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ABSTRACT

_—>: The design of a composite panel requires some way of finding the

/

minimum thickness laminate which will withstand the load requirements
without failure. The mathematical.complexity of this problem dictates
the use of non-linear optimization techniques., Although there are
sophisticated optimization programs available capable of solving for the
ply_ratios, these programs are not often used in preliminary design
because they require a large computer and some knowledge of the
program's operation. As an alternative, specialized laminate
optimization programs were developed which are compact and efficient
enough to run on microcomputers. Only stressés at a point and inplane
loads and deflections are considered. The programs are simple to use
and require no knowledge of optimization. Techniques are developed in
this thesis that find minimum thickness laminates with either ply ratios
or ply angles as design variables. In addition, a method is presented
for finding the optimimum orientation for the axis of symmetry of an
orthotropic laminate., The orthotrbpic laminate program uses an
approximate failure theory, as suggested by Tsai, that has been found to
speed computations dramatically.éi;"‘

Many test cases were run with these programs to demonstrate the
weight savings possible over quasi-isotropic laminates, Of particular
interest is performance of the laminates under multiple independent
loads. Initial orientations for the programs to operate on were
studied, and 0/90/45/-45 laminates were found to be an effective
starting point for design.

The approximate failure criterion made analytic investigations of

optimized laminates possible. A method of plotting maximum strain

x1




energy density as a function of the shear-stress-free laminate

e orientation is derived t demonstrate how the laminates adapt to
multiple design load requirements in the optimization process, Also, an
optimality criterion is derived which is satisfied by each ply group at

the minimum thickness condition.
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I. INTRODUCTION
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Background

Almost any introductory text on composite materials will make a

statement to the effect that one of the principle advantages of

[E A )

A AL

composites is the possibility of tailoring the laminate to suit the
structural requirements, By using the directional nature of the
material to advantage, highly efficient structures should be possible,
Yet, except for uniaxial loads, no suggestion is made for selecting
these tailored laminates. The omission is no£ accidental, but is due to
é the difficulity of converting the equations for laminate analysis into

equations for laminate design,

‘l’ When sizing an isotropic plate, the orientations and the number of

s, o]
-

plies at each orientation can be variable. Although analysis equations

LA

for finding the response of a given laminate are well known, these

equations cannot be solved to'yieid the best laminate for a given set of

requirements. Besides being non-linear, structural design requirements,

.

such as strength, are stated as inequalities. There is no way to know

how to assign equalities to the equations and solve for the design

Ve '-_;

.

variables. We cannot tell which combination of requirements will be

"critical" for the best design.

124

A common approach to sizing laminates is to asume the plies are
acting independently. For strength requirements, this is referred to as
netting analysis. Although in general this is a bad approximation,
reasonable results can be obtained for 0/90 laminates with no shear.

. With any other case, such as additional ply groups, off-axis loads, or

.
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multiple independent loads, netting analysis cannot provide a reasonable
basis for design. The plies within a laminate interact in a complex
manner and cannot be considered independent. Because of the
interaction, there are no simple formulas for proper sizing, nor is
intuition a reliable guide. {
Non~linear optimization techniques developed over the last 20 years
provide a sound mathematical basis for laminate sizing. The techniques
should not be thought of as the final step in design, used to shave off
a couple percent of weight, but as the starting point of design.
Optimization can be applied to any design constraint that can be
mathematically modelled. Constraints may include stiffness, strength,
stability, minimum gage, and dynamic response. In this thesis, the
author has chosen to work only with strength constraints. Besides being
an essential element of design, it is one of the few constraints which
can be described as a point problem, assuming loads do not change as the
laminate changes. The optimal laminate will be considered as one with
minimum thickness, and thus weigh;. For constraints such as stability,
the optimizer must be coupled to a structual analysis method, such as
finite elements, in order to describe the geometry and boundary
condition influences., The assumption that optimization for strength can

be dealt with as a point problem is completely valid only for a

determinate structure. The optimization procedure will have to be
coupled to a structural analysis code in some iterative process in order
to properly size indeterminate structural elements. Still, the simple
methods and programs presented here should be of aid in much of the
initial design process,

The role of optimization is particularly inportant when designing

for multiple loading conditions. A wing panel must sustain several




7

‘éé different flight conditions, as well as ground loads., Not only are the
,iq é;; magnitudes of these loads changing with time, but the orientation of the
,;‘1 load principle axes may also change. For directional materials, it will
;5§ often be convenient to think in terms of shear-free loads and an angle
iz that transforms the loads to the laminate axis system. Because of the
:éi laminate's anisotropic strength, changes in the principle axis leads to
-E%; a problem that does not exist for isotropic materials; it is impossible
> to pick a severest load condition by inspection and size the laminate to
N that load alone. In fact, there may not be any single severest

‘e

f?? condition., For a minimum weight laminate, some of the plies may be near
";? failure for one load, while other plies are cdritical for a different

J}j load. One result of this added complication is that optimization

<o,

_;§ results cannot be tabulated in a design manual, There is no way to

‘5: characterize all the possible loading combinations into a finite set of
NY qa. graphs. Instead, the computer must become an integral part of

A,

%g preliminary design.

.’§ If optimization is so valuable to the design of composite

'3 laminates, why isn't it in common useage? After all, the basic methods
e

:::IF:: of non-linear optimization are well developed and can handle much more
“A complex problems than sizing a laminate. Indeed, laminate sizing is a
S? comparatively well behaved problem, with Eypically only a few design

§§ variables and constraints. Part of the answer may be the reluctance to
::S use a complex and general code requiring a main-frame computer. In

:: addition, there may be some lack of confidence in the procedure. This
%3: thesis presents some specialized, user-friendly codes which can be run
:;’ on microcomputers at the designer's desk. Hopefully, by having a desk-
ii qgﬂ top computer that only requires the user to respond to some simple

'EE a prompts for input, further application of optimization will be

Z;l:
I 3

>
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encouraged.

The potential for applying optimization techniques to composites
has not escaped the attention of other authors. At least 2 programs
exist in a documented, publicly available form. One is COMAND by
Vanderplaats [1] which couples a laminate analysis program to an
existing general optimization code, also by the same author. Maximum
strain failure criteria are used, and minimum values of the A matrix
conponents can be entered to account for minimum stiffness requirements.
Another program was written by Khot [2]. Instead of a direct numerical
optimization, this program relies on the assumption that strain energy
density will be equal for all ply groups as the laminate approaches
minimum thickness [3]. An iterative procedure for adjusting the number
of plies is derived from the assumed optimality condition. The program
also includes an approximate buckling constraint, based on "smeared"
laminate properties. The optimization routines are coupled to a finite
element code to update the stress state as the composite panels change,
Neither of these programs meets the requirement for simplicity of use
which is the goal of this thesis.

Without a numerical optimization program, the minimum thickness
laminates can still be studied if there is only one free variable, such
as the best angle in an angle-ply laminate., Some of these one-
dimensional searches are presented in [4]. This reference is notable
because it includes the approximate, strain-sphere failure criterion
discussed later in this thesis.

The programs written in the course of this work are all in BASIC.
The particular computers were chosen somewhat arbitrarily, but the codes
should be readily transferable to other computers with a minimum of

change. Optimization with the quadratic failure criteria with a
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- ] complete set of laminate property outputs requires about 12 kilo-bytes

N et of memory. The angle optimization can be attached for about 2k more

- memory. A simplified version based on an approximate failure criteria

I

. fits in less than 6K, Programs have been written for the Timex-Sinclair

. 1000 [5], the Epson HX-20 [6], and the Texas Instruments CC-40 ., These

‘ last 2 microcomputers were picked because they offer true desk-top
capability; the original goal of the project.
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Laminate Theory

The developement of the laminate plate theory equations will follow
Tsai and Hahn [7] wherever possible. The difference will be that vector
notation is used more extensively in this thesis. The plates will be
subject only to inplane loads and deflections. The order of plies in
thg laminate, or stacking sequence, is not a factor in the optimization
procedure. However, for the inplane deflection restriction to be valid,
the actual laminate would have to be symmetric. That is, for any ply at
orientation 8, a distance Z above the midplane, there is a
corresponding ply of the same orientation at-minus Z. For these
restrictions, strain is a constant through the thickness and the stress-
strain relationiis simply

N=[A)e (1)

where

mo()

(2)

2-laminate strain vector

R-1oad vector in terms of stress resultants

ij -modulus component trarsformed from the orientation
of the i'th ply group

M-~number of ply groups

hi-thickness of the i'th ply group
Several ways exist to perform the transformations. The programs listed
in Appendices B-D use an invariant formulation with multiple-angle
functions as given in reference [7]. In terms of engineering constants,

the Q's are given by

B
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Qxx=mEx Qyy=mEy
KR (3)
-
Quy=mvyEyx Qss= Es
k. where
4
3

m= (1- v )
Ex is the longitudinal Young's modulus, Vx the longitudinal Poisson's
ratio, Ey the transverse Young's modulus, and Vy the transverse
- Poisson's ratio.

