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Relativistic Broadening Near Cyclotron Resonance

a)

Kaya Imre and Harold Weitzner

Courant Institute of Mathematical Sciences
New York University, New York, New York 10012
ABSTRACT

Relativistic broadening of absorption (or emission) lines near
cyclotron resonance in a warm plasma is investigated using the
linearized relativistic Vlasov-Maxwell system. The unperturbed
state is assumed to be isotropic, but not necessarily Maxwellian.
The expansion parameter is n = ve/c, Ve being the electron thermal
speed. It is assumed that the wave frequency, plasma frequency, and
cyclotron frequency are all comparable in magnitude, and the refrac-
tive index n = 0(l). The parameter a = n/n 1is of arbitrary order,
thus the results are uniformly valid for all values of oblique pro-
pagation angles, although the relativistic effects are negligible
for a<<l. The dielectric tensor is reordered, and the dispersion
relation appropriate for this problem is derived to the lowest sig-
nificant order in n. The results are expressed in terms of the
readily calculable (generalized) plasma dispersion function 2. 1In
the Maxwellian case the results are algebraic in Z, and unlike the
previously published results, they do not involve infinite integrals
or series imposed on Z, thus leading to simple and efficient evalua-
tions. The case of perpendicular propagation is obtained by taking
the large a limit. Some inconsistencies in the literature dealing

with the extraordinary mode are resolved.

PACS Index: 52.25.Ps, 52.60.+h
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I. INTRODUCTION

"3 The importance of the relativistic effects on the broadening of

the cyclotron emission lines has long been recognized. Trubnikov1

{ ]
)
. § PPN L RARN PN

;a was first to point out as early as 1956 that the Doppler broadening
%S of spectral lines emitted by a magnetized plasma in the direction
S: perpendicular to the field is a purely relativistic effect, which

5a) must be taken into account even for relatively low temperature

3 plasmas. Although he did not investigate this phenomenon in his

;ﬁ well-known paperl. he derived two distinct expressions for the plasma
gq dielectric tensor based on the relativistic linearized Vlasov-Maxwell
N system of equations. The first, involving an infinite series in

-

terms of the Bessel functions Jn' appears to be particularly useful

when the spectral lines are well resolved (low temperatures and low

A Tas

harmonics), whereas the second form, which is expressed as an infinite

X

N integral containing the modified Bessel functions Kn. is preferable
when the spectrum is continuous (high temperatures and high harmonics),

7} as was stated in Ref. 1. The second form has the shortcoming that

the unperturbed state has already been assumed to be the relativistic

Maxwellian distribution so that the velocity space integrations

Taa

could be carried out. No such assumption need be imposed in the

5 derivation of the former representation.
3 Various heating schemes subsequently proposed for plasmas, which
utilize the cyclotron resonance process, have initiated further

e,

research in which the energy absorption mechanism associated with

relativistic broadening has been investigated extensively in certain
2

attacked the

“ ranges of the plasma parameters. Dnestrovskii et al.
.




relatively simpler problem of perpendicular propagation in a weakly

3 extended their results to the

relativistic plasma, and Shkarofsky
case of nearly perpendicular propagation where the relativistic
effects are still significant. In both of these studies, as well as
many others which followed themu. the integral representation of the
dielectric tensor was utilized, thus restricting the system to be
near thermal equilibrium. The main purpose of the present work is

to remove this restriction by reformulating the problem starting
from the infinite series representation for the dielectric tensor
for weakly relativistic plasmas. For simplicity, the unperturbed
state is assumed to be isotropic, but not necessarily Maxwellian,

and only the electron cyclotron resonance is considered. The
extension of the present method to the case of ion resonance, and

to the higher harmonics, is straightforward. As was done in pre-
vious studies, the plasma is assumed to be warm, i.e. only the
leading contributions of the parameter ﬂ]==ve/c are considered, where
Ve is the electron thermal speed (2Te/he)é. and ¢ is the speed of

light. The electron Larmor radius is also assumed to be small

compared with the wave length, and their ratio is assumed to be of

.'1‘:.q first order in 'q. The refractive index n = kc/w = 0(1).
1.":
t '
e The formulation presented is uniform in terms of the parameter
3 %= v/(nye), (1)
=
4 ny, being the longitudinal refractive index. The case of perpendicular
‘ propagation (o¢ + @), and the nonrelativistic limit ( & 1) are
14 obtained by taking appropriate limits. Section II contains these

X results, as well as the evaluation and ordering of the dielectric

........
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tensor near the fundamental electron resonance, viz., 1 -&f%\/&)=

Oﬁqz). where.ﬂ.e denotes the electron cyclotron frequency.

In Sec.III, the zero order dispersion relation is derived. This
relation differs from the cold plasma dispersion relation by the
presence of a function A which generates the relativistic Doppler
effects. Section IV is devoted to the special case of the Maxwellian
unperturbed state. It is shown that in this case the results can be
expressed algebraically in terms of the standard dispersion function
Z, thus providing a considerable improvement over the form given in
Ref. 3, which contains an infinite complex integral or infinite series
involving the function Z. Equivalency of the present results to those
previously given is demonstrated to order T). The study of the per-
pendicular extraordinary mode, which can be found in Sec. V, requires
a second order analysis for the investigation of the lowest order
Doppler effects. Certain discrepancies, stemming from an improper
evaluation of the second order terms, are found in the previously
published results. Section V also contains a study of the nearly
perpendicular ordinary mode based on the results presented in this
work. In the part C of the same section, the Doppler broadening of
the Nth electron cyclotron resonance is studied, and particular

attention is given to the second harmonic extraordinary mode.

