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Abs tract

Anew approach for the generation of flow-adaptive

grids for numerical solution of fluid dynamics problems is

presented. However, the method is applicable to the numer-

ical evaluation of any partial differential equation.

The dynamic coupling of the grid with the flow solu-

tion is accomplished through a grid-optimization technique.

The optimization is based on the minimization of the finite

difference truncation error in the transformed plane. The

method is tested on the one-dimensional Burgers' equation

which is representative of typical fluid dynamics problems.

Burgers' equation is solved with an optimized SOR methodA
using upwind differences for the convective term.

Results are presented for various Reynolds numbers

and are compared to results from a similar adaptive grid

method and to results for a static grid. They show the

ability of the method to concentrate grid points high in

gradient regions where large truncation errors occur.

vi
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I ADAPTIVE GRID GENERATION FOR NUMERICAL SOLUTION

OF PARTIAL DIFFERENTIAL EQUATIONS

I. INTRODUCTION

Fluid mechanics and heat transfer problems are charac-

terized by complex nonlinear partial differential equations,

for which analytic solutions can be obtained for only a few

limited cases. Due to the rapid increase in speed and mem-

ory, and declining cost of the digital computer, an ever in-

creasing emphasis is being placed on numerical solution of

the governing differential equations by finite difference

methods. In the past two decades, considerable progress has

been made on the development of more efficient and accurate

numerical algorithms.

A vital component of any numerical algorithm is the grid

upon which the solution is obtained. The solution can be

greatly simplified if a well-suited grid is chosen, just as

the choice of cylindrical coordinates rather than rectangu-

lar coordinates simplifies the solution of the potential equa-

tions about a cylinder. In contrast, a poorly constructed

grid can not only lead to large errors in the solution, but

also can cause instability resulting in a totally incorrect

solution or no solution at all. The area of numerical grid

generation is relatively young receiving much attention in



the past ten years. As J. F. Thompson, a leader in the field,

writes (1:1)

This area involves the engineer's feel for the
physical behavior, the mathematician's under-
standing of the functional behavior, and a lot
of imagination, with perhaps a little help from
Urania.

Two very important factors play a role in the choice of

the grid. First, the coordinates should be surface oriented

so that the surface boundary conditions may be implemented

with no need for interpolation between grid points. This

not only simplifies the boundary condition implementation

but also eliminates large errors that may be produced in the

interpolation process. In addition, surface oriented coor-

dinates also permit coordinate-related approximations in the

flow equations (2:35). Second, the grid must accurately re-

solve high gradient regions which are common in fluid dynam-f

ics problems, because it is in these regions where large

numerical errors occur.

One solution of the first problem is the use of partial

differential equations to generate the grid. This method

was popularized by Thompson, Thames, and Mastin in 1974 (3)

and is widely used today. The grid generation procedure in

this thesis, presented in more detail later, is based on a

modified version of the original equations presented in that

paper.

The solution of the second problem is more difficult.
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The method of Thompson et al. provides control for the stretch-

ing of interior regions to resolve the high gradients; how-

ever, there is, in general, no method for determining the val-

ues of those control functions due to the lack of a priori in-

formation concerning those gradients (4:28). In Ref. 4, a

method was developed to compute the forcing function to mini-

mize truncation error using boundary layer theory; the result-

ing mesh system is referred to as a boundary layer dependent

coordinate system. Therefore, it is only valid in regions in

which boundary layer theory is applicable.

In recent years, flow adaptive grids in which the grid

point distribution is dynamically coupled to the developing

solution have emerged as a means to tackle the second problem.

Several different methods have been developed to achieve the

same effect--concentrate coordinates in high gradient regions

thereby decreasing truncation error and minimizing the number

of grid points necessary to produce a satisfactory solution.

Pierson and Kutler (5) describe a method in which the grid is

defined by a minimization of the local truncation error in

the least squares sense. The grid is then algebraically gen-

erated, using Chebyshev polynomials. Saltzman and Brackbill

(6) define their grid based on a variational analysis result-

ing in a system of partial differential equations whose solu-

tion produces the grid. In the work of Dwyer et al. (7) the

grid points were moved in time, based on the gradients in the

3



flow variable. In the paper by Ghia et al. (2), the grid a-

daption criterion is based on the minimization of the coef-

ficient of the convective term in the transformed flow equa-

tions. Freeman (8) describes a method used in conjunction with

the Thompson elliptic grid generation equations in which the

grid control functions are determined, based on solution grad-

ients. Anderson and Rai (9) describe another method in which

the grid points move directly under an attractive/repulsive in-

fluence of one another, based on the magnitude of the local er-

ror compared to the global error. This influence can be com-

pared to the force of a test charge in an electrostatic field

or to a gravitational field which can repel as well as attract.

Anderson and Rai list the following considerations for the

development of an adaptive grid (9:320):

1. The grid must evolve as part of the solution.

2. Grid points must move due to both boundary motion and

changes in the interior solution.

3. The grid speed equations should be as simple as

possible.

4. The grid speed equations must account for the ellip-

tic nature of the problem.

5. The resulting grid must reduce error, provide better

resolution, or otherwise improve the snlution.

6. The adaptive grid scheme must be easily extended to

any number of dimensions.

4



In addition, it is felt that the algorithm should be robust

enough to handle a variety of problems with arbitrary input

data.

The objective of this thesis is to develop an adaptive

grid which is based on the systematic determination of the

grid generation control functions used by the elliptic grid

generation equations of Thompson et al. Another goal of this

study is that, in the process of developing the adaptive grid,

an "optimum grid" is produced which reduces truncation error,

thus satisfying all conditions of item 5 above.

5



II. Mathematical Formulation

The adaptive grid method presented in this thesis is

based on a one-dimensional analysis for ease of formulation

and cost considerations. However, par, of the following

analysis include the second dimension which is necessary to

present a clear background for the method developed. In the

following, subscripts denote partial differentiation.

Background

For complex geometries, it is convenient to transform

the governing differential equations from the physical plane

to a computational plane where the solution is obtained and

then transformed back to the physical plane. For one-dimen-

sional, time dependent problems, this transformation is

t = T = Yx, t) (1)

where x, t are the physical variables and ,T are the com-

putational variables. The derivatives in the physical plane

transform as

fx f /J (2a)

f f[]/j 2  (2b)fxx _ f x

f= f- f xT /J (2c)

6



where if is the dependent flow variable and J is the Jacob-

ian of the transformation given by

J M x 1 /&X (2d)

Terms involving derivatives of physical space coordinates

with respect to computational space coordinates or vice versa

are referred to as the metrics of the transformation and x

is referred to as the grid speed. Due to the metri.cs, this

transformation renders the governing equations quite complex;

however, there are three attractive reasons which out weigh

the added complexity. First, in the computational plane, the

solution can be performed on a fixed rectangular grid with

uniform spacing. Second, the transformation makes it possible

to concentrate the distribution of curvilinear grid lines in

the physical plane in regions of high radients. Third, and

most importantly, the grid lines can be made to correspond to

the boundaries in the physical plane, no matter what the-shape.

