 .. IDA -tail.element.name'last);
IDA-t~il :=IDA-tail.next;

END LOOP;

IF actIDA-head NULL

-Al - 37-

THEN
actIDAhead NEW access IDA list element'(

element => IDA tail.element,
next => NULL);

actIDAtail actIDAhead;
ELSE

actIDA tail.next := NEW accessIDA list element'(
element => IDA tail.element,
next => NULL);

act IDA tail := actIDA tail.next;
END IF;-
arc tail arc tail.next;

END LOOP;
IF act head NULL
THEN

act head
NEW accessactivitylistelement'(

element >
NEW access activity'(

name =>
node tail.element.name(1..node tail.element.name'llst),

root => access root,
parameters => para list,
accessprocedures :> proc list,
IDAs => actIDAhead),

next => NULL);
act tail := act-head;

ELSE
act tail.next

NEW access_ activitylist_element'(
element =>

NEW access activity'(
name =>

node tail.element.name(1..node tail.element.nme'Iast),
root => access root,
p3rameters => para list,
accessprocedures => proc list,
IDAs => act IDA heat),

next => NULL);
act tail := act tail.next;

END IF;
END IF;
node-tail := node tail.next;

END LOOP;
putline("End: Forming Activities");

MASCOTSystem object
NEW accessMASCOT System object'(

class :> withoutsubsystems,
name :> sys__name(i .. syslast),
file :0 "file." & sysname(1 .. sys_last),
activities :> acthead,
IDAs 0) IDA head);

put_line("End: Forming of Main Program without Subsystems");
END;

END IF;
END formMASCOTSystem;

- Al - 38 -

WITH construction data base types;
WITH constructAC?_Diagram;-
WITH formMASCOTSystem;
WITH formSubsystems;
WITH form data types;
WITH formIDA Templates;
WITH form -root templates;
WITH generate data-types-frame, generate-root-templates-frame,

generateIDA templates frame, generate subsystem frame,
generate main_program frame;

WITH saveMAS COTSystem;
WITH saveAC?_-7Diagram;
USE construction_data-base-types;

PROCEDURE construct-database
is

ACPDiagram access node list element;
MASCOTSystem-object access MASCJDTSy'stem;
data -types_list access data-type_list_element;
IDA-template-list access IDA template_list-element;
root_template list access root-template_list-element;
subsystem-list access subsystem list element;

BEGI N
constructAZ?_-Diagram(ACPDiagram);

formn-data-types(data-types_list);
generate-data-type!s_frame(data_types-list);

form_-IDA-templates(data_types_list , IDA-template-list);
genearateIDA templates-frame(lDA template-list);

form root templates(data_types_list , root template list);
generate-root-templates-framne(root_template-list);

formSubsystems(data-types-list
IDA -template-list
root -template-list
AC?_Diagram
subsystem-list);

generate subsystem frame(subsystem list);

formMASCQTSystem(data-types_list
IDA-template~list
root -template list
subsystem__list
ACPDiagram,
MASCOTSystem object);

gene2rate-main_program-frameCMASCOTSysteu._object);

save_!1ASCOTSystem(M4ASCOTSystem o~bject , data_types_list
IDA template-list rc.t-template-list);

saveAC?_Diagraw(ACPDiagram);
END cons truct-data-base;

-Al -39-

1. The ACP Diagram

The use of the MASCOT philosophy in an Ada environment is demonstratea oy
simple example. Its ACP Diagram is shown below.

--

- - - - - - - - - - - - - - - - -

Activity_1 > - > Activity_2

- - - - - - - - - - - - - - - - -

IDA_1

V

IDA_2

V

Activity_3 ---------- > - > Activity_4

IDA_3

Activity 1 generates a string and either puts this string into Pool IDA 2 or
sends a number to Activity 2. Activity 3 reads from Pool iDA 2 3nd sen.s a
number either to Activity 2 or 4 depanding on the value of 3 c nstant pr-imeter.
Activities 2 and 4 only consume the messages. Tnc , codes are equiv Ient.

-DA_2 stores the strings generating a key with which the strings can e
retrieved. Reiders of IDA_2 are given precendence over writers. Acti;ity 3
generates a Key randomly to retrieve the strings stored in IDA_2. IDA 1 is a
fast channel storing several data objects temporarily. IDA_3 is a very s.o)
channel. It can only hold one data object at a time. The data objects pisseO
through IDA 1 and 3 are equivalent.

The ACP Diagram is transferred by the procedure "construct ACPDiagram" into a
chained list shown below. For easier reading the form of the list and of its
elements is not totally equivalent to the Ada implementation. Some necessary
references of the Ada data structure are dropped for this reason. A referenc?
is indicated by the sign "->". Strings are enclosed in quotes.

- A2 - 1 -

ACPDiagram: element: ->node_1 node_1: name:- "Activity_1"
next: -- arcs: -> arc-list 1

class: act

node 2: namne: "IDA -1"1

-->: element: ->node 2 arcs: -> arc-list 2
next: -- class: channel

-------------- node_3: name: "Activity_-2"1
arcs: -> arc list_3

--:element: ->node_3 class: act

next: -

node 4: name: "IDA -2"1
- ----------- arcs: -> arc list 4

class: pool
--:element: ->node 4

next: -- node_5: name: "'Activity 3._"
arcs: -> arc laist_5

----- ----- ---- class: act

--:element: ->node_5 node 6: name: "IDA -3"1
next: -- arcs: -> arc list-E

class: channel

noce 7: name: "'Activity_'."1
--:element: ->node 6 arcs: -> arc list 7

next: -- class: act

-- >: element: -> node_7
next: NULL

arc list 1: element: -)arc 1 arc-list_2: element: ->arc 1
next: -- next: -

-- >: element: -)arc 2 -- :element: ->arc

next: NULL next:* -

arc list_3: element: -> arc3 ---------

next: NULL
--:element: -> arc 5

next: NULL

-A2 2-

arc list 4: element: -> arc_2 arc ±ist 5: element: -> arc 4

next: -- next: --

-->: element: -> arc 4 --): element: -> arc 5
next: NULL next: --

arc list_6: element: -> arc_6

next : --
-- >: element: -> arc 6

next: NULL

-- >: element: -> arc 7 arc list 7: element: -> arc_7

next: NULL next: NULL

arc 1: name: "put" arc_5: name: "Put"

direction: to direction: to
source: -> noJe 1 source: -> noJe 5
sinK: -> noe 2 sinK: -> node 2

arc 2: name: "update" arc 6: name: "puT"

direction: to direction: to
source: -> node 1 source: -> node 5

sink: -> node 4 sink: -) node o

arc 3: name: "get" arc 7: name: "It
direction: from direction: from

source: -> node 3 source: -> nc e 7

sink: -> node 2 sink: -> noce

arc 4: name: "retrieve"

direction: from
source: -> node 5

sink: -> node_4

2. The Construction Data Base

This chapter demonstrates the to be bnult Coistru2tion D 3ta Vse. T
possibilities of constructing an application system are snown: firstly _ ;y
Subsystems, secondly without Subsystems.

The entries of the Construction Data Base are grouped in a top-Jo r~r.

This eases the readirng. However, the construction is performe n 3 bottm-p
way.

2.1 Tne Example with Subsystems

The Activities 1, 2, and 5 are subsumed under Subsystem 1. Acti::y v

Subsystem 2. IDA 3 therefore is a Subsystem-IDA.

- A2 - -

7 A-A13 41 TH SE0F HE MAOT YH I OSO PT FOR THE CONSTRCTON
OF ADA PROGRAM (U O AL SINAL AND RADA
ESTABLIHMENT MA LVRN (NOOL ND) 0 CKESR O CT 83

UNCLASSFE RSREN-N3009 OR I R_ 90207FG92 N

IIIfI SM L

11111!2 1. 11.111111.2 111111. I 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS I96-A

MASCOTSystem: class: with-subsystems
name: "MASCOTSystem"
file: "file.MaSCOTSystem"
subsystems: ->subsystem-list

subsystem IDAs: ->subsystem-iDA-list

subsystem-list: element: -)Subsystem_1

next.: -

--:element: -> Subsystem_2
next: NULL

subsystemIDA-list: element: -> IDA-3
next: NULL

Subsystem_1: name: "Subsystem_1"1
file: "1file.Subsystem I"
parameters: ->Si_parameter list
activities: S1 Si activityTast
IDAs: -> SiIDA list
subsystemIDAs: -> Si.subsystemIDA-list

Subsystem_2: name: "Subsystem_2"1
file: 1"file.Subsystemn 2"1
parameters: NULL
activities: -> S2_ac-tivity-list
IDAs: NULL
subsystemIDAs: -> 52_subsystemIDA-list

Si parameter list: element:-------------- >: rormal: "selector"
next: NULL actual: "150"1

Si-activity_list: element: ->Activity-1 SiIDA-list: element: -)IDA_1

next: -- next: -

--:element: ->Activity_2-?) element: -> IDA -2
next: -- next: NULL

--:element: -> Activity 3
next: NULL

-A2 -4-

Si subsystemIDA-list: element: ->IDA-3

next: NULL

S2-activity_list: element: -> Activity-.4
next: NULL

S2_subsystemIDA-list: element: -> IDA_3
next: NULL

Activity_1: name: "Activity_1"
root: -> RootTemplate_1
parameters: NULL
accessyprocedures:- Aljwrocs
IDAs: -)AlIDAs

Activity_2: name: "Activity_2"

root: -> RootTemplate_3
parameters: NULL
access-procedures: ->A2-procs
IDAs: -)A2_IDAs

Activity_3: name: "Activity_-3"
root: ->Root_-Template_-2

parameters: -> A paras
accessyprocedures: ->A3-procs
IDAs: -- A3 IDAs

Activity24 name: "ActivityJIt
root: -> RootTemplate_3
parameters: NULL
access-procedures: ->A4procs

IDAs: ->A4 IDAs

Al-procs: element:--------------------- >: formal: "write-poo
1'

next: -- actual: "IDA_2.update"l

--:element:---------------------)>: formal: "write channel"

next: NULL actual: "IDA_1.put"

A 2-5-

AlIDAs: element: ->IDA_2

next: -

--:element: -> IDA_1
next: NULL

A2jwroc3: element:--------------------- >: formal: "read-cha.nnel"
next: NULL actual: "IDA_1.get"

A2_IDAs: element: -> IDA_1
next: NULL

A3_Procs: element:--------------------- >: formal: "readLpool"l
next: -- actual: "IDA_2.retrieve"l

--:element:--------------------- >: formal: "write ch3nnel 1"
next: -- actual: "IDA_ i7put" -

--:element:--------------------- >: formal: "write channel 2"
next: NULL actual: "IDA_3.put"

A3_paras: element:--------------------- >: formal: "selector"t
next: NULL actual: "selector"i

A3_IDAs: element: ->IDA_2

next: -

--:element: ->IDA 1
next: -

--:element: -> IDA-3
next: NULL

AI _procs: element:--------------------- >: formal: -read channel"
next: NULL actual: "IDA 3.get"

A4-IDAs: element: -> IDA_3
next: NULL

-A2 - 6-

IDA 1: class: channel IDA_3: class: channel
name* "IDA I" name: "IDA 3"
file: off file: "tile.IDA 3"
template: -)IDATemplate_1 template: ->IDA Template_3
data-types: -)Il data data types: ->13 data
parameters: -)I1paras parameters: - 3paras

IDA 2: class: pool
name: "IDA_20
file: tf
template: -)IDA 'Template_2
data types:)12 data

Il data: element: ->data -type_1
next: MULL

Ilparas: element: ------------------- >: formal: "channel data"
next: NULL actual: "counter";i

12-data: element: -> data-ye_
next: NULL

13_data: element: -> data-typej1
next: NULL

I3_paras: element: ------------------- >: formal: "Channel data"
next: NULL actual: "counter"7

data-types list: element: data _type 1
next: -

--:element: data type _2
next: NULL-

data type_1: name: "datatye1
spec: "file~dt _tpjspec"
bodie: "

data type-2: name: "data type _2"
spec: "file.datatype-2.spec"
bodie:

A 2 - 7-

IDA template-list: element: ->IDA Template 1
next: -

--:element: ->IDATemplate-2

next: -

--:element: -> IDATemplate_3
next: NULL

IDATemplate_1: class: channel
name: "IDA Template_1"
spec: "file.IDA_-Terplate_1.spec"
bodie: "file.IDA_-Template 1.body"
access-procedures: -> T1_procs
parameters: ->IT1_paras

IDATemplate_2: class: pool
name: "IDA Template_2"
spec: "file.IDATem plate_2.spec"
bodie: "lfile.IDATempiate_2.body"
access,_procedures: -> T2_procs
data-types: -> T2 data

IDATemplate_3: class channel
name: "IDA -Template_3"1
spec: "file.IDATemplate_-3.spec"
bodie: "file.IDA_-Template_3.body"
access _procedures: ->ITi~procs
parameters: -> T3_paras

IT1_procs: element:--------------------- >: formal: "put"
next: -- actual: "

--:element:---------------------)>: formal: "get"
next: NULL actual: "

1T1_paras: element:--------------------- >: formal: "channel-data"
next: NULL actual: "

-A2-8-

IT2_procs: element: ------------------ >: formal: "update"
next: NL actual: ""

o ep selement: ------------------- : formal: "retrieve"

next: NULL actual:

-T2 data: element: -> data: 2
next: NULL

IT3_procs: element: -------------------->: formal: "put"
next: -- actual:

-element:-------------------- >: formal: "get"
next: NULL actual: ""

IT3_paras: element: -------------------->: formal: "channel-data"f
next: NULL actual:

Root-template-list: element:ne" RootTemplate_1
next: -

spelement: Ro lRoot_Template_s2
next: -

boelement: -> Root e.Template_3
next: NULL

RootTemplate_1: name: "RootTemplate_1"
spec: "file.Root Template_1.spec"
bodie: "file.RootTemplate_2.body"
parameters: NULL
accessprocedures: -) RT1procs
datatypes: -> RT1_data

Root Template 2: name: "Root Template 2"
spec: "file.Root Template_2.spec"
bodie: "rile .Root template 2 .body"
parameters: ->RT2_paras

aoocsjrocedures: -)RT2_procs
data-types: ->RT2_data

-A2 9-

Root Template .3: name: *Root Template 3"
spec: "file.RootTemplate3.spec"
bodie: "file.RootTemplate3.body"
parameters: NULL
accessprocedures: -> RT3.procs
data types: -> RT3 data

WTI1procs: element: ------------------- >: formal: "writeypool"
next: -- actual: ""

-- >: element: ------------------- >: formal: "write-channel"
next: NULL actual: ""

RT1_data: element: -> data.type_1
next: --

-- >: element: -> data type._2
next: NULL

RT2_paras: element: -------------------- >: formal: "selector"
next: NJLL actual: ""

PT2_procs: element: -------------------- >: formal: "read pool"
next: -- actual: ""

-- >: element: -------------------- >: formal: "write ch3nnel 1"
next: -- actual: ""

--): element: -------------------- >: formal: "write channel 2"
next: NULL actual: ""

RT2_data: element: -> datatype_1
next: --

--): element: -> data-type_2
next: NULL

RT3procs: element: -------------------- >: formal: "readchannel"
next: NULL actual: ""

- A2 - 10 -

RT3_.data: element: -> data..type_1
next: NULL

2.2 The Example without Subsystems

This Subchapter shows the head of the Construction Data Base, if Subsystems are
not concerned. The other entries of the data base are already shown by
Subchapter 2.1. The only exception is the entry "A3_Paras".

MASCOTSystem: class: without-subsystems
name: "MASCOTSystem"
file: "file.MASCOT System"
activities: -> activity_list
IDAs: -> IDA-list

activitylist: element: -> Activity_1
next: --

-- >: element: -> Activity_2
next: --

-- >: element: -> Activity_3

next: --

-- >: element: -> Activity_4
next: NULL

A3_paras: element: -------------------- >: formal: "selector"
next: NULL actual: "50"

IDA-list: element: -> IDA 1
next: --

-- >: element: -> IDA 2

next:--

--): element: -> IDA 3
next: NULL

- A2 - 11 -

3. Data Ty3es of the IDAs

Two data type packages are used in the example. The first one represents the
types used by IDA 1 and 3, the second one the types used by IDA 2, and, of

course, by the respective Activities.

PACKAGE datatype_l IS

SUBTYPE counter IS integer RANGE 0 .. 49;

END data type_1;

PACKAGE data_type_2 IS

TYPE store counter IS
RECORD

number : integer;

text : string(l 100);
END RECORD;

SUBTYPE key IS integer RANGE 1 .. 100;

END data_type_2;

4. The IDA Templates

There are three templates (one for every IDA) in the example. This approach is
chosen to show that Channel can share the same data type definition.

4.1-IDA Template I

IDA Template I implements a Channel which can store up to one hundred data
objects of a non-abstract data type temporarily. Putting an object to the
Channel is impossible, if the data area is full. Getting an object fron the
Channel is impossible, if the data area is empty. The data objects are read in
the order in which the are put to the Channel. Readers and writers have equal

priority in accessing the Channel.

GENERIC

TYPE channel-data IS PRIVATE;

PACKAGE IDA Template 1 IS

PROCEDURE put(x : IN channel data);
PROCEDURE get(x : OUT channel-data);

END IDA Template 1;

- A2 - 12 -

A

PACKAGE BODY IDA Template-1 IS

size : CONSTANT integer 100;
dataarea : ARRAY (1 .. size) OF channel data;
count : integer RANGE 0 size 0 ;
in index ,
out index : integer RANGE 1 size 1;

TASK t IS
ENTRY read (x : OUT channel data);
ENTRY write(x : IN channel-data);

END t;

TASK BODY t IS
BEGIN

LOOP
SELECT

WHEN count < size =>
ACCEPT write(x : IN channel-data) DO

dataarea(in index) := x;
END;
in index := in index MOD size + 1;
count := count + 1;

OR
WHEN count > 0 =>

ACCEPT read(x : OUT channel-data) DO
x := dat__area(outindex);

END;
out index := out index MOD size + 1;
count := count - 1;

END SELECT;
END LOOP;

END t;

PROCEDURE put(x : IN channel-data) IS
BEGIN

t.write(x);
END put;

PROCEDURE get(x OUT channel-data) IS
BEGIN

t.read(x);
END get;

END IDA Template_1;

4.2 IDA Template 2

IDA Template 2 implements a Pool. The Pool has a data area with as many entries
as the range of the type "key" denotes. All entries of the data area are preset
with an initial value. After reading an entry it is reset to the initial value.
The key which prescribes the storage place of an object in the data area is

derived from the object itself. Readers have precendence over writers. Writers
overwrite already stored data objetes.

- A2 - 13 -

WITH datatype.2;
USE datatype_2;

GENERIC
PACKAGE IDATemplate_2 IS

PROCEDURE update (x : IN store counter ; y OUT key);
PROCEDURE retrieve(x : IN key ; y : OUT storecounter);

END IDA Template_2;

PACKAGE BODY IDATemplate_2 IS

data area : ARRAY (1 .. key'last) OF store-counter
(1 .. key'last =>

store counter'(number => 0,
text => (l..storecounter.text'last) => '

TASK t IS
ENTRY write(x : IN store counter ; y : OUT key);

ENTRY read (x : IN key ; y OUT store counter);
END t;

