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\\\‘ Abstract
.
~

A new approach for the generation of flow-adaptive
grids for numerical solution of fluid dynamics problems is
presented. However, the method is applicable to the numer-
ical evaluation of any partial differential equation.

The dynamic coupling of the grid with the flow solu-
tion is accomplished through a grid-optimization technique.
The optimization is based on the minimization of the finite
difference truncation error in the transformed plane. The
method is tested on the one-dimensional Burgers' equation

which is representative of typical fluid dynamics problems.

PR R N N

Burgers' equation is solved with an optimized SORAmethod
using upwind differences for the convective term.

Results are presented for various Reynolds numbers
and are compared to results from a similar adaptive grid
method and to results for a static grid. They show the

ability of the method to concentrate grid points high in

gradient regions where large truncation errors occur.
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ADAPTIVE GRID GENERATION FOR NUMERICAL SOLUTION
OF PARTIAL DIFFERENTIAL EQUATIONS

I. INTRODUCTION

Fluid mechanics and heat transfer problems are charac-
- terized by complex nonlinear partial differential equations,
for which analytic solutions can be obtained for only a few
limited cases. Due to the rapid increase in speed and mem-
ory, and declining cost of the digital computer, an ever in-
creasing emphasis is being placed on numerical solution of
the governing differential equations by finite difference
methods. In the past two decades, considerable progress has
been made on the development of more efficient and accurate
numerical algorithms.

A vital component of any numerical algorithm is the grid
upon which the solution is obtained. The solution canvbe
greatly simplified if a well-suited grid is chosen, just as
the choice of cylindrical coordinates rather than rectangu-
lar coordinates simplifies the solution of the potential equa-
tions about a cylinder. In contrast, a poorly constructed
grid can not only lead to large errors in the solution, but
also can cause instability resulting in a totally incorrect
solution or no solution at all. The area of numerical grid

generation is relatively young receiving much attention in
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the past ten years. As J. F. Thompson, a leader in the field,

writes (1:1)
This area involves the engineer's feel for the
physical behavior, the mathematician's under-
standing of the functional behavior, and a lot
of imagination, with perhaps a little help from
Urania.

Two very important factors play a role in the choice of
the grid. First, the coordinates should be surface oriented
so that the surface boundary conditions may be implemented
with no need for interpolation between grid points. This
not only simplifies the boundary condition implementation
but also eliminates large errors that may be produced in the
interpolation process. In addition, surface oriented coor-
dinates also permit coordinate-related approximations in the
flow equations (2:35). Second, the grid must accurately re-
solve high gradient regions which are common in fluid dynam-
ics problems, because it is in these regions where large
numerical errors occur.

One solution of the first problem is the use of partial
differential equations to generate the grid. This method
was popularized by Thompson, Thames, and Mastin in 1974 (3)
and is widely used today. The grid generation procedure in
this thesis, presented in more detail later, is based on a

modified version of the original equations presented in that

paper.

The solution of the second problem is more difficult.




The method of Thompson et al. provides control for the stretch-

e 2

ing of interior regions to resolve the high gradients; how- !
ever, there is, in general, no method for determining the val-

ues of those control functions due to the lack of a priori in-

formation concerning those gradients (4:28). In Ref. 4, a

method was developed to compute the forcing function to mini-

mize truncation error using boundary layer theory; the result-

ing mesh system is referred to as a boundary layer dependent

coordinate system. Therefore, it is only valid in regions in ¥
which boundary layer theory is applicable.

In recent years, flow adaptive grids in which the grid
point distribution is dynamically coupled to the developing
solution have emerged as a means to tackle the. second problem.

Several different methods have been developed to achieve the

same effect--concentrate coordinates in high gradient regions
thereby decreasing truncation error and minimizing the number
of grid points necessary to produce a satisfactory solution.
Pierson and Kutler (5) describe a method in which the grid is
defined by a minimization of the local truncation error in
the least squares sense. The grid is then algebraically gen-
erated, using Chebyshev polynomials. Saltzman and Brackbill

(6) define their grid based on a variational analysis result-

ing in a system of partial differential equations whose solu-
tion produces the grid. In the work of Dwyer et al. (7) the

grid points were moved in time, based on the gradients in the




flow variable. In the paper by Ghia et al. (2), the grid a-
daption criterion is based on the minimization of the coef-
ficient of the convective term in the transformed flow equa-
tions. Freeman (8) describes a method used in conjunction with
the Thompson elliptic grid generation equations in which the
grid control functions are determined, based on solution grad-
ients. Anderson and Rai (9) describe another method in which
the grid points move directly under an attractive/repulsive in-
fluence of one another, based on the magnitude of the local er-
ror compared to the global error. This influence can be com-
pared to the force of a test charge in an electrostatic field
or to a gravitational field which can repel as well as attract.
Anderson and Rai list the following considerations for the
development of an adaptive grid (9:320):
1. The grid must evolve as part of the solution.
2. Grid points must move due to both boundary motion and
changes in the interior solution.
3. The grid speed equations should be as simple as
possible.
4. The grid speed equations must account for the ellip-
tic nature of the problem.
5. The resulting grid must reduce error, provide better
resolution, or otherwise improve the s~lution.
6. The adaptive grid scheme must be éasily extended to

any number of dimensions.
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In addition, it is felt that the algorithm should be robust
enough to handle a variety of problems with arbitrary input
data.

The objective of this thesis is to develop an adaptive
grid which is based on the systematic determination of the
grid generation control functions used by the elliptic grid
generation equations of Thompson et al. Another goal of this
study is that, in the process of developing the adaptive grid,
an "optimum grid" is produced which reduces truncation error,

thus satisfying all conditions of item 5 above.




IT. Mathematical Formulation

The adaptive grid method presented in this thesis is
based on a one-dimensional analysis for ease of formulation
and cost considerations. However, par.s of the following
analysis include the second dimension which is necessary to
present a clear background for the method developed. In the

following, subscripts denote partial differentiation.

Background

For complex geometries, it is convenient to transform
the governing differential equations from the physical plane
to a computational plane where the solution is obtained and
then transformed back to the physical plane. For one-dimen-

sional, time dependent problems, this transformation is
t =T £ =¢&(x, t) (1)

where x, t are the physical variables and {,t are the com-
putational variables. The derivatives in the physical plane

transform as

fx = fg/J (2a)
_ Xgg 2

fxx = [fgg - ;g- fg]/J (2b)

ft = fT - fg X /J (2¢)




where if is the dependent flow variable and J is the Jacob-

ian of the transformation given by

N

J o= x, = 1/g, (2d)

Terms involving derivatives of physical space coordinates
with respect to computational space coordinates or vice versa
are referred to as the metrics of the transformation and X
is referred to as the grid speed. Due to the metrics, this
transformation renders the governing equations quite complex;
however, there are three attractive reasons which out weigh
the added complexity. First, in the computational plane, the
solution can be performed on a fixed rectangular grid with
uniform spacing. Second, the transformation makes it possible
to concentrate the distribution.of curvilinear grid lines in
the physical plane in regions of high radients. Third, and
most importantly, the grid lines can be made to correspond to
the boundaries in the physical plane, no matter what the shape.
Figure 1 shows the idea of the general coordinate transforma-
tion.

