

The work reported in this document was performed at Lincoln laboratory, a
center for research operated by Massachusetts Institute of Technology. This work

S"'was sponsored by the Defense Advanced Research Projects Agency under Air
Force Contract F1968404.002 (ARPA Order 3673).

*This report may be reproduced to satisfy needs of U.S. Governmient agencies.

The views and conclusions contained in this document are those of the contractor
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the United States Government.

The Public Affairs Office has reviewed this report. and it is
releasable to the National Technical Information Service.
where it will be available to the general public, including
foreign nationas.

This technical report hait been reviewed and is approved for publication.

FOR THE COMMAI4D ER

Thomas I. Alet PIJv SAF
Chief. EM Usols Ulinaery Project Office

Non-Lincoln Rcipent

PLEASE O0 OT UirT
Prmisuion is given to destroy iai document
when it is no longer needed.

4

-iL/2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

PROTOCOL SOFTWARE
FOR A PACKET VOICE TERMINAL

C.K. McELWAIN

Group 24

TECHNICAL REPORT 663

16 NOVEMBER 1983

Approved for public release; distribution unlimited.

•JAN 1 8 984

A
'S

LEXINGTON MASSACHUSETTS

- -. ' ~ ~ ~ -:>:. . .*- : K-v ~v" -

ABSTRACT

4.., -

A Packet Voice Terminal (PVT) has been developed at Lincoln Laboratory

to provide voice access to an experimental wideband internetwork packet

system. The PT employs a modular, microprocessor-based structure to provide

voice processing, packet voice protocol, and network interface functions.

The packet voice protocols are implemented in software in the Protocol

Processor (PP) module, which is the primary controlling module of the PVT and

which handles interfaces to a voice processor, a network interface processor,

and a user instrument. This report describes the software implemented in the

Protocol Processor. The implementation of the Network Voice Protocol

(NVP-II) and the Stream (ST) protocol are described. Call set-up functions

for both point-to-point calls and conferencing, and the methods used for

packetization and reconstitution of speech, are described. Problems

encountered and solutions which have been implemented are discussed.

ttt

.'...

7.,4. - - - - 7.- * - .

CONTENTS

ABSTRACT iii

1. INTRODUCTION I

2. PACKET VOICE TERMINAL ARCHITECTURE AND DESIGN 4

2.1 Overview 4

2.2 Protocol Processor Architecture and Interfaces 7

2.3 Protocol Processor Software Modules; Function and Size 16

3. VOICE PROTOCOLS 17

3.1 Brief History of Voice Protocols 17

3.2 Network Voice Protocol II 18

3.3 Stream Protocol 18

4. CALL SETUP 19

4.1 Overview 19

4.2 Setting Up a Point-to-Point Call 21

4.3 Conferencing 26

5. DIALING CONVENTIONS 35

. 5.1 Interaction with the Caller 35

5.2 Dialing a Point-to-Point Call 36

5.3 Conference Dialing 37

5.4 The Echo Extension 37

5.5 Using the Switched Telephone Network Interface (STNI) 39

5.6 Special Dialing Sequences 40

. .,

6. SPEECH DATA 41

6.1 Packetizing Speech Data 41

6.2 Silence Detection 47

6.3 Vocoder Dependent Modules 48

6.4 Efficient Handling of Speech Data 49

6.5 Reconstitution of Speech Data 52

7. RELIABILITY 55

7.1 Reliable Transmission of Control Messages 55

8. REAL-TIME STRUCTURE OF PVT SOFTWARE 57

8.1 Assembly Language Code 57

8.2 Polling Loop 58

8.3 Buffer Availability to BC 59

8.4 Output Message Formation 59

8.5 Timing 59

9. LANGUAGES AND SUPPORT FACILITIES 61

9.1 Choosing Languages 61

9.2 Support Facilities 62

9.3 Downloading Facilities 62

9.4 PROMS 63

10. MONITORING AND DEGUGGING AIDS 63

10.1 Diagnostic Record Keeping 63

10.2 "Talking To Yourself" 64

10.3 Echo Extension 65

10.4 Providing Information to the User 65

vi

'S11. COMMENTS 6

11.1 Implementing Protocols in a PVT 65

11.2 Use of Checksums 66

11.3 RAM Memory 66

11.4 Implementation on Packet Radio Network 67

11.5 Implementing NVP-II and ST 67

11.6 Support Facilities 68

12. SUMM~ARY 68

ACKNOWLEDGEMENTS 69

* 4REFERENCES 70

APPENDIX I - Acronyms and Abbreviations 72

APPENDIX II - Size and Function of PP Modules 73

.4vii

1. INTRODUCTION

An experimental wideband packet internetwork system is being implemented

under sponsorship of the Defense Advanced Research Projects Agency (DARPA) to

develop and demonstrate techniques for achieving the advantages of

integrating packet voice with data in a realistically large-scale system

[1,2,3,41. The experimental system consists of research facilities at

.9 multiple sites which are linked by a wideband packet satellite network

including a satellite transponder channel, earth stations, high-performance

burst modems, and demand assignment processors. The sites have local

packetized speech access facilities including concentrators, local

distribution networks, and packet voice terminals.

Lincoln Laboratory has developed the Lincoln Experimental Packet Voice

.4 Network (LEXNET) [51 to act as a local access area network for voice traffic

traveling to and from the satellite. The LEXNET provides broadcast

connectivity among a set of Packet Voice Terminals (PVTs) by means of a

wideband coaxial cable. The PVT digitizes and packetizes speech for

transmission over the local network. For local calls, these packets are sent

directly to another PVT on the same LEXNET. To reach a PVT on another

network, the packets are sent to a special interface unit, the LEXNET

Concentrator Interface (LCI), which forwards the packets to the remote net

via a speech concentrator. The speech concentrator acts as a GATEWAY between

two LEXNETS and/or between a LEXNET and the satellite. The GATEWAY consists

of a PDP-11/441 augmented with peripheral UMC-Z802 processors to aid in

iDigital Equipment Corporation, Maynard, MA

2Associated Computer Consultants, Santa Barbara, CA

A"

I/0 operations. A flexible packet-satellite demand assignment multiple

access (DAMA) processor3 (PSAT) provides scheduling for the satellite

channel. A flexible burst modem serves as an Earth Station Interface' (ESI)

with the earth station transmitter and receiver.

The experimental network currently includes four sites: Lincoln

Laboratory; the Defense Communications Engineering Center, Reston Virginia;

the Information Sciences Institute of the University of Southern California,

Marina Del Rey, California; and SRI International, Palo Alto, California.

-. The satellite channel is supported by Western Union's WESTAR III satellite.

The PVTs with their attached telephone instrument serve as the interface

with the voice user. The PVTs prepare speech for transmission through a

packet network by digitizing the speech, preparing speech data packets, and

sending speech data messages. The PVT handles the speech coming in from the

network. The protocols required to establish communication with other PVTs

are also implemented.

In earlier experiments sending packetized speech over ARPANET and

SATNET, the function of a PVT was performed on large host computers such as

PDP-Ils. The PVT has the advantages of being modular, compact

(microprocessor based) and generalizable. It can be programmed to handle

many different single card voice processors (vocoders) and can be adapted to

-S, interface to a variety of networks. A PVT is shown in Figure 1.

The purpose of this report is to describe the protocol software for the

PVT. The report will focus on the present implementation but much is

a
. generalizable. In Section 2 the PVT architecture and design is shown.

3Bolt Beranek and Newman, Cambridge, MA

4 LINKABIT Corporation, San Diego, CA

%

' -- 2 . .4 ~Ss2 ~ C-2 . .~t

7. .7. ..

Section 3 discusses the two protocols used and gives a brief history of the

development of these protocols. Next, call setup functions are described,

including the standard point-to-point call, conference calls and calls to and

from phones in the commercial telephone system. Dialing conventions,

efficient handling of speech data and the problem of reliable transmission

are addressed. Then the real time structure of the PVT software, the

languages used, the support facilities, and the debugging aids are covered,

The report ends with some comments and conclusions that have emerged from

A' this effort.

2. PACKET VOICE TERMINAL ARCHITECTURE AND DESIGN

2.1 Overview

This section describes briefly the design of the Packet Voice Terminal

161, the modules that comprise it, and the tasks that the protocol processor

performs while servicing the interfaces between modules.

2.1.1 Design of a Packet Voice Terminal

The experimental Packet Voice Terminal (PVT) was designed to provide a

64 kbps PCM capability, and also to provide a flexible interface for any of a

number of single-card narrowband speech processors. The terminal is

partitioned into three functional units; the speech digitizer, the protocol

processor, and the access area processor. Speech can be digitized by a PCM

CODEC or by a speech processor internal or external to the voice terminal

unit. Speech digitization is independent of the transmission process. The

protocol processor (PP) forms the packets and provides the necessary protocol

% functions to insure that the packets can be delivered to a distant network

and played out at the proper time. The protocol functions are designed to be

4

independent of the transmission medium. The access area controller or buffer
'.'

controller (BC) accepts packets from the PP and transmits them across the

LEXNET to a similar controller in another terminal. The BC is only concerned

with packet transport on the LEXNET.

2.1.2 Modular View of Packet Voice Terminal Functions

The PVT can be thought of as being made up of the modules shown in

Figure 2. The voice processor module represents the vocoder currently being

used. The PVT is programmed to handle three different vocoders; 64 kbps

Pulse Code Modulation (PCM), 2.4 kbps Linear Predictive Coding (LPC) [8] and

a variable-rate 16-64 kbps Embedded Continuously Variable Slope

Delta modulation (ECVSD) [7]. (PCM. and ECVSD are actually speech waveform

encoders but the term vocoder will be used when referring to them.) The box

labeled user telephone represents the phone-like instrument that the user

uses to communicate. The buffer control (BC) processor cornects directly to

the LEXNET and sends/receives messages from LEXNET. The protocol processor

(PP) module handles the protocols involved in setting u-p Point to Point calls

and Conference calls. Two protocols are implemented in the PP; the second

generation Network Voice Protocol (NVP-II) [9] and the Stream protocol (ST)

[101. These two protocols are used to negotiate the connections and transmit

the speech data. The PP module is also equipped with a vocoder preference

selection switch (VPSS) by which the user can indicat,1 which vocoder he

desires to use.

The protocol processor services the interfaces to the other modules

including: packetizing and depacketizing speech data, monitoring and

processing signals from the phone's key pad, monitoring and adapting to the

5

.................." " I**a " * " " " i .. .: .
,, ,-¢ ,, ,- ,."y -. ", ,. . -,;: -, , .. . :. .,. - .- (. .>-.- . . , • '"

,* * * *.*-., - ** "*, -' a I , .".. ..

,.,:' I GATEWAY'-4

VOICE PARCELS PROTOCOL MESSAGES BUFFER PVT
PROCESSOR = -PROCESSOR -- =CONTROL

J VP pp (Data and BC
I. Control)

A 0 U U PVT-'."N T S

TELEPHONE

-. 4

4.., i o I

";']Z" ELEPHON

.,

":Fig. 2 Modular View of a PVT

* *:-6

.*. a* ** *

desired vocoder, and processing messages going to and from the LEXNET. This

report is concerned with the functions of the protocol processor (PP) module

and their implementation in software.

2.2 Protocol Processor Architecture and Interfaces

2.2.1 Protocol Processor Architecture

The protocol processor resides on a card consisting of an INTEL 8085

microprocessor CPU, a data memory, a program memory, a DMA controller,and a

USART port. A block diagram is shown in Fig. 3. A separate memory extension

card is included allowing the total memory to be about 40K bytes. Two

versions of this extension card are available. A RAM card can be used for

network sites where a downloading or crossnet loading capability is available

and for software development. A PROM version of the card provides a

stand-alone capability. Only 4096 bytes of the RAM memory can be accessed by

the DMAs. (This limitation has significantly complicated the software.) The

term "DMA memory" will be used to refer to this memory. The current NVPIST

protocol program requires about 31K bytes.

* A DMA controller is used to pass data in both directions to the access

* controller and to the speech processor. The USART is used as a serial

channel to the telephone instrument for signaling and display. Communication

between the protocol processor and the speech processors is via two pairs of

byte-parallel channels. The first pair is used by the speech data and is

controlled by the protocol processor's DMA chip. The second pair is a

control channel which has several possible uses depending on the specific

speech processor. At start-up the speech processor presents an

identification code on the control input channel. The protocol processor

7

Ixw
'9 w 0n

C.- cr

I--i
Z~

00
8L C)

>- CCC

ZC 0 D>

4-. 2 L.
C) W 0

0 OU 0
S L

0

'90

'CCL

'4.' 9

4.<
4-r

40

.4.,

-. 0

cc, 08e
0 .. 00.c

z c
L4 C'7

.4c
j

*
4

C*,*** ~. -~ ~ ~. *....:..**. -. ; -. . .' *-..0

uses this code to determine which speech algorithm is active and to select

appropriate program parameters. The control channel can also be used for

passing control parameters to variable-rate speech systems or for loading

program into progra-mable voice processors.

