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Relativistic Broadening Near Cyclotron Resonance

Kaya Imrea) and Harold Weitzner

Courant Institute of Mathematical Sciences
New York University, New York, New York 10012

ABSTRACT

Relativistic broadening of absorption (or emission) lines near

cyclotron resonance in a warm plasma is investigated using the

linearized relativistic Vlasov-Maxwell system. The unperturbed

state is assumed to be isotropic, but not necessarily Maxwellian.

The expansion parameter is n = ve/c, ve being the electron thermal
e e

speed. It is assumed that the wave frequency, plasma frequency, and

cyclotron frequency are all comparable in magnitude, and the refrac-

tive index n = 0(l). The parameter a = n/n is of arbitrary order,

thus the results are uniformly valid for all values of oblique pro-

pagation angles, although the relativistic effects are negligible

for c<<l. The dielectric tensor is reordered, and the dispersion

relation appropriate for this problem is derived to the lowest sig-

nificant order in n. The results are expressed in terms of the

readily calculable (generalized) plasma dispersion function Z. In

the Maxwellian case the results are algebraic in Z, and unlike the

previously published results, they do not involve infinite integrals

or series imposed on Z, thus leading to simple and efficient evalua-

tions. The case of perpendicular propagation is obtained by taking

the large a limit. Some inconsistencies in the literature dealing

with the extraordinary mode are resolved.

PACS Index: 52.25.Ps, 52.60.+h
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I. INTRODUCTION

The importance of the relativistic effects on the broadening of

the cyclotron emission lines has long been recognized. Trubnikov 1

was first to point out as early as 1956 that the Doppler broadening

of spectral lines emitted by a magnetized plasma in the direction

perpendicular to the field is a purely relativistic effect, which

must be taken into account even for relatively low temperature

plasmas. Although he did not investigate this phenomenon in his

well-known paper I , he derived two distinct expressions for the plasma

dielectric tensor based on the relativistic linearized Vlasov-Maxwell

system of equations. The first, involving an infinite series in

terms of the Bessel functions Jn' appears to be particularly useful

when the spectral lines are well resolved (low temperatures and low

harmonics), whereas the second form, which is expressed as an infinite
integral containing the modified Bessel functions n , is preferable

when the spectrum is continuous (high temperatures and high harmonics),

as was stated in Ref. 1. The second form has the shortcoming that

the unperturbed state has already been assumed to be the relativistic

Maxwellian distribution so that the velocity space integrations

could be carried out. No such assumption need be imposed in the

derivation of the former representation.

Various heating schemes subsequently proposed for plasmas, which

utilize the cyclotron resonance process, have initiated further

research in which the energy absorption mechanism associated with

relativistic broadening has been investigated extensively in certain

ranges of the plasma parameters. Dnestrovskii et al.2 attacked the

- "" °."'q t"" - .io -q ' - * . """" - "" S . *"" " . a %_ * '- "-".
%
'.S. '". ".. '" "".... .. ...- ". .. ". . ._" "_ -.5.% ,
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relatively simpler problem of perpendicular propagation in a weakly

relativistic plasma, and Shkarofsky3 extended their results to the

*' case of nearly perpendicular propagation where the relativistic

effects are still significant. In both of these studies, as well as

many others which followed them 4 , the integral representation of the

dielectric tensor was utilized, thus restricting the system to be

near thermal equilibrium. The main purpose of the present work is

to remove this restriction by reformulating the problem starting

from the infinite series representation for the dielectric tensor

for weakly relativistic plasmas. For simplicity, the unperturbed

state is assumed to be isotropic, but not necessarily Maxwellian,

and only the electron cyclotron resonance is considered. The

extension of the present method to the case of ion resonance, and

to the higher harmonics, is straightforward. As was done in pre-

vious studies, the plasma is assumed to be warm, i.e. only the

leading contributions of the parameter ol = ve/c are considered, where

ve is the electron thermal speed (2Te/me)i, and c is the speed of

light. The electron Larmor radius is also assumed to be small

compared with the wave length, and their ratio is assumed to be of

first order in V. The refractive index n zkc/ = 0(I).

The formulation presented is uniform in terms of the parameter

V= e/(n C),()

nl being the longitudinal refractive index. The case of perpendicular

propagation (o( +.a), and the nonrelativistic limit ( oeJA1) are

obtained by taking appropriate limits. Section II contains these

results, as well as the evaluation and ordering of the dielectric

:'p : : : : : - , ¢ .. 4 + . : ; .:? ?:.. .., ...:..: - -i . , .. i. . i .. .
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tensor near the fundamental electron resonance, viz., 1

0(112), whereSae denotes the electron cyclotron frequency.
e-

In Sec.III, the zero order dispersion relation is derived. This

relation differs from the cold plasma dispersion relation by the

presence of a function A which generates the relativistic Doppler

effects. Section IV is devoted to the special case of the Maxwellian

unperturbed state. It is shown that in this case the results can be

expressed algebraically in terms of the standard dispersion function

Z, thus providing a considerable improvement over the form given in

Ref. 3, which contains an infinite complex integral or infinite series

involving the function Z. Equivalency of the present results to those

previously given is demonstrated to order T). The study of the per-

pendicular extraordinary mode, which can be found in Sec. V, requires

a second order analysis for the investigation of the lowest order

Doppler effects. Certain discrepancies, stemming from an improper

evaluation of the second order terms, are found in the previously

published results. Section V also contains a study of the nearly

perpendicular ordinary mode based on the results presented in this

work. In the part C of the same section, the Doppler broadening of

the Nth electron cyclotron resonance is studied, and particular

attention is given to the second harmonic extraordinary mode.