Up to now, the actual transformation has yet to be speci-
fied. One of the most popular methods for defining this trans-
formation is the method of Thompson et al. (3). According to
this method, the grid is determined as the solution of a set
of elliptic differential equations

Exx  * By = PGEM) (3a)




n + n = Q(g,n) (3b)
XX yy

where x, y are the physical corrdinates, 5, n are the compu-
tational coordinates, and P, Q are functions which control
the grid spacing in the interior of the region, hereafter
called grid control functions.

The solution of Eqs (3) may be no easier to obtain than
that of the flow equations. However, if the roles of the de-
pendent and independent variables are interchanged so that
the solution is performed in the computational plane, the
boundary conditions may be specified along constant values of

the computational coordinates. This results in

2
aXep ZBXEH + VX = =J (PXE + Qyn) (4a)

2
*Yee ZBySn + YYon -J (ng + Qyn) (4b)

where
a = xnz + ynz (4¢)
g = XE xn + YE Yn (4d)
2 2
Y = X + 4e
£ Ye (4e)
J = Ye ¥Yn * Yn Ye (4f)
8
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The Jacobian J must be non-zero for a unique transformation.

For one dimension, Eqs (4) reduce to

X + Px = 0 (5)

Equations (4) and (5) are highly nonlinear; their solu-
tion may lead to numerical difficulties in terms of oscilla-
tions and instabilities for even moderate values of the con-
trol functions P, Q (4:21). An alernate set of grid genera-
tion equations has been proposed (11:57) which eliminates

this nonlinearity. The new equations are

+ £
XX yy

it

(52 + 89 2 5,0 (6a)

+
nxx n

2 2
N P NG (6b) f

which, after inversion, give

- 2 + = - P + (73)
ax&i Sxin Yxnn (o XE Yan)

- 2 = - P 7b
Y ByEn oYY, (o Yo+ YQYn) (7b)

where a, B8, y are the same as in Eqs (4).

e e i ——

For one-dimensional problems, Egqs (7) reduce to

- (8)
X + er 0




Equation (8) is the grid generation equation used in the pres-
ent study. It is solved implicitly by an optimized Successive f
Over Relaxation (SOR) technique. One-sided upwind differences

are used for the convective term based on the results of a f

study by Ghia, Hodge, and Hankey (4). These authors had showed

that, when the control function became large, as it needs to

be for large Reynolds numbers, and a central difference is j
used for the convective term, the solution of the grid equa-

tion becomes nonmonotonic and an oscillatory solution results. 4

The use of an upwind difference was shown to eliminate this

behavior.

Adaptive Grid Criterion \

Any finite-difference representation of a derivative has
truncation error associated with it. This truncation error
must be small in order to obtain an accurate solution of the
problem. A central-difference representation of a first de-

rivative is f

- - (9a)
£, = (f;,y - £;.7)/ 20x + T.E.
where the truncation error (T.E.) is given by
2 4
AX - AX
T.E. =-7r fxxx 5T fxxxxx + H.0.T. (9b)

and H.0.T. stands for 'higher order terms'. Similarly, a

10




second-order accurate backward-difference approximation for

a first derivative is

£, = (3f; - 4f; 4 ¢+ £;_9)/ 28x + T.E. (10a)
with
i 2
T.E. = -~ 3 fxxx 8 fxxxx + H.O0.T. (10b)

In the past, efforts to minimize trucation error have
consisted of reducing the grid spacing 4Ax. This does indeed
decrease the magnitude of the truncation error, but at the
expense of an increased number of grid points necessary to
cover the domain and therefore an increased computational
time. For many problems, this may not be insignificant, es-
pecially for higher dimensions. An alternate method for de-
creasing error is to reduce the magnitude of the higher de-
rivatives. In the physical plane, one has no control over
these derivatives; however, in the computational plane, one
could gain control over these terms if the transformation
from the physical plane to the computational plane were based
on the reduction of these derivatives.

The one-dimensional transformation of a first derivative

is given by Eq (2a)
(2a)
If the derivatives in the computational plane are expressed

11




R el

as standard central differences with 4% taken as unity,

then

£, = (f (11a)

X i+l " fi-l) / 2x_ + T.E.

£
with
T.E. = - .0.T.
E ngE / 6 x + H.O.T (11b)

3
Thompson (1:4-6) gives a lengthy argument that T.E. must be
expressed in the physical plane giving
I N Sl

T.E. 5 % B = 7 Xy = g %pT Eypyt H-OT (11c)
Equation (11lc) shows the T.E. to be very dependent on the
grid spacing. In short, the metrics must be minimized such
that their expressions in Eq (llc) are reduced in order to
reduce T.E. To reduce the metric error completely, however,
would be to eliminate the advantages of the transformation.

On the other hand, if one considers the T.E. of f, in

the computational plane (for Af =1) then,

T.E. = -f.__ /6 + H.0.T. (12a)

333

for a central-difference representation of the first deriva-

tive and




for a second-order backward difference. In the computational
plane, the T.E. depends only on the higher order derivatives.
If the solution in the computational plane were a second de-

gree polynomial

f(g) = a2£2 * Ayt +oa (13)
then the third, fourth, and all higher order derivatives would
be identically zero. For second-order-accurate finite dif-
ferences, the truncation error would be eliminated, no matter
what the grid spacing, and an optimum grid would be produced.
The number of grid points could then be reduced without sacri=-
ficing accuracy.

In general, Eq (13) cannot be enforced over the entire
domain because there will inevitably be some error in the
solution process and, if Eq (13) is not satisfied exactly,
large variations in the grid spacing may cause significant
errors in the solution.

It may only be necessary to enforce Eq (13) locally.

The leading term of the local truncation error is proportion-
al to the third derivative. Let it be approximated by a cen-

tral difference, giving

T.E.. > f = f - (14a)

£,
i Shisen 2841

[
'
'
'aa}
‘aat

Again, using central differences to evaluate the second de-

rivatives gives

13
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T.E., = f, - 2f, + 2fi - £, (14b)

Therefore, the local T.E. at a point is approximately depend-
ent only on its immediate neighbors. 1In this context, the
entire domain can be divided into several segments, each of

which satisfy Eq (13), i.e.

() =a; & +a ¢ + 3y (15)
i i i

At each grid point, a second order least squares curve fit
is performed using the solution at the previous iteration to
calculate the constants. The number of data points NP used
in the calculation may be specified to be any number greater
than 3 and less than or equal to the total number of grid
points. For example, if NP = 5, then the constants at each
grid point i will be determined by the previous solution
values at i*2, i*l, i for a balanced curve fit. At the
boundaries, the curve fit will necessarily be unbalanced.
The grid control function is then determined as described
in the next section. 1If NP is equal to the total number of
grid points, the entire domain is used in the least squares
curve fit, producing just one set of constants. Because the
constants are based on the solution at the previous iteration,
the grid will change as the flow solution changes, lagging it

by one iteration.

14




Grid Control Function Evaluation

The previous section described the goal of the adaptive
grid. In this section, the means of achieving that goal is
defined.