2.2.2 User Telephone

The telephones are standard key pad telephones which have been modified

to match the needs of the PVTs. Internally, the phone contains a small

microprocessor system consisting of an 8085 CPU, ROM memory, keypad and a

USART. Communication with the PP is via an RS-232 serial interface. Drivers

* and receivers for the analog signals passing to and from the handset are

* contained in the telephone set. Commands transmitted over the serial line by

the PP cause signaling tones to be added to the analog signal driving the

earpiece.

The PP can send the following five commands to the phone: ring, dial

tone, busy signal, ringing tone and silence.* Once a command is sent to the

phone it will continue in effect until another command is sent. The protocol

processor uses these commands to create a calling environment similar to what

the user expects from a regular phone.

The telephone is equipped with a standard key pad with the twelve

characters 1 thru 9, plus *,O,and #. The PP receives a signal when the phone

goes on or off hook as well as when a key is pushed. When a digit is pushed,

a tone is sent to the phone for approximately 9 msec. This causes the phone

to seem to be "alive" to the user and reassures him that his key push was

noted. A LEXNET phone is shown in Fig. 4.

9

2.2.3 Voice Processor Selection

All PVTs are equipped with a PCM vocoder card. There is an extra card

slot which is wired to accommodate an alternate vocoder. The PP software

supports two alternate vocoders; a 2400 bps LPC Vocoder [81, and a

variable-rate Embedded CVSD Vocoder [7] which operates at rates of 16, 32,

48, or 64 kbps. The caller is supplied with a switch so that he can express

a preference between PCM and the vocoder plugged into the alternate vocoder

slot. The preference switch is a manual switch that is monitored by the

program. The actual selection of the vocoder is controlled by the program.

The switch is a three position momentary switch. Its rest position indicates

no preference. The PP constantly monitors the position of the vocoder

preference switch. If a new preference is indicated, the PP will record the

fact and take appropriate action.

2.2.4 Connection to the Voice Processor

Speech to and from the vocoder is sent in units called parcels. For a

narrowband vocoder such as LPC, a parcel consists of the data generated by

the vocoder in analyzing one unit or frame of speech. The basic frame time

for the LPC vocoder used in the PVT is 20 msec. The PCM and ECVSD vocoders

do not have a basic frame time. Data for these vocoders are passed in

parcels which comprise 22.5 msec of speech.

Speech goes to and from the vocoder via two direct DMA channels working

* *in auto-initialize mode. Separate buffer space is reserved in the DMA memory

for each channel. In the auto-initialize mode the DMA reads/writes speech

from/to the buffer until it reaches the end. It then automatically begins

again at the beginning of the buffer. The buffer areas are sized so that

they always end at a parcel boundary.

4I

Transfers in each direction are independent. An interrupt is provided4

once per parcel for each direction. A one-byte header precedes each speech

* parcel in the buffer. The header byte tells whether the following parcel is

speech or silence. On reading a parcel which is marked as silence, the

vocoder plays out an internally stored parcel of silence. When the vocoder

finishes reading a parcel, the end-of- parcel interrupt executes code which

marks the parcel as silence by clearing the speech indication in the header

byte. This ensures that a speech parcel will not be played out more than

* once even if no new speech is received before the DMA reaches this buffer

again. When writing speech parameters into the speech buffer, the PP sets

the header byte to indicate that the parcel contains speech.

2.2.5 Access Area Interface

All messages on a LEXNET begin with a two-word LEXNET header which

consists of the destination address and the source address for the message.

During a conference, messages containing speech data use the broadcast LEXNET

address augmented with the ID number assigned to the conference as a

destination address. The Buffer Control card forwards to the PP card all

messages on the LEXNET which are specifically addressed to it plus all

messages addressed to any conference ID which the PP has asked to receive.

Once the buffer control card has notified the PP that it has a message for

* it, the PP must read in the entire message or it will get out of sync with

the buffer control card.

The PP expects to receive three distinct types of messages (see Section

4.3 on Protocols). Control information is transmitted in two different types

of messages corresponding to the two protocols IP (DoD standard Internet

12

Protoco 1111 an ST. (See Seto 3). Th thr tyeo esaecnan

Prtoitn memor) and Th(eeb Secinar3). The threyeo message contains l

peetcl pafrcemandimay also the cominnro infosraio precding the Peech.n

Thfer PPFr reaine nanu ofpbyesh equaels tol the smales corre

defectie (ehg., baecdeck) the r emhanigebt are read into eP

read-in buffer. Then each parcel of speech is transferred via DMA directly

U' into a selected buffer in the set of buffers which contain speech to be

played out. Efficient handling of incoming speech parcels is discussed in

Section 6.

The PP creates the same three types of messages to send out to the

LEXNET via the Buffer Control card. Messages which contain only control

d information are formed in one of two output buffers in DMA memory. One

buffer is used for EP messages, the other for ST messages. These messages

are transferred directly from the output buffer to the Buffer Control card.

The header and any accompanying control tokens for messages containing speech

parcels are generated in a third output buffer. After this information is

I sent to the Buffer Control card, the accompanying speech parcel(s) are

transferred via DMA one by one directly from the circular buffers which

receive speech from the vocoder. For vocoders with low bit rates and

correspondingly few data bits in a parcel, several parcels are usually sent

in one message. For a high bit rate vocoder such as PCM, only one parcel is

sent in a message.

13

2.2.6 Summary of the PP Functions

The primary function of the PP is to implement the two protocols NVp-II

and ST, thereby giving a user access via packet speech to other PVTs and to

regular phones. It does this through interaction with the four interfaces

connected to it. The PP does not spontaneously generate any activity. A

I summary of the interactions with each interface is contained in Table 1.

-'14

TABLE I

SERVICES PROVIDED BY THE PROTOCOL PROCESSOR

User Instrument Interface

Receive signals from the instrument via the USART

Interpret Signals Received

Implement action caller desires

Send commands for the appropriate tones to the instrument to reflect

* current status

Send ring command to the instrument when call received from LEXNET

Voice Processor (Vocoder) Selection

*Monitor Vocoder Preference Selection Switch (VPSS)

When changed, reconfigure buffer assignments and storage space

dynamically to use newly requested vocoder and select vocoder.

Switch Vocoder Selection internally to satisfy "Request to Talk"

Voice Processor (Vocoder)

Set up buffer space, pointer tables, etc., according to type of Vocoder

in use

Start speech transfer (both directions) when call established
Package frames of speech into speech packets and send

Stop speech transfer when connection ends or is broken

Access Area Processor Interface

Accept, analyze, and act on all incoming messages

Apply reconstitution algorithm to incoming speech messages

Unpack speech parcels in message and DMA into correct Vocoder buffer
Respond to incoming protocol messages

Create and Send Outgoing messages
Determine which speech parcels to send, pack and send them

Control protocol dialogue which establishes requested connections

Insure reliable transmission of Protocol Messages

p.1

-,' 15

a.,

2.3 Protocol Processor Software Modules; Function and Size

The software system for the PP is written partly in the high level

language C and partly in an assembly language called A-Natural [121.

A-Natural is the assembly language generated by the C compiler used for this

project. (See Section 9.1).

The A-Natural routines handle all the input/output interaction between

the PP and 1) the USART attached to the user phone, 2) the DMAs to and from

the buffer control, 3) the DMAs to and from the vocoders, and 4) the two

frame sync interrupts for the vocoders. Routines in A-Natural also

initialize the various I/0 devices and set up and initialize the speech

buffers.

The C routines handle the analyses of incoming messages, process all the

protocol messages, and direct the actions of the lower level A-Natural

routines.

2 There are 114 C routines of various sizes which are contained in six

separate modules with a total length of 28,464 bytes.

There are 17 routines written in A-Natural which are contained in two

modules and are 2855 bytes long. There are three routines to

initialize/reinitialize various I/0 interfaces, a routine to set up speech

buffers, routines to start interrupts, and to start and stop the speech

DMAs. Two routines run at interrupt level and handle the frame sync

interrupts from the vocoder, three routines handle the output to the phone,

two routines handle error conditions, two routines compute checksums (word

'. checksum and byte checksum). The final routine is the general control loop

which polls the status of all I/0 interfaces and causes appropriate action to

4' 16

I%4

J-q-7

be taken. The Whitesmith system [121, which compiles and links these

modules, adds sixteen library routines which are a total of 566 bytes long.

More detail on the size and function of each module is contained in

4Appendix 2.

3. VOICE PROTOCOLS

3.1 Brief History of Voice Protocols

The initial efforts beginning around 1973 to conduct packet voice

experiments on the ARPANET focussed on the development of appropriate network

protocols for voice. The Network Control Protocol (NCP) then in use was not

satisfactory for the throughput and delay requirements of real-time speech.

A protocol was needed that: handled real time data, was vocoder independent,

was network independent, and separated data and control. Network Voice

Protocol (NVP-I) was developed by the Information Sciences Institute (ISI)

[13] and was used in initial speech experiments in 1974. NVP-I was extended

to handle conferencing and became the Network Voice Conferencing

Protocol (NVCP). Then after IP became a widely-used DoD-standard protocol,

NVP-I was improved and modified so that its control tokens can be carried as

the data portion of IP datagrams. The resulting protocol is NVP-II [9].

(Like NCP, the DoD Standard Transmission Control Protocol (TCP) [11] is not

-j suitable for real-time voice transmission.) Stream Protocol (ST) [101 was

-.4 developed as an extension to IP to efficiently transmit the speech data after

a protocol negotiation had been conducted using NVP-II and to handle the

multi-address delivery requirements of conferencing.

Voice Protocols define a sequence of messages that are sent between

terminals in order to set up and maintain a packet voice connection between

17

_%

two voice terminals or a conference among many voice terminals. Two kinds of

messages are involved--Control messages and Speech Data messages. Control

messages contain information needed to set up or maintain the call. This

includes information about the vocoder to be usee, the addresses of the

terminals involved, dynamic conference control information etc. The speech

messages normally contain only speech data although there is a provision for

including control information. The PVT software normally sends NVP-II

control information as the data portion of IP datagrams. NVP-II speech

parcels are sent as the data portion of ST messages.

The implementation of the two voice protocols NVP-II and ST is the

primary subject of this report.

3.2 Network Voice Protocol II (NVP-II)

NVP-II handles the vocoder-type negotiations, ringing, timestamping,

etc., as well as dynamic conference control functions. NVP-II defines a

large number of protocol "tokens" which pass pertinent information. These

tokens are sent either as the data portion of IP datagrams, as is done in

call set-up, or along with data in an ST message. NVP-II also defines the

form of the speech data parcels which are sent in ST messages.

3.3 Stream Protocol. (ST)

ST provides an internet transport mechanism for the delivery of speech

parcels for both point-to-point conversations and conferences. ST differs

from IP because it creates a virtual circuit as opposed to a datagram

protocol. In order for a host or GATEWAY to be able to interpret an ST

message header, it must be told about the virtual circuit (called a

connection" in ST) by a setup process that precedes the transmission of any

18
.. 4

4".

.4

.5 - V a A -i ;. > . b - ..- - ..- > " , -. .- - - - . * . . --. . . I .

speech messages. The setup process involves finding an internet route for

the connection and informing all GATEWAYs that might have occasion to deal

with packets for the connection. During the process, GATEWAYs build tables

containing information about the connection. It is these tables that permit

ST to offer capabilities that cannot be provided by a datagram protocol such

as IP. After a connection is established, speech messages are sent with a

minimal header which contains the name of the connection to be used. The

tables in the GATEWAYs contain the information needed to route these messages

correctly.

To set up a point-to-point (PTP) call between two PVTs, the parameters

of the call are first negotiated using IP datagrams containing NVP-II

tokens. Then a connection or route is established using ST. When this is

complete and the remote site has answered the phone, speech can flow.

Point-to-point call setups are discussed in Section 4.2. Setting up a

conference requires establishing an ST conference connection between each

pair of voice terminals. Speech packets sent on a conference connection are

distributed automatically to all participants. Conference setups are

discussed in Section 4.3.

4. CALL SETUP

4.1 Overview

The PVT software supports calls between any two PVTs as long as there

is a route available between them. Figure 5 shows the possible paths between

PVTs in a typical wideband system configuration. The special lines show the

route which would be taken by a call between PVT 231 and each of the other

PVTs. The "number" by which a PVT is known is the number of its local LEXNET

19

0 (0 0

a 0 0
z z z

(N (i C14

z z z
LU LU LU
LU L L

,U 0~ *L

u2o 0 m

cncc
(n CCbO

4u 0

II U

a (0

a 00

LL)

CL C-4

0LU

(flL 00
I-i

0 0 0

200

-I -

followed by its local number. To make a call to another PVT the caller

merely dials the number of the PVT he wishes to reach. If a call is being

made to another PVT on the same local LEXNET, the LEXNET number may be

omitted when dialing. See Section 5 for a discussion of the dialing

conventions. If the caller dials a PVT on another LEXNET, the call must go

through a GATEWAY on the local LEXNET. If no GATEWAY is attached to the

local net, such a long distance call is impossible. The PP gives the caller
.4

" back a Dial Tone to signal that the call could not be established. Otherwise

the PP attempts to establish the call using NVP-II and ST protocols.