Figure 1 shows the idea of the general coordinate transforma-

tion.

Up to now, the actual transformation has yet to be speci-

fied. One of the most popular methods for defining this trans-

formation is the method of Thompson et al. (.3). According to

this method, the grid is determined as the solution of a set

of elliptic differential equations

xx + yy P(,)3)
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S+ n yy Q( ,) (3b)

where x, y are the physical corrdinates, , n are the compu-

tational coordinates, and P, Q are functions which control

the grid spacing in the interior of the region, hereafter

called grid control functions.

The solution of Eqs (3) may be no easier to obtain than

that of the flow equations. However, if the roles of the de-

pendent and independent variables are interchanged so that

the solution is performed in the computational plane, the

boundary conditions may be specified along constant values of

the computational coordinates. This results in

x 2ax,, + yxn -J2 (Pxr + Qy) (4a)

'YEE- 2BYr + yy -J2 (Px + Qy ) (4b)

where

2 2
cc x + y (4c)

n x

X x + y y (4d)

2 2

xE + y2  (4e)

J = Y& yo + yn Y& (4f)

8



The Jacobian J must be non-zero for a unique transformation.

9For one dimension, Eqs (4) reduce to

+ PxE3 = 0 (5)

Equations (4) and (5) are highly nonlinear; their solu-

tion may lead to numerical difficulties in terms of oscilla-

tions and instabilities for even moderate values of the con-

trol functions P, Q (4:21). An alernate set of grid genera-

tion equations has been proposed (11:57) which eliminates

this nonlinearity. The new equations are

xx + E = ( 2 + E 2) P ( ,r) (6a)x yyx y

xx + yy ( 2 + ny 2 ) Q (,n) (6b)

which, after inversion, give

ax - 2sx + yx = - (apx + yQx ) (7a)
T~n TI

OYL y 26Y Tn + YYn " (aPY + ¥YQYn (7b)

where a, 6, y are the same as in Eqs (4).

For one-dimensional problems, Eqs (7) reduce to

x + Px - 0 (8)

9



Equation (8) is the grid generation equation used in the pres-

ent study. It is solved implicitly by an optimized Successive

Over Relaxation (SOR) technique. One-sided upwind differences

are used for the convective term based on the results of a

study by Ghia, Hodge, and Hankey (4). These authors had showed

that, when the control function became large, as it needs to

be for large Reynolds numbers, and a central difference is

used for the convective term, the solution of the grid equa-

tion becomes nonmonotonic and an oscillatory solution results.

The use of an upwind difference was shown to eliminate this

behavior.

Adaptive Grid Criterion

Any finite-difference representation of a derivative has

truncation error associated with it. This truncation error

must be small in order to obtain an accurate solution of the

problem. A central-difference representation of a first de-

rivative is

f = (f i+l - f i-i)V 2Ax + T.E. (9a)

where the truncation error (T.E.) is given by

2 Ax4
T.E. r f - x + H.O.T. (9b)

xxx Y xxxxx

and H.O.T. stands for 'higher order terms'. Similarly, a

10



second-order accurate backward-difference approximation for

a first derivative is

f (3fi  - 4fi_ 1 + fi-2)/ 2Ax + T.E. (lOa)

with
2 3

T.E. 2 f + AX f + H.O.T. (10b)
3 xxx 4 xxxx

In the past, efforts to minimize trucation error have

consisted of reducing the grid spacing Ax. This does indeed

decrease the magnitude of the truncation error, but at the

expense of an increased number of grid points necessary to

cover the domain and therefore an increased computational

time. For many problems, this may not be insignificant, es-

pecially for higher dimensions. An alternate method for de-

creasing error is to reduce the magnitude of the higher de-

rivatives. In the physical plane, one has no control over

these derivatives; however, in the computational plane, one

could gain control over these terms if the transformation

from the physical plane to the computational plane were based

on the reduction of these derivatives.

The one-dimensional transformation of a first derivative

is given by Eq (2a)

f = f /x (2a)

If the derivatives in the computational plane are expressed

11



as standard central differences with A taken as unity,

9 then

(Ila)
fx (f - f-) / 2x + T.E.

i+1 i-i

with

T.E. = -f / 6 x + H.O.T. (lb)

Thompson (1:4-6) gives a lengthy argument that T.E. must be

expressed in the physical plane giving

T.E. x E E f x f x 2 + H.O.T. (lic)
T-6 x x 2 fXX - xxx

Equation (lc) shows the T.E. to be very dependent on the

grid spacing. In short, the metrics must be minimized such

that their expressions in Eq (11c) are reduced in order to

reduce T.E. To reduce the metric error completely, however,

would be to eliminate the advantages of the transformation,.

On the other hand, if one considers the T.E. of f. in

the computational plane (for L =1) then,

T.E. = -f / 6 + H.O.T. (12a)

for a central-difference representation of the first deriva-

tive and

T.E. = -f / 3 + H.O.T. (12b)

12



for a second-order backward difference. In the computational

plane, the T.E. depends only on the higher order derivatives.

If the solution in the computational plane were a second de-

gree polynomial

= a2 2 + al + ao (13)

then the third, fourth, and all higher order derivatives would

be identically zero. For second-order-accurate finite dif-

ferences, the truncation error would be eliminated, no matter

what the grid spacing, and an optimum grid would be produced.

The number of grid points could then be reduced without sacri-

ficing accuracy.

In general, Eq (13) cannot be enforced over the entire

domain because there will inevitably be some error in the

solution process and, if Eq (13) is not satisfied exactly,

large variations in the grid spacing may cause significant

errors in the solution.

It may only be necessary to enforce Eq (13) locally.

The leading term of the local truncation error is proportion-

al to the third derivative. Let it be approximated by a cen-

tral difference, giving

T.E. f - f (14a)
ii i+1 Ei-i1

Again, using central differences to evaluate the second de-

rivatives gives

13



T..i fi+2 -2f i+1  + 2f i 1  f i~-2 (14b)

Therefore, the local T.E. at a point is approximately depend-

ent only on its immediate neighbors. In this context, theI entire domain can be divided into several segments, each of

which satisfy Eq (13), i.e.

*1 2f a2  + a1  + a0  (15)

At each grid point, a second order least squares curve fit

is performed using the solution at the previous iteration to

calculate the constants. The number of data points NP used

in the calculation may be specified to be any number greater

than 3 and less than or equal to the total number of grid

points. For example, if NP = 5, then the constants at each

grid point i will be determined by the previous solution

values at i±2, i±1, i for a balanced curve fit. At the

boundaries, the curve fit will necessarily be unbalanced.

The grid control function is then determined as described

in the next section. If NP is equal to the total number of

grid points, the entire domain is used in the least squares

curve fit, producing just one set of constants. Because the

constants are based on the solution at the previous iteration,

the grid will change as the flow solution changes, lagging it

by one iteration.

14



Grid Control Function Evaluation

The previous section described the goal of the adaptive

grid. In this section, the means of achieving that goal is

defined.

Equation (2a) gives the transformation of the first de-

rivative. Solving for the computational derivative gives

f, f x (16)

Differentiating w.r.t. E gives

f + f x (17)f x f x

Using the grid generation equation, Eq (8), and Eq (15), an

equation of the form F(P) = 0 results where

F(P) - - 2 a2 / x (18)F() xx x x 2f

for which a Newton-Raphson iteration can be performed to solve

for the root P.

ps+1 = p Fs(p)/ (?- ) S (19)

where s denotes the iterate level. Using Eq (18) to deter-

mine F(P) and 2F gives
ap

ps+l = pS (f xx - Pfx - 2a 2/x )/(-fX) (20)

At this point, a relaxation factor e is introduced so that

15



the grid movement be gradual (9:321-322) and the physical

derivatives are replaced by their computational counterparts,

Eqs (2), giving

[2
p5l=S + e 2a 2 E+ a (21

where 0 < e < 1 and f in the last term has been replaced

by its counterpart from Eq (15) for consistency.

All values at s are known for the previous time step

or iteration. The constants a 2 and a1are evaluated from

the least squares curve fit to that solution. All derivatives

are evaluated as second-order central differences and initially

P must be provided as input to start the solution. Currently,

no formal method is used to determine 0 so it must be deter-

mined by experimentation.

With the new control function specified a new grid is

then determined as the solution of Eq (8). For comparison,

the grid control function used by Freeman (8) is given by

the first two terms on the right hand side of Eq (21). It is

referred to as a linear method because it results from speci-

fying the solution in the computational plane to be linear,

therefore producing f,, i 0. It is felt that this may be

over-constraining the problem because the present analysis

shows that it is only necessary to satisfy the condition

f =constant, (not necessarily 0). The present case is

16



referred to as a quadratic method.

One-Dimensional Model Problem

The viscous Burgers' equation is chosen to test the a-

daptive grid method because it is typical of many problems

encountered in fluid mechanics. It is a nonlinear, second

order equation, and its solution produces large gradients as

the Reynolds number, Re, is increased. The resulting flow can

be compared to a boundary layer profile of thickness propor-

tional to (i/Re).

The nonconservative form of Burgers' equation is

U + UU = U / Re (22a)

with boundary conditions

U(- -,t) = 1.0 U(0,t) 0.0 (22b)

and initial conditions

U(x,O) = 1.0 for x < 0 U(0,0) 0.0 (22c)

The analytical steady state solution is given by

U(x) = - tanh (x Re/2) (23)

Equation (22a) is transformed to the computational

17



plane by use of Eqs (2) resulting in

FU-x- x-U_
U + + U (24)Ur xE Re x,7 ex

L ex jRe x

An optimized Successive Over Relaxation (SOR) method is

used to solve Eq (24). For high Reynolds number flows, it

has been shown that central differencing of the convective

term leads to an oscillatory solution (4:23). Therefore,

second-order, one-sided upwind differencing is used for the

convective term. The time derivatives are expressed as a

first-order backward differences and the diffusion term is

represented as a second-order central difference. The metrics

are evaluated as central differences.

Solution Procedure

The solution algorithm may be summarized as follows;

The computer program developed to solve this problem using the

adaptive grid method developed here is listed in Appendix B.

1. Provide an initial guess for the control function P.

2. Solve Eq (8) for the grid point distribution.

3. Solve Eq (24) to obtain the flow solution for the

first iteration.

4. Perform a least squares curve fit of the flow solution

to determine the constants a2 and aI .

5. Generate a new grid control function distribution by

solving Eq (21).

6. Repeat Steps 2 through 5 until steady state is

18



reached.

Steady state is assuned to have been achieved when the averaze

difference in the solution between two successive iterations

is less than a specified tolerance. This condition is given

as

T I un n-i125
i 7 U. I < (25)

where I is the total number of grid points, n denotes the

iteration level, and E is the tolerance.

Error Analysis

For this study, an analytical steady state solution ex-

ists, thereby providing a direct means to determine the

truncation error. However, in general, no such solution will

be available. Another measure of the truncation error is

defined as the residual error R.E. and is determined as the

difference between the computed solution and the solution de-

fined by Eq (15). The local error, both truncation and re-

sidual, is defined to be the error at a point. The global

error is the value of the local errors averaged over the en-

tire field, i.e.,

1
T.E. = 7 j U. - U exacti (26a)Ii=l 1 xc

1
R.E. 7 T 2. (26b)R. .I i= 1  i Ufitl

If the solution is such that the R.E. is zero, then Eq (15)

would be satisfied and the optimum grid would be defined.

19



III. Discussion of Results

The adaptive grid method developed in the previous

section was tested by solving the one-dimensional Burgers'

equation given in Eq (23). The solution of Burgers' equa-

tion exhibits an increase in slope at the right boundary

and a decrease in slope in the left boundary as Re increas-

es. For large values of Re, the solution of Burgers' equa-

tion is comparable to boundary-layer flows except that the

thickness of the boundary layer is proportional to (1/Re)

instead of (1/Re). An essential feature of any mesh is a

concentration of grid points in regions of high gradients

in the flow solution. For boundary-layer flows, a good rule

of thumb is to have 5 to 10 grid points inside the boundary

layer thickness. It is also necessary to have a smooth var-

iation in the distribution of grid points in the transition

region from large gradients to small gradients and to have

enough grid points in all regions of the domain so as to

give an accurate solution of the problem. These features

are used as a test of the effectiveness of the adaptive grid

method developed here.

Basis of Results

It was necessary to limit the value of the control func-

tion P determined by Eq (21) because early results produced

very large magnitudes of P, in some cases resulting in a

20



double-valued transformation violating the maximum principle.

For the results presented here, that limit was set at 2.0

based on a truncation error analysis of the grid generation

equation, Eq (8). For a uniform distribution of P = 2.0,

I - 21, and A = 1 analytical solution of Eq (8) for B.C.s

x(1) - -1 and x(21) = 0 gave x(2) - -.0067. The correspond-

ing numerical solution using a second order upwind difference

for the convective term gave x(2) = -. 314. Two features are

evident from this analysis. First, this is an enormous spac-

ing which is undesirable for accurate solution of the flow

equations. Second, the numerical solution is very different

from the analytic solution. The truncation error analysis

showed that the T.E. is proportional to exp(P). The limit

value of 2.0 was chosen because the solution of Eq (22) pro-

duced much smaller values over most of the domain and local

regions of P = 2.0 could be handled. An additional constraint

was imposed, which provided a more uniform distribution of

grid points near the wall (x = 0) boundary. This constraint

was derived from the transformed Burgers' equation, Eq. (24).

Because an upwind difference was used for the convective

term, it was desirable to keep the value of the coefficient

multiplying it positive adjacent to the wall in order to use

a second-order accurate difference. For this to happen, the

value of P had to be less than the product U • Re X . The

only place where this expression had any effect was near the
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wall where the grid spacing was very small.

For this study, the grid was defined to be converged

when the average value of the grid speed x was less than

a specified minimum c . The final converged grid depended
XT1

on several factors:

i. The initial guess of the control function P which

provides the initial grid. A value of zero was

chosen because it produces a cartesian grid of

uniform spacing. In this way, the robustness of

the grid adaption mechanism could be demonstrated.

2. The number of data points NP used in the least

squares curve fit which determines the constants

a2 , a1 and a0 .

3. The grid covergence criteria E . This factor was
XT

parameter dependent and will be discussed later in

this section.

4. The value of the relaxation factor e in Eq (8) plays

a role in the determination of £ Its effect

will also be discussed later in this section.

The infinity boundary condition for the velocity U was speci-

field to occur at x - -1.0. For small values of the Re,U(-1)

is not necessarily equal to one, therefore it was determined

from the analytic steady state solution. Results are pres-

ented here for 21 grid points in the domain -1.0 < x < 0.0
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and values of NP = 5 and NP =21.

Grid Dependence on NP

Figures 2 through 6 present the steady state solution

and the converged grid for NP =21 and for Re = 1, 10, 100,

1000, 1500. Large slopes in the grid curve indicate

large spacings between the grid points, likewise small slopes

in the grid curve indicate small spacings between the grid

points. The solution in the transformed plane takes on a

parabolic shape (as expected) for the smaller values of Re.

A very good grid is produced, placing 8 and 6 grid points

inside the boundary layer (B.L.) for Re = 10 and 100, re-

spectively. However, as Re becomes large, the solution looks

more like its hyperbolic tangent form in the physical plane

given by Eq (23). This is because the velocity U is equal

to 1.0 for all but very, ver-y small values of x, because

the boundaries are fixed, and because a quadratic function

is a very poor fit to the hyperbolic tangent function.

Also note the step in the grid point distribution for

Re = 1000 and 1500. This step is due to the last term of

Eq (21). The coefficients 2 and 1 were generally of op-

posite signs and a1 was generally an order of magnitude

larger than a2  For small values of & the sign of this term

2*2

Also, for small values of ,this entire term dominated
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the first term, U,/Ur, which for large Re was equal to zero

due to U being constant in value. For larger values of ,

the U-./U, term dominated. The net effect was to produce

the grid control function distribution shown in Figure 7

for Re = 1500. Positive values of P cause the grid points

to move to the right, X = 0 boundary, whereas negative

values of P cause movement in the opposite direction. Where

P changes sign, the grid points on either side are forced

together, therefore, producing the step in Figures5 and 6.

Because of this step, several grid points were placed in

a "pseudo gradient" leaving only a few grid points for the

real gradient. Only two grid points were inside the bound-

ary-layer thickness of (1/Re) for Re = 1000 and for Re 1500,

only 1 grid point was inside the boundary layer.

This effect is eliminated when the least squares curve

fit is performed only locally, i.e., for small values of NP.

Figure 8 through 12 present results for NP = 5 for the same

Reynolds numbers as before. For Re = 1, the grid did not

move significantly from its original position. The pseudo

gradient is no longer present for the larger values of Re

because it is much easier to fit a quadratic function for

only a few local data points than for the entire domain. The

number of grid points inside the boundary layer is 7 for Re

-100, 4 for Re - 1000, and 6 for Re = 1500. When e was
T

reduced to .001, 7 points were placed inside the B.L. for

Re-l000. Figure 13 presents a grid control function dis-

tribution for these cases (NP-5) showing a much better dis-
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tribution than the NP=21.

The number of data points used in the least squares

curve fit used to determine the constants a2, a,, and a0

has a significant effect on the final converged grid. Figure

14 demonstrates as NP is increased the converged grid looks

more and more like that for NP =21.. Even if the value of the

grid convergence criteria E is decreased, the final grid will

exhibit this step for the larger values of NP.

Grid Dependence onE

It is evident that the value of the grid convergence

criteria is a very important factor in the shap of the final

grid and in the accuracy of the flow solution. As the para-

meters (e.g., Re, NP, etc.) are changed, it becomes difficult

to predict the value of c £ which will produce the best grid

due to the highly oscillatory nature of the grid speed vari-

ation with time. Figure 15 shows a representative time his-

tory of the average grid speed demonstrating this feature.

If too small a value of Ex was chosen, the grid did not con-

verge in a reasonable number of iterations. For comparison,

the solution of this model problem on a static grid required

between 5 to 17 iterations to converge to steady state.

Steady state solution on an adaptive grid required between 15

to 30 iterations, on the average. However, if cx was too

small, grid convergence was not attained even after 50 itera-

tions. If too large a value of Ex was chosen, the converged

grid did not fully resolve the gradients in the flow solution.

Figure 16 demonstrates this behavior.
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Figures 17 through 19 present a steady state error analy-

sis based onsx for two different values of Re and two values

of NP. The key quantity in these figures is the maximum trun-

cationerror, T.E.M. It might be expected that, if the value

of E was smaller, the solution would be improved. Figure
T

18 and 19 show this to be true. However, Figure 17 shows the

contrary. At this point, no definite value can be proposed

for an arbitrary set of conditions. The key quantity in

these figures is the maximum truncation error, T.E.M. Ot

might be expected that if the value of E was smaller, the
x

solution would be improved. 
T

Grid Dependence on 0

The value of the relaxation factor e has an effect on

on the final grid point distribution, although not as much

as the other parameters. As e was increased, more of the

grid movement generated by Eq (21) was allowed to be accom-

plished at each iteration, i.e., the grid speed increased.

This may be good, especiallyfor larger Re where more grid

movement is necessary to resolve the flow gradients. Along

with this increased grid speed comes an increase in the amp-

litude of the oscillation in the grid speed convergence, dis-

cussed previously. The smaller the value of e, the more uni-

form the grid movement became. Figure 20 shows a representa-

tive effect of 6 on the steady state error. In general, a

better solution was achieved as e was decreased, however,
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there is a drawback. In general, the smaller e was, the

longer convergence took.

Comparison with Other Methods

The effectiveness of the adaptive grid method developed

in this thesis is now compared to the adaptive grid method

of Freeman (8) and to a static grid. An attempt was made

to compare the different methods on the same basis; a key

feature of the comparison is the resolution of the flow grad-

ients. A measure of this is the number of grid points in the

boundary layer (l/Re). Therefore, for high Re, the static

grid was exponentially stretched in order to place a similar

number of grid points inside the boundary layer (I/Re). As

many parameters as possible wer kept the same, however, in

many instances, this was not possible.

Table I summarizes the comparison of the three methods

for Reynolds numbers of 10, 100, 1000, and 1500. The key

parameter to note is the maximum truncation error (T.E. M).

"reeman 's method is referred to as the linear method and the

present method is referred to as quadratic. For NP =5,

the adaptive methods are very similar, which is demonstrated

in Figure 21. The values T. E. for the adaptive grids com-

pare very well with the T.E. static of the grid. Note, how-

ever, that the number of grid points is substantially increased

for the static grid for Re =10 and 100 in order to resolve
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TABLE I

Error Comparison

= 0.25 I 21 NP = 5

T.E. max T.E. ave

Fixed Adaptive Grid Fixed Adaptive Grid
Re

Grid Linear Quadratic Grid Linear Quadratic

10 .00210 .0093 .0111 .0007 .0055 .0042

100 .0113 b  .0198 .0115 .0005 .0103 .0053

1000 .0169' .0227 .0291 .0049 .0084 .0087

1500 .0160c .0248 .0365 .0046 .0078 .0073

a I = 51

b I = 201

c 1=21 P=0.5
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the flow gradient. For large Re, the static grid was expon-

entially stretched to resolve the gradient. This amounts to

a constant value of P in the grid generation equation, Eq (8).

This stretching was possible for this model problem because

the characteristics of the solution were known, however, in

general, these features will not be known a priori and a

stretching of this sort would not be possible. One would

then have to resort to a large number of grid points in order

to resolve all the features of the flow.

Another important factor concerning the viability of

any new develpment is the relative computation time required

to solve the problem. This study was performed on a CDC

Cyber 175 computer. For the static grid the solution of

Burgers' equation required an average of 2.03 x 10 -3cp

seconds per grid point per iteration. Freeman's linear adap-

tive grid method required an average of 3.88 x 10~ cp

seconds and the present quadratic method required 4.31 x10-

-3
seconds for NP - 21 and 4.67 x 10 cp seconds for NP =5.

The present method required between 2 and 5 cp seconds to r

reach steady state for 21 grid points compared to between .2

and .5 cp seconds for 21 grid points for the static grid.

However, the static grid with 201 grid points required 3.066

cp seconds.
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IV. Conclusions

The results of this study demonstrate the benefits of

using an adaptive grid in the solution of fluid dynamics

problems. There were two primary goals of the adaptive grid

method develped in this thesis: first, to provide adequate

resolution of the high gradient regions in flow; and second,

to produce an optimum grid such that the truncation error

would be eliminated. The first objective was met. The

method does a very good job of concentrating grid points in

the physical plane in high gradient regions, where large

truncation errors generally occur. It showed robustness in

that the gradients were resolved given an initially constant

spaced cartesian grid and without any a priori knowledge of

the flow. However, it is not as robust as hoped, because

it depends on the input of several parameters which presently,

can only be determined by experimentation. In general, the

following statements can be offered for the determination

of these parameters based on the results of this study.

1. The number of data points used in the least squares

curve fit should be decreased as Re increases.

Using the entire field for the curve fit was suc-

cessful only for smaller values of Re. As the num-

ber of points is decreased, the method approaches

that of the linear method used by Freeman (8).
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2. Large values of the relaxation factor ' result

in greater grid speeds and less ccnvergence times.

Smaller values result in decreased grid speeds and

larger convergence times. However, the smaller

values of e produce better steady state results due

to the dampening of the oscillations that occur in

the grid speed.

3. At this point, no conclusion can be drawn about the

grid convergence criteria E. It appears to be
T

very problem dependent and can only be determined

by experimentation.

4. The computation time required for solution on an

adaptive grid is greatly increased over that on a

static grid. However, without a priori knowledge

of the flow solution, a great number of grid points

is required for the static grid, putting the twot

methods on equal ground for this one-dimensional

problem.

The second goal of the thesis was achieved only partially.

The method produces satisfactory results; however, it did not

produce a truly optimum grid. The truncation errors are still

on the same order as those produced by a static grid with e-

qual grid spacing or with coordinate stretching.
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V. Recommendations

The results of this study indicate the advantages of

the use of a solution adaptive grid for the numerical solu-

tion of partial differential equations. Further investi-

gation of the present method is required to determine the

reason the truncation errors were not minimized, as ex-

pec ted.

One possible source of error resided in the Newton

iteration technique used to determine the grid control

functions. It is suggested that a fixed Newton iteration be

used; the denominator should consist of only one term, not

two.

A second source of error is associated with the gridt

spacing. Large errors in the solution tended to occur where

large grid spacings occurred, especially if the spacing was

three or more times the value of the smaller grid point.

The present method may need to be modified to restrict

the size of the grid spacing.
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Figures
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PROGRAM LISTING

PROGRAM BURG15C (INPUT, OUTPUT, TAPE6, TAPE7, TAPES)

C UNSTEADY SOLUTION OF THE I-D BURGER'S EQUATION BY AN
C OPTIMIZED SOR MITHOD COUPLED WITH A GRID OPTIMIZATION
C ROUTINE BASED ON A TRUNCATION ERROR ANALYSIS. THEs
C PROCEDURE IS NOT SELF-STARTING. THUS REQUIRING*
C AN INITIAL GUESS FOR THE GRID GENERATION CONTROL
C PARAMETER, P.

COMMON /A/IMAXU(51) ,ZI(5I) ,X(51) ,P(51) ,DX(51),RE
COMMON /B/KGRID, GRIDACCI XMIN, XMAX
REAL DXX(51) ,XT(51) .XN(51) ,UN(51) ,E(51) ,G(51) ,C(3)
REAL LBC,RBC,XMIN,XMAX,ALPHA,BETA,GAMMA,DX2,A,B,USTAR,W,
# UOLD,SUM,ERRMAX,ERRAVE,DIFFGRIDACC.SOLNACC,DU,DUU,DELT,T
# XTAVE,XTACC,CPI,CPF,CPU,PI,ZZ(11) ,UU(11)
INTEGER I,K,N,NT,KGRID,KSOLN
P1.3. 141592654

CC*******$* READ INPUT DATA * ** ***$********

READ(7,*) IMAXKGRIDKSOLN,LBC,RBC,XMIN,XMAX,NP
READ (7, *) RE, GRIDACC, SOLNACC, DELT, NT, THETA, XTACC
READ(7,*) (P(l),IuIIMAX)
CALL DATE(ADATE)
CALL TIME(ATIME)
WRITE(6,45) ADATE,ATIME
WRITE(6,50) IMAX,NT,RE
WRITE (b,51) LBC, XMIN, RBCXMAX
WRITE(6,53) KSOLN,SOLNACC,KGRID,GRIDACC
WRITE(6,54) DELT, XTACC,THETAINP
WRITE(8,200) ADATEATIME
WRITE(8,205) IMAX,NT,RE
WRITE(S,210) LBCXMINRBCoXMAX
WRITE CS,215) KSOLN, SOLNACC, <GRID, GRIDACC
WRITE(Sp210) DELTvXTACCTHETAFLOAT(NP)

CC**$****$* SET INITIAL CONDITIONS ***S:$********

TuO.O
NO

* DO 10 Iml,IMAX
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ZI1(1) -FLOAT (1)
X(I)uXMIN.(I-1)*(XMAX-XMIN)/(IMAX-1)
J( I) ml.*0

10 CONTINUE
CALL USTART
CALL UPSET('POLYNOMIAL' .:.o)
XTAVE=1.*0

CC********* SET BOUNDARY CONDITIONS 88 *$$*888

U(1) u-TANH(RE*X ( ) *0. 5)
U(IPIAX)-TANH(RE*X(IMAX) *0.5)
XT (1) 0.0
XT(ItIAX)=0.0

CC*$$*8$** CALCULATE -OLUTION FOR EACH TIME STEP. N $$**$*

CALL SECOND(CPI.
990 N=N+1

TaT+DELT
IF (N SGT. NT) GO TO 1000
K=0
DO 105 I=..IMAX

XN(I)uX (I)
105 UN(I)=U(I)

WRITE(6,65) T
WRITE(8,210) T

CC$*$**** CALCULATE GRID *88$$*888**$$S*82

IF (N .LE. 5 ) GOTO 24
IF (ADS(XTAVE) .LE. XTACC) GO TO 25

24 IUPWNDm0
CALL GRZDSOR (IUPWND)

25 CONTINUE

CC**$***** WRITE GRID DATA *SS*$*$****Z***ZU2

XTAYEu0. 0
WRITE(6,52)
DO 20 132, IMAX-1

DXX(I)nX(I.1)-2.0OX(I)4X(I-1)
XT(l)-(X(l)-XN(l) )/DELT
XTAVEuXTAVEeXT(I)
WRITE(6,5B) 1, X(I),DX(Zi ,DXX(I) ,XT(I) ,P(U)

20 CONTINUE
XTAVE-XTAVE/ (IMAX-2)
WRITE(6,59)XTAVE
IF (N .GE. NT-3) XTAVE-0.0

9 ~CCMM8*** K IS THE SOR ITERATION LOOP INDEX 8*$8*****
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DO 900 K1t.KSOLN
ERRMAX=O.0
SUMMO.0

CC**$$*S I IS THE SPACE LOOP INDEX :

DO 110 1=2,IMAX-1
DX2uDX(I)$DX(I)
ALPHAuI.0/(RE*DX2)
BETA=(U(I)-XT(I) + DXX(I)$ALPHA)/DX(I)

C USE A FIRST ORDER DIFFERENCE NEXT TO THE BOURNDARY
C POINTS AND A SECOND ORDER DIFFERENCE INTERIOR *
C TO THESE POINTS FOR THE UPWIND CONVECTIVE TERM $
C THE UPWIND VALUE IS BASED ON THE VALUE OF BETA

IF (BETA .GE. 0) THEN
IF (I .ED. 2 ,OR. I .EQ. (IMAX-1)) THEN
DUn-U(I-1)
GAMMA = BETA + 2.0$ALPHA + 1.0/DELT
A = ALPHA/GAMMA
B a (ALPHA + BETA)/GAMMA

ELSE
DU a 0.55U(I-2) - 2.0*U(I-1)
GAMMA - 1.5*BETA + 2.0*ALPHA + 1.0/DELT
A a ALPHA/GAMMA
B a (ALPHA + BETA)/GAMMA

END IF
ELSE

IF (I .EQ. 2 .OR. I .EQ. (IMAX-)) THEN
DU a U(I+1)
GAMMA a -BETA + 2.0$ALPHA + 1.0/DELT
A a (ALPHA - BETA)IGAMMA
B • ALPHA/GAMMA

ELSE
DU a -0.55U(1+2) + 2.0SU(I+1)
GAMMA a -1.5$BETA + 2.0*ALPHA + 1.0/DELT
A m (ALPHA - BETA)/GAMMA
B w ALPHA/GAMMA

END IF
END IF

CC*****$$* CALCULATE THE GAUSS-SEIDEL VALUE $$$$$$$$$*$$$$$$$$$

USTARn(UN(I)/DELT+ALPHA*(U(I+1)+U(I-1))-BETADU)/GAMMA

CC$****** CALCULATE THE OPTIMUM RELAXATION FACTOR $$$2$$$€$*$$$

CALL WOPT(AB,IMAXW)
9 IF(N .EQ. 1 .AND. K .EQ. 1) W-1.0
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C**** CALCULATE SOLUTION & ERROR BETWEEN SOR ITERATIONS ****

UOLD a U(I)
U(I) a U(I) + WS(USTAR - U(I))
DIFF v ABS(U(I) - UOLD)
SUM a SUM + DIFF

110 CONTINUE

CC*****$* CHECK FOR ITERATION CONVERGENCE *SS**$***$

ERRAVE m SUM/IMAX
CC IF (ERRAVE .LE. SOLNACC) GO TO 910
900 CONTINUE
910 WRITE(6,79)

CSS*** CALCULATE NEW GRID GENERATION CONTROL FUNCTION P *t******

IF (N .LE. 5) GO TO 34
IF (ABS(XTAVE) .LE. XTACC) GO TO 35

34 CALL NEWP(THETA,C,NP,G)
35 CONTINUE

CC******** CALCULATE ANALYTIC STEADY STATE SOLUTION $*$S*

WRITE(6,87)
ERRimO. 0
SUMIMO. 0
ERR2-0. 0
SUM2-0. 0
ERR3m0. 0
SUM3.0. 0
DO 120 Iu1,IMAX

E(I) u-TANH(RESX (I)*0. 5)
DIFI=ABSCU(I)-E(l))
SUMI=SUMI.DIFI
DIF2-ABS(U(I)-G(I))
SUM2nSUM2.D IF2
DIF3mABSCS(I)-E(Ifl
SUM3nSUM3.D IF3
WRITE(6,59)I,X(I),U(I),E(I) ,DIF1,G(I)
WRITE (8,225)X (I) ,XT() ,P(I) ,U(I), G(I) ,e(I)

120 CONTINUE
ERRAVI-SUM / IMAX
ERRAV2uSUM2/ IMAX
ERRAV3uSUM3/ IMAX
WRITE(&. 90)K-1, ERRAVI ,ERRAV2, ERRAY3
WRITE (9.230) K-I, ERRAVI ,ERRAV2, ERRAV3

CIS*$* CALCULATE AVERAGE ERROR BETWEEN SOR ITERATIONS *$**

summO.*0
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DO 180 1=1.IMAX
DIFF=ABS(U(I)-UN(I))
SUMuSUM+O 1FF

180 CONTINUE
ERRAVE=SUM/ IMAX
WRITE(6, 82) ERRAVE
WRITE (8,210) ERRAVE

IF (ERRAVE .GE. SOLNACC) GO TO 990

CALL SECOND(CPF)
CPUwCPF-CPI
WRITE (6.95) CPU
WRITE (8,235) CPU
CALL UEND
STOP

200 FORPIAT(T5,AlO,5X,A10)

205 FORMAT(T5,2I5,EI2.4)

210 FORMAT(T5,4EI2.4)

215 FORMAT(T5, I5,E12.4, IS,E12.4)

225 FORMAT(6EI1.4)

230 FORMAT(T3, I3,3E12.4)

235 FORMAT(TS,E12.4)

45 FORMAT('1',/,TS,Al0.2X,Al0)

50 FORMAT(/,TIO,'1-D BURGERS EQ. SOLN USING OPTIMIZED SOR METHOD'
#'& OPTIMUM GRID',//,T25,'$*********INPUT DATA**:**:$*'./3X.
**OF GRID PTS a,3X'*OF TIME STEPS '013,3X,'RE # -',E9.3)

51 FORMAT(3X,'U *,F5.2,' I X -',F5.2,3X,'U o',F5.2.' S X u',F5.2)

53 FORMAT(3X,'# OF SOLN ITER. =*,I3,3X,'SOLN ACC CK =I,
#E9.3,/,3X,'* OF GRID ITER. u,,3, 3X ,'RID ACC CK -',E9.3)

54 FORMAT(3X,'DELTA TIME n',F5.2,3X,GRID SPEED CK u',E9.3,/,
#3X,'NEW P RELAXATION FACTOR:'pF4.2.3X,'# OF PTS IN '

*'CURVE FITi',13,/)

52 FORMAT(/,T25,'GRID CALCULATIONI,/,T4,'ZI',T14,'X',T25,

O'DX' ,T38, 'DXX' ,TSO, 'XT' ,T62, 'P' ,/)

58 FORMATCI5,9(F12.7))

59 FORMAT(/,T5,'AVERAGE VALUE OF GRID SPEED -',F12.7)
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65 FORMAT(IIT3.'TIME =',F6.3./)

79 FORMAT(//)

SO FORMAT(T5.'SOR ITERATION #'.I5.5X,'AVERAGE ERROR ANALYSIS'./.
#T30,'COMPUTED & ANALYTICAL :',FI3.8,/,T30,'COMPUTED & FIT a',
#8XF12.8,/,T30,'ANALYTICAL & FIT :',SX,F13.8)

82 FORMAT(T5,'AVE ERROR BETWEEN TIME STEPS w',F12.8)

87 FORMAT(/,T30,'*$**$ ANALYTIC SOLUTION $$$i',//
#T4,'ZI',T14,'X',T25,'U',T35,'U EXACT',T47,'DIFF',T60,'FIT',/)

90 FORMAT(/,T20,'LEAST SQUARES FIT TO SLUTION',/,T5,'U(ZI) ,
#F1O.6,' * ZIS*2 + ',F1O.6,' * ZI + ',FIO.6,/)

95 FORMAT(/,TS,'TOTAL CPU TIME :'. E17.7)

98 FORMAT(/,T5.'MAX ITERATIONS EXCEEDED!!!!!',/)

1000 WRITE(6,98)
CALL SECOND(CPF)
CPU=CPF-CPI
WRITE(6,95)CPU
WRITE(8,235)CPU

STOP
END

SUBROUTINE WOPT(A,B,IMAX,W)

PI=3.141592654
PJ=.O$SQRT(A*B)$0.99
W='.0/(I.0+SQRT(1.0-PJ**2))
RETURN
END

SUBROUTINE GRIDSOR(IUPWND

C THIS SUBROUTINE CALCULATES THE SOLUTION OF THE 1-D
C GRID GENERATION EQUATION BY THE THOMAS ALGORITHM. *
C IF IUPWND u 1, THEN IT USES 2ND ORDER UPWIND DIFFERENCES *
C FOR THE CONVECTIVE TERM. IF IUPWND a 0, IT USES A 2ND *
C ORDER CENTRAL DIFFERENCE FOR THE CONVECTIVE TERM
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COMMON /A/IMAX.U(51),ZI(51).X(51),PC51),DUMMY(51).RE
COMMON /B/KGRID.GRIDACC.XMIN.XMAX
WRITE(6. 5-)
X(1)rXMIN
X(IMAX)=XMAX
K=0

CC***$**** K IS THE SOR ITERATION LOOP INDEX $*$***$**S$$$

999 K a K+1
IF (K .GE. KGRID) GO TO 200
ERRMAXmO.0
SUMMO.0

CC$$*$** I IS THE SPACE LOOP INDEX $$*$$$$*$$$t$ **$$$

DO 110 I=2.IMAX-1
ALPHA=i.0
BETA--P(I)

C USE A FIRST ORDER DIFFERENCE NEXT TO THE BOURNDARY *
C POINTS AND A SECOND ORDER DIFFERENCE INTERIOR
C TO THESE POINTS FOR THE UPWIND CONVECTIVE TERM *
C THE UPWIND VALUE IS BASED ON THE VALUE OF BETA

IF (BETA GE. 0) THEN
IF (I .EQ. 2 .OR. I ,EQ. (IMAX-I)) THEN

DXm-X(I-I)
GAMMA a BETA + 2.0*ALPHA
A = ALPHA/GAMMA
B a (ALPHA + BETA)/GAMMA

ELSE
DX u 0.5*X(I-2) - 2.05X(I-1)
GAMMA a 1.5*BETA + 2.0*ALPHA
A a ALPHA/GAMMA
B • (ALPHA + BETA)/GAMMA

END IF
ELSE

IF (I ,EQ. 2 .OR. I .EQ. (IMAX-1)) THEN
DX a X(I+1)
GAMMA a -BETA + 2.0*ALPHA
A a (ALPHA - BETA)/GAMMA
B a ALPHA/GAMMA

ELSE
DX a -0.5*X(I+2) + 2.0*X(I+1)
GAMMA * -1.5tBETA + 2.0*ALPHA
A m (ALPHA - BETA)/GAMMA
B * ALPHA/GAMMA

END IF
END IF

62



CC****$*$$ CALCULATE THE GAUSS-SEIDEL VALUE $$€€$*SE$**S*

XSTAR = (ALPHA*(X(I+1)+X(I-1))-BETA$DX)/GAMMA

CC******* CALCULATE THE OPTIMUM RELAXATION FACTOR $*$S**t$* $$

CALL WOPT(A,B, IMAX,W)
IF(K .EQ. 1) Wa1.0

C*$*** CALCULATE SOLUTION & ERROR BETWEEN SOR ITERATIONS *$****

XOLD n X(I)
X(I) a X(I) + W*(XSTAR - X(I))
DIFF a ABS(X(I) - XOLD)
IF (DIFF .GE. ERRMAX) THEN
ERRMAX w DIFF
II 0 I

END IF
SUM a SUM + DIFF

110 CONTINUE

C* $ $* CHECK FOR ITERATION CONVERGENCE *$ S$$$$$ $*$$*$

ERRAVE = SUM/IMAX
IF (ERRAVE .GE. GRIDACC) GO TO 999

200 WRITE(6,SO)K,ERRMAX,IIERRAVE

56 FORMAT(/Tl5,'SOR GRID CALCULATION ',/,T5,'USING A 2ND ORDER',
N' UPWIND DIFFERENCE FOR THE CONVECTIVE TERM')

SO FORMAT(T5,'ITERATION #',I5,SX,'MAX ERROR m',FlO.5,' AT',
#149/, 5X9'AVERAGE ERROR m',FIO.5)

RETURN
END

SUBROUTINE NEWP(THETA,C,NP,G)

C THIS SUBROUTINE CACULATES THE NEW GRID GENERATION CONTROL *
C FUNCTION P. IT IS BASED ON A GLOBAL TRUNCATION ERROR *
C ANALYSIS FOR THE FLOW SOLUTION IN THE TRANSFORMED PLANE *

COMMON /A/IMAX,U(51),ZI(51),X(51),P(51),DX(51),RE
REAL C(3),ZZ(l1),UU(l1),G(51)
NN=(NP-I)/2
WRITE(6,15)
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DO 7 Ju1.NP
ZZ()mZI(3)
UU (3) uu (3)

7 CONTINUE
CALL ULSTSO(ZZ. UU, FLOAT(NP) ,C)
A2=C(3)
Al mC(2)

cc WRITE(6,27) (ZZ(3),Jml,NP)
cc WRITE(6,28) (UU(J),Jwl,NP)
cc WRITE(6,29) A2qA1,A0

DO 5 1=2,NN+1
G(I) = A2*I**2 + AMS + AO
DUMO.S5$W(I+1)-U(I-l))

DUSIGN=SIGN(l.O,DU)
IF(ABSCDU) .LE. .0000001) DU-.0000001$DUSIGN
DENw2.0*A2*I + Al
DENSN=SIGN( 1.0. DEN)
IF (ABS(DEN) .LE. 0.0001) DEN=.O001$DENSN
POLD-P(I)
P(I)=POLD + THETA*DUlU/DU -THETA*2.05A2/DEN

PMAX m U(I)*RE*DX(I)
IF (P(I) SGT. PMAX) P(I)mPMAX
IF (P(I) .GT. 2.0) P(I)=2.0
IF (P(I) .LT. -2.0) P(IM-2.0
WRITE (6, 16) I,DU,DUU,DUU/DUpPOLDP(I)

5 CONTINUE

DO 10 1=2+NN,IMAX-NN-1
DO 20 3u1,NP

ZZ(J) - ZI(I+J-NN-1)
UU(J) m U(I+3-NN-1)

20 CONTINUE
CALL ULSTSQ(ZZ,UUl,FLOAT(NP) ,C)
A2uC (3)
Al-C (2)
AO=C(1)

cc WRITE(6,27) (ZZ(J),31l,NP)
cc WRITE(6,29) (UU(3),Jwl,NP)
cc WRITE(6,29) A2,AloAO

6(I) a QUM55 + AlSI + AO
DU.O.5*(U(I+l)-U(I-W)
DUUnU(1+1) -2. 0*U( I)+UI-1)
DUSIGNuIGN(L.O,DU)
IF(ABS(DU) .LE. .0000001) DUs.0000001$DUSIGN
DENu2.08A2*I + Al
DENSN=SISN(1.09DEN)
IF (ADS(DEN) .LE. 0.0001 )DENu.00018DENSN
POLD-P(I)
P(I)wPOLD + THETASDUU/DU - THETAM2.5A/DEN
PMAX a U(I)*RE*DX(I)
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IF (P(I) .GT. PHAX) P(I)=PM'AX
IF (P(I) .GT. 2.0) P(I)=2.0
IF (PCI) .LT. -2.0) PCI)-2.0
WRITE(6, 16)I,DU,DUU,DUU/DU,POLD.P(I)

10 CONTINUE

DO 30 J=NPp1,-i
ZZ(J) = ZI(IMAX+J-NP)
UU(J) a U(IMAX+J-NP)

30 CONTINUE
CALL ULSTSO(ZZ,UU,FLOAT(NP) ,C)
A2wC(3)
Al-C (2)
AO&C(l)

cc WRITE(6,27) (ZZ(J),a-1,NP)
cc WRITE (6,28) (UU(J),J).l,NP)
cc WRITE(6,29) A2,Al,A0

DO 25 I=IAX-NN,IIAX-1
G(I) = A2*IE*2 + AI*I + AO

DUU-U(I+I)-2.0*U(I)'U(I-l)
DUSIGN=SIGN (1.0, DU)
IF(ABS(DU) .LE. .0000001) DU=.0000001*DUSIGN
DEN=2.0*A2*I + Al
DENSNuSIGN (1.0, DEN)
IF (ABS(DEN) .LE. 0.0001 )DENs.0001*DENSN
POLDuP (I)
P(I)mPOLD + THETA*DUU/DU -THETA*2.0*A2/DEN

PMAX a U(I)*RESDX(I)
IF (PCI) .GT. PMAX) P(I)OPMAX
IF (P(I) .GT. 2.0) P(I)a2.0
IF (PCI) .LT. -2.0) P(1)0-2.0
WRITE(6, 16) IDU,DUUDUU/DUPOLD,P(I)

25 CONTINUE
P(0) .0 0
S CI ) U Cl)
G(IMAX)=U(IMAX)
P(IMAX)m0.0

15 FORMAT(/,T25,'*****$I NEW P CALCULATION **$'/
#T4,'ZI',T14,'DU',T26,'DUU',T36,'DUU/DU',
#T48, 'POLD'OT60, 'PNEW'o/ )

16 FORtIAT(I5,SC3XvF9.5))

27 FORMAT(T2,'ZZCJ)u ',6FIO.5)

29 FORMAT( T2,'UU(Jl ',6F10.5)

29 FORMAT(T2,'LST SO FIT UU(ZZ)
#FS.5,' 8 ZI**2 + 'OFS.5,' S ZI + ',FS.5,)

9 RETURN
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