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ABSTRACT

- The design of a composite panel requires some way of finding the['I

minimum thickness laminate which will withstand the load requirements

without failure. The mathematical complexity of this problem dictates

the use of non-linear optimization techniques. Although there are

sophisticated optimization programs available capable of solving for the

ply ratios, these programs are not often used in preliminary design

because they require a large computer and some knowledge of the

program's operation. As an alternative, specialized laminate

optimization programs were developed which are compact and efficient

enough to run on microcomputers. Only stresses at a point and inplane

loads and deflections are considered. The programs are simple to use

and require no knowledge of optimization. Techniques are developed in

* this thesis that find minimum thickness laminates with either ply ratios

or ply angles as design variables. In addition, a method is presented

for finding the optimimum orientation for the axis of symmetry of an

orthotropic laminate. The orthotropic laminate program uses an

approximate failure theory, as suggested by Tsai, that has been found to

speed computations dramatically. - -

Many test cases were run with these programs to demonstrate the

weight savings possible over quasi-isotropic laminates. Of particular

interest is performance of the laminates under multiple independent

loads. Initial orientations for the programs to operate on were

studied, and 0/90/45/-45 laminates were found to be an effective

starting point for design.

The approximate failure criterion made analytic investigations of

*. optimized laminates possible. A method of plotting maximum strain

xi
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energy density as a function of the shear-stress-free laminate

"-".V-: orientation is derived t demonstrate how the laminates adapt to

multiple design load requirements in the optimization process. Also, an

optimality criterion is derived which is satisfied by each ply group at

the minimum thickness condition.
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I. INTRODUCTION

<i Background

Almost any introductory text on composite materials will make a

statement to the effect that one of the principle advantages of

composites is the possibility of tailoring the laminate to suit the

structural requirements. By using the directional nature of the

material to advantage, highly efficient structures should be possible.

Yet, except for uniaxial loads, no suggestion is made for selecting

these tailored laminates. The omission is not accidental, but is due to

the difficulity of converting the equations for laminate analysis into

* equations for laminate design.

When sizing an isotropic plate, the orientations and the number of

plies at each orientation can be variable. Although analysis equations

4 for finding the response of a given laminate are well known, these

equations cannot be solved to yieid the best laminate for a given set of

requirements. Besides being non-linear, structural design requirements,

such as strength, are stated as inequalities. There is no way to know

how to assign equalities to the equations and solve for the design

variables. We cannot tell which combination of requirements will be

"critical" for the best design.

A common approach to sizing laminates is to asume the plies are

acting independently. For strength requirements, this is referred to as

* netting analysis. Although in general this is a bad approximation,

reasonable results can be obtained for 0/90 laminates with no shear.

With any other case, such as additional ply groups, off-axis loads, or

41
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multiple independent loads, netting analysis cannot provide a reasonable

basis for design. The plies within a laminate interact in a complex

manner and cannot be considered independent. Because of the

interaction, there are no simple formulas for proper sizing, nor is

intuition a reliable guide.

Non-linear optimization techniques developed over the last 20 years

-,'I provide a sound mathematical basis for laminate sizing. The techniques

should not be thought of as the final step in design, used to shave off

a couple percent of weight, but as the starting point of design.

* Optimization can be applied to any design constraint that can be

mathematically modelled. Constraints may inctlude stiffness, strength,

stability, minimum gage, and dynamic response. In this thesis, the

author has chosen to work only with strength constraints. Besides being

an essential element of design, it is one of the few constraints which

can be described as a point problem, assuming loads do not change as the

laminate changes. The optimal laminate will be considered as one with

minimum thickness, and thus weight. For constraints such as stability,

the optimizer must be coupled to a structual analysis method, such as

finite elements, in order to describe the geometry and boundary

condition influences. The assumption that optimization for strength can

be dealt with as a point problem is completely valid only for a

determinate structure. The optimization procedure will have to be

coupled to a structural analysis code in some iterative process in order

to properly size indeterminate structural elements. Still, the simple

methods and programs presented here should be of aid in much of the

initial design process.

The role of optimization is particularly inportant when designing

for multiple loading conditions. A wing panel must sustain several

2



different flight conditions, as well as ground loads. Not only are the

-. mmagnitudes of these loads changing with time, but the orientation of the

load principle axes may also change. For directional materials, it will

often be convenient to think in terms of shear-free loads and an angle

that transforms the loads to the laminate axis system. Because of the

laminate's anisotropic strength, changes in the principle axis leads to

a problem that does not exist for isotropic materials; it is impossible

to pick a severest load condition by inspection and size the laminate to

that load alone. In fact, there may not be any single severest

condition. For a minimum weight laminate, some of the plies may be near

failure for one load, while other plies are critical for a different

load. One result of this added complication is that optimization

results cannot be tabulated in a design manual. There is no way to

characterize all the possible loading combinations into a finite set of

graphs. Instead, the computer must become an integral part of

preliminary design.

If optimization is so valuable to the design of composite

laminates, why isn't it in common useage? After all, the basic methods

of non-linear optimization are well developed and can handle much more

complex problems than sizing a laminate. Indeed, laminate sizing is a

comparatively well behaved problem, with typically only a few design
!"

variables and constraints. Part of the answer may be the reluctance to

use a complex and general code requiring a main-frame computer. In

.addition, there may be some lack of confidence in the procedure. This

thesis presents some specialized, user-friendly codes which can be run

on microcomputers at the designer's desk. Hopefully, by having a desk-

top computer that only requires the user to respond to some simple

prompts for input, further application of optimization will be

3
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encouraged.

o.The potential for applying optimization techniques to composites

has not escaped the attention of other authors. At least 2 programs

exist in a documented, publicly available form. One is COMAND by

Vanderplaats [] which couples a laminate analysis program to an

existing general optimization code, also by the same author. Maximum

strain failure criteria are used, and minimum values of the A matrix

components can be entered to account for minimum stiffness requirements.

Another program was written by Khot [2]. Instead of a direct numerical

optimization, this program relies on the assumption that strain energy

density will be equal for all ply groups as the laminate approaches

minimum thickness [3]. An iterative procedure for adjusting the number

of plies is derived from the assumed optimality condition. The program

also includes an approximate buckling constraint, based on "smeared"

laminate properties. The optimization routines are coupled to a finite

element code to update the stress state as the composite panels change.

Neither of these programs meets the requirement for simplicity of use

which is the goal of this thesis.

Without a numerical optimization program, the minimum thickness

laminates can still be studied if there is only one free variable, such

as the best angle in an angle-ply laminate. Some of these one-

dimensional searches are presented in [4]. This reference is notable

because it includes the approximate, strain-sphere failure criterion

discussed later in this thesis.

The programs written in the course of this work are all in BASIC.

The particular computers were chosen somewhat arbitrarily, but the codes

.4.. should be readily transferable to other computers with a minimum of

change. Optimization with the quadratic failure criteria with a

4
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complete set of laminate property outputs requires about 12 kilo-bytes

of memory. The angle optimization can be attached for about 2k more

memory. A simplified version based on an approximate failure criteria

fits in less than 6K. Programs have been written for the Timex-Sinclair

1000 [5], the Epson HX-20 [6], and the Texas Instruments CC-40 . These

last 2 microcomputers were picked because they offer true desk-top

capability; the original goal of the project.

e .. ° °°. °° - ° ,. -. .- . . . . . . . .



Laminate Theory

The developement of the laminate plate theory equations will follow

Tsai and Hahn [7] wherever possible. The difference will be that vector

notation is used more extensively in this thesis. The plates will be

subject only to inplane loads and deflections. The order of plies in

the laminate, or stacking sequence, is not a factor in the optimization

procedure. However, for the inplane deflection restriction to be valid,

the actual laminate would have to be symmetric. That is, for any ply at
.4

orientation e, a distance Z above the midplane, there is a

corresponding ply of the same orientation at minus Z. For these

restrictions, strain is a constant through the thickness and the stress-

S strain relation is simply

N = [A]c (1)
where

Aik P IQJk 1 (2)

t-laminate strain vector

A-load vector in terms of stress resultants

(1)
QJk -modulus component trarsformed from the orientation

of the i'th ply group

M-number of ply groups

hi-thickness of the i'th ply group

Several ways exist to perform the transformations. The programs listed

in Appendices B-D use an invariant formulation with multiple-angle

functions as given in reference [7]. In terms of engineering constants,
t-.e

?':" the Q's are given by

4
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Qxx=mEx Qyy=mEy

.1 -*(3)

Qxy--mNyEx Qss= Es

where

M ~x y
Ex is the longitudinal Young's modulus, Vx the longitudinal Poisson's

ratio, Ey the transverse Young's modulus, and Vy the transverse

Poisson's ratio.

The axis system convention is shown in Figure 1. x, y, and s

subscripts denote properties in the ply axis system, and 1, 2, and 6

denote properties in the laminate axis system.

A ply group will be defined as all the plies of a particular

orientation and material (for hybrids), whether or not they are actually

adjacent in the laminate. In the optimization procedure, ply group

thickness is handled as a continous variable. The individual ply as a

discret unit is ignored. After the procedure is finished, we must

divide the ply group thickness by the thickness of an individual ply and

round-off to get the integer mumber of plies required. A logical way of

rounding-off must be a topic of future research. For now, rounding-up

should be assumed for all ply groups. The term "ply ratio" will also be

used. This is the ratio of a particular ply group thickness to the

total laminate thickness.

For the graphs and tables presented in this thesis, the

conventional lamination code becomes awkward. Instead, the notation

(0/90/-45)

refers to the class of laminates with those orientations, with ply group

thickness determined by the optimization procedure. Also,

• -- (O/90j/t45i )

refers to a laminate with the stated orientations and equal ply ratios,

7
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where no optimization has been performed. Total thickness is still a

continuous variable.

.
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Failure Criteria

One of several failure criteria could be selected for incorporation

in the optimization procedure [8]. The quadratic tensor polynomial or

Tsai-Wu criterion was selected because it fits experimental data well

(7] and because it reduces the number of constraints as compared to

a maximum stress or strain criteria. The quadratic failure criterion is

based on fitting an ellipse to the experimental failure strengths of a

unidirectional lamina. The form of the equation accounts for

interaction between the stresses causing failure. As in most laminate

failure criteria, each ply in the laminate must be interrogated

seperately in order to determine if failure has occured. In this

thesis, first-ply failure is adopted, in contrast to a progressive

*. failure model.

The quadratic failure criterion takes the form

Fijja j + Fjo I - 1.< 0 i,j = 1,2,6 (4)

The F's are related to experimental data as follows

F- -

Fx~ x

.=1 1

= (5)

F 1
Fy - 1" "1

Fxy = F /F yy

S 'v., where X -longitudinal tensile strength

10
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X' -longitudinal compression strength

Y -transverse tensile strength

Y' -transverse compression strength

S -shear strenth
~*

F -non-dimensional interaction term

* has not yet been accurately measured since it requires a reliable

biaxial stress test. From geometric bounds and by analogy to isotropic

materials (Von Mises failure theory) a value of -1/2 is usually taken,

and is used throughout this thesis.

Stating the failure criteria in terms of strain is convenient. In

strain space the failure envelopes stay fixed even if the ply ratios of

the laminate are changed. The strain limits of a ply are independent of

the laminate stiffness. This is an important conceptual simplification

when ply ratios are variable. The failure criterion can be rewritten as

Giji + Gli- 1 0 i,j= 1,2,6 (6)

where the G's are found by applying the stress-strain relations,

assuming linear elasticity to failure. Then

GkZ F ijQikQjk

G i,j,k,t = 1,2,6 (7)

The G and F matrices can be transformed for off-axis plies by a second-

order tensor transformation, just as with the elasticity components.

The linear terms of the equation (G vector) are transformed by

G= P + q cos 29

G= P - q cos 2(
" .:i:::(8)

G6 = q sin 2e

*. 11
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Figure 2 shows the failure enveloped for a 0/90 laminate of

T300/5208 (Graphite/Epoxy). The envelopes are actually three-

dimensional, and shear strain is not shown. Only the region enclosed by

both ellipsoids is considered safe.

An approximate first-ply failure envelope was suggested in

reference [7]. The envelope is based on recognizing there is a first-

ply failure domain common to all possible ply orientations, and thus

independent of the orientation of any particular ply. Figure 3 shows

failure envelopes for several orientations. There is an inner envelope

defined by the 0°and 90°plies, within which no failure occurs for any

possible orientation. Note that O0 and 90°plies do not always define

this space for other material systems. By using this inner envelope, we

have a failure criterion which applies to the laminate as a whole, and

does not need to be interrogated on a ply-by-ply basis. It is

convenient to fit some analytic surface into the envelope. Since

tension loads are of primary interest in this work (because there are no

stability constraints), a sphere centered on the origin was selected to

give a conservative approximation of the inner envelope. The

approximate failure criterion can then be written

~2 +2+1 2  2.. + + < b(9)

2 2 6

The sphere's radius, b, can be set equal to the minimum lamina strain,

t.l'en directly from experimental data. The criterion will be referred

to as a maximum strain-sphere.

The strain-sphere criterion will not be acceptable for uniaxial

laminates, or for loads in the 3rd quadrant (compression-compression),

V1
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FIGURE 2: Quadratic Criterion Failure Envelopes

Material: T300/5208
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but otherwise is of some value. The simplicity of the criterion more

than doubles the speed of the optimization algorithm. For optimization

with tension-tension loads, it has been found to be about 7%

conservative, as compared to the Tsai-WIu criterion. Thus, for quick

answers, the approximation is adequate. In addition to allowing for

P extra fast computation, the maximum strain-sphere is simple enough to

, * allow analytic investigations of the optimization process, as will be

discussed in later sections.

15
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Failure Constraints in Design Space

Normally, failure envelopes show the set of loads (or strains) that

can be sustained by a particular laminate. For design purposes, the set

of laminates that can sustain particular loads would be more desirable.

Instead of stress or strain coordinates on a graph, the coordinates

' should be the design variables, for example, ply group thicknesses.

-' Unfortunately, there may be an arbitrary number of design variables, and

therefore dimensions to the problem. Therefore, general design graphs

cannot actually be drawn, but the concept is important to understanding

the optimization process.

One way of showing the set of laminates that could sustain a given

combination of loads is to make a plot which divides design space into

two regions; a region where the laminates would not fail for any of the

given loads (called the feasible region), and a region where the

laminates would fail (called the infeasible region). Any point in

design space defines a unique laminate. We will restrict the discussion

to taking ply group thicknesses as the only design variables. The

boundary between the feasible and infeasible regions is the surface

defined by the the failure criteria equations when made into an equality

and plotted as functions of the thicknesses. With the quadratic failure

criterion, we can write

-T (p) + .(p)T 1
• (L) JG [ (L) (L M l (10)

where the subscript L designates the strains associated with a

particular set of loads and superscript P denotes a transformation from

a particular angle. Equation (10) can be shown to be a function of the

h's (ply group thickness) by substituting

16



(L A () (11)

An important feature of working in design space is that the constraint

surfaces for more than one set of loads can be plotted together. The

final result is several surfaces in the design space, with the outermost

surfaces forming the boundary between feasible and infeasible space

(Figure 4).

If there are only two design variables, we can actually draw these

design graphs. Figures 5, 6, and 7 are plots of the constraint curves

for a 0/90 laminate under a single biaxial load. The three figures are

for three different failure criteria. To define the feasible region,

the maximum strain criterion requires the number of surfaces to be three

times the number of ply groups times the number of independent loads

(only 4 curves are shown in Figure 5 because shear strain is zero for

the particular class of laminate and the given load). The quadratic

criterion requires the number of surfaces to be equal to the number of

ply groups times the number of loads. Reducing the number of

constraints speeds the optimization procedure. Speed of operation is

another motivation for choosing the quadratic criteria for the majority

of additional work. The approximate strain-sphere criterion is simplier

yet, with only a single surface for each independent load. Because it

is a conservative approximation, only limited use will be made of this

criterion.

17
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II. OPTIMIZATION METHODS

Ply Ratios

The laminate sizing problem can be stated in the language of

optimization theory as follows;

find min. of h

where
mh : hii h. (12)

subject to

Cp,L <0 P,i= 1,2 .... m
hi  0 L = 1,2 ...... n9

where T IG(P) T
CP,L (L) C C(L) ( L)

IG(P)l -quadratic failure criteria parameters

transformed from the orientation of ply

group P

tp -linear terms of failure criteria transformed

from the orientation of ply group P

t(L) -component of strain due to loading L

Although simply stated, there is no simple solution. One of several non-

linear optLmization methods could be applied to the problem. A

modification of the method of feasible directions was chosen after

examining ways to speed the computations enough so that solution on a

microcomputer could be practical. The modification of the method makes
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- use of certain closed form equations at intermediate steps, reducing the

number of calculations needed. The algorithm also takes advantage of

the linearity of the objective function in terms of the design

variables. This simplification also speeds up the algorithm as compared

to more general formulations.

Although many figures in this section show the optimization process

on two-dimensional graphs in design space, it's important to realize

that some aspects of the problem may not be evident until 3 or more

dimensions are considered. For example, the constraints may form long,

"- narrow valleys that the search method must follow efficiently. Because

all mathematics are derived in vector form, the extension to higher

dimensions is simply a matter of book keeping for the computer.

Design optimization must always take into account the issue of

local versus global minima. From optimization theory, if the feasible

space can be shown to be convex, then there is only a global minima [9].

An informal definition of convexity is that any two points in the space

can be connected by a straight line which does not pass out of the space

at any point. The intersection of convex spaces forms a convex space

[9]. Thus, if each constraint surface is convex, then there is only one

minima. From observation of actual plots for cases with 2 ply groups,

the failure constraints of composites meet this requirement. No proof

of the generality of this observation is offered, but the assumption

that the optimization leads to a global minima from any starting point

*" will be accepted in this thesis.

Due to the periodicity of trigonometric functions, there will not

*.." be a single minima when angles are varied. This is a severe handicap to

making angles a design variable.
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In the method of feasible directions, the design is changed so that

the trajectory in design space follows the constraint surfaces along a

direction that decreases the objective function as quickly as possible,

but never leaves the feasible region. A non-linear constraint cannot

be followed continuously because, numerically, the algorithm must take

finite, linear steps. Therefore, a vector is found which both decreases

*the objective function and does not violate the constraint for a finite

move. The trajectory of a feasible direction algorithm is shown in

Figure 8.

The problem with this method, for our purposes, is that finding the

distance to the next constraint along an arbitray vector requires a

numerical, one-dimensional search. Since each constraint evaluation

requires forming the laminate A matrix, inverting the matrix, solving

for strains, and evaluating the failure equations, we would like to

reduce the number of iterations required for this search. Some

approximations were tried, based on assuming the inverse of strain to be

a linear function of ply group thickness. These were meant to speed the

search, but were not found to be completely reliable. Instead, the

method was modified to allow for larger error bands in the numerical

search.

Briefly, the modification consists of measuring the distance across

the constraint surface "valley", along a vector on which the objective

function is a constant. This restricts the method to problems with an

objective function that is linear in terms of the design variables.

Finding this distance still requires a numerical one-dimensional search,

such as bisection, but now the error band can be quite large, reducing

the number of iterations needed. The larger error band is allowable

because only a rough measure of the distance across is needed, whereas

in the feasible directions method, the constraint surface must be

24
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|-. located with higb accuracy, since that point serves as the starting

coordinate of the next iteration of the search. We assume the bottom of

the "valley" will be about halfway across. From the halfway point, ply

* ratios are keep constant, and the total thickness of the laminate is

scaled so that the coordinates in design space rest directly on the

constraint surface defining the feasible region. The scaling operation

is based on recognizing that for constant ply ratios, strain is

proportional to total thickness. This closed form equation compensates

for the error band of the numercial search. From the new coordinate,

the procedure repeats until changes are very small, or a new search

direction cannot be found (Kuhn-Tucker conditions for optimality [9]).

A possible trajectory for the modified method is shown in Figure 9.

The constraint that thickness be greater-than or equal-to zero is

" -known as a "side constraint". These linear constraints are simple

" 0 enough to be handled by seperate logic. If the one-dimensional search

hits a side constraint, and no strength constraints are violated at that

point, the procedure stops on the h =0 plane, rescales the "iminate, and

proceeds as before. Any constraints associated with a zero thickness

ply are ignored. Once a ply is set to zero thickness, it is never

restored. The ability to completely drop a ply group's constraints

seems to be unique to the programs developed for this thesis.

A step-by-step description of the algorithm will be presented,

along with the relevant equations. For clarity, the variables used in

this section will not always be identical to those actually used in the

programs.
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1) Laminate Scaling

Before any optimization of ply ratios can be considered, we must

first be able to size the total thickness of a laminate with constant

ply ratios. Strains are proportional to total thickness. This is

evident by writting the stress- strain relation as

= [a*] N (13)

where [alis the thickness normalized inverse of the A matrix.

Instead of total thickness, it is more convenient to use the change in

the distance from the origin in design space as the scaling parameter.

The strain proportionality is the same for either parameter since

h'- = -h A r (AhO 2 = A (14)7 Zho ro Zho2

0 where L is a proportional change of the individual ply thicknesses, and

r is the distance from the origin. To use this linear relation, a

reference strain vector is calculated, along with a reference r2 Then,

as long as ply ratios are constant, strain for any other value of r can

be found from the equation

r :(15)

where the superscript o refers to reference conditions. This relation

can be substituted into any of the strain-space failure criteria. With

the quadratic criterion we have
ro2 +o P)I _* ro  (p)T°o

o  2 oT IG( ~ + rT = 1- eI  (16)
r (L) (L) r (L) 1

where e 1 is a small (10 ) offset that ensures the point stays slightly

in the feasible region despite any numerical error. Solving for r

28
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°2

-B + B2 - 4AC (17)r = 2A (7

where

A = 1 -e

B -GPE r:-:- (L)
i.'... _ T I (P) -o

C = E T !GM J :O r02
L) (L)

The value of r should be calculated for every possible constraint. The

largest resulting value corresponds to the constraint forming the

boundary between feasible and infeasible space. With this value of r,

the ply group thicknesses are scaled according to

h = hO- (18)
r
o

where again, the superscript o means a reference condition.

2) Initial Feasible Point

Thicknesses are first set to a large, arbitrary value, to be

;4 assured of starting in the feasible region. The program sets all ply

group thicknesses to I/v/ where m is the number of ply groups. Next,

the total thickness of the laminate is scaled so that one constraint is

critical (Figure 10). The scaling operati' - is given above.

3) Active Constraint List

At any step in the optimization, one or more constraints will be

active. These are the constraints that are currently near critical as
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mI
defined by

b-T " (p)T-
.; T G(P)j G > e 2  (19)() (L) 1  )(9

where a value of 0.05 has been found to work well for e2 . Before

finding a search direction, the program must evaluate this equation for

all values of P and L, and maintain a list of these values for which the

constraint is active.

4) New Direction

We need to find a vector which points away from all the active

constraints and is parellel to the constant total thickness plane

(Figure 11). Components of the gradient vector are first calculated for

each active constraint according to the equation

3CPL -T (P) G(p)T

3hi = '(L) IG  ( L),h i  G (L),hi (20)

where
4. ael/3hi

, (L),h i = a 2/3hi
.F-6 a/;hi

Since the applied loads are independent of the laminate configuration,

the partials of strain can be evaluated from the stress-strain relation

as follows;

L: o =L (jAr )

= IAI,hi + JAj',h i

,-. 31
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where

JAJ,hi =Q0)I

so that

,h i = -A'11 IQ(i)l (21)

The gradient of each active constraint is normalized to unit length.

The individual gradients are then summed and the result is normalized to

a unit length. The reason for summing the gradients can only be

visualized in 3 dimensions. Suppose two constraint surfaces meet to

form a valley, and the objective function can still be reduced by

following the valley along its length. If only one constraint were

operated on at a time, the trajectory would bounce inefficiently back

and forth between the surfaces. By summing the normalized vectors, a

resulting vector that points down the valley can be formed. The

negative of the summation will point into feasible space. This

4.

resultant vector will be called W.

The projection onto the constant thickness plane is done by the

double cross-product

4.
z = nx x n)

which, by a vector indenity can be written

Z = W - (W . On (22)

where n is the unit normal to the plane defined by

~m
Sh i = constant (23)i=1 (3

In keeping with good numerical practice, Z is also normali'zed. If the

length of Z before normalization is small ( 10 ) then W and n must be

near parallel. This would indicate that a minimum has been reached and
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the program halts.

5) Distance to Next Constraint

The next step is to find the distance along Z to the next

constraint (Figure 12). A bisection method is used for the one-

dimensional search. The vector Z describes relative changes in the ply

group thicknesses. Moving a scalar distance S along Z changes the

p. thicknesses according to

4 + +
h = hO + sZ (24)

where h° is the vector of current thicknesses for S=0. Note that even

though the individual ply groups are changing, total thickness stays

4.

constant along Z. The program will need to be able to quickly calcuate

the A matrix as ply groups change. To save a few multiplications, the

programs represents A as

IAI = JAo + SIAzi (25)

where

M (k) o
Aoij 1: QiJ hk

M (k)
. -" Azij =kEijZQ. 5

The initial bounds on the bisection search are S=O and S=Smax where

Smax is the distance to the nearest h= 0 constraint. Smax is calculated

by finding the largest positive value of the equation

Smax -hi/Zi i = 1,2.m (26)

The usual bisection method is slightly modified. First, instead of

trying to find the zero of a single equation, we must evaluate each
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possible constraint to find the boundary between feasible and infeasible

_spaces. The programs in the appendices contain a subroutine which

evaluates the constraints and returns a single flag with the value

"FAIL" if a single constraint is violated, and "PASS" if no constraint

is violated (CP,L< 0 for all P,L) The second feature is that S=Smax may

be in the feasible region. What this means is that a ply group can be

reduced to zero thickness without violating any constraints. If this is

the case, the program updates the ply group thickness vector for the

point S=Smax and rescales the laminate, eliminating constraints

associated with the zero thickness ply group. The algorithm then

restarts from step 2. If S=Smax is not feasible, then the bisection

continues with the follow steps:

1) Let SI=0, S2=Smax

2) Let S=(Sl+S2)/2

3) Test all constraints at point S

4) If flag="PASS" then Sl=S

If flag="FAIL" then S2=S

5) If S2-Sl<10- 5 then search direction immediately hits

constraint. This indicates the minimum has been

found.

6) If (S2-Sl)/Sl>l/4 then go to step 2. Else stop

bisection procedure

Step 6 checks to see if the error with which the distance to the

constraint is known, is less than 1/4 the distance across the "valley".

The 1/4 is arbitray, but gives good overall convergence of the algorithm

with a minimum number of bisection iterations. Note that for each value

of S tested, the A matrix must be formed, inverted, strains calculated,

and constraint evaluated.
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5) Rescale Laminate

Once the distance to the next constraint is known, we take S=Sl/2.

From this point in design space, the total thickness is reduced by the

laminate scaling procedure (Figure 13). If the change in total

thickness is small (less than 1/10 a single ply thickness), the

algorithm is assumed to have reached a minimum and halts. If not, the

algorithm repeats from step 2. The loop continues until one of the halt

conditions is reached.

The organization of the program is shown by a flowchart in Figure

14. The flowchart is only meant to be an aid to understanding the steps

required. The interconnections between subroutines in the actual

programs are somewhat more complex.

Table 1 gives some examples of the convergence rate and number of

inverse A matrix evaluations (the most time consuming step) required for

the optimization. Times are given for a ZX-81 computer which has a Z-80

microprocessor. An iteration is counted as the total loop from step 2

to 5. Three or 4 iterations is typical unless some ply groups are going

to zero thickness, which counts as a full iteration.
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Laminate Load Vectors Active Iterations Matrix Sec

MN/rn Constraints Inversions

0/90 2,1,0 2 3 27 164

0/90 2,1,0 3 6 58 250
* 1.75,0.5,0.3

0/90/+45 2,1,0 4 3 26 264

0/90/ 2,1,0 6 4 34 555
+30/+60

0/90/ 2,1,0 6 5 40 930
+30/+60 1.75,0.5,1

-3,1,0

0/90/+15 5,1,0 7 2 19 480
+30/+45/
+60/1+7 5

TABLE 1: Algorithm Performance
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Continuously Variable Angles

The most obvious approach to selecting appropriate ply orientations

is to let the computer calculate the optimal values. There is no

fundamental reason why this cannot be done, but there are some

implementation problems, and the results are not always satisfactory.

There are several mathematical difficulties in optimizing for best ply

orientations. First, the objective function (total thickness) is not

*-. directly a function of angle. Second, there may be many local minima.

Third, if a direction vector is found in the combined angle and

thickness space, the magnitude of the scalar distance will have

different meaning for each type of design variable. Finally, there is

the

the practical difficulty that ply orientations cannot be completely

arbitrary due to manufacturing limitations. There should be some

minimum angular step size limited by the lay-up procedures used. The

algorithm derived here, while not completly satisfactory, attempts to

account for all these difficulties.

-- The approach taken is to first divide the problem into a multi-

level optimization [10], where angles and ply ratios are optimized

independently. We can alternate between the two types of optimization

until the laminate converges to a minimum thickness design. Ply

thicknesses are handled exactly as before, with the given angles held

constant. During the angle optimization, ply ratios are held constant

and the angles varied to minimize total thickness.

The angle optimization used here is not a direct method like that

used for the thicknesses, but instead relies on minimizing a related,

unconstrained function with the assumption that total thickness will
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decrease at the same time. One approach is to chose a function which

will lead to the simultaneous failure condition, which should result in

an efficient laminate. Another desirable feature is that the results

should not be too sensitive to the selection of initial angles. After

experimenting with several po-sible functions, the best was found to be

the variance of the all the constraints, given by the equation

m e 2 m ne2
C _ £ C 2 C, (27)-. nc P1 L= ' PI 1L:1

where nc  m n

If this function where minimized to a value of zero, a simultaneous

failure condition for the laminate would be reached. In cases with

multiple loads, simultaneous failure for all loads is usually

impossible, but we assume that as the variance is minimized, as many

constraints will become active as possible. It will be shown that

simultaneous failure is not always the optimal condition for a composite

laminate, but for most cases it will either be the minimum or at least

very close to the minimum thickness. Before trying the variance, the

author had attempted to minimize the value of the largest current

constraint function. This necessitated finding some way to handle

multiple constraints that had nearly the same value. This version of

the program often terminated early because a satisfactory way was never

derived for finding a common vector that would reduce the value of more

than one constraint simultaneously. To find the minimum of the

variance, a steepest descent method was used. Normally, steepest

descent is considered the least efficient way to minimize an
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unconstrained function, but it was found to be sufficient for the

current research. The program should be modified in the future to

include a conjugate gradient method [10].

The steepest descent, along with most other search methods, needs

the value of the gradient. Terms of the gradient are given byWn
,= C n-- C 'CPL (28)

ai nc  P=1 L=1 cP L  i nc P=1 L=1 CP 'L  ai

where

p,L  T (P) , + T (P)1
T : Z(L) IG IE(L)5 -(L) IG 'ei(L)

:: T +(p)T (i:+ G (P  E(L)'ei + G eiE (L) (29)

and

-- 1

(L),e i  = -JA-I JAI 6iE(L)

IAI,ei = IQ(i)I ehi

It should be noted that

JG(P)J, i = 0 for i P

The angular derivatives of the Q's and G's are given in Appendix A. The

r. negative of the gradient will form the search direction. The scalar

distance along the search direction is found by taking discrete steps

and stopping when the thickness begins to increase (and then taking one

step backwards). Because the variance is only a function related to the

43
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r actual minimum, we do not determine the distance by the magnitude of the

variance, but instead, the function we are actually interested in.

-vThickness is calculated by using the scaling equations developed

previously. More efficient one-dimensional search methods will have

difficluties with the multiple local minima.

The steps are taken so that all the angles change by some minimum

step. To maintain the minimum s, : size, the angles are incremented by

the equation

k+1 k + {CINT [(k+l)Z i] - CINT (kZi)}A8
1 1

where CINT implies taking the closest integer value and k is an

incremental step counter. The direction vector Z is normalized by its

largest element. At each unit increment of k, the angle corresponding

to the largest element of I is incremented by AO. Other angles may not

be incremented at each step, depending on the relative values of the Z

vector elements. Thus, the direction vector is not followed exactly,

but rather on a broken path. The amount of divergence from the search

direction is determined by the value of A6. If the angle start out as

multiples of 100 and AO is 10 , then the angles will stay as multiples

of 100 throughout the search.

The overall procedure for the multi-level optimization can be

summerized as follows:

1) Enter loads and starting angles

2) Find a search direction based on the variance

3) Perform a one-dimensional search to

minimize total thickness with constant ply
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ratios

4) Repeat from step 2 until no further changes

in angle can be made

5) Optimize the ply ratios

6) Repeat from step 2 until neither type of

optimization can make further progress

Testing of the program shows that one pass through steps 1 to 6 is

all that is needed. Usually, the angle optimization brings enough of

make little progress. In turn, after the ply thickness routine is

finished, there is little the angle optimizer can change.

Typically, the angle optimization will need 4-6 search directions

to converge, requiring 10-20 minutes for 4 ply groups and a pair of

independent loads.

4
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Orthotropic Laminate

A designer may not want a general symmetric laminate. He may be

more comfortable with an orthotropic laminate which eliminates the shear

coupling terms and allows the use of many existing orthotropic plate

analysis equations. An orthotropic laminate can be made by keeping the

i'minate balanced. That is, for every ply at +6, there is one at -e.

There may also be manufacturing reasons for wanting a balanced laminate,

such as filament winding operations. There is no difficulty in

constraining the optimization procedure to yield balanced laminates.

* Most sophisticated optimization programs allow design variables to be

'- coupled so that they maintain the same value. A simpler approach is to

enter only the positive angle and set the A1 3 and A2 3 terms to zero.

The resulting thickness found for the positive angle must then be split

between the positive and negative angles in the actual laminate. With

the reduced A matrix, a faster matrix inversion can be written.

When designing with orthotropic laminates, the orthotropic axis

should not be selected arbitrarily. For a single load, the orthotropic

6axes should be aligned with the principle axes of the load. With

mulitple loads, the selection is not so obvious. Finding the best axes

with respect to the load is a much simpler problem than the general

optimal angle search discussed above. A search for the best axes can be

'reduced to a one-dimensional search. The procedure can be thought of as

finding the best rigid body rotation of the laminate with respect to the

loads while performing a thickness optimization of each rotation angle

(Figure 15). For computational simplicity, the program actually rotates

-4I
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the loads and keeps the laminate angles fixed. Even this one-

dimensional search could be time consuming without a fast ply ratio

optimization algorithm. The orthotropic optimization with the strain-

sphere failure criteria is fast enough to make a search for best

orientation practical.

The search proceaure can be summerized as follows:

1) Enter initial laminate angles, loads, bounds on

' search angle, and maximum error for search.

2) Divide the bounded region with 4 equally spaced

points, with endpoints on the bounds

3) Find the minimum laminate thickness at each

point by rotating the loads by the:negative of

the current test angle

4) Check for the smallest value of the 4

4thicknesses. The 2 points on either side

of the smallest one become the new bounds.

5) If the bounds are greater than the maximum

error, repeat from step 2. Only 2 new points

need to be calculated.

The method being used here is very similar to the bisection method

for finding the zero of a function. Bisection requires 3 function

values in order to reduce the size of the region the zero can be in.

Here, a fourth point is needed because we are searching for the zero of

the first derivative instead of a zero of the function.
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III. APPLICATION

Examples

A few illustrative examples will be discussed to demonstrate the

operation of the optimization procedures. A detailed comparison of the

weight savings possible with ply ratio optimization, angle optimization,

and no optimization will be given in the next section.

%The strength ratios defined in [7] will be: needed to show which

plies are critical for given loads. The ratio is defined as the value

of R in the equation

0- R2 ITIGII + RGT+ 1

An R of 1 means the ply is at the boundary of the failure envelope. R's

".'" 1 mean the ply is in the safe region on the failure envelope. The R's

* ., can be interpreted as the ratio of the applied load vector length to the

maximum load vector length.

Most of the examples presented here will use T300/5208 as the

material. Properties of this material along with Kevlar and aluminum

(used in certain examples) are given in Table 2. Figure 16 is an

example output from an Epson HX-20

microcomputer. Only ply ratios are being changed and the angles are

% Agiven as 0/90/45/-45. This example demonstrates a case where there is

no severest load condition. Looking at the strength ratios, we can see

that the 90 and -45 plies are near failure for the first load condition,

49
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WI
Materil PF'oFerties LAMINATE STRAINS
T' 3O . jO LOADING I
E::..:= 181 GPa e1=+3.628E-83
EY= 18.3 GPa e2=+1.274E-831 ES= 7.17 Ef e6=+0.691E-03
VX= .28 LOADING 2
X= 1500 MPa el=+1.224E-03
X'= 1580 MPa e2=+3.334E-03
Y= 48 MPa e6=-2.157E-83
Y'= 246 tIPS
S= 68 MPa Norm. IAI in GPa.

.'" 5= 6 MPa
Ply Thickness .800125 m -------- ,-3.4291106.2071 20.0351 - .
LOADING I i t
N 1= 3 MN/m I 20.0351 51.6731 -3.429
1 2= 1 MN/m I I I
N 6= 0 MNm I -3. 4291 -3.4291 24. 309LOADING 2 

I

N 1= 1.5 MN/m
N 2= 1.5 MN/m ComPliance (normalized)
N 6=-.5 MN/m in I/TPa.

r I

Total thickness= 1 18.1781 -3.8871 0.887
.0735E-01 m. 1 1 - +

I58.76 Plies -3.8871 21. 21 2.417I 87 le I

ANGLE RATIO #PLIES I 0.8871 2.4171 41.604
0 .4416 25.95
90 .1236 7.26
45 .1774 18.42

-45 .2574 15.12

STRENGTH PATIOS ENGINEERING CONSTANTS
1ULTIMATE STRAIN>I IS SAFE El= 98.3 GPa
LOADING I E2= 47.6 GPa
PLY E6= 24.0 GPa
0 1.4878
90 1 v21= 0.382
45 1. 2091 v1l= 0.087

-45 1.0973
LOADING 2
PLY
0 1.0355
90 1.4004
45 1.8331
-45 1.4871

FIGURE 16: Printout for Example Problem
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Elastic Modulus in CPa
qaterial Ex Ey Vx -- Es Fiber Vol.

T300/520S 181.0 10.3 0.28 7.17 0.70
Graphite/Epoxy

Keviar 49/Epoxy 76.0 5.5 0.34 2.30 0.60

Aluminumi 69.6 69.6 0.34 26.5

Strength in MPa-
x _____ Y _____ S

T300/5208 1500 1500 40 246 68W
7 Graphite/Epoxy

Kevlar 49/Epoxy 1400 235 12 53 34

Aluminum 400 400 400 400 230

TABLE 2: Material Properties
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and the 0 and +45 plies are near failure for the second load condition.

The normalized A matrix shown in the output is defined as IAI/h and the

normalized compliance matrix is the inverse of JAI times h.

The example given in Figure 17 is a case where simultaneous failure

is impossible. The constraint curves in design space are plotted to

show that one constraint is never on the boundary between the feasible

and infeasible regions. The impossibility of simultaneous failure is

also evident by examining the failure envelopes in strain space. The

failure envelopes for graphite epoxy only intersect in the first and

fourth quadrants (Figure 3). Pure shear transformed to principle

strains is in the second or fourth quardrant. Even though one ply is

never near failure, removing that ply increases the total thickness

required.

Table 3 compares the results of optimization based on the strain-

sphere approximation and the usual quadratic interaction criteria. The

ply ratios are quite close, demonstrating that for loads in the first

quadrant, the results are not sensitive to the particular criterion.

Although the approximate criterion works well, all results presented

elsewhere in the thesis will be based on the quadratic criteria unless

otherwise stated. No detailed description of the algorithm for

optimization with the strain sphere is given, but the method is almost

identical to that used for the quadratic criteria. The major

differences are that the gradient is redefined and the criterion only

needs to be evaluated for the laminate as a whole, rather than for each

ply individually.

Table 4 is an example of the orthotropic laminate optimization

with optimal rigid body rotation. The best orthotropic axes could not

S . have been selected from inspection of the load principle axes. The
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5

4

-450 PLY FAILURE

3
J-5 450 PLY

FAILURE

(mm) 2

1 2 3 4 5

.h[4 5  (mm)

LOAD
Nl= 0
N2= 0
N6= 2 MN/m

Angle Ply Ratio # Plies Needed
45 .656 26.9

-45 .344 14.1

Strength Ratios

Angle R
45 2.42

-45 1.00

Figure 17: Constraint Curves and Optimization
Results for 45 Under Pure Shear
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LOADS

Nl= 4 MN/m Nl'= 2.76 MN/m
N2= I MN/m N2'= 2.24 MN/m
N6= 0 MN/m N6'=-1.48 MfN/m

# Plies Needed

Ply Group Tsai-Wu Approximate

0 35.2 35.2
90 7.5 7.4
45 9.9 10.8

-45 33.8 33.7

Total 86.5 87.1

TABLE 3: Comparison of Approximate Strain-Sphere to Tsai-Wu
Criteria for Optimization

Two independent Loads
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LOADS
Nl= 2 MNIm Nl'= 1.25 MN/m
N2= 1 MN/m N2'= 1.75 MN/m
N6= 0 MN/m N6'= -. 43 MN/m

# Plies Needed

Angle Fixed Axis Variable Ortho. Axis
0 17.2 11.2
90 17.2 3.9
45 8.6 16.3

+45 8.6 16.3

Total 51.6 47.7

TABLE 4: Comparison of Optimal Orthotropic Laminates
with Fixed and Variable Orthotropic Axis.

Optimal orthotropic axis at -36Y
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" . results for an orthotropic laminate with the axes arbitrarily set on one

of the load principlc axes are also given. The difference is

substantial. Both examples are based on the maximum strain-sphere

criterion.

Angle optimization is only needed if there is more than one

independent load. For a single load, the algorithm will simply rotate

the plies so that they lie on the load principle axes. This

characteristic shows that there is more than one minima, since an angle-

ply (consisting of a 46 and a -0 ply group) is more efficient than a

cross-ply laminate (O's and 90's only). The program does not converge

to the angle-ply solution unless the initial angles are close to the

final value. We cannot predict the result when multiple loads are

included. To show the relationship between load principle axis and

optimized ply orientations, 2 independent loads that fall on the same

Mohr's circle have been used as the design requirements. The loads and

ply orientations can be superimposed on the same Mohr's circle. Figure

18 riflects some of the symmetries of the optimized laminate. An

interesting example of how non-intuitive composites can be is shown in

Figure 19. Two equal magnitute uniaxial loads .re entered with one of

the loads rotated by -40 from the laminate axis. Instead oL placing the

plies on the principle axes, the computer has picked slightly different

angles, which give a thinner laminate than if the principle axes had

been used. The starting angles were 0/90/45/-45, but the angles have

converged so that only 2 ply groups remain.

Although there is now a method for finding good ply orientations,

we still need to know how many initial angles should be used, and their

initial values. One reason the search based on constraint variance was

selected is because it seems to be less sensitive to choice of initial

5b
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N= 4'= 2.76

N N 1 N-= 2.34
6 6

i~nN'
2- N11

NQ 0 I-14
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570

2 1

. N;

p% .% PLY FIBER DIRECTIONS

' '" 'FIGURE 18: Mohr's Circle Representation of 2 Independent Loads

','.- '.with Superimposed Optimized Ply Orientations

~Initial angles (0/90[t45)
: '. . "i'.All angles plotted as 2e
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N= 1 N-'= 0.59

N2= 0 N2= 0.41

S6= 0 N'=-0.49
6O

N
6

IN
!: I

0 NN I

NN'

2 I

6

PLY FIBER DIRECTION

FIGURE 19: Mohr's Circle Representation of 2 Independent Loads

with Superimposed Optimized Ply Orientations

Initial angles (0/90/+45)
All angles plotted as 20
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J7

angles than some of the other methods tried. The number of angles

needed is still an open question. A quick look at gradient information

suggests that too few angles (2 for example) will make the laminate

sensitive to small changes in orientation or load. The 0/90/45/-45

starting point selected for all the above examples has been found to

give effiecient laminates without the complexity of adding a lot of

angles. Most of the examples run where with 2 loads, but a couple of

cases were tried with 4 loads. The 4 ply group laminate was still

adequate despite the additional loads.

All the examples given were run by applying the angle optimization

first and then the ply ratio optimization. After the ply ratio

optimization, no further attempt at changing the angles was made.

There is the possiblility that the combined angle/ply ratio

optimization will yield a laminate with total thickness greater than

would have been produced by ply ratio optimization alone. By bringing

more constraints into play, the angle optimization may prevent the ply

ratio program from making as much progress as it would have starting

from some arbitrary initial angles. Often, the ply ratio program will

not be able to change the laminate at all, leaving the ply ratios equal.

From the evaluation presented later in this thesis, we can see that

there is a choice of which variables are optimized. There may be some

motivation for keeping the ply ratios constant, or near constant. In

which case, angle optimization will still give an efficient laminate.

If angles are fixed, ply ratio optimization alone will also give an
.%

efficient laminate.

The capability to optimize hybrid laminates is easily added to the

existing programs. When the A matrix is formed, the Q's associated with

, 59



the proper material are used. Also, the constraint test and gradient

calculations must use the appropriate values of the G's for whichever

material the given ply is made from. The example given in Table 5

shows the results for a hybrid made from alternating ply groups of

graphite/epoxy and Kevlar/epoxy, with each orientation duplicated by

both materials. For strength constraints, the Kevlar is usually

completly removed. The combination of glass/epoxy and graphite/epoxy

was found to give similar results. No strength advantage has been found

by going to hybrid systems.

.6
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LOADS

N1= 4 MN/m

N2= 1 MN/m
N6= 0 MN/m

Material Angle # Plies Needed
Graphite 0 42.0
Kevlar 0 0.0

Graphite 90 4.9
Kevlar 90 0.0

Graphite 45 9.4
Kevlar 45 0.0
Graphite -45 9.4
Kevlar -45 0.0

.1
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Potential Weight Savings

Optimization would be of little interest if the potential gains

were only a few percent. In fact, for strength controlled laminates,

the weight savings are usually in the range of 20-50%, as compared to

quasi-isotropic lay-ups. The thickness difference due to optimization

with a single biaxial load can be seen in Figure 20. This is a fairly

general graph, since any biaxial load can be transformed to a shear-free

' axis (principle directions) and differences in Nl would just cause a

proportional change in total thickness. It's interesting to note that

the 0/90/45/-45 laminate is thinner than the 0/90. Beyond a load ratio

of about 2 (N 1/N 2), the 900 ply in the 0/90/+45/-45 laminate is dropped

completly, making a tri-directional laminate that is more efficient than

the 0/90. A good rule in design is to make the laminate axes and load

principle axes coincide when there is a only a single load. The angle

optimization routine will give this intuitive result. However, with 4

or more available orientations, the ply ratio optimization is forgiving

if the principle directions are not used. A 0/90/45/-45 laminate was

rotated as a rigid body with respect to a fixed 4:1 biaxial load. The

laminate was optimized at 50 increments of rotation. The difference

beween the thickest and thinnest resulting laminate was only 5%.

When two or more independent loads are combined, the anisotropic

advantage of composites becomes less significant, (because there is less

of a distinct preferred direction) but the savings due to optimization

can still be substantial. Because tf-re are an infinite number of load

combinations, it's impossible to draw any general graphs demonstrating

..the gains due to optimization. To give an indication of the trends, a

series of 18 load combinations was devised, where each load combination

62



-r Z

120

O0 Oi/90i no opt.
A-Q /90 optimum

100 *090/45 optimum

LU

I I I I1
I2 3 4 5 6 7 8 910

FIGURE 20: Totoal Number of Plies for Optimized and Equal Ratio Laminates

Under a Single Load
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consists of a pair of biaxial loads. Because of the directionality of

composites, loads with differing principle axes are of greatest interest

for excerising the procedure. The load combinations and principle axes

orientations are given in Figure 21. This group of load cases is not

intended to be all-encompassing, but represents some worst case

conditions for taking advantage of a directional material. Most of the

loads are in tension, although cases 13-15 are compression-compression

and cases 16-18 are mixed tension and compression. The magnitudes of

the principle components of the loads have been made equal in most of

the cases in order to ensure both loads influence the final design. A

small load might never form part of the boundary between feasible and

infeasible design space. Intial angles are 0/90/45/-45 for all the

types of optimization considered below. The npxt section will show that

*. equal angular spacing is a good starting point for picking angles for

the optimization code to work with. Ply ratio optimization

alone will be considered first. Figure 22 shows the weight savings of

optimized 0/90/45/-45 laminates versus unoptimized laminates of the same

angles. Kevlar material was taken. Again, the load cases are

arbitrary, but the point to be made is that around a 25% weight savings

can be expected from using optimization with a wide variaty of loads.

In some cases the savings can be even larger (40-50% for several of the

load cases). To show that thi results are not material dependent, the

same loads have been applied to laminates made from graphite/epoxy

(T300/5208). This time the savings are compared to aluminum, (with

density diffei nce included). The large differences between the

optimized and unoptimized laminates are still evident (Figure 23).

The first 12 load cases (all tension-tension loads) were used to

test the strain-sphere criterion. When averaged over the 12 loads, this
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LAMINATE AXIS

LOAD N II1 -PRINCIPLE

LOADS

N' NJ
NI N', N' -PRINCIPLE

LOADS OF SECOND SYSTEM4

LOAD 2-m-
-ANGLE BETWEEN LAMINATE AXES

C

N1 AND PRINCIPLE AXES

NI NI, N N 200 400 600

I: : 2 3
2:1 2:1 4 5 6
4:1 4:1 7 8 9
2:1 4l:1 1 0 1 I 1 2

-2:-l 13 14 15
-2:-l -2:1 16 17 18

LOAD CASE No.

FIGURE 21: Load Case Matrix for Independent Loads
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approximate criterion was found to be only 7% conservative as compared

to the quadratic criterion. Thus, when only tension loads are

considered (or with small compression components), the approximation may

be desirable if computation time is a factor.

The orthotropic axis optimization is based on the strain-sphere

criterion. This type of optimization was also tested against the first

12 load cases. The results are presented in Table 6. The average

thickness is nearly the same as for ply ratio optimization alone,

despite the conservative criterion and the added constraint of

maintaining a balanced lamninate.

Finally, angle optimization was also applied to laminates subjected

to all 18 load cases, both with and without subsequent ply ratio

optimization. A minimum angle change of 5 was always taken (see

equation 31). With angle and ply ratio optimization, the average weight

savings is about 6.5% better than ply ratio optimization alone, but the

results for individual cases vary widely. Some load cases resulted in

slightly greater thickness with angle optimization than without. The

results are almost identical if angle optimization is used without ply

ratio optimization at all. This demonstrates that the 2 types of design

variables are almost redundant, and optimizing both is usually not

required.

As Table 6 demonstrates, the designer has some options for picking

the parameters to be optimized. The final results do not vary much for

either ply ratio optimization with fixed orientations, orthotropic

laminates (with rigid-body rotation allowed), or angle optimization

alone. The degree of strength anisotropy appropriate to the design

requirements can be achieved by varying any of these parameters. This

means that composite materials have even more flexibility than

I. 68



ra,

a) h orthotropic with rotation b) h angle and ratio opt.
h ply ratio opt. h ply ratio opt.

c) h angle opt.

hply ratio opt,

LOAD CASE a b c

1 1.12 0.75 0.75
2 1.41 0.94 0.94
3 0.99 0.79 0.79
4 1.03 1.00 1.01
5 l.O-4 0.97 0.98
6 0.91 0.94 0.94
7 1.05 1.10 1.19
8 0.97 0.88 0.92
9 0.91 0.90 0.90

10 1.02 0.97 0.98
11 0.99 0.96 0.96
12 0.96 0.94 1.03
13 - -1.04 1.05
14 1.12 1.12
15 0.92 0.95
16 0.79 0.84
17 0.98 1.01
18 0.83 0.91

Average 1.03 0.93 0.96

fABLE 6: Comparison of Alternate Optimization
Parameters to Ply 1,.tio Optimization
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• "previously imagined. The parameters to be optimized can be constrained

- by other considerations (such as manufacturing) and efficient laminates

can still be produced.

I
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Number of Angles Necessary

To use any of the methods described in this thesis, the number of

ply orientations initially given to the optimization program must be

chosen. The performance of various laminates with different numbers of

initial angles was investigated to give some indication of how to pick

these angles. A likely starting point for initial angles is to space

the ply angles evenly over the 180 available. This class of laminates

will be referred to as Tr/n laminates, where n is the number of

orientations in the lamiante. A 'w/4 laminate has an angular spacing

between ply groups of 45. These lamiantes are quasi-isotropic for n

greater than 2 [7]. This is a reasonable starting point for

optimization since there are no preferred directions to initially bias

the result.

The total thickness turns out to be almost independent of the

number of angles for a single biaxial load (Table 7). By applying the

18 load cases introduced in the last section, a comparison for multiple

loads can also be made. The average weight savings (compared to a Oj/90j

/45j/-45t without optimization) is given in Table 8. For n greater than

3, the averages are very close. It is a little deceptive to take the

average. When examined case-by-case, the thickness differences between

the types of laminates can be great for a particular load case (Figure

a24). These differnces may be largely due to numerical problems. With

a large number of ply groups, the program may occasionally terminate

early because of the large number of simultaneously active constraints.

Despite this variation, the Tr/4 laminate seems to be adequate for

multiple loads. Increasing the number of angles will not guarantee a
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N1= 3 MN/rn
N2= 1 MN/rn
N6= 0 MN/rn

#~ Ply Groups Total itof Plies

60 3 52
45 4 49
30 6 51
18 10 50
10 18 51

Table 7: Total Thickness Required to Support a

Single Load for Various /n Laminates

#/Ply Groups % Weigth Savings

60 3 19
45 4 23
30 6 24
10 18 25

TABLE 8: Average Percent Weight Savings Over Quasi-
Isotropic for All 18 Combined Load Cases
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better laminate.

The examples in this study included some 7T/18 laminates. An early

idea was to find optimal angles by looking at a large number of initial

angles and seeing what remained after ply ratio optimization. The

actual result is a littl- surprising. Instead of a few optimal angles

dominating the f'nal laminate, the ply ratios plotted against angle form

almost a continous function (Figure 25). All 18 ply groups are near

failure for this laminate. For some multiple load test cases, 2 peaks

in this pseudo-continous function would form. A case that formed more

than 2 peaks was never found.

In conclusion, the number of initial angles can be bounded to a few

choices. With only 2 orientations, we must have some way of picking the

angles since the unoptimized laminate will have a directional

preference. There doesn't seem to be any advantage to using more than 4

* orientations. Thus, 7T/4 lamiantes were used for most of the examples in

this thesis, and are suggested as a starting point for design.

.. 7

74



0.1

.08

0

.04

.02

-90 -60 -30 0 30 60 90

'..9

FIGURE 25: Ply Ratios Versus Angle for r/18 Laminate Optimized

to a Single Load

(N :N2 = 2:1)
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IV. ANALYTIC STUDIES

Maximum Strain Energy Density

A visual representation of how a laminate adapts to the given load

requirements would be desirable. A conventional failure envelope

representation is not acceptable because with multiple loads, 3-

dimensions would have to be shown in order to account for the

" differences in shear between the loads. The approach taken here is to

plot the maximum strain energy density the laminate can sustain as a

function of load principle axes orientation with respect to the laminate

axes. Then, on the same graph, the strain energy density actually

produced by various loads (in particular, the design loads ) can also be

plotted. There is a loss of information in such a graph. The

combination of N to N (magnitutes of loads on the principle axes)
I Ii

that produces the maximum strain energy is an intermediate calculation

and would not be displayed. The graph is not really a failure

representation, since it would be possible to have loads which produced

less strain energy but still caused failure. Despite these limitations,

these graphs do give a good intuitive feel for the characteristics of an

optimized laminate.

The approximate strain-sphere failure criterion is the starting

point for the derivation. We assume the maximum strain energy occurs

when the failure criterion reaches an equality. Then

,E: 2 +ii E 2 + 2 b 2
2~ 6 =(33)

There are no shear loads, so that the stress-strain relation can be
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4.

written

•{} = N1[A- 1] (34)

where X is defined by

= N21N1  (35)

The average, laminate strain energy density is given by

U T I AI {ETA{} (36)

where h is the total thickness. Substituting equation (34) into (36)

yields

N,2 [A-'] [A]
, 2h

0o 0

N- N1 2 1 1
N (1 [A4X}"': .2h 0]

N1
2  2

'- (a11 + 2a12X + a22A ) (37)

where a 4 's are elements of the inverted A matrix.

Substituting equation (34) into the failure criterion yields

N12 [(al i + a12 )2 + (a12 + a22X)2 + 13 + a23x)2 b 2

or

N 2 b b2/[(a2  + a 2
2 + 1 a132) + (2a a

1 11 12 + 13 1 12

+ 2a12a22 + a13a23)X + (a 122 + a 22 + 1 232)X (38)

Let

p"" 2 + al 2 + 1  2)
" (all 2 13
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Q 2(} a13a23 + a 1al2 + a12a22)"-13 (39)

(a122 + a222 + 1 a22)

Then

•2 b2/2

N b (P + QA + RX2  (40)

Substituting (40) into (38), energy density becomes

2 all + 2a1  + a2 X
b 21  222h P + Q, + R 2  (41)

A derivative with respect to A is taken in order to find the naximum

value.

dU b2  2

dTX 2h [(2a 12 
+ 2a22 )(P + QX + R

- (a11 + 2a12A + a22 A2 )(Q + 2RX)]/(P + QX + RX2)2

If du/dX =0, then

(2a12 + 2a22 )(P + QA + RA2) - (a11 + 2a12 .2 )(Q + 2RA1) = 0 (42)

*Let A aQ 2

A 2 2 Q 2
B = 2(a22P a11R) (43)

C = 2a12P _ a1lQ

By substituting (43) into (42), A can be rritten as

'"x -B± B2 -4AC (44)
i 'max = 2A

and the maximun strain energy density is given by
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!i-1 2
b2 a+ + a+"U b 11Umax 2 a

ma P + QXmax + RAe (45)max max

To use the relations, a rigid body rotation is performed on the

laminate, changing all the angles by the rigid body rotation angle T'

'i The A matrix and its inverse is calculated for the the new angles.

Both values of A are substituted into equation (45) and the one

yielding the largest strain energy is taken.

Figure 26 shows a typical graph for an optimized laminate. The

strain energy density actually produced by the design loads are also

plotted as points. We can see how the laminace has adapted to these

loads. The function has to repeat after 90*because in the derivation, NI

and NII are interchangeable. In Figures 27-29 the graphs are for

laminates optimized to a pair of loads with equal principle magnitutes

but with different angular spacings between their principle axes of the

loads. The graphs show that as the angular spacing increases, the

laminate's degree of aniostropy. decreases. If there are many loads of

near equal magnitude, and with widely spaced principle axes, then the

laminate would have to be quasi-isotropic. There is a limit to how

adaptable the laminate can be. The strain energy density will be close

to a sin 40 function, no matter how many ply groups are available.
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U

(M) 0.50

QO- STRAIN ENERGY DUE TO
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Design Principle Loads and Orientations

N-= 2 MN/m N"= 4 MN/m

NII=1 MN/m N'I=1 MN/m

j0= 400

FIGURE 26: Strain Energy Density Versus Principle Direction
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(w) 0.50

(1I~~0 0.5Q STRAIN ENERGY DUE TO
0.25 DESIGN LOADS
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FIGURE 27: Strain Energy Density Versus Principle Direction

81



1.00

U

3'M) 0.50

Q-STRAIN ENERGY DUE TO
DESIGN LOADS
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N, =4MN/ NI 4 MN/rn,

N =I MN /m NilII I1 MN/rn

Figure 28: Strain Energy Density Versus Principle Direction
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Optimality Criterion

The question of what constitutes an Qptimized laminate (besides the

statement that it has minimum thickness) can be approached by

considering what equality conditions must be true at the optimum. This

is called an optimality criterion approach. Some existing optimization

programs [3] are based on the assumption that strain energy density will

be equal in all the plies at the optimum. This kind of criterion is

based on experience with other types of structures, such as trusses.

The failure criterion doesn't influence the selection of ply ratios, but

only the total thickness scaling.

The strain-sphere criterion is simple enough that for single

loading conditions, an optimality criterion can be derived directly from

the failure equation. Taking only ply group thickness as the design

variables, the minimum thickness point can be found from the Langrange

multiplier equation

Vh + XVC =0 (6

Terms of the gradient of the constraint can be written as

2 , hi. (47)

where

-' 1 0 0

T- 0 1 0 (48)

0 0

From equation (21), we have the result that

i-4.

. ' £'hi (49)
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Substituting into the Langrange multiplier equation (46), for each

component, we have

C+ 2 T ITI shi = 0 (50)

Thus, each ply group must satisfy the equation

-T;TI IA-'I IQ(')l ' = (52)

where I is the same constant for each ply group.

The strain energy density criterion could be written as

TIQMiI 4. =
C x(52)

which, again, must be satisfied for each ply group. There is a

significant difference between the two criteria. The implications of

equation (51) should be studied in more detail. Perhaps a more direct

solution to the optimization problem can be found.
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V. CONCLUSIONS

A series of effective laminate optimization programs have been

developed and thoroughly tested. The programs have been designed to be

compact and efficient enough to operate on the some of the smallest

microcomputers. Although not as general or sophisticated as some of the

optimization codes currently available, these programs offer good

performance and are very easy to use even for those unversed in

optimization. No program in the literature has been found that can

perform angle optimization or the orthotropic axis optimization. Thus,

much greater flexibilty is now available to the designer.

The gains due to optimization have been found to be substantial,

with typically a 30% weight savings as compared to quasi-isotropic

laminates. Surprisingly, these large gains can be made with either of a

couple of design parameters. The designer can either optimize the ply

ratios, or the angles and usually get equally efficient laminates. Or,

he may chose to constrain the laminate to be orthotropic after

optimization. If the orthotropic axis is free to change, efficient

laminates can be designed.

By trying many example cases, it has been found that a n/4 laminate

is a good starting laminate. By starting with quasi-istropic laminates,

no knowledge of desired starting orientations for the particular loads

is needed. Increasing the number of initial orientations does not seem

to improve the final laminates.

An approximate failure criteria has been found to give good results

while substantially decreasing the computation times needed. The

approximate criteria could be particularly important when the
optimization procedure is tied into a finite element code on an
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iterative basis, where the repeated optimizations could become

excessively time consuming.

The approximate criteria also allows some analytic studies of

optimized laminates. A representation of the optimized laminates

strength anisotropy has been developed based on the maximum strain

energy density. Graphs made with this formulation show how the

laminates match the load requirements. Also, there is a limit to the

adaptablility of a laminate. As more load requirement are added,'.4

eventually the laminate must become quasi-isotropic. An optimnality

criterion can also be derived from the approximate failure criterion

which can be the subject of future investigations.

Hopefully, tailored laminates will come more common as these new

tools are made available to designers, enhancing the desirability of

composites.
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APPENDIX A

Angular Derivati yes

The derivatives of the stiffness and failure parameters are found using

the multiple angle transformations of Tsai [5]

BqllS---2
2 sin 2 - 4U3 sin 46

a = 2U2 sin 20- 4U3 sin 4e

'Q12

T - 4U3 sin 40

S66=4 sin 40

'Q16  cos 20 + 4 3 cos 46
, U2  U3

SQ26=U 
cos 2e - 4U3 cos 46TO- cos

where

::,U 2 = 1/2 (Q xx - Qyy)

SU 3 = 1/8 (Uxx + Q yy -2Qx -Y 4Qss)

Partials of can be found with the same equations, but with

U 2 -- 1/2 (G xx - G yy)

U3 =1/8 (Gxx + Gyy -2Gxy - 4G SS)

The linear terms of the failure equation has become

- -2q sin 20
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9G= 2q sin 20

- 2Q cos 20

where

q = 1/2 (Gx - Gy)
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*APPENDIX B

Program for Ply Ratio and Angle Optimization

The following program optimizes composite laminates for minimum

weight subject to inplane strength requirements. Program options are:

1) optimized ply ratios 2) optimize ply angles and ratios 3) perform

laminate plate analysis without optimization. Inputs include initial

ply angles, loads (multiple independent loads possible) and a material

selection. Material properties for common composites are stored in a

library, or new properties can be entered by following prompts. The

program is interactive and use should be obvious from displayed prompts.

0 A typical computer/user dialogue is given below, along with the

resulting output.

The program is written for an Epson HX-20 microcomputer which uses

a fairly standard form of BASIC. The major exception are the GET% and

PUT% commands to addrss the material library. These can be replaced by

disk file operations on most other computers. The other possible change

would be the explicit double precision symbol "#" used in the program.

Test have shown that double precision is not really needed and could be

left out when using other machines.
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" COMPUTER/USER DIALOGUE

LCD Display Keyboard Response
(comments in parenthesis)

Press any key when desired RUN RETURN (unless otherwise
Material appears noted, "Return" key pressed

after each keyboard entry)

T300/5208

" * B(4)/5505

AS/3501

Scotchply 1002

Kevlar 49/Epoxy

Aluminum

New (random key pressed when
"New" appears on screen)

REVIEW OR NEW DATA (R/N) ? N

WHICH MATERIAL WILL YOU 5
REPLACE (0-5) ? (materials numbered in same

order as listed T300/5208=0)

EX(GPa) = ? 185

EY(GPa) = ? 6.76

VX = ? .2

ES(GPa) = ? 5.86

X(MPa) = ? 680

X'(MPa) = ? 690
(primed constants imply
compressive properties)

Y(MPa) = ? 16

Y'(MPa) = ? 186

S(MPa) = ? 72

THICKNESS (m.) = ? 125E-6 (ply thickness)

NAME (15 CHR MAX) ? HMS/3002M

ADDITIONAL CHANGES ? N

93

q " "- - -"-" '', ["."L"" ' .",L r
- ". ¢ ? -* . . . ... I." " -"- " "" -' "" " "



:: -. )i'6-

LCD Display Keyboard Response
(comments in parenthesis)

(Materials list begins again,
* this time with the new material
. replacing aluminum, when it
* appears a key is pressed)

HOW MANY PLY GROUPS ? 4

ENTER PLY GROUP

ORIENTATIONS

PLY 1 = ? 0

PLY 2 = ? 90

PLY 3 = ? 45

PLY 4 = ? -45

ENTER NUMBER OF INDEPEN-
DENT LOADING CONDITIONS ? 2

LOAD 1 in MPa

0 N1 = ? 3

N2 = ? 2

N6 = ? .5

LOAD 2 in MPa

Nl = ? 1

N2 = ? 4

N6 = ? 0

OPTIMIZATION OR
ANALYSIS (O/A) 0

RATION OR ANGLE
OPTIMIZATION (R/A) R

*'Q 9
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WORKING ITERATION 1 (after 4 iterations and about
7 minutes the computer beeps

w TOTAL THICKNESS = that the solution has been
found. This example ran for

1.71342 E-02 m. an unusually long time. Most

HIT ANY KEY TO CONTINUE 
problems will run in less time)

Press Y if printout of displayed (press any key, no return)

result is desired. Press N if
not

PLY PROPERTIES Y (return key not
used for these responses)

LOADS Y

TOTAL THICKNESS &

PLY RATIOS Y

STRENGTH Y

LAMINATE STRAINS Y

STIFFNESS MATRIX Y

COMPLIANCE MATRIX Y

0PLY RATIO GRAPH Y
(after entire list of print-
out options is presented,
computer produces the print-
out shown on next page)

FINISHED (pressing a key restarts
HIT ANY KEY TO program. Press "BREAK"

CONTINUE key to exit).