. Insuring reliable call set-ups is discussed in Section 7. The messages

exchanged in setting up a successful PTP call are shown below.

4.2 Setting Up a Point-to-Point Call

The NVP-II protocol is very general and allows any combination of tokens

in a message. To make implementation easier and to avoid ambiguity, the

implementation in the PVTs defines which tokens must be present in various

call setup messages. Three tokens must be included in the initial message

called a Want-To-Talk message (WTT). The Please Echo token needed by the

reliability code (see Section 7) is included in every NVP-II protocol

message. Other tokens may be added but the WTT will be rejected if the basic

three tokens are not included. Since the Connection-Name Token identifies

messages relating to this call, it must be the first token in the messages.

Figure 6 diagrams a "Want-To-Talk" message.

The WTT always includes:

Token CONNECTION-NAME includes caller's address

Token VOCODER-TYPE specifies vocoder

Token I-AM-READY specifies caller is ready

Token PLEASE-ECHO needed for reliability

4
21

1 .I

.N

' '.'2. ''_ :' " " " -' = " _:, ' ',' !? _5.:= : ,J ' ?'.."." -"-1. .- ,. ,

The answering Accept message is required to contain:

Token CONNECTION-NAME

Token PLEASE-ECHO

plus either

Token I-AM-RINGING notes phone is being rung

or

.f Token I-AM-READY

The receipt of an NVP-II Accept message is considered to signal

"* acceptance of the proposed vocoder. If the Accept message contained the

Token I-AM-RINGING,then when the phone is answered, a message containing the

Token I-AM-READY would be sent by the called PVT. No connection is complete

until both signal that they are ready. After receiving the NVP-II Accept

message, the calling PVT begins the ST protocol exchange which is described

by example below. Normally the NVP-II and ST protocols are completed long

before the receiving phone is answered. The ringing signal is sent to the

phone before the ST negotiation is begun. If the ST negotiation fails -

possibly because some network cannot allocate resources for another call - a

message closing down the call is sent back to the PVT. The local PVT will

then silence the phone and be ready for another call. This could be annoying

if it happened often. It can be avoided by completing the ST connection

before ringing the phone. The ST connection negotiations have never failed

on our net, after a successful NVP-II negotiation. Ringing the phone as soon

as possible shortens the total set-up time.

The following shows the sequence of protocol exchanges for PVT 220 on

LEXNET 056 establishing a PTP call with PVT 240 on LEXNET 062. Since these

22

'4

20 Byte IP Header
Contains Sender and
Receiver IP addresses, IP

checksum,
length of message,
etc.

'A .
- 10 Byte ST Header

•C Contains Sender and
Receiver extensions, ST
length, version number

and checksum

2 Byte checksum of following tokens

Token Connection-Name
12 Bytes

is the "Name" of the
connection

Token = Vocoder-Code NVP-II

" 4 Bytes

Token = I-AM-READY
2 Bytes

N Token = Please-Echo
4 Bytes

Fig. 6 INITIAL MESSAGE TO ESTABLISH A POINT-TO-POINT CALL

*This ST header is inserted between the IP header and the NVP-II data to

provide an additional address field. This is needed to distinguish between

callers if there is more than one at a single site.

23

:) . ;5..." , 2.....:.?."' .".. -".- *. *C.. .- .". " -. " - .- -- 'C . . " -" -" "-.

a.7

.5

PVTs are on different LEXNETs, the protocol messages pass through one or more

network GATEWAYs. The GATEWAYs simply pass the IP messages through. The ST

messages CONNECT and ACCEPT inform the GATEWAYs about the call being set up.

The GATEWAYs determine the "best" route for the call, allocate the necessary

resources and create tables containing this information. These tables

determine how the ST speech messages are forwarded. This is transparent to

the PVTs.A
MESSAGES SENT TO ESTABLISH A TYPICAL PTP CALL

PVT (056-220) PVT (062-240)

INITIATE CALL --------- >

(NvP-II)

(Token Connection Name

Token Vocoder Type

Token Am Ready

Token) Please Echo

(Ring Phone)

< --------- Accepting

(NVP-II)

(Token Connection Name

Token Am Ringing

Token Please Echo

Token) Echo Reply

24

5"'

ACKNOWLEDGE Accept --------- >

(NvP-II)

(Token Connection Name

Token) Echo Reply

ESTABLISH CONNECTION ---------- >

(ST)

< --- Accept CONNECTION

(ST)

ACK ACCEPT --------- >

(ST)

I I

(Phone Goes Off Hook)

< --- NOW READY

(NVP-II)

(Token Connection Name

Token Am Ready

Token) Please Echo

ACK AM READY

(NVP-II)

(Token Connection Name

Token) Echo Reply

< --------- Speech --------- >

via ST

25

.4 ',+ o * " L. " . " ' " ' , " ' '' ,' '" .. x .. ,... . '-" _ -_''

,
.4

4.3 Conferencing

4.3.1 Access Controller

In addition to PTP calle the PP software can set up a conference call

114] among any number of callers who have access to PVTs. The conference

capability utilizes an ACCESS CONTROLLER (AC). The AC is a system-wide

resource whose address must be known to all potential conference

particiants. Such an address is referred to as a "WELL KNOWN ADDRESS". The

AC is implemented in a PVT which currently resides on a LEXNET at Lincoln

.Lab. Its address is Net 62 Host 156. This is shown in Figure 5. The AC can

contain information about many conferences. Currently the AC contains

information about three conferences - one for each implemented vocoder. This

,- information has been prestored and is always available for use. Ideally a

.4 user could use his telephone key pad to cause the information defining a new

conference to be sent to the AC. However, this has not been implemented.

The information defining a conference includes: conference name, password,

vocoder to be used and optionally a list of the IP addresses of acceptable

participants. If the participant list is omitted anyone is allowed to join.

While a conference is in progress the AC also maintains a list of the IP

addresses of the conferees. This information is supplied to each conferee as

he successfully joins a conference. Information about conference

participants may always be requested and received by conferees and interested

GATEWAYs.
.4

4.3.2 Setting Up a Conference

A conference may be set up or joined in several ways. Our primary

implementation uses a "MEET ME" style. A group of prospective conferees

26

...................................-.. -. .- ".........-- . .-.-.........-...........

I.7.

4use

ageae in adane on thein tm jofn the conference.adtevcdrte iht

One orafterteo apontedctimerec pcfeta conferee tepstonc thul

cofene. Tasor jon tuch AC ofeene A conere dlyalsepth am ofT ththeppie

conecorec whichor uss thearee upo i ooetsi P ed WANT TO JOIN msae h urn

impessaentton h cosingeor i the conference.wr ob ietclt h

TeNPIprtclfraconference naetaltrdtoespeiftice thasawonfrdse shaul

hav ah paswor know acetito tChe cwillrnly, aep aC wilT thatsuplie

theforreto asord ase panfrn of c its thT TO JOo mesae Thed current a

4.I implesa lentaio cnir the conference pa swr toe id epniiclit te

satduigaconference nm.Aaltedea moe soephstaiafted psts sytem whcni

Ifwhs sthe craThis acptein the conference, ath ACillsupl

informaton abo tihes csonfenceuy astp aoo oenc be y use Astooe

- IIfE other arealred Fis eil the conference itm is the Psrpoiblty of

-4 conneeco iswsht establish hAINIGte bisg turned offan the oCder ise

'27

-a
e

can dial the phone number of others he would like to have join his

conference. His PP recognizes this dialing as a desire to have a remote PVT

join the current conference. The PP sends the remote PVT an IP datagram

which contains the NVP-II token "PLEASE JOIN MY CONFERENCE". The token

contains the necessary information to allow the remote PVT to join. The PP

at the remote PVT immediately rings its phone. When the phone is answered

the PP sends a "WANT TO JOIN" message to the AC and proceeds as described

above. These two ways of entering a conference may both be used to set up a

single conference. If a "MEET ME" conference is in progress and someone else

is needed, any participant can "INVITE IN" the needed PVT. One participant

who has been "INVITED IN" can then "INVITE IN" another.

A conference can also be set up using voice commands. VCOP (Voice

Conference Operator) [151,[16] is now operational. VCOP includes: 1) a word

recognition system to identify spoken words; 2) a speech synthesizer to

produce speech feedback, prompts and acknowledgements; 3) interfaces from the

recognizer and the synthesizer to a PVT, and software to control the

recognition system and the synthesizer. The Threshold Technology T580

speaker-dependent word recognition system and a Lincoln LPC Speech Processing

Periperal [81,[16] have been used. Communication between VCOP and the PP

occurs through the USART. To the PP the VCOP takes the place of the user

" telephone. One PVT with a WELL KNOWN ADDRESS is connected to VCOP. To

establish a conference using VCOP, the conference initiator dials a PTP call

to the PVT connected to VCOP. When the connection is made, the caller is

greeted by VCOP. VCOP asks the caller questions about the conference he

wishes set up. After VCOP has information on the vocoder to be used and the

28

names of the people to be asked into the conference it requests the caller to

hang up and wait f or the conference to be set up. When the connection

between the VCOP PVT and the caller is closed, VCOP translates the names of

the desired conferees into PVT addresses and selects the correct conference

name. VCOP then passes this information to its PP. The PP sends each

conferee a "PLEASE JOIN MY CONFERENCE" message. To ensure reliability all

.4 conference protocol messages use the retransmission mechanism described

* below. When this is completed VCOP is available to set up another

conference.

The Access Controller acts as a central storehouse of information about

conferences. The protocols could allow as many as 128 participants in a

conference, but the current AC implementation is limited to 32 participants.

As each PVT is accepted into a conference it is assigned an identification

number. These identification numbers are assigned in numerical order from I

to 32. The identification number corresponds to a bit in a 32-bit conference

bit map. A conference bit map is maintained by the AC, the PVTs and the

GATEWAYs involved in the conference. The bit map provides an efficient means

of referring to the conference participants. When a PVT notifies the AC that

it is leaving the conference, its bit is cleared. A bit in the bit map is

never reassigned to another PVT during the life of a conference. If a

conferee hangs up and then later rejoins a conference, his PVT will be

assigned a new identification number. The conference ACCEPT message from the

AC to a PVT tells the PVT its identification number (bit number in the bit

map) and also contains a copy of the current conference bit map. The PP

should set up a connection to every PVT with a lower bit number than it's own

and be ready to accept a connect from PVTs with higher bit numbers.

29

This system has made provisions for a crashed site to rejoin a

-. conference. When a site crashes, neither the other conferees nor the AC know

that it is out of the conference. If the site comes up and redials the

* conference, the AC will reassign it its former bit number. To the AC, the

* .2 "WANT TO JOIN" message is either a duplicate sent by the site's reliability!

retransmission mechanism or the site crashed and is reentering the

conference. The AC sends out a duplicate ACCEPT message reassigning the site

its original bit in the bit map. The PP of the reentering PVT issues an ST

CONNECT to all conferees with lower bit numbers and issues an ST ACCEPT to

all conferees with higher bit numbers. The PP has been programmed to accept

- these ST CONNECTs and ST ACCEPTs from conferees who it thought were already

in the conference or to whom it had initially been unable to connect. The

* ACCEPT message from the AC to a PVT contains a copy of the current conference

* bit map. When the PP receives the ACCEPT message from the AC, it can

ascertain how many other conferees are in the conference by counting the

I number of bits set in the conference bit map. The PP does not know who the

* participants are. The PP sends messages to the AC requesting the address of

I each participant.

Two commands are needed for the PVT to request and receive the addresses

of the other participants from the AC. These were not defined in NVP-II, but

2 have been provided in ST. The commands are TELL-ME and INFO. Since there is

no ST connection between a PVT and the AC these commands are sent as the data

* portion of an IP message. The voice protocols allow NVP-II tokens and ST

commands to be transmitted via ST or IP. Commands and tokens are treated

identically regardless of the transport protocol. The AC forms a bridge

30

between the IP and the ST protocol levels, but since the AC receives only IP

messages, it must be told whether the data portion of a message contains ST

commands or NVP-II tokens. Therefore, IP messages containing NVP-II tokens

are sent to extension 122 at the AC, while those containing ST commands are

sent to extension 123.

TELL-ME is issued by a PVT to the AC and requests information about one

or more conference participants. The participants are identified by their

bit number in the conference bit map. The AC responds with an INFO message

which contains the requested addresses. On receiving this information, the

PP issues the appropriate conference connect (CONNECT.CONF) or conference

accept (ACCEPT.CONF) message.

The following scenario illustrates the protocol messages sent when

PVT(056-220) joins a conference. PVT(062-240) and PVT(062-156) are already

in the conference.

PVT (056-220) AC (062-156)

WANT TO JOIN --------- >

(NVP-II)

(Token Want To Join

Token Conference ID

Token Conference Password

Token User Address

Token) Please Echo

31

< --------- WELCOME

(NVP-II)

(Token Conference ID

Token Connection ID

, Token Conference Style

Token Vocoder Type

Token Conference Bit

Map

(Your bit number is 4.

1% Bit numbers I and 3

S.are active.)

Token) Echo Reply

PVT (056-220)(#4)

TELL-ME --------- >

(ST command via IP)

(Who is bit #1')

< ---------- INFO

(ST command via IP)

(#I is PVT 235 on Net 56)

PVT (056-220)(#4) PVT (056-235)(#1)

CONNECT.CONF ----- >

(ST)

< ---------- ACCEPT.CONF

-F (ST)

W 32

C%.

" * -* ."*' ".~ " -"' C "-:" . .. - - i. - - -- - -- ,- ,- . , -'-,-...r - -

ACK (of ACCEPT.CONF) --------- >

< --------- SPEECH ---------

PVT (056-220)(#4)

TELL-ME --------- >

(ST command via IP)

Who is bit #3?)

(--------- INFO

(ST command via IP)

(#3 is PVT 240 on Net 62)

PVT (056-220)(#4) PVT (062-240)(#3)

- *'CONNECT. CONF --------- >

(ST)

< ---------- ACCEPT.CONF

(ST)

ACK (of ACCEPT.CONF) --------- >

(ST)

< --------- SPEECH --------- >

4.3.3 Conference Floor Controller

Since a vocoder can only play out one received speech signal at a time,

some selection method is required. A distributed Floor Controller has been

implemented. The same small control module operates in each PVT in a

conference. This module controls the sending and playing out of speech data

at its local site. It is a floor controller for its own PVT. The floor

33

*,0' , ' ' ' -; ; . ;4- .: ..-. '..'; .;:.':.;..- .:' -. -) ??-.-,.::i? :-.::.. .?. .

cotole is voc aciatd It onl atemt to sedsechwe h

~ ha cotrllrisvocsatiaed. Wht onl attemptst sendin u speech whesosnd n the

silnceo detseiontmcanisidie tha thke use iAN TOTALKin. Thes Foori

alControle wilno trani speech message s unlTreessin ithas note rcenie s

speehdfr ao sufficentpo toe floerAcofitt cdng atei t pfres speart

hasnfinied Whenriy.I a PT eins sending to speeh site asoresends an [P

WN coTO meTAge" ontnn g trma iher priitke sit WAt TOin Tlisthnisg toktei

alwste inlue fint sptechomessaesAP receivn this token considd ter

theor sende toepto ochavenli the floort Atofitcnaise ido tw conere sart

sptakng esatbolythe sadmoe tme. Thisise resoedt by tasiin eahi col

.b W etene TOT intoken fntro aherup c pioity iesitegin Curnlten ing t the

determined by a PVT's bit number in the conference bit map. Bit I has

highest priority. This tends to give high priority to the person who

*initiated the conference. Other schemes for deciding priority could easily

be implemented.

4.3.4 Routing Conference Speech Messages

Each PVT in a conference must maintain a current copy of the conference

bit map. A PVT which is currently the conference talker sends out only one

* copy of his speech messages. The LEXNET which is the local network for PVTs

.4 is a broadcast network. Each PVT notifies its BC that it wishes to receive

messages relating to this conference. The BC checks each message that it

34

*1
Af

finds on its LEXNET and passes to its PP all messages addressed to it and all

messages with a conference address f or which the PP has requested to receive

messages.

The GATEWAYs handle the routing of speech messages to PVTs on other

nets. The ST CONNECT.CONF and ACCEPT.CONF between the local PVT and the

remote PVT go to the GATEWAY when the connection is set up. These messages

contain the identification numbers (bit numbers in the conference bit map) of

the sender and receiver of the message. The GATEWAY issues TELL-ME messages

to the AC to obtain the IP addresses which correspond to these identification

numbers. The GATEWAY then selects a route and propagates the messages to

another GATEWAY or PVT. The GATEWAY records this information and builds

tables to guide it in handling the conference speedmessages.

Each speech message carries in its header the conference bit map. The

PP sets the identification bit in the conference bit map of all the PVTs to

which it is connected. It clears its own identification bit. A copy of the

message is to be sent to each participant whose bit is set. The header of a

speech message contains the conference ID and the bit map. The GATEWAY

forwards these messages to each PVT whose bit is set. This mechanism could

be used to send messages to a subset of the current conferees if desired.

Currently all speech messages go to all conferees.

5. DIALING CONVENTIONS

5.1 Interaction with the Caller

PVT dialing conventions differ from those of the regular phone. No

* timer is used to determine the completion of a dialing sequence. All dialing

sequences can be parsed to completion. The characters *and #are used to

35

. . ~

delimit special dialing sequences. Such sequences are dialed before the

destination number is dialed. The caller by dialing can make a Point To

Point (PTP) call to another phone, Join a Conference, Invite others into a
"'
.3

conference and give some limited instructions to his PVT.

When an "Off Hook" is received, a dial tone is sent to the phone. When

an "On Hook" is received, silence is sent to the phone. When a dialing

sequence finishes, the PP will attempt to honor the caller's request.

To establish a connection, the PP enters into a protocol dialog. If the

remote phone is busy, a busy signal is sent to the local phone. If the

remote phone can not be reached, a dial tone is sent to the local phone to

indicate that the call has been aborted and that another call may be tried.

If the protocol dialog is successful, the remote PP will ring its phone and

the local PP will send a ringing signal to its phone. When the remote

phone is answered, a silence command is sent to both phones and speech

transmission begins. If the remote phone fails to answer, the connection is

terminated when the local phone hangs up.

5.2 Dialing a Point-To-Point Call

A simplified addressing convention has been implemented in the PVTs. It

is expected that at a later time the address of a PVT will be redefined in

keeping with a more general wideband network addressing scheme. Currently

the address of a PVT consists of two three-digit numbers--. b LEXNET number

and its own "host number" on the LEXNET. A LEXNET normally supports several

PVTs and is also connected to a GATEWAY. PVTs on different LEXNETs can

communicate via these GATEWAYs. A typical configuration is shown in Figure

5. To call a PVT on the local net a caller merely dials the three digit host

36
.,.

........................... J

j. 7

a' number of the other PVT. To call a PVT on a distant LEXNET the caller f irst

dials '9' to indicate that the call must be routed via the GATEWAY and then

dials the three digit LEXNET number followed by the three digit host number.

A caller can route a call to another PVT on his local net through the GATEWAY

by dialing '9' followed by the local LEXNET number and the other PVTs host

number. For testing purposes the capability, not found in normal phones, to

call oneself was added to the system. A Dialing Matrix showing the correct

dialing between sites is shown in Figure 7.

5.3 Conference Dialing

* Several special dialing conventions have been implemented. These

conventions use the special characters * and # to indicate the boundaries of

N the string being dialed. To join a conference ("Meet Me" style) the name of

the conference is dialed preceded by a # and followed by a *. #234* means

that the caller wishes to join a conference called 234. A string of digits

preceded by a # and followed by a * is also used to pass to the PVT the

address of a PVT which should be "Invited Into" a conference. To "Invite In"

PVT 234 on LEXNET 062, one keys in #062 234*. If both PVTs are on the same

LEXNET, only #234* must be keyed in. The PVT distinguishes these cases by

noting whether or not it is in a conference when it receives a string of

digits preceded by # and followed by ~

-~ 5.4 The Echo Extension

A dialed number may optionally be preceded by an extension number (the

extension number must itself be preceded and followed by *). For a PVT only

extension 1 has meaning. Extension I is the ECHO extension. When a call

comes in for extension I the phone is not rung and all the received speech

.4 37

TO

LL LL ISI SRI

FROM (062) (063) (061) (053)

LL (062) NNN 9-063-NNN 9-061-NNN 9-053-NNN

LL (063) 9-062-NNN NNN 9-061-NNN 9-053-NNN

ISI (061) 9-062-NNN 9-063-NNN NNN 9-053-NNN

SRI (053) 9-062-NNN 9-063-NNN 9-061-NNN NNN

Fig. 7. Dialing matrix for point-to-point calls. The three-digit number

assigned to the LEXNETs at each site is fixed. The three-digit host number
assigned to a PVT is determined by the setting of a thumb wheel switch on the

back panel. Since the host number of a PVT may change, it is represented by
NNN in the matrix. LEXNETs 062 and 063 are at Lincoln Laboratory. LEXNET
061 is at ISI and 053 is at SRI.

.38

.. -.
q ') -' ,5 -. ' .. • .€.'.-.. '. . , ;- -.- ... ,'. ..),,-., - -.-.-. .. , ,. ,,. .---. ,, -- ..-. ,38 v, .

packets are merely echoed back to the sender. This has proved to be useful

for testing and for demonstrating the system when no one is available at a

remote site. To call the ECHO extension for PVT 234 on LEXNET 062 from

another LEXNET, the dialer keys in *1* 9 062 234. This causes a 1 to be put

in the extension field of the called terminal's address in the IP header.

5.5 Using the Switched Telephone Network Interface (STNI)

Information Sciences Institute has developed the Switched Telephone

Interface card (STNI) [17] to allow interconnection between the packet

network and the commercial telephone system. The S-'NI is contained on a

single card and plugs into the PCM card slot in any PVT. The STNI

communicates with the PP module over the USART. To the PP the STNI card acts

like the user's telephone which is usually connected to the USART. An STNI

Nequipped PVT runs the same PP program as other PVTs except that the dialing

module written to handle the user phone is replaced with a dialing module

written by ISI specifically for the STNI. An STNI equipped PVT becomes a

"GATEWAY" between a packet net and the commercial phone system. Since such a

PVT is not equipped with a phone, it may not be used to place a call.

When a call is to be made from one PVT through another PVT equipped with

an STNI card out into the regular phone system, the regular phone number to

be called by the STNI must be dialed in. This is done by dialing #, the

regular phone number, then *, followed by the number of the STNI-equipped

PVT. The digits between the # and the * are then passed to the STNI card in

the Want-To-Talk message as the data of a "PLEASE DIAL" token. This outside

phone number preceded by a # and followed by a * must be dialed before the

address of the PVT containing the STNI card. To call the weather information

39

"is

o-

number in Los Angeles through an STNI-equipped PVT whose host number is 244

on LEXNET 062 from a PVT on another LEXNET, one would dial #9 554 1212* 9 062

244. Requiring a caller to dial the regular phone number in this manner was

a convenient way to implement this feature in the PVT code. Other

conventions are feasible such as implementing a timing mechanism to determine

when the user has finished dialing a number. Then a second dial tone could

be used to signal the user that the second phone number could be keyed in.

This would avoid the use of # and *.

All STNI-equipped PVTs at Lincoln have been assigned a regular extension

number from the Laboratory switchboard. To call a PVT from a regular phone,

the user first dials the Lincoln extension assigned to an STNI-equipped PVT.

After an initial ringing tone, a second dial tone is heard. Now the number

of the destination PVT must be dialed. (Any commercial phone system number

may also be dialed instead of the PVT number.)

5.6 Special Dialing Sequences

When a special dialing sequence is to be used in conjunction with a

normal dialing sequence, the special sequence must be keyed in first. This

avoids a waiting loop in the dialing code. If an optional special sequence

could follow the dialing of a remote site, the protocol would either have to

wait some in eterminate amount of time to ascertain whether the dialer was

going to key in such a sequence or would have to send the special sequence in

a later control message.

Dialing a *# at anytime is equivalent to hanging up the phone and then

picking it up again. The call in progress is cancelled and the program is

reinitialized. While shutting down is in progress, the PVT can not handle

40

A",

A. ',

another call. The caller will hear a fast busy signal and his dialing will

be ignored. As soon as the shut down is complete, the caller will hear a

dial tone and is free to dial again.

The *# feature is needed by the STNI card. A call may be set up between

a regular phone and a PVT by routing the call through an STNI-equipped PVT.

It is important that if either talker terminates the call this knowledge

reaches the STNI-equipped PVT and the other caller. Then the connection can

be taken down and the equipment made available for another call. If the PVT

phone hangs up, the ST protocol message DISCONNECT (or REFUSE) is sent to the

STNI and the call is correctly taken down. If the regular phone hangs up,

some local switches (such as the one at Lincoln) do not send out a disconnect

signal. Using a regular telephone, once a connection is established the

tones generated by key pushes are passed through on the line. The STNI is

able to receive and interpret these tones. Therefore, if such a regular

phone user keys in *# before hanging up his phone, the STNI card will

interpret the tones correctly and take down the connection. The general

facility for any caller to be able to use *# provides one convenience not

available on most regular phones.

A string of digits preceded and followed by a # is ignored. This

provides a handy way of aborting dialing if an error is made in the
.4

conference name or in the address of a PVT to be "INVITED IN".

6. SPEECH DATA

6.1 Packetizing Speech Data

In addition to PCM, the PP can handle a 2400 bps Linear Predictive Coder

(LPC) vocoder and an Embedded CVSD (ECVSD) vocoder. The ECVSD vocoder can

operate at one of four rates: 16000, 32000, 48000, and 64000 bps. Speech

41

*. data are digitized by the vocoders on a parcel basis. Buffers are

established in the 4K bytes of DMA memory in the PP. Each buffer is the size

.'N of a parcel of speech plus an initial one-byte header. Speech goes to and

from the vocoder via two direct DMA channels each working in auto-initialize

mode. In this mode each DMA reads/write speech from/to its buffers until it

reaches the end of the last buffer assigned to it. It then automatically

begins again at the beginning of it's first buffer.

A speech message consists of an ST header and and NVP-II header

optionally followed by NVP-II protocol tokens and then one or more

consecutive parcels of speech. The one byte header used in the vocoder

buffers is not included in the message. The number of parcels of speech

included in a speech message varies depending on the vocoder in use. The

timestamp of the message is the timestamp of the first parcel of speech in

the message. Figure 8 shows a speech data message.

For PCM and ECVSD, a parcel has been defined to represent 22.5 msec of

speech and consists of 180 bytes of data. Space is available for a total of

20 buffers (3620 bytes). For PCM, 4 of the 20 buffers are used to hold

speech coming from the vocoder. This is enough to insure that the speech has

been packetized and sent out before it begins to be overwritten four frames

(90 msec) later. Sixteen buffers are used to collect and reconstitute the

incoming speech data. Packetizing ECVSD speech is discussed below.

A parcel of LPC data represents 20 msec of speech and is 6 bytes long.

Because of the comparably small parcel size there is ample buffer space in

DMA memory. For LPC, 128 buffers are provided in each direction. LPC could

have been implemented with fewer buffers but as long as space is not a

42

TV
- . .7 -.

10 Byte ST Header
Contains Connection ID ST

Checksum Header

Message Length

Timestamp

NVP-II Header Checksum Header

Optional
NVP-II
Control

I Tokens

NVP-II
Speech
Parcels

V.
e

Fig. 8. NVP-II speech parcels transmitted via ST.

44

4.

'4.

,.?V.,,4- - ,.., . ; . . % . , -.-- -.,. . , -- .., .:.

4',

problem any convenient number of buffers can be used. Using a relatively

large number of buffers lessens the likelihood that a very late message will

be mishandled by the reconstitution algorithm. This is discussed further in

Section 6.4.

For PCM with a parcel size of 180 bytes, one parcel of speech data is

put in each message. For LPC with a parcel size of 6 bytes, the number of

parcels in a message is a variable which can be set to match the demands of

the transport medium.

Packetizing ECVSD data is more complicated. The ECVSD algorithm was

designed to allow the vocoder to transmit and receive at four bit rates: 16,

32, 48, and 64 kbps. To do this, the vocoder arranges the data in four

45-byte slices in the parcel. Slice 1 - the first 45 bytes - contains the

data required for 16 kbps CVSD. Slice 1 plus slice 2 is equivalent to 32

kbps CVSD, etc. Four bits are used in the header byte to indicate the

presence of each slice. As the slices arrive and are transferred via DMA

into their proper position in a speech buffer the bit which indicates that

this slice has arrived is set. To reconstitute the speech parcel, at least

slice 1 must be present. The vocoder will use slice I and all the other

consecutive slices which have arrived to reconstitute the parcel. Speech

quality depends on the number of slices available.

At times various nodes in a network become overloaded and are forced to

discard messages. If messages were prioritized the nodes could discard the

least important messages in their queues [18]. The ECVSD algorithm makes it

possible for the PP to send speech messages with four priority levels. Only

slices of the same priority from adjacent parcels are combined in one speech

44

4. .

4"' , ,f.? : ¢ ; iii ~ i # i . .--. .- \.i,:,....il~ l~ i--,

message. If a speech message contains slice I data from one or more parcels

of speech, it is a priority 1 message. If it contains slice 2 data, its

priority is 2, etc. The priority of each message is specified in its header.

This allows a heavily loaded GATEWAY to check the priority of speech

messages and discard low priority messages when necessary. Since there can

be up to four slices in a data parcel, the PP must be able to combine slices

across four consecutive parcels. Therefore, it is not adequate to provide

only four buffers for speech coming from the vocoders. For ECVSD eight

buffers are used for speech coming from the vocoder and twelve buffers are

available for speech coming in from the local net. Sending a large number of

messages puts an added processing burden on the GATEWAYs. Therefore the PP

never sends more than one data message per frame time. When sending ECVSD at

a rate of 64 kbps, the slice I data from parcels I thru 4 will be sent in one

priority 1 speech message during frame 5. The slice 2 data will be sent

during frame 6, etc. If sending at a 16 kbps rate, a one slice message can

be sent every frame, or a two slice message can be sent every other frame, or

a three slice message can be sent every third frame or a four slice message

can be sent every fourth frame. To allow experience to be gained on the

results of different packetizing methods, command sequences on the key pad

may be used to change the bit rate and packetizing method at any time. The

program is initialized to send at 64 kbps. The command sequences are

discussed below.

The receiving PVT can unpack the data rather easily. The priority of

the message tells what level slices it contains. The timestamp is the

tiestamp of the first of consecutive data parcels. The size of the data

445

.p 4
'S

4I '- . ? , ., .-. .< , . ,. .. .- ,...-. . . - , . .

contained in the message determines the number of slices it contains.

Therefore the two PVTs can transmit at different rates and do not need to

notify the other when they change rates.

To specify a bit rate and packetizing method for ECVSD two digits are

keyed in preceded and followed by a star. This may be done at any time after

a connection is established. The second digit is the number of slices of

data to send from each frame. A 1 is one slice or 16 kbps up to a 4 for four

slices or 64 kbps. The first digit is the number of adjacent frames across

which slices should be combined into one message. *41* would send I slice

per frame (16 kbps) but would combine the first slice from four adjacent

frames into one message. Therefore a speech message containing four priority

1 slices would be sent every four frames. *11* would also send at 16 kbps

but a speech message containing one priority 1 slice would be sent every

frame. In order to send only slices of the same priority in each speech

message the number of frames combined must be equal to or greater than the

number of slices sent per frame. Possible combinations are shown in the

Table II below.

TABLE II

NUMBER OF FRAMES TO BE COMBINED

(first digit)

1 2 3 4

(second digit)

Number of I x x x x

Slices 2 x x x

Per 3 - - x x

II
Frame 4 --- x .

46

'II

* t~ 4~mm . ., 4~ . - 4 . 4. 4-- - P * .. -
-. - -. .4. . - . . - . .

* . Note: Both extension numbers and ECVSD packetizing instructions are gilen by

preceding and following the digits by *. Confusion is avoided by the

following rules: Extensions are one digit long; ECVSD instructions are two

digits long; all other lengths are ignored.

Several factors Influence how many speech parcels are packed into one

message. The overhead is reduced if many parcels are included since the size

of the header does not change. Some speech packets may be lost in

transmission. If a single message contains too much speech its loss will

seriously effect the quality of the received speech. Also if many parcels

are contained in a single message, an added initial delay is imposed on the

* - system since a message can not be sent until sufficient parcels have been

buffered up.

A conference speech message containing no data tokens has a header of

nine 16 bit words (144 bits). Sending two LPC parcels per message results in

a message containing 9 words of header and 6 words of data. It represents 45

msec of speech and imposes an initial 45 msec delay before the first message

is sent. Sending 18 parcels results in a message containing 9 words of

header and 54 words of data. However, this message would represent slightly

over 400 asec of speech. Its loss would cause a troublesome glitch in the

received speech.

6.2 Silence Detection

During a conversation, each participant can be expected to be silent

slightly more than half the time. It is wasteful to send speech messages

when the data represents silence. Each of the vocoders used by the PP

provides Silence Detection as part of its algorithm. The vocoders store the

47

ea

current parcel of "speech" parameters into the PP buffers at all times.

Based on its Silence Detection algorithm (which is vocoder dependent), the

vocoder program sets the SPEECH bit in the one byte header following the

speech data only when "speech" is present. The vocoders generally smooth the

Ispeech by allowing several low energy parcels to occur before declaring

silence". The PP checks this flag when preparing speech packets. No speech

message is sent unless it contains at least one parcel of speech.

For use in debugging and to provide a constant stream of speech messages

for experiments, a three position switch is provided on each PVT. In the

center or normal position, the Silence Detection algorithm decides when1-.'

speech messages should be sent. In the up position "speech" messages are

sent continuously regardless of the results of silence detection. In the

down position no speech messages are sent.

6.3 Vocoder Dependent Modules

Each vocoder type (i.e., PCM, LPC and ECVSD) requires different

handling in the PP. The PP has special routines tailored to handle each type

of vocoder data. The routines which send and receive data check which

vocoder is currently in use and call the appropriate subroutine. The

initialization routines also contain special code to correctly set up the

buffers and to initialize variables for each vocoder. The PP at

initialization reads the Vocoder Selection Switch and prepares to handle that

vocoder.

If the setting of the selection switch is changed the PP executes the

routines done at initialization time and "flips" vocoders. This can be done

at any time although if it is done in the middle of a talkspurt, a slight

48

A.,

"V. -. , - -, - .- - , - . --.- .- *. .-.- *: : , , -. , ,'- . - ,. , - -. - . - -.-. -. , - .. ,.-. .. *-. -

transient may be noticed. However, since changing vocoders may change the

data rate and since the GATEWAYs are not notified, it should be done only

when "Talking-To-Yourself" or when talking to another PVT on the same net.

The implementation in the PP allows switching at any time, but the protocol

does not. The protocol could be extended to include this. A new protocol

message announcing a change of vocoders would have to be defined and

implemented if this feature is ever supported on an internetwork basis.

The same vocoder must be used by both talkers. When a Want-To-Talk

message is received from a remote phone it specifies what vocoder it wishes

to use. If the vocoder currently selected is not the same as the requested

vocoder, the PP will flip the selection switch internally and check the other

available vocoder. If a match is achieved, the incoming call will be

accepted. Otherwise the selection switch is returned to its former position

and the incoming call is rejected.

6.4 Efficient Handling of Speech Data

It is essential to use DMAs to move the data across the interface

between the PP and the BC and across the interface between the PP and the

vocoder. Without DMAs, speech parcels would have to be copied across each of

these interfaces using the CPU on the 8085 chip. Copying over data via

programmed I/0 is very time consuming and a PVT without DMAs could only

support low bit rate vocoders. It could not keep up with a 64 kbps PCM

Using a DMA to read speech data on a parcel basis requires resetting the

DMA for each parcel. The DMA must be provided with the new address and byte

count. When a 64 kbps vocoder is in use, the two DMAs servicing the vocoder

49

*4" "

read and write a byte every 125 microseconds. There is not time enough

between operations to reliably reset the DMAs without disrupting the speech.

DMAs can be operated in a so-called auto-increment mode. A separate

data area is reserved in the DMA memory for each channel. When each DMA

channel is started up, it is given the length and address of its data area.

The DMA begins reading or writing speech from or to its data area and when it

reaches the end it automatically starts over again at the beginning. By

using the auto-increment mode, we avoided the timing problems involved in

resetting the DMA. However, speech parcels coming from the vocoder must be

moved out of the data area before they are written over by the DMA on its

next pass. Conversely, the incoming speech parcels must be moved into place

in the data area before the DMA reads that part of the data area again.

The PP has access to only 4096 bytes of DMA memory. This must be

divided into data areas for the two DMA channels servicing the vocoder, space

for messages coming from the BC, and space to form messages to be sent out to

. ,. the BC. The restrictions imposed by the need for speed and by the lack of

space strongly influenced the final design.

Protocol messages from the BC and the headers of speech data messages

from the BC are read into an input buffer for which 96 bytes of DMA memory

have been set aside. 380 bytes are used as buffers to form messages that

must be sent to the BC. A maximum of 3620 bytes of DMA memory are used for

the data areas of the DMA channels servicing the vocoder. The amount of

memory needed depends on the vocoder and its parcel size. 3620 bytes provides

for twenty 181-byte buffers. PCM and ECVSD have 180-byte parcels and each

parcel needs a one-byte header. For PCM a data area the size of four of

50

these buffers is used for speech coming from the vocoder and a data area the

size of sixteen buffers is used for the incoming speech. ECVSD uses eight

for speech from the vocoder and twelve for incoming speech. LPC uses a 7-

byte buffer (6 bytes of data plus one byte of header). For LPC a data area

of 896 bytes (128 buffers) is used in each direction. The size of the data

area for each channel is always a multiple of the buffer size. This insures

that the location of the buffers in a data area does not change. During

vocoder initialization a table is set up which contains the pointers to these

buffers.

Software in the BC puts messages on the LEXNET and reads messages from

the LEXNET. To send a speech message the header and any accompanying control

tokens are assembled in an output buffer. After this is transferred via DMA

to the Buffer Control, the speech data are transferred via DMA directly from

the vocoder buffer to the Buffer Control. When a message comes in from the

LEXNET the Buffer Control software alerts the PP by sending the byte count of

the message via the DMA. The PP first uses the DMA to read in the two bytes

of data which contain the length of the message. If the length is

reasonable, the PP next reads in the number of bytes which correspond to a

speech message header. If it is a speech message and it does not contain any

control tokens, the next byte to be read is the first byte of speech data.

If the message contains control tokens preceding the speech, their length can

be determined from a value in the header and they are also transferred in

using the DMA. The speech is then transferred via DMA directly into

buffer(s) in the vocoders' data area one parcel at a time. Then the speech

activity bit is set in the header byte of the buffer(s).

51

This method avoids having to move the speech data from the PP read-in

buffer to the vocoder buffer and means that the read-in buffer can be much

smaller than a PCM parcel in length. For a high data rate vocoder such as
-.

PCM, time is critical. This method saves the time and CPU cycles that would

be used in moving the data using a load store loop. For a vocoder with small

parcels such as LPC, it would actually be faster to use a programmed "load-

store" loop to move a parcel. However, since time is not critical here, the

DMA routines are also used to read in LPC data.

6.5 Reconstitution of Speech Data

Speech messages received at a voice terminal may experience a wide

dispersion in their arrival times. If more than one route is possible

between source and destination, messages may arrive out of order. Each

message carries in its header the timestamp associated with the first speech

parcel in the message. The timestamp is a ten bit number which is

incremented once per vocoder frame. This timestamp can be used to determine

where in the speech stream each incoming speech parcel belongs. Sixteen

buffers are available for incoming PCM speech. Each incoming timestamp is

adjusted as described in the following paragraph. Originally this adjusted

.4 timestamp mod 16 became the number N of the buffer where the speech should be

put. To find the Nth buffer in the data area, the program used the buffer

pointer table which was created when the DMA was initialized. The speech

parcel was then transferred via DMA directly from the BC into buffer N. If a

data message contained more than one parcel of speech, the parcels were

transferred via DMA into consecutive buffers.

4e

52

- . , ~ . - . o . - 0. - -. - ~ • -' - - _ o - .

When the vocoder is initialized, the timestamp is set to zero. The

timestamp is incremented once per parcel by the code which services the

vocoder interrupt. The low bits in the timestamp always correspond to the

buffer being used by the vocoder. Therefore, using the local timestamp (mod

16) to select a buffer in the data area locates the buffer from which speech

is currently being transmitted to the vocoder. The difference between the

local timestamp and the timestamp of the first speech message is calculated

and called the OFFSET. Adding this OFFSET to the timestamp of an incoming

message and using the result, should select the current buffer. Therefore, a

reconstitution delay is added to the adjusted timestamp before it is used to

select a buffer. The reconstitution delay should be large enough to ensure

that speech parcels have arrived before they are needed for play out. The

best value depends on the expected arrival dispersion and the total trip

time. Since a large value increases the overall delay in the system, the

value should be kept as small as possible.

To correct possible drifts in the clocks at different sites and to

minimize the effect of calculating the OFFSET value from an atypical

timestamp, the OFFSET is recalculated whenever speech has not been received

for a quarter of a second. This tends to cause the OFFSET to be recalculated

at the beginning of every talkspurt.

N "In PCM tests over the wideband satellite channel, cases occurred where

the dispersion exceeded eight messages and this method of employing the 16

available buffers did not handle this dispersion well. Sixteen buffers

cannot handle effectively a message stream with a dispersion greater than

eight. Therefore, to create the smoothing effect available with 32 buffers,

53

. .
-" ' '* I * , -' . 4-. . 4 "- " . .

. . . .

a pointer table with 32 entries is now used. Sixteen of these entries point

to the 16 actual buffers. The remaining 16 entries point to an imaginary

buffer in nonexistent memory. The timestamp of an incoming speech message Is

adjusted as described above. Then the adjusted timestamp (mod 32) is used to

select a pointer from the pointer table. The speech is stored in the buffer

pointed to by this pointer. If the buffer pointed to is in nonexistent

memory, the parcel of speech will be discarded. Using a pointer table with

32 entries allows maximum use of the 16 available buffers.

When the DMA Is initialized, the timestamp is set to zero and the

pointer table is created. The first 16 values in the pointer table are the

locations of the 16 real buffers in order. The last 16 entries In the

pointer table point to the imaginary buffer. The pointer table is constantly

updated. After each parcel of speech is read out of a buffer to the vocoder

an interrupt occurs and a special routine is executed. This routine copies

the pointer to the Just used buffer into the slot 16 entries later in the

pointer table (mod 32). The original entry is then changed to point to

nonexistent memory. After buffer zero is transferred to the vocoder, its

pointer is copied into the 17th slot in the buffer pointer table and the

* zeroth entry in the table is set to point to nonexistent memory. We do not

expect to receive a message whose adjusted timestamp is zero for roughly 25

frame intervals. A pointer to a real buffer will be written into slot zero

of the pointer table in 16 frame intervals. If such a message is received

before a pointer to a real buffer is put into slot zero, it is probably

correct to discard the message. This method, suggested by James Forgie,

54

causes us to have 16 buffers available where we expect to need them and

causes late arriving speech to be automatically discarded. For ECVSD there

are only 12 buffers available. Therefore, the buffer pointer table contains

only 12 pointers to real buffers and 20 pointers to the buffer in nonexistent

space. For LPC the pointer table has 128 entries. Each entry is a pointer

* to a real buffer. The pointer table does not require updating.

* Count is kept of the number of parcels discarded and a dispersion

distribution is maintained. If two consecutive data messages are discarded,

it could indicate that the value of the OFFSET is wrong. Therefore, the

OFFSET is recalculated.

4 Since only the low bits of the timestamp are used, this algorithm could

be fooled by a speech message that was very late in arriving. This is not a

problem on our net. The high bits of the timestamp could be used to detect

this case on any net where it was necessary. For networks with high

dispersion, more buffers and therefore more low bits should be used. In this

way, the algorithm self-adjusts and lessens the need to use the high bits in

the timestamp.

7. RELIABILITY

7.1 Reliable Transmission of Control Messages

The system must insure that a PTP or Conference call is completed if

possible. Control messages occasionally fail to reach their destination for

many reasons. Therefore a retransmission mechanism is needed. The NVP

protocol does not specifically provide for automatic retransmissions. NVP-II

does define a token called "PLEASE ECHO".* This token carries one word of

data which the receiver returns to the sender as the data of an "ECHO REPLY"

44~ .4 .;P . R ~ .55

token. Using these two tokens, an acknowledgement/retransmission routine was

written. The acknowledge/retransmission routine maintains a retransmission

table of control messages sent but not yet known to have arrived. Every NVP

* control message contains an "ECHO REQUEST" token whose data is a pointer to .
its entry in this table. Since most messages reach their destination safely,

a copy of outstanding messages is not kept. The acknowledgement!

2retransmission table contains sufficient information so that the message can

be recreated and resent if necessary.

When an NVP control message arrives containing an "ECHO REPLY" token,

the data are used to remove the corresponding message from the retransmission

table. The table is constantly monitored. If a message has not been removed

within two seconds, it is a candidate for retransmission. First the program

checks to ascertain that it is reasonable to repeat the message. (There is

no reason to resend a "WANT TO TALK" message if the caller has hung up.) A

message will be retransmitted a maximun of ten times. If no acknowledgement

is received, the call is terminated and the program is re-initialized.

The ST protocol provides for reliability checks. In ST every control

a message must be answered with either an ACK or a responding control message.

ST control messages are also put on the retransmission table and removed when

the corresponding ACK or answering message is received. Speech messages are

never retransmitted. By the time the retransmission was accomplished, the

time to play out the retransmitted speech would have passed.

In closing down a conference, a large number of disconnects may need to

* be sent. If one or more sites do not respond immediately or have crashed and

cannot be reached it will be 20 seconds or so before all the retransmissions

56

are done. The PP cannot handle a new call until it has completed the shut

down process. Therefore, if the user picks up the phone while shut down is

in progress he will hear a fast busy signal and his dialing will be ignored.

When the shutting down is complete, a dial tone will be sent to the phone and

the user may place another call.

* 8. REAL-TIME STRUCTURE OF PVT SOFTWARE

8.1 Assembly Language Code

At first it was hoped that virtually all of the PVT software would be

written in a higher level language so as to gain some of the advantages

available with such a language. Code written in a higher level language is

usually easier for someone else to read and understand. Because of the

*. ~1constraints imposed by the compilers of higher level languages the code they

produce is often easier to debug than is assembly language. However, because

of real-time constraints in handling some of the 1/O and because of

limitations in the compiler which was used for the project, a significant

amount of code was written in the assembly language A-Natural 1121.

The code which handles the 1/O over the interfaces and the code which is

time critical is written in assembly language. Every time the vocoder

finishes reading or writing a parcel of data, an interrupt is generated.

This parcel time for PCM and CVSD is 22.5 meec. For LPC, it is 20 msec.

Both interrupt routines maintain a parcel count. The transmit parcel count

is used as the timestamp for data messages. The number of buffers of speech

coming from the vocoder is always a power of 2 (4 for PCM, 8 for ECVSD and

128 for LPC). The low order bits of the parcel count tell which buffer was

just filled. The interrupt routine, which is called when a new parcel

57

. arrives from the vocoder, increments the transmit timestamp signaling to the

higher level routines that a parcel is available to be sent out. The

interrupt routine which is called when a parcel is played out to the vocoder

must locate the parcel and clear the header byte. This signals that there is

no data in the parcel and if no new data have been put into this buffer when

it is next read, the vocoder will play out a prestored parcel of silence.

For each vocoder there is a buffer pointer table which contains pointers to

the speech buffers. For LPC every register in the buffer pointer table

points to a real buffer. However for ECVSD and PCM some of the registers in

this table point to nonexistent memory. The reconstitution algorithm for PCM

and ECVSD that was previously discussed requires that this interrupt routine

update the buffer pointer table.

Two other types of routines are coded in assembly language. All the

control messages and the headers of the speech messages are sumchecked.

Since sumcheck routines worry about the carry bit they are easier and faster

written in assembly language. The main routine which services the I/O

interfaces is also written in assembly language.

8.2 Polling Loop

Except for the two interrupt routines, the remainder of the program

operates on a polling system. The main "C" program is controlled by a

polling loop that never ends. The I/O service routine sets flags for the "C"

N
program. The "C" program checks for these flags and executes the appropriate

routine when the flags are set. The "C" loop checks the transmit parcel

count and if it has advanced, calls the routine which sends a speech data

message (if appropriate). Each time around the polling loop the "C" program

calls the I/0 service routine so it may check the state of the 1/O

interfaces.

58

-. ' - --"- * ,,*_ . *. .* w'' , ,, - . , " " -. ,'. - , -. -.- . . -,

8.3 Buffer Availability to BC

Simplicity is enhanced by refusing to accept a second message from the

4 BC until the current one is completely processed. Since processing an input

message is likely to cause an answering message to be created, the PP does

not accept a new message from the BC until its output buffer to the BC is

free. The BC has five buffers used to handle messages from the local net.

If the PP is slow taking messages from the BC, the BC routines buffer up the

four most recent messages. The fifth buffer is kept free to handle priority

messages. By taking advantage of this, the PP can process each message to

completion. There is only room in the PPs DMA memory for one input buffer

for messages from the BC. Reading a second message before completing action

on the first could involve copying the first message into scratch memory.

8.4 Output Message Formation

In a PTP conversation the PP is normally sending messages to only one

remote site. Space is reserved in DMA memory for the two normally used

protocol headers (IF header and ST control header) and the ST data message

header. These are set up when the connection is established and since only a

small percentage of the bytes in a header change between messages, a new

message can be sent very quickly. A fourth buffer area is reserved for the

formation of answers to calls from other sites. In a conference, speech

4, messages are sent to a fixed broadcast address and contain a bit map to

4 - denote which conferees are to receive copies. The headers change very little

and the same strategy is employed.

.u 8.5 Timing

Because the Protocol Processor software includes interrupt level

routines and handles asynchronous DMAs, and because the main software

.4 59

routines are interlocking polling loops, it has not been possible to

ascertain precisely how much idle CPU time a PVT has. However, a PVT has

been timed to see how much time is used sending and receiving speech data

messages. For the PCM vocoder, time between parcel interrupts is 22.5 msec.

Two DMA channels are used, one for sending messages to the Buffer Control and

one to receive messages from the BC. The two DMAs are independent of each

other.

To time PCM, a logic analyzer was used to measure durations. A point-

L to-point call was set up between two PVTs on the same LEXNET. One PVT was

set to send continuously. The other PVT was prevented from sending but was

* receiving continuously. The sending PVT got a vocoder interrupt every 22.5

msec signaling that a parcel of data was available for sending. The time.,

between the occurrence of this interrupt and the completion of sending the

resulting speech message was measured. The data are shown in Table II. The

time varied from a minimum of 3.4 to a maximum of 5.2 msec.

The PVT which was only receiving was measured to see how much time

elapsed between getting the signal from the BC saying that a message had

arrived and finishing reading in the message. The time fluctuated slightly

around the value of 7.95 msec. Then both terminals were set to send

continuously and therefore were also receiving continuously. The

measurements were repeated. The time required to send a message increased by

less than a msec while the time required to read in a message increased by

1.5 msec.

When there is a message to read and a message to send, the message to

send is given priority. No message is read in until the output buffer is

60

'-.

.. 4.4' , _ - - , . . ' .' -. '. , .. .

free (see Section 8.3). This probably accounts f or the greater increase in

the maximum time required to read in a message when the terminal was also

sending.

These times recorded in Table III show that a PVT can easily handle a

PCM conversation even when bath parties are talking at the same time. Not

reading in a message until the output message queue is empty undoubtedly

causes some extra delay. However, since the PVT is a dedicated machine and

was able to meet the real-time requirements for the highest rate vocoder

(i.e., PC10, there was no reason to complicate the program to reduce this

delay.

TABLE III

MEASURED SEND AND RECEIVE TIMES

Time to Send Time to Receive

Min. Max. Min. Max.

Sending Only 3.4 ms 5.2 ms

Receiving Only 7.95 ms 7.96 ms

Sending and Receiving 3.4 6.08 8.5 9.5

9. LANGUAGES AND SUPPORT FACILITIES

9.1 Choosing Languages

When this effort began, an investigation was made of the various means

available to produce INTEL 8085 code. Writing most of the program in a

61

%4

%j

higher level language was highly desirable. However, the routines operating

at interrupt level had to be written in assembly language because of time

constraints and because this was the only way to run the DMA channels and

4. handle I/0. The development machine available was a DEC PDP 11/70.

Whitesmith, Ltd., markets a system which runs on a PDP 11/70, compiles code

written in the higher level language "C", and produces INTEL 8085 code. The

Whitesmith system also includes an assembly language called A-Natural. The

Whitesmith compiler first compiles "C" code into A-Natural code. Then a

Whitesmith assembler produces a relocatable binary file from the A-Natural

file. Code written in "C" and in A-Natural can be linked together. The PP

program has been written in "C" and A-Natural using the Whitesmith package.

9.2 Support Facilities

Unfortunately the Whitesmith package provides very little information to

aid in debugging the code it generates. A map of core is produced which

gives the core location of the beginning of each "C" routine, each label in

the A-Natural code and each named variable. (Each label and variable

contained in the A-Natural module must be specifically declared "PUBLIC" at

the beginning of the module if its location is to be listed in the core map.)

The ability to label a line in a "C" routine and have its location appear on

the map would have been invaluable but the Whitesmith compiler deletes such a
--,..

label unless it is used in a COTO statement. A cross reference would also

have been very helpful.

9.3 Downloading Facilities

44 During the development stage it is necessary to have so-5e means of
4 .*

downloading the INTEL 8085 code produced on the PDP 11/70 into the RAM memory

62

' . ..- ,4--...-.- • .. - -.

* of a PVT. Several so-called "debugger boxes" were built. A debugger box

contains a small program which can receive characters over a dedicated

asynchronous 1/0 line from the PDP and store them in the RAM memory of a

PVT. The debugger box also provides limited debugging facilities. When the

program is halted variables can be examined by keying in their locations and

reading a display register. The debugger box also allows for trapping on

reference to a given location. However, trapping when a location is changed

is not available. Debugging a large program under these circumstances was

painful.

9.4 PROMS

The program is limited to 32768 bytes. This limit is observed in order

to keep the program contiguous and on one card. By doing this we can put the

program on EPROMs and send a set to a site which does not have a downloading

capability. Currently the program is 31885 bytes long. There are 4096 bytes

of data memory which the DMA channels can read and write. This is why there

is limited space available for buffering to and from the vocoder. There is

ample space available for scratch memory.

10. MONITORING AND DEBUGGING AIDS

10.1 Diagnostic Record Keeping

Records are kept by the PP to aid in spotting errors in the system and

to monitor the performance of various parts of the system. Counts are kept

of all messages sent and received. The PP notes how many speech messages

were discarded because their timestamp, when adjusted and used as an index,

selected a pointer to nonexistent memory. The PP also keeps a distribution

histogram of the variation of the incoming timestamps from the value

63

expected. The number of times the offset used to adjust the incoming

timestamp needed to be recalculated is recorded. There are many reasons why

an incoming protocol message might be discarded: bad checksum, illegal

message, message too big or too small, etc. A speech message will be

discarded if it is not from the conferee who the PP thinks "has the floor".

There are thirty-four different reasons why a message might be rejected.

* Whenever a message is discarded, that fact is recorded and a count is

maintained of the number of messages discarded for each reason. Whenever the

system is not functioning properly, these records often give an indication of

why. For instance, the delay distribution plus records kept by the GATEWAY

can indicate trouble on the satellite channel. Conference speech messages

-4 thrown away because the sender does not "have the floor" may mean trouble

with the Floor Controller.

10.2 "Talking to Yourself"

Possibly the most useful diagnostic tool we have is the ability to "Talk

To Yourself ". A user can pick up a PVT phone and dial his own number. As

soon as a connection is set up, he can "Talk To Himself". Setting up this

type of connection requires a reasonable amount of special code because one

site is both caller and callee. The PP checks the address dialed to see if

it is its own address. If so, it notes that fact and handles the protocol

messages differently. If the call is dialed as a "long distance" call, the

messages will be sent to the GATEWAY which will then send them back to the

calling PVT. The GATEWAY can be instructed to send the messages over the

satellite channel and back to the caller. This allows the system to be

*probed and evaluated from a single PVT. A user can check to see if his PVT

64

is operating correctly, if both vocoders are functioning correctly, if there

is an operational GATEWAY on his net, etc. If the GATEWAY is instructed to

route messages over the satellite, a single PVT can be used to check out the

channel.

10.3 Echo Extension

When a user dials extension ONE (the ECHO extension) at a remote site,

his speech will be echoed back to him without disturbing anyone at the remote

site. One reason for adding this feature to the PVT code was to provide

another means of bouncing speech off a remote site, either as a demonstration

or to check the channel.

10.4 Providing Information to the User

The telephone instrument has only four tones it can play out to its

user. This allows a rather limited amount of information to be passed back

to the user. Often the PP has exact information on why a connection fails,

why a remote phone does not join a conference, etc., but it cannot pass the

.9 information back to its user. The system would be much more "user friendly"

if it had more ability to inform its user.

4 11. COMMENTS

111Implementing Protocols in a PVT

The PVT has many advantages when implementing a system of packet voice

speech. The biggest advantage is that it is a dedicated machine; no other

user requirements had to be 'accommodated, and it was not necessary to

interface the protocols to an existing operating system. General issues

associated with interfacing protocols with the underlying operating system

are discussed in (291. This interface problem can be a great source of

.5 65

77 770 *. ...

performance degradation and delay. One delight of programming these

protocols in the PP of a PVT was that being a dedicated machine, no other

requirements had to be accommodated.

The PP was provided with DMA channels to facilitate the moving of data from

the access area to the vocoder buffers and then directly to the vocoder.

"'" .This allowed the message handling routines to move messages and data without

using the CPU.

11.2 Use of Checksums

To ensure reliability, all protocol messages carry a checksum. The PP

checksum routines have been carefully coded in assembly language in an

attempt to gain efficiency. The speech data are not checksummed. Vocoder

* data with a small percentage of bits in error will normally produce better

speech output than would be produced if the data were not used and a silence

frame was played. Speech data cannot be retransmitted because it will not

arrive in time to be played out in its proper place in the speech stream.

Therefore, only the headers of speech data messages are checksummed. If a

control message does not checksum correctly, it is simply discarded. This is

appropriate for two reasons. First, the address of the sender could be where

the error is and therefore is not a reliable address to which a complaint can

be sent. Second, the sending PVT on not receiving an acknowledgement will

resend the message.

11.3 RAM Memory

When the PVTs were built, the best available chips which would support a

DMA channel were considerably larger in size than the standard INTEL memory

chips. Because of space considerations on the boards, only 4K bytes of

66

DMA memory were provided in the PVTs. This limit on DMA memory had a

considerable impact on the design of the PP software. The resulting program

has worked well although a considerable amount of extra time and effort had

to be expended to fit the I/O into the given space. There are now available

chips which contain DMA memory and are the same size as the standard RAM

memory chips. In new voice terminals now being designed and built, all

on-board RAM memory will be DMA memory.

11.4 Implementation on Packet Radio Network

NVP-II and ST have also been implemented at SRI International in their

Speech Interface Unit (SIU) on the Packet Radio Network (PRNET) in the San

Francisco Bay Area. Their implementation duplicated the restrictions on

NVP-II messages that are in use at Lincoln. Point-to-point calls have been

placed between an SIU at SRI and a PVT at Lincoln. "MEET ME" style

conferences using the SIU at SRI and PVTs at Lincoln and ISI have been

demonstrated. These conferences used the Access Controller at Lincoln

Laboratory. A description of the initial SRI work in radio nets is covered

in [201 and [211.

11.5 Implementing NVP-II and ST

Both NVP-II and ST are implemented in the PP. NVP-II is a very free-

form protocol. The user can combine tokens as he wishes. There is no

definition of the tokens to be contained in any message. ST is a very

structured protocol. Specific messages are totally specified for each

protocol function.

Implementing the two protocols was instructive. At first NVP-II was

implemented allowing the full freedom the protocol gives. There was trouble

67

imediately. If an initial message arrived and did not contain enough

information for the PP to judge whether or not to accept the call - what

then? Should the receiving terminal hold, waiting for another message with

the remaining information? That message may never come. Therefore, some

structure was imposed on NVP-II. The PVT implementation requires that

various messages contain at least a certain set of tokens. Even then NVP-II

* was tricky to Implement because there was so mch freedom in the protocol.

ST was very easy and straightforward to implement. To handle the

internet case, it developed that two words containing the address of the

curentsenerhad to be added to each command. Otherwise ST was implemented

as originally specified.

11.6 Support Facilities

The support facilities used on this project were extremely primitive. A

very large amount of debugging time was required. Timing dependent errors

were particularly difficult to find. A HP64000 Logic Development System [22]

has recently been purchased. Utilizing a system such as this to prepare the

program, to debug it using the emulation capabilities, and finally to burn

S PROWS for the PYTs would have saved a great deal of time and frustration.

12. SUMMARY

The software implemented in the Protocol Processor of Packet Voice

Terminal has been described. Point-to-point speech and conferencing

capabilities in both local nets and over the wideband satellite have been

discussed as well as the ability to place a call between a PVT and a

telephone in the commercial telephone system. The PVT provides a compact and

versatile speech interface to a packet network.

68

.~W V, 7

ACKNOWLEDGEMENTS

Many people have cintributed to the work reported in this paper. Dan

Cohen of ISI designed the NVP-II protocol. James Forgie designed the ST

protocol. The vocoders used with the PVTs are the work of Joel Feldman,

Marilyn Malpass, and Joseph Tierney.

Gerald O'Leary designed the PVT and supervised its development. He also

wrote the software for the Buffer Control module and provided invaluable

assistance when problems arose in debugging the Protocol Processor software.

William Kantrowitz developed the GATEWAY software and we worked together

in checking out the system. James Forgie provided the algorithm which is

used to correctly buffer incoming messages for playout. He was also very

,] helpful in many other software design decisions. Clifford Weinstein has

provided many ideas for this paper and has spent much time reviewing it.

69

*---Y. £€€ 2 . ;-*v.*--< €,-,-" "" .".-....-.S *- -: .',.'-.- .-..- - . . -. .- '-

7. , . 7 -

REFERENCES

[11 C. J. Weinstein and J. W. Forgie, "Experience with Speech
Communication in Packet Networks," to be published in IEEE Journal
on Selected Areas in Communications, December 1983.

[2] J. W. Forgie, "Network Speech Implications of Packetized Speech,"
M.I.T. Lincoln Laboratory Annual Report to the Defense
Communications Agency, 30 September 1976. DDC-AD-A045455/3

[31 C. J. Weinstein and H. M. Heggestad, "Multiplexing of Packet Speech
. on an Experimental Wideband Satellite Network," Proc. AIAA 9th

Comm. Sat. Systems Conf., San Diego, CA, March 1982.

[41 H. M. Heggestad and C. J. Weinstein, "Experiments in Voice and Data
Communications on a Wideband Satellite/Terrestrial Internetwork

System," ICC'83 Conf. Rec., Boston, MA, June 1983.

[5] D. H. Johnson and G. C. O'Leary, "A Local Access Network for

Packetized Digital Voice Communication," IEEE Trans. Comm., Vol.

COM-29, pp. 679-688, May 1981.

[6J G. C. O'Leary, P. E. Blankenship, J. Tierney and J. A. Feldman, "A
Modular Approach to Packet Voice Terminal Hardware Design," AFIPS
Conference Proceedings (NCC'81), Vol. 50, May 1981.

[71 J. Tierney and M. L. Malpass, "Enhanced CVSD - An Embedded Speech

Coder for 64-16 kbps," Proc. 1981 IEEE Int'l. Conf. on Acoust.,
Speech and Signal Processing, Atlanta, GA, 30 March-1 April 1981.

[81 J. A. Feldman and E. M. Hofstetter, "A Compact, Flexible LPC
Vocoder Based on a Commercial Signal Processing Microcomputer,"

' Electro'82, Session 22/5, Boston, MA, 25-27 May 1982.

[9] D. Cohen, "A Network Voice Protocol NVP-II," University of Southern

California Information Sciences Institute (unpublished memorandum),
April 1981.

[101 J. W. Forgie, "ST - A Proposed Internet Stream Protocol,"

(unpublished memorandum).

ill] J. B. Postel, "Internetwork Protocol Approaches," IEEE Trans.

Comm., vol. COM-28, pp. 604-611, April 1980.

[121 C Computer Systems Interface Manual for 8080 Users, Copyright @

1979 by Whitesmith, LTD.

1131 D. Cohen, "Specifications for the Network Voice Protocol,"
University of Southern California Information Sciences Institute,
Rpt. ISI/RR-75-39, March 1976.

70

[141 J. W. Forgie, "Voice Conferencing in Packet Networks," ICC'80
Conf. Rec., pp. 21.3.1-21.3.4, June 1980.

[151 M.I.T. Lincoln Laboratory, Semiannual Technical Summary to the
Defense Advanced Research Projects Agency on Packet Speech Systems
Technology, 30 September 1982. DTIC-AD-A126880

[161 M.I.T. Lincoln Laboratory, Semiannual Technical Summary to the
Defense Advanced Research Project Agency on Packet Speech Systems
Technology, 31 March 1982. DTIC-AD-A120433

[171 I. H. Merritt, "Providing Telephone Live Access to a Packet Voice
Network," University of Southern California Information Sciences
Institute, Rpt. ISI/RR-83-107, February 1983.

[18] T. Bially, B. Gold and S. Seneff, "A Technique for Adaptive Voice
Flow Control in Integrated Packet Networks," IEEE Trans. Comm.,
Vol. COM-28, pp. 325-333, March 1980.

[19] D. Clark, "Modularity and Efficiency in Protocol Implementation,"
Massachusetts Institute for Computer Systems and Communication
Group, RFC: 817 (unpublished memorandum), July 1982.

(20] P. Spilling and E. Craighill, "Digital Voice Communication in the
Packet Radio Network," ICC'80 Conf. Rec., pp. 21.4.1-21.4.7, June
1980.

[21] N. Schacham, E. J. Craighill and A. A. Poggio, "Speech Transport in
Packet Radio Networks," submitted to IEEE Journal on Selected Areas
in Comuinications.

[22] M. Davis, J. A. Schmarrer and R. G. Weekliff, Jr., "Extensive Logic
Development and Support Capability in One Convenient System,"
Hewlett-Packard Journal, March 1983.

71

-a

APPENDIX I

Acronyms and Abbreviations

AC - the Conference Access Controller
ARPA - Advanced Research Projects Agency (also referred to as

DARPA)
ARPANET - the ARPA network
BC - the Buffer Control Module
CPU - Central Processor Unit
CVSD - Continuously-Variable Slope Delta Modulation
DARPA - Defense Advanced Research Projects Agency (also referred

to as ARPA)
DMA - Direct Memory Access
DoD - Department of Defense
ECVSD - Embedded CVSD
EPROM - Eraseable Programmable Read Only Memory
GATEWAY - the module which connects two or more networks in an

internet
INTEL 8085 - microprocessor developed by INTEL Corporation
IP - Internet datagram Protocol; a DoD standard datagram

protocol
LCI - Lexnet Concentrator Interface
LEXNET - Lincoln Experimental packet voice network developed by

Lincoln Laboratory
LPC - Linear Predictive Coding
NCP - Network Control Protocol; the basic host-host data

protocol used in the ARPANET

NVCP - Network Voice Conferencing Protocol
NVP-II - Network Voice Protocol II
PCM - Pulse Code Modulation
PP - Protocol Processor
PROM - Programmable Read Only Memory
PTP - Point-to-Point
PVT - Packet Voice Terminal
RAM - Random Access Memory
RON - Read Only Memory
SATNET - the Atlantic Packet Satellite Network
ST - Stream protocol; an internet transport protocol for

speech and other real-time traffic
STNI - Switched Telephone Network Interface developed by ISI
TCP - Transmission Control Protocol; DoD standard reliable

transmission protocol
USART - Universal Synchronous/Asynchronous Receiver Transmitter
VCOP - Voice-controlled Operator
VP - Voice Protocol
VPSS - Vocoder Preference Selection Switch
WS SATNET - the Wideband Packet Satellite Network
WTT - Want-to-talk; Button on conference control box used in

SATNET

72

'k 4 -1' % __2

APPENDIX II

Sizes and Functions of Protocol Processor Software Modules

A. C-Language Modules

There are 114 C routines of various sizes which are contained in 6
separate modules with a total length of 28,464 bytes.

C-Module-i: CONTROL. This is the general control module for the
system. It contains 23 routines and is 5822 bytes long. It contains the

*main control loop. Once initialization is completed this loop runs forever
and monitors the condition of the phone and the activity on the various I/O
interfaces. Each pass through the main loop polls a series of status
registers about jobs that are pending. Control is passed to the various
modules as appropriate. At the end of the main C loop the main A-Natural
routine is called so that it can poll and service the hardware I/O.

.CONTROL contains, besides the main loop, f our initialization routines, a
routine to handle output to buffer control and one to handle input from
buffer control, five routines involved in shutting down a connection or a
conference, a retransmission control routine, two routines to handle turning
vocoders on and off, three routines to handle errors in incoming messages, a
routine to echo back speech input, and four service routines.

C-Module-2: IPIN. Handles incoming IP messages. It contains twenty
routines and is 5203 bytes long. It consists of two control routines,
seventeen token processing routines and a final analysis routine. The
control routine checks and processes each incoming IP message, invokes the
appropriate token processing routine to handle each token and finally invokes
an analysis routine which determines the correct response to this message.

C-Module-3: IPOUT. Handles creating and sending IP messages. It
contains twenty-seven routines and is 4496 bytes long. There are seven
control routines which create a particular type of message by invoking one or
more of the sixteen routines which add particular tokens to the message being
formed. These seven routines create messages such as: initial IP connect
message, accept of another IP connect, request to the Access Controller (AC)
to join a conference, request for information from AC about participants in a
conference, notification to the AC on departure from a conference, invitation
to another PVT to join a conference, and refusal of a request to join. There
is a service routine which determines the correct destination for each
outgoing message (local terminal or GATEWAY) and two routines which control
the actual sending of IP messages.

C-Module-4: STIN. Handles incoming ST messages. It contains nineteen
routines and is 5655 bytes long. An ST message either contains one token of
ST control information or it contains speech data. (ST messages which
contain speech data may also contain NVP-II protocol tokens). The module

73

:-I: -717. 71

contains two general control routines, two routines which control readin of
speech data, an ST control token-processing routine, thirteen token-handling
routines, and a general checking routine. Since an ST control message
contains only a single control token, each control processing routine
determines what answering message (if any) should be sent.

C-Module-5: STOUT. Handles creating and sending ST messages and
sending speech data. It contains eighteen routines and is 4058 bytes long.
There is a general control routine for sending speech data which uses one of
three vocoder-dependent subroutines to correctly send each data message.
There are two control routines which create various ST protocol messages, a
record keeping routine, and two service routines.

C-Module-6: PHONE. Handles the analysis of input characters coming
from the PVT phone via the USART. It contains seven routines and is 3230
bytes long. It consists of a general control routine, a switching routine,
two routines which handle the special characters * and #, a routine to handle
an incoming digit, and a routine to handle VCOP. When a PVT is acting as the
front end of VCOP, it receives a special character (an ASCII "v") over the
USART from the attached PDP-11 when it tries to "ring the phone". This
notifies the PVT that the VCOP routine should be used.

C-Module-6': STNI. When a PVT is used as an STNI, the Lincoln phone-
handling module is replaced by a module written by Ian Merritt of ISI 120].
This module handles the features unique to an STNI. The module is
approximately 3030 bytes long (about 200 bytes shorter than the Lincoln PHONE
module).

B. A-Natural Modules

There are seventeen routines written in A-Natural which are contained in
two modules and are 2855 bytes long. There are three routines to initialize/

reinitialize various I/O interfaces, a routine to set up speech buffers,
routines to start interrupts, and to start and stop the speech DMAs. Two
routines run at interrupt level and handle the frame sync interrupts from the

vocoder, three routines handle output to the phone (two for VCOP and one for
general use), two routines handle error conditions, two routines compute
checksums (word checksum and byte checksum). The final routine is the
general control loop which polls the status of all the I/O interfaces and
causes appropriate action to be taken.

C. Library Routines

The Whitesmith system, which compiles and links these modules, adds
sixteen library routines which are a total of 566 bytes long. These library
routines are used by the compiler to implement functions such as
multiplication and division which are allowed in the "C" language but for
which there are no corresponding machine instructions for the INTEL 8085.

74

- " ' '@ . , -", .-" ' -"'--_". :'"-,.',.-. " . ."-3 " '" .' ' ..

D. Summary

C-Routines

IPIN 20 Routines 5203 bytes
IPOUT 27 4496
STIN 19 5655
STOUT 18 4058
PHONE 7 3230
CONTROL 23 5822

114 Routines 28464 bytes

A-Natural Routines
1/O Routines 15 2774
Checksum Routines 2 81

17 2855

Library Routines 16 566

Total 147 Routines 31885 bytes

75

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (IkW.. Data EMs.red)

READ INSTIR CIONSREPORT DOCUMENTATION PAGE uEFORE COMPLErING FONM

S. REPOT NUMBER 2. GOVT ACCESSION NO. 3 RECIPIENIS CATALOG NUMBER

ESD-TR-83-054

4, TITLE (and Subtitle) . TYPE Of REPORT & PERIOD COVERED

Technical Report
Protocol Software for a Packet Voice Terminal

%-." S. PERFORMING ORG. REPORT NUMBER
Technical Report 663

7. AUTHOR(s) 1. CONTRACT OR GRANT NUMBER(.)

Constance K. McElwain F19628-80-C-0002

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Lincoln Laboratory, M.I.T. AREA & WORK UNIT NUMBERS
Program Element Nos. 61101E, 62708E

P.O. Box 73 Project Nos. 3DI0 and 3TI0
Lexington, MA 02173-0073 DARPA Order 3673

11. CONTROLUNG OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency 16 November 1983
1400 Wilson Boulevard 13. NUMBER OF PAGES
Arlington, VA 22209 86

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Electronic Systems Division Unclassified

Hanscom AFB, MA 01731 15a. DECLASSIFICATION DOWNGRADING SCHEDULE

I. DISTRIBUTION STATEMENT (of this Report)

Approved fot public release; distribution unlimited.

17. DIS IRIUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

111. SUPPLEMENTARY NOTES

None

IS. KEY WORDS (Continue on reverse side if necessary and identify by block number)

ARPANET network voice protocol protocol
internetwork packet stream protocol

LEXNET packet speech vocoder
network speech packet voice terminal voice conferencing

20. ABSTRACT (Continue on reverse side if neceuary and identify by block number)

k Packet Voice Terminal (PVT) has been developed at Lincoln Laboratory to provide voice access to an experi-
mental wideband internetwork packet system. The PVT employs a modular, microprocessor-based structure to pro-
vide voice processing, packet voice protocol, and network interface functions. The packet voice protocols are imple-mented in software in the Protocol Processor (PP) r'odule, which is the primary controlling module of the PVT and
which handles interfaces to a voice processor, a network interface processor, and a user instrument. This report de-
scribes the software implemented in the Protocol Processor. The implementation of the Network Voice Protocol
(NVP-II) and the Stream (ST) protocol are described. Call set-up functions for both point-to-point calls and confer-
encing, and the methods used for packetization and reconstitution of speech, are described. Problems encountered
and solutions which have been implemented are discussed.

DO FOW 1473 EDION OF I NOV5 IS OBSOLETE UNCLASSIFIED
IJm 73 SECURITY CLASSIFICATION OF THIS PAGE (1I h.n Dota Ent-d r~

-5
S '," . ' .,.2''' 'Z''':€ ''/' -. 2 ' ' ' . -.. . ' ..- . . . ," " . . .• ." . ."". . , .

.

