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ABSTRACT

Consider an environment having d possible states, where the state of

the environment evolves through time according to a stationary Karkov chain.

A natural model for noise in such an environment is to assume that the

disturbance is driven by a white noise process that depends on the current

state of the environment. in this note, it is shown that such a noise process

may be represented by a (d+l)th order AMIA model.

AM (NOS) Subject Classifications: 62M15, 93E03

Wey Words: autoregressive moving average processes, random environment

Work Unit Number 5 - Optimization and Large Scale Systems

Sponsored by the Uhited States Army under Contract no. DAA29-S0-C-0041.



55eVUT? CLAIfFICATIo Toolts PAGE boo 8 Eo~fe

REPOR DOCUMIENTATMO PAGE ____________________

I- 58 REPORTm 5  OPSIKI REOT PSODCOVR

14. TITLE (Md 86do)9.j, 
1 MM

On AMA Representations for White Mos Summary Report - no specific
in a Harkovian Environrent reo.in pePRWGOR.riPodTNN

IC PERPGR114"N1 ORGAWIZATION NAME AND ADDRESS IQ. r, I r 1Amjs al a 111T PROJ 'C . TASK

Mathematics Research Center, University of AorA Uni tumbe 5
610 Walnut Street Wisconsin Optimization and Large
Madison, Wisconsin 53706 Scale system
It- CONTROLLING OPPICE NAME AND ADDRESS I&. REPORT DATE

U. S.- Army Research Office October 1983
P.O. Box 12211 15M NUNsalR OP PAGES

Research Triangle Park, North Carolina 27709 7____________
14.a- MIORIG AG0ENCY IIANES AOORME400 111,u ~.U0oes S SECURITY CLASS. (W1 WeI u~)

UNCLASSIFIED
I". gMCfr1SIPCATON100111MIRAOING

19. O*STRIMI*ON STATEMENT (81 IS 8epag

* Approved for public release; distribution unlimited.

17. COSTISITION STATEMENT (of IBe abodeg =Wooed to20390.1# . Ut 4Ntin uMWRhse.

IS SUPPLEMENTARY NOTES

ft. NET Worm5 (Camndo"ue0.ve *Ids of 606emONm MemIkt&br ~ Mee M&W)

autoregressive moving average processes,* random environment

ALU ASSYRACT (Cnwate w moueo .9* N s.eeup -W Illp bp ~es =ie)
Conaider an envixrnmnt having d possible states, where the state of

the ebvironiment evolves through time according to a stationary mrkov, chain.
A natural model for noise In such an envirosment io to assim that the dis-
turbances is driven by a white noise process that depends can the current state
Of the envirOINMent. Xn this note, it Is shown that such a noise process my
be represented by a (d.1 )th order AM~ model.

D , W3 ta'T E IOF I nov e ssmsGLETE UNCLASSIFIED



SIGNFICUCU ANAD EXILAATIOW

Autoregre esive moving average (A MA) models are frequently used to

describe disturbances associated with signals. Usually, such processes are

discussed in the context of finite dimensional linear system. Zn this note,

A , ~Wt ka

,.wshow4 that AMI models also occur in a rather different setting, namely as

descriptions of white noise in a randomly varying environment. such a result

is useful in better understanding the proper role of AMI processes in systems

theory.
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ON AMIA MPRISUTA2XCUS FOR WRITE HD183

IN A NAMPVIAN SUVIROMNMtT

Peter W. Glynn

1.Introduction

autoregressive moving average (AM~) models are frequently used to

describe disturbances associated with signals. Usually, such processes are

discussed in the context of finite dimensional linear system. In this note,

we *hall show that ARIA models also occur in a rather different setting,

namely as descriptions of white noise in a randomily varying environment. Such

a result is useful in better understanding the proper role of AMI processes

in systems theory.

To be precise, we consider an environment possessing d possible states,

labelled I to d. The state of the environiment at time n is given by a

stationary Harlcov chain NI n i n < 0) having an aperiodic irreducible

transition matrix P. Associated with each state i is a sequence of

independent identically distributed finite variance random variables

(z ni M -i < n < -b the sequences are independent of one another and (Z n.

The noise process (Y n i -( n < -) is then defined by the rule Yn -

znCXn) * In other words, Y. is driven by the white noise ZnMi whenever

n ,equals i.

As an application, consider the following simple model for signal

disturbances caused by atmospheric distortion. Assum that the atmosphere has

a finite number of states (e.g. high and low humidity) and that state

transitions occur according to a Harkov chain. If the disturbance is assumed

to be a white noise process that depends on current atmospheric conditions,

then the noise can be realized as a special case of the above model.

Sponsored by the United States Army under Contrat No. DAA29-S-C-0041.



2. Calculation of the Spectral Density

we first review some basic properties of the transition matrix P (see

chapter 4 of M1). Th, matrix P has a unique d x I stationary vector w

solving VP - 1' (y' denotes the transpose of y). If 11 is the d x d

matrix with each row identical to w', thien UP-P f=f and P- It

has spectral radius less than 1.