Equation (2a) gives the transformation of the first de-

rivative., Solving for the computational derivative gives

fi = fx xg (16)

Differentiating w.r.t. ¢ gives

= 17
fgg £y X + £ Xee (17)

Using the grid generation equation, Eq (8), and Eq (15), an

equation of the form F(P) = 0O results where

- - - 18
F(P) £ x X Pf, 2 a, / X, (18)

for which a Newton-Raphson iteration can be performed to solve

for the root P.

s+1

. s
P = P° - F3(p) / -g-%) (19)

where s denotes the iterate level. Using Eq (18) to deter-

mine F(P) and %% gives

AL SR ¢ xe - PE - 2a)/x)/(~f)) (20)

At this point, a relaxation factor 6 is introduced so that

15




the grid movement be gradual (9:321-322) and the physical

derivatives are replaced by their computational counterparts,

Eqs (2), giving

f 2
pStl | pS 4 o Li& - ZaZEiZaJ (21)

where 0 < 8 < 1 and fE in the last term has been replaced

by its counterpart from Eq (15) for consistency.
All values at s are known for the previous time step
or iteration. The constants a, and a, are evaluated from
the least squares curve fit to that solution. All derivatives

are evaluated as second-order central differences and initially

P must be provided as input to start the solution. Currently,
no formal method is used to determine & so it must be deter-
mined by experimentation.

With the new control function specified a new grid is
then determined as the solution of Eq (8). For comparison,
the grid control function used by Freeman (8) is given by
the first two terms on the right hand side of Eq (21). It is
referred to as a linear method because it results from speci-
fying the solution in the computational plane to be linear,
therefore producing fES = 0. It is felt that this may be
over-constraining the problem because the present analysis

shows that it is only necessary to satisfy the condition

§5£ = constant, (not necessarily 0). The present case is

16




referred to as a quadratic method.

One-Dimensional Model Problem

The viscous Burgers' equation is chosen to test the a-
daptive grid method because it is typical of many problems
encountered in fluid mechanics. It is a nonlinear, second
order equation, and its solution produces large gradients as
the Reynolds number, Re, is increased. The resulting flow can
be compared to a boundary layer profile of thickness propor-
tional to (1/Re).

The nonconservative form of Burgers' equation is

= 22a
U, + U _=U_ / Re (22a)

with boundary conditions

U(- » ,t) = 1.0 u(o,t) = 0.0 (22b)
and initial conditions
U(x,0) = 1.0 for x < 0 Uu(0,0) = 0.0 (22¢)

The analytical steady state solution is given by

U(x) = - tanh (x Re/2) (23)

Equation (22a) is transformed to the computational

17




plane by use of Eqs (2) resulting in

U‘X.. X;: U::

Ul’ M X : + BE Ur: = “ZH (24)
& Re x > Re x,
=

An optimized Successive Over Relaxation (SOR) method is
used to solve Eq (24). For high Reynolds number flows, it
has been shown that central differencing of the convective
term leads to an oscillatory solution (4:23). Therefore,
second-order, one-sided upwind differencing is used for the
convective term. The time derivatives are expressed as a
first-order backward differences and the diffusion term is

represented as a second-order central difference. The metrics

are evaluated as central differences.

Solution Procedure

The solution algorithm may be summarized as follows:
The computer program developed to solve this problem using the
adaptive grid method developed here is listed in Appendix B.
1. Provide an initial guess for the control function P.
2. Solve Eq (8) for the grid point distribution.
3. Solve Eq (24) to obtain the flow solution for the
first iteration.
4. Perform a least squares curve fit of the flow solution
to determine the constants a, and aj.

5. Generate a new grid control function distribution by

solving Eq (21).
6. Repeat Steps 2 through 5 until steady state is

18
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reached.

Steady state is assumed to have been achieved when the avera:ze
difference in the solution between two successive iteraticns
is less than a specified tolerance. This condition is given

as

Put . e e - (25)

L L

where I is the total number of grid points, n denotes the

iteration level, and ¢ is the tolerance.

Error Analvsis

For this study, an analytical steadv state solution ex-
ists, thereby providing a direct means to determine the
truncation error. However, in general, nc such solution will
be available. Another measure of the truncation error is
defined as the residual error R.E. and is determined as the
difference between the computed solution and the solution de-
fined by Eq (15). The local error, both truncation and re-
sidual, is defined to be the error at a point. The global
error is the value of the local errors averaged over the en-

tire field, i.e.,

| U, - (26a)

1 UexactI

IS ]

[y

= 1
T.E. = 3

e

U, -

i Ufit! (26d)

W

—

= 1
R.E. = 3

e

If the solution is such that the R.E. is zero, then Eq (15)

would be satisfied and the optimum grid would be defined.

19




ITI. Discussion of Results

The adaptive grid method developed in the previous
section was tested by solving the one-dimensional Burgers'
equation given in Eq (23). The solution of Burgers' equa-
tion exhibits an increase in slope at the right boundary
and a decrease in slope in the left boundary as Re increas-
es. For large values of Re, the solution of Burgers' equa-
tion is comparable to boundary-layer flows except that the
thickness of the boundary layer is proportional to (1/Re)
instead of (1/Re)%. An essential feature of any mesh is a
concentration of grid points in regions of high gradients
in the flow solution. For boundary-layer flows, a good rule
of thumb is to have 5 to 10 grid points inside the boundary
layer thickness. It is also necessary to have a smooth var- r
iation in the distribution of grid points in the transition
region from large gradients to small gradients and to have
enough grid points in all regions of the domain so as to
give an accurate solution of the problem. These features

are used as a test of the effectiveness of the adaptive grid

method developed here.

Basis of Results

It was necessary to limit the value of the control func-
tion P determined by Eq (21) because early results produced

very large magnitudes of P, in some cases resulting in a

20




double-valued transformation violating the maximum principle.
For the results presented here, that limit was set at 2.0
based on a truncation error analysis of the grid generation
equation, Eq (8). For a uniform distribution of P = 2.0,

I = 21, and Af = 1 analytical solution of Eq (8) for B.C.s

g 14 e, g

x(1) = -1 and x(21) = 0 gave x(2) - -.0067. The correspond-
ing numerical solution using a second order upwind difference

for the convective term gave x(2) = -.314. Two features are

e Lot be e L e s

evident from this analysis. First, this is an enormous spac-
ing which is undesirable for accurate solution of the flow
equations. Second, the numerical solution is very different
from the analytic solution. The truncation error analysis
showed that the T.E. is proportional to exp(P). The limit
value of 2.0 was chosen because the solution of Eq (22) pro-
duced much smaller values over most of the domain and local
regions of P = 2.0 could be handled. An additional constraint
was imposed, which provided a more uniform distribution of
grid points near the wall (x = 0) boundary. This constraint
was derived from the transformed Burgers' equation, Eq. (24).
Because an upwind difference was used for the convective
term, it was desirable to keep the value of the coefficient
multiplying it positive adjacent to the wall in order to use
a second-order accurate difference. For this to happen, the
value of P had to be less than the product U « Re - X€. The

only place where this expression had any effect was near the
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wall where the grid spacing was very small.

For this study, the grid was defined to be converged
when the average value of the grid speed xT was less than
a specified minimum exT. The final converged grid depended
on several factors:

1. The initial guess of the control function P which

provides the initial grid. A value of zero was

chosen because it produces a cartesian grid of

uniform spacing. In this way, the robustness of

the grid adaption mechanism could be demonstrated.

The number of data points NP used in the least

N

squares curve fit which determines the constants
a5, a4 and an-
3. The grid covergence criteria ¢ . This factor was
Xt

parameter dependent and will be discussed later in

this section.

4. The value of the relaxation factor ¢ in Eq (8) plays
a role in the determination of €y Its effect

T
will also be discussed later in this section.

The infinity boundary condition for the velocity U was speci-
field to occur at x = -1,0. For small values of the Re, U(-1)
is not necessarily equal to one, therefore it was determined

from the analytic steady state solution. Results are pres-

ented here for 21 grid points in the domain -1.0 < x < 0.0




and values of NP = 5 and NP =21.

Grid Dependence on NP

Figures 2 through 6 present the steady state solution
and the converged grid for NP =21 and for Re = 1, 10, 100,
1000, 1500. Large slopes in the grid curve indicate
large spacings between the grid points, likewise small slopes
in the grid curve indicate small spacings between the grid
points. The solution in the transformed plane takes on a
parabolic shape (as expected) for the smaller values of Re.
A very good grid is produced, placing 8 and 6 grid points
inside the boundary layer (B.L.) for Re = 10 and 100, re-
spectively. However, as Re becomes large, the solution looks
more like its hyperbolic tangent form in the physical plane
given by Eq (23). This is because the velocity U is equal
to 1.0 for all but very, very small values of x, because
the boundaries are fixed, and because a quadratic function
is a very poor fit to the hyperbolic tangent function.

Also note the step in the grid point distribution for
Re = 1000 and 1500. This step is due to the last term of
Eq (21). The coefficients a, and a, were generally of op-
posite signs and a; was generally an order of magnitude
larger than a,. For small values of ¢ the sign of this term
was determined by the sign of ass however, as £ increased
in value to approximately 8 or 9, the 2a2£ term dominated.

Also, for small values of £ , this entire term dominated
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the first term, U../U., which for large Re was equal to zero
due to U being constant in value. For larger values of £,

the U

-
9
S

/U, term dominated. The net effect was to produce

-
z
> >

the grid control function distribution shown in Figure 7
for Re = 1500. Positive values of P cause the grid points
to move to the right, X = 0 boundary, whereas negative
values of P cause movement in the opposite direction. Where
P changes sign, the grid points on either side are forced
together, therefore, producing the step in Figures5 and 6.
Because of this step, several grid points were placed in
a "pseudo gradient" leaving only a few grid points for the
real gradient. Only two grid points were inside the bound-
ary-layer thickness of (1/Re) for Re = 1000 and for Re = 1500,
only 1 grid point was inside the boundary layer. -
This effect is eliminated when the least squares curve
fit is performed only locally, i.e., for small values of NP.
Figure 8 through 12 present results for NP = 5 for the same
Reynolds numbers as before. For Re = 1, the grid did not
move significantly from its original position. The pseudo
gradient is no longer present for the larger values of Re
because it is much easier to fit a quadratic function for
only a few local data points than for the entire domain. The
number of grid points inside the boundary layer is 7 for Re
= 100, 4 for Re = 1000, and 6 for Re = 1500. When e was
reduced to .001, 7 points were placed inside the B.L.Tfor
Re=1000. Figure 13 presents a grid control function dis-

tribution for these cases (NP=5) showing a much better dis-
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tribution than the NP=21.

The number of data points used in the least squares
curve fit used to determine the constants a, 2a;, and ag
has a significant effect on the final converged grid. Figure
14 demonstrates as NP is increased the converged grid looks

more and more like that for NP =21. Even if the value of the

grid convergence criteria Ex is decreased, the final grid will

T
exhibit this step for the larger values of NP.

Grid Dependence on €y

T
It is evident that the value of the grid convergence

criteria is a very important factor in the shap of the final
grid and in the accuracy of the flow solution. As the para-
meters (e.g., Re, NP, etc.) are changed, it becomes difficult

to predict the value of ¢ which will produce the best grid

X,
due to the highly oscillatory nature of the grid speed vari-
ation with time. Figure 15 shows a representative time his=-
tory of the average grid speed demonstrating this feature.

If too small a value of ¢, was chosen, the grid did not con-
verge in a reasonable numb;r of iterations. For comparison,
the solution of this model problem on a static grid required
between 5 to 17 iterations to converge to steady state.
Steady state solution on an adaptive grid required between 15
to 30 iterations, on the average. However, if €, was too
small, grid convergence was not attained even aft;r 50 itera-

tions. If too large a value of exT was chosen, the converged

grid did not fully resolve the gradients in the flow solution.

Figure 16 demonstrates this behavior.

— - e e




Figures 17 through 19 present a steady state error analy-
sis based on ¢y for two different values of Re and two values
of NP. The ke; quantity in these figures is the maximum trun-
cations error, T.E.M. It might be expected that, if the value
of exT was smaller, the solution would be improved. Figure
18 and 19 show this to be true. However, Figure 17 shows the
contrary. At this point, no definite value can be proposed
for an arbitrary set of conditions. The key quantity in

these figures is the maximum truncation error, T.E.y. Ot

might be expected that if the value of ¢ was smaller, the
X
solution would be improved. '

Grid Dependence on 8

The value of the relaxation factor g has an effect on
on the final grid point distribution, although not as much
as the other parameters. As & was increased, more of the
grid movement generated by Eq (21) was allowed to be accom-
plished at each iteration, i.e., the grid speed increased.
This may be good, especiallyfor larger Re where more grid
movement is necessary to resolve the flow gradients. Along
with this increased grid speed comes an increase in the amp-
litude of the oscillation in the grid speed convergence, dis-
cussed previously. The smaller the value of ¢, the more uni-
form the grid movement became. Figure 20 shows a representa-
tive effect of 6 on the steady state error. In general, a

better solution was achieved as 8 was decreased, however,
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there is a drawback. In general, the smaller : was, the

longer convergence took.

Comparison with Other Methods

The effectiveness of the adaptive grid method developed
in this thesis is now compared to the adaptive grid method i
of Freeman (8) and to a static grid. An attempt was made ]
to compare the different methods on the same basis; a key i
i feature of the comparison is the resolution of the flow grad-
ients. A measure of this is the number of grid points in the
; boundary layer (l/Re). Therefore, for high Re, the static
| grid was exponentially stretched in order to place a similar
number of grid points inside the boundary layer (1/Re). As

many parameters as possible wer kept the same, however, in

many instances, this was not possible.

Table I summarizes the comparison of the three methods
for Reynolds numbers of 10, 100, 1000, and 1500. The key
parameter to note is the maximum truncation error (T.E.M).
Treeman's method is referred to as the linear method and the
present method is referred to as quadratic. For NP = 5,
the adaptive methods are very similar, which is demonstrated
in Figure 21. The values T. E. for the adaptive grids com-
pare very well with the T.E. static of the grid. Note, how-

ever, that the number of grid points is substantially increased

for the static grid for Re = 10 and 100 in order to resolve
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TABLE I

Error Comparison

5 @ =0.25 I =21 NP =5
T.E. max T.E. ave
Fixed Adaptive Grid Fixed Adaptive Grid !
we Grid | Linear|Quadratic Grid Linear [Quadratic 5
1
10 .0021° .0093 .0111 .0007 . 0055 .0042
100 .0113° .0198 .0115 .0005 .0103 .0053
1000 .0169° .0227 .0291 .0049 .0084 .0087
1500 .0160° | .0248 .0365 .0046 .0078 .0073
a = 51
b = 201
Cc = 21 = 0.5

— e
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the flow gradient. For large Re, the static zrid was expon-

entially stretched to resolve the gradient. This amounts to

a constant value of P in the grid generation equation, Eq (8).

This stretching was possible for this model problem because 4
the characteristics of the solution were known, however, in

general, these features will not be known a priori and a

stretching of this sort would not be possible. One would
then have to resort to a large number of grid points in order
to resolve all the features of the flow.

Another important factor concerning the viability of
any new develpment is the relative computation time required
to solve the problem. This study was performed on a CDC
Cyber 175 computer. For the static grid the solution of
Burgers' equation required an average of 2.03 x 10_3 cp
seconds per grid point per iteration. Freeman's linear adap-

tive grid method required an average of 3.88 x 10-3 cp

seconds and the present quadratic method required 4.31 x 10-3
seconds for NP = 21 and 4.67 x 10-3 cp seconds for NP = 5.
The present method required between 2 and 5 cp seconds to r
reach steady state for 21 grid points compared to between .2
and .5 cp seconds for 21 grid points for the static grid.

However, the static grid with 201 grid points required 23.066

cp seconds.
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IV. Conclusions

The results of this study demonstrate the benefits of
using an adaptive grid in the solution of fluid dynamics
problems. There were two primary goals of the adaptive grid
method develped in this thesis: first, to provide adequate
resolution of the high gradient regions in flow; and second,
to produce an optimum grid such that the truncation error %
would be eliminated. The first objective was met. The
method does a very good job of concentrating grid points in
the physical plane in high gradient regions, where large
truncation errors generally occur. It showed robustness in
that the gradients were resolved given an initially constant
spaced cartesian grid and without any a priori knowledge of
the flow. However, it is not as robust as hoped, because
it depends on the input of several parameters which presently, 1
can only be determined by experimentation. In general, the
following statements can be offered for the determination I
of these parameters based on the results of this study.
1. The number of data points used in the least squares |
curve fit should be decreased as Re increases. i
Using the entire field for the curve fit was suc- f
cessful only for smaller values of Re. As the num- ;

ber of points is decreased, the method approaches

that of the linear method used by Freeman (8).

ST s % P
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2. Larze values of the relaxation factor & result
in greater grid speeds and less ccnvergence times.
Smaller values result in decreased grid speeds and i
larger convergence times. However, the smaller
values of 6§ produce better steady state results due
to the dampening of the oscillations that occur in
the grid speed.
{ 3. At this point, no conclusion can be drawn about the
grid convergence criteria e It appears to be

T
very problem dependent and can only be determined

by experimentation.

4, The computation time required for solution on an
adaptive grid is greatly increased over that on a
static grid. However, without a priori knowledge
of the flow solution, a great number of grid points
is required for the static grid, putting the two
methods on equal ground for this one-dimensional
problem.

The second goal of the thesis was achieved only partially.

The method produces satisfactory results; however, it did not
produce a truly optimum grid. The truncation errors are still
on the same order as those produced by a static grid with e-

qual grid spacing or with coordinate stretching.
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V. Recommendations

The results of this study indicate the advantages of
the use of a solution adaptive grid for the numerical solu-
tion of partial differential equations. Further investi-
gation of the present method is required to determine the
reason the truncation errors were not minimized, as ex-
pected.

One possible source of error resided in the Newton
iteration technique used to determine the grid control
functions. It is suggested that a fixed Newton iteration be
used; the denominator should consist of only one term, not
two.

A second source of error is associated with the grid
spacing. Large errors in the solution tended to occur where
large grid spacings occurred, especially if the spacing was
three or more times the value of the smaller grid point.

The present method may need to be modified to restrict

the size of the grid spacing.
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PROGRAM LISTING
PROGRAM BURG1SC (INPUT,OUTPUT, TAPES, TAPE7, TAPES)

CREXRAREREREBEREREREREARRERRERARRERERAXRRXRARERARERERXARKRNRARKR
c UNSTEADY SOLUTION OF THE 1-D BURGER’S EQUATION BY AN 4
C OPTIMIZED SOR MITHOD COUPLED WITH A GRID OPTIMIZATION X
c ROUTINE BASED ON A TRUNCATION ERROR ANALYSIS. THE X
c PROCEDURE IS NOT SELF-STARTING, THUS REQUIRING X
c AN INITIAL GUESS FOR THE GRID GENERATION CONTROL L
c PARAMETER, P. ¥
0323302303233 0 303333328303 8333333 3333332303 8303 33233328832

COMMON /A/IMAX,U(51),2I(¢(51),X(31},P(51),DX(81),RE
COMMON /B/KGRID, GRIDACC, XMIN, XMAX

REAL DXX(51),XT(S1),XN(51),UN(51),E(S1),6(51),C(3) '
REAL LBC,RBC, XMIN, XMAX, ALPHA, BETA, GAMMA, DX2, A, B, USTAR, W, :
# UOLD, SUM, ERRMAX , ERRAVE, DIFF, GRIDACC, SOLNACC, DU, DUU, DELT, T,

# XTAVE, XTACC,CPI,CPF,CPU,PI,ZZ(11),UU(11) ‘
INTEGER 1,K,N,NT,KGRID,KSOLN

PI=3, 141392654

CCxax2252%3 READ INPUT DATA SXKXXKXXXKXARXAEXKEXEXXXXARRARIXERRE

READ(7,%) IMAX,KGRID,KSOLN,LBC,RBC, XMIN, XMAX, NP
READ(7,%) RE,GRIDACC,SOLNACC,DELT,NT, THETA, XTACC ‘
READ(7, %) (P(I), I=1, IMAX) !
CALL DATE (ADATE) |
CALL TIME(ATIME) i
WRITE(&,4%) ADATE,ATIME ,
WRITE(6,50) IMAX,NT,RE i
WRITE(&,51) LBC, XMIN,RBC, XMAX

WRITE(6,53) KSOLN, SOLNACC, KGRID,GRIDACC

WRITE (&,54) DELT, XTACC, THETA, NP

WRITE(8,200) ADATE,ATIME

WRITE(8,20%) IMAX,NT,RE

WRITE(8,210) LBC,XMIN,RBC, XMAX
WRITE(8,21%) KSOLN,SOLNACC, KGRID, GRIDACC
WRITE(8,210) DELT,XTACC, THETA, FLOAT (NP)

CCxssss83%x SET INITIAL CONDITIONS SERERREREXERKIEEXARRXEXRARERLR

| T=0,0
S N=0
o DO 10 1=, IMAX




ZI(1)=FLOAT(I)
X(1)mXMIN+(I=1) 2 (XMAX=XMIN) / (IMAX-1)
U(l)=1.0
10 CONTINUE
CALL USTART
CALL UPSET(’POLYNOMIAL’,2,0)
XTAVE=1.0

CCsx3s20x83 SET BOUNDARY CONDITIONS SERESELXREMEEERKAEXEARAREXLS
U(1)=s-TANH(RESX (1) %0.5)
U(IMAX) =-TANH (REXX (IMAX) £0.5)
XT(1)=0,0
XT (IMAX) =0, 0
CCxxxsassx CALCULATE "OLUTION FOR EACH TIME STEP, N XXf5¥1fryxky

CALL SECOND(CPI.