A summary of results, and a final discussion are found in Sec. VI.
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II. EVALUATION OF THE DIELECTRIC TENSOR

The dielectric tensor for a plasma, which can be expressed for a

plane wave of the form exp(ik.x - iwt) as

+ = (41ci/w) 0, (2)

o-being the conductivity tensor, can be derived from the linearized

relativistic Vlasov equation, as was done in many texts on plasmas.

It is convenient to adopt the (,-,0) coordinate reference system,

which is defined by means of the transformation matrix P, and its

inverse P 1 where

P -i 0 and P1 L i i j (3)

representing contravariant and covariant transformation rules applied

to the cartesian system in which the z axis is selected along the

external magnetic field. One has, in this representation,

where u (1*u2/c2) , 4 = (./.Q ) _k11 u11 /i,

2/c

2. =_ Wn e /j 2 /Mil e B0/A co B= BO

Mil e j n denoting the rest mass, electric charge, number density

(respectively) of the jth species, and[ with d~uF(u) a I

uF 2 F 2 ebF i:
iu.-yu- p-1l u~j j.E le Jpi~p

e.L~p~ -.Lu-o.7 J 1 p+ Ur P1

BF 
I FL!'. p1pULuLPu-iEll -j p+1lp--

*U1 F e- i~j j iu a it. - P,2-" u l ' 'u J P ° P ' l u p-' e & l P +l P 1 u F j 2'l , o i -

;'.; .. , 'D ¢ ,+ . '," .". .. ,,, ' ." .','.".,. 1 '. +. -..-. " .. .u."-" .l. - .IL-I.. ..

i I , , I '," " - i' :b " ' " -" " " ".'. . . . . . " " " ".-. .A
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In Eq.(5), the unperturbed distribution function is assumed to be

isotropic, so that uLF/t= ugbF/8u., and the argument of the Bessel

functions J is ktu!&tj. The azimuth of the propagation vector k

is denoted by(#. It is convenient to normalize F so that F(u)d3u-4

-'I--.F(w)d3w, where w -u/v., v denoting the thermal speed of the jth

species. Near the electron fundamental resonance, one may neglec

the ion dynamics, and introduce the parameter

-..
f -(4--S ,A1e1*z W 1-

so that
to + I = -- e(Wil -- + ' (7)

indicating that the resonance condition occurs at p = -1. One

also assumes that the electron Larmor radius is small compared

with the wavelength, so that the Bessel functions can be replaced by

the first few terms of their power series representations. With

kiVev19 = 0(7i), one obtains

35, BE ,.2 4 4 22

2

lll 1 * +Xfd3ww F' (F 2 2 w

+ i,"' ll 11 " - 7 -6 w V .

2 . = - x 22 .m D 6
E111 = 1~e e* -jd 1~ 1n.d.w..4j, e

where = 2 2where -, - 2w, and X ()2I .
* hJ 1 ~J Wpe e
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The ,2 terms are kept in E.+, since they are needed in studying the

broadening of the perpendicular extraordinary mode in Sec. V. It is

clear from Eq. (8) that C_ =0(- 2 ), E- 1  0(1 - I ), and E_, l

are all of zero order in '. Hence, by writing

2 r. 2(-2) + -1~i(-1) + e-(Q) +J1) (9)

one obtains the nonzero elements up to first order in as

E (-2) X
-- = Xa, 0 ,

.(1)ei' = 2  I;l'e - ' Xn-aO,l
.4

6(°) = i I

(10)
( 0 )  = Xn2

:( 1 - X + jXn ao, 2 ,

where (2 d r d3w 2n1 m .
an,m "(Z 2 n,m 2n +2 Z Z2n+2,m" 2n-2

(11)

Zn d3w wWm F(w)/D.n, m

It is shown in Appendix I that Z2nm and its derivative (thus an,m)

can be expressed in terms of Z0 ,m ' giving

a0 0 = - o I

S2

a0 - -- ( ZO, + 2.Z 0 1  - b3 2 Z05 2 , (12),9I 0 09,I~

ao 2  -?ZO 1 + 30 - 2 2 Zo,
.*- 0. t2 3"
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Furthermore, the functions Zo,m  (thus Z n,m ) can be expressed in

terms of the integrals (see Appendix I for details)

In= dt 2n*1 (13)
C

where

71~ ODit dw F(w)/(w -) (14)

with F(w) extended as an even function for wO, i.e. F(w) = F(-w).

The normalization of Z(4) is chosen so that when F is Maxwellian,

namely F 7(- /  e-, it reduces to the standard plasma dispersion

function. This case will be further studied in Sec.IV. One obtains.

with <g- d3wg(w) F(w),

t 0  - <w 2> - 2,0o

Z0,1 L 2 <t2 W_2> - 2 IO -cIi, (5

-2 4 '2 2 2 2
0,2 - 30(- C3)- 2 1 0 _  I -  i2

4 2 .. . 16 2 >(7x- 52 2f 31O - Of2I - 202

The following comments regarding Eqs.(13) and (14) are in order.

Although the integral in (14) defines a sectionally holomorphic

function in the complex plane (cut through the real axis), it is

customary to consider only the upper-half branch and analytically

continue it to the lower-half plane, since the lower branch can be

obtained, if needed, by Z*(t*). which follows from the

Schwartz reflection principle. Moreover, since F(w) is an even
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function of w, the function defined by this integral is odd in .

Therefore, the values of Z(Z) in the first quadrant are related to

those in the second quadrant by Z( ) =Z*(- *).

The contour C in Eq.(13) is defined as the image of the interval

I 1 under the mapping ol, - e 2= where 2 = 2= ',(see

Appendix I). The contour lies on the real C axis, except whenl ekJvoJ i

which case C lies on the upper half of the circle of radius (2f/oW) R.

If tis allowed to approach the real axis from below, then the entire

path C remains in the upper half plane, which enables one to use the

conventional definition of Z(R). The case in which & approaches the

real axis from above, which is of more physical interest, can be

studied by simply taking the complex conjugate of the results.

The case when 1o> I is of particular interest, in which case C

lies entirely on the circular arc = Roexp(iO), for 1h0]tan-1 (F- i) .

It follows from the symmetry of C, and the reflection property Z(Z) =

-Z*(-%*) that ImfI l 0, thus Zn m and an,m are all real in this case.

This property will be used in the following section in deriving the

condition for evanescence for plasma waves.

When Fo , C can be chosen as the interval ( , i 2 .

In closing this section, one may point out an alternative

expression for the integral in In , namely

d 2nt1 ( -k 2  <w2n_2j_2> + w2n- l>
j=0
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III. DISPERSION RELATION NEAR CYCLOTRON RESONANCE

Maxwell's equation for the electric field can be written as

A n)((n)( E) + E.E = 0, (16)

where n kc/&o is the refractive index, so that the dispersion

relation for plasma can be written as

det(n 21-nn -E) = 0. (17)

Generally, it is more convenient to introduce the ordering (9), together

with the expansion

EO+ 1 E, ... (18)

into Eq.(16), rather than expanding the determinant (17). One has

to order 'v-2  -(-2).E0 = o, or 6(-2 = 0, where it is assumed that

n = 0(1). Therefore, E is of first order in ' To order TL-  one
has 6('I).EO + e(-2).El = 0, giving

(-2)E1 + _(1)EO = o, (19)

and to the next order, one obtains

( (O) _ n2 -n2)10 +n,,,n ei E0 0.

,n n-2i1i V)O njn e-E 0 + E(- 2 )E2 +(-1)E = 0,0

in.Lnje *EO + (C 0 ) n 2 E 0 E~ 1 E 0.()
ii+_LE nni- O( -2-+ ( 1 ) E l  0

The first and the third of Eqs.(20), together with (19), form a system
of equations for EO, EI and E 0 , the determinant of the coefficients

yielding the zero order dispersion relation. [The second of Eqs. (20)

should be moved to the first order system, since it contains E2_ and E.]
IIe

I . . . . , , - . - . . - - .j . . ' . , " . " , - . ' . ", , ".-. ' ,% ", . -, " . . . ",
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One has, by making use of Eqs.(10),

2 2 2 2 22 0(I - X n. -n XA)(2 - X - n±-2n) - nn, = 0, (21)

where2
A -*(a 0  -a ,/ao 0 ). (22)092 0, 09

The following comments can be made regarding the dispersion relation

(21). First, this relation differs from the cold plasma dispersion

relation (evaluated at the resonance) by the presence of an additional

term in the first factor, which contains the function A. Therefore,

the function A is solely responsible for the generation of the zero

order relativistic Doppler effects, which will be further studied

in what follows. Second, it is clear from Eqs. (12) and (22) that

when (C4, 1 (i.e. nu>> ) A approaches zero, which indicates that the

relativistic broadening becomes negligible. Third, in the case of

perpendicular propagation (n|= 0, or 0(*) the two modes represented

by the two factors in the first term in (21) are decoupled. The

dispersion relation for the ordinary mode (the first factor) is

n2  ( - X)/(1 + XA0 ), (23)

where A0  lim A. As will be shown in Sec. IV, in the Maxwellian

case this limiting value coincides with the result of Dnestrovskii et

al.2. The second factor in Eq.(21) represents the extraordinary

mode, and contains no broadening effect to the zero order theory as

developed here, thus the cold plasma dispersion relation appliess

n2 a 2- X. (24)

In order to study the broadening of this branch, the second order

contributions for E., are required. This will be done in Sec. V.

. .I
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Fourth, as is demonstrated in Sec. II, the imaginary partsof the

integrals In defined in (13) are zero whenever 2 cx5, 1, indicating

that A is real in this case. Therefore, the region of evanescence

for waves near cyclotron resonance is obtained as

-loi - .(25)

In the special case of perpendicular propagation for Maxwellian

plasmas, this result (which then reduces to k< IS"I ) has already

been pointed out2 4 . It may be of some interest to note that the

condition (25) closely resembles a similar condition, namely

M/))2 _1 > O, in an earlier work8, in which waves propagating

along the external field (n.L = 0) were studied.

4e'



IV. MAXWELLIAN CASE

The purpose for studying this important case is two folds

it allows one to perform quantitative evaluations of the results

presented in previous sections, and it also enables one to compare

the present results with those previously published, since, as was

pointed out earlier, previous studies invariably assumed this case

at the onset of their formulations by adopting the continuum

description for the dielectric tensor.

The relativistic equilibrium distribution function is

F(u) = (LfXc 3 )1 [P/K2 (p)] exp(-P). (26)

where p = meC/Te = 2?2  By introducing the normalization w= u/ye,

and expanding into powers of j12, one obtains

=-3/2 _w2  -i2 w4  2 4
F (w) e (1 y12 . w + o( iq) (27)

Thus I dependence in F(w) can be neglected in the first order theory.

One also observes that (2) which will be used in studying the

broadening of the perpendicular extraordinary mode in Sec. V., has

no second order correction due to the relativistic effects associated

with F(w), since 6(o) involves only the zero order moment, and (1> 3 1.

Therefore, one can use nonrelativistic Maxwellian averages, <w-2> ,

<wwi rWl -=n! (2m)!4-m/mI, and <w2n> =(2nii)14-n/nl. Moreover, Z(4)

is the standard plasma dispersion function9 , and satisfies Z'=- -2Z,

with Z(O) -i7ti. The integral in (13) now can be performed exactly,

by making use of the recurrence relations

I =nI - *42nz(4) -2n+ /(2nl)nl n-i
giving n (28)

In=-nI I (; 2k/kI) [Jz( ) +2/2~~
k=O
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Equations (15) now yield

z0 , 0 =[Z),

z0', 2 +(t O() [z] +tC z], (29)

+ z [z] (0(& [ zJ lo

.4,z =4 +30e2 -f +~ +. (3 +J 2 +.2 02 f +- 2X3)[Z]o,3 0( o(2 2 2 2

where the notation [F( )] denotes
1

[F() F*(1(I.-2 a) F *(-l 1 (1 -2fo02 (30)

where the complex conjugate is taken to assure that t approaches the

real axis from above.

It is straightforward, but somewhat tedious, to show that Eqs.(29)

reduce to the nonrelativistic limit as c 40, namely

z 1 + f Z(f) (0 11 (31)

z Ot f "jz(q),

z + f * fZ
*4% 0,3

which are more readily obtained from iEq.(Al ) directly, which states

n mthat in this limit Z n,m l - w if n,m .

The case 0-# cn is also of considerable importance, since it

corresponds to the case of perpendicular propagation, viz., n11 =0.

However, in taking this limit one should keep the quantity /h finite,

and consider the limits ofZO0,2m and 02Z 0,2mi (cf. Appendix II).

%d .,d. - ' .%V~%~V~ a§iZdX ~K:-~,2m . *...l
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Although this limit can be carried out directly using Eqs.(29), it is

more convenient to use the definition (11) directly as is done in

Appendix II. The results can be expressed in terms of the functions

F introduced by Dnestrovskii et al. as well as the functions
q3q

introduced by Shkarofsky 3 . One finds that
_ 2nI(2m)!

lim (Z 2 n, 2 m) - 2mm nm+3/2
4m mF J/ (32)

lm(oWz (F Fm1)
' 2! 2m1)li ((22n,2m+l) = -4m! (n~m+3/2 - n~m*5/2)'

leading to

lim a n,2 m 2n!(2m)IF
S4mm Fnm+5/2

-'A) (33)
Urn (oa =2ml 4m m (Fn+m+5/2 -Fn+m*7/ 2 )"

Ck-0, OD 4m MI

The latter can be used to calculate the limiting value of the dielectric

tensor, cf., Eq.(10), as well as the function A introduced in Eq.(22).

One obtains

SA0 =lim A = *F7/2 . (34)

Equation (34), together with the dispersion relation (23), coincides

with the results for the perpendicular ordinary mode first derived

by Gershman5 and Dnestrovskii et al.
2

For arbitrary values of , the function A(o(,&) can easily be

calculated by using Eqs.(29) together with Eqs.(12) and (22). Figure

1 illustrates the real and imaginary parts of A as a function of -2/(

for various values of the parameter (x. The case c= 5 agrees with the

limiting value A0 within two digits of accuracy, leading to the
.0
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conclusion that the asymptotic expansions in terms of the parameter

i/c2 presented by Shkarofsky3 , which are further studied in Appendix

II, are useful whenever a 5. The cutoff condition (25) is also

observed in Fig.1 as Im(A) vanishes for 20 . Both real and imag-

inary parts of A monotonically decrease in general, thus making the

cold plasma approximation more appropriate for c'4K 1.

4'

-4, . -. ,. - - . . - " - - -- -. - ". - - - - . • . - " - . ° - - . -. . - -. - - -, - .
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V. SONE APPLICATIONS

A. Perpendicular Extraordinary mode

In the case of the perpendicular propagation, the dispersion

relation (17) can be factorized. It is more convenient, in this

case, to expand directly the extraordinary branch, which reads

n2 E__- rc (_5
n e2 . e__ + eexp(-2i*) (35)

rather than developing the second order theory in the manner of

Sec. III. Introducing the ordering given in Eq.(9) into (35), and

keeping terms up to order '2, one obtains
(0) 2 [( 2 ((+) + Oe2i)21

n2  26+ 22  e 2-) • (36)

It is important to note that the only second order component needed

for the extraordinary mode is E(2), which manifests the convenience

of the present coordinate system over the cartesian system, in which

every component appearing in the dispersion relation must be evalu-

ated to the second order. This component is obtained from the first

of Eqs.(8), giving

+> + [ n a 20 - ni_~) j_ 3w8 w. - ~x2

which in the DMaxwellian case and nl = 0 yields

*+ - +XnfF 9/ 2 tX( - ~n2~ (37)

where x2 = -2, = 27-2((fl/cO- 1). The second term in the right-hand

side of (37) is missing in 3hkarofsky's "warm" elements3 . 1owever,

its contribution to the dispersion (as will be shown later) is sinall,

since it affects only the Doppler shift.
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By making use of Eqs.(10) and (33), and also approximating

successively, one obtains the dispersion relation from (36) as

n2 -- (2 - X) +.22(2 X/ 2 ) ( - XF7 ) 2 - X(2 -X)2F
4Xr7/2 9/2~d

+ ( X2)_ -!2 - X)J (38),3
The latter equation has notable differences compared to the one

derived by Dnestrovskii et al.2 and used extensively by Fidone et al. 4

viz.$= (2-X) + 2(2-X) 2 /(4XF/ 2 ).39)
* DF 12X 5/2 (39

The difference stems from the neglect of the second order contribution
from E++, and also from the incorrect assumption that 6x- yy2i

xx yy-

0 0. Unlike the Shkarofsky approximation, Eq.(39) fails to describe

the relativistic Doppler broadening appropriately. To see this,

consider the imaginary part of n2 , which can be written, with Eq. (A9),

as

Im(n2) X.2(2 ) 2 [( 1 -)2 1m( ) 4Im~ 12( RX FI x'Im(Fs/51A' (40)

and Im(n 2  = 2 (41)

F5/2

The second term in the bracket in Eq.(40) affects the damping coef-

ficient only for larger values of x,when Im(n2 ) is already small.

Thus the major difference between Eqs. (40) and (41) stems from the

factor (1- 2X/5)2 , leading to the conclusion that the discrepancy

becomes increasingly important as X aproaches its cutoff value 2.

For a moderate value of X = 0.3 the relative error is nearly 25%, and

at the cutoff it could be as high as 64%. :hc D-.V approxik.ation

is valid, however, ..- tonuous plasmas. :n 'ig. 2, a comparison

.4-



J .%- -V -

-19-

of the present result with the approximation of Ref.2 is presented

for 0.034, WO-(211)18Ghz., and for X = 0.3 and 1.0 is shown. An

6independent calculation provided by D.B. Batchelor, which is based

on Shkarofsky formulation3 , is in good agreement with the present

result, indicating that additional Doppler shift terms found in

Eq.(38) do not affect the absorption rate.

4,,

Ii

.*'1
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B. Nearly Perpendicular Ordinary Yode

The appropriate dispersion relation is given by Eq.(21), with

the definition (22). For the Yaxwellian case, Eqs.(29), together

with (12) are used to calculate A. [In the non-Maxwellian case,

Eqs.(15) must be used instead of (29).] Although the resulting biquad-

ratic equation for nL can be solved by factorization, a simpler approx-

imate form can be obtained by approximating successively with respect

to nil. The zero order solution is

(2) = (1-X)/(1+AX), (42)

leading to

n 2
2 = 2 , - n (43)

The second term in the bracket represents the broadening due to

mixing of modes, and it is expected to generate a small correction,

since nll is small.

Numerical evaluations performed for a Maxwellian plasma based

on Eqs.(42) and (43) are presented in Fig.J for various values of

the parameterS, and for = 0.034, C =(2r)18Ghz., X = 0.3. It is

found that for ot = 5, both the real and imaginary parts of k1c differ

6
only negligibly from their corresponding values for f = aD they

appear to be shifted slightly to the left. The coupling effects

are also negligible in this case, since in this case nl1  I/a =

0.0068, corresponding to a propagation angle of e T 89.50 . For

2p
C(--1 (e ' 8 7.70 ) the shift is more pronounced, and the resonance

curves are flatter. For c = 0.5 (e0'85.50 ) the broadening is

-q-q .% , .,,',V, ". -. -, -:v-.' .. .. :y-; .-. -,. , - . . , ,. ., .,*
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further extended into the region 6j>Ia , starting from the cutoff

value () = 1.0o23 I-I The coupling effects are also more significant

in this case, and the line width is more than doubled compared with

the case of perpendicular propagation.

The study of the nearly perpendicular extraordinary mode based

on the dispersion relation (22) predicts only broadening due to

mode coupling effects. Calculations performed indicate that these

effects are of the same (or lower) order of magnitude as those obtain-

ed in the second order analysis. Therefore, the broadening of the

.* nearly perpendicular extraordinary mode requires the second order

treatment, which will not be given here.

<"

.)•
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C. Higher Order Harmonics

In order to study the relativistic broadening of higher order

harmonics, one must re-examine the ordering of the dielectric tensor.

When the ratio of the Larmor radius to the wavelength is of order

(as is assumed in this paper), one observes from Eq.(5) that the

contributionsof the Nth cyclotron resonance to the dielectric tensor

have the following ordering:

eN (rC16N- N -2.N -3N C-4N2 N-4. ''eN _ o(iN 2 o( _ o I I=., l = t, = I

Therefore, when N>2, E does not have to vanish. For N> 3, the zero

order components do not contain the resonance effects, thus the cold

plasma dispersion relation evaluated at &J= NIS1 prevails, viz.,

2_ 2 2 2
N ?)N)()1) NTNi- (1) N2 _1 11

22 X 2 (4
nlln.L(1- - n ) = 0. (44)

For N 2, however, the dielectric tensor contains a resonance contri-

bution through the component

2 - xn,_ aj, o + 0) (45)

which modifies the cold plasma dispersion relation, yielding

D:2 n2 nal, 0 V"2 = 0, (46)

where M is the cofactor determinant of the (--) element, viz.,

X X 2 n2 (N-I)X I2 2. (47)
(1 -( i)(1 2- -n (i-- 2-n.(1 %~ 1 r~)~ -~ . (47N 2 I' 2 N I )

The function a10 , which is defined in Eq.(ii), can be written, by

using Eqs.(Al) and (A2) as
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a, 0  2- 2 2 Z0o, 0 2(1 %YZo 1 -3 Zo , 2 Z0 , (8

where

whr 2 (1 - NI./W) (49)

The functions Z can be calculated from Eqs.(15), or, in then,m

Maxwellian case, from Eqs. (29).

The dispersion relation (46) is a cubic polynomial in n2 , due

to the presence of the relativistic term a1 ,0. However, in the case

of perpendicular propagation it can be factorized. The first factor

leads to the cold plasma dispersion relation for the ordinary mode

evaluated at the resonance, i.e.,

n 2  X/4, (50)

indicating that, unlike the case of N = 1, the second harmonic ordinary

mode contains no zero order broadening. The extraordinary mode,

which is associated with the second factor, is obtained from the

following dispersion relation:

(1-x/6) (1-X/2) - n2 (1-X/3) n 2 X (1-X/6 - in2 ) ia0, 0 = 0, (51)

0where a is the large c( limit of aI,0 , which in the Maxwellian case1,00
gives a, 0 = -2F7 /2, cf., Eq.(A14). Therefore, for N =2, the absorp-

tion of the extraordinary mode is more significant than that of the

ordinary mode when nl 0 (or nearly zero). Apart from notation,

Eq.(51) in the i"axwellian case is equivalent to those given in Refs.

2 and 3, and to that recently studied by Bornatici et al.10 in connec-

tion with certain mode conversion schemes.

-1"2 2.'2.'..'2,.';-.,,.".- -.-.-- -.- - - - - - - - - - - - ---- - - - - - - - - - ..-- - - - - - .- - - -. . . . .
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The two factors in the first term of the dispersion relation (51)

correspond to the cold plasma right and left hand cutoff frequencies

at the resonance, and the coefficient of n2 in the second term leads

to the upper hybrid resonance frequency. The last term generates the

relativistic broadening effects.

When nll is not necessarily zero, Eq.(46) can be written as

A3y3 + A2y2 + Aly + A0 = 0, (52)

2where y = nL, and with the shorthand Xm = 1 - X/m, the coefficients are

A 3 = X al, O,

2 3 -A3 (X 4 2X -n),

2 2 2

A1  X6 2  X(X 4 - n) + X nl A32X4 ( 6 _n)

A0  X4 (X6 - n11)(X2 - n,).

In Fig. 4 the function a1 ,0 is illustrated for the Maxwellian case

for the values of a = 5, 1, and 0.5. The imaginary part of al, 0 is

zero when 2f2(X 1, thus the region of evanescence for the second

harmonic is

2(l/co N 1 - W (53)

For = 5, a is very close to its large ox limit -2F7/2 , and for

0/,K 1, both real and imaginary parts of a, 0 are much less than 1

in magnitude, hence the broadening is negligible in the latter case.

Figure 5 illustrates the variation of the real and imaginary parts

of k, for the extraordinary mode as a function of 21AI/&), for the

'axwellian case with :: 0.3, v /c 0.034, qnd CJ 27T 18 Ghz.
* C
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. The general behavior of these curves is similar to those given in

Fig. 3 for the fundamental ordinary mode. The 0( = 5 case coincides with

the perpendicular propagation case within at least three decimal

*digits. For smaller values of 0(, the maximum value of the imaginary

part of k_ decreases, and the line width increases.

The second harmonic ordinary branch has a negligible imaginary

part and does not vary appreciably from the cold plasma value given

in Eq. (50). It is important to note that the Re kLcurves for the

ordinary and the extraordinary modes intersect at the two values of the

wave frequency. The one corresponding to the smaller frequency, (or the

larger value of 2Jf1/j), appears to be promising for a possible mode

conversion between these branches.