A summary of results, and a final discussion are found in Sec. VI.
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mj. ej. nj denoting the rest mass, electric charge, number density
(respectively) of the jth species, and[ with deuF(u)a.l ] .
( éuxa— Ji_ éuxggLeZinp_lJp+1 uxg%uei¢Jp_1Jp
% = %Ee Zi'f p+1Jp—1 éu_Lm Jf)*l u_‘_ggue'iv'JpﬂJp .
L*u“%ELe-iyJPJP-l éuﬂgﬂxi PJP*l
’ﬂﬂw;b\huﬁub”?yvv”3¢?ﬂﬁﬁ;ifﬁf?fﬁfﬁﬁﬁﬁ¥~
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II. EVALUATION OF THE DIELECTRIC TENSOR

The dielectric tensor for a plasma, which can be expressed for a

plane wave of the form exp(ik.x - iwt) as

€ =1+ (4Fi/W) o, (2) -
-~ i~ ~ -_,_i

g being the conductivity tensor, can be derived from the linearized

relativistic Vlasov equation, as was done in many texts on plasmas.

It is convenient to adopt the (+,-,ll) coordinate reference system,
which is defined by means of the transformation matrix P, and its

inverse P » wWhere

- [

representing contravariant and covariant transformation rules applied

+ 3 o
, and Pl=|_31 3 of, (3)
0 0 1

» OO

to the cartesian system in which the 2z axis is selected along the

external magnetic field. One has, in this representation,

2
2,5 R Ypj gdB 2: 5—§__ , (4)
w ~ J w-Q-j _m<p<m *_p

where

u=vy, y*= (l*uz/cz)%. w, = (w/.QJ)K -k"u”/nj.

2 2 =
W UKn e /h j = ejBo/hjc. By 362 .
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In Eq.(5), the unperturbed distribution function is assumed to be

isotropic, so that u dF/du, = u,dF/du,, and the argument of the Bessel

functions Jp is k_,_u_,_/hj. The azimuth of the propagation vector k

is denoted by . It is convenient to normalize F so that F(u)d3u >
F(w)d3w. where y=}__z/vj. vj denoting the thermal speed of the jth
species. Near the electron fundamental resonance, one may neglec

the ion dynamics, and introduce the parameter

£ = W-100)/Kv, = (1 -|a,f 4un2, -
80 that » )
. Ncw o
w,+1--&—ﬁ-e(w“-€-1—'17). (7)

indicating that the resonance condition occurs at p=-1. One
also assumes that the electron Larmor radius is small compared
with the wavelength, so that the Bessel functions can be replaced by

the first few terms of their power series representations. With

kyveR, = 0(n), one obtains

2 2
Q 4 2.2
1+ %XJIdBWWL%-L(-i‘ + nzn,L&ﬁWi‘ 12 .I.w.l."éiD)'

€4 ©
2
= OF =240 2.2
E_=1+ éXIdawwL-a—wL-D (-1 w2 *Ingwi),

e"“ =1+ XIdBW W'%%“(% - %’Jz.wi)t

6*-8-21|{) = 6_+e2j‘¢ = -Ix-gni‘(daw wi% &, (8)

D
Ee ¥ =26 et K n?_fd% wEa

é_“eiy = 26'“_e'w= &x%nlfcpw wi-?—‘s % (‘y?'1 - i‘)?niwi) .
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The '712 terms are kept in €_,, since they are needed in studying the

broadening of the perpendicular extraordinary mode in Sec. V. It is

clear from Eq. (8) that €__

are all of zero order in e

€ = -zg(-z) + .,\-1§(-1) . g(o) "l%(l)

one obtains the nonzero elements up to first

=o(m@), €_y = ol h), and €,,, €,., €,

Hence, by writing

T e, (9)

order in M as

(-2) .
e-_ an.oD
( 1) iy - (- 1) -i
__” Y 6 9‘1 Xn_Lao 1?
el -1 - i,
(10)
0) . 2
65_) =1 - Xnja, ;- (2§/o()Xao.o.
(0) = 4y _ v + 2
e"" 1-X %Xn_l_ao.z,
0) -2iV _ .(0) _2iyp _ 2
65._)e 1W‘és+)e l'P - %m_Lal.o'
where 0(2 d < a3w 2n+1 W OF
qn,m =(’(ZZn.m 2n+2 d Z2n1"2,m 2n+2 ) D 4 I owy
(11)
Sd3ww4_w F(w)/D.
It is shown in Appendix I that ZZn.m and its derivative (thus an.m)
can be expressed in terms of Zo.m' giving
= 2
89,0 = %%g,0 - X%,
= 2
a0.1 = 'Q'«szo.o + ZRZO.l - %BK Zo’zt (12)

. 2
89,2 =“-WfLg 4 * 3, , - 225 5.
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Furthermore, the functions 2 (thus zZ, m) can be expressed in
’

ey O,m
\* terms of the integrals (see Appendix I for details)

e 2n+1
B 1, = (a2, (13)
.I, C
N where

S _ f ® Y,

s z2(¢) = nJ__ awr(w)/(w-1) (14)
o with F(w) extended as an even function for w{ 0, i.e. F(w) =F(-w).

t"\:

e The normalization of Z(l) is chosen so that when F is Maxwellian,

~ 4

X namely F = 7 3/2 e'wz, it reduces to the standard plasma dispersion
AN function. This case will be further studied in Sec.IV. One obtains,
: with (g)s Sd3w &(w) F(w),

= _ 24-2

LP Z0.0 - q<w > - ZIO'

2
f-. L -2
."-:. VA T - <w > - 2¢1 -“I »

N = i _LP_ -2 i i 2 2

X 2,5 = - - 54w }(5“-3)-2@0-2«511-@(12.

Z" 3* q

- - 4 16 -2y, 1§ 3 2. 3.2 1473

", —J— - — - - - - -

=7 20,3 2 = 3 Mg - 3) 28T - Ly - AL, - 3T,
) 50 (S

' The following comments regarding Eqs.(13) and (14) are in order.
-r Although the integral in (14) defines a sectionally holomorphic
function in the complex 14 plane (cut through the real axis), it is
customary to consider only the upper-half branch and analytically

.,,1 continue it to the lower-half plane, since the lower branch can be
\. obtained, if needed, by Z*(T*), which follows from the

Schwartz reflection principle. Moreover, since F(w) is an even
.::

v N
‘ég{. & )‘-'. -'..‘..- 738 -.n':.u.;f '(_:I__;J‘_--,_.\..-_ ‘ - :

o 2 .
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function of w, the function defined by this integral is odd in (.
Therefore, the values of Z(Z) in the first quadrant are related to

those in the second quadrant by Z([) = -2%*(-Z*).

The contour C in Eq.(13) is defined as the image of the interval

talaania MEEL 0 4 2 8. 4 S DR R s

\ul €1 under the mapping o«f = pu* (92 - pi)%. where Pi =280, (see
Appendix I). The contour lies on the real { axis, except when]*g](yo.i
which case C lies on the upper half of the circle of radius (Zfﬁx)éaRd
If Eis allowed to approach the real axis from below, then the entire
path C remains in the upper half plane, which enables one to use the ]
conventional definition of Z(%). The case in which £ approaches the

real axis from above, which is of more physical interest, can be

studied by simply taking the complex conjugate of the results.

The case when Po) 1 is of particular interest, in which case C
lies entirely on the circular arc [ = Roexp(iﬂﬁ. forl&léxan'l(gi-l)%
It follows from the symmetry of C, and the reflection property Z(Z) =
~Z*(Y*) that ImflnlstJ.thus Z,,m and a . are all real in this case.
This property will be used in the following section in deriving the

condition for evanescence for plasma waves.
2,% 2,3,
When P§<:1' C can be chosen as the interval :l:iélﬁﬂl , éiiéflﬂl J.

In closing this section, one may point out an alternative

expression for the integral in I n' namely

gd; z2nf1 2(7) = _%Z 3*1 <w2n 2j- 2>., p <w2n 11“ §+:> ]

.....................
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III. DISPERSION RELATION NEAR CYCLOTRON RESONANCE
w bt
_ﬂ Maxwell's equation for the electric field can be written as Y
| n¥(nx E) +€:E =0, (16) q
x where n = kc/w is the refractive index, so that the dispersion )
i relation for plasma can be written as
= det(n®I-nn - €) = o. (17)
S:; o ~
-"? Generally, it is more convenient to introduce the ordering (9), together
Y with the expansion
:... o 1 [ N
é E=E +qE"+ (18)
& |

into Eq.(16), rather than expanding the determinant (17). One has
i
j to order 1\ 2 ( 2)-E = 0, or E( -2) o = 0, where it is assumed that .
X n = 0(1). Therefore, E_ is of first order in M. To order 'rl . one ;
3 -3
| has 6('1)-E° + ¢l-2).g! = 0, giving |
¢ el-2)gt + el-1g0 = o, (19)

and to the next order, one obtains 4
. .
K< . 3
(gnie-ﬁ%e‘?)m‘j nynae WEd + €22 v € 1EL o, p
o (20)
2 inl_n“e'i‘}'Eg* (0) n_;‘;.)Eo ¢!~ 1)E = 0, :
A "“ H - :
' The first and the third of Eqs.(20), together with (19), form a system -
N of equations for Eg. Ei. and Eg. the determinant of the coefficients .
N yielding the zero order dispersion relation. ['I‘he second of Eqs.(20) '
o should be moved to the first order system, since it contains E?_ and Ei.] g

*
.
3
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One has, by making use of Eqs.(10),

(1 - X - ni-niXA)(Z - X - ni-Znﬁ) - ninﬁ = 0, (21) j&
where 2 ﬁ

A= -¥ay ,-a5 4/8, o) (22) o
The following comments can be made regarding the dispersion relation ?:
(21). First, this relation differs from the cold plasma dispersion i?i
relation (evaluated at the resonance) by the presence of an additional ;
term in the first factor, which contains the function A. Therefore, %;;

the function A is solely responsible for the generation of the zero
order relativistic Doppler effects, which will be further studied

in what follows. Second, it is clear from Eqs. (12) and (22) that
when € & 1 (i.e. n >N )} A approaches zero, which indicates that the
relativistic broadening becomes negligible. Third, in the case of
perpendicular propagation (n, =0, ord - ®) the two modes represented
by the two factors in the first term in (21) are decoupled. The

dispersion relation for the ordinary mode (the first factor) is

n? = (1 - X)/(1 + XAg) s (23)
I where A, = lim A. As will be shown in Sec. IV, in the Maxwellian
o > ®
. case this limiting value coincides with the result of Dnestrovskii et

al.2. The second factor in Eq.(21) represents the extraordinary

mode, and contains no broadening effect to the zero order theory as
developed here; thus the cold plasma dispersion relation appliess: Ef

n2 = 2 - x. (2“)

In order to study the broadening of this branch, the second order

contributions for €,, are required. This will be done in Sec. V.
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Fourth, as is demonstrated in Sec. II, the imaginary partsof the
integrals I defined in (13) are zero whenever 2fx3 1, indicating
that A is real in this case. Therefore, the region of evanescence

for waves near cyclotron resonance is obtained as
|Qlw>1 - imﬁ . (25)

In the special case of perpendicular propagation for Maxwellian
plasmas, this result (which then reduces to Q)sljll ) has already
been pointed outz'u. It may be of some interest to note that the
condition (25) closely resembles a similar condition, namely
Q)% -1 +£>0, in an earlier works. in which waves propagating

along the external field (ny =0) were studied.
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IV. MAXWELLIAN CASE

The purpose for studying this important case is two fold:
it allows one to perform quantitative evaluations of the results

presented in previous sections, and it also enables one to compare

the present results with those previously published, since, as was

pointed out earlier, previous studies invariably assumed this case

P

at the onset of their formulations by adopting the continuum

description for the dielectric tensor.

The relativistic equilibrium distribution function is

F(u) = (4xc3) 1 [p/K, (B)] exp(-By), (26)

where B = mecz/Te = Zn?. By introducing the normalization w==u/ve,

and expanding into powers of‘nz, one obtains
L
Fw) =102 e (1 - B2+ Hn2) + o). (27)

Thus 7 dependence in F(w) can be neglected in the first order theory.
One also observes that €$E). which will be used in studying the
broadening of the perpendicular extraordinary mode in Sec. V., has
no second order correction due to the relativistic effects associated
with F(w), since e(o) involves only the zero order moment, and {1) =
Therefore, one can use nonrelativistic Maxwellian averages: (w'2}= 3,
<WL w"m> nt(2m) 14 ™/mt, and (wzn) 2(2n+1)147%/n1. Moreover, Z(Z)

9

is the standard plasma dispersion function?, and satisfies 2'=-2 -2¢12,

with Z(0) =1vli. The integral in (13) now can be performed exactly,

by making use of the recurrence relation:

I,=nl,_, - #2"2@) - 3" /(2n+1)

ivi
ELvine I, = -nt k}:o (2% /kt) [42(8) +5/(2k*1)]

(28)

Y N S P S R P
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5
_.._'_1 Equations (15) now yield

A

o

X -

o4 20,0 "[z]'

' - 2 (29)
2o,y = 2* (€ r30[2] *%"{L z],

N - 2 2 2 2

Zo,2 = 245+ (£ +xE v 3o®) [2] + (xf v 308)[222] + 20C[rV2],

b2 - 2 uﬁ 3 2 2 3

| Zo,5 = 4+ 30C - ;—*(5 + 2o v 2%+ o) (2]

' 2 2 3 2 ]
3 + (2ug? + 3 £ +200)[C2] + (FoE +300)[T'2) « & [C

N

"y

X where the notation [F(C)] denotes

; 3 1

- + 1- - + - 2

: [r0)) = F*(lﬁ (1-2807  pu(zl= U 26) ). (30)
where the complex conjugate is taken to assure that § approaches the

real axis from above.

" It is straightforward, but somewhat tedious, to show that Zgqs.(29)
’ reduce to the nonrelativistic limit as o -0, namely

z‘j ZO.O - Z(é)l

~

! z -> 1 + Z( )

Ly ’

™ 0,1 §2 § (31)

, - f *§ Z(f)-

h~

'ﬁ' + 2 + 3

N

- which are more readily obtained from £q.(Al ) directly, which states
C. . n.m

2 that in this limit 2 .4 - {wliwy > + €2, m

7:\

- The case 0 —» @ 1is also of considerable importance, since it

- corresponds to the case of perpendicular propagation, viz., n, = 0.

AN

.:'. However, in taking this limit one should keep the quantity £/« finite,
. - , 2 .

oy and consider the limits ofyZ; ,, and ®“Z, ,.,, (cf. Appendix II).

\g
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Although this limit can be carried out directly using Eqs.(29), it is
more convenient to use the definition (11) directly as is done in
Appendix II. The results can be expressed in terms of the functions
Fq introduced by Dnestrovskii et al.z.as well as the functions 7%

introduced by Shkarofskyj. One finds that

lim (uz ) = o z—n!—(_z-m-)_l F ’
aam 22 gmg Tnime/2 (32)
. 2 = _2nt(em+1)! -
0(1-)1mm (X z2n,2m*1) 4P o (Fn"m*3/2 an+5/2) ’
leading to
= _ 2nl(2m)!
A me2m T mp Tnmes/2!
2nl(2m+1)1 3
. =_ 2ni(2m -
o&l-tmm("‘an.zmﬂ) WM o (Fremts/2 = Fromep/2)

The latter can be used to calculate the limiting value of the dielectric
tensor, cf., Eq.(10), as well as the function A introduced in Eq.(22).