.4
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NO W-1......M. n LAMINATE STRAINS

~~~~~Material Properties 6=2 8E0
"HMS/3002M e2=+0. 982E-83

EX= 185 GPa 6=+I. 096E-03
EY= 6,76 GPa LOADING 2ES= 586 GPa e=+0. 697E-03

-: UX .2 2=+2, 216E-03
"'"X= 680 MPa 6=-1. 467E-03
I..[ X1= 690 NPa

Y= 16 MPa Norm. 1A1 in GPa.

Y,= 186 MPa,
S= 72 MPa I74.7621 6. 5101 5. 548
PI'= Thickness .000125 r, III

LOAIN Ii 6.5101106.,9671 5. 548

N = NI 5.5481 5.5481 11.016
N 2'lN/m , ,
N 6= .5 MN/m
LOADING 2 Compliance (normalized)
N 1= I r'N/m in I/TPa.
N 2= 4 MN/m,
N 6= 0 MN/m j 17.-92d -0. 4971 -6. 760-'
Totl thickness= 1 -0. 4971 9.6171 -4. 593

-'.0171E+00 m. I I I -1
137.07 Plies 1 -6. 7601 -4. 5931 96. 497

ANGLE RATIO #PLIES
0 .3476 47.65 ENGINEERING CONSTANTS
90 52r I 12.E38

•45 .1243 17. 04 El= 71.8 GPa
-,-45 0 0 E2=104.0 GPaE6= 10.4 GPa

STRENGTH RATIOS v21= 0. 036
I =ULTIMATE 'STRAIN v61=-0. 486>E IS SAFE v16=-0.070
LOADING I

PLY0 1. 1622
90 1
45 1.1616

LOADING 2

PLY0 M .0053

90 1. 2115
45 M . 122

NOutput Produced from Example Dialogue

1 1produced ore.

best available copy.
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10 '** MAIN CLASS**
20 CLEAR 75,338 Comments

" .- 30 WIDTH 20,4
40 DEFFIL 55,0
50 DEFINT I-PmDEFDBL F 20-40 commands to configure the
60 DIM A(3,3),B(6,9),C6 machine
,6),D(3,3),G(3,3),XN(4,3
),AI(3,3),Q(3,3),H<6),R(
3),S(3),T(6),U(5),V(7),X
(6),Y(3),Z(6),E(4,3) 50 Implicit integer and double
65 DIM W(24,6),CON(24) precision
78 DIM C%(18,2)
80 DEF FNDEG(X)=X*57. 295
78 80-90 convert radians to degrees
90 DEF FNRAD(X)=X/57.295 and degrees to radians
78100 '** MAINt

105 RESTORE
110 READ IMAX,E2,E5,E6
128 ITER=1 130 - Gosub input130 GOSUB 2540
140 CLS:PRINT "OPTIMIZAT
ION OR" :INPUT "ANALYSIS 170 - Gosub invariants
(O/A)"; AS

C 158 IF A$="A" THEN 6580 180 - Gosub transformations
152 INPUT"RATIO OR ANGLE
OPT (R/A)";AS:IF A$="A
THEN INPUT "DELTA";DEL 190 - Gosub initial feasible pt.

TA
155 CLS: PRINT"WORKING": 200 - Gosub direction
PRINT" ITERATION"; ITER
178 GOSUB 2998
188 GOSUB 2330 220 - Gosub new thickness
198 GOSUB 2198
196 IF A$(>"A" THEN 280
197 DELTA=FNRAD(DELTA) :G
OSUB 188
208 GOSUB 1688
265 CLS: PRINT"WORKING":
PRINT" ITERATION"; ITER
218 IF F$="FAIL" THEN 33
80
220 GOSUB 1378
238 ITER=ITER+1
248 IF F$="FAIL" OR ITER
>IMAX THEN 3388

-, 258 GOTO 288 290 - if ply thickness zero,
268 '** CONSTRAINT TEST* ignore constraint

278 G$=r"PASS": NC=6
288 FOR P=i TO NPLY 300 - Get G matrix for ply being
298 IF H(P)=0 THEN 445 tested
300 II=P :GO.SUB 1238
318 FCR N=1 TO NL 320 - 380 Solve FCON =
328 FCON=-1
338 FOR K=1 TO 3 G. .. E. + G.s. - 1
3408FORJ=1 T03 ~1J 1
358 FCON=FCON+G(K, J)*E(N
,J)*E(N,K) 410 - 430 If FCON is close to
36 NEXT zero identify constraint as
370 FCON=FCON+S(K)*E(N,K active, make list in C% and in-
388 NEXT K crement constraint counter
390 IF FCON>8 THEN G$="F
AIL": RETURN
400 IF FCON<-E5 THEN 448
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416 HC=NC+1
426 C%4(NC.1)=P
438 C%(NC,2)=N

w446 NEXT N
445 NEXT P
450 RETURN
456 STOP
466 '** GRADIENT *
475 UNORM4O
488 II=P: GOSUB 1236
496 FOR L=1 TO NPLY
566 IF H(L)=0 THEN 768
510 11=L' GOSUB 1120
520 FOR J=1 TO 3
536 R(J)=e
546 FOR K=1 TO 3 480 - Get G matrix for designated
556 R(J)=R(J)-Q(J,K)*E(N ply
,K)
560 NEXT K,,!
576 FOR J=1 TO 3 510 - For each ply, get Q matrix
586 V(3)0 a a +
590 FOR K=1 TO 3 540 -560 R = - t Ac
608 Y(J)=Y(J)+AI(J,K)*R(
K)
616 NEXT K,J 580 - 610 Y = IA -l R
626 Z(L)=6
636 FOR J=1 TO 3
640 FOR K=1 TO 3a
658 Z(L)=Z(L)+G(J,K)*(Y( Y = - -h E
J)*E(N, K)+E(N, 3)*V(K)) ak,
666 NEXT Ka
670 Z(L)=Z(L)+S(J)*Y(J) E
686 NEXT J 620 - 680 ( FCON) = G. c
696 UNORM=UNORM+Z( L)*Z(L i ahk

706 NEXT L Eaciai A

716 UNORM=SQROJNORM) + -h C) + G.
720 FOR L=1 TO NPLY hk i 1 h k
730 Z(L)=Z(L)/UNORM
746 NEXT L
766 RETURN 690 -730 Normalize V(FCON)
776 '** STRAINS*
786 DIM F(3,3)
796 FOR 1=1 TO 3
806 FOR 3=1 TO 3

*8
826 NEXT 3,1
830 DET#=F( 1 1)*F(2, 2)*F
(3,3)+2*F(1,2)*F(2,3)*F( 790 -820 "F" is the A matrix
1,3)-F(2p2)*F(1,3)*F(1,3 corresponding to a point S
)-F(l,1)*F(2,3)*F(2,3)-F aogteZvco
(3, 3)*F( 1,2) *F( 1,2) aogteZvco
840 AI(1,1)=(.F(2,2)*F(3,
3)-F(2,3)*F(2,3>)DET* 830 - 900 invert A
856 AI(2,2W=(F(1,1)*F(3,
3)-F(1,3)*F(1,3))/DET* #-
860 AI(1,2)=(F(1,3)*F(2, 920 - 970 Solve E=IA- I -N for
3)-F(1,2)*F(3,3))/DET# each independent loading
8 AI(3,3)=(F(1,1?*F(2,
2)-F(1,2)*F(1,2))/DET#

* 886 AI(1,SW=(F(l,2)*F(2,
* 3)-F(21 2)*F( 13) )'DET*

898 AI(2,3)=(F(1,2)*F(1,
3)-F(11 1)*F(2,3))/DET#
986 AI(2,1)4UI(1,2):AI(3
,2)=AI(2v3):AI(3,1)=AI(1
'3)

98



910 ERASE F
920 FOR I= TO HL
939 FOR J=1 TO 3
940 E(I,J)=g
950 FOR Kai TO 3
968 E(I,J)=E(IJ)+AI(J,K
)*XN(I,K)

V979 NEXT K,J,I
988 RETURN
990 '** A MATRIX *:
10N FOR I= I TO 3
1810 FOR J=1 TO 3
1020 A(I,J)=@: D(I,J)=o 1000 1100 The matrix D is

1030 NEXT J,I formed so that along the Z vector
1040 FOR 1=1 TO NPLY
1850 11=I: GOSu 1128Ia' = Il + ,,'n
1860 FOR J=1 TO 3 J S

1078 FOR K=1 TO 3
1088 A(J,K)=A(JK)+Q(J,K where S is a scalor
)*H(I)
1090 D(J,K)=D(J,K)+Q(J,K
)*Z(I)
1188 NEXT K,J,I
1118 RETURN
1120 '** FORM Q *
11038 Q(1,1)=C(II,1) 1130 - 1210 Convert C array into
1140 Q(1,2):c(1II,3'

1158 Q(1,3)=C(II,5) 3 x 3 Q matrix for ply designated
1178 Q(3,1)=C(II,5) by II
1180 Q(3,2)=C(II,6)
1190 Q(3,3)=C(II,4)
1195 Q(2,3)=C(II,6)
1280 Q(2,2)=C(II,2)
1218 Q(2,1)=C(II,3)
1228 RETURN
1230 '** FORM G *G 1240 - 1350 Convert B array into
1248 G(1,1)=8(II,I) 3 x 3 G matrix for ply designated
1250 G(1,2)=B(II,3) by II. Linear failure terms
1268 G(1,3):B(II,5)
1270 8(2,1)=8(II,3) placed in vector S
1280 G(2,2)=E(II2)
1298 G(2,3)=8(II,6)
1380 G(3,1)=8(II,5)
1318 G(3,2)=B(I1,6)
1320 G(3,3)=B(II,4)
1338 S(1)=B(II,7)
1348 S(2)=B(I1,8)
1358 S(3)=B(II,9)
1368 RETURN
1370 '** NEW H VECTOR **
1380 SMAX=1E18
1390 FOR I=1 TO NPLY
1480 IF Z(I)<>8 THEN S=-
H(I)/Z(I) 1420 Find distance along
1418 IF S>O AND S<SMAX T
HEN SMAX=S Z to find h. 0 constraint
1420 NEXT 1
1438 F$="
1448 IF SMAX> 10 THEN F$ 1450 - 1500 Bisection method to
="FAIL": RETURN
1458 S1=8: S2=SMAX: S=SM find distance to next constraint.
AX If no constraints violated at

. 1468 IF NC=O THEN 1590 S = SMAX then stop search
1478 GOSUB 770: GOSUB 26

1480 IF G$="FAIL" THEN S
2=S ELSE SI=S
1498 IF SI-SMAX THEN 153
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1500 S(S1+S2)/2
1510 IF S2-S1<E2 AND S1=
0 THEN F$=WFAIL": S=O: 6

S-"OTO 1650
1520 IF S1/(S2-SI)<4 THE
N 1470
1530 S=S/2
1535 SREF=O 1530 - 1600 at point halfway
1540 FOR 1=1 TO NPLY between constraints use strain

*' 1550 H(I)=H(I)+Z(I)*S
1568 IF H(I)<E2 THEN H(I ratio routine to find how much
)=0 the laminate thickness can be
1570 SREF=SREF+H(I)*H(I) reduced
1588 NEXT I
1598 S=0: SREF=SQR(SREF)
1680 GOSUB 990: GOSUB 77
0: GOSUB 2020
1610 IF SREF-S<E2 THEN F 1610 If change in thickness
$="FAIL"
1620 FOR I=1 TO NPLY small, set flag to halt program
1630 H(I)=H(I)*S/SREF
1640 NEXT I
1650 S=0
1660 GOSUB 990: GOSUB 77
0: GOSUB 260 1620 - 1660 Update h vector, A
1670 RETURN matrix, strains
1680 '** DIRECTION **
1690 Z=O: UNORM=1
1780 FOR 1=1 TO NPLY
1710 X(I)=8
1728 Z=Z+SGN(H(I))
1730 NEXT I 1760 - 1840 For each active
1740 Z=I/SQR(Z) constraint call gradient sub-
1750 IF NC=O THEN 1860
1760 FOR 1=1 TO NC routine. Sum negative of each
1770 P=C .(I,I): N=C.(I,2 gradient into X and normalize X

1780 GOSUB 460
1798 FOR J=1 TO NPLY
1808 LET X(J)=X(J)-Z(J)
1810 NEXT JI
1815 oUNORM=O 1860 - 1890 Take dot product of
1828 FOR J=1 TO NPLY =o
1830 UNORM=UNORM+X(J)*X( X and unit normal to Ehi = const.
J) plane
1840 NEXT J
1850 UNORM=SQR(UNORM): T
EST=O
1868 FOR I=1 TO NPLY
1870 X(I)=X(I)/UNORM
1888 TEST=TEST+X(I)*Z*SG 1910 - 1940 Z is a vector parallel
N(H(1))1898 NEXT I to the Ehi = const. plane and
1908 UNORM=O pointing away from the active
1910 FOR I=1 TO NPLY constraints
1920 Z( I)=X( I )-TEST*Z*SG
N(H(I))
1930 UNORM=UNORM+Z( I)*Z(
I)
1940 NEXT I 1950 if the magnitude of Z
1950 IF UNORM<IE-6 THEN is very small, a local minima has
F$u"FAIL": RETURN ELSEF$=4 to. been reached

1960 UNORM=SQR(UNORM)
1970 FOR 1=1 TO NPLY
1980 Z(I)=Z(I)/UHORM
1990 NEXT I
200 GOSUS 990
2010 RETURN
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2020 '** STRAIN RATIO **
2030 FOR P=1 TO NPLY 2030 - 2140 For each possible

S2040 IF H(P)= THEN 2160 constraint solve for S in
2050 II=P: GOSUB 1238
2060 FOR N=1 TO NL (SREF) 2 (SREF)
2070 B#=8:C#=8 G. .E. ) + G.c.
2080 FOR 1=1 TO 13J 1 S 2  S
2098 FOR J=1 TO 3
2100 C#=C#-SREF*SREF*G(I - 1 = -E6
,J)*E(N,I)*E(N,J)
2110 NEXT J
2128 8t=B#-SREF*S(I)*E(N
,I)
2130 NEXT I
2140 SVAL=(-B#+SQR (B#*B

,1 v#-4*C#*C1-E6)))/(2t(1-E6

- 2150 IF SUAL>S THEN S=SU
AL 2150 Take smallest value2155 NEXT N

2168 NEXT P (corresponds to closest constraint)
2180 RETURN2190 '** IFP *2200 Z=I/SQR(NPLY)

2210 FOR 1=1 TO NPLY
2220 Z(I)=Z: H(I)=Z
2238 NEXT I 2200 - 2310 For equal ply ratios,
2240 GOSUB 990 find the smallest laminate thick-2250 S=O: SREF=I
2268 GOSUB 770: GOSUB 20 ness which does not violate any
20 constraints. Initialize A matrix,
2270 FOR I=1 TO NPLV strains, and constraint list
2288 H(I)=H(I)*S
2298 NEXT I
2300 S=0
2310 GOSUB 990: GOSU8 77
0: GOSUB 260
2328 RETURN
2338 '** TRANSFORM **
2340 FOR I=1 TO NPLY
2350 C2=COS(2*T(I)): C4=
COS(4*T(I))
2368 S2=SIN(2*T(I)): S4= 2370 - 2450 Transform failure
SIN(4*T(I))
2378 B(I,1)=U(1)+C2*V(2) parameters in following order
+C4*U(3)
2380 B(I,2)=L(1)-C2*V(2) B(I I)G B(I,5)=G
+C4*U(3) 11 16
2390 B(I,3)=U(4)-C4*U(3)
2408 B(I,4)=U(5)-C4*V(3) B(I,2)=G22 B(I,6)=G26
2410 B(I,5)=S2/2*U(2)+S4
*U(3) B(1, 3)=G B(1,7)=G
2420 B(I,6)=S2/2*U(2)-S4 12 )
*U(3)
2430 B(I,7)=V(6)+C2*V(7) B(I, 4) =G B(I,8) =G
2440 B(I,8)=V(6)-C2*U(7) 66 2
2450 B(I,9)=S2*U(7)
2468 C(I, 1)=U(1)+C2*U(2) B (I,
+C4*U(3) 2460 - 2510 Transform modulus
2478 C(I,2)=U(1)-C2*U(2)
+C4*U(3) in following order
2480 C(I,3)=U(4)-C4*U(3)
2498 C(I,4)=U(5)-C4*U(3)
2500 C(I,5)=S2/2*U<2)+S4 6= ll C Q6
*U(3) C (I,L) =Q C(I 6) =Q
2510 C(I,6)=$2/2*U(2)-S4 2 2  2 6
*U(3) C (I, 3) =Q12

- . 2520 NEXT I
2530 RETURN C (I, 4) =Q 66

1 01
• . ... ,....,..;,...,.'..." . ...-... '.. .. . . . . . . . . . .-.. . ......- ,-.-.- . -. .. , . . - . , . . .. , .. . . . .-



2540 '*** INPUT *
2550 CLS

.. 2600 PRINT "PRESS ANY KE
Y WHENu"PRINT "DESIRED M
ATERIAL" :PRINT"APPEARS"
2618 FOR K=1 TO 750:NEXT
2628 FOR M=8 TO 6
2648 IF M=6 THEN M$="NEW
MATERIAL" ELSE GETM,EX 2600 - 2675 List available
,EY,UX,ES,TPLY,XT,YT,XC, materials.Get% is an HX-20
YC, SS MS
2658 CLS:PRINT MS:SOUND command to get data from a non-

28,1 violatile RAM file
2668 FOR J=1 TO 200
2678 IF INKEY$<>"" THEN
2788
2675 NEXT J,M
2688 GOTO 2628
270 IF M=6 THEN GOSUB 9
008:GOTO 2608
2785 CLS:PRINT "N ";lM$;"

2710 PRINT "HOW MANY"
2720 INPUT "PLY GROUPS";
NPLY
2738 CLS: PRINT "ENTER P
LY GROUP"
2748 PRINT "ORIENTATIONS
11

2758 FOR 1=1 TO 200
2768 NEXT I
2778 CLS
2780 FOR 1=1 TO NPLY
2790 PRINT "PLY ";I
2808 INPUT T(I)
2818 T(I)=FNRAD T(I))
2820 NEXT I
2838 PRINT "ENTER NUMBER
OF"

2848 PRINT "INDEPENDENT
LOAD"
2858 INPUT "CONDITIONS";
NL
2988 FOR I=1 TO NL
2918 CLS:PRINT "LOAD "*,I
;" IN MPa."
2920 INPUT "N1=";XN(I,1)
2938 INPUT "N2=";XN(I,2)
2948 INPUT "N6=";XN(I,3)
2958 FOR J=1 TO 3
2960 XN(I,J)=XN(I,J)*IE6
2970 NEXT J,I
2980 RETURN
2990 '** INUARIENTS **
3050 UY=I/( I-UX*UX*EY/EX)

3060 OXX=UV*EX*IE9 QY= 3050 - 3280 Calculate invariants

V*EY*YI*E9 for use in transformations. Note3070 OXY=V*UX*EY*IE9: 0

S=ES*IE9 that some variables like E-X and
3888 U(1)=(3*QXX+3*QYY+2 EY get reused, so their value may
*QXY+4*QS)/8 not be what you might expect after
3890 U(2)=(OXX-QOY)/2
3180 U(3),(QXX+QW-2*QXY routine is called
-4*QS) /8

102
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3116 U(4)s(QXX4QW+6*QXY
eq -4*QS)/8

3120 Ucs)=.Gxx+oW-2*QXY

3130 EX1IE-12/(XT*XC)i E
Y=IE-12/(YT*YC): ES1E-l
2/(SS*SS)
3140 FX=(1/XT-1,/XC)/1E6:
FY=( 1/VT-1/YC)/1E6

3150 EXY=-SQR (EX*EY)/2
3168 GXX=EX*QXX*QXX+2*EX
Y*QXX*QXY+EY*QXY*QXY
3170 GYV=EX*QXV*QXV+2*EX

* Y*QXY*QYY+EY*QWY*Qyy
3180 GXY=EX*QXX*QXY+EXY*

* (QXX*QYY+QXY*QXY )+EY*QXVY
*QYY
3198 65845S*03*05
3200 GX=FX*QXX+FY*QXY
3210 GY=FX*OXY+FY*QYV
3220 UC 1)=(3*GXX+3*GYY+2
*GXY44*GSS)/8

* 3238 V(2W=(GXX-GYY)/2
3240 U (3) =( GXX+GYY-24*GXY

4 -4*GSS)/8
3258 V (4)=(6X,+GWY+6*GXV
-4*GSS)/S
3268 V (5) = (GXX+GYY-2*GXY
+4*6SS)/8
3278 U(6)=(GX+6%O/2