The third root of Eq. (52) leads to a branch which is nearly

electrostatic and heavily absorbed in the plasma.
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VI. SUMMARY AND DISCUSSIONS

In the present paper, the relativistic broadening of nearly

perpendicular waves near cyclotron resonance is investigated for

a warm (ve/ci(. 1), isotropic, but not necessarily Maxwellian,

plasma. The underlying assumptions are that) = 0(4) = OCn) = O(kc),

so that _ = O(cve) and n1 = O(ve/c). When these conditions

are satisfied, one also has 1E1_1 O(c/ve), and the zero order

dispersion relation is no longer the cold plasma dispersion

relation near the resonance as was found in the nonrelativistic

case.7The formulation is uniform in the parameter ve cnjj so that

all values of n11 provided that n = O(i)] can be studied. However,

the relativistic effects are unimportant when this parameter is

much less than one. The formalism used is also suitable in geo-

metrical optics methods to study the effects of weak inhomogeneities,

even though the magnitude of these effects may be altered due to

the ordering assumed.
7

The basic advantage of the formulation given here is to express

the dielectric tensor in terms of a set of functions defined

similar to the plasma dispersion function of the nonrelativistic

theory. Various recurrence relations and reduction formulae

obtained help one to evaluate these functions with relative ease;

particularly so for the Maxwellian case, in which case the results

are expressed without any integrations or infinite series involving

the plasma dispersion function. The latter property enables one

to calculate efficiently the broadening of the plasma spectrum in

some range of physical space.

4% *'4

" " " "" % " ,' , " ', ''" ,' ,' ' '' "" "J : "" " . ".". " -' -' -/-, " '', ' " ' '" / ' ' " ' " ;" ".. ".
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The formalism is applied to the fundamental extraordinary mode,
2

(which requires the second order theory,) for n 0, and the correction

terms for Im(n2) are given, which generalize the previously published

results for the tenuous plasmas. The study of the fundamental

- ordinary mode shows that the relativistic broadening is very sensitive

to the angle of propagation, and it is restricted to the region within

a few degrees from the perpendicular propagation.

. . 2N-4
The broadening of the higher order harmonics is of order

for the Nth harmonic. The zero order theory for the second harmonic

shows that the ordinary mode is nearly undamped and the extraordinary

mode has a damping rate larger than the one for the fundamental

ordinary mode. The possibility of the mode conversion between these

branches are also pointed out. An analysis for the latter problem

requires the inclusion of the spatial inhomogeneities, which will

be studied elsewhere.

The region of evanescence for the Nth harmonic is

nI.AI/ < 1-54

It is of interest to note that this condition is independent of the

plasma frequency, thus it may be used as a diagnostic tool in weakly

inhomogeneous plasmas.

4
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APPENDIX Is PROPERTIES OF Z FUNCTIONS
nom

The functions Zn,m are defined in Eq.(11) with D given in (8)

are needed only for even values of n. The following recurrence

relation is obtained directly from the definition

Zn+2,m = (2/)(Zn,m+1 - jZn,m - <w.w,>) -Zn,mt2 ,  (A:)

which enables one to express these functions in terms of Z

Furthermore, when F is isotropic, as is assumed in this paper, the

derivatives of these functions can be calculated using

dZn -nn(n nZ)i(A2)
ntm/d " Znm -mZn,m-1I- n-2,mi1' (n 0),A

which is obtained by integrating by parts after replacing F in (11)

by its derivative.

Since D = -CK(w - t+) (w - ), where

-= (1/00 le ; (e2 _ 2to)a] ,(A3)

being the cosine of the polar angle in the velocity space, one

obtains, with the use of the identity

w k*l a k+1 k= aik- J
+- a-a

kw 2n+m 2 2n*mt2

Z2n'm =-'if11(-2nmf.dwF(w)[

2ntm

+ L (.jij_ yjtl)w2n+m-j , (A4)

j-0

where q = (1/0)(e 2 - 2f9() (. Since _(-) = - after

extending F as F(-w) = F(w) and replacing e - and w--w, one

obtains

-. *,, *,,',,V %-.,',X . . < , ,,s , v-., ,, i-,, X- ,,,+,- . .. +. . .. + , . . . . .. .. + -... . . -. . . . . ..+ ' .' -. '++," . +.,-- .
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_?n m  w~~i2j>ttz-
- _ 10£11 J= (1=0~e

Z2n,m (A5)

I(f JR( ~e2nemrn+m*2zc+ _2n~m+2!,,Y
- J-q + ~ ~ ~ "'.'

where the function Z( ) is as defined in Eq.(14). Equation (AS) can

be further reduced by observing that the lower half of the integra-

tion in the first term of (AS) is (-l) j +m times that of the upper

half, hence j+m must be even. Moreover, since d /q--±-cd _/(±, with

ii- 2 * 42 = 0, the two terms in the second integral can be

combined into one, by introducing the variable as

= + (2 2 )i (A6)

and the contour C defined as the image of -1/, 1 under the mapping

(A6). One obtains, with r-[m/2] being the closest integer less than

or equal to m/2,

n+r 2 .m-2r
Zn _ d (l- 2) n m Z <w2n+2r-2p-2> J 2p+m-2r-
2n;m OM p=0 j=0

- 2 fSd [C2 - (jq 2 ") 2 3n(kQ' 2 + ) m 'z(). (A7)
2C

Equations (15) are obtained directly from (A7). Since the factors

which multiply KZ() in the integrand in (A) are polynomials in 2

the dependence of the second term on the functions I introduced
In

in (13) is evident.

; ; > .": N .: :/ ..h:. . ";".: :; . .," : _' "" "' -" .- . ..-,", . - , - --'
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APPENDIX II. CONNECTION WITH F and : FUNCTIONS
q q

In this Appendix the relations between Z functions and then~m
Fq functions introduced by Dnestrovskii et al. is given. It is also

shown how they are connected to Shkarofsky's T q functions, so that

the results presented in this paper can be compared efficiently with

those previously known.

Consider the functions, with F(w) 7 ,3/2exp(-w2).
nId) w2 n F()

-(m) =2n - d3 w  )m (A8)
n+3/2 {2n+l) ! (w 2_x 2 )m

These functions have the following properties& For m- -,
.*( )

F() = 2*2xZ(x) =-Z'(x), with x--(x2 )*.
3/2
(1) ( x2 (1) (A)F F(l) +F )/q.
q+1 q

Since these are the recursive properties which generate the Dnestrovskii

functions, one concludes that

F() = F. (A1O)
q q

For m> 1,

F(M) = (~)(m-1) x2F)Jqq+l q q '

d (m) . F(m+l) (All)
=F q qd(x

F(m+1) -F(m) - (m)

q+l Fq q+l2

In order to relate these functions to Znimn consider the asymptotic

expansion of the latter in 1/0( which is obtained by expanding l/D

into power series, giving
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CD n 2kz2 2k-m~l d3wW~r Wifl F (w)(A2

SZm (wofd 2  2 2k-m +l  (A12)

where r"[(m+1)/2], and x2  -2fIAt 2 2(1/1

One obtains after some straightforward manipulations, and angular

integrations,

2nm n! 2: (2km l F(2k-ml) (A13)Inm M-_1  oLrCX2k-m~lk (ml n~k+3/2•(A3

The large limits given in Eqs.(32) follow directly from (A13),

*with the third of Eqs.(All). Substitution of (A13) into the defini-

tion of anm in (11) yields the result

.nl CD (2k) !F2kml
an,m 1 2m-1 : 2km F(2k-m+ ) (A14)

k=r ki (2k-m) n+k+5/2

from which the limits in Eqs.(33) follow. When this result is

substituted into Eqs.(10), one finds that Shkarofsky's "warm" elements

are obtained to the order one in V and order -2 in o(.

In order to establish the relationship with Shkarofsky's Tq

function (or Wn function used in Ref.4) consider the simplification (15)

given in Ref.3

q( dt exp [_x2t

ex(-oW F F(1) (x2 + 1/X21. (A15)SW(-ep 2 j q+J

In the latter equation, the function F(1) is regarded as a function

of x2 . Expanding this function, as well as the multiplicative expo-

nential function, into powers of 1/6, and rearranging the termr

- . .-
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one obtains the asymptotic series

ODW(m)= (2k+m)
q 2k F(A16)

k=0 0(k, l

where

,and - (m~i) dd F(m). (A7)
q q d(x2) qA7

In deriving (A16), the following relation is used, which can be

established by induction,

.4 k

F(2k~m) = 1 k-p (k)'1 p-(A
"" F~ =p0L- (1)- ( P ) ( ) F ( p + m - j ) , (A18)

p0k -= = j qj

The functions an,m for m=0,1, and 2, which appear in Eq.(10), can

be expressed in terms of Shkarofsky functions as

aa (j
an,O = -2nl -n 5/2

'(2)

an, 1  -(2n 11/oL) ?r.-(2)19= J'~n+7/2' A9

(1) + (2/0(2) 5(3)a n 2 = -nl LT-n +7 /2 In+9/2 •

Equations (A19) can be further reduced by making use of the recurrence

relation

7; (mtl) = K) -(m) 1  (A20)

q~ q i'q+1 ~

The function A may also be written as

A(1 /o2)[/0 - (1) 5 )) (A21)

An evaluation of A based on the latter, together with (A15), is

certainly much less efficient than the method presented in this

work. Keeping terms up to order 1/&2 in (A21),[using (Ai6), jand substi-

tuting into (42), one gets the dispersion relation given in Ref. 3.

* *'- , *,ri: *. .a ,,* . .... ,........... ..... ... .. -. . .-.... --.... - .
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FIGURE CAPTIONS

Fig. 1 Real and imaginary parts of A(Jf)for the Maxwellian

case as a function of x2 = -2 /= 2 ( ,/wI - 1), for

" = 5 .o, 1.0, and 0.5.

Fig. 2 A comparison of Dnestrovskii approximation with the

present analysis: Im(kj) (cm -I ) vs. -D/Wl for the

perpendicular extraordinary mode, and for X =0.3, 1.0,

0.034, W,- (27)18Ghz..

Fig. 3 Real and imaginary parts of k (cm- ) as a function of

(SVWI for the nearly perpendicular ordinary mode, for

X=0.3, q=0.034, W =(27I)18GHz., and for the values

of 0(= 0.5, 1.0, 5.0. (Maxwellian case)

Fig. 4 Real and imaginary parts of a 1 0 for the Maxwellian

case as a function of x2 -- 2 f2/ -2 1
2 (2Ig/L- 1), for

Ck=5.0, 1.0, and 0.5.

Fig. 5 Real and imaginary parts of kL (cm- ) as a function of

21 IJ/c) for the second harmonic extraordinary mode, for

X - 0.3, 1 = 0.034 , &)= (27)18Ghz., and for the values

of A- 0.5, 1.0, 0.5. (Maxwellian case)
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