One obtains

Ag=1lim A = ¥F, /. (34)
0 a4 o 7/2

Equation (34), together with the dispersion relation (23), coincides
with the results for the perpendicular ordinary mode first derived

5

by Gershman~ and Dnestrovskii et al.2

For arbitrary values of o, the function A(u.g) can easily be
calculated by using Egs.(29) together with Eqs.(12) and (22). Figure
1 illustrates the real and imaginary parts of A as a function of -Zgﬁx

for various values of the parameter x. The case X=5 agrees with the

limiting value Ao within two digits of accuracy, leading to the
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conclusion that the asymptotic expansions in terms of the parameter
1/¢:(2 presented by ShkarofskyB, which are further studied in Appendix
I1, are useful whenever x> 5. The cutoff condition (25) is also

observed in Fig.1 as Im(A) vanishes for 2f«}1. Both real and imag-
inary parts of A monotonically decrease in general, thus making the

cold plasma approximation more appropriate for o<k 1.

g . Le s
P 4‘4‘.‘_-’“’.
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V. SOME APPLICATIONS
A. Perpendicular Extraordinary mode

In the case of the perpendicular propagation, the dispersion
relation (17) can be factorized. It is more convenient, in this

case, to expand directly the extraordinary branch, which reads

2 €+ €. - ef €_, (
n £ ++ - *e*_exp(°2j.¥l) ' 35)

rather than developing the second order theory in the manner of
Sec. III. Introducing the ordering given in Eq.(9) into (35), and
keeping terms up to order‘ﬂ?, one obtains

(€00 . é(o) -21)2

(36)

It is important to note that the only second order component needed
for the extraordinary mode is (+3. which manifests the convenience
of the present coordinate system over the cartesian system, in which
every component appearing in the dispersion relation must be evalu-
ated to the second order. This component is obtained from the first

of Eqs.(8), giving
€= Gt ay o - 4 De Flod « Do B2,

which in the Maxwellian case and n1|=0 yields

el2). | -%An Fo/p * Kigg - zn°- 35- ) (37)

where x21=-2§A9 = 2nf ﬂfu/b)-l). The second term in the right-hand
3

side of (37) is missing in 3hkarofsky's "warm” elements”., lowever,

its contribution to the dispersion {(as will ve shown later) is small,

since it affects only the Joppler shift.

L)
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By making use of Eqs.(10) and (33), and also approximating

successively, one obtains the dispersion relation from (36) as
2
- (0. 2[(2-x ) 2 3u(s . 12
(2 x)wq[ XF5/2(1 XF., 5) k(2 - %) Fg/p
2 1
* x(F-2A)- dz-x0). (38)

The latter equation has notable differences compared to the one
derived by Dnestrovskii et al.2 and used extensively by Fidone et al.u.

vize, 2 2
np.p = (2-X) + W2 -X)7/(4XFs 45) (39)

The difference stems from the neglect of the second order contribution
from €,,, and also from the incorrect assumption that 6 é =2§ _éziw
= 0. Unlike the Shkarofsky approximation, Eq.(39) fails to descrlbe
the relativistic Doppler broadening appropriately. To see this,

consider the imaginary part of nz. which can be written, with Eq.(A9),

as
2y 222 1 2X,2 1
In(n?) = 7 (2 - 002 [g(1 - ) 2m(z L - L Im(F5/2)] (40)
and
Inn2_) = ¢ 2=8° Im(m). (41)

The second term in the bracket in Eq.(40) affects the damping coef-
ficient only for larger values of x,when Im(nz) is already small.
Thus the major difference between Eqs.(40) and (41) stems from the
factor (1-2X/5)2. leading to the conclusion that the discrepancy
becomes increasingly important as X aproaches its cutoff value 2.
For a moderate value of X =0.3 the relative error is nearly 25%, and
at the cutoff it could be as high as 64%., Ihc J-r approximation

is valid, however, fcr tenuous plasmas. In flg. 2, a comparison
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of the present result with the approximation of Ref.2 is presented

for n = 0.034, (= (2M)18Ghz., and for X =0.3 and 1.0 is shown. An

oy
4

independent calculation provided by 0.B. Batchelor.6 which is based

TA e
4 A

P,

on Shkarofsky formulationB, is in good agreement with the present

:i result, indicating that additional Doppler shift terms found in
X

~ .

o Eq.(38) do not affect the absorption rate.
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B. Nearly Perpendicular Ordinary Node ’

The appropriate dispersion relation is given by Eq.(21), with
the definition (22), For the Maxwellian case, Egs.(29), together
with (12) are used to calculate A. [In the non-Maxwellian case,
Eqs.(15) must be used instead of (29)J Although the resulting biquad-
ratic equation for n, can be solved by factorization, a simpler approx-
imate form can be obtained by approximating successively with respect

to n,. The zero order solution is ~j

(nf)y = (1-X)/(1+ax), (42)

leading to
2

2 ]
(n-L)o[i - xR (43)

(ni) 1

The second term in the bracket represents the broadening due to
mixing of modes, and it is expected to generate a small correction,

since n, is small.

Numerical evaluations performed for a Maxwellian plasma based
on Eqs.(42) and (43) are presented in Fig.2 for various values of
the parameter &, and for M = 0.034, @ =(2W)18Ghz., £=0.3. It is
found that for o¢ = 5, both the real and imaginary parts of kj differ
only negligibly from their corresponding values for d==a>:6 they
appear to be shifted slightly to the left. The coupling effects
are also negligible in this case, since in this case n\‘='n/h.=
0.0068, corresponding to a propagation angle of 6 T 89,5°, For

=1 (8=87.7°) the shift is more pronounced, and the resonance

curves are flatter. For « = 0.5 (8 £85.5°) the broadening is
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further extended into the region w >|q| » starting from the cutoff

value Q}=1.0023[§lf. The coupling effects are also more significant

AR ¥

in this case, and the line width is more than doubled compared with

the case of perpendicular propagation.

The study of the nearly perpendicular extraordinary mode based
on the dispersion relation (22) predicts only broadening due to
mode coupling effects. Calculations performed indicate that these
effects are of the same (or lower) order of magnitude as those obtain-
ed in the second order analysis. Therefore, the broadening of the
nearly perpendicular extraordinary mode requires the second order

treatment, which will not be given here.

.......
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: C. Higher Order Harmonics
i
'3; In order to study the relativistic broadening of higher order
o
‘;: harmonics, one must re-examine the ordering of the dielectric tensor.

- When the ratio of the Larmor radius to the wavelength is of order |

iu (as is assumed in this paper), one observes from Eq.(5) that the

?ﬁ contributionsof the Nth cyclotron resonance to the dielectric tensor

N have the following ordering:

N - -2,.N -2 3 2N-4

3 el = o0 elp = o Pel) = o) < o(n? el = ot el caf .

'l

b )

4% Therefore, when NJ) 2, E? does not have to vanish. For N} 3, the zerc

>~ order components do not contain the resonance effects, thus the cold

AN

E plasma dispersion relation evaluated at w= N[l prevails, viz.,

;! - X _ .2 X X 2, 2 £ 2

Dy ‘1'Nz'nﬁ[‘1'—m¢‘))“'m>) - (1-— ) e “lﬂ

-

: - n"n_‘_(l-—x- - nz) = 0. (Lb)

L N -1

'.S

y For N=2, however, the dielectric tensor contains a resonance contri-

3 bution through the component -
Y ]
2 €_=1-3X+4xns a, o * O(n) (45) =
2 -- = + *1,0 71 ! 3
i . . o N
» which modifies the cold plasmadispersion relation, yielding N
2 2 . = -
% D, * 3 Xn7 ay o My = 0 (46) -
o -t
ﬁ where MN is the cofactor determinant of the (--) element, viz., N
4 ~
. x X 2 [{ 2 N 1 p i \-"J
0 My = (1 - J(1-2,)-n"(1-2,) - 3nJ(1 - i—L)f nJ_n.(L*?) i
J N UEY N? w? N2 (N+1) X

The function ay o which is defined in Eq.(11), can be written, by
L
using Eqs.(Al) and (A42) as

1
‘

VP Y U O T .



- Y, 2
ay,0%- 2 - 28,25 ot 201+ &XE)Z, 4 - 3z, , * 2o, 3 (48)

o e, v e, I .
LA I B ' o
LI teelt S
S ‘i [" \f - .
fataialal T .. afe’s

where

»
w!

£, = w21 - NlQl/w). (49)

T '.‘.
. ¢ o

The functions Zn o can be calculated from Eqs.(15), or, in the .y
’ e

Maxwellian case, from Egs.(29).

The dispersion relation (46) is a cubic polynomial in ni. due
to the presence of the relativistic term ay ¢ However, in the case
of perpendicular propagation it can be factorized. The first factor
leads to the cold plasma dispersion relation for the ordinary mode

evaluated at the resonance, i.e.,

n =1 - x/4, (50)

indicating that, unlike the case of N=1, the second harmonic ordinary
mode contains no zero order broadening. The extraordinary mode,
which is associated with the second factor, is obtained from the

following dispersion relation:
(1-X/6) (1-X/2) -n%(1-X/3) +n® X (1-X/6 - 4n®) 3al ;= 0, (51)

where ag 0 is the large o limit of ay o which in the Maxwellian case
1 ]

gives a? 0~ -2F7/2. cf., Eq.(A14). Therefore, for N=2, the absorp-
’

tion of the extraordinary mode is more significant than that of the

ordinary mode when nj =0 (or nearly zero). Apart from notation,

Eq.(51) in the liaxwellian case is equivalent to those given in Refs.

2 and 3, and to that recently studied by Bornatici et al.lo in connec-

tion with certain mode conversion schemes.

.......................
........

.................................
.....
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The two factors in the first term of the dispersion relation (51)

correspond to the cold plasma right and left hand cutoff frequencies
at the resonance, and the coefficient of n? in the second term leads
to the upper hybrid resonance frequency. The last term generates the

relativistic broadening effects.

When n, is not necessarily zero, Eq.(46) can be written as

gy’ + Ay + Ay Ay =0, (52)

where y = ni. and with the shorthand Xn = 1 -X/m, the coefficients are

A3 = %Xal'ol
- .2
A2 = XB - AB(XM‘*2X6 n").

= 2 .2 2
Al - -X6X2 - XB(Xu - n“) + quAll + A3 2Xl+ (Ké - n“),
= - 2 2

In Fig. 4 the function a4 o is illustrated for the Maxwellian case
1

for the values of « = 5, 1, and 0.5. The imaginary part of ay.0 is

zero when 2€20(} 1, thus the region of evanescence for the second

harmonic is
2lal/g > 1 - i, (53)

For o= 5, a4 ¢ is very close to its large & limit -2F7/2. and for
9
x & 1, both real and imaginary parts of a, o are much less than 1
»

in magnitude, hence the broadening is negligible in the latter case.

Figure 5 illustrates the variation of the real and imaginary parts
of k; for the extraordinary mode as a function of 2|Ql/w, for the

Iraxwellian case with 1 =0.3, vc/c =0.034, and W = 27 13 Ghz.

’ -‘.{( -
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The general behavior of these curves is similar to those given in
Fig. 3 for the fundamental ordinary mode. The & =5 case coincides with

the perpendicular propagation case within at least three decimal

(3

digits. For smaller values of &, the maximum value of the imaginary

part of k; decreases, and the line width increases.

a0

e
LYK I KPS

N

The second harmonic ordinary branch has a negligible imaginary

part and does not vary appreciably from the cold plasma value given

G
A X%

in Eq. (50)., It is important to note that the Re kj curves for the
ordinary and the extraordinary modes intersect at the two values of the
wave frequency. The one corresponding to the smaller frequency, (or the
larger value of 2I0) /W), appears to be promising for a possible mode

conversion between these branches.

ig The third root of Eq. (52) leads to a branch which is nearly

w*

; electrostatic and heavily absorbed in the plasma.

o
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VI. SUMMARY AND DISCUSSIONS

In the present paper, the relativistic broadening of nearly
perpendicular waves near cyclotron resonance is investigated for
a warm (ve/c<K.1). isotropic, but not necessarily Maxwellian,
plasma. The underlying assumptions are that w= 0(wp) =0(f) = 0(ke),
80 thatleg_|= 0(02/V§) and n; = 0(v_/c). When these conditions
are satisfied, one also has |Eh-| = O(c/ve). and the zero order
dispersion relation is no longer the cold plasma dispersion
relation near the resonance as was found in the nonrelativistic
case.’! The formulation is uniform in the parameter ve4bn“y so that
all values of n, [provided that n= 0(1)] can be studied. However,
the relativistic effects are unimportant when this parameter is
much less than one. The formalism used is also suitable in geo-
metrical optics methods to study the effects of weak inhomogeneities,
even though the magnitude of these effects may be altered due to

the ordering assumed.7

The basic advantage of the formulation given here is to express
the dielectric tensor in terms of a set of functions defined
similar to the plasma dispersion function of the nonrelativistic
theory. Various recurrence relations and reduction formulae
obtained help one to evaluate these functions with relative ease;
particularly so for the Maxwellian case, in which case the results
are expressed without any integrations or infinite series involving
the plasma dispersion function. The latter property enables one
to calculate efficiently the broadening of the plasma spectrum in

some range of physical space.
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The formalism is applied to the fundamental extraordinary mode,
which requires the second order theory,) for nﬁ =0, and the correction
terms for Im(nz) are given,which generalize the previously published
results for the tenuous plasmas. The study of the fundamental
r; ordinary mode shows that the relativistic broadening is very sensitive
A to the angle of propagation, and it is restricted to the region within

a few degrees from the perpendicular propagation.

i The broadening of the higher order harmonics is of order yi ZN-4
% for the Nth harmonic. The zero order theory for the second harmonic
’i shows that the ordinary mode is nearly undamped and the extraordinary
3 mode has a damping rate larger than the one for the fundamental

a ordinary mode. The possibility of the mode conversion between these
N branches are also pointed out. An analysis for the latter problem

’F requires the inclusion of the spatial inhomogeneities, which will

A be studied elsewhere,

3; The region of evanescence for the Nth harmonic is

&

= NIQI/w <1 - 2, (54)

It is of interest to note that this condition is independent of the
plasma frequency, thus it may be used as a diagnostic tool in weakly

inhomogeneous plasmas.
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APPENDIX I: PROPERTIES OF Zn m FUNCTIONS
1

The functions 2, . are defined in Eq.(11) with D given in (8)
»
are needed only for even values of n. The following recurrence

relation is obtained directly from the definition

z - (2/&)(zn.m*1 - Ezn,m - <wiwﬂ>)"zn.m*2' (a1)

nt2,m

which enables one to express these functions in terms of Zo n'
1]
Furthermore, when F is isotropic, as is assumed in this paper, the

derivatives of these functions can be calculated using

dZn'm/df 2 2L =Ml g -0Z 5 onege (DD0), (a2)

which is obtained by integrating by parts after replacing F in (11)

by its derivative.
Since D= -3%(w-{,)(w- ¥ ), where
7= [ F @820 ] (43)

B being the cosine of the polar angle in the velocity space, one

obtains, with the use of the identity

k
k k+ . .
wirl _a ! . z adwk-d,
0

w-a w-a =

1rl a ® 2ntm+2 Z:2n1'm'*2
. .2xftde,  2ynm t
Z2n,m qf.l q(1 ¢ E‘(DdWF(w)[w_z* w-1
2ntn "
- . o
. z:; (i 1_ ¢’ 1)w2n m J] , (AL)
J=

where q = (1/&)(EZ-2§00% =3(L, - ). Since L, (-p) = -l¥(e). after
extending F as F(-w) =F(w) and replacing p-» -t and w=-w, one

obtains

vy T x'=‘|'~ e
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1 (1 2nm2n*m2n+m2'§i: j
Zonum * " -1 9 (1¢9)" J};o@ Vo T e s

1 +m+
- 0-1(I-l%E(i~ez)nem[émm+22(l+) _g2n*m 22“_)] '

where the function Z([) is as defined in Eq.(14). Equation (A5) can
be further reduced by observing that the lower half of the ¥ integra-
tion in the first term of (A5) is (_1)j*m times that of the upper
half, hence j+m must be even. MNoreover, since dy/q = *«dl +/{s, with
otCE - 2ul, +2§ =0, the two terms in the second integral can be

combined into one, by introducing the variable U as

Qf = p o+ (62 - 250, (A6)
and the contour C defined as the image of -1¢ B é 1 under the mapping

(A6). One obtains, with r=[:x_n/2] being the closest integer less than

or equal to m/2,

1 ntr » 2ptm-2r ) )
2 2\,n. m n+2r-2p-2 jy2ptm-2r-j
Zon,m” '&go dp (1-p)" g %(‘" > o TG

-2 f atfe? - e e Ga? " L2y, )

Equations (15) are obtained directly from (A7). Since the factors
which multiply ZZ({) in the integrand in (A?) are polynomials in !2,
the dependence of the second term on the functions In introduced

in (13) is evident.
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APPENDIX II. CONNECTION WITH Fq and 5; FUNCTIONS

In this Appendix the relations between Zn n functions and the

’
Fq functions introduced by Dnestrovskii et al. is given. It is also
shown how they are connected to Shkarofsky's ?a functions, so that
the results presented in this paper can be compared efficiently with
those previously known.

Consider the functions, with F(w) "ﬂfa/zexp(-wz).

. 2% (m-1)1 2n p
Fr(ff%/z = r‘—{TLG’f X ("3“ ‘Z_é_-%‘!))m - (A8)

w -X

These functions have the following properties: For m=1,

Fg}% = 2#2xZ(x) =-Z'(x), with x=‘(x2)%|
Fé}i = (1'*x2Fé1))/§- ()

Since these are the recursive properties which generate the Dnestrovskii

functions, one concludes that

(1) .

Py’ = Foe (A10)
For m) 1,

(m) . (m-1) 2 -(m)
R R S I T

d o(m) (m+1)

F = F ' (A11)
a(x<) 4 1
*1) , p(m) (m)

réfl qu - FqTi.

In order to relate these functions to 2 » consider the asymptotic

n,m
expansion of the latter in 1/ which is obtained by expanding 1/D

into power series, giving
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_ ﬁf (Z)Zk-m+1 3 wﬁwﬁkEWW)
Zaym T\ A Iy = (A12)

where r=[(m+1)/2] , and x° = -2f/o0 = 271—2(\.(” /W-1).

One obtains, after some straightforward manipulations, and angular

integrations,

(2k)!

a0
= _nt (2k-m+1)
z2n.m 2m-l gg; °‘21:-m+1 (A13)

n+tk+3/2 °

k! (2k-m) !

The large « limits given in Eqs.(32) follow directly from (A13),
with the third of Egqs.(A11). Substitution of (A13) into the defini-
tion of 8 m in (11) yields the result

1

a0
(2k)! (
- 2k-m+1)
a = . e : F . (Alu)

from which the limits in Eqs.(33) follow. When this result is
substituted into Eqs.(10), one finds that Shkarofsky's "warm" elements

are obtained to the order one in n and order -2 in o.

In order to establish the relationship with Shkarofsky's‘?é

function (or W function used in Ref.4) consider the simplification (15)

glven in Ref.3

1 [® gt 2 42
= . -x“t -
qu 270 (41.3¢)9 exP[ * o%(1-1t)
= exp(-1/6 i 1 (1) .2, 1 02
exp(-1/0(%) & o3 Forj(xTt 1/05). (A15)

In the latter equation, the function Fél) is regarded as a function

of xz. Expanding this function, as well as the multiplicative expo-

nential function, into powers of 1/, and rearranging the terms
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one obtains the asymptotic series
(m). 3 1 plekm)
% (m) - plekm) A16
4 gTo oKy avk (A16)
where
(1) - ¢ q (m+1) _ _ d (m)
¥ Forad Ty d(xz)’qu . (A17)

In deriving (A16), the following relation is used, which can be

established by induction,

k
e (E 0 . =

The functions a, , for m=0,1, and 2, which appear in Eq.(10), can
’

be expressed in terms of Shkarofsky functions as

3,0 - ~2nt ?n+5/2'
an,1° -(2nt /o) T'(+7/2. (A19)

--n![?'(l'.; /2t (2/ )7:,,(13; 2] .

Equations (A19) can be further reduced by making use of the recurrence

relation

(m+1) f#m) q+1 ] (A20)

The function A may also be written as
A=%F‘71/)2 + (1/0\2)[75}% (1) DYF) (A21)

An evaluation of A based on the latter, together with (A1ls5), is

certainly much less efficient than the method presented in this

work. Keeping terms up to order 1/0(2 in (A21).[using (A16):_] and substi-

tuting into (42), one gets the dispersion relation given in Ref. 3.
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> FIGURE CAPTIONS
Fig. 1 Real and imaginary parts of A(f,X)for the Maxwellian
- case as a function of x° = -2f /0 = 2'1%( \o/wl - 1), for

o=5,0, 1.0, and 0.5.

Fig. 2 A comparison of Dnestrovskii approximation with the
present analysis: Im(k,) (cm'l) vs.\ﬂ/w\ for the
perpendicular extraordinary mode, and for X=0.3, 1.0,

'V\= 0.03%, = (2%x)18Ghz..

; Fig. 3 Real and imaginary parts of k, (cm'l) as a function of

(-Q/Wl for the nearly perpendicular ordinary mode, for
o X=0.3, "M=0.034%, W= (2N)18GHz., and for the values
of X=10,5, 1.0, 5.0. (lMaxwellian case)

» Tig., 4 Real and imaginary parts of I for the Maxwellian
v case as a function of x° = -2@2/o(=2712(219.[/w - 1), for
$=5'0l 1'0. arld O-S.

Ffig. 5 Real and imaginary parts of k, (cm'l) as a function of
'-E'. 2{(//w for the second harmonic extraordinary mode, for
" X=0.3, 7=0.03%, &= (21)18Chz., and for the Values

of X= 0.5, 1.0, 0.5. (Maxwellian case)
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