The axis system convention is shown in Figure 1. x, y, and s
N\ subscripts denote properties in the ply axis system, and 1, 2, and 6
> denote properties in the laminate axis system,

A ply group will be defined as all the plies of a particular

LT

orientation and material (for hybrids), whether or not they are actually

% adjacent in the laminate. In the optimization procedure, ply group

. Q thickness is handled as a continous variable. The individual ply as a

.3 discret unit is ignored. After the procedure is finished, we must

3 divide the ply group thickness by the thickness of an individual ply and

v round-off to get the integer mumﬁer of plies required. A logical way of

;: rounding-off must be a topic of future research., For now, rounding-up

;. should be assumed for all ply groups. The term "ply ratio" will also be

. used. This is the ratio of a particular ply group thickness to the

EE total laminate thickness,

é For the graphs and tables presented in this thesis, the

: conventional lamination code becomes awkward. Instead, the notation

- (0/90/£45)

SZ refers to the class of laminates with those orientations, with ply group
) thickness determined by the optimization procedure, Also,

s o (04 /904 /£45¢)

b refers to a laminate with the stated orientations and equal ply ratios,

v
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FIGURE 1: Laminate and Ply Axis Systems
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where no optimization has been performed.

continuous variable,

Total thickness is still a
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Failure Criteria

One of several failure criteria could be selected for incorporation
in the optimization procedure [8]. The quadratic tensor polynomial or
Tsai-Wu criterion was selected because it fits experimental data well
[7] and because it reduces the number of constraints as compared to
naximum stress or strain criteria., The quadratic failure criterion is
based on fitting an ellipse to the experimental failure strengths of a
unidirectional lamina. The form of the equation accounts for
interaction between the stresses causing failure. As in most laminate
failure criteria, each ply in the laminate must be interrogated
seperately in order to determine if failure has occured., In this
thesis, first-ply failure is adopted, in contrast to a progressive
failure model,

The quadratic failure criterion takes the form

Fijoq05 *+ Fjo3 - 1< 0 1, =1,2,6 (4)

The F's are related to experimental data as follows

_ 1
Fxx =y
=1 1
Fx =x " x
Fooo 1 (5)
Yy yy!
=1 1
Fyvy-v
Fu, - c*
Xy = ny "FxxFyy
where X =-longitudinal tensile strength
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X' -longitudinal compression strength

Y -~transverse tensile strength

Y' -transverse compression strength

S -shear stren;*h

E‘;yﬂon—dimensional interaction term
F§y has not yet been accurately measured since it requires a reliable
biaxial stress test, From geometric bounds and by analogy to isotropic
materials (Von Mises failure theory) a value of -1/2 is usually taken,
aﬁd is used throughout this thesis.,

Stating the failure criteria in terms of strain is convenient. 1In
strain space the failure envelopes stay fixed even if the ply ratios of
the laminate are changed. The strain limits of a ply are independent of
the laminate stiffness., This is an important conceptual simplification

when ply ratios are variable. The failure criterion can be rewritten as

Gi4€5 + 6i€i- 1 0 i,d= 1,2,6 (6)

where the G's are found by applying the stress-strain relations,

assuming linear elasticity to failure. Then

Ga = Fi3Q4Q5,
1,3,k,2 = 1,2,6 (7)
Gj = FiQy;

The G and F matrices can be transformed for off-axis plies by a second-
order tensor transformation, just as with the elasticity components.

The linear terms of the equation (G vector) are transformed by

- ey e R T TR R NT TR T s TS T W e -~ ."."‘.',""..'1

(8)

G] =P+ qcos 26
G2 =P -qcos 28
GG = q sin 20
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Figure 2 shows the failure enveloped for a 0/90 laminate of

T300/5208 (Graphite/Epoxy). The envelopes are actually three-
dimensional, and shear strain is not shown. Only the region enclosed by

both ellipsoids is considered safe.

- An approximate first-ply failure envelope was suggested in

. reference [7]. The envelope is based on recognizing there is a first-
il ply failure domain common to all possible ply orientations, and thus
independent of the orientation of any particular ply. Figure 3 shows
i: failure envelopes for several orientations. There is an inner envelope
ii defined by the 0%nd 90%lies, within which no failure occurs for any

possible orientation, Note that 0%and 90°p1ies do not always define

this space for other material systems. By using this inner envelope, we
have a failure criterion which applies to the laminate as a whole, and
does not need to be interrogated on a ply-by-ply basis. It is
convenient to fit some analytic surface into the envelope. Since
tension loads are of primary intérest in this work (because there are no
stability constraints), a sphere centered on the origin was selected to
give a conservative approximation of the inner envelope. The
approximate failure criterion can then be written

22l (9

1 2 2 6~
The sphere's radius, b, can be set equal to the minimum lamina strain,
te--en directly from experimental data., The criterion will be referred
to as a maximum strain-sphere,
The strain-sphere criterion will not be acceptable for uniaxial

laninates, or for loads in the 3rd quadrant (compression~compression),
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but otherwise is of some value. The simplicity of the criterion more

,_,V
'.',_"-"

-

[
.
’

SN than doubles the speed of the optimization algorithm, For optimization
with tension-tension loads, it has been found to be about 77
conservative, as compared to the Tsai-Wu criterion., Thus, for quick
answers, the approximation is adequate, In addition to allowing for
extra fast computation, the maximum strain-sphere is simple enough to
allow analytic investigations of the optimization process, as will be

discussed in later sections.
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Failure Constraints in Design Space

Normally, failure envelopes show the set of loads (or strains) that
can be sustained by a particular laminate. For design purposes, the set
of laminates that can sustain particular loads would be morz desirable,
Instead of stress or strain coordinates on a graph, the coordinates
should be the design variables, for example, ply group thicknesses.
Unfortunately, there may be an arbitrary number of design variables, and
therefore dimensions to the problem. Therefore, general design graphs
cannot actually be drawn, but the concept is important to understanding
the optimization process,

One way of showing the set of laminates that could sustain a given
combination of loads is to make a plot which divides design space into
two regions; a region where the laminates would not fail for any of the
given loads (called the feasible region), and a region where the
laminates would fail (called the infeasible region). Any point in
design space defines a unique laminate. We will restrict the discussion
to taking ply group thicknesses as the only design variables. The
boundary between the feasible and infeasible regions is the surface
defined by the the failure criteria equations when made into an equality

and plotted as functions of the thicknesses. With the quadratic failure

criterion, we can write

T (P) -+ -’(P)T + _
€(L) |G\ 7] e(L) + G €Ly * 1 (10)

where the subscript L designates the strains associated with a
particular set of loads and superscript P denotes a transformation from
a particular angle. Equation (10) can be shown to be a function of the

h's (ply group thickness) by substituting

16
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1 &
g = AT R, (11)

An important feature of working in design space is that the constraint
surfaces for more than one set of loads can be plotted together. The
final result is severai surfaces in the design space, with the outermost
surfaces forming the boundary between feasible and infeasible space
(Figure 4).

If there are only two design variables, we can actually draw these
design graphs., Figures 5, 6, and 7 are plots of the constraint curves
for a 0/90 laminate under a single biaxial load. The three figures are
for three different failure criteria. To define the feasible region,
the maximum strain criterion requires the number of surfaces to be three
times the number of ply groups times the number of independent loads
(only 4 curves are shown in Figure 5 because shear strain is zero for
the particular class of laminate and the given load). The quadratic
criterion requires the number of surfaces to be equal to the number of
ply groups times the number of loads. Reducing the number of
constraints speeds the optimizatién procedure. Speed of operation is
another motivation for choosing the quadratic criteria for the majority
of additional work. The approximate strain-sphere criterion is simplier
yet, with only a single surface for each independent load. Because it

is a conservative approximation, only 1limited use will be made of this

criterion.,
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Failure Constraints for Maximum Strain Criteria
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II. OPTIMIZATION METHODS

Ply Ratios

The laminate sizing problem can be stated in the language of
optimization theory as follows;

find min. of h

where
z h
e (12)
subject to
,i=1,2....m
Cpps0 P
h; >0 L=1,2......ng
where (P) ( )T
_ ol > + G\P -1
St = Fy 18T F) & e

IG(P)[ -quadratic failure. criteria parameters
transformed from the orientation of ply
group P

z(P) ~linear terms of failure criteria transformed

from the orientation of ply group P

E(L) ~component of strain due to loading L

Although simply stated, there is no simple solution., One of several non-
linear optimization methods could be applied to the problem. A
modification of the method of feasible directions was chosen after
examining ways to speed the computations enough so that solution on a

microcomputer could be practical. The modification of the method nakes

PN S P PSP by —
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use of certain closed form equations at intermediate steps, reducing the
nunber of calculations needed. The algorithm also takes advantage of
the linearity of the objective function in terms of the design
variables, This simplification also speeds up the algorithm as compared
to more general formulations.

Although nany figures in this section show the optimization process
on two~dimensional graphs in design space, it's important to realize
that some aspects of the problem may not be evident until 3 or more
dimensions are considered. For example, the constraints may form long,
narrow valleys that the search method must follow efficiently. Because
all mathematics are derived in vector form, the extension to higher
dimensions is simply a matter of book keeping for the computer.

Design optimization must always take into account the issue of
local versus global minima. From optimization theory, if the feasible
space can be shown to be convex, then there is only a global minima [9].
An informal definition of convexity is that any two points in the space
can be connected by a straight line which does not pass out of the space
at any point. The intersection of convex spaces forms a convex space
[9]e Thus, if each constraint surface is convex, then there is only one
minima. From observation of actual plots for cases with 2 ply groups,
the failure constraints of composites meet this requirement, No proof
of the generality of this observation is offered, but the assumption

that the optimization leads to a global minima from any starting point

will be accepted in this thesis.,
Due to the periodicity of trigonometric functions, there will not
be a single minima when angles are varied. This is a severe handicap to

making angles a design variable.,
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In the method of feasible directions, the design is changed so that
the trajectory in design space follows the constraint surfaces along a
direction that decreases the objective function as quickly as possible,
but never leaves the feasible region. A non-linear constraint cannot
be followed continuously because, numerically, the algorithm must take
finite, linear steps. Therefore, a vector is found which both decreases
the objective function and does not violate the constraint for a finite
move, The trajectory of a feasible direction algorithm is shown in
Figuré 8.

The problem with this method, for our purposes, is that finding the
distance to the next constraint along an arbitray vector requires a
nurierical, one-dimensional search. Since each constraint evaluation
requires forming the laminate A matrix, inverting the matrix, solving
for strains, and evaluating the failure equations, we would like to
reduce the nunmber of iterations required for this search. Some
approximations were tried, based on assuming the inverse of strain to be
a linear function of ply group thickness. These were meant to speed the
search, but were not found to be completely reliable. Instead, the
method was modified to allow for larger error bands in the numerical
search.

Briefly, the modification consists of measuring the distance across
the constraint surface "valley", along a vector on which the objective
function is a constant. This restricts the method to problems with an
objective function that is linear in terms of the design variables.
Finding this distance still requires a numerical one-dimensional search,
such as bisection, but now the error band can be quite large, reducing
the nunber of iterations needed. The larger error band is allowable
because only a rough measure of the distance across ic needed, whereas

in the feasible directions method, the constraint surface nust be

24

.,".'_ . AR A ‘-';.'.‘;‘I." . i:.‘_» “-A T S U . L.‘A-‘"A"A" A.'-.‘;-;h‘- IR |

1




RO st agh e i Sadirint Sl A Sk e S I A A Tt St TRV A A A N VA AP S B e 1

CONSTRAIN
< T

SEARCH DIRECTION

FIGURE 8: Trajectory for Meciio/ of Feasible Directions

25

I T S T P E Ao C N R S LR . 47_.74
‘\‘Cs’&‘u&{\".’- P VO P T WIS, W T gy S R D W, TSR St PP LR IR W S S I P S I S T




located with higbh accuracy, since that point serves as the starting
coordinate of the next iteration of the search., We assume the bottonm of
the "valley" will bhe about halfway across., From the halfway point, ply
ratios are keep constant, and the total thickness of the laminate is
scaled so that the coordinates in design space rest directly on the
constraint surface defining the feasible region. The scaling operation
is hased on recognizing that for constant ply ratios, strain is
proportional to total thickness. This closed form equation compensates
for the error band of the numercial search. From the new coordinate,
the procedure repeats until changes are very small, or a new search
direction cannot be found (Kuhn-Tucker conditions for optimality [9]).
A possible trajectory for the modified method is shown in Figure 9.

The constraint that thickness be greater-than cor equal-to zero is
known as a "side constraint". These linear constraints are simple
enough to be handled by seperate logic. If the one-dimensional search
hits a side constraint, and no strength constraints are violated at that
point, the procedure stops on the h =0 plane, rescales the - :minate, and
proceeds as before, Any constrainté associated with a zero thickness
ply are ignored. Once a ply is set to zero thickness, it is never
restored. The ability to completely drop a ply group's constraints
seemns to be unique to the programs developed for this thesis.,

A step-by-step description of the algorithm will be presented,
along with the relevant equations., For clarity, the variables used in
this section will not always be identical to those actually used in the

programs.
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1) Laminate Scaling

Before any optimization of ply ratios can be considered, we must
first be able to size the total thickness of a laminate with constant
ply ratios. Strains are proportional to total thickness. This is
evident by writting the stress~ strain relation as

T = % [a*] N (13)

*. . . . .
where [alls the thickness normalized inverse of the A matrix.
Instead of total thickness, it is more convenient to use the change in
the distance from the origin in design space as the scaling parameter.

The strain proportionality is the same for either parameter since

[ 02
h_o_Zahe _or | E(ARO)T (14)
h1— zho : r‘o Zhoz

where & is a proportional change of the individual ply thicknesses, and
r is the distance from the origin. To use this linear relation, a
reference strain vector is calculated, along with a reference 3 Then,
as long as ply ratios are consta;t,.strain for any other value of r can

be found from the equation

€ = T (15)

where the superscript o refers to reference conditions. This relation
can be substituted into any of the strain-space failure criteria. With

the quadratic criterion we have

° 2 ° -+PT->
N (P e e (i6)
L

(S r (L) 1

—5
where e is a small (10 ) offset that ensures the point stays slipghtly

¥ ' in the feasible region despite any numerical error. Solving for r
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< r =B+ B” - 4AC

A an
where
A=]'E]
T
B=-+(p)g° re

The value of r should be calculated for every possible constraint. The
largest resulting value corresponds to the constraint forming the
boundary between feasible and infeasible space. With this value of r,

A the ply group thicknqsses are scaled according to

- +r

- [+

h—hr_o (18)
‘l) where again, the superscript o means a reference condition.

"
- 2) Initial Feasible Point
*' I3 - .
A Thicknesses are first set to a large, arbitrary value, to be

assured of starting in the feasible region. The program sets all ply
group thicknesses to 1/Vm where m is the number of ply groups. Next,
= the total thickness of the laminate is scaled so that one constraint is

= critical (Figure 10). The scaling operati- - is given above,

3) Active Constraint List

At any step in the optimization, one or more constraints will be

PO active, These are the constraints that are currently near critical as
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defined by

(p)T>

T p > >
IG( )' E(L) + G E(L) -1> e2 (19)

(L)

where a value of 0,05 has been found to work well for ene Before
finding a search direction, the program must evaluate this equation for
all values of P and L, and maintain a list of these values for which the

constraint is active.
4) New Direction

We need to find a vector which points away from all the active
constraints and is parellel to the constant total thickness plane
(Figure 11). Components of the gradient vector are first calculated for

each active constraint according to the equation

aC T
TEPLL T (P),> (P)'>
ohy E(L) e |€(L),h- 6 (L) ,h; (20)
i i
where
Be]/ahi
S(L),h; T 2e2/oh
366/3hi

Since the applied loads are independent of the laminate configuration,

the partials of strain can be evaluated from the stress-strain relation

as follows;

o
]

3 ->
sﬁ; (‘A‘E)

Al hse + [AIZ,hy
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where

IAlhy = [o'P)]
so that

Zuhy = <A [ (21)

The gradient of each active constraint is normalized to unit length.
The individual gradients are then summed and the result is normalized to
a unit length. The reason for summing the gradients can only be
visualized in 3 dimensions. Suppose two constraint surfaces meet to
form a valley, and the objective function can still be reduced by
following the valley along its length. If only one constraint were
operated on at a time, the trajectory would bounce inefficiently back
and forth between the surfaces. By summing the normalized vectors, a
resulting vector that points down the valley can be formed. The
negative of the summation will point into feasible space., This
resultant vector will be called ﬁ.

The projection onto the constént thickness plane is done by the
double cross—-product

Z=nx (w x 3)

which, by a vector indenity can be written

> > -+ A A
Z=w-(w-n)n (22)

where n is the unit normal to the plane defined by

hi = constant (23)

nmMs

i=1

In keeping with good numerical practice, E is also normalized, If the
. . -6 ~

length of 7 before normalization is small ( 10 ~ ) then W and n must be

near parallel, This would indicate that a minimum has been reached and
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the program halts.
5) Distance to Next Constraint

The next step is to find the distance along E to the next
constraint (Figure 12). A bisection method is used for the one-
dimensional search. The vector E describes relative changes in the ply
group thicknesses. Moving a scalar distance S along E changes the

thicknesses according to

-

> >
h = h° + sZ (24)
where ;o is the vector of current thicknesses for S=0, Note that even
though the individual ply groups are changing, total thickness stays
constant along f. The program will need to be able to quickly calcuate
the A matrix as ply groups change. To save a few multiplications, the

programs represents A as

[A] = [A ] + s[A,] (25)
where
m (k)0
Ass = I Qii/hg
0ij k=1 1]

hye - o otk
Zij “k=1%ii Lk
The initial bounds on the biscction search are S=0 and S=Smax where
Smax is the distance to the nearest h= 0 constraint. Smax is calculated

by finding the largest positive value of the equation

Smax = -Mi/Zi 1 =1,2,....m (26)

The usual bisection method is slightly modified. First, instead of

trying to find the zero of a single equation, we must evaluate each
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possible constraint to find the boundary between feasible and infeasible
.5‘ L spaces. The programs in the appendices contain a subroutine which
evaluates the constraints and returns a single flag with the value
"FAIL" if a single constraint is violated, and "PASS" if no constraint
is violated (CP,L<O for all P,L) The second feature is that S=Smax may
be in the feasible region. What this means is that a ply group can be

reduced to zero thickness without violating any constraints. If this is

RN AN
BRI

the case, the program updates the ply group thickness vector for the

point S=Smax and rescales the laminate, eliminating constraints

0
L
e

associated with the zero thickness ply group. The algorithm then

Bl A
.

restarts from step 2. If S=Smax is not feasible, then the bisection

~
~ continues with the follow steps:

1) Let 51=0, S2=Smax

2) Let $=(S1+52)/2

N Q 3) Test all constraints at point S

3 4) If flag="PASS" then S1=S

5 If flag="FAIL" then S52=S

" 5) If $2-51<10"° then search direction immediately hits

_5 constraint, This indicates the minimum has been

- found.

: 6) If (S2-S1)/S1>1/4 then go to step 2. Else stop

’S bisection procedure

-; Step 6 checks to see if the error with which the distance to the

:_ constraint is known, is less than 1/4 the distance across the '"valley".

The 1/4 is arbitray, but gives good overall convergence of the algorithm
. with a minimum number of bisection iterations, Note that for each value
of S tested, the A matrix must be formed, inverted, strains calculated,

and constraint evaluated.
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5) Rescale Laminat.:

Once the distance to the next constraint is known, we take S=S1/2.
|
From this point in design space, the total thickness is reduced by the :
laminate scaling procedure (Figure 13), If the change in total
thickness is small (less than 1/10 a single ply thickness), the ‘
algorithm is assumed to have reached a minimum and halts. If not, the
algorithm repeats from step 2. The loop continues until one of the halt
conditions is reached.
The organization of the program is shown by a flowchart in Figure
14, The flowchart is only meant to be an aid to understanding the steps
required, The interconnections between subroutines in the actual
programs are somewhat more complex,
‘I) Table 1 gives some examples of the convergence rate and number of

inverse A matrix evaluations (the most time consuming step) required for
the optimization. Times are given for a ZX-8l1 computer which has a Z-80
microprocessor. An iteration is counted as the total loop from step 2

to 5. Three or 4 iterations is typical unless some ply groups are going

to zero thickness, which counts as a full iteration.
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REDUCTION IN TOTAL THICKNESS
FOR ITERATION
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NEW DESIGN
COORDINATES

FIGURE 13: Rescale Total Thickness

38




-

- ‘ INPUT
AL

ﬁ - J,

- INVARIENTS
Et l
3

TRANSFORMATIONS

A MATRIX SCALING

3 INITIAL
- FEASIBLE
N POINT
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Lanminate | Load Vectors Active Iterations Matrix Sec
MN/m Constraints Inversions
0/90 2,1,0 2 3 27 164
0/90 2,1,0 3 6 58 250
1.75,0,5,0.3

0/90/+45 2,1,0 4 3 : 26 264
0/90/ 2,1,0 6 4 34 555
+30/+60

0/90/ 2,1,0 6 5 40 930
+30/+60 1.75,0,5,1

-3,1,0

0/90/+15 51,0 7 2 19 480
+30/+45/

+60/+75

TABLE 1: Algorithm Performance
40
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Continuously Variable Angles

j;g The most obvious approach to selecting appropriate ply orientations
is to let the computer calculate the optimal values, There is no

fundamental reason why this cannot be done, but there are sone

implementation problems, and the results are not always satisfactory.

. ' There are several mathematical difficulties in optimizing for best ply

- orientations. First, the objective function (total thickness) is not
f?; directly a function of angle. Second, there may be many local minima.
- Third, if a direction vector is found in the combined angle and
thickness space, the magnitude of the scalar. distance will have

-f; different meaning for each type of design variable. Finally, there is
i the

‘]! the practical difficulty that ply orientations cannot be completely

arbitrary due to manufacturing limitations., There should be sone
:3} minimum angular step size limited by the lay-up procedures used. The
algorithm derived here, while not completly satisfactory, attempts to
g account for all these difficulties,
- The approach taken is to first divide the problem into a multi-
level optimization [10], where angles and ply ratios are optimized
. independently. We can alternate between the two types of optimization
- until the laminate converges to a minimum thickness design. Ply
thicknesses are handled exactly as before, with the given angles held

‘%{: constant. During the angle optimization, ply ratios are held constant
s and the angles varied to minimize total thickness.

The angle optimization used here is not a direct method like that
used for the thicknesses, but instead relies on minimizing a related,

unconstrained function with the assumption that total thickness will
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decrease at the same time. One approach is to chose a function which
will lead to the simultaneous failure condition, which should result in
an efficient laminate. Another desirable feature is that the results
should not be too sensitive to the selection of initial angles. After
experimenting with several pousible functions, the best was found to be

the variance of the all the constraints, given by the equation

1 e 2 4 m e 2
= Z C - Z Z C
PTnc P PbonZ o poy g L 27)

'

where ne = m - Ny

If this function where minimized to a value of zero, a simultaneous
failure condition for the laminate would be reached. In cases with
multiple loads, simultaneous failure for all loads is usually
impossible, but we assume that as the variance is minimized, as many
constraints will become active as possible., It will be shown that
simultaneous failure is not always tﬁe optimal condition for a composite
laninate, but for most cases it will either be the minimum or at least
very close to the minimum thickness. Before trying the variance, the
author had attempted to minimize the value of the largest current
constraint function. This necessitated finding some way to handle
multiple constraints that had nearly the same value. This version of
the program often terminated early becazuse a satisfactory way was never
derived for finding a common vector that would reduce the value of more
than one constraint simultaneously. To find the minimum of the
variance, a steepest descent method was used. Normally, steepest

descent is considered the least efficient way to minimize an
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unconstrained function, but it was found to be sufficient for the
current research. The program should be modified in the future to
include a conjugate gradient method [10].

The steepest descent, along with most other search methods, needs

the value of the gradient. Terms of the gradient are given by

n

m 2 aC m nl
3 _z T T C P.L 1 3Cp |
S — P, : T L G, = , (28)
where
aC
P,L T (P) ->T Py, :=»
= G 8. +
o6 E:(L) I ‘ (L) E(L)|G |se.€(L)
+(p) + +(p)T -
PO e(L),ey T O 88 (29)
and
-5 _ _'l >
E(L),ei - -IA J IA, eie(L)

It should be noted that
(P) = ;
|G |’ei 0 for i #P

The angular derivatives of the Q's and G's are given in Appendix A. The
negative of the gradient will form the search direction. The scalar
distance along the search direction is found by taking discrete steps
and stopping when the thickness begins to increase (and then taking one

step backwards). Because the variance is only a function related to the
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actual minimum, we do not determine the distance by the magnitude of the
variance, but instead, the function we are actually interested in.
Thickness is calculated by using the scaling equations developed
previously., More efficient one-dimensional search methods will have
difficluties with the multiple local minima.

The steps are taken so that all the angles change by some minimum
To maintain the minimum s.<p size, the angles are incremented by

step.

the equation

ok*1 = 6f + (CINT [(k+1)24] - CINT (kZ;)188

where CINT implies taking the closest integer value and k is an
incremental step counter. The direction vector 7 is normalized by its
largest element., At each unit increment of k, the angle corresponding
to the largest element of 7 is incremented by 46, Other angles may not
be incremented at each step, depending on the relative values of the E
vector elements., Thus, the direction vector is not followed exactly,
but rather on a broken path. The amount of divergence from the search
direction is determined by the value of A6. If the angle start out as
multiples of 10° and 46 is 100, then the angles will stay as nultiples
of 10° throughout the search.
The overall procedure for the multi-level optimization can be

summerized as follows:

1) Enter loads and starting angles
2) Find a search direction based on the variance
3) Perform a one-dimensional search to

minimize total thickness with constant ply
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9 4) Repeat from step 2 until no further changes
o in angle can be made

i 4

- 5) Optimize the ply ratios
6) Repeat from step 2 until neither type of

optimization can make further progress

R i

Testing of the program shows that one pass through steps 1 to 6 is

N

.
¥
i
™
»
'~
»
r-
»

all that is needed. Usually, the angle optimization brings enough of
the constraints to critical values that the ply ratio optimization can
make little progress. In turn, after the ply thickness routine is
finished, there is little the angle optimizer cam change.

Typically, the angle optimization will need 4-6 search directions L
to converge, requiring 10-20 minutes for 4 ply groups and a pair of

independent loads.
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Orthotropic Laminate

A designer may not want a general symmetric laminate. He may be
more comfortable with an orthotropic laminate which eliminates the shear
coupling terms and allows the use of many existing orthotropic plate
analysis equations. An orthotropic laminate can be made by keeping the
YTaminate balanced. That is, for every ply at +8, there is one at -6,
There may also be manufacturing reasons for wanting a balanced laminate,
such as filament winding operations. There is no difficulty in
constraining the optimization procedure to yield balanced laminates.
Most sophisticated optimization programs allow design variables to be
coupled so that they maintain the same value. A simpler approach is to
enter only the positive angle and set the Ay3 and Ap3 terms to zero.

The resulting thickness found for the positive angle must then be split
between the positive and negative angles in the actual laminate, With
the reduced A matrix, a faster matrix inversion can be written,

When designing with orthotropic laminates, the orthotropic axis
should not be selected arbitrarily. For a single load, the orthotropic
axes should be aligned with the principle axes of the load. With
nulitple loads, the selection is not so obvious. Finding the best axes
with respect to the load is a much simpler problem than the general
optimal angle search discussed ahove. A search for the best axes can be
reduced to a one-dimensional search. The procedure can be thought of as
finding the best rigid body rotation of the laminate with respect to the
loads while performing a thickness optimization of each rotation angle

(Figure 15). For computational simplicity, the program actually rotates
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L FIGURE 15: Definition of Angles for Orthotropic Laminate
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the loads and keeps the laminate angles fixed. Even this one-

dimensional search could be time consuming without a fast ply ratio
';Q: optimization algorithm. The orthotropic optimization with the strain-
sphere failure criteria is fast enough to make a search for best
orientation practical.

The search proceaure can be summerized as follows:

ik{ 1) Enter initial laminate angles, loads, bounds on
-
Egi search angle, and maximum error for search.
o 2) Divide the bounded region with 4 equally spaced
é%: points, with endpoints on the bounds
&iz 3) Find the minimum laminate thickness at each
s point by rotating the loads by the:negative of
the current test angle
4) Check for the smallest value of the 4
o thicknesses. The 2 points on either side
] of the smallest one become the new bounds.
5) 1If the bounds are greater than the maximum
error, repeat from step 2, Only 2 new points
need to be calculated.
%f The method being used here is very similar to the bisection method
< for finding the zero of a function. Bisection requires 3 function
:} values in order to reduce the size of the region the zero can be in.
L5
:i Here, a fourth point is needed because we are searching for the zero of

FLAE N

the first derivative instead of a zero of the function.

»
-
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III. APPLICATION

Examples

A few illustrative examples will be discussed to demonstrate the
operation of the optimization procedures. A detailed comparison of the
weight savings possible with ply ratio optimization, angle optimization,
and no optimization will be given in the next section.

The strength ratios defined in [7] will be needed to show which
plies are critical for given loads. The ratio is defined as the value
of R in the equation

R2 ZTi6[2 + RG'E = 1

An R of 1 means the ply is at the bgundary of the failure ervelope. R's

1 mean the ply is in the safe region on the failure envelope. The R's
can be interpreted as the ratio of the applied load vector length to the
maximun load vector length.

Most of the examples presented here will use T300/5208 as the
material. Properties of this material along with Kevlar and aluminum
(used in certain examples) are given in Table 2, Figure 16 is an
example output from an Epson HX-20
microcomputer. Only ply ratios are being changed and the angles are
given as 0/90/45/-45. This example demonstrates a case where there is
no severest load condition. Looking at the strength ratios, we can see

that the 90 and -45 plies are near failure for the first load condition,

49

N .. . « . . . NN N . L Lt o n
A .t . . L L . . - R . -t L A K
PP RGP T U o - PSR W W SC TR TS W 0V L SRS W SR VAU S L S0 S SIS, Ui S S ST S S




! '.'.'-'.'-:-‘.'-(

[

. O
e ll't_'l...a. T

it gl Mg sl St S iy .,
PRI N et

= 1506 MPa

A= 15080 MP3

Y= 40 MPy

Y'= 246 HMPa

5= 63 MPa

Ply Thickness .800125 n

LOADING 1

N 1= 3 MN/m

N 2= 1 MN/m

H &= B MN-m
LOADING 2

H 1= 1.5 MH/m
N 2= 1.5 MN/m
N 6==,3 MN/m

Total thickness=
. B?735E-61 m.
98.7¢ Pliesz

ANGLE RATIO #PLIES
o .441¢ 25,95
L) L1236 7.26
43 1774 1B, 42

-45 . <574 15,12

STREMGTH RATINS
1=ULTIMSTE STRAIN
1 1S SAFE

LOADING 1
FLY

2 1. 4078
90 1

4s 1. 2091
-45 1. @973
LOADING 2
PLY

) 1. 8355
90 1. 4004
45 1. @331
-45 1. 4071

Ll soue oreh mws ogae aae oo

LAMINARTE STRAINS

LOACING 1

al=+3, 628E-93
eZ=+1, 274E-B3
a6=+0, 631E-03
LOADING 2

el=+1, 224E-03
e2=+3, 334E-03
25=-2, 157E-03

Norm., |A] in GPa.
I L T L
1106.29?! 20,235 -3.423

T T‘ 1
20.835) 51,673 -3, 429
"[ )

o

[ — e ——
-

-3.429] -3.42 24.36%

— |

Compliance (normalized)
in 1-TPa,

i L g ¥ 1
| 18,172] -3,887! 0.98
= t -+ ~
[ -3.887| 21.@020| 2.417
2 } -+ -
{478.88?! 2.4171 41.604

ENGIMEERING CONSTANTS

Ei= 98, 3 GPa
E2= 47.6 GPa
Eé= 24.0 GPa

v2l= 9, 382
vbl= B, g8y
vié= 9,821

SC RPN JRP R SUPIN DAE §

FIGURE 16: Printout for Example Problem
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Elastic Modulus in GPa

sk Snite auncn Sumie ol o

g (LAY

Material Ex Ey Vx Es Fiber Vol.
T300/5208 181.0 10,3 0.28 7.17 0.70
Graphite/Epoxy
Kevlar 49/Epoxy 76.0 5.5 0.34 2.30 0.60
Aluninun 69.6 69.6 0.34 26,5 —-——
Strength in MPa:

X X! Y Y' S
T300/5208 1500 1500 40 246 68
Graphite/Epoxy
Kevlar 49/Epoxy 1400 235 12 53 34
Aluminum 400 400 400 400 230

TABLE 2: Material Properties
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and the 0 and +45 plies are near failure for the second load condition.
The normalized A matrix shown in the output is defined as IAl/h and the
normalized compliance matrix is the inverse of |A| times h.

The example given in Figure 17 is a case where simultaneous failure
is impossible. The constraint curves in design space are plotted to
show that one constraint is never on the boundary between the feasible
and infeasible regions. The impossibility of simultaneous failure is
" also evident by examining the failure envelopes in strain space. The
failure envelopes for graphite epoxy only intersect in the first and
fourth quadrants (Figure 3). Pure shear transformed to principle
strains is in the second or fourth quardrant. Even though one ply is
never near failure, removing that ply increase; the total thickness
required.

Table 3 compares the results of optimization based on the strain-
sphere approximation and the usual quadratic interaction criteria. The
ply ratios are quite close, demonstrating that for loads in the first
quadrant, the results are not sensitive to the particular criterion.
Although the approximate criterion works well, all results presented
elsewhere in the thesis will be baéed on the quadratic criteria unless
otherwise stated. No detailed description of the algorithm for
optimization with the strain sphere is given, but the method is almost
identical to that used for the quadratic criteria. The major
differences are that the gradient is redefined and the criterion only
needs to be evaluated for the laminate as a whole, rather than for each
ply individually.

Table 4 is an example of the orthotropic laminate optimization
with optimal rigid body rotation. The best orthotropic axes could not

have been selected from inspection of the load principle axes. The
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5 - ;
4 i 1
-45% PLY FAILURE
3 —-—
450 pLy
n(-45] FAILURE
'I -
1 i r | 1
1 2 3 4 5
h[45] (mm)
LOAD
N1= 0
N2= 0
N6= 2 MN/m
Angle Ply Ratio # Plies Needed
45 656 26,9
=45 344 14,1
Strength Ratios
Angle R
45 2.42
=45 1,00
Figure 17: Constraint Curves and Optimization

Results for 45 Under Pure Shear
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LOADS
= 4 MN/m Nl'= 2,76 MN/m
N2= 1 MN/m N2'= 2,24 MN/m
N6= 0 MN/m N6'=-1,48 MN/m

RN trY LML ~; ISP
=
'-l—‘

# Plies Needed

Ply Group Tsai-Wu Approximate
0 35,2 35,2
90 7.5 7.4
45 9.9 10.8
=45 33.8 33,7
Total 86,5 87.1
‘ TABLE 3: Comparison of Approximate Strain-Sphere to Tsai-Wu

Criteria for Optimization

X Two independent Loads
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Angle
0
90
45
+45
Total
TABLE 4:

P
S E
e

.
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LOADS
N1l= 2 MN/m N1'= 1.25 MN/m
N2= 1 MN/m N2'= 1.75 MN/m
N6= 0 MN/m N6'= =,43 MN/m

# Plies Needed
Fixed Axis Variable Ortho. Axis

17.2 11.2
17.2 3.9
8.6 16.3
8.6 16,3
51.6 47.7

Comparison of Optimal Orthotropic Laminates
with Fixed and Variable Orthotropic Axis.

Optimal orthotropic axis at -3¢ .
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results for an orthotropic laminate with the axes arbitrarily set on one

of the load principle axes are also given. The difference is

(-

substantial, Both examples are based on the maximum strain-sphere
criterion,
Angle optimization is only needed if there is more than one

independent load. For a single load, the algorithm will simply rotate

.

-

-, LAt A e BBl ey PRI A
i . coo e

g

the plies so that they lie on the load principle axes. This
characteristic shows that there is more than one minima, since an angle-
ply (consisting of a +6 and a -8 ply group) is more efficient than a
cross-ply laminate (0's and 90's only). The program does not converge
to the angle-ply solution unless the initial angles are close to the
final value. We cannot predict the result when muitiple loads are
included. To show the relationship between load principle axis and
optimized ply orientations, 2 independent loads that fall on the same
Mohr's circle have been used as the design requirements. The loads and
ply orientations can be superimposed on the same Mohr's circle, Figure
18 reflects some of the symmetries of the optimized laminate, An
interesting example of how non-intuiti&e composites can be is shown in
Figure 19. Two equal magnitute uniaxial loads .re entered with one of
the loads rotated by ~40 from the laminate axis. Instead o. placing the
plies on the principle axes, the computer has picked slightly different
angles, which give a thinner laminate than if the principle axes had
been used, The starting angles were 0/90/45/-45, but the angles have
converged so that only 2 ply groups remain.

Although there is now a method for finding good ply orientations,
we still need to know how many initial angles should be used, and their
initial values. One reason the search based on constraint variance was

selected is because it seems to be less sensitive to choice of initial
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’ N.= 4 N'= 2.76
?;;: N N=1 N)= 2,34
N =0 '=-1.48

(o)
D= N=-

O

T e g G e e e o >

PLY FIBER DIRECTIONS

FIGURE 18: Mohr's Circle Representation of 2 Independent Loads
with Superimposed Optimized Ply Orientations

Initial angles (0/90/%i5)
All angles plotted as 28
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N= 1 N'= 0.59

N,= 0 N3= 0.41

X Ne= 0 1=-0.49
Ne

N' P e — = = -

¢y PLY FIBER DIRECTION

FIGURE 19: Mohr's Circle Representation of 2 Independent Loads

with Superimposed Optimized Ply Orientations

Initial angles (0/90/+45)
All angles plotted as 28
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angles than some of the other methods tried. The number of angles
needed is still an open question, A quick look at gradient information
suggests that too few angles (2 for example) will make the laminate
sensitive to small changes in orientation or load. The 0/90/45/-45
starting point selected for all the above examples has been found to
give effiecient laminates without the complexity of adding a lot of
angles. Most of the examples run where with 2 loads, but a couple of
cases were tried with 4 loads. The 4 ply group laminate was still
adequate despite the additional loads.

All the examples given were run by applying the angle optimization
first and then the ply ratio optimization. After the ply ratio
optimization, no further attempt at changing the angles was made.

There is the possiblility that the combined angle/ply ratio
optimization will yield a laminate with total thickness greater than
would have been produced by ply ratio optimization alone. By bringing
more constraints into play, the angle optimization may prevent the ply
ratio program from making as much progress as it would have starting
from some arbitrary initial angles. Often, the ply ratio program will
not be able to change the laminate at all, leaving the ply ratios equal.
From the evaluation presented later in this thesis, we can see that
there is a choice of which variables are optimized. There may be some
motivation for keeping the ply ratios constant, or near constant. In
which case, angle optimization will still give an efficient laminate,
If angles are fixed, ply ratio optimization alone will also give an
efficient laminate.

The capability to optimize hybrid laminates is easily added to the

existing programs. When the A matrix is formed, the Q's associated with
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the proper material are used. Also, the constraint test and gradient
calculations must use the appropriate values of the G's for whichever
material the given ply is made from. The example given in Table 5

shows the results for a hybrid made from alternating ply groups of
graphite/epoxy and Kevlar/epoxy, with each orientation duplicated by
both materials. For strength constraints, the Kevlar is usually
completly removed. The combination of glass/epoxy and graphite/epoxy
was found to give similar results. No strength advantage has been found

by going to hybrid systems,
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Fe
LOADS
Nl= 4 MN/m
N2= 1 MN/m
N6= 0 MN/m
Material Angle # Plies Needed
Graphite 0 42,0
Kevlar 0 0.0
Graphite 90 4,9
Kevlar 90 0.0
Graphite 45 9.4
[ ) Keviar 45 0.0
< ’ Graphite =45 9.4
\ Kevlar =45 0.0
N TABLE 5: Hybrid Laminate Example
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Potential Weight Savings

i}g Optimization would be of little interest if the potential gains
were only a few percent., In fact, for strength controlled laminates,

N the weight savings are usually in the range of 20-50%, as compared to

éh quasi-isotropic lay-ups. The thickness difference due to optimization
with a single biaxial load can be seen in Figure 20, This is a fairly
general graph, since any biaxial load can be transformed to a shear-free
:;:: axis (principle directions) and differences in N1 would just cause a

v;,‘ proportional change in total thickness., It's interesting to note that
;ﬁ’ the 0/90/45/-45 laminate is thinner than the 0/90. Beyond a load ratio
o of about 2 (N]ﬂq?, the 90° ply in the 0/90/+45/-45 laminate is dropped
% conpletly, making a tri-directional laminate that is more efficient than

a the 0/90. A good rule in design is to make the laminate axes and load
o principle axes coincide when there is a only a single load. The angle
. optimization routine will give this intuitive result. However, with 4

or more available orientations, the ply ratio optimization is forgiving
(R if the principle directions are not used. A 0/90/45/-45 laminate was
e rotated as a rigid body with respect to a fixed 4:1 biaxial load. The
laminate was optimized at 5° increments of rotation. The difference
bewcen the thickest and thinnest resulting laminate was only 5%.

When two or more independent loads are combined, the anisotropic
advantage of composites becomes less significant, (because there is less
of a distinct preferred direction) but the savings due to optimization
can still be substantial. Because tb~re are an infinite number of load
conbinations, it's impossible to draw any general graphs demonstrating

};{ ‘f; the gains due to optimization. To give an indication of the trends, a

- series of 18 load combinations was devised, where each load combination
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consists of a pair of biaxial loads. Because of the directionality of
composites, loads with differing principle axes are of greatest interest
for excerising the procedure. The load combinations and principle axes
orientations are given in Figure 21. This group of load cases is not
intended to be all-encompassing, but represents some worst case
conditions for taking advantage of a directional material. Most of the
loads are in tension, although cases 13-15 are compression-compression
and cases 16-18 are mixed tension and compression. The magnitudes of
the principle components of the loads have been made equal in most of
the cases in order to ensure both loads influence the final design. A
small load might never form part of the boundary between feasible and
infeasible design space. Intial angles are Q/90/45/-45 for all the
types of optimization considered below. The ﬁext section will show that
equal angular spacing is a good starting point for picking angles for
the optimization code to work with. Ply ratio optimization
alone will be considered first. Figure 22 shows the weight savings of
optimized 0/90/45/-45 laminates versus unoptimized laminates of the sane
angles. Kevlar material was taken. Again, the load cases are
arbitrary, but the point to be maae is that around a 257 weight savings
can be expected from using optimization with a wide variaty of loads.

In some cases the savings can be even larger (40-50% for several of the
load cases)., To show that the results are not material dependent, the
same loads have been applied to laminates made from graphite/epoxy
(T300/5208). This time the savings are compared to aluminum, (with
density diffe1 nce included). The large differences between the
optimized and unoptimized laminates are still evident (Figure 23).

The first 12 load cases (all tension-tension loads) were used to

test the strain-sphere criterion. When averapged over the 12 loads, this
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FIGURE 21: Load Case Matrix

N
Np» Ni1 _pRINCIPLE
LOADS
— Nj
NI[ ) NI, Nj; - PRINCIPLE

LOADS OF SECOND SYSTEM

o e -

AND PRINCIPLE AXES

VD ~ANGLE BETWEEN LAMINATE AXES

N;
'
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| 2 3
4 5 6
7 8 9
|0 || |12
|3 | 4 15
| 6 17 | 8

LOAD CASE No.

or ~ Independent Loads
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approximate criterion was found to be only 7% conservative as compared
to the quadratic criterion. Thus, when only tension loads are
considered (or with small compression components), the approximation may
be desirable if computation time is a factor.

The orthotropic axis optimization is based on the strain-sphere
criterion. This type of optimization was also tested against the first
12 load cases. The results are presented in Table 6. The average
thickness is nearly the same as for ply ratio optimization alone,
despite the conservative criterion and the added constraint of
maintaining a balanced laminate.

Finally, angle optimization was also applied to laminates subjected
to all 18 load cases, both with and without ;ubsequent ply ratio
optimization. A minimum angle change of 5 was always taken (see
equation 31). With angle and ply ratio optimization, the average weight
savings is about 6.5% better than ply ratio optimization alone, but the
results for individual cases vary widely. Some load cases resulted in
slightly greater thickness with angle optimization than without. The
results are almost identical if angle optimization is used without ply
ratio optimization at all. This demonstrates that the 2 types of design
variables are almost redundant, and optimizing both is usually not
required.

As Table 6 demonstrates, the desipgner has some options for picking
the parameters to be optimized. The final results do not vary much for
either ply ratio optimization with fixed orientations, orthotropic
laminates (with rigid-body rotation allowed), or angle optimization
alone. The depree of strength anisotropy appropriate to the design
requirements can be achieved by varying any of these parameters, This

means that composite materials have even more flexibility than
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a) h orthotropic with rotation b) h angle and ratio opt.
h ply ratio opt. h ply ratio opt,

c) h angle opt.

hply ratio opt,

LOAD CASE a b c
1 1.12 0.75 0.75
2 1.41 0.94 0,94
3 0.99 0.79 0.79
4 1.03 1.00 . 1.01
5 1.0z 0.97 0.98
6 0.91 0.94 0.94
7 1,05 1.10 1.19
8 0.97 0.88 0.92
9 0.91 0.90 0.90
10 1.02 0.97 0.98
1) 0.99 0.96 0,96
12 0.96 0.94 1.03
13 —_—— 1.04 1.05
14 1l.12 1.12
15 0.92 0.95
16 0.79 0.84
17 : 0.98 1.01
18 0.83 0,91
Average 1.03 0.93 0.96

YABLE 6: Comparison of Alternate Optimization
Parameters to Ply Litio Optimization
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S previously imagined. The parameters to be optimized can be constrained

by other considerations (such as manufacturing) and efficient laminates

can still be produced.
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Number of Angles Necessary

To use any of the methods described in this thesis, the number of
ply orientations initially given to the optimization program nust be
chosen. The performance of various laminates with different numbers of
initial angles was investigated to give some indication of how to pick
these angles. A likely starting point for initial angles is to space
the ply angles evenly over the 180 available. This class of laminates
will be referred to as T/n laminates, where n is the number of
orientations in the lamiante. A 7/4 laminate has an anguAar spacing
between ply groups of 45? These lamiantes are quasi-isotropic for n
greater than 2 [7]. This is a reasonable starting point for
optimization since there are no preferred directions to initially bias
the result.

The total thickness turns out to be almost independent of the
nunber of angles for a single biaxial load (Table 7). By applying the
18 load cases introduced in the'last section, a comparison for multiple
loads can also be made, The average weight savings (compared to a 01/90i
/451/—45i without optimization) is given in Table 8. For n greater than
3, the averages are very close. It is a little deceptive to take the
average. When examined case-by-case, the thickness differences between
the types of laminates can be great for a particular load case (Figure
24), These differnces may be largely due to numerical problems. With
a large number of ply groups, the program may occasionally terminate
early because of the large number of simultaneously active constraints,
Despite this variation, the T7/4 laminate seems to be adequate for

multiple loads. Increasing the number of angles will not guarantee a
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Table 7: Total Thickness Required to Support a
Single Load for Various /n Laminates

#Ply Groups % Weigth Savings

60 3 19

45 4 23

30 6 24

10 18 25
5
o
\:_
- TABLE 8: Average Percent Weight Savings Over Quasi-
F!_ Isotropic for All 13 Combined Load Cases
L
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N1= 3 MN/m
N2= 1 MN/m
N6é= 0 MN/m
# Ply Groups Total # of Plies

60 3 52

45 4 49

30 6 51

18 10 50

10 18 51
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L 3

better laminate,
- ) The examples in this study included some T7/18 laminates. An early
(-. - idea was to find optimal angles by looking at a large number of initial
angles and seeing what remained after ply ratio optimization. The
actual result is a 1little surprising. Instead of a few optimal angles
dominating the f'nal laminate, the ply ratios plotted against angle form
almost a continous function (Figure 25). All 18 ply groups are near
.. failure for this laminate. For some multiple load test cases, 2 peaks
v in this pseudo-continous function would form. A case that formed more
than 2 peaks was never found,
- In conclusion, the number of initial angles can be bounded to a few
choices. With only 2 orientations, we must have some way of picking the
angles since the unoptimized laminate will have a directional

N preference. There doesn't seem to be any advantage to using more than 4

' ‘!3 orientations. Thus, /4 lamiantes were used for most of the examples in
;4 this thesis, and are suggested as a starting point for design.
ﬂ
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FIGURE 25: Ply Ratios Versus Angle for 7/18 Laminate Optimized
to a Single Load

(N1:N = 2:1)
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IV. ANALYTIC STUDIES

Maximum Strain Energy Density

A visual representation of how a laminate adapts to the given load
requirements would be desirable. A conventional failure envelope
representation is not acceptable because with multiple loads, 3-
dimensions would have to be shown in order to account for the
differences in shear between the loads. The approach taken here is to
plot the maximum strain energy density the laminate can sustain as a
function of load principle axes orientation with respect to the laminate
axes. Then, on the same graph, the strain energy density actually
produced by various loads (in particular, the design loads ) can also be
plotted. There is a loss of information in such a graph. The
combination of NI to NII (magnitutes of loads on the principle axes)
that produces the maximum strain energy is an intermediate calculation
and would not be displayed. The graph is not really a failure
representation, since it would be possible to have loads which produced
less strain energy but still caused failure. Despite these limitations,
these graphs do give a good intuitive feel for the characteristics of an
optimized laminate.

The approximate strain-sphere failure criterion is the starting
point for the derivation., We assume the maximum strain energy occurs

when the failure criterion reaches an equality. Then

2
6= b (33)

There are no shear loads, so that the stress-~strain relation can be
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written
= -1
te} = M[A"T] ; (34)

where A is defined by

The average, laminate strain energy density is given by
1
U="7R {S}TIAI{E} (36)
where h is the total thickness. Substituting equation (34) into (36)
yields
NG T Lo
U= 100 1A AT
0 0
N2 P D
0 = -Z—H—- A [A ] A
. 0 0
% 2
= W (a'|1 + 23]2)\ + 322>\ ) (37)

where a;;'s are elements of the inverted A matrix.

Substituting equation (34) into the failure criterion yields

2

2 2 1 2 _ 2
N] [(a]-i + a12A) + (a12 + azzx) + §-(a]3 + a23x) = b

or

2 _ 2 2 2 1 2
Ny = b /[(aH +a," t5a; ) + (2a”a]2

2 1 21,2
+ 2a]2a22 + a13a23)x + (a]2 tay" gy ay, ney (38)
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. o]
Q = 27 ay3ap3 + 217215 * Ay8p)) (39)
- 2 2 .1 2
Ro= {ag," 3" * 73,57
oy Then
= N7 = 0%+ @+ RD) 40
_b Substituting (40) into (38), energy density becomes
-\:
o S - b2 2t Zaph + a) )
= 2h P+ Q1+ RAZ
A derivative with respect to A is taken in order to find the maximunm
value.
dy _ b2 2
- 7n L(2ag, + 2a,,0)(P + Qa + RAS)
- (agy + 2a50 + 2,A2)(Q + 2R)I/(P + 1 + Ra%)2
a If du/d» =0, then
(2a,, + 2a,,1 2y _ 2
12 % 2 P+ O+ RE) - (g ¢ 2a 020t 2 =0 (ap)
’. Let = -
- B = -
€= 2P -
By substituting (43) into (42), X can be written as
2
: --B+ B®-24
@ Amax - 2A AC (44)
.':‘.‘
and the maximun strain energy density is given by
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Unax = Zm P+ Qh

45
max szma (45)

X

To use the relations, a rigid body rotation is performed on the
laminate, changing all the angles by the rigid body rotation angle Y .
The A matrix and its inverse is calculated for the the new angles.

Both values of A are substituted into equation (45) and the one
yielding the largest strain energy is taken.

Figure 26 shows a typical graph for an optimized laminate. The
strain energy density actually produced by the design loads are also
plotted as points. We can see how the laminate has adapted to these
loads. The function has to repeat after 90%°because in the derivation, NI
and Nyy are interchangeable. In Figures 27-29 the graphs are for
laminates optimized to a pair of loads with equal principle magnitutes
but with different angular spacings between their principle axes of the
loads. The graphs show that as the angular spacing increases, the
laminate's degree of aniostropy decreases. If there are many loads of
near equal magnitude, and with widely spaced principle axes, then the
laminate would have to be quasi-isotropic. There is a limit to how

adaptable the laminate can be. The strain energy density will be close

to a sin 48 function, no matter how many ply groups are available.
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b Optimality Criterion
%
The question of what constitutes an qptimized laminate (besides the
e statement that it has minimum thickness) can be approached by
; considering what equality conditions must be true at the optimum., This
- is called an optimality criterion approach. Some existing optimization
_j programs [3] are based on the assumption that strain energy density will
!
¢ be equal in all the plies at the optimum. This kind of criterion is
based on experience with other types of structures, such as trusses,
o
ﬁ The failure criterion doesn't influence the selection of ply ratios, but
§1 only the total thickness scaling.
The strain-sphere criterion is simple enough that for single
" loading conditions, an optimality criterion can be derived directly from
] the failure equation, Taking only ply group thickness as the design
_ ‘!’ variables, the minimum thickness point can be found from the Langrange
(Al
B multiplier equation
- Vh+2AVC =0 %)
!
ﬁ Terms of the gradient of the constraint can be written as
b
X 9C _ 22 |12
Sh 4 » By (47)
.¥
3 where
-
; 1 0 0
= T=(0 1 0 (48)
Wy ]
)
v 0 0
: 4
[ From equation (21), we have the result that
:l
oo + -1 gl 2
i S e’hi = ’lA l |Q [ € (49)
]
2
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Substituting into the Langrange multiplier equation (46), for each

component, we have
>T +>
1T+ 2 |T| €,hy = 0 (50

Thus, each ply group must satisfy the equation

<>

. ) . .
Tty Al elily 2 = (51

wherelx is the same constant for each ply group.

The strain energy density criterion could be written as

Tiali)y =
e Q7] € =2 (52)

which, again, must be satisfied for each ply group. There is a

significant difference between the two criteria. The implications of

equation (51) should be studied in more detail. Perhaps a more direct

solution to the optimization problem can be found.
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V. CONCLUSIONS

A series of effective laminate optimization programs have been
developed and thoroughly tested. The programs have been designed to be
compact and efficient enough to operate on the some of the smallest
microcomputers. Although not as general or sophisticated as some of the
optimization codes currently available, these programs offer good
performance and are very easy to use even for those unversed in
optimization. No program in the literature has been found that can
perform angle optimization or the orthotropic axis optimization. Thus,
much greater flexibilty is now available to the designer.

The gains due to optimization have been found to be substantial,
with typically a 307% weight savings as compared to quasi-isotropic
laminates., Surprisingly, these large gains can be made with either of a
couple of design parameters. The designer can either optimize the ply
ratios, or the angles and usually get equally efficient laminates. Or,
he may chose to constrain the lamin;te to be orthotropic after
optimization. If the orthotropic axis is free to change, efficient
laminates can be designed.,

By trying many example cases, it has been found that a 7/4 laminate
is a good starting laminate. By starting with quasi-istropic laminates,
no knowledge of desired starting orientations for the particular loads
is needed., Increasing the number of initial orientations does not seem
to improve the final laminates.

An approximate failure criteria has been found to give good results
while substantially decreasing the computation times needed. The
approximate criteria could be particularly important when the

optimization procedure is tied into a finite element code on an
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iterative basis, where the repeated optimizations could become
excessively time consuming,

The approximate criteria also allows some analytic studies of
optimized laminates. A representation of the optimized laminates
strength anisotropy has been developed based on the maximum strain
energy density. Graphs madé with this formulation show how the
laminates match the load requirements. Also, there is a limit to the
adaptablility of a laminate. As more load requirement are added,
eventually the laminate must become quasi-isotropic. An optimality
criterion can also be derived from the approximate failure criterion
which can be the subject of future investigations.

Hopefully, tailored laminates will come more common as these new

tools are made available to designers, enhancing the desirability of

composites,
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APPENDIX A

Anqular Derivatives

The derivatives of the stiffness and failure parameters are found using

the multiple angle transformations of Tsai [5]

30y,

30y,
3| 2U2 sin 26 ~ 4U3 sin 46

3Q
5512 = 4U3 sin 46
3Q
66 _
35 - 4U3 sin 46
aQ.'
3| - U2 cos 20 + 4U3 cos 49
306
38 U2 cos 20 - 4U3 cos 48
where
Up = /2 (Q, - Q)
Uy = 1/8 (Q,, + ny - ZQxy - 4)
Partials of Gij can be found with the same equations, but with
U2 =1/2 (Gxx - ny)
U3 = 1/8 (Gxx + ny - Zny - 4Gss)

The linear termms of the failure equation has become

3G]
35 = -2q sin 26
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APPENDIX B

Program for Ply Ratio and Angle Optimization

The following program optimizes composite laminates for minimum
weight subject to inplane strength requirements, Program options are:
1) optimized ply ratios 2) optimize ply angles and ratios 3) perform
laminate plate analysis without optimization. Inputs include initial
ply angles, loads (multiple independent loads possible) and a material
selection. Material properties for common composites are stored in a
e, library, or new properties can be entered by following prompts. The

program is interactive and use should be obvious from displayed prompts.
. A typical computer/user dialogue is given below, along with the

resulting output.

The program is written for an Epson HX-20 microcomputer which uses
a fairly standard form of BASIC; The major exception are the GET% and
PUT% commands to addrss the material library. These can be replaced by
disk file operations on most other computers. The other possible change
would be the explicit double precision symbol "#" used in the program.
Test have shown that double precision is not really needed and could be

left out when using other machines,
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COMPUTER/USER DIALOGUE

LCD Display

Press any key when desired
Material appears

T300/5208
B(4)/5505
AS/3501
Scotchply 1002
Kevlar 49/Epoxy
Aluminum

New

REVIEW OR NEW DATA (R/N) ?

WHICH MATERIAL WILL YOU
REPLACE (0-5) 2

Il
)

EX (GPa)
EY(GPa)
VX = ?
ES (GPa)
X(MPa) = ?
X' (MPa) = ?

]
[V

I
W

Y(MPa) = ?
Y'(MPa) = ?
S(MPa) = ?

THICKNESS (m.) = ?
NAME (15 CHR MAX) ?

ADDITIONAL CHANGES ?

93

Keyboard Response
(comments in parenthesis)

RUN RETURN (unless otherwise
noted, "Return" kev pressed
after each keyboard entry)

(random key pressed when
"New" appears on screen)

N

(materialg numbered in séme
order as listed T300/5208=0)
185
6.76
.2
5.86
680

690
(primed constants imply
compressive properties)

16
186
72

125e-6 (ply thickness)

HMS/3002M




PSR EANE e

l.

LCD Display

HOW MANY PLY GROUPS

ENTER PLY GROUP

ORIENTATIONS

PLY 1
PLY 2
PLY 3
PLY 4

ENTER NUMBER OF INDEPEN-
DENT LOADING CONDITIONS

LOAD 1
N1l
N2
N6
LOAD 2
N1
N2

N6

I
)

1l
)

?

?

in MPa
= ?
= ?
= ?

in MPa

[l
V]

OPTIMIZATION OR
ANALYSIS (0/A)

RATION OR ANGLE
OPTIMIZATION (R/A)

Tty e,
e .
- -t -

A2

il

s e et
LA SO G CALY Vil W S W I I 5

Keyboard Response
(comments in parenthesis)

{Materials list begins again,
this time with the new material
replacing aluminum, when it

appears a key is pressed)

4
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WORKING ITERATION 1 (after 4 iterations and about
7 minutes the computer beeps
TOTAL THICKNESS = that the solution has been
found. This example ran for
ié;lggzpiigé m. an unusually long time. Most
- oblems wi n in less time
HIT ANY KEY TO CONTINUE pr will ru )
Press Y if printout of displayed (press any key, no return)
result is desired. Press N if
not
PLY PROPERTIES Y (return key not
used for these responses)
LOADS Y
TOTAL THICKNESS &
PLY RATIOS Y
STRENGTH Y

LAMINATE STRAINS Y
STIFFNESS MATRIX Y
COMPLIANCE MATRIX Y

PLY RATIO GRAPH Y

(after entire list of print-
out options is presented,
computer produces the print-
out shown on next page)

FINISHED ' (pressing a key restarts
HIT ANY KEY TO program. Press "BREAK"
CONTINUE key to exit).
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Materxul Prorartias
HMS-3G62M
Ex= 185 GPa
EY= &. 75 GF3
ES= 5. 86 GP3
ux- 2
n- 588 NF'—
%= 698 MPa
”— 16 MPa
V’- 186 I1Pa
&= 72 MPa
Ple Thickrness .008125 m

LOADING 1

H 1= I MN-m
M 2= 2 MN/m
N &= ,5 MN-m
LOADING 2

N 1= 1 MN/m
N 2= 4 MN/m
N &= B MN-m

Total thickness=
«Bi7IE+E8 m.
137. 97 Plies

ANGLE RATIO #PLIES

(%] 3476 47,65
29 .--QI T” 3z
45 . 1243 17.94
-45 a B

STRENSGTH RATIOS
1=ULTIMATE STRAIN
>1 IS SAFE

LