

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

ł

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

DESIGN AND TESTING OF SCALED EJECTOR-DIFFUSERS FOR JET ENGINE TEST FACILITY APPLICATIONS

Ъy

James William Molloy

September 1983

Thesis Advisor:

P.F. Pucci

Approved for public release; distribution unlimited

DTIC FILE COPY

84 01 12 022

- UNCLASSIFIED	UNCLASS1	[FIED
----------------	----------	-------

A. TITLE (and Submite) Design and Testin Diffusers for Jet Applications 7. AUTHOR(a) James William Mol. 5. PERFORMING ORGANIZATION Naval Postgraduat Monterey, CA 939	g of Scaled Eject Engine Test Fac	BEFORE COMPLETING ACCESSION NO. 3. RECIPIENT'S CATALOG NUM 1136745 5. TYPE OF REPORT & PERIO Engineer's Thesis September 1983 6. PERFORMING ORG. REPORT 8. CONTRACT OR GRANT NUM
 4. TITLE (and Submite) Design and Testin Diffusers for Jet Applications 7. AUTHOR(a) James William Moli 9. PERFORMING ORGANIZATION Naval Postgraduat Monterey, CA 939 	AD-A g of Scaled Eject Engine Test Fac Loy	136745 S. TYPE OF REPORT & PERIO Engineer's Thesis September 1983 G. PERFORMING ORG. REPORT S. CONTRACT OF GRANT NUM
 TITLE (and Sublitie) Design and Testin Diffusers for Jet Applications AUTHOR(2) James William Mol. PERFORMING ORGANIZATION Naval Postgraduat. Monterey, CA 939 	g of Scaled Eject Engine Test Fac Loy	5. TYPE OF REPORT & PERIO Engineer's Thesis September 1983 6. PERFORMING ORG. REPORT 5. CONTRACT OF GRANT NUM
Design and Testin Diffusers for Jet Applications 7. AUTHOR(2) James William Mol 5. PERFORMING ORGANIZATION Naval Postgraduat Monterey, CA 939	g of Scaled Eject Engine Test Fac Loy	tor- cility Engineer's Thesi. September 1983 6. PERFORMING ORG. REPORT 8. CONTRACT OR GRANT NUM
Diffusers for Jet Applications 7. AUTHOR(2) James William Mol 9. PERFORMING ORGANIZATION Naval Postgraduat Monterey, CA 939	Engine Test Fac	Cility GED CEMBER 1983 G. PERFORMING ORG. REPORT S. CONTRACT OR GRANT NUM
7. AUTHOR(4) James William Mol. 5. PERFORMING ORGANIZATION Naval Postgraduat Monterey, CA 939	Loy	8. CONTRACT OR GRANT NUM
James William Mol D. PERFORMING ORGANIZATION Naval Postgraduat Monterey, CA 939	Loy	S. CONTRACT OF GRANT NUM
James William Mol. 3. PERFORMING ORGANIZATION Naval Postgraduat Monterey, CA 939	LOY	
8. PERFORMING ORGANIZATION Naval Postgraduat Monterey, CA 939		
Naval Postgraduat Monterey, CA 939		10. PROGRAM ELEMENT, PROJ
Monterey, ĈA 939	e School	AREA & WORK UNIT NUMB
	43	
	AND ADDRESS	12. REPORT DATE
Naval Postgraduate	School	September 1983
Monterey, CA 939.	43	13. NUMBER OF PAGES
TA. MONITORING AGENCY NAME	ADDRESS(II different tran Cent	trolling Office) 15. SECURITY CLASS. (of this
		15. DECLASSIFICATION DOW
16. CHET MONTIAM CONTRACTO	l oble Benerit	
		· · · · · · · · · · · · · · · · · · ·
IS. SUPPLEMENTARY NOTES		
19. KEY WORDS (Comitius en rever Supersonic Ejecto: Pressure Recover;	• elde il neccesary and identify i c-Diffuser /	by block number)
		۱. ^۲

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered

20. Abstract (contd)

7

operating characteristics for each diffuser with representative scaled engines was conducted to provide a reference against which alternative geometries would be evaluated. The constant area plus two variants were tested. A five-sixths and two-thirds reduction were studied to investigate the potential for increasin efficiency for a specific engine diffuser combination at NAPC. Secondary flow provisions were incorporated into the design to allow variation of this parameter. The modeling results were consistent with theory and the test apparatus produced repeatable results. A two dimensional double ramp (wedge) capable of being translated in a rectangular duct was suggested as an alternative diffuser geometry.

S-N 0102- LF- 014- 6601

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Scaled Ejector-Diffusers For Jet Engine Test Facility Applications

by

James William Molloy Commander, United States Navy B.S., United States Naval Academy, 1969

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING and MECHANICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL September 1983

James 1	W. Molloy	
: Taul	Juci	
\bigcirc	Marto	Thesis Advisor
Chairman, Depa	rtment of Mechan Dur	ical Engineering
	Dean of Science	and Engineering

Author:

Approved by

22.22

٩,

ABSTRACT

Design, fabrication and cold flow testing of a modeled jet engine test facility was conducted in an effort to provide an inexpensive vehicle to study geometric variations in diffuser geometry which could improve system efficiency. The design is based on Mach number similitude and consists of two configurations currently in use at the Naval Air Propulsion Center, Trenton, New Jersey. A constant area diffuser and a variable area diffuser with translating centerbody were modeled. Baseline mapping of the operating characteristics for each diffuser with representative scaled engines was conducted to provide a reference against which alternative geometries would be evaluated. The constant area plus two variants were tested. A five-sixths and twothirds reduction were studied to investigate the potential for increasing efficiency for a specific engine diffuser combination at NAPC. Secondary flow provisions were incorporated into the design to allow variation of this parameter. The modeling results were consistent with theory and the test apparatus produced repeatable results. A two dimensional double ramp (wedge) capable of being translated in a rectangular duct was suggested as an alternative diffuser geometry.

TABLE OF CONTENTS

ALL REMAIN

AND AND AND AND ADDRESS AND ADDRESS

CARLENCE D

MARINE AND

ĩ

I.	INTR	ODUCTION 10
	A.	PROBLEM FORMULATION 10
	В.	LITERATURE SURVEY
	С.	RESEARCH OBJECTIVES 14
II.	THEO	RY AND ANALYSIS
	A.	FLOW CHARACTERIZATION
	в.	OPERATING CHARACTERISTIC 20
	С.	ENERGY CONSIDERATIONS
III.	EXPE	RIMENTAL APPARATUS
	A.	TEST CELL/ENGINE ASSEMBLY
	в.	EXHAUST PLENUM
	С.	DIFFUSER ASSEMBLIES
		1. Straight Tube Diffuser
		2. Variable Area Diffuser
	D.	ENGINES
	E.	AIR SUPPLY
	F.	INSTRUMENTATION
	G.	DATA ACQUISITION
IV.	EXPE	RIMENTAL PROCEDURES
۷.	DISC	USSION OF RESULTS
	A.	MODEL DESIGN/CONSTRUCTION
	Β.	ENGINE DESIGN
	С.	DATA BASE
	D.	PARAMETRIC VARIATIONS
		1. Ae/A*

		2.	Sec	cond	ary	Flo	W	•	•	•	•	•	•	•	•	•	•	•	•	•	•	36
		3.	Ad,	/A*	•	••	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	38
	E.	F404	. IME	PROV	EMEI	ΥT	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	39
	F.	SYST	EMS	EFF	ICI	ENCI	Ľ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	40
VI.	CONC	LUSIO	NS A	AN D	REC	IMMC	ENI	DA T	IC	NS	5	•	•	•	•	•	•	•	•	•	•	44
	A.	CONC	LUSI	IONS	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	44
	Β.	RECO	MMEN	NDAT	ION	s.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	44
APPENI	DIX A	: DE	VELO	OPME	NT	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	91
APPENI	DIX B	: NA	PC 1	TEST	FA	CILI	ETY	[]	MF	RC	VE	ME	EN I	F	RC	GF	AM	1	•	•	•	95
APPENI	DIX C	: DI	FFUS	SER	PRO	POSI	ALS	3	•	•	•	•	•	•	•	•	•	•	•	•	•1	00
APPENI	DIX D	: EX	PERI	IMEN	TAL	PRO	CE	EDU	RE	C	•	•	•	•	•	•	•	•	•	•	•1	04
APPENI	DIX E	: SE	CONI	о тн	ROA	T D	IFF	rus	ER	۱S	•	•	•	•	•	•	•	•	•	•	•1	06
APPENI	DIX F	: sc	ALEI	D DR	AWI	NGS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•1	80
APPENI	DIX G	: DA	TA 1	FABL	ES	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•1	16
APPENI	DIX H	: 00	MPUI	FER	PRO	GRAN	1S	•	•	•	•	•	•	•	•	•	•	•	•	•	•1	33
LIST (OF RE	FEREN	CES	• •	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•1	39
INITIA	AL DI	STRIB	UTIC	ON L	IST	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.1	41

LIST OF FIGURES

Figure 1.	Typical Turbojet Test Cell
Figure 2.	Variable Geometry Diffuser With Centerbody 47
Figure 3.	Generalized Flow Characterization of
	Expanding Jet with Secondary Flow 48
Figure 4.	Simplified Test Cell
Figure 5.	Shock Strength Model
Figure 6.	Model Test Facility With Straight Tube
	Diffuser
Figure 6a.	Model Test Facility Schematic
Figure 7.	Scale Model Test Cell with Variable Area
	Diffuser
Figure 7a.	F404 Engine Assembly
Figure 8.	Test Cell Cross Section
Figure 9.	Straight Tube Diffuser (Full Scale)
Figure 9a.	Straight Tube Diffuser (Two-Thirds) 57
Figure 9b.	Straight Tube Diffuser (Five-Sixths) 58
Figure 10.	Pressure Tap Arrangement
Figure 11.	Constant Area Diffuser with Inserts 60
Figure 12.	Variable Area Diffuser Exploded View 61
Figure 13.	Remotely Operated Drive Mechanism 62
Figure 14.	Pressure Taps (Variable Area Diffuser) 63
Figure 15.	Variable Area Profile
Figure 16.	Test Engine Models
Figure 17.	Allis Chalmers Twelve Stage Compressor 66
Figure 18.	Scanivalve Pressure Scanner

tease - accord annumer annumer annum annum annum

Figure 19.	Model Test Facility Remote Operating Station . 68
Figure 20.	Operating Curve (F404 Non A/B)
Figure 20a.	Operating Curve (F404 A/B)
Figure 21.	Operating Curve (TF30 Non A/B)
Figure 21a.	Operating Curve (TF30 A/B)
Figure 22.	F404 Fully Started
Figure 23.	F404 Baseline
Figure 24.	TF30 Baseline
Figure 25.	Optional Presentation of Operating Curves 76
Figure 26.	AE/A* Effects
Figure 27.	Secondary Flow Effects (Five-Sixths) 78
Figure 28.	Secondary Flow Effects (Two-Thirds) 79
Figure 29.	AD/A* Effects
Figure 30.	Static Pressure Profiles 81
Figure 31.	F404 Improvement Summary
Figure 32.	Taper Effects (F404 Non A/B)
Figure 33.	Taper Effects (F404 A/B)
Figure 34.	Test Facility Illustration
Figure 35.	Generalized Exhaust Fan Efficiency 86
Figure 36.	Engine Test Facilities
Figure 37.	Variable Exhaust Ejector-Diffuser 88
Figure 38.	Conceptual Wedge Design
Figure 39.	Instrumentation Schematic

•

8

N2

NOMENCLATURE

A*	Nozzle Throat Area (L ²)
Аə	Nozzle Exit Area (L ²)
Ad	Second Throat Area (L ²)
Ht	Specific Fan Work (L^2T^{-2})
L/D	Length to Diameter Ratio
М	Mach Number
ň	Mass flow (MT ⁻¹)
P/p	Flow Energy (LT ⁻²)
PT8	Total Nozzle Pressure $(ML^{-1}T^{-2})$
P14	Exhaust Pressure $(ML^{-1}T^{-2})$
PS9	Cell Pressure $(ML^{-1}T^{-2})$
Po	Stagnation Pressure $(ML^{-1}T^{-2})$
$v^2/2g_c$	Kinetic Energy (LT ⁻²)
Z	Potential Energy (LT ⁻²)
β	Orifice to Pipe Diameter Ratio
ⁿ aei	Air Ejector Efficiency
n _f	Fan Efficiency

I. INTRODUCTION

The ability to efficiently exercise control over the energies entrained within a supersonic airstream has been the quest of aerodynamicists for several decades. The designers of wind tunnels, jet inlets, gas dynamic lasers and jet engine test facilities have each addressed the gas dynamics of this topic. Each design has had to incorporate a method to decelerate the flow, generally, through a mechanical device such as a diffuser. The complexities of treating the recompression of a real fluid in the presence of a boundary layer have defied analytic modeling of a supersonic diffuser to any great extent. The design approaches taken have been empirically based, which has led to a wide variety of diffusers tailored to meet the unique operating environment at a particular facility. This study is sponsored by one such facility challenged with one of the consistent fascinations of modern engineering: how to extend the limits of one's design in the presence of new technology or shifting economic variables.

A. PROBLEM FORMULATION

Ground testing of jet engines has long been an integral part of the design and maintenance practice in both the military and commercial avaition industries. Organizations, chartered with the testing of these engines, strive to generate a test envelope which closely approximates the operating envelope

which the engine will encounter in service. Advances in engine technology have imposed added demands upon the test engineer to extend the test envelope accordingly. This challenge has proven a classic cost effectiveness exercise, wherein, as higher altitude testing at increased power is pursued from one end of the spectrum, the attendant cost of exhausting the effluent in an innocuous manner to the environment spirals. The economic challenge continues to compound over the life cycle of the facility as energy costs associated with demands on the exhausters escalate.

CALLER AND

Test cell philosophy has focused foremost on achieving a sufficiently flexible design which will accommodate a wide range of engines. Large exhaust mechanisms, capable of handling a wide range of exhaust states, were adequate when the motive energy cost was only a small fractional cost of the total price of testing. Strategies to enhance pressure recovery prior to the exhauster were developed but optimization of the design in this regard was not a bonafide concern. The present testing scenario reveals that the associated costs in exhausting the effluent rivals any of the other cost variables and percentage improvements in efficient pressure recovery through retrofit of the original design merit consideration.

A typical test cell design is as depicted in Figure 1. The engine to be tested is mounted on a test bed and located in the test cell such that the exhaust will be vented into an augmenting tube which acts as an ejector-diffuser assembly.

The kinetic energy of the exhaust stream is converted by the diffuser into a pressure for presentation to the exhauster. Each cell is nominally equipped for secondary flow in which secondary air is entrained with exhaust jet gas to provide engine cooling and dilute the combustion products. Allowance is made for relative positioning of the test bed and diffuser to reconcile potential problems with pressure gradients under conditions of secondary flow which may influence the operating envelope.

B. LITERATURE SURVEY

Several searches were conducted to survey the available literature for supersonic ejector-diffuser studies and theoretical discussions germaine to this investigation. An online computer search of several national data bases was conducted using the keyword, keyphrase approach. Results of the search revealed over 10,000 documents generally associated with the broad topic area, of which, a highly focused search indicated over 300 documents with relevant material. A hardcopy of the latter with a brief synopsis of each report, was procured for further review. The survey was restricted to English or English translations but evidence of many foreign papers on the subject was apparent. In no respect is the review considered all-inclusive.

A synopsis of the most recognized works gives a flavor for the approach adopted. In 1949, pioneer work, which appears as a baseline in most studies related to supersonic

diffusers is attributed to Neumann and Lustwerk {Ref. 1}. This study included a one-dimensional theoretical analysis. and an experimental modeling with flow visualization by Schlerin photography of a constant area diffuser. A "transverse shock" was observed and categorized as the operative mechanism controlling diffusion. An optimum diffuser with an L/D of 10 was identified. In 1958, Lukasiewicz {Ref. 2}, studied data from several existing wind tunnel diffusers, concluding that fixed geometry diffusers can approach the pressure recoveries established from normal shock theory. Pressure recovery, far in excess of that obtainable with a constant area diffuser, was established for systems which employed variable area diffusers. In 1954, Hastings {Ref. 3} established the beneficial effect in diffuser performance of auxiliary ejection to partially evacuate test cells. Numerous additional studies with specific design goals have been conducted to optimize test facility operation. The most extensive noted were those conducted by Panesci and German {Ref. 4}, for Arnold Engineering Development Center in the 60's in which variable geometry diffusers with a centerbody were employed. Here again, pressure recovery far in excess of that achievable with constant area diffusers was observed.

add) Welless surran (western beckers) how with

Generalized studies to characterize pertinent parameters governing the flow phenomenon in rectangular diffusers were conducted by Merkli {Ref. 5} in 1976 and Waltrip and Billig {Ref. 6} in 1973. Merkli focused upon Mach number, diffuser length, boundary layer and Reynolds number as controlling

parameters. Reynolds effects were discounted as minimal with Mach number and diffuser length the significant parameters. Waltrip and Billig corroborated previous works establishing 8 - 12 tube diameters as the required recovery zone. They also focused on an oblique shock system as the governing mechanism.

Ginoux {Ref. 7} compiled an excellent summary of a short course in Supersonic Ejectors conducted at the von Karman Institute. The short course was an attempt to focus on the most advanced initiatives and progress in theoretical modeling and design of high efficiency ejectors.

C. RESEARCH OBJECTIVES

The Naval Air Propulsion Center at Trenton, New Jersey, as a major jet engine test facility, has experienced the technological advances in engine design which have approached the design limits of their ejector-diffuser assemblies exacting a heavy burden on power consuming exhauster machinery to maintain simulated altitudes. As an adjunct to a much larger study, a cold flow modeling of their existing plant was sponsored by the center. The principal goal, assuming satisfactory modeling of the test facility, was to test alternative diffuser geometries in anticipation of enhancing overall efficiency. The modeling process was such that, Mach number similitude could be maintained, any efficiency increases over the baseline would be due largely to geometric effects.

As discussed in the general treatment on diffuser theory, the two principle types of diffusers, a fixed area and a variable area, were modeled. In both diffusers recompression of the supersonic flow is accomplished by a complex-shock mechanism under the influence of a boundary layer, with post shock subsonic diffusion following recognizable theory. The experimental technique devised was to establish the diffuser characteristic on a non-dimensional basis as a baseline against which 'new' geometries may be judged. Operating envelopes for each diffuser design would be duplicated as far as practicable with the same engines. Whereas the phenomenon by which recompression occurs would not be directly studied, a pressure histogram along the diffuser was recorded in order to postulate the character of the operative mechanism. Itwas anticipated that attempting to control the shock mechanism would likely provide the largest gains in efficiency as opposed to manipulating the subsonic diffusion process.

The scope of the investigation would be guided by studying only those configuration changes which could readily be retrofitted into the existing space limitations of the parent facility. Conceptual designs would be unbounded by any environmental or stress-related constraints, allowing a sponsor's cost benefit analysis to sort out those aspects of new design proposals.

Despite successful construction of a highly flexible model, a major portion of the stated objectives could not be accomplished within the timeframe alloted to this phase of

the study. As baseline testing proceeded into the variable geometry diffuser, Figure 2, an unanticipated heating and vibration phenomenon was observed. The extent and nature of the phenomenon was not readily ascertainable but was in evidence only with the use of the centerbody configuration. The problem was of such proportion as to potentially taint the conclusiveness of future work involving devices imbedded in the jet stream. A separate detailed study of the phenomenon was ordered and a new set of objectives was established in concert with the sponsor.

andal approach. Gooddaan goddaat yngorodyd racharach

In an effort to optimize test cell geometry for one of the more heavily tested engines (F404), a series of liners which would reduce the cross section for diffusion were designed for insertion into the full scale straight tube diffuser. Engines were tested in anticipation of achieving better diffuser efficiency by seeking to optimize the ratio of nozzle area to diffuser cross section for the highest pressure recovery.

The details of the model design and testing in the context of this narrower objective are contained in the thesis proper. The conceptual work related to the original objective with a proposal for an alternative method of diffusion are discussed in Appendicies A and C.

II. THEORY AND ANALYSIS

Pressure recovery in a supersonic jet engine test facility is accomplished by a mechanical device called a diffuser. Two types of diffusers are recognized, the fixed or constant area diffuser and the variable geometry diffuser. The fixed geometry normally is associated with fairly constant input parameters such as mass flow rate, stagnation temperature and pressure. The variable area geometry is utilized where fluctuations in fluid characteristics or engine geometry (such as variation in exhaust area accompanying jet engine testing from the nonafterburning to afterburning mode) are an integral part of the testing. Each type of diffuser may serve an ancillary role to eject secondary air used in cooling the engine assembly and test cell.

In each diffuser the operative mechanism which accomplishes the first order pressure recovery from supersonic to subsonic conditions is a shock system. Subsequent pressure recovery must follow the guidelines for subsonic diffusion. Projecting an improvement in efficiency accompanying any alternative geometry would require a projection of the probably shock patterns and the interaction of that shock system with a postulated boundary layer. This interaction, in simple geometries, has not been conclusively researched; hence, this type of approach in the presence of complex geometries is not warranted. Analytic models to guide the design of a new geometry for jet engine

testing abound in the literature but generally assume the most convenient of assumptions. The model is generally one dimensional steady state using a simplified control volume and serves to bound the expectations only. Academic interests aside, a purely empirical approach is warranted. The approach adopted herein calls for establishment of baseline models of proper similitude with the existing facility from which characteristic curves can be drawn and against which alternative designs may be mapped and contrasted.

Acceptance of any observed change in system efficiency merits consideration only if dynamic similarity of the flow field has been verified between the baseline model and the parent facility. With supersonic compressible flow, Shapiro {Ref. 8}, is replete with support documentation illustrating the role of Mach number as the significant parameter in characterization of the flow. Merkli {Ref. 5}, in a series of experiments with rectangular constant area supersonic diffusers, concluded that Reynolds number has little effect on the pressure recovery. Mach number, as the ratio of kinetic energy to internal energy, was thus chosen as the best parameter upon which to base model development. Geometric compatibility was governed by the constraints of the engines to be tested and the limits imposed by the available air supply at the model test facility. The influence of temperature between cold ambient testing and prototype testing with hot exhaust gases would be addressed in the discussion of results as how it might impact the operative pressure recovery

mechanism. Appendix A provides a more detailed study of modeling/scaling considerations peculiar to this study.

A. FLOW CHARACTERIZATION

Flow at the exit plane of the nozzle achieves supersonic proportions whose Mach number may be approximated by analyzing a Prandtl-Meyer corner flow from the nozzle exit to diffuser entrance. The increase in area from the exit plane to the diffuser allows the jet to expand supersonically as it fills the available volume. A Prandtl-Meyer expansion may also be utilized to estimate the pre-shock Mach number. Shocking. due to perturbation of the jet stream with the boundary layer as reported in several other workd {Ref 8} will assume an oblique character. The oblique shock system will, upon attainment of subsonic conditions, blend into a turbulent, wellmixed stream which would diffuse in accordance with subsonic theory. The oblique shock system would be expected to migrate along the diffusers length for a given geometry of diffuser, in some proportion to the driving pressure. The oblique shock system, as discussed by Shapiro, {Ref. 8}, will either be strong or weak as governed by the stability of the flow, the nature of the boundary layer interaction and a multiplicity of lesser related factors. Pressure variations caused by area change conceivably promote an alternating compression and expansion character to the flow wherein the jet may tend to pulse. Restricting the flow to a constant area would tend to damp out this type of behavior. Figure 3 illustrates the anticipated character of the flow.

B. OPERATING CHARACTERISTICS

and decoder appropriation and and and and appropriate

ANALYSYNY ANALYSYNY ANALYSYNY ANALYSYNY ANALYSYNY A

The operation of the variable area ejector-diffuser provides insight into the complexities involved when designing or redesigning a new pressure recovery mechanism. Utilizing the simplified arrangement of Figure 4 to guide the discussion, the operation of this device may be described. As the total pressure is increased, flow in the nozzle accelerates until sonic conditions (M=1) are attained at the throat. Increasing total pressure or holding total pressure at this level and reducing the back pressure will cause a normal shock to stand in the supersonic region of the nozzle. A further lowering will cause the shock to pass into the test cell and into the diffuser. With a second throat, once the shock has been swallowed, the diffuser is considered started after which exhaust pressure may be raised shifting the shock to zones where stagnation pressure loss is less. A minimum loss will occur if the shock is located at the second throat. This may be accomplished by adjusting the axial position of the centerbody. The minimum flow area of the diffuser, Ad, must be greater than A* or the cell would become choked and altitude simulation could not proceed. The band of pressures, where cell pressure is independent of exhaust pressure, establishes the operating range of the diffuser. Conservatively, the shock is maintained upstream of the throat to preclude reverting to a higher cell pressure due to fluctuations in the flow field.