990 N=N+i
TaT+DELY
IF (N .GT. NT) 60 TO 1000
K=0
DO 105 I=1,IMAX
XN(I)=X (D)
103 UN(T)=U(I)

WRITE(6,63) T
WRITE(8,210) T

CCxxxsxx3s CALCULATE GRID KEKXXXRRERXEXXALXRXRALALAEKIXTAAKNKLKAL

IF (N .LE. §) GO TO 24

IF (ABS(XTAVE) ,LE. XTACC) GO TO 23
24 IUPWND=0

CALL GRIDSOR (IUPWND)
=] CONTINUE

CCrexasass WRITE GRID DATA SEXXXEAXXXRXXKAIAXXAXRILKAXRXKXARSRLL

XTAVE=0.0

WRITE (6, 52)

DO 20 I=2, IMAX-1
DX(1)=0,Jx(X(I+1)-X(1=1))
DXX(I)mX(I+1)=2,0%X(I)+X(1=-1)
XT(I)=(X(I)=XN(I))/DELT
XTAVE=XTAVE+XT(I)
WRITE(6,58) I, X(I),DXCL),DXXCL), XT(I) ,P(I)

20 CONTINUE

XTAVE=XTAVE/ (IMAX~2)

WRITE(6,59) XTAVE

IF (N .GE. NT-3) XTAVE=0,0

CCxssssxxx K IS THE SOR ITERATION LOOP INDEX SS8RSR2RXRRXXEXRRRLK
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DO 900 K=1i,KSOLN
ERRMAX=0.0
SumM=0.0Q

CCrxxxxsxx I IS THE SPACE LOCP INDEX XEXKEXKRXEKXKXEXTAAXKXKKKXXK

DO 110 I=2,IMAX-1
DX2=DX (1) $DX (1)
ALPHA=1,0/ (RE3DX2)
BETA=(U(I)=XT(I) + DXX(I)®ALPHA)/DX(I)
CRRRRREXBRRRRRRER AR RN ERR ARSI RRRERRARIRRKRRARRERRARKERERARRIRLEXE

c USE A FIRST ORDER DIFFERENCE NEXT TO THE BOURNDARY ¢ :
c POINTE AND A SECOND ORDER DIFFERENCE INTERICOR ¥ '
™ TO THESE POINTS FOR THE UPWIND CONVECTIVE TERM ¥
c THE UPWIND VALUE IS BASED ON THE VALUE OF BETA X

3R R bR bttt i it i ittt isstiisttiseissesssetstees

IF (BETA .GE. 0) THEN )
IF (I .E@. 2 .OR. I .EQ. (IMAX-1)) THEN '
DU=-U(I-1)
GAMMA = BETA + 2,0%ALPHA + 1,.0/DELT
A = ALPHA/GAMMA
B = (ALPHA + BETA) /GAMMA
ELSE !
DU = 0.53U(I-2) - 2,0%U(I-1)
GAMMA = 1,SEBETA + 2.0%ALPHA + 1,0/DELT
A = ALPHA/GAMMA
B = (ALPHA + BETA)/GAMMA
END IF _
ELSE |
IF (I .EQ. 2 .0OR. I .E@. (IMAX-1)) THEN
DU = U(I+1)
GAMMA = -BETA + 2.0fALPHA + 1,0/DELT
A = (ALPHA - BETA)/GAMMA !
B = ALPHA/GAMMA
ELSE
DU = =0,55U(1+2) + 2,08U(I+1)
GAMMA = -1,SXBETA + 2.0%ALPHA + 1,0/DELT
A = (ALPHA - BETA) /GAMMA
B = ALPHA/GAMMA
END IF
END IF

CCsaxxxsxs CALCULATE THE GAUSS~SEIDEL VALUE SXXEKSKREXREIRELXLSLR
USTAR=(UN (1) /DELT+ALPHAR (U(I+1)+U(I-1))~BETARDU) /GAMMA
CCrxxxxext CALCULATE THE OPTIMUM RELAXATION FACTOR XXXXEXXXLXRLX

CALL WOPT(A,B, IMAX,W)
IF(N .EQ. { .AND. K .EQ. 1) W=1,0
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Cxxxx CALCULATE SOLUTION & ERROR BETWEEN SOR ITERATIONS XX¥XXkxk

UoLD = U(D)
UCI) = U(I} + WE(USTAR = U(I))
DIFF = ABS(U(I) - UOLD)
SUM = SUM + DIFF
110 CONTINUE

CCxxxssxsx CHECK FOR ITERATION CONVERGENCE KXEKBKKEXAXEXXERKKEXK

ERRAVE = SUM/IMAX

cc IF (ERRAVE .LE. SOLNACC) GO TO 910
900 CONTINUE
910 WRITE (&,79)

Caxxxx CALCULATE NEW GRID GENERATION CONTROL FUNCTION P XkkXkxfx

IF (N .LE. 5) GO TO 34

IF (ABS(XTAVE) .LE. XTACC) GO TO 35
34 CALL NEWP(THETA,C,NP,G)
35 CONT INUE

CCxxxxxxsx CALCULATE ANALYTIC STEADY STATE SOLUTION XEXXXXRXREXX

WRITE(&,87)
ERR1=0, 0
SUM1=0. 0
ERR2=0, 0
SUM2=0. 0
ERR3=0. 0
SUM3=0. 0
DO 120 I=1, IMAX
E(1)==TANH(REXX(I)%0.%)
DIF1sABS (U(I)=E(I))
SUM1=EUM1+DIF1
DIF2=ABS (U(1) =G (1))
SUM2=SUM2+D1F2
DIF3=ABS (G(1)~E(I))
SUMInEUMI+DIF3
WRITE (6,580 1,X(I),U(I),ECD),DIF1,B(I)
WRITE(8,225)X(I),XT(I),P(I),UCI),GCI),ECT)
120  CONTINUE
ERRAV1=EUM1/IMAX
ERRAV2=8UM2/ IMAX
ERRAV3=SUM3/ IMAX
WRITE (&, 80)K~1, ERRAV1 , ERRAV2, ERRAV3
WRITE (8, 230)K-1,ERRAV1, ERRAV2, ERRAV3

Cax822 CALCULATE AVERAGE ERROR BETWEEN SOR ITERATIONS XX¥kssixis

8UM=0,0

i
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DO 180 I=1, IMAX
DIFF=ABS (U(D)~UN(D))
SUM=SUM+DIFF
180 CONTINUE
ERRAVE=5UM/ IMAX
WRITE(4,82)ERRAVE
WRITE(8,210) ERRAVE .
IF (ERRAVE .GE. SOLNACC) GO TOQ 990 !

CALL SECOND(CPF)
CPU=CPF-CP1
WRITE (b, 95) CPU
WRITE (8, 235) CPU
CALL UEND

STOP

200 FORMAT(TS,A10,35X,A10)

205 FORMAT(TS,2I5,E12.4)

210 FORMAT(TS,4E12.4)

215 FORMAT(TS,15,E12.4,15,E12.49)

225 FORMAT(4E11.4)

230 FORMAT(TS,15,3E12.4)

235 FORMAT(TS,E12.4)

45 FORMAT(*1’,/,T3,A10,2X,A10)

S0 FORMAT(/,T10,’1-D BURGERS EG. SOLN USING OPTIMIZED SOR METHOD’
#," & OPTIMUM GRID’,//,T25,” X2XRXXXXXXINPUT DATARKEXXRXERX’,/3X,
#'#% OF BRID PTS =,13,3X,’% OF TIME STEPS *,13,3X,’RE # =’ ,E9.3)

51 FORMAT(3X,'U =*,F5.2,” @ X =’,F5,2,3X,’U »’,F5.2,” @ X = ,F5.2)

S3  FORMAT(3X,’#% OF SOLN ITER. =",I3,3X,"SOLN ACC CK =',
#E®.3,/,3X,’# OF GRID ITER. =*,13,3X,’GRID ACC CK =’,E9.3)

S4 FORMAT(3X,’DELTA TIME =’ ,FS5.2,3X,’GRID SPEED CK =’,E9.3,/,
#3X,"NEW P RELAXATION FACTOR:’,F4.2,3X,’# OF PTS IN °*,
#°CURVE FITs’,13,/)

52 FORMAT(/,T25,’GRID CALCULATION’,/,T4,’Z1°,T14,°X’,T25,
#°DX’,T38,°DXX’, TS0, XT*,T62,’P*,/)

S8 FORMAT(15,8(F12.7))

S9 FORMAT(/,TS,’AVERAGE VALUE OF GRID SPEED =',F12.7)
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65  FORMAT(//,T30.’TIME =’,F&.3./)

79 FORMAT(//)

80  FORMAT(TS.’SOR ITERATION #°,13.5X,’AVERAGE ERRCR ANALYSIS®,/.
#T730,’ COMPUTED & ANALYTICAL :',F13.8,/,730, COMPUTED & FIT :’,
#8X,F12.8,/,T30,ANALYTICAL & FIT :’,3X,F13.8)

82 FORMAT(TS,*AVE ERROR BETWEEN TIME STEPS =’,F12.8)

87 FORMAT(/,T30,’ #xsxx ANALYTIC SOLUTION sxxkx’,//
#T4,°21°,T14,7X’,T25,°U’, T35, U EXACT®,T47, DIFF’,T40,"FIT?,/)

90 FORMAT(/,T20,’LEARST SQUARES FIT TO SLUTION’,/,TS,’U(ZI) = 7,
#F10.6,7 & ZI®X2 + ',F10.6,” ® ZI + ’,F10.4,/) |

95  FORMAT(/,TS,’TOTAL CPU TIME :’, E17.7)

98  FORMAT(/,TS,’MAX ITERATIONS EXCEEDED!'!!'*,/)

1000 WRITE (6,98)
CALL SECOND (CPF) i
CPU=CPF~CPI :
WRITE (&,95)CPU
WRITE (8, 235) CPU

STOP |
END

SUBROUTINE WOPT (A, B, IMAX,W)

Pl=3, 141592654 ,
PJ=2. OSSORT (ALB) £0. 99 !
W=2.0/ (1, 0+SGRT (1.0-PIXX2)) '
RETURN E
|
{

END

SUBROUTINE GRIDSOR(IUPWND )

(43Pt P i PP i ittt tetestoeesttiesitdststecedetstsdstss
C THIS SUBROUTINE CALCULATES THE SOLUTION OF THE 1-D X
C GRID GENERATION EQUATION BY THE THOMAS ALGORITHM. X
C IF IUPWND = 1, THEN IT USES 2ND ORDER UPWIND DIFFERENCES &
€ FOR THE CONVECTIVE TERM. IF IUPWND = O, IT USE& A 2ND X
C ORDER CENTRAL DIFFERENCE FOR THE CONVECTIVE TERM X
CRREER R R R AR R KRR AR R KRR RE AR KRR XA RKRRARRARRRKARERRLARRY
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COMMON /A/IMAX. U(S1),21(S1),X(51),P(351),DUMMY (S1),RE
COMMON /B/KGRID.GRIDACC, XMIN. XMAX

WRITE (6.56&)

X (1) =XMIN

X {IMAX) =XMAX

K=20 :
CCrxxxxxxx K IS THE SOR ITERATION LOOP INDEX XXKEXXKEEXKEXKXEXKK !

999 K = K¢l
IF (K .GE. KGRID) GO TO 200
ERRMAX=0, 0
SuM=0.0

COtxxxxxxx 1 IS THE SPACE LOOP INDEX ¥XXRXKXAXKKXXTKXKAXKKKAKKKR |

DO 110 I=2, IMAX-1

ALPHA=1,0
BETA=-P(I)
3 2P P PR PR Rt P PRt R ettt sotiitssetstssettsts
c USE A FIRST ORDER DIFFERENCE NEXT TO THE BOURNDARY ¥
c POINTS AND A SECOND ORDER DIFFERENCE INTERIOR X !
c TO THESE POINTS FOR THE UPWIND CONVECTIVE TERM X
c THE UPWIND VALUE IS BASED ON THE VALUE OF BETA %

CEERX RN E NN R R AR KRR KRR KRR KRR AR RS AR KA RN X AR KRR RRKK ‘

IF (BETA .GE. 0) THEN .
IF (I .EQ. 2 .OR. I .E@. (IMAX=-1)) THEN |
DXm=X (I-1)
GAMMA = BETA + 2,0%ALPHA
A = ALPHA/GAMMA
B = (ALPHA + BETA) /GAMMA ;

ELSE 7
DX = 0.58X(I~-2) = 2,0%X(I-1)

A = ALPHA/GAMMA
B = (ALPHA + BETA)/GAMMA
END IF
ELSE
IF (1 .E@. 2 .OR. 1 .EQ. (IMAX-1)) THEN i
DX = X(I+1)
GAMMA = -BETA + 2,0%ALPHA !
A = (ALPHA - BETA)/GAMMA _ ]
B = ALPHA/GAMMA :
ELSE
DX = -0,SkX(I+2) + 2,0%KX(1+1) ;
GAMMA = -1,SEBETA + 2.0%ALPHA '
A = (ALPHA - BETA) /GAMMA :
B = ALPHA/GAMMA '
END IF

END IF
@

i
GAMMA = 1.5XBETA + 2,0XALPHA h
t
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CCxxxxxxxx CALCULATE THE GAUSS~SEIDEL VALUE XRXXKXXKXXXXKEAXRKKX
XSTAR = (ALPHAR(X (I+1)+X(I-1))-BETAXDX)/GAMMA
CCkxxxxxxx CALCULATE THE DOPTIMUM RELAXATION FACTOR XXKXXXKXKKKXX

CALL WOPT (A, B, IMAX, W)
IF(K .EQ. 1) W=i,0

Cxxxxx CALCULATE SOLUTION & ERROR BETWEEN SOR ITERATIONS XXXkx&x

XOLD = X(I)

X(I) = X(I) + WE(XSTAR - X(I))

DIFF = ABS(X(I) - XOLD)

IF (DIFF .GE. ERRMAX) THEN
ERRMAX = DIFF
IT = 1

END IF

SUM = SUM + DIFF

110 CONTINUE

Cxxxxxxxxx CHECK FOR ITERATION CONVERGENCE XXKXXXEXEKKRAXKRAKKXK

ERRAVE = SUM/IMAX
IF (ERRAVE .GE. GRIDACC) GO TO 999

200 WRITE(4,80)K,ERRMAX, Il,ERRAVE

S&  FORMAT(/T15,°'SOR GRID CALCULATION *,/,TS,’USING A 2ND ORDER’,

#’ UPWIND DIFFERENCE FOR THE CONVECTIVE TERM’)

80 FORMAT(TS,’ ITERATION #°,15,5X,’MAX ERROR =’,F10.5,’ AT’,
#14,/, 5X,’AVERAGE ERROR =’ ,F10.%)

RETURN
END

SUBROUTINE NEWP (THETA,C,NP,G)

CERRRRRRRRR S AR R RS LK R AR KRR KRR RN R AKX RERRRARKBKARARRKKELNE
~ THIS SUBROUTINE CACULATES THE NEW GRID GENERATION CONTROL &
c FUNCTION P. IT 18 BABED ON A GLOBAL TRUNCATION ERROR
c ANALYSIS FOR THE FLOW SOLUTION IN THE TRANSFORMED PLANE &
CRERRRRARRRRRXRNARERRRAKRERE AR KR AR SRR ERRRRRRRKERRRRRRXALARRREKE

COMMON /A/IMAX,U(S1),21(58),X(58),P(S1),DX(51),RE
REAL C(3),22(11),UU(11),G(SD)

NN=(NP-1)/2

WRITE(&,13)

L A
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cc
cc
cc

cc
cc
cc

DO 7 J=1,NP

22(J)=Z1(J)

Ul (J3)=u(d)
CONTINUE
CaLL ULSTS@(ZZ.uU,FLOAT(NP),C)
A2=C(3)
A1=C(2)
RO=C(1)
WRITE (4,27) (22(J),J=1,NP)
WRITE (4,28) (UU(J),J=1,NP)
WRITE (4,29) A2,A1,A0

DO 5 I=2,NN+1

G(I) = A25I%32 + ALLL + AO

DU=0, Ss (U(I+1)=U(I-1))
DUU=U(I+1)-2.0sU (D) +U(I-1)
DUSIGN=SIGN(1.0,DU)

IF(ABS(DU) .LE. .0000001) DU=.000Q0001%¥DUSIGN
DEN=2.0%A2%I + Al

DENSN=SIGN(1.0,DEN)

IF (ABS(DEN) .LE. 0.0001 ) DEN=,0001%DENSN
POLD=P (I)

P(1)=POLD + THETAXDUU/DU ~ THETAX2.0%A2/DEN
PMAX = U(I)XREXDX(I)

IF (P(1) .6T. PMAX) P(I)=PMAX

IF (P(I) .GT. 2.0) P(I)=2.0

IF (P(I) .LT. =2.0) P(I)=~2.0

WRITE (&, 16) I, DU, DUY, DUU/DU, POLD,P(I)

CONTINUE

DO 10 I=2+4NN, IMAX=NN-1

DO 20 J=1,NP
22(J) = ZI(I+J=NN-1)
Uu¢d) = U(I+J=NN-1)
CONTINUE
CALL ULSTSG(ZZ,UU,FLOAT(NP),C)
A2=C(3)
A1=C(2)
AO=C(1)
WRITE (b,27) (22(J),J=1,NP)
WRITE (6,28) (UU(J),J=1,NP)
WRITE(b,29) A2,A1,R0
G(I) = A25I3%2 + ALXl + AO
DU=0, Sx(U(I+1)=U(I-1))
DUU=U(I+1)~2.0%U(I)+U(I~1)
DUSIGN=SIGN(1.0,DU)
IF(ABS(DU) .LE. .0000001) DUu=.0000001%DUSIGN
DEN=2,08A281 + Al
DENSN=SIGN(1.0,DEN)
1F (ABS(DEN) .LE. 0,0001 ) DEN=,0001¥DENSN
POLD=P(I)
P(I)ePOLD + THETASDUU/DU - THETAX2.0%A2/DEN
PMAX = U(I)3RERDX(I)

————
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30

cC
cC
cc

15

16
27

28

IF (P(I) .BT. PMAX) P(I)=PMAX

IF (P(I) .GT. 2.0) P(I)=2.0

IF (P(I) .LT. =2.0) P(I)==2.,0

WRITE(4,16)I,DU, DUU, DUU/DU,POLD,P(T)
CONTINUE

DO 30 J=NP,1,~1
22(3) ® ZIC(IMAX+J-NP)
UUGI) =  U(CIMAX+J=NP)
CONT INUE
CALL ULSTSQ(ZZ,UU,FLOAT(NP),C)
AZeC(3)
AL=C (2)
AO=C (1)
WRITE (&,27) (22(J3),J=1,NP)
WRITE (4,28) (UU(J), J=1,NP)
WRITE(6,29) A2,Al,A0
DO 25 I=IMAX=NN, IMAX-1
G(I) = A2KIXX2 + ALK + AO
DU=0, SK(UCI+1)=U(I=1))
DUU=U(I+1) =2, 0%U (1) +U(I~1)
DUSIGN=SIGN (1.0, DU)
IF(ABS(DU) .LE. .0000001) DU=,0000001%DUSIGN
DEN=2.0%A2XI + Al
DENSN=SIGN (1,0, DEN)
IF (ABS(DEN) .LE. 0.0001 ) DEN=,0001%DENSN
POLD=P (1)
P(1)=POLD + THETASDUU/DU ~ THETAX2.0%AZ2/DEN
PMAX = U(I) SREXDX (I)
IF (P(I) .GT. PMAX) P(I)=PMAX
IF (P(I) .GT. 2.0) P(I)=2.0
IF (P(I) .LT. =2.0) P(I)==2.0
WRITE (6, 16) I, DU, DUU, DUU/DU, POLD,P(I)
CONTINUE
P(1)=0.0
Gl =U(1)
G CIMAX) =U ( IMAX)
P (IMAX) =0, 0
FORMAT ¢/, T25, * XRKSXXX5K NEW P CALCULATION R3%8%%’,//
#T4,°21°,T14,’DU’, T26,DUU’, T36,  DUU/DU?,
#T48, 'POLD’ , T&0, * PNEW? , /)

FORMAT(1%5,8(3X,F9.3))
FORMAT(T2,’2Z(J)1 *,4F10.%)
FORMAT( T2,°UU(J3)t °,46F10.9)

FORMAT (T2,°LST 8@ FIT UU(ZZ) = *,
WFB.S5,’ & 2152 + ’,F8.5,' £ ZI + ’,FB.3,)

RETURN

;
|
|
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