TASK BODY t IS
BEGIN

LOOP
SELECT

ACCEPT read(x IN key ; y OUT store-counter) DJ
y := data area(x);
data-area(x) :=

store counter'(number => 0,
text => (l..store counter.text'last) => '

END;
OR

WHEN read'count = 0 0)
ACCEPT write(x : IN store counter ; y : OUT key) D)

y := x.number MOD key'last + 1;
data area(y) := x;

END;

END SELECT;
END LOOP;

END t;

PROCEDURE update(x : IN store-counter ; y : OUT key) IS
BEGIN

t.write(x , y);
END update;

PROCEDURE retrieve(x IN key ; y OUT store-counter) IS

BEGIN
t.read(x , y);

END retrieve;

END IDATemplate_2;

- A2 - 14-

4.3-IDA-Teoplate 3

IDA Template 3 implements a Channel. The Channel can only hold exactly one
object temporarily. Therefore reading and writing must follow eachother in a
strict order, starting with writing. The data objects which are passed through
the Channel can be of any non-abstract data type.

GENERIC

TYPE channel-data IS PRIVATE;

PACKAGE IDATemplate_3 IS

PROCEDURE put(x IN channeldata);
PROCEDURE get(x OUT channel data);

END IDATemplate_3;

PACKAGE BODY IDATemplate_3 IS

data-area : channel data;

TASK t IS
ENTRY read (x : OUT channel-data);
ENTRY write(x : IN channel-data);

END t;

TASK BODY t IS
BEGIN

LOOP
ACCEPT write(x : IN channel data) DO

data area x;
END;
ACCEPT read(x OUT channel-data) DO

x := data-area;
END;

END LOOP;
END t;

PROCEDURE put(x : IN channel-data) IS
BEGIN

t.write(x);
END put;

PROCEDURE get(x OUT channeldata) IS
BEGIN

t.read(x);
END get;

END IDA Template_3;

- A2 - 15 -

5. The Root Templates

Three Root templates are used by the example. Activity 2 and 4 are derived from
the same template.

5.1 Root Template 1

An Activity derived from Root Template 1 communicates with other Activities
through the formal procedures "write_pool" and "write channel". In this example
the procedures indicate accesses to IDA 1 which is a Channel and to IDA_2 wrnacn
is a Pool but this is not prescribed. Every IDA one of whose access procedures
matches one of the formal procedures can be used as communication link.

Root Template 1 generates an object called "pool_object". Depending on tne
result of a random generator which delivers either "true" or "false" t.e
procedures "writepool" or "write-channel" are selected as commanication linKs
respectively.

WITH datatype_1 , datatype_2;
USE data_type_1 , data_type__2;

GENERIC
WITH PROCEDURE write_pool(x : IN storecounter ; v OUT key);
WITH PROCEDURE write channel(x : IN counter);

PROCEDURE RootTemplate_1;

PROCEDURE RootTemplate_1 IS

pool-object : store counter;
poolkey : key;
channelobject : counter;

-- other declarations including the boolean function "random"

BEGIN

-- list of statements including the begin of a loop
-- and the generation of "pool-object"

IF random
THEN

write_pool(poolobject , poolkey);
ELSE

channelobject := poolobject.number MOD (counter'last + 1);
write_channel(channel__object);

END IF;

-- list of statements including the end of the above mentioned loop

END RootTemplate1;

- A2 - 16 -

5.2 Root Template 2

Root Template 2 communicates throuh three access procedures. It reads using the
procedure "readpool" from an IDA depending on the value of a randomly generated
key "poolkey". The template selects either the procedure "writechannelI" or
the procedure "write channel_2" for passing messages depending on its value
parameter and on the value of the read object "poolobject".

WITH datatype_l , data type_2;
USE datatype_l , datatype_2;

GENERIC
WITH PROCEDURE readpool(x : IN key ; y : OUT storecounter);
WITH PROCEDURE writechannel_1(x : IN counter);
WITH PROCEDURE write channel 2(x : IN counter);

PROCEDURE Root Template_2(selector : IN integer);

PROCEDURE RootTemplate_2(selector : In integer) IS

poolobject : storecounter;
poolkey : key;
channelobject : counter;

-- other declarations

BEGIN

-- list of statements including the randomly generation of "poolkey"
-- and the begin of a loop

read_pool(poolkey , poolobject);

IF poolobject.number > selector AND selector <= (counter'last + 1)
THEN

channelobject :z poolobject.number MOD selector;
writechannel_2(channel_object);

ELSE
channel object := poolobject.number MOD (counter'last + 1);
write_channel_1(channel_object);

END IF;

-- list of statements including the end of the above mentioned loop

END Root.Template_2;

5.3 Root Template 3

Root Template 3 only reads messages using the procedure "read-channel" and
consumes them.

-A2- 17 -

WITH data_type_1;
USE data_typeI;

GENERIC
WITH PROCEDURE read channel(x OUT counter);

PROCEDURE Root Template_3;

PROCEDURE Root Template_3 IS

channel_object : counter;

-- other declarations

BEGIN

-- list of statements including the begin of a loop

readchannel(channelobject);

-- list of statements including the end of the above mentioned loop

END RootTemplate_3;

b. Subsystem-IDAs

One Subsystem-IDA is considered by the example. IDA 3 is derived from IDA
Template 3 using a type of the package "data type_1" as definition for its
formal data type "channel-data".

WITH data type_1;
USE datatype_1;

PACKAGE IDA_3 IS
NEW IDATemplate_3(channel data z> counter);

7. Subsystems

Tne Activities are subsumed under two Subsystems. Activity 1, 2, and 3 form

Subsystem 1, Activity 4 Subsystem 2. Subsystem 1 has a value parameter to

supply Activity 3 with a proper value for its value parameter.

- A2 -18-

WITH data type_1 , data type 2;
WITH IDA Template_1 , IDATemplate_2;
WITH RootTemplate_1 , RootTemplate_2 , RootTemplate_3;
WITH IDA-3;
USE datatype_l , datatype_2;
USE IDA.Template_1 , IDATemplate 2;
USE Root Template_1 , RootTemplate_2 , RootTemplate_3;
USE IDA_3;

PROCEDURE Subsystem_1(selector : IN integer)
IS

PACKAGE IDA 1 IS
NEW IDATemplatel(channel data => counter);

PACKAGE IDA_2 IS
NEW IDATemplate_2;

TASK Activity_1;

TASK BODY Activity_1 IS
PROCEDURE ActivityjRoot IS

NEW RootTemplate_1(write_pool :> IDA_2.update
write channel z> IDA_1.put);

BEGIN
Activity_1_Root;

END Activity_l;

TASK Activity_2;

TASK BODY Activity_2 IS
PROCEDURE Activity_2_Root IS

NEW RootTemplate_3(readchannel :> IDA_1.get);
BEGIN

Activity_2_Root;
END Activity2;

TASK Activity_3;

TASK BODY Activity_3 IS
PROCEDURE Activity_3_Root IS

NEW RootTemplate_2(readpool => IDA_2.retrieve
write._channel 1 => IDA 1.put ,
writechannel_2 => IDA_3.put);

BEGIN
Activity_3_Root(selector);

END Activity_3;

BEGIN

NULL;

END Subsystem.1;

- A2 - 19 -

WITH RootTemplate 3;
WITH IDA 3;
USE RootTemplate 3;
USE IDA_3;

PROCEDURE Subsystem_2
IS

TASK Activity.4;

TASK BODY Activity_ IS
PROCEDURE Activity_4_Root IS

NEW RootTemplate 3(readchannel =) IDA3.get);
BEGIN

Activity_.Root;
END Activity_4I;

BEGIN

NULL;

END Subsystem_2;

8. The Main Program with Subsystems

The main program consists of two tasks which call the two Subsystems
respectively. Subsystem I is supplied witt a proper actual value paramater.

- A2 -20 4
... Il II i, I-

WITH Subsystem_1 , Subsystem_2;

PROCEDURE MASCOTSystem
is

TASK Subsystem_1_task;

TASK BODY Subsystem_1_task IS
BEGIN

Subsystem_1(50);
END Subsystem_1_task;

TASK Subsystem_2_task;

TASK BODY Subsystem_2_task IS
BEGIN

Subsystem_2;
END Subsystem_2_task;

BEGIN

NULL;

END MASCOT-System;

9. The Main Program without Subsystems

If no Subsystems are considered, the main program is formed like a Subsystem.
There is a task for every Activity. Every IDA must be created by instantiating

the proper template. The root procedures must be supplied with proper actual
value parameters, if requested (for example, look at Activity 3).

- A2 -21 -

WITH data-type_1 data type_2;
WITH IDA Template_ , IDATemplate_2 , IDATemplate_3;
WITH Root Template_1 , Root Template_2 , RootTemplate_3;
USE datatype_1 , datatype 2;
USE IDA Template.1 , IDATemplate_2 , IDATemplate 3;
USE RootTemplate_1 , RootTemplate_2 , Root Template_3;

PROCEDURE MASCOTSystem IS

PACKAGE IDA 1 IS
NEW IDATemplate_1(channeldata => counter);

PACKAGE IDA 2 IS
NEW IDATemplate_2;

PACKAGE IDA 3 IS
NEW IDATemplate_3(channel data => counter);

TASK Activity_1;
TASK BODY Activity_1 IS

PROCEDURE Activity_1_Root IS
NEW RootTemplate_1(write_pool => IDA_.2.update

write-channel => IDA 1.put);
BEGIN

Activity_1_Root;
END Activity_1;

TASK Activity-2;
TASK BODY Activity-2 IS

PROCEDURE Activity_2_Root IS
NEW RootTemplate_3(reaichannel => IDA_1.get);

BEGIN
Activity_2_Root;

END Activity_2;

TASK Activity_3;
TASK BODY Activity_3 IS

PROCEDURE Activity_3_Root IS
NEW RootTemplate_2(readpool => IDA 2.retrieve

write channel I > IDA_1.put ,
write, channel_2 > IDA 3.put);

BEGIN
Activity_3_Root(50);

END Activity_3;

TASK ActivityI;
TASK BODY Activity_ IS

PROCEDURE Activity_4_Root IS
NEW RootTemplate3(readchannel => IDA_3.get);

BEGIN
Activity_4_Root;

END Activity_4;

BEGIN
NULL;

END MASCOT System;

- A2 - 22 -

DOCUNEtT CONTROL SHEET

Overall security classification of sheot las .ified...

(As far as possible this sheet should contain only unclassified Infereation. If it Is necessary to enter
classified information, the bo concerned must be marked to indicate the classification e (a) (C) or (S)

1. .RIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security

Repor 83009 Classification
I I

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location
known) Royal Signals and Radar Establishment

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location

Code (if known)

7. Title

The Use of the MASCOT philosophy for the construction of Ada programs

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference nwaers) Title. place and date of conference

8. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3.... 10. Date pp. ref.

Fickenscher, G II

11. Contract lumber 12. Period 13. Project 14. Other Reference

15. Distribution statement

Unlimited

Descriptors (or keywords)

continue on separate piece of paper

Abtract The development of computer based systems poses major problems on the
people involved. Both, MASCOT (the official design methodology of the UK
Ministry of Defence for real-time systems) and Ads (the official programming
language of the US Department of Defence for embedded computer systems) claim
to offer a solution to the majority of these problems. MASCOT is a programing
support environment which is independent of a particular programing language,
but it defines its own runtime kernel for parallel execution of different
program parts. Ada, on the other hand, offers language constructs to express
parallelism of program parts, but Ada enforces a particular design methodology
with its language rules.

1180/l.8

Continued Sumary

This paper investigates whether it is feasible to combine the MASCOT methodology
with the programming language Ada. It demonstrates a possible implementation of
a MASCOT Construction Data Base in Ada, and it explains the combination of
MASCOT and Ada by using a simple example.