C. ENERGY CONSIDERATIONS

The presence of a shock wave arising from the supersonic starting process represents an increase in entropy at the expense of stagnation pressure. The entropy rise (pressure loss) is greatest across a normal shock as opposed to that across several oblique shocks. A simple illustration using Figure 5 makes the point. For a flow of Mach 2.0 at the diffuser entrance, a one-dimensional normal shock gives a stagnation pressure ratio across the shock of .721 with a post shock Mach number of .475. Using a device to diffuse the flow in oblique steps, then allowing for a normal shock, should increase the stagnation pressure ratio compared to the normal shock alone. Choosing turning angles of 6 degrees for each of two successive redirections of the flow followed by a gradual turn prompting a normal shock yields an overall stagnation pressure ratio of .951. The pair of oblique shocks increases the stagnation pressure rise by a factor of 1.32. In the limit, an infinite number of small oblique shocks will tend towards an ideal recompression.

III. EXPERIMENTAL APPARATUS

Each of the scale model altitude test facilities constructed consisted of a common test cell, and an exhaust plenum with a variable diffuser assembly as illustrated in Figures 6 and 6a. Primary and secondary air were provided by a common source, an Allis-Chalmers twelve stage axial compressor. Exhaust plenum pressure was controlled by an air ejector driven by the common air supply from the axial compressor.

A. TEST CELL/ENGINE ASSEMBLY

The test cell, Figures 7, 7a, and 8, housed engines and provided a plenum for secondary air flow. The cell was fabricated from aluminum and of cylindrical design measuring 15 inches in length and 12 inches in diameter (I.D.). The upstream flange assembly (1) provides a mating surface for the primary air piping, structural support for a cantilevered engine housing (2) and an air seal assembly. Dry silicon rubber seals guarding against air intrusion are prescribed owing to the vacuum created for altitude simulation. A 3 inch diameter penetration (3) at the base is provided for secondary flow connections. The downstream flange (4) accommodates diffuser assembly attachment and incorporates a similar air sealing arrangement. Ports for direct sampling of cell pressure and remote connectors for engine pressures were provided.

The engine assembly, also of aluminum, consists of 3 inch (I.D.) entrance piping (5) which in addition to its flow straightening function served as the support for the engine mounting assembly (6). The mounting assembly served to transition the flow from the entrance piping to the 2 inch (I.D.) conformal entrance duct. The mounting assembly introduced one element of versatility via a variable spacer ring (7). The spacer ring allows for 2 inches of horizontal realignment of engines should variation in standoff distance to the diffuser be required. The engine mounting surface (8) was machined to provide a retaining collar and indented for set screw assembly of engines.

B. EXHAUST PLENUM

SULAN, SUMMANNE AREANAD, ANANYANA, VITARANJAT ANANYATA

Interfacing beweeen the exhaust air ejector assembly and the diffuser assemblies was an exhaust plenum 3 foot by 3 foot in cross section by 4 feet long. The plenum houses a remotely operated traversing mechanism used to dirve the multiple angle centerbody assembly which is peculiar to the variable diffuser geometry. A maintenance access/inspection port is provided to assist in alignment. A six inch access connects to the air ejector piping to provide closure with the atmosphere and a means of back pressure control.

C. DIFFUSER ASSEMBLIES

Two scaled diffuser assemblies, Figures 2 and 9, were developed to establish the baseline against which alternative designs can be compared.

1. Straight Tube Diffuser

The model consists of a 15.25 inch long 2.71, inch (I.D.) cylindrical ejector-diffuser. Pressure taps were installed to record the pressure recovery process and are illustrated in Figure 10. Taps were placed at one (1) inch intervals along the length of the diffuser. Sealing was achieved by rubber seals in the end flanges. The length to diameter ratio was 5.62.

Two variations of this geometry, Figures 9a and 9b, were developed to investigate extending the operating envelope of the test cell to enhance efficiency and economy of operation. As depicted in Figures 9a, 9b, and 11 inserts were added to achieve a 5/6 and 2/3 reduction in diameter. Two end inserts (9) were included to allow investigation of sudden expansion versus gradual diffusion in the end section.

2. Variable Area Diffuser

Variable area diffusion was developed by traversing a multiple angle conical centerbody (Figures 2 and 12) within a 24 inch long cylindrical to conical diffuser. The overall length to inlet diameter ratio was 6.92.

The centerbody was 16.5 inches long having a leading cone of half angle 19.8 degrees and three trailing truncated cones of 10.8, 8.9, and 2.6 degrees, respectively, with a cylindrical afterbody. Centering was provided by a reinforced spider (10) which provided bearing support for 3/4 inch steel drive shaft. The shaft was coupled to an electrically operated

drive mechanism, Figure 13, which was remotely activated, allowing travel of 6 inches with positive mechanical and electrical limits. Positioning circuitry generated a plus/ minus 5 volt output which is remotely retrieved at the principal operating station.

The cylindrical to conical diffuser (8 degrees half angle) was equipped with static pressure taps longitudinally located along the wall, as shown in Figure 14.

The integrated centerbody and diffuser permitted wide variation in the flow area presented to the jet, including introduction of a variable second throat. Variation in flow area with axial position of the centerbody is shown in Figure 15.

D. ENGINES

Two sets of engines, Figure 16, were developed to model the F404 and the TF30 engines tested at NAPC. The engines were scaled to simulate the IRP and max A/B mode of testing. IRP represents Intermediate Rated Power which represents the highest power level without afterburner. This term is used synonymously with non-afterburning throughout the thesis. A/B refers to the maximum afterburning mode.

E. AIR SUPPLY

Compressed air from the Turbopropulsion Laboratory's Allis-Chalmers, twelve stage axial compressor, Figure 17, was utilized in all model testing. Maximum discharge pressure

of this machine was approximately 3.0 atmospheres at 15.0 lbm/sec mass flow rate.

Primary and secondary air, as previously shown in Figure 6a, were supplied to the engine model and test cell, respectively, through three inch I.D. piping. A six inch I.D. suction line was attached to the exhaust plenum to simulate the effect of the exhaust air pumps used in the full scale test facility. Primary and secondary air flows and exhaust plenum pressure were controlled by pneumatically operated valves set remotely by differential pressure transmitters.

F. INSTRUMENTATION

A forty-eight (48) port pressure scanner, a Scanivalve, shown in Figure 18, (with an automatic stepping feature) allowed using a single pressure transducer for sensing many system pressures. Geofarth, {Ref. 9}, documents the logic and associated hardware for this system. The Scanivalve was employed as a computer peripheral to permit near simultaneous logging of system pressures. Approximate sampling of one (1) pressure tap/second was representative of the acquisition rate. The Scanivalve measured the differential pressure between the nominated source and a known reference. One Scanivalve port was open to the atmosphere and zeroed against an input reference signal. All other pressures were referenced against this port to give a precise 'gage' measurement which becomes a transducer output for conditioning and subsequent

measurement by a digital voltmeter. Pressures were sampled across primary and secondary orifices for mass flow calculation, total pressure at engine inlet, engine throat, test cell plenum, fifteen (15) diffuser locations and the exhaust plenum. Atmospheric pressure was read from an absolute pressure Bourdon gage and manually recorded. Pressure taps were sized in accordance with Reference 10. Metering orifices, with $\beta = .7$ were utilized. In order to minimize the pressure drop in the primary flow system, the engine nozzles were calibrated using the flow rate indicated by the primary flow orifice. After calibration the orifice was removed.

Temperatures were measured using copper-constantan (Type T) thermocouples. An ice point reference was included in the design. Primary and secondary temperatures at 6 diameters downstream of the orifices were recorded. Temperature of the inlet air stream in the vicinity of the total pressure centerbody was also sampled. Thermocouple levels were input upon demand (computer controlled) to a Hewlett Packard 349A Scanner and relayed to a Hewlett Packard 3455 digital voltmeter for subsequent recording. Three portable digital voltmeters were employed in monitoring and modifying the controllable parameters.

G. DATA ACQUISITION

An integrated automatic data acquisition system was employed to record fluid properties. The Hewlett Packard HP-IB Interface Bus under the control of a Hewlett Packard

9830A calculator with HP9867B Mass Storage Unit and several peripheral options comprised the system. A computer program, Appendix H, adapted from the original work of Geopfarth {Ref. 9} controlled the data æcquisition and storage process. Raw data were stored in mass memory with a hard copy backup. It was anticipated the data could be transferred to IBM 3033 for processing but communication problems necessitated that the data be hand input into the IBM files.

IV. EXPERIMENTAL PROCEDURES

Control over system operation was performed from a remote operating station, Figure 19. Three differential pressure transmitters (11), (12), (13), provided positive control over primary air, secondary air and exhaust pressure. These transmitters regulated a 0-15 psig signal to three remotely operated valves. Dedicated pressure transducers provided direct reading of nozzle total pressure, cell pressure and exhaust pressure and were remotely monitored on digital voltmeters (14), (15), (16). A preliminary check list for system checkout and an operating guide are provided in Appendix D. Output from the scanivalve controller (17) could be selectively monitored as desired. Total pressure regulation, once the primary valve was open fully, consisted of remotely manipulating the compressor air bypass. いい シンシン 主義 アイト・バール 合調

a bound of a substantial and the second a substant and the substant and the substant and

Each engine and diffuser combination was tested over the entire range of deliverable pressures as mapped against exhaust pressures from atmospheric to full exhauster capacity. A matrix of total pressure versus exhaust pressure was generated prior to each run to optimize the time to record data and to identify the set points for each run. Typically, total nozzle pressure, PT8, was set at the prescribed value; exhaust plenum pressure, P14, was established; a manual code was input into the computer to order data acquisition. Back

pressure, P14, was then stepped a predetermined amount and the process repeated until exhauster limits were reached. Total pressure was then advanced and the cycle repeated. Setting the secondary air flow to a given fraction of the primary air flow required an iterative process of controlling both flows because of their common supply. This required an inordinate amount of time and was not done. Instead, the secondary flow was incremented when desired. If additional data was required a dedicated run for secondary flow was contemplated.

Repeatability of the data was challenged both on a random basis through the course of a test sequence and on separate dates to establish the limits of experimental uncertainty. Leakage checks were conducted prior to and during the course of each test.

V. DISCUSSION OF RESULTS

As established in response to the work definition provided by the sponsor, the goal of the study was to design, fabricate and test a cold flow model of the NAPC Test Facility for further utilization in testing alternative diffuser geometries. Detailed objectives were:

1. Model the NAPC test facility using Mach number similitude and scaled geometry.

2. Design/construct the model to allow for the greatest variation in test parameters.

3. Model a representative set of engines spanning the operating extremes of the actual test cells being studied.

4. Establish a data base against which alternative geometries may be compared and provide a basis of comparison.

5. Quantify and interpret the controlling parameters which influence diffuser efficiency as a prelude to alternate geometry proposals.

6. Provide a conceptual model(s) from which the second phase of the study may proceed.

7. Specifically evaluate cross sectional variations in the straight tube diffuser to improve range and/or efficiency when testing the F404 engine.

8. Explore overall systems efficiency considerations in the context of new design initiatives.

A. MODEL DESIGN/CONSTRUCTION

The model was designed as detailed in Appendix A. The success of the design/construction process is measured only in subjective terms. The parent facility as detailed in Appendix C did not possess the scope of instrumentation co provide a characteristic mapping which would allow a direct comparison. The operating variables, exhaust pressure/cell pressure ratio and nozzle total pressure/cell pressure ratio as shown in Figures 20 and 21, did, however, follow theory and closely match the general shape and bounds of model data provided by NAPC. The full scale facility performance will be different from that of the model due to thermal variations. leakage, working gas, surface roughness and machinery support structure. Having satisfied Mach number and geometric similitude it was reasonable to assume any substantive improvements in performance observed from model studies should translate well to the parent facility.

The maximum altitude achievable by the design was approximately 45,000 feet. The total pressure limitation of the Allis Chalmers was the dominant factor in this regard. Figures 21a and 22 show started operation of the ejectordiffuser only with the TF30 and F404 in the afterburning mode. This altitude limitation also derives from the need to scale according to the largest engine. This limitation will obviously preclude a full determination of the useable feasible range of new geometries. This limitation may also mask some benefits of new geometries thus resulting in a

more conservative estimate of performance than what might occur in practice.

B. ENGINE DESIGN

The test engines chosen were the TF30 and F404 whose characteristics were noted in Appendix C. The afterburning mode of the TF30 was utilized as the set point for the match with the compressor. A top end mass flow, with the TF30 in A/B, of 1.863 lbm/sec was expected and a maximum of 1.75 lbm/sec was observed. Precise measurements of the final nozzle diameters indicates an error of less than $\frac{1}{2}$ to 1 percent in the area ratios between planning estimates and the machined product. The engine design should thus provide over 95% coverage of the operating range of the parent facility.