3280 V(7)=(GX-GY)/2
3290 RETURN
3300 '** OUTPUT *
3382 SOUND 15,2:SOUN&50,

* 2
3305 Kl:z"Hit any key to
cont": US="MN/m"

4 3310 CLS: TEST=0
3320 FOR I=1 TO NPLY
3330 TESW=TEST+H(I): HEX
TI1
3358 PRINT "TOTAL THICKN
ESS"1
3360 PRINT TEST; en."
3370 PRINT USING *'####.#
* P1 ies";TEST/TPLY

- 3375 PRINT KS;
- 3380 A%=INKEYS:IF A$<>""
-: THEN 3380

3390 IF INKEYS."" THEN 3
390
3400 CLSIPRINT"Press Y i
f printout","ol displays
d result is desired. Pr
ess Nil not";
3410 FOR I=1 TO 680:NEXT
I
3415 A$=INKEYSSIF AS<>""
THEN 3415
3420 CLS:RESTORE 6120
3425 33=0' A$=INKEYt
3430 FOR I=1 TO S
3448 READ AS:CLS:PPINT:P
PINT ASISOUND 20,1
3445 A$=YNKEV*:IF A$=111
THEN 3445
3450 PRINT AS;:FOR KK=1
TO ?5:NEXT KK
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3455 IF A$="Y" THEN JJ=J
,. J+I:C.%(JJ, 1)=I

* . 3460 NEXT I

3464 IF JJ<>0 THEN LPRIN
T STRING$(24,"')3465 FOR KK=1 TO JJ
3470 ON C%(KK,I) GOSUB 5

000, 5200, 400,4200, 4400,
4600,4800,7500

03485 LPRINT
3490 NEXT KK
3495 CLS:PRINT"FINISHED"
, KS
3496 IF INKEY$=""THEN349 0 n or various
6 ELSE RUN 3400-3490 Branch

4000 '** PLY RATIO** output routines
4002 CLS:LPRINT "Total t
hickness="
4004 LPRINT USING ".####
^^^ m. ";TEST

4006 LPRINT USING "####. 4000-7560 Output routines and

## Plies";TEST/TPLY laminate analysis
4008 LPRINT
4030 A$="ANGLE RATIO #
PLIES"
4040 LOCATE 0,1:PRINT AS
:LPRINT AS
4050 FOR 1=1 TO NPLY
4060 A=CINT((FNDEG(T<I))
*IE2) )/IE2
4070 B=CINT((H(I)/TEST*1

V., E4))/1E4
4880 C=CINT((H(I)/TPLY*I
E2))/1E2
4090 PRINT A;TAB(6);B;TA
8(13);C
4100 LPRINT A;TAB(6);B;T
AB(13);C
4120 NEXT I
4150 RETURN
4200 '** STRENGTH**
4210 LPRINT "STRENGTH RA
TIOS"
4215 LPRINT "I=ULTIMATE 4210 - 4305 Strength ratio is
STRAIN": defined as the value of R in
4220 LPRINT ">1 IS SAFE"
4225 FOR 11 TO NL G. eR + G .R -1 -0
4230 LPRINT "LOADING "I . 1 1 1 -

4235 LPRINT "PLY"
4240 FOR P=1 TO NPLY
4245 IF H(P)=0 THEN 4305
4250 II=P:GOSUB 1230
4255 A#=0:6#=0

" 4260 FOR J=1 TO 3
,i 4265 FOR K=1 TO 3

4270 A#=A#+G(J,K)*EI,J)
*E(I,K)
4275 NEXT K
4280 B#=B#+S(J)*E(I, J)
4285 NEXT J

' 4290 A#=(-E:*+SQR(B#8*#+4h'. *A#) ) /(2*A#)

4295 A=FIXA#*IE4+. 5)/IE
4
4300 LPRIHT FNDEG(TP));
TAB(10);A
4305 NEXT P, I
4310 RETURN
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4400 '**STRAINS**
4418 LPRINT TAB(4);"LAMI
NATE STRAINS"
4420 FOR N=l TO NL
4430 LPRINT "LOADING "N
4440 LPRINT USING "el=+#
* ###E-03";E(N, 1)*l1E3
4450 LPRINT USING "e2=+#
* ###E-03";E(N,2)*1E3
4460 LPRINT USING "e6=+#
. ###E-03"; E(N, 3) *:I E3
4465 NEXT N
4470 RETURN
4600 ' **A MATRIX**
4618 CLS
4620 LPRINT"Norm. IAI in

GPa. "
4630 FOR I=1 TO 3
4640 FOR J=1 TO 3
4650 D(I,J)=A(I,J)/1E9/T
EST
4668 NEXT J, I
4670 GOSUB 7000
4680 RETURN
4800 'A INUERSE
4810 LPRINT"Complince
(normalized)"
4820 LPRINT"in 1/TPa. '

4838 FOR I=1 TO 3
4840 FOR J=1 TO 3
4850 D(I,J)=AI(I,J)*TEST
*IE12
4860 NEXT J,I
4878 GOSUB 7000
4888 RETURN
5008 LPRINT "Material Pr
operti es"
5010 GEThM, E, E , U., ES, T
PLY, XT, YT, 1XC, YC, SS, M$

5015 LPRINT N3
5028 LPRINT "EX=";EX;"GP

5830 LPRINT "EY=";EY;"GP
al
5040 LPRINT "ES=";ES;"GP

5850 LPRINT "VX=";vX
5068 LPRINT "X=";XT;"MPa

5070 LPRINT "X'=";.XC; "MP

5072 LPRINT "Y=";YT;"MPa

5074 LPRINT "Y'=",YC;"MP
a"l
5088 LPRINT "S=";SS;"MPa

5098 LPRINT "PI.h Thickne
ss"; TPLY"m"
5095 RETURN
520 '**LOADS**
5210 FOR I=1 TO NL
5228 LPRINT "LOADING ";I
5230 FOR J=l TO 3
5240 A$=STR$(J): IFJ=3THE
N A$=" 6"
5250 LPRINT "N";A$;"=";X
N(I,J)/IE6;Us

" 5260 NEXT Ji
5270 RETURN
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6ODATA .c-5-5,1,1r-

6
6128 DATA Ply Properties
,Loads,Total thickness&

ply ratiosStrenth
ratios
6138 DATA Laminate strai
ns,Stiffriess matrix,ComP
li-ance matrix,Ensineril
s const.
6588 '** ANALYSIS ~
6585 CLS
6518 TEST=O .650 0-657') MAIN,. for performing
6528 FOR 1=I TO NPLY only laRminate analysis (number
6530 PRINT "NLIMBER OF PL
ZES ATtFNDEG(T(I)lh"DEG o+ plies is a given)

* REES":INPUT H(I)
6540 NC I)=H( I)*TPLY: TEST
=TEST+H(I)
6550 NEXT
6555 CLS
6568 S=0:GOSLIB 29905OU
8 2330:G09U8 990:G'JSUB 7
70
6570 GOTO 3300
7000 'FANCY
7010 LPRINT "

7020 LPRINT USING "1###.

7048 LPRINT AS
7058 LPRINT USING "I###.
*hI*";D(2v l),D(2,2),D(2,3

7068 LPRINT A$
7070 LPRINT USING1 "1###.

7088 LPRINT

7180 RETURN
7508 '5** ENG. CON4ST. *
7585 LPRINT "ENGINEERING
CONSTANTS": LPRINT
7510 LPRIHT USING"EP4#*#
.# GPa"U1/AI(1,1)/TEST'1
E9
7515 LPRINT USING"IE2=#**
.# GPa" 14AI(2,2)/TEST/1
E9
7528 LPRINT USING"E6=#**
.# GPa'1 141(3,3)/TEST/i
E9
7525 LPRINT USING"E2=#*#
.# GPa"H1/AI(2,2)/TEST/-1
E9
7538 LPRINT USING"v21=*

N 7548 LPRINT USING"v)61**#
***V",;AI~i,3)/AI(i,1)

#**nrA(,3)441(3,3)
7568 RETURN
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9000 PRINT"REVIEW OR NEW
510 ,, 9000-9210 Enter mater ial

w 9011 INPUT "DATA (R/)"; properties into library
AS
9020 IF A$="R" THEN 9190
9030 PRINT"WHICH MATERIA

I'- L":PRINT"IIILL YOU"
9040 INPUT "REPLACE (0-5

9050 INPUT "EX(GPa)=",EX
9060 I NPUT "EY ' GP .:, ="; EY
9070 INPUT "UX" ; .
9075 INPUT "ES(GPa)=",ES
9080 INPUT ",X(MPa)=";''X
9090 INPUT "X'(P.)=".xx
9166 INPUT "Y(F'Pa)=' ; 'y
9110 INPUT "Y' (1Fa ) ="; YY
9120 INPUT "StMPa)=";S
9130 INPUT "THICKNESS (m
)=" ;TPLY
9140 INPUT "NAME ( 15 C:HR

, . MAX. )";Ms
, 9150 PUTI,EXENY 'UEST

PLY, X, Y, XX, YY, S, M.
9160 PRINT "ADDITIONAL":
INPUT "CHANGES 'N'/N)" AS
9170 IF AS="Y" THEN 9000
9180 RETURN
9190 PRINT"REUIEW WHICH" 50 -5,70 Rout i ne for
:INPUiT"MATERIAL 0-5)"M . .0 ..5m e
9200 GOSUB5000 automatically entering material

" 9210 GOTO 9160 properties from a cassette
9500 OPEN "I",#1,"CAS1:D tape. To use, line 45 should
ATA"
9510 FOR 1=0 TO 5 read GOTO 9500, and load

9520 INPUT #1,EXEYVX,E program. i th tape s=ti ll

S,T,X,Y,XX,'Y,S,M$ connected, run proQram and the
9530 PUTI,EX,.1,EY,UX,ES,T properties Wi I 1 load.
,XN 1XXYYS4,MX
9540 NEXT
9550 CLOSE #1
9560 DELETE 45

- 9570 GOTO 50
. 10000 'THETA

10010 L=O
10020 SREF=0

" 10030 FOR I=1 TO NPLY
-" 10040 SREF=SREF+HI(I)*H(I

10050 NEXT
10060 FOR P=1 TO NPLY
10070 C2=2*COS(2*T(P))
10080 C4=*COS(4*T(P)) 10000 Angle optimization

" 10090 S2=2*SIN(2*T(P)) subroutine
10100 S4=4*SIN(4*T,:P))

• "-' ~10110 D , =U2 :2U
3)*S4
10120 D(2,2)=U(2)*S2-U(3.- )*S4 1011I0-10190 A ru Iu ar

10130 D(3,3)=t(3)*S4 derivatives of fai lure
10140 D(I,3)U(2)C22+) parameters
(3)*C4
10150 D(2,3)=U(2)*C2/2-V
(3)*C4

,i
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10160 D(1,2)=D(3,3):D(2,
1)=D(1 ,2) D( 3, 2)=D(2, 3)'• >% D(3, 1)=D(1,3)
10170 X(1)=-(7)*S2
10180 X(2)=-X(1) 10250-10270 Calculate value cf
10190 X(3)=U(7)*C2 failure quation for each lad10200 II=P:GOSUB 12" l e
10210 FOR N=1 TO NL
10220 FCON=- 1
10230 FOR K=l TO 3
10240 FOR J=1 TO 3
10250 FCON=FCON+G'(J, K)1. *E
(N,J)*E(N, K)
10260 NEXT J
10270 FCON=FC:ON+S( K)*E(N
K)
10280 NEXT K
10290 L=L+1
10300 CON (L) =FCON
10310 FOR PP=1 TO NPLY
10320 C2=2*C:0CIS ( 2:T (PP)1
C4=4*COS(4*T(PP)) 1O3 4 01O3r0 Angu 1 ar10330 S2=2*SIN(2 *T, PP)): der ivatives of 0 matrix
S4=4*SI N(4*T(PP)) terms
10340 A(1, 1)-U(2x+32-J(
3) *S4
10350 A(2,2)=U(2)*S,2-(3
) *$4
10360 A ( ,3)=U(3)*:4
10370 A( I, 3)=U(2)*:2,'2+u
(3)*C4
10380 A(2,3)=U(2)*C:2i2-U
(3)*C4

10400-10490 Solve for
-(3.-',13)partials of strain with

10400 FOR J=1 TO 3 respect to anule
10410 R(J)=0
10420 FOR K=1 TO 3
10430 R(J)=R(J)+A(J,K)*E
(N, K)*H(P)
10440 NEXT K,J
10450 FOR J=1 TO 3
10460 Y(J)=0
10470 FOR K=1 TO 3
10480 Y(J)=Y(J>-AI(.,K)* 10510-10600 Solve
R(K) equation (29)
10490 NEXT KJ
10500 DUM=O
10510 FOR J=1 TO 3
10520 FOR K=1 TO 3
10530 DUM=DUM+G(J, K)*(Y(.jT)*E (N, K)+E(N, J )*Y€(K))

10540 IF P=PP THEN :UM=D
1JM+D ( , K) *E (N, J ):E (N., K)
10550 NEXT K
10560 DUM=DUM+S ( .J ) *t'(J
10570 IF P=PP THEN DIJM=D
UM+X(J)*E(tI,5) 10630-10700 Sove for
10586 NEXT J
10590 W(L,PP)=DUM equation (28)
10600 NEXT PP
10610 NEXT N,P10620 MAX=0

10630 FOR P=1 TO NPLY
10640 DUM=0: DUM2=0 DM13=
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* 10650 FOR J=l TO L
10660 DUM=DUM+CON ( J ), I k( J

P)
10670 DUM2=DUM2+W(JP)
10680 DUM3=DLIM3+CON (J)
10690 NEXT J
10700 '(P)=DUM-DUM2*DUM3 10740-10760 Normal i ze Z

.NPLY by largest component
10710 IF ABS(Z(P)):::-rMAX
AND Z(P)<> THEN ZMAX=AB

KS(Z(P))
10720 X(P)=O
10730 NEXT P
10740 FOR I=1 TO NPLY
10750 IF ZMAX=O THEN RET
URN ELSE Z( I =-7-Z( I '...,"MAX

10760 NEXT I
10770 T=I:TEST=SREF 10780-10820 Incremental
10780 FOR I=1 TO NPLt step of all anql es
10790 CON(I) =X(I): II)=Z
k I)*T
10800 X(I)=CINT(X(I))
10810 T(I)=T(I)+(::-,I)-CO
N(I))*DELTA 108:30 Up da t e
10820 NEXT
10830 GOSUB 2330:S:GOS transformations., strains,
LiB 990:GOSUB 770 and scale total thickness
10840 GOSUB 2020
10850 IF S<TEST THEN T=T
+1: TEST=S: GOTO 107-0
10860 FOR I=1 TO Nf*LY
10870 T(I)=T(I)-(X'I)-C0
N( I) )*DELTA
10880 NEXT 10860-10880 After minimum
10890 S=O:GOSUB 2320:GOS
U 990:GOSUB 770:GSUB 2 go back one step

" 020
10900 FOR I=1 TO NPLY
10910 H(I)=H(I ) *S/'PEF
10930 II=P:GOSUB 1230
10940 NEXT 10900-10940 Update ply
10960 IF T=1 THEN RETURN group thickness
ELSE GOTO 10000

10?60 If any progress
made, go back and try a
new direction. If not,
return to main

-10
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APPENDIX C

Orthotropic Laminate Optimization Program

The following program produces a thickness optimized laminate that

is constraint to be orthotropic. A search can be made for the best

orientation of the orthotropic axis. In the final result, ply angles

are measured from one of the orthotropic axes (the original 1 axis) plus

a rigid body rotation is given. Angles appear to stay constant, but the

rigid body rotation must be added to get the angle to the laminate 1

axis (see Figure 15). The failure theory is based on the strain sphere

approximation of the first-ply failure inner-envelope. The laminate

must remain balanced. Instead of entering both the plus and minus

angle, only one is entered and the program assumes the presence of the

other. The final thickness must be divided evenly between a plus theta

and a minus theta ply group.

Running the program is similar to running the program listed in

Appendix B. The only differences are that if optimimum orientation is

desired, the search limits and maximum error must be entered. The

search limits are the angles between which the best laminate is thought

to lie. If a minimum is not found between the given limits, the program

automatically extends the limits, but this is time consuming.

All angles (and the error) are entered as degrees.

110

o..



10 '** MAIN CLASS**

*4W 20 WIDTH 20,18
30 CLEAR 75,330
48 DEFFIL 55,0
50 DIM XN(3,3),Q11(4),Q2
2(4),Q12(4),866(4),H(4),
R(3),T(4)
60 DIM X(4),Y(3),Z(4),E(
3,3),C$(4),U(5),U(5)
70 DEF FNRAD(X)=X/180*3.
14159
80 DEF FNDEG(X)=X*18/3.
14159
90 RESTORE
108 READ E2,E5,E6
110 ITER=1
120 GOSUB 1830
130 GOSUB 2180
148 GOSUB 1728
150 INPUT "OPT. ROTATION 100 Error and numerical offset

(Y/N) "; AS c on st ants
160 IF A$="Y" THEN GOTO
4180
170 GOSUB 1580 120 Input
180 GOSUB 1160
190 CLS:PRINT "WORKING,I 130 Invarients
TERATION";ITER
200 IF F$="FAIL" THEN 25
0 140 Transformations
218 GOSUB 840
228 ITER=ITER+1 160 Branch for optimum
238 IF F$="FAIL" THEN 25 orientation
240 GOTO 180

250 H=O 170 Initial feasible point
268 FOR 1=1 TO NPLY
270 H=H+HCI):NEXT I
280 GOTO 2338 180 Direction

' 290 '** CONSTRAINT TEST*
* 210 New position in design
300 G$="PASS": NC=O
310 FOR N=1 TO NL space

320 FCON=(E(H,I)*E(N,1)+
C, E(N,2)*E(N,2)+E(N,3)*E(N

,3)/2)/EMAX-1
330 IF FCON>0 THEN G$="F

* AIL":RETURN
340 IF FCON<-E5 THEN GOT 300-380 Equation (9)
0 370
350 NC=NC+1
360 C$(NC)=CHRS(N)
370 NEXT N
380 RETURN 400-520 Partial derivatives of
400 '** GRADIENT ** tr a in
410 UNORM=0
420 FOR L=1 TO NPLY
430 IF H(L)=8 THEN Z<L)=
0:GOTO 520
440 R(1)=-Q11<L)*E(N,1)-
912(L)*E(N,2)
450 R(2)=-012(L)*E(N,1)-
Q22(L)*E(N,2)
460 R(3)=-Q66(L)*E(N,3)
470 V(1)=AI11*R(1)+AI12*

' .'-.R(2)

;' ' 480 Y(2)=AIl2*R(1)+AI22*
R(2)
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4' 490 V(3)-A66*RC3)
see Z(L)=2*VUI)*EtI)+2
*V(2)*E(N,2)+Y(3)*E(N,3)
510 UNORfl=UNORM.Z(L)*Z(L

520 NEXT L
530 UNORfI=SQReUNORM)
540 FOR L=1 TO NPLY
550 Z(L)=Z(L)UNORM 530-560 Normal ize Qradi ert
560 NEXT L

.4578 RETURN
588 '** STRAINS *
590 Fll=AIl+D11*S
600 F12=A12.D12*S 5?0-620 Update A matr ix for
610 F22=A22*D22*S pointS
620 F66=A66.066*Spon S
630 DET=FI1*F224-F12*p126067 InetAasm g
640 AI11=F22/DET 0 60 InetAasm o
650 A122=FI/DET or thotrop ic l am inate
668 A112=-F12/DET
678 A166=1/F6668 71 Sov frstan
688 FOR 1=1 TO NL60- 0 Sov frstan
698 E(I,1)=AI11*XN(I,1)+
A112*XN(I,2)
700 E(I,2)=A112*XN(I,1)+
A121*XN(I,2)
710 E(I, 3)=A166* N(I,3I')
728 NEXT 1
738 RETURN
748 '** A MATRIX *
750 AI1=01'A22=0:"A121=O:A6
6=0
768 D118022=8:D12=8:D6 750-800 Form A matrix
6=0
770 FOR I=1 TO NPLY
788 A11=AI1+Q11(I)*HI): 850-1000 Bisection search for
011=D11+Q11(I)*Z(I) next constraint
798 A22=A22+Q22( I) *-H( I):
D22=D22+Q22( I)*Z( I)
808 A12=A12+Q12(I)*H(I):
D2=D12'Q12( I)*Z(I)
818 A66=A66 +066(I)*H(I)
:D66=D66+Q66( I)*Z( I)
828 NEXT I
830 RETURN
848 REM ***NEW POSITION

858 SNAXI1EIO
868 FOR 1=1 TO NPLY
878 IF Z(I)<>8 THEN S=-H
(I)'Z(I)
888 IF S>8 AND S<SMAX TH
EN SMAX=S
898 NEXT I
980 FS=""
910 IF SMAX> 18 THEN FS=
"FAIL": RETURN
928 S1=0: S2=SMAX: S=SMA
x
938 IF NC=0 THEN 1078

* 948 608WB 580: GOSUB 298
958 IF 6$="FAIL" THEN S2
=S ELSE 81=8
968 IF SI=SMAX THEN 1018
978 S=(81+82)'2
990 IF S2-S1<E2 AND S1=0
THEN F%="FAIL": S=8: Go

TO 1138
998 IF SI'(82-S1)(4 THEN
940

4% 1000 SuS'2
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4, 1018 SREF=O
1020 FOR 1=1 TO NPLY 1010-1140 At halfway point,

.- 1030 H(1)=H(I)+Z(I)*S
1040 IF H(I)<E2 THEN H(I rescale lamiate and update
)=O thickness vector
1059 SREF=SREF+H(I)*H(I)
1060 NEXT I
1070 S=O:SREF=SQR(SREF)
1080 GOSUB 740: GOSUS 58
0: GOSUB 1518
1090 IF SREF-S<E2 THEN F
$='FAIL"
1100 FOR 1=1 TO NPLY
1110 H(I)=H(I)*S/SREF
1120 NEXT I
1130 S=0
1140 GOSUB 740: GOSLIB 58
0: GOSUB 290
1150 RETURN
1160 '** DIRECTION **
1170 W=9: UNORM=1 1170-1260 Get gradient of each
1180 FOR I=1 TO NPLY active constraint
1190 X(I)=O
1290 W=W+SGN(H(1))
1210 NEXT I
1220 W=1/SQR(W) 1270-1340 Sum grad ients and
1239 IF NC=O THEN 1350 normal i ze result
1240 FOR 1=1 TO NC
1250 N=ASC(CS(I)) 1350-1490 Project onto
1260 GOSUB 400
1270 FOR J=1 TO NPLY constant thickness plane. Test
1280 LET X(J=AJ)-Z(J) for minimum and normal ize final
1290 NEXT JI result
1300 UNORM=0
1310 FOR J=1 TO NPLY
1320 UNORM=UNORM+X(J)*X(

d 3)
1330 NEXT J

' 1340 UNORM=SQR(UNORM): T
EST=0
1350 FOR I=1 TO NPLY
1360 X(I)=X(I)/UNORM
1370 TEST=TEST+X(I)*W*SG
N(H(I))
1380 NEXT I
1390 UNORM=0
1400 FOR I=1 TO NPLY
1410 Z(I)=X(I)-TEST*W*SG
N(H(I))
1420 UNORM=LINORM+Z<I)*Z(
I)
1430 NEXT I
1440 IF UNORM<IE-6 THEN
F*="FAIL": RETURN ELSE

1450 UNORM=SQR(UNORM)
1460 FOR 1=1 TO NPLY
1470 ZCI)=Z(I)/UORM
1480 NEXT I
1490 GOSUB 740
1500 RETURN
1510 '** STRAIN RATIO ** 1520-1560 Find distance from
1520 FOR N=1 TO NL farthest constraint to origin
1530 SUAL=SREF*SREF/(I-E
6)IEMAX*(E(N,I)*E(N,I)+E
(N,2)*E(N,2)+E(N,3)*E(N,
3)/2)
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1548 SUAL=SGR(SVAL)
- 1558 IF SUAL>S THEN S=S)

AL
* C"1568 NEXT N

1570 RETURN
1580 '** IFP **
1590 W=I/SQR(NPLY)
1608 FOR I=1 TO NPLY
1610 Z(I)=W: H(I)=W
1620 NEXT I
1630 GOSUB 740
1640 S=O: SWEF=1
1650 GOSUB 580: GOSUB 15
10
1660 FOR I=1 TO NPLY
1670 H(I)=H(I)*S
1680 NEXT I

" 1690 Sa0
1708 GOSUB 740: GOSUB 58
0: GOSUB 290
1710 RETURN

* 1720 '** TRANSFORM *
* 1730 J=QXX+QYY+2*1-.: K=Q

SS-QXY
1740 FOR I=1 TO NPLY
1750 C2=COS(T(I)):C2=C2* 1730-1810 Transformat ion of

1 Celasticity 
matrix, assuming

1760 S2=SIN(T(I)):S2=S2* otorpclmnt
K orthotropic laminate

$2

1770 QI (I)=C2*C2*OXX+S2
*S2*QYY+2*S2*C2* (QXY+2*Q
SS)
1780 Q22(I)=S2*S2*QXX+C2
*C2*QYY+2*C2*S2* (QXY+2*Q
SS)
1798 Q2(L)=CJ-(Q1 l(I)+Q
22(1)))/2
1800 Q66(I)=(J+2*K-(Q11(
I)+Q22(I)))'2
1810 NEXT I
1820 RETURN
1830 '*** INPUT **
1840 CLS
1850 PRINT "PRESS ANY KE
V WHEN ","DESIRED MATERI
AL", "APPEARS"
1860 FOR K=1 TO 750:NEXT
1870 FOR M=O TO 6
1880 IF M=6 THEN MS="NEW
MATERIAL" ELSE GET5,MEX
,EY, UX, ES,TPLY, XT, YT,XC,
YCSSMS
1898 CLS:PRINT M:SOUND
20, 1
1900 FOR J=1 TO 200
1910 IF INKEYS<>"" THEN
1940
1920 NEXT J,M
1930 GOTO 1850
1940 IF M=6 THEN GOSUB 3
750: GOTO 1850
1950 CLS:PRINT " "'Mt;

1968 PRINT "HOW MANY"
1970 INPUT "PLY GROUPS";
NPLY
1980 CLS:PRINT"ENTER PLY

GROUP"
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' SI

2478 CLS:PRINTHPress Y i
f Printout", "of displa-.oe
d result is desired. Pre
ss N","if not";
2480 ITER=1
2496 FOR I=I TO 600:NEXT

I
2500 A$=INKEY$:IF AS<>""
THEN 2500
2510 CLS:RESTORE 4630
2520 J=0: A$=INKEYS
2530 FOR I=1 TO B
2546 READ AS:CLS:PRINT:P
RINT AS:SOUND 20,1
2550 AS=INKEYS:IF A$=."1

THEN 2550
V2560 PRINT A$;:FOR KK=1

TO 75:NEXT KK
2570 IF AS="Y" THEN J=.+I:C%(J, 1)=I
2580 NEXT I 2510-2620 Branch for various

2590 FOR K=1 TO J output routines
2600 ON C%(K,1) GOSUS 32
10,3350,2650,2780,2.S90,2
980P 3090
2610 LPRINT 2650-3520 Output routines ana
2620 NEXT K laminate analysis
2630 CLSIPRINT"FINISHED"
,KS

2646 IF INKEYS=""THEN264
0 ELSE RUN
2650 '** PLY RATIO**

2660 CLS:LPRINT "Total t
hicknes-="
2670 LPRINT USING ".####0-,^ m.";TEST
2680 LPRINT USING "####.
## Plies";TEST/TPLY
2690 LPRINT
2700 LPRINT "ANGLE RATI
0 #PLIES"
2710 FOR I=1 TO NPLY
2720 A=CINT((FNDEG(T(I))
*1E2))/1E2
2730 B=CINT((H(I)/TEST*1
E4))/1E4
2740 C=CINT((H(I)/TPLY*1
E2))/1E2
2750 LPRINT A;TAB(6);B;T
AB(13); C
2760 NEXT I
2770 RETURN
2780 '** STRENGTH**
2790 LPRINT "STRENGTH RA
TIOS"
2800 LPRINT "1=ULTIMATE

*. ' STRAIN":
2810 LPRINT "M1 IS SAFE"
2820 FOR 1=1 TO NL
2830 LPRINT "LOADING "I

-': 2840 A=E(I,I)*E(I,1)+E,1
,2)*E(1,2) E(I,3)*E(I,3)

r. '2
2850 A=SO0:(EMAX/A)
2860 LPRINT "R=",A
2870 NEXT

,°.. 2880 RETURN
:.1.
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2890 '**STRAINS**
2908e LF'RINT ThB(4);"LAMI
NATE STRAINS"
2910 FOR N=1 TO NL

% 29 20 LPRINT "LOADING "N
2930 LPRINT USING "e1-=-#
* #**E-03";E(N, 1>*1E3

VFW 2940 LPRINT LISING "e2=+#
* ###E-03";E(N,2)*1E3
2950 LPRINT USING "e6=+#
* #*#E-03";E(N,3)*1E3
2960 NEXT N

-. 1 2970 RETURN
2980 ' **A MATRIX**
'2990 CLS
3000 LPRINT"Norm. Iflj in

GPa.

3020 D(1,3)=0:D(?, 1)=0:D
(2,3)=0:D(3,2)=0:O(2, 1)=
D01,2)
3030 FOR 1=1 TO 3
3040 FOR J=1 TO 3
3050 D(L,J)=D(I,S)/TES1>if I E9
3060 NEXT J,I
3070 GOSIJB 3430
3080 RETURN
3090 'A INVERSE
3100 LPRINT"Comwliance

* (normalized)"
3110 LPRINT"in 1'TPa."
3120 D(1,1)=AII1:c'(1,2)t
A112:D(2,2)=i422:D(3,3)=
AI66
3130 D(1,3)=0:D(2,37)=0:D

3140 t(21)=D(1,2)
3150 FOR 1=1 TO3
-3160 FOR J=1 TO 3

* 3170 D(I,Y)=D(I,J)*:TEST*
1E12
.3180 NEXT JI
3190 GOSUB 34370
3200 RETURN
3>210 LPRINT "Material Pr
operti ets"
3220 GET%M7 EX,Ev,VLX, ES. T

0 PLYPXT. YT,XC,YC, 5341$
* 3230 LPRINT M$

3,240 LPRINT "EX=";EX;"GP

a"
3250 LPRINT "EY=";EY; "GP
all

*3270 LPRINT "VX="; UX
3280 LPPIHT "X=";XT; "MPa

3290 LPPINT "X'="; XC;"MPll

3300 LPPINT "'Y=";YT;"MF'a

t3310 LPRINT "' ""YC;" MP
a"t
3320 LPRIHT "S=':SS; "MPa

,3330 LPRINT "Ply. Thickne
~ p...ss"; TPLY"m"

3340 RETURN
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*; ,.50 '**LOADS**
3360 FOR 1=1 TO NL
3370 LPRINT "LOADING "; I
3380 FOR J=l TO 3
3390 AS=STR$(J)IFJ=3THE
N AS=" 6"
3395 A=CINT(XN(I,j)."1E3)
/1E3

,,K 3400 LPRINT "N";AS""";A
*US
3410 NEXT J,I
3420 RETURN
3430 'FANCY
3440 LPRINT ',

3450 LPRINT USING "I###."" ~###",'D(1, 1),CD(I, 2 D(1, 3

3460 At="!-t
i-- -

3470 LPRINT AS
3480 LPRINT USING "1###.
###";D(2,I),D(2,2),D(2,3

* )

3490 LPRINT AS
3500 LPRINT USING "I###.

3510 LPRINT "'_ .__

3520 RETURN

3750 PRINT"IREIEW OR NEW

S 3760 INPUT "DATA (P/N)";

AS
3770 IF AS="R" THEN 3950
3780 PRINT"WHICH MATERIA
L":PRINT"WILL YOU"
3790 INPUT "REPLACE (0-5

" ) "1; 1

3800 INPUT "E( Pa)="; EX
3810 INPUT "EY(GPa)=";Ey
3820 INPUT "UX=";Ux
3830 INPUT "ES(GPa)=";ES
3840 INPUT "X'MPa)=";x
3850 INPUT "X' (MPa)=",,XX
3860 INPUT "Y (MPa)=" ; Y
3870 INPUT "Y'(MPa)=";yy
3880 INPUT "S(MPa)=";S
3890 INPUT "THICKNESS (m
)=";TPLY
3900 INPUT "NAME (15 CHR
MAX. )";M$

3910 PUT/.I,EX,EY,VX,ES,T
PLY, X, Y, XX, YY, S, Ms
3920 PRINT "ADDITIONAL":
INPUT "CHANGES (Y/N)"; AS
3930 IF AS="Y" THEN 3750
3940 RETURN
3950 PRINT"REUIEW WHICH"
:INPUT"MATERIAL (0-5)";,M
3960 GOSUB3210
3970 GOTO 3920
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3980 OPEN "I",1.,"C ASI:D
ATA"
3990 FOR 1=0 TO 5
4000 INPUT #1,EXEY."XE
STXYXXYY,S,M$ 3980-4040 Rout i ne for
4010 PUT%IEXEYVXES,T automatically entering material
,XYXX, YYS$ Properties from cassette tape.
4020 NEXT To use, line 45 should read4040 DELETE 45 GOTO 3980, and run program with
4060 '***ROTATION*** tape still connected
4065 CLS:PRI UT "WORKIN'G"
4070 A=-ROT-ROTSUM: ROTSU
M=ROTSUI+A
4080 A=FNRAD(-A) 4070-4170 Transform loads to, 4090 C=COS(A):C2=C*C new axis system.
4100 S=SIN(A)9S2=S.S

4110 FOR I=1 TO NL
4120 R(I)=XN(I,1)*C2+VkN(
I, 2)*S2+XN( I, 3)*2*S*C

4130 R(2)=XN( I, 1 )*S2+XN(I, 2)*C2-XN( I,3)*2*S*C

4140 R(3)-XN( I )*C:SXN(I,, C*S+,.,N (I, 3) *: C2-S

2)
4150 XN(I, 1)=R(I ): N(I,2) =R(2) : >XN'( I,"h

4160 NEXT I
4170 RETURN
4180 '**ANGLE SEARCH**
4190 INPUT "LOWER SEARCH
LIMIT";S1

4195 INPUT "UPPER SEARCH
LIMIT";S2

4200 IF S2<=S1 THEN 4190
4210 INPUT "MRX. ERROR";
El422 ROTSUMO 4220-4610 One-dimensional
4230 U(1)=SI.U(5)= 2 search for best rigid body
4248 U(3)=(S1+32)./2 rotation
4250 U(2)=(U(3)+U(1))/2
4260 U(4)=(U(5)+U(Z ) )/2
4265 AA=1:88=5
4270 FOR II=AA TO E
4280 ROT=U(II)
4290 GOSUB 4060:GOSUB 46
50
4300 U(I1)=H
4710 NEXT
4320 UMIN=(1):J=1
4330 FOR 1=2 TO 5
4340 IF K(I)<uMIN THEN V
MIN=V( I):J=I
4350 NEXT
4360 IF J=1 THEN 4820
4365 IF 3=5 THEN 4770
4370 Y(1)=V(J-1):X( 1 ) =U(
hi )
4380 Y(2)=U(J):X(2)=U(.l)
4390 Y(3)=V(.J+1).X(3)=J(
3+1)
440e U(1)=X(I):U(3:)=X(2)
:U(5)=X(3)
4410 '(1)=V(1):(3)=Y(2)
: I(5)=Y(3)
4420 IF U(5)-U(1)<=EI TH
EN 454
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1990 PRINT "ORIENTATIONS

2980 FOR I=1 TO 350
2010 NEXT
2828 CLS
2030 FOR 1=1 TO NPLY
2040 PRINT "PLY ";I
2050 INPUT T(I)
2060 T(I)=FNRAD(T(I))
2070 NEXT I
2080 INPUT "NUMBER OF LO
ADINGS=" ;NL
2090 FOR I=1 TO NL
2100 CLS:PRINT "LOADING
"U
2110 INPUT uN1(MPa)=";XN
(I,1)
2120 INPIJT "N2(MPa)=";,XN
(1,2)
2130 INPUT "N6(MPa)=";XN
(1,3)
2140 FOR J=1 TO 3
2150 XN(I,J)=XN(I,J)*1E6
2160 NEXT J:NEXT I
2170 RETURN
2180 '** INUARIENTS**
2190 VY=1/ I-kUX*UX*EY/EX

2190-2210 Calculate Q0s from
2200 OXX=UY*EX*IE9:Y'=U engineering constants
Y*EY* I E9
2210 QXY=UY*UX*EY*IE9:QS
S=ES*I1E9
2220 U1)=XT/EX 2220-2310 Find smallest strain
2230 U(2)=XC/EX component. It becomes theS2240 U<3)=YT/EY225 U(4)=YC/EY radius of the strain-sphere

2260 U(5)=SS/ES/SOR(2)
2270 EMAX=U(I)*U(I)/IE6
2280 FOR I=2 TO 5
2298 U(I)=U(I)*U(I)/IE6
2300 IF U(I)<EMAX THEN E
MAX=U( I)
2310 NEXT I
2320 RETURN
2330 '** OUTPUT *
2340 SOUND 15,2:SOUND50,
2
2350 K$="Hit anv keg to
cont.": U$="MN/r"
2360 CLS:TEST=0
2365 IF F$="ROT" THEN LP
RINT "RIGID BODY","ROTAT
ION OF";U(3), "DEGREES"
2370 FOR 1=1 TO HPLY
2380 TEST=TEST+H( I): NEXT

I
- 2390 PRINT "TOTAL THICKN

ESS="
2408 PRINT TEST;" mi."
2410 PRINT USING "####.#
# Plies";TEST/TPLY
2420 PRINT K$;
2430 LOCATE 0,0
2440 A$=INKEY$:IF AW.>""
THEN 2440
2450 IF INKEY$="" THEN 2

".- 450
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4430 U(2)=(U(3)+I(1))/2
4440 U (4)= (IJ(5) +U()/2
4450 FOR II=2- TO 4 S::TEP

w 2
4460 ROWIJ(II)
4470 GOSUB 4060: GOSUB 416
50
4480 tAII)=H

N4490 NEXT
4500 GOTO 4320
4540 ROT=U(3')
4550 '30SUB 4060: 303U8 46
50
4560 ROT=0: GOSUB 4060-
4570 PPRINT "OPT. OP I EHTA

* TION=1J;(3)
4580 PRINT "TOTAL OF"-
..',TPLY, "FLIES"',

4590O SOUND 15 2: SOUND 30

4600 IF It4KEYSr1"" THEN 4
600
4605 Ft="ROT"
4610 GOTO 23310
4 620 DATA 5E-5,.1, 1E-6
4630 DA~TA P1-- Frc'Fertiez
,Loads,Total thickness

P1, ratics-.s,Stre7-nsth
ratios
4640 DAiTA Larnrte strai
rs,Stiffness matrix,Comp
I i ance matr i

4650 ':*OPT. RATIO+**
S4660 GOSUB 15-80

4670 GOSUB 1160 4650-4760 Version of MAIN used
4680O IF F$="FAIL"- THEN 4 by optimum angle search to.
720 optimize Ply ratios at each
46940 GOSUB :340tra oie ain4700 IF F$="FAIL" THEN 4tr loie ain
720
47t10 GOTO 4670
4720 H=O
4730 FOR 1=1 TO NPLY 4770-4860 Routine to adjust
4740 H=H+H(I;'
4750 NEXT I search bounds if minimum not
4760 RETURN found in given limits
47J0 2W<l5 :U()=U(5')=11

4780 CELzU(2)-U( 1)
4790 IJ()=IJ(2)+DEL:U(4)=
'If fl+DEL:lJ(5),=iJ(4) +DEL
4800 AA=3:BB=5
48~10 GOTO 4270 Rkepr oduce d Irom
4920 IJ(5)=IJ(2): (i(5 )=U(2) I-es aaabec02tW

-. 114)=U( 1): IJ(4ThJ( 1) E tial 0Y

48d..0 DELU(5)-UJ(4)
4840 'J(3)=U(4)-DEL:lJ(2)=
UJ(3)-DEL:IJ'1 )=IJ(2)-DEL
4850 AA=1:BB=3

4' 4860 GOTO 4270
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