2
Turning to the calculation of the spectral density, let Pz and a be

d x 1 vectors with i'th component given by u(i) - z (i)M and

a 2(i) - var Z (iM, respectively. Then,

ZY EfT I X - iP(X = i) -W'n n n n

and

var Y =nlWin 2 i) )z'i2

n in(' inn''

= W102 + jIi'T(X-f1l)U

where T is a diagonal matrix with T ii- iV . Furthermore, for I

cov(Y n, 3Y -~ p'T(P" - I)la

The spectral density of (Y n in given by

f (A) 0 1o(O2v kv-0 Yk (

(W 2 + u'i'(X- + D(A) + D(-X))ui)

where (A) 0ihk (Pk

whee (A- e P 1!. 1

Leina 1I The inverse matrix F(A) -(N1 - P + a i ) -1exists for all A, and

DMA - PF(-I) - aiA1ff

-2-
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Proof. Cbserve that DVX) - Oik (P - 1) k. Since P - I1 has spectral
k-1

radius less than 1,* it follows that the matrix sum for D (A) converges

absolutely, and hence D(AX) exists. T~tting n *.in the identity

yields

D(l)(I-P + 0 1)-INP - (2)

.1 so that

a Cl D()+)( -P + .i 1) 1

and thus r(-A) exists. It is easily seen that 17(-X) a *iA 1, from which

DMI - Pr(-A%) - a follows from (2).

As an immediate consequence of (1) and 1essa 1, we obtain a closed form

for f(A).

Theorem 1. The spectral density fM) of (Y n is given by

f(A) - I. TI + '1T(I-A +4 PF + P(A) - BeiLA - He-A N) (3)2w

By Cramer's rule for calculation of matrix inverses, g(e ix MPA) is a

IA IA
matrix of polynomials In o' of degree at most r < d, where g(e ) in

the d'th order polynomial det(* iA - (P-Il)). Since MC) is real, even, and

non-negative, it follows from (3) that M() may be written as

2 eig-k1/ ikp11
f (1) - -9- 1 1 a)~ / b~e1 ~ t I (4)

2wk-O 1-0

where soInb 0 I I the %Is and b I s are real, and q 4p+I4Idu1 here

the numerator polynomial has no roots outside the unit disc, the denominator

has all roots Inside the unit disc (recall that g(e )x 10 0 for all A), and

the two polynomials have no roots in ommon.

-3-
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3. A3IA Representations for Yn

Our main result is the following.

Theorem 2. There exists an orthogonal mean zero stationary sequence

f : < n < -) and a constant B such thatn

Y + bIY +...+ b p = + aICn-1 +...+ a q + n iip n-p n niq n-.q

Proof. Let Wn =Y + blY 1 +...+ b Y (Y A Y - ZY ) and observe thatn In-1 pn-p n= n n

the spectral density of Wn  is given by a 2 akeiA(q-k)12/2T (see (4)).
k=O

The spectral representation theorem for the weakly stationary sequence Wn

can be utilized to write Wn  as

Wn = en + alen I +...+ aqenq

where {C : -< n < 46) is an orthogonal weakly stationary sequence (seen

[2], p. 504, for details).

It is natural to ask whether all ARMA processes may be regarded as white

noise in a Markovian environment. However, it is clear, from (4), that if the

order of the moving average component is two or more than the order of the

autoregressive part, that such a representation is impossible.

4. Martingale Difference Representations for Yn

If 02 = 0, then Y = P(X ) is a d state Markov chain. In then n

case d - 2, the ARMA representation may be calculated explicitly. First

observe that since P is irreducible, the eigenvalue 1 has algebraic

multiplicity i; since P is aperiodic, I is the only eigenvalue of unit

modulus (see [3], p. 536-551). Thus the second eigenvalue X of P for

d - 2 has modulus less than unity and is clearly real. We claim that

e - Y - AY - (1-A)w'z (5)
n n n-1

is a sequence of mean zero orthogonal random variables. Let v - - w 'lie

where e = (1,1)' is the right eigenvector associated with 1, and note that

-4-
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Z( n I X1 t k C n-1l - (Pv)(Xn..) -V(Xn.,)

Then, if x is the right eigenvector for A, v - ale + a2x for some

a V *2* so that v " 2x (use w'v - 0 - w'Pv). Thus Pv - Xv and

{tn I X : k 4 n-11 01 a sequence e having this property is called a

martingale difference sequence, and it follows from basic properties of

conditional expectation that e is a mean zero orthogonal sequence, proving

(5).

In general, one night hope that for a stationary d state Karkov chain

Yn M 1(3n), there exist constants blo.eb p , al,...eq, 0 such that

Y + b Y +"+bY n a - +...+ aY+ a (6)
n InA-i pnIp n I n-1 qcn-q+

where the e 's are martingale differences. Condition both sides of (6) onn

1k, k 4 n-i, to obtain

(P")(Xn-I) + bIYn-1 +...+ bpYnfp - 81 +...+ aqcn.q +0 (7)

From (6) and (7), it follow that n - P(Xn ) - (POI)[Xn 1). By the

stationarity of Yn' one may back-solve in (6) to obtain

Y n a k Yk 9n-k +  (8)

k',

where Y0 M 1. substituting t n - ISn - (Pu)(In-), it follows from (8)

that (Po)(Xn_1) - liu(Xn_ 1 ) is a function of Xk, k ( n-2. This, in

general, holds only if is is a constant vector, and therefore martingale

difference representations of the form (6) are usually nonexistent for

d V 3.

5. Conclusions

We have investigated AW representatio;.s for white noise in a Narkovian

environment. Such representations are always possible, although the converse

is incorrect (not all MM processes can be realized as white noise in a

-5-- -~ *



Harkovian environment). WeV have also shown that in a special setting, the

moving average innovations are martingale differences.
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