C. DATA BASE

The 2.71 inch scaled straight ejector-diffuser was established as the baseline diffuser against which alternative geometries may be contrasted. A non dimensional graphical representation was chosen as a preliminary method to interpret the test results. A gross survey of ejectordiffuser performance, under the influence of a parametric change relative to the baseline, can be readily observed. A detailed investigation may then be ordered to quantify any observable improvements in ejector-diffuser performance. Ideally, a real time performance map versus the baseline should be incorporated into the data acquisition package to
allow an interactive optimization during new geometry testing. Figures 23 and 24 are catagorized as the baseline for each engine tested. Improved performance will be evidenced by a relative displacement of any new curve vertically up and/or horizontally to the left. This equates to operating with higher pressure recovery for a given PT8/PS9 which are the input specifications of any test program. The influence of parametric variations made during this study are presented in this manner for illustration. While conveying no additional information, an alternative representation of the operating characteristic by PS9/PT8 versus PT8/P14 is exemplified by Figure 25.

D. PARAMETRIC VARIATIONS

1. <u>Ae/A*</u>

This ratio is a naturally varying parameter when afterburning engines are tested due to their variable exhaust geometry. In the F404 the ratio varies from 1.21 at IRP to 1.58 at maximum A/B. In the TF30, this variation ranges from 1.03 to 1.20. It was anticipated that, as Ae/A* increased for a given diffuser geometry and nozzle total to cell pressure ratio, (PT8/PS9), pressure recovery would increase. The higher Mach number at the diffuser entrance would govern the increase. Table 5.1 illustrates this fact for two runs with the F404; Figure 26 graphically conveys the same information.

Table 5.1

Engine	F404 Non A/B	F404 A/B
Run No.	24	29
PT8/PS9	11.84	11.85
P14/PS9	3.045	4.119

The operating envelope for any variable geometry engine necessitates that testing must span a broad range of power levels. As power is adjusted from IRP to maximum afterburner the exhaust to throat area ratio varies widely. Figure 23, for the F404, and Figure 24, for the TF30, illustrate that for a fixed nozzle total to cell pressure ratio, the exhauster requirements decrease in response to better pressure recovery. The porportion, in which the pressure recovery increase occurs, appears characteristic of the engine-ejector-diffuser match achieved by the design. The F404 full scale ejector diffuser combination shows less variation than the more closely matched TF30 full scale combination. Similarly, to maintain altitude while testing from IRP to max A/B the exhauster must also vary it's operating set point to accommodate the varying demand. When a single test cell configuration must accommodate testing more than one class of engine, significant complications are introduced into achieving a near optimum design. Any retrofit of the parent facility must detail how the new geometry accommodates this parameter.

2. <u>Secondary Flow</u>

Secondary flow is injected into the test cell as a cooling medium for the engine. The added mass saps performance from the diffuser as a pressure recovery device. The diffuser entrains the additional low velocity, low energy flow with that of the high energy jet under complex flow conditions requiring greater exhauster work to sustain cell pressures. The postulate in the case of secondary flow is that, for a given nozzle total pressure and a given exhaust pressure, injection of secondary air increases the cell pressure. Secondary flow will result in a lowering of PT8/ PS9 or, conversely, less efficient pressure recovery. The experimental results are strongly supportive of this statement. As shown in Figure 27, the operating curve shifts lower as losses increase at the price of mass ejection.

A detailed study of secondary effects, using the F404 in A/B with the 2/3 and full scale diffuser, was conducted as follows. Nozzle total to cell pressure ratio (PT8/PS9) was fixed while secondary flow was gradually increased. Table 5.2 for the full scale shows only minor variation in pressure recovery for typical amounts of secondary flow. Large amounts of secondary flow have a more adverse impact but this is purely of academic interest as 8 percent secondary represents an upper bound on practical cooling requirements. In marked constrast, the performance of the F404 and the two-thirds diffuser suffers a significant penalty in pressure recovery. Table 5.3 and Figure 28 detail this observation.

Engine	F404 A/B	F404 A/B
% m [*] s	0	8
Run	47	46
PT8/PS9	7.58	7.56
P14/PS9	1.951	1.939

Table 5.3

Engine	F404 A/B	F404 A/B
% m [*] s	0	4
Run	30	2
PT8/PS9	12.71	12.75
P14/PS9	4.265	3.257

Expenditure of exhauster power will be required to achieve the same pressure in the presence of the added mass. A nonlinear variation in the loss of PT8/PS9 is anticipated due to the complex nature of mixing subsonic and supersonic streams. The two-thirds diffuser, having an L/D which more nearly matches the optimum suggested in the literature, more efficiently recovers pressure. This suggests that secondary flow effects become more prominent as the diffuser design becomes more efficient. The penalties in power consumption due to secondary flow effects are not linear, and this observation results in wide variations in systems efficiency as discussed in Section F.

3. <u>AD/A*</u>

In applying the Law of Continuity to the nozzlecell-diffuser, a minimum diffuser area may be determined. The minimum area in a diffuser is specified by Ad = A* p_{ov}/p_{ox} where p_{ov}/p_{ox} is the stagnation pressure ratio for a shock diffuser entrance Mach number. Allowing for an expansion to Mach 3.0 in the diffuser, Ad (min) ranges from A* to 3.04A*. Matching the engine to diffuser permits upward variation in A, from 6.67 (in^2) for the TF30 and 1.93 (in^2) for the F404. The full scale A_d is 5.768 (in²) which is below the minimum for the TF30 but lower Mach numbers are experienced with this engine. Optimum performance for constant area diffusers, from original model studies reported by NAPC, ranges from $Ad/A^* = 3.5$ to 4.0. Neither of the engine extremes approaches this ratio with the TF30 being more closely matched while the F404 is undersized. As Ad/A* was varied from full scale to two-thirds, performance improved dramatically as can be seen in Figure 29. An Ad/A* of 6 - 7.5 appears to bound the gains in performance for the F404 A/B. An A_d of 2.5 (in^2) for the F404 should result in near optimal performance. No conclusions may be drawn for the non A/B case since improved performance occurs at the limit of Ad/A* tested. Static wall pressure profiles as shown in Figure 30 depict the observable changes as Ad/A* is varied from full scale to two-thirds for a fixed driving potential.

E. F404 IMPROVEMENT

The foregoing discussions have alluded to improvements in the F404 performance with variation in diffuser cross section, A_d . An Ad/A* between 6 and 7.5 appears optimal in that the two-thirds and five-sixths reductions improve pressure recovery at all power settings. These diffusers can also achieve lower altitudes than the full scale, if that is the objective. Full scale attains 25,800 feet while two-thirds and five-sixths achieve 40,250 and 43,400 feet, respectively. The two-thirds, as shown in Figure 31, is capable of fully started operation despite the constraints on driving potential observed in this test facility. The gain in efficiency should be significant as previously noted Table 5.1. The exhauster can operate at higher pressures in for the same cell pressure, an obvious advantage. A ceiling on the potential gains cannot be ascertained from the available data. As an example, the F404 in the non A/B mode for a PT8/PS9 of 6.6 would require a P14/PS9 of 1.5 for the full scale, 1.75 with the five-sixths and 2.05 for two-thirds. This permits a near doubling of exhaust pressure while maintaining cell pressure at test conditions. The F404 in the A/B mode for a near constant PT8/PS9 shows the same results. Figure 30 also shows recovery occurs earlier with fewer losses in the two-thirds diffuser. The five-sixths and full scale attain different levels of diffusion but clearly greater work must be performed with the full scale diffuser.

In the course of the detailed investigation, both the two-thirds and five-sixths configurations were terminated in an abrupt expansion to maintain a near equivalence in L/D. Two additional tests were conducted with tapered afterbodies, Figures 9a and 9b, to capitalize on subsonic diffusion. Both modes of F404 operation were tested and as expected diffusion is improved, as shown in Figures 32 and 33. The improvement at lower PT8/PS9 is barely distinguishable but shows distinct gains at higher levels. Since the tests were conducted on different dates, precise quantification was not attempted. The use of some geometry to enhance subsonic diffusion, such as the taper afterbody, merits consideration in any retrofit proposal.

F. SYSTEMS EFFICIENCY

The complexity of the diffusion process makes the task of measuring the cost benefit of a design change a subtly challenging endeavor. The gains derived from a geometric change must be integrated over the test cycle for each engine. A typical jet engine test represents a non steady state problem where the time at a given power level becomes a cignificant factor when evaluating power consumption costs. Assuming testing only at discrete power settings, the cost of testing at each setting can be placed on a cost/unit time basis and total cost summed by integrating over the time interval for the test.

The efficiency of the system includes not only the ejector-diffuser but must reflect the efficiency aspects of the exhaust heat exchanger, the exhaust control valves and exhausters themselves. It is postulated that only one match of test conditions and these system components exists. A shift off design as prompted by new flow conditions such as higher power or secondary flow will dramatically influence overall power consumption since it is in direct proportion to the individual efficiencies of each component. An illustration, utilizing a much simplified model for the generalized case of testing with secondary flow and, making an allowance for auxiliary exhaustion of the secondary, provides a simple cost basing example. The test set up is as shown in Figure 36. An energy balance across a simple fan is utilized in this case for illustration only. The total work done by the fan per pound of working substance is H_t where

$$H_{t} = \frac{P_{2}}{\rho} - \frac{P_{1}}{\rho} + \frac{V_{2}^{2}}{2g_{2}} - \frac{V_{1}^{2}}{2g_{2}} + Z_{2} - Z_{1}$$

which reduces for Delta Z = 0 to

$$H_t = \frac{P_{02} - P_{01}}{\rho}$$

Fan total efficiency is often expressed as the ratio of the work done on the gas divided by the input shaft work or:

$$n_{f} = \frac{C \times m \times H_{t}}{kw}; (C = constant for unit consistency)$$

Fan efficiency as a function of capacity follows a general variation as shown in Figure 35.

As operation shifts off design in either direction efficiency decreases substantially. Testing engines not properly matched must pay severe penalties in the cost of power consumption. Added mass alone provides a proportion increase as well. Capacity is observed to vary with the speed of a fan, static pressure with speed squared and required power with speed cubed.

The cost per 1bm is equal to

$$\frac{K_W}{m} = \frac{C \times (P_{02} - P_{01})}{\rho_{0f}}$$

An auxillary ejector employed solely to remove secondary flow must operate between cell pressure and something close to atmospheric. The cost per 1bm for an auxiliary ejector would follow a similar discussion and may be described as

The combined work for the system to be more efficient must be less than the work of the original system without the auxiliary. Optimizing on a cost basis thus becomes quite

complex. As observed, with an oversized diffuser, the system pays little penalty in terms of pressure (PS9) for exhausting secondary flow. The added mass does, however, exact a direct cost from capacity considerations. A properly matched diffuser will cause a shift of the exhauster to an even less efficient setting and higher attendant costs. Similarly, the IRP testing setting pays a lower price in the presence of secondary flow than maximum A/B. The time factor then becomes crucial to assess total cost. An efficient auxiliary ejector could, coupled with a matched ejector-diffuser, markedly improve overall efficiency by eliminating extreme fluctuations in diffuser efficiency and in turn controlling the variations in the time the exhauster must spend off design.

In the absence of an auxiliary ejector, testing philosophy alone could be altered to improve efficiency. If the time intervals at a test condition (i.e., IRP) are of sufficient duration, consideration could be given to reconfiguring the cell for each major power level with a more closely matched diffuser. This could be accomplished by designing a series of pre-sized liners which could be inserted in the full scale diffuser.

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

0000000

1. The cold flow ejector diffuser model developed within the context of the study provides a versatile, although specifically tailored test bed, upon which geometric variations of the parent test facility may be experimentally evaluated.

2. A complex interdependency of geometric parameters which influence the pressure recovery mechanism exists. New designs should, therefore, attempt to incorporate as many degrees of freedom as practicable to allow optimization of the pressure recovery process.

3. When designing retrofits against a baseline model a real time graphical presentation of the performance curves, for old versus new, will enhance optimization by allowing the results to direct the conduct of the investigation.

4. Substantial improvements in pressure recovery when testing the F404 engine can be achieved through an alteration of the length to diameter ratio of the constant area ejector diffuser currently in use.

B. RECOMMENDATIONS

1. Upon successful resolution of the variable area diffuser vibration phenomenon, modify the test facility to accommodate the phenomenon and map the performance of that diffuser.

2. Using the results of the combined constant area and variable area studies, design, construct and test alternative geometries.

3. Modify the test facility by adapting the test cell for a separately driven ejector and evaluate in greater detail the added mass effect.

4. Modify the test facility to receive its secondary air input from an external source to preclude cross talk between primary and secondary flows.

5. Explore the possibility of including Schlerin photography to aid the investigative process and better document the geometric influences of new diffuser concepts. This would permit a realistic interpretation of the boundary layer interactions.

6. Data acquisition must be upgraded to accommodate data transfer to the in-house IBM 3033. A dedicated phone line with modem would be the first initiative warranted. A real time feedback to help focus the investigation is strongly recommended.

-

XXXXXX

Double Wedge With Oblique Shock

Figure 5. Shock Strength Model

Scale Model Test Facility With Straight Tube Diffuser Figure 6.

Ŀ

5.5

Figure 9. Straight Tube Diffuser (Full Scale)

Figure 9a. Straight Tube Diffuser (Two-Thirds)

L

14555555 (2505556) (2555555)

AND BAR

1.1

Figure 13. Remotely Operated Drive Mechanism

i

Figure 17. Allis Chalmers Twelve Stage Compressor

. . Estado de la *la destada de la desta de la desta de la constante de la constante de la constante de la destad*

Ε

Ĺ

Figure 18. Scanivalve Pressure Scanner

ł

72 Y.S

٠.

· · · ·

ļ

.

•

.

للم لم الم الم الم

ΥŢ

Ĭ

AND AND STRATES

72

Figure 22. F404 Fully Started

11.17.22.14 1

and the second second

.

٠_.

. . .

· · ·

Figure 24. TF30 Baseline

eess verteess deatable veretees houseds proceed meritien scores vereter vereter vereter vereter vereter vereter

76

Figure 26. AE/A* Effects

SECOND RADIANS

Ŀ

79

Ć

1

Figure 29. AD/A* Effects

Figure 30.

ĺ

ł

Figure 31. F404 Improvement Summary

i

82

thanks in

Sec. Y

U.S. ISBN 3000 INCOMEND

Figure 34. Test Facility Illustration

· 22:3

۰.

A WARDS NO ST

ON ON ON ON ON

C. C. C.

Figure 36. Engine Test Facilities

STRUCTURE VALUESAN ANTONISCO

Sectore (Sectores) sectores

•

Figure 37. Variable Exhaust Ejector Diffuser

and the

Figure 38. Conceptual Wedge Design

APPENDIX A

DEVELOPMENT

Design of a subscale altitude test facility to approximate the salient features of the parent facility at the Naval Air Propulsion Center was governed by a multiplicity of interwoven factors. The underlayment for the design was the motive air supply; compressed air from an Allis Chalmers twelve-stage axial compressor (Figure 17). The dictates of the air supply qualified several engines from the family of engines tested by NAPC as candidates for scaled testing. The candidate engines elected, as listed in Table B.3 were, from a first cut, the most likely to give a broad representation of existing test frames suitable for comparative analysis with alternative ejector-diffuser geometries. Twc afterburning engines were elected to span the operating range of the test facility from zero induced secondary flow to five (5) percent secondary flow. The choice of engines provided the vital ingredient upon which scaling of the facility could proceed.

<u>Scaling</u>. Scaling to achieve Mach number similitude was elected consistent with past studies by Merkli {Ref. 5} and Bevilaqua and Combs {Ref. 11}. The geometry of a scale model may easily match the prototype but simultaneous matching of Mach and Reynolds numbers is impossible. A match in

Mach number will present a model with a smaller Reynolds number. A match of Reynolds number induces a higher Mach number in the model. Noting that large Reynolds numbers, consistent with fully turbulent flow, are characteristic of the prototype, any variations in Reynold number would affect scaling only if a shift to less than fully turbulent flow was created. At a projected mass flow rate for the model of .5 lbm/sec, a simple calculation results in a Reynold number in excess of 1E6 thus relegating Reynolds effects to second order. It bears observation, however, that any flow phenomena which are sensitive to Reynolds number such as separation and reattachment will not result in agreement between model and prototype. Any improvement in diffusion which results from a geometric change must address this consideration.

Once Mach number had been established as the scaling parameter the cold flow model carried with it a significant scaling bonus. Mach number will ratio out any thermal effects since temperature appears as a dependent variable in both the stream and sonic velocities which comprise the ratio. In the context of this study, an order of magnitude difference between cold flow and hot flow temperatures will fail to elevate Reynolds effects beyond second order. At worst, an error within the range of computational accuracy is anticipated due to temperature extremes between model and prototype with the model outperforming the prototype. Work conducted by Welch {Ref. 16} with subsonic exhaust stack ejectors using Mach number scaling shows deviations of less than 1%

between hot and cold flow model test results. An order of magnitude in temperature variation occurred in these studies.

The TF30 in the afterburning mode, having the largest throat area, governed the compressor-engine match. One dimensional isentropic nozzle flow theory for choking requires that mass flow obey the following expression:

$$m = \frac{A^* \times P_0}{\sqrt{T_0}}$$

のいいいい

The available air supply had the capacity to deliver 2.65 atmospheres and 12.0 lbm/sec at 600 degrees R. 2.65 atmospheres would be the maximum achievable ratio of total pressure to exhaust pressure under atmospheric conditions in the nozzle exit. This ratio was below the desired test range but could be boosted by utilizing an exhauster to lower exhaust pressure at the expense of air flow to drive the apparatus.

A survey of ejectors previously driven by this compressor revealed one design with a convergent-divergent nozzle, operating with half $(\frac{1}{2})$ an atmosphere back pressure, capable of pumping 2.0 lbm/sec with the exhauster drawing 8.85 lbm/sec. The total flow of 10.85 lbm/sec was well within the capability of the compressor and 2.0 lbm/sec was chosen as the design mass flow rate for an expected ratio of total pressure to exhaust pressure of 5.70. For 2.0 lbm/sec at 2.65 atmospheres and 600° R, a throat diameter (d*) was computed to be 1.735 inches. Conservatively, a primary nozzle throat of 1.675

inches was chosen, which resulted in an $A^* = 2.204 (in^2)$ and mass flow equal to 1.863 lbm/sec.

The TF30 has an actual throat area of 7.5 (ft^2) and diameter of 3.09 ft. Dividing this by the throat of the model, a scaling factor of 22.139 was derived. Full scale drawings of the test cell and diffuser assemblies to be modeled were scaled using this factor. License was taken to modify supports or stiffeners to accommodate fabrication and assembly. Detail drawings of the scaled model are included as Appendix F.

APPENDIX B

NAPC TEST FACILITY IMPROVEMENT PROGRAM

The Naval Air Propulsion Center is a major jet engine test facility, located in Trenton, New Jersey. It is the only facility in the nation capable at one site of testing turbojet/turbofan, turpoprop/turboshaft engines under sea level, altitude and environmental conditions.

Engine Testing. The engine facility is composed of three major divisions: the Blower Wing, Test Wing and Exhauster Wing. A schematic is presented as Figure 36.

<u>Blower Wing.</u> The Blower Wing contains centrifugal air compressors and air conditioning systems which provide air to the test engine under the same conditions experienced by an aircraft in flight. Four 6,000 horsepower centrifugal blowers, one 30,000 horsepower gas turbine powered axial compressor, 5,000 tons of refrigeration, and an oil-fired indirect air heater are utilized to provide air flows up to 700 lbm/sec, at pressures up to five atmospheres and at air temperatures ranging from $-65^{\circ}F$ to $+650^{\circ}F$. With these inlet conditions to the engine, the center can simulate flight velocities up to three times the speed of sound.

<u>Test Wing.</u> The Test Wing contains eleven test cells and their associated control rooms. Three of these cells are large altitude chambers, four are small altitude chambers for turboprop/turboshaft/auxiliary power unit testing, two

Ĉ

Salar Salar

ŝ

Area succession consume lageration langeration accession

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

ì

\$

are large sea level test cells, one all purpose test tunnel and a helicopter transmission test facility. Test cell capabilities are summarized in Table B.1.

Exhauster Wing. The Exhauster Wing contains the air pumping machinery required to produce low pressure in the altitude test cells. Fourteen of these pumps with a combined power of 56,000 horsepower are utilized in conjunction with Test Chamber exhaust ejectors to simulate altitudes up to 100,000 feet. Table B.2 summarizes the performance parameters of ejector-diffuser (Figure 34) accompanies the large engine testing with straight tube diffusers accommodating smaller engines. Two of the engines which span the range of operation are the TF30 and the F404, whose characteristics are shown in Table B.3.

<u>Facility Improvement Program.</u> In January of 1982, an initiative to reduce the power consumption costs, directly related to engine testing, was proposed.

The stated objective was: Improve ejector-diffuser performance in NAPC altitude test cells to minimize exhauster power costs.

The appraoch proposed was:

<u>Phase I.</u> Survey the community for current advancements in ejector-diffuser performance, high-temperature materials applications and related functional fields. Examine alternate extended variable geometry ejector-diffuser concepts which will provide optimum performance by accommodating engine nozzle throat area variation.

TABLE B.1

wall the second

51.160

£.,

A MARKED AND A MARKED

CONDITIONS			ЭЕ	2E	1.	ML	ZW	ME	4W	Ρ	6W
Airflow (1	b./sec.)		700	430	430	350	350	100	100	100	1 00
Trlot Tomr	(₀)	Cold	-65	-65	-65	-65	-65	-65	-65	-65	-65
	•	Hot	+650	+390	+390	+220	+220	+220	+220	+220	+220
Mach Numbe	ų		3.0	2.4	2.4	1.1	1.1	1.1	1.1	1.1	1.1
Altitude (ft)		100,000	80,000	80,000	S.L.	S.L.	80,000	80,000	80,000	80,000
	Length	(ft)	30	18	18	56	56	15	20	17	17
rest Area	Width/Di	iam.(ft)	17	14.5	14.5	23	23	8	10	10	10
	Height	(ft)	1 1 1	L E E	1 	14	14	8		10	10

Table B.2

MASS FLOW	:	50 - 300 LB/SEC
VELOCITY	:	SUPERSONIC AT ENGINE NOZZLE WITH OBLIQUE SHOCKING TO SUBSONIC IN DIFFUSER
ENGINE NOZZLE EXHAUST TEMP	:	1000°F - 3500°F (CORE)
ENGINE NOZZLE PRESSURE RATIO	:	3 - 14
ENGINE NOZZLE AREA	:	200 - 1200 in ²
OPTIMUM DIFFUSER AREA TO ENGINE NOZZLE THROAT AREA RATIO	:	3월 - 4
SECONDARY AIR TO PRIMARY AIR MASS FLOW RATIO	:	.0815
TEST CELL ALTITUDE PRESSURE	:	1 - 14.7 psia
SECONDARY AIR TEMPERATURE	:	100 [°] F - 200 [°] F

Table B.3

Engine	Max. Thrust	<u>Stages</u>	MDOT	CPR
TF30	20,900	16	242	19.8:1
F404	16,000	3F,7C	140	25:1

<u>Phase II.</u> Select one or two of the most feasible concepts and evaluate performance with cold flow model testing. Select the optimum concept and confirm mechanical and aerodynamic performance with hot flow model testing. Analyze full-scale implementation cost versus potential power savings and determine payback period.

<u>Phase III.</u> Design, fabricate, install, test and evaluate a full-scale ejector-diffuser in one NAPC altitude test cell. Convert the remaining two NAPC test cells to full-scale ejector-diffuser.

<u>APPENDIX C</u> DIFFUSER PROPOSALS

Proposals to modify the baseline diffuser geometries were developed with emphasis towards providing control over the shock mechanism. The design limitations were imposed by maintaining geometric similarity of the flow paths and the range of engines to be tested. Whereas simplicity would be incorporated where feasible, no constraints were imposed on the design with resepct to strength, thermal effects, vibration or leakage.

A double hinged wedge in a rectangular Translating Wedge. duct was the first proposal considered. This assembly is shown in Figure 38. The two dimensional wedge was expected to provide more positive control over the strength of the shock system compared to the cone centerbody. All of the experimenters who have investigated a second throat diffuser have concurred that an optimum second throat size and axial position relative to the nozzle exit exist. The wedge would allow a finer control of the size versus axial position of the second throat than the cone assembly. The current centerbody notably couples the size of the second throat with the axial position of the centerbody. The translating wedge provides uncoupling of these variables with an expectation that the optimum can be approached by adjusting the second ramp to facilitate starting, then translating the wedge to move the

second throat to a position of lower Mach number, which should improve performance. The wedge would then be mapped against the baseline configurations for analysis. Current design techniques call for running a matrix at various settings, shutting down, reviewing the data, developing a new matrix based upon judgement and repeating the cycle. Cost and time consumption without achieving any guarantee of an optimum are a natural by-product of this process. As the number of independent variables increases, the test matrix becomes much more complex with the possible permutations following combinatorial theory. A simplified matrix of the test process as shown in Table C.1 leads one to recognize the merit of online evaluation. A real time mapping of pressure ratios would be prescribed for evaluating this model. This would permit detailed investigations when a point of significance was reached. Typically, once starting was confirmed, the wedge angles and/or their axial positions could be varied and the effect noted.

<u>Auxiliary Mass Ejection.</u> The deleterious effect of secondary flow gives rise to the possibility of equipping the test cell with an auxiliary ejector. This proposal, while not new, has oft been dismissed as being not cost effective. The recent cost spiral in exhauster power consumption opens the topic for renewed consideration. As observed in the baseline studies, the power setting of the engine has a dramatic effect on exhauster requirements and therefore, a direct bearing on power consumption costs. The

Table C.1

Optimization Goal STARTING STARTING STARTING	PT8 H	PS9	P14	Size A _a	Position
STARTING STARTING STARTING	Н			<u> </u>	" ^A d
STARTING STARTING		V	A	н	Н
STARTING	н	v	н	A	Н
	Н	v	Н	н	А
STARTING	н	v	Н	A	A
STARTING	Н	v	A	A	Н
PRESSURE RECOVERY	н	н	A	н	H
PRESSURE RECOVERY	Н	н	н	A	Н
PRESSURE RECOVERY	н	н	Н	Н	А
PRESSURE RECOVERY	н	Н	н	A	A
PRESSURE RECOVERY	н	Н	A	A	H
PRESSURE RECOVERY	н	н	A	Н	A
H = HOLD CONSTANT V = LET VARY A = ADJUST					

efficiency of the exhauster, when operating at off-design conditions, will be less, and the blend of an efficient auxiliary ejector to allow the prime exhauster to function at or near design should enhance overall efficiency. The ramifications of this approach are detailed in the discussion of results.
APPENDIX D EXPERIMENTAL PROCEDURE

<u>System Checkout.</u> The Allis-Chalmers compressor is maintained and operated by TPL personnel. Twenty minutes of prelubrication is required on the compressor prior to start followed by approximately twenty minutes of warmup before the compressor is ready to assume the load of supplying air to the experimental apparatus. During this time it is prudent to accomplish the following checks and tasks:

1. Examine all pressure taps, tubing, and connections to Scanivalve port manifold and the two dedicated pressure transducers. Verify instrumentation is connected in accordance with Figure 39.

2. Turn on thermocouple ice point reference, and examine all thermocouples for broken wires or loose connections.

3. Hand test all PVC couplings for tightness and check to see that the primary and secondary root valves are open.

4. Turn on the HP-9830A Calculator and printer, HP-9867B Mass Memory Storage Unit, Scanivalve Multiplexer (S/V MUX), PH-3495A Scanner, HP-3455 Digital Voltmeter, Scanivalve control power supply, and the three separate digital voltmeters used for monitoring centerbody drive voltage, engine test cell pressure, and exhaust chamber pressure.

5. Load the program "VIBTEM" (Table I) into the memory of the HP-9830A calculator. Run the program once to ensure there are no anomalous readings from any thermocouple or pressure tap.

6. Read and record atmospheric pressure from the Wallace and Tiernan gage.

<u>Procedure to Conduct Data Runs.</u> Control of the experiment is exercised at the remote operating station. (Figure 19). *****WARNING***** FAILURE TO OPEN THE EXHAUST VALVE FIRST CAN RESULT IN OVERPRESSURIZATION OF THE SYSTEM. The system is brought on line by opening the exhaust valve fully and then the primary air may be cut into the system. Monitoring of total and exhaust pressure on the digital voltmeters allows setting of test point pressures in accordance with the test matrix.

<u>APPENDIX E</u> SECOND THROAT DIFFUSERS

3.5

CONTRACTOR OF

Second throat ejector-diffusers have had wide acceptance in gas turbine engine testing due to their ability to provide systems flexibility to cope with the variabilities involved in altitude testing. A variable area second throat geometry such as that shown in Figure 38 was developed when sizing and location of the optimum second throat was loosely defined. The idealization of the process is well understood, as detailed by Shapiro {Ref. 8} in his discussion of supersonic wind tunnels. The objective is to seek the maximum exhaust pressure at which the ejector-diffuser once started, can be maintained. A brief description of the operation permits an appreciation of the phenomenon involved. As mass flow through the nozzle is accelerated, the flow becomes supersonic and will cause a decrease in cell pressure by mixing. Exhaust pressure is lowered until a minimum cell pressure is attained with the ejector-diffuser then being considered "started." At this point, the shock stands upstream of the secondary throat and cell pressure becomes independent of exhauster pressure. Exhaust pressure may then be increased to the point where cell pressure begins to This establishes the system's operating range. The rise. variable geometry with a conical centerbody evolved to

accommodate the complex mix of parameters required to approach even near optimum operation. This concept, while attractive, couples a decrease in second throat area with a change in axial position of that throat, losing a degree of freedom which may be exploited for further gains. Although the goal of the design is to alter the second throat, the centerbody itself will influence the character of the shock system and, thus, may also be in direct competition with second throat effects as related to pressure recovery. Adding a degree of freedom here may also improve performance.

The final design of the variable diffuser utilized by NAPC was formulated in the early 60's, and the rationale behind the final geometry is not well defined. A best estimate is that the design was a compromise between model test studies and manufacturing ease and costs. The need to optimize the design for small percentage improvements in exhauster back pressure were likely secondary.

APPENDIX F

SCALED DRAWINGS

The scaled drawings in this Appendix represent the principal components of the design. All linear dimensions are in inches and angular measurements in degrees.

terrer and the second states and the second

i.

AND THE CONTRACT AND A CONTRACT AND

F404 Non A/B

كالإيمانية

110

TF30 A/B

112

1.1

-

and a state of the feet

[موري مريكة]

APPENDIX G

DATA TABLES

This appendix summarizes the reduced data collected during the course of this study. One set of raw data is included to summarize the details of the data acquisition process. The following abbreviations and units refer only to the data contained herein.

Abbreviations and Units

Ρ	ATM	Atmospheric Pressure (in. Hg)
P P	01S 02S	Secondary Orifice Pressures Upstream (in. H2O)
P P	03S 04S	Secondary Orifice Pressures Downstream (in. H2O)
P P	01P 02P	Primary Orifice Pressures Upstream (in. H2O)
P P	03P 04P	Primary Orifice Pressures Downstream (in. H2O)
Ρ	TOT	Total Pressure - PT8 (in. H20)
Ρ	TST	Inlet Static Pressure (in. H20)
Ρ	CEL	Cell Pressure - PS9 (in. H20)
Ρ	THS	Nozzle Entrance Pressure (in. H20)
P	THT	Nozzle Throat Pressure (in. H20)
Ρ	D#	Diffuser Wall Pressures (in. H20)
P	EXH	Exhaust Pressure - P14 (in. H20)
T	PRI	Primary Orifice Temperature (R)
Т	SEC	Secondary Orifice Temperature (R)

T TOT Total Temperature (R) MASS FLOW (lbm/sec) P STAG (in. H20 abs.) T STAG (Degrees R)

ł

b

like a see a soon a soon a see a

ドット・シングト そうさん くろくる

And a state

57555 SALESS

STATES AND IN COMPANY

and the test

and some in and a second brance there are an

al raug a
NO/AFTE
721521983 Achel 7404 271 scale
DATE OF RUN Enitye tested Diffuser tested Referce data fall

						82				
	-	~	-		5	•	•	٠	9	10
P ATH	29.78	29.78	29.78	29.78	29.76	29.78	29.78	29.78	29.78	29.71
P 015	-12.60	- 12. 30	- 12.00	-11.00	-11.33	-11.00	-11.00	-13.00	- 14 . 00	- 14. 0
P 025	-12.60	-12.30	-12.00	-11.00	-11.33	-11.03	-11.00	-13.00	- 14.00	- 14. 0
P 015	-12.60	-12.30	-12.00	-11.00	-11.00	-11.00	-11.00	-13.00	- 14 . 00	-14.0
P 045	-12.60	- 12. 30	-12.00	-11.00	-11.00	-11.00	-11.00	-13.00	-14.00	-14.0
410 4	756.00	704.00	655.90	603.10	553.80	506.30	453.30	403.70	401.70	452.71
P 02P	756.70	703.80	655.50	601.80	553.60	508.20	454.20	401.50	CT.104	452.6
P 03P	76 3. 20	711.50	649.50	597.50	548.70	502.40	448.00	396.40	398.20	449.7
940 g	76 3. 20	711.50	649.50	597.50	548.70	502.83	448.00	398.83	398.20	449.7
P TOT	749.20	698.60	650.70	599.40	550.10	504.40	450.00	¢00.33	398.60	449.61
P TST	750.20	698.50	650.40	598.80	549.50	504.83	448.20	349.73	397.20	448.50
P CEL	-186.00	-174.70	-165.30	-154.50	-141.10	-131.60	-121.40	-110.20	-162.80	-176.6(
P THS	739.60	688.10	640.90	591.00	54 1.50	01-654	0 M . E M M	().[f	02.666	443.70
THT 9	2.70	- 15.20	- 31.50	-49.10	-66.33	-41.60	- 101.10	-118.70	-119.70	-102.1(
P THT	1.50	- 16.10	-32.60	-50.60	-67.93	-84.20	- 103.50	-121.30	-121.70	- 10 3. 7(
P 011	- 16 3. 40	-154.90	-147.10	-145.00	-115.49	-109.53	-103.50	-87.90	- 157.00	- 170. 2(
P 012	-110.70	-105.50	-96.30	-95.10	-52.50	-50.20	-46.60	- 37.70	-124.90	-127.8(
P 043	-79.70	-74.70	-64.70	-56.10	-24.30	-26.40	-21.10	-15.90	- 100. 10	-101.30
P 244	-56.80	-52.40	-43.64-	-36.90	-8.30	-10.73	-10.20	0 * 8 -	-81.00	-78.70
P 005	-36.10	- 34.80	-27.60	-22.50	-7.83	- 0.70	-9.00	-7.20	-68.10	-65.0(
P 046	-24.70	-24.20	- 18.30	-14.60	-7.20	-7.70	-8.60	-7.90	-59.70	-60.6(
P 017	-16.60	- 17.70	-12.30	-10.50	-5.80	-6.80	-7.80	-6.80	-54.80	-56.81
P 013	-13.60	- 14.40	-10.50	-9-60	-6.70	-7.43	-8.20	-6.80	-53.40	-56.2
600 a	-11.80	-12.90	9.20	- 6.60	- 3. 5 0	-5.20	-7.70	-6.80	-53.10	-55-3(
F D01 1	-11.30	-13.20	08.6-	-9.20	-7.10	-8.10	-6.80	-7.20	-52.80	-55.8(
P 0112	-12.80	- 14.50	- 11.30	-10.40	-8.83	-9.50	69.6-	-7.80	-53.90	-56.7
P 0113	-5.40	-1.50	-5.00	-5.10	-]. 63	-5.30	-5.50	-4.50	-49.80	-52.1(
P D014	-2.40	-4.80	- 2.20	-2.30	-1.30	-2.80	- 3.90	-2.40	-48.10	-49.6(
P 0015	-2.40	-2.30	-2.60	-2.60	-2.43	-2.60	-2.40	-2.70	-2.90	- 3. 0(
P EXH	-0.40	-4.30	-0.90	-0.80	-0.40	- 1.40	- 2, 93	-2.10	-47.30	-46.9(
T Pat	569.10	568.10	566.20	566.70	566.20	565.90	566.70	567.30	567.80	569.00
T SEC	528.80	524.70	528.30	528.80	524.80	524.00	528.70	528.70	526.70	528.7(

للمكت والمستعد والمعالية والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد والم

559.80

558.80

554.70

\$58.40

\$57.40

\$\$7.90

558.40

556.4.

559.40

560.30

		TENTED TENTED TENTED CE DATA T	3	76156 194	du uurart Le	42 MUM 12				
						87				
	:	21		1	15	4	17	=	19	20
NTA -	29.78	29.70	29.78	29.78	24.76	29.76	29.78	29.76	29.78	29.78
0 15	-15.00	- 15.00	- 16.00	-16.00	-16.30	-16.00	- 16.00	-15.00	- 15.00	- 17. 00
025	-15.00	- 15.00	- 16.00	-16.00	- 16.00	- 16.00	- 16.00	-15.00	- 15.00	-17.00
510	-15.00	- 15.00	-16.00	-16.00	- 16.00	-16.00	- 16 .00	-15.00	-15.00	-17.00
SNO C	-15.00	- 15.00	- 16.00	-16.00	- 16.00	- 16.00	- 16.00	-15.00	-15.00	-17.00
910 9	501.30	\$53.50	602.40	654.30	705.03	754.90	781.90	700.20	760.00	019.00
920	502.30	553.36	601.60	653.90	702.90	760.10	781.10	761.00	774.00	619.70
910	496.00	549.00	596.00	64 8.20	694.00	752.30	775.80	775.40	773.50	812.30
940	498.00	549.00	590.00	648.20	694.30	752.30	775.80	775.40	02.117	812.30
Tot	498.20	550.40	597.60	64 9. 1 0	694.33	752.70	774.10	774.80	173.20	810.70
121	497.00	550.40	596.60	649.60	497.90	754.90	776.20	776.00	175.50	813.60
	-188.50	-201.60	-211.60	-232.00	-243.50	-253.20	-255.50	-323.70	-192.00	-201.10
THS	490.70	541.60	587.10	637.80	687.50	06.145	764.20	766.50	765.00	803.70
THT	-85.40	-67.30	-51.30	-33.20	-16.30	2.30	9.90	8.20	11.30	24.60
THT	-86.30	- 68.00	-51.60	-33.40	- 16. 13	2.40	10.10	10.40	9.60	23.40
110	- 18 1 . 10	- 184.90	-193.60	-212.50	-226.53	-230.90	-232.70	-237.40	- 169.80	- 177. 40
P 012	-139.50	-142.80	-149.00	-163.00	-174.23	-172.60	-172.00	-209.30	-114.70	-117.70
6 D 83	-103.90	-117.10	-122.30	-134.70	-143.30	-134.60	-137.40	-165.00	-79.20	-82.20
790 A	-81.10	-95.50	- 98.80	-106.00	-119.00	-110.70	-111.20	-146.90	-50.80	-53.30
500 ·	-68.60	- 78. 30	04.[8-	-86.10	-101-00	-93.50	-91.60	06.6#1-	-30.10	-29.30
90¢	-61.90	-68.90	- 73.20	-79.10	-87.60	-81.90	-83.20	-143.10	-22.60	-22.30
007	-59.00	-63.00	-64.60	-72.20	-77.53	-76.40	-76.00	-147.60	- 17.50	- 16. 30
0 0 8	-57.90	-60.60	-62.30	-70.90	- 77. 20	-73.70	-73.30	-146.JO	- 14.50	- 14.40
610 ·	-57.00	-59.40	-61.30	-70.80	-74.70	-73.20	-71. 30	-144.90	-13.40	-14.30
1110	1 -57.20	-59.40	-61.00	-71.50	-74.10	-73.50	- 72.60	-143.90	-13.60	-14.50
D 012	2-58.60	-60.40	-62.30	-73.60	- 76.30	-74.83	-73.50	-145.90	-15.10	-16.10
Elid .	01-51.40	-54.20	-56.00	-66.30	-66.80	-67.10	-65.30	-142.00	-7.8.	-8.63
P114	1 -51.10	-52.20	-53.00	-62.10	-66.50	-62.80	-61.50	-135.10	-4.10	-4.03
0115	3.00	-2.90	01.6-	-2.90	-2.83	-3.20	-1.00	-2.90	-2.40	- 2. 50
NE R	-49.80	-50.60	-51.80	-41.00	-63.43	-60.13	-59.30	-130.60	-2.30	- 2.40
TR9 1	570.00	571.70	572.10	\$73.00	573.10	572.80	572.50	571.90	571.10	569.60
325	528.70	529.10	529.10	529.30	524.20	529.10	.529.00	529.30	524.9Q	529.00
101	56 Q. 60	562.80	563.10	564.00	564.10	564-00	563.70	563.10	562.10	561.30

REALESS SPECIAL SUSSESSES STRUCTURE

「いくい」という言語でした。

100

450.80 -216.50 -98.80 -140.60 -121.80 29.78 -11.00 453.90 454.60 \$50.70 450.70 451.10 445.40 101.30 - 107.00 -98.40 -92.20 -89.90 -90.20 -90.00 -90.50 -84.80 01.30 -2.00 -81.80 -11.00 -202.10 -164.90 554.90 529.00 -11.00 -11.00 5 C6.99-500.50 \$03.50 \$94.80 -83.60 -64.40 -151.70 02.161--97.60 -97.60 -2.40 -88.30 505.60 505.40 500.50 501.10 -96.13 -97.10 -91.60 -89.60 29.78 -11.00 -13.00 -13.00 -11.00 06.662--219.40 -174.80 -117.10 556.20 528.70 -105.90 2 -235.40 \$\$0.70 554.40 \$50.10 551.30 -64.30 -2.50 \$55.30 550.10 546.30 -66.00 09-96-557.00 -11.00 -11.00 -13.00 -13.00 -251.00 -149.10 -156.20 -111.50 -99.40 -96.10 528.70 -122.33 -112.80 -106.90 -103.70 29.78 -131.00 -104.30 -103.00 7/15/194) Moel P404 Vo/AFTEN BURNEN Bunsc 601.70 601.70 632.20 -45.80 -2.30 -100.60 602.70 -46.33 -267.90 596.30 -248.80 -200.60 -120.53 -114.60 -111.20 558.70 -14.00 606.90 607.10 -105.70 -145.00 -110.50 -113.50 528.00 29.78 14.00 -14.00 -14.30 -111.90 -112.53 -106.30 -100.70 2 ROK NUABER -176.20 649.90 649.90 650.60 450.10 -11.10 - 30.20 - 2. 60 29.74 656.50 642.63 -267.20 -127.80 524.30 - 16.30 - 16.03 -14.00 -16.30 657.33 -293.53 -207.60 -151.40 -143.90 -134.10 -129.20 -128.30 -127.50 -131.40 -121.90 -117.80 -115.99 560.40 \$ -140.00 704.40 700.20 29.78 -16.00 -16.00 706.00 699.00 699.00 700.00 692.10 -17.60 -12.90 -2.20 528.50 -16.00 -16.00 01.416--266.10 -202.40 -176.50 -181.90 -151.10 -147.30 -141.80 -142.50 -137.00 561.90 -144.80 -135.50 -127.40 -122.90 2 751.90 -156.00 -17.00 756.40 157.40 751.10 751.10 751.80 745.20 -0.30 4.90 29.70 -17.00 -17.00 -17.00 -322.40 -238.10 -197.40 -147.70 -143.50 -145.30 -144.20 -143.60 -144.00 -143.60 -144.20 -140.70 -136.50 -1.90 67.151-563.50 528.60 2 DATE OF RUN ENGINE TESTED DI FPUSKA TESTED REFERENCE DATA FILE - 175.50 - 17.00 810.30 808.70 810.20 325.60 29.78 -17.00 -17.00 - 17.00 017.50 816.50 810.30 802.30 20.10 23.50 -227.60 - 151.10 - 151.40 -151.70 - 147.50 - 143.60 -2.30 567.00 528.70 -213.90 -149.50 -145.20 - 146.40 -142.30 -135.70 -128.80 22 013.60 -162.90 -126.80 -103.00 -76.70 -76.60 818.10 817.80 26 6. 40 -234.00 -89.20 -43.10 -77.70 -75.50 52d.90 -18.00 -18.00 -18.00 -18.00 811.00 011.00 810.30 22.30 23.40 -79.00 -70.40 -64.40 -2.40 -62.40 568.40 29.78 803.30 21 1110 De 12 5113 **Del 4** 0115 69 0 0 4 RXZ 910 THS THT 5 **D**02 289 025 035 04S 920 910 949 101 IST THT 1 ig 995 0 e 6 5.0 99 SEC 015 CEL F

395.20

118.90 -116.70 191.20

- 196.30

-8.00 -8.00 102.00 102.00 399.30 **99.30** 399.80 399.60

29.78 -8.00 -8.00

8

-8 3. 20

-82.10 -82.70 -82.20 -83.00 -78.50 .77.20 -1.80 -76.80 551.50 528.70 543.00

547.10

548.20

549.80

550.90

\$52.60

554.20

\$55.50

559.10

560.30

TOT

-94.20 -87.00

-106.20

-149.90 -126.10

	PT14/PS9	
	PS 14 / PT 8	00000000000000000000000000000000000000
I BURNER	624∕BT4	044000004440000040400400400400 00000000
1983 F404 WO/AFTER Scale	T STAGNAFION	00000000000000000000000000000000000000
7/15/ MODEL 2/3 S RUN5	P STAGNATION	20000000000000000000000000000000000000
RUN TESTED Ce data file	MASS FLOW Sec	
DATE OF ENGINE DIFFUSE REFEREN	MASS PLOW PRI	00000000000000000000000000000000000000
	RUN NO.	-01220000000000000000000000000000000000

1.5.1.4

	PS14/PT8	444 444 444 444 444 444 444 444 444 44	0.277
BURNER	PT8/PS9	2006 2006	9.870 8.386
/1983 L P404 HJ/AFTER SCALE	Ļ	00000000000000000000000000000000000000	531.20
7/18, MODEI RUNB	Ċ,	1212 1212 1209 1209 1209 1209 1209 11105 1209 11105 1209 11105 10112 1012 100 100	1059.667
RUN TESTED R TESTED CE DATA FILES	MASS FLOW	00000000000000000000000000000000000000	
DATE OF ENGINE DIPPUSE REFERENCE	MASS FLOW	00000000000000000000000000000000000000	0.38959
	RUN	10.04m02000000000000000000000000000000000	86

PT14/PS9

122

Sec. 1

and an and and a second

	PT14/PS9	
	PS14/PT8	00000000000000000000000000000000000000
BURNER	PT8/PS9	05000000000000000000000000000000000000
1983 F404 UJ/APTER SCALE	T STAGNAFION	00000000000000000000000000000000000000
7/21/ MODEL 5/06 SUN9	P STAG NATION	111 111 111 111 111 111 111 111
RUN TESTED R TESTED CE DATA FILE	MASS FLOW SEC	000000000000000000000000000000000000000
DATE OF ENGINE DIFFUSE REFEREN	MASS PLOW PRI	00000000000000000000000000000000000000
	BUN NO.	00000000000000000000000000000000000000

. . .

1.

Ś のもくしょうしょううかんのこの母やのつうどこのことでしょううでしょう。 のしゅしゅうしゅにうかしかんのことものをしくないくしょう。 のしゅしゅうしゅいしゃしゃんかいことものをしくないくるをでしゅしの PT14/P 8 PS 14 /PT mmmnnnmmm-nmmmnnnnnnnnnnnnnnnn -+ mn æ BURNER PS9/PT PTER Z NO/A 0 T AGNAFIC 198 CAL E S 7/27/ MODEL 5/6 SC P NATION AG SF S ы FIL 3 FLOI EC DATE OF RUN Engine tested Diffuser tested Reference data F. ທທ **NAS** LCN 2 2 SS Do North

PT14/PS9 mmmaaammmmmmaaaaammmmmmaamaaaa==eNNNNNNmm 8 S14/PT σ PT8/PS **BURNER** U/APTER Z 0 T STAGNAFI 1983 P404 SCALE 7/15/ MODEL 2/3 RUN6 NO P NATI (AG ST ES FILI 38 PLOI DATE OF RUN Engine tested Diffuser tested Reference data f ທທ AS E PLOH 0 0000 SA ທຸມພາບອອດອອດທາງສາວເປັນເປັນເປັນທານທານອອດອອດທານທານ MAS NC. のものとのちゃをとしのものとうちゃをとしのものようちゃをとしのものとうちゃをとします。キャーをももをももををしていたのでのこととこのものものでいいしょ

Ņ

125

PT14/P OMANAN-TANAAmmmmmmmmmmm 8 /PTI 1 PS PT8/PS9 BURNER mununur areas and a lager W/AFTER ACITANDA' 7/18/1983 MODEL 7404 2/3 SCALB RUN7 STI P NATION 3 ž 5 S 14 JP RUN 2 TESTED 5er tested ence data file FLON EC ທທ MASS DATE OP ENGINE 1 DIFFUSER REFERENC TON 244 MASS າທານບານອອດອອດອອດອາດອາດອາດ RUN NO. 00984654223098465424 241444240998465424

S9

Caral Caracter Caracter Caracter

t

Í

Į

1 1 1

126

A. . .

	PT14/PS9	20000000000000000000000000000000000000
	FS 14 /PT8	00000000000000000000000000000000000000
BU RN ER	PT8/PS9	
1983 P404 N/AFTER Scale	T STAGNAFION	00000000000000000000000000000000000000
7/21/ NODEL 5/6	P STAGNATION	1110000000000000000000000000000000000
RUN FESTED CE DATA FILE	MASS FLOW Sec	00000000000000000000000000000000000000
DATE OF BNGINE DIFFUSE REFERENC	MASS PLOW Pri	00000000000000000000000000000000000000
	-	

Γ.

- 1

W/AFTER BURNER 7/27/1983 Model F404 5/6 Scale RUN11 DATE OF RUN Engine tested Diffuser tested Reference data files

STRATE. SALAHAR SALAHAR

L. A. Berth

PT14/PS9		2.140
PS14/PT8	00000000000000000000000000000000000000	0.345
PT4/PS9	44001040000000000000000000000000000000	6.206
T STAGNAFION	ຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຆຎຎຎຎຎຎຎຎຎ ຌຌຆຎຎຎຎຎຎຎຎ	541.10
P STAGNATION	00000000000000000000000000000000000000	1007.432
MASS FLOW Sec		0.0000
MASS FLOW Pri	00000000000000000000000000000000000000	0.54052
z.		

NON. をとしの4の人力られをくしの4の人分られ どとしの4の 人分られをK をををたてててたてこの40人の11111111

	PT14/P	
	PS14 /PT8	00000000000000000000000000000000000000
BURNER	PT8/PS9	20000000000000000000000000000000000000
1983 P404 N/APTER Scale	T STAGNAFION	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
7/27/ MODEL PULL S. RUN13	P STAG NATI ON	88388888888888888888888888888888888888
RUN TESTED R TESTED CE DATA FILE	MASS PLOW SEC	00000000000000000000000000000000000000
DATE OF ENGINE DIFFUSE REFEREN	MASS FLOW PRI	00000000000000000000000000000000000000

PS9

a carrie

N'

のののうちろろろろろろろろのりのうからしたののつくろかららしのの しのののうちろろろろろろろろののりのうからしのののつろうかららしのので、「」」

3 E ā, 8 PT 6045054000461018774880669110882224 1 BS 5 PT8/PS ER BURN Maamammudaadoomarrronoooanaarroa PTER Z AGNATION N/AI 1983 F404 SCALE E S 7/27/1 MODEL PULL S RUN13 PNATION 3 5 S ы **PIL** 38 FLON JATE OP RUN Engine tested Diffuser tested R Eperence data P SO **A**S **22** TOW P.F. **DND**C SP ï Z

G S

4

ĊĹ.

mininte

22 **5**0

• • •

PS9 NER T8 BUB NONONNNNNNNNNNNNNNNNNNN BB TA A/CH 2 0 NAFI **L** 8 9 9 HU N 198 Pu ST ແພນພະພະພາບພາບພາບພາບພາບພາບພາບພາບພາບພາບ 7/27/1 MODEL FULL S RUN14 NO ATI \mathbf{m} 42 NG. 00-00-----00-----5 S μų. FIL FLOI EC DATE OF RUN Engine tested Diffuser tested Reperence data f ASS **T** FLOW RI SP S 2

ŝ 4 / P

Ĩ

۵

/PT8

1 S

AFTER BURNER	0N PT8/PS9 PS14/PT8 PT14/PS9	00000000000000000000000000000000000000
1983 P404 N0/1 SCALE	T STAGNAFIC	00000000000000000000000000000000000000
7/27/ MODEL PULL S RUN14	P STAGNATION	00000000000000000000000000000000000000
RUN TESTED R TESTED CE DATA PILE	MASS FLOW SEC	
DATE OF ENGINE DIFFUSE REFERENC	MASS PLOW PRI	00000000000000000000000000000000000000
	Z .	

-

65 K

C.

5

APPENDIX H

DATA ACQUISITION PROGRAM

A computer program which details the data acquisition process is included in this Appendix. VIBTEM was executed on a Hewlett Packard 9830 and is written in BASIC.

SALA AND A AND

THIS PROGRAM PERFORMS SEQUENTIAL SCANNING OF SCANIVALVE '5' BETWEEN PORT ADDRESSES 1-42 IN STEPS OF ONE. It also performs temperature measurements on SRC '2' between SECTION. FUN" P = PRESENT S∠V PORT S = STEP SIZE VARIABLES FOR TEMPERATURE S\$=SCANNER LISTEN CODE Xt 50 1, Yt 20 1, At 10 1, Mt 30 1, 2t 50 1 X=2ER Y=2ER Q=2ER VARIABLES FOR S/V SECTION. V = DESIRED S/V A1 = LOW PORT CHANNEL "ENTER MONTH, DAY, YEAR OF X[44], X[45], X[46] FILE NAME: "VIBTEM" = HIGH PORT C=TRANSMITTED V=DVM READING C1=L0 CHANNEL C2=HI CHANNEL CHANNEL S=SCANNER # CHRINELS 1-19 DESCRIPTION: R=RPM പ്പം M=ZER Z=ZER INPUT PRINT PRINT PRINT PRINT PRINT PRINT DISP DIM MAT MAT MAT REM REM REM REM REM REM Т Т Т Т Т REM REM REM REM REM MAT MAT 1 88 1 369. 300 340 350 270 280 290 300 961 200 210 220 240 250 260 316 320 936 0 7 20 80 60 230 50

a de la companya de la contra de la contracta en la contracta en la contracta en la contracta de la contracta e

RECEIPTON PRINTER PRINTER (1999)

REM****START OF PROGRAM SEGMENT TO RECORD PRESSURES****************************** WRITE (13,510)256,20,768,512; CMD "?D#","FIR7M3A1H1T3" "BAROMETER READING INCHES OF HG="X[48] (15,380)X[44],X[45],X[46] ' "DATE OF RUN:",F2.0,2%,F3.0,2%,F4.0 WRITE (15,610)XC47],XC49] Fûrmat /,"Run #",F3.0,4%,"Ft #",F3.0 Gosub 1320 ? 1=YES 0=NO"; DISP "BAROMETER READING=?"; PRINT DISP "ENTER RUN #"; INPUT XC 47] "PRESSURES (F K1=0 THEN 900 NEXT I For I=1 TO 19 V[1]=0 G0T0 600 F0R I=1 T0 42 INPUT XC481 FORMAT 48 FORMAT F3.0 80 ¥ ŝ X[49]=1 FORMAT 0=[] X FORMAT FORMAT NEXT I PRINT INPUT PRINT PRINT PRINT FRINT **PRINT WRITE** PRINT 4=5 H1=1 ω where the second s

FORMAT "SCANIVALVE #",F3.0,/,/," PORT",8%,"IN H20 For A=A1 to A2 IX, "TIP POSITION ", F7. 3, 1X, "INCHES" 09=(V9-4.5839)/(-0.8248)-4.886 DISP "ENTER TIP VOLTAGE "; DISP "ENTER 1 TO REPEAT"; SUBROUTINE "POSIT" FORMAT 1X, F3.0, 4X, F8.2 MRITE (15,860)P.XCA1 WRITE (13,520)V+9 X[49]=X[49]+1 | IF R=1 THEN 540 URITE (15-940)P9 (13,490)VI WRITE (15,750)V ENTER (13, *) V0 /[A]=\0*100006 CMD "?D#","T3" GUSUB 1220 D=A-P V0=V0*100000 .idč. GOSUB 1040 CND "?C\$" 1 .. i Q č .. CMD "?D'" 006 ONFUT V9 INFUT R FURNAT NEXT A FFINT STUP CMD END Rem NR I TE 1010 A2=42 CHD -11 (7) 1999 620 630 0401 020 .060 960 90 000 000 00

A. 44 A.

0 IF D<0 THEN 1100 0 IF D>0 THEN 1150 0 REM HOME S/V 0 REM HOME S/V 0 WRITE (13, 520)V+4 0 WRITE (13, *)°C° 0 WRITE (13, WRITE (13,500)256,95; Return P0=R8YTE13 L=BIAND(P0,15) T=R0T(P0,4) M=BIAND(T,7) C1=60 C2=78 S\$="?](" P=16*M+L

. .

S2=25.661297*V-0.61954869*V12+0.022181644*V13-0.000355009*V14 S3=32.0787+9*S2/5 RETURN S3 : ŭ∠ #",F2.0,/,/,2%,"CHAN",6%,"TEMP DEG. S1=32.0787+46.34*V-1.0515*V+2 YE I J=FNT(YE I]*1000)+460-0.42 OUTPUT (13,1340)256,8,512; CMD "?C\$" 2X, F3.0, 3X, F14.6 JRITE (15,1650)I,Y[] FORMAT 5X, "SCANNER FOR C=C1 TO C2 CMD S\$ 0UTPUT (13,1330)C CMD "?D#" [<14 THEN 1610</pre> <15,1440)S THEN 1630 ARITE (15,1680) 1=Y[] 1+1.26 1+0.42 ENTER (13,*)V Υ**[]]γ + [γ = []]** YC 1]=YC 1]/2 CMD S\$,"C" Return Stop FORMAT / / / IEF FNT(V) |]/=[] I × 8 FOR I=1 B=C-59 **FORMAT** γ=C 8 3Y Y1=YC1 **WRITE** NEXT **JEXT** STOP 490 500 510 690 440 520 530 550 560 590 600 650 660 680 200 730 740 760 540 570 580 610 630 640 670 710 720 022 430 620

 \mathfrak{T}

LIST OF REFERENCES

- Neumann E. P., Lustwerk, F., "Supersonic Diffusers For Wind Tunnels," <u>Journal of Applied Mechanics</u>, Vol. 16, No. 2, pp. 195-202, June 1949.
- Lukasiewicz, J. "Diffusers for Supersonic Wind Tunnels," Journal of the Aeronautical Sciences, September 1953, pp. 617-626.
- 3. Hastings, S.M. and Roberts, R.C., <u>Analysis of the</u> <u>Performance of a Two Dimensional, Variable Area Super-</u> <u>sonic Wind Tunnel Diffuser with and without Scavenge</u> <u>Scoop and Model</u>, NAVAIR Report 4384, White Oak Maryland, May 1957.
- 4. Panesci, J.H., German, R.C., <u>Improved Methods for</u> <u>Determining Second Throat Diffuser Performance of</u> <u>Zero Secondary Flow Ejector Systems</u>, AEDC-TR-65-124, July 1965.
- 5. Merkli, P.E., "Pressure Recovery in Rectangular Constant Area Supersonic Diffusers," <u>AIAA Journal</u> Vol. 14, No. 2, September 1974, pp. 168-172.
- Waltrup, P.J., Billig, F.S., "Structure of Shock Waves' in Cylindrical Ducts," <u>AIAA Journal</u> Vol. II, No. 1-October 1973, pp. 1404-1408.

- 7. Ginoux, J.J., <u>Supersonic Ejectors</u>, AGARDograph No. 163, November 1972.
- 8. Shapiro, A.H., <u>The Dynamics and Thermodynamics of</u> <u>Compressible Fluid Flow</u>, Ronald Press, New York 1953.
- 9. Geopfarth, R.N., <u>Development of a Device for the</u> <u>Incorporation of Multiple Scanivalves into a Computer-</u> <u>Controlled Data System</u>, M.S., Thesis Naval Postgraduate School, Monterey, CA, March 1979.
- 10. American Society of Mechanical Engineers Supplement on Instruments and Apparatus, <u>Flow Measurement</u>, 1959.
- 11. Bevilaqua, P.M., Combs, C.P., <u>Theory and Practice of</u> <u>Ejector Scaling</u>, Paper at Ejector Workshop for Aerospace Applications Dayton, Ohio, August 1981, (ADP000530)
- 12. Martin, B.W., Baker, P.J., "Experiments on a Supersonic Parallel Diffuser," <u>Journal Mechanical Engineering</u> <u>Sciences</u>, March 1953, pp. 169-174.
- 13. McLafferty, G., "Theoretical Pressure Recovery Through a Normal Shock in a Duct with Initial Boundary Layer," <u>Journal of the Aeronautical Sciences</u>, March 1953, pp. 169-174.
- 14. Amatucci, V.A., Dutton, J.C., Addy, A.L., "Pressure Recovery in a Constant Area Two Stream Supersonic Diffuser," <u>AIAA Journal</u> Vol. 20, No. 9, September 1982, pp. 1308-1309.
- 15. Johnson, J. A., Wu, B.J.C., <u>Pressure Recovery and Related</u> <u>Properties in Supersonic Diffusers</u>, AFOSR F44620-73-C-0032 April 1974.
- 16. Welch, D.R., <u>Hot Flow Testing of Multiple Nozzle Exhaust</u> <u>Eductor Systems, M.E. Thesis</u>, Naval Postgraduate School, Monterey, September 1978.

ALALALALA ALALALA

INITIAL DISTRIBUTION LIST

	r		<u>No. Copies</u>
	1.	Defense Technical Information Center Cameron Station Alexandria, VA 22314	2
	2.	Library, Code 0142 Naval Postgraduate School Monterey, CA 93943	2
	3.	Department Chairman, Code 69 Department of Mechanical Engineering Naval Postgraduate School Monterey, CA 93943	1
	4.	Professor Paul F. Pucci (Code 69Pc) Department of Mechanical Engineering Naval Postgraduate School Monterey, CA 93943	2
	5.	Assoc. Professor R.P. Schreeve (Code67Sf) Department of Aeronautics Naval Postgraduate School Monterey, CA 93943	1
	6.	Mr. J. E. Hammer, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, CA 93943	1
	7.	Commanding Officer Attention: Mr. Vito Truglio Naval Air Propulsion Center Trenton, New Jersey 08628	3
	8.	CDR. James W. Molloy, USN 1253 Elm Road Baltimore, MD 21227	2
	9.	LCDR Thomas H. Walsh, USCG 1908 Carriage Drive Walnut Creek, CA 94598	1
		141 .	
E REAL STREET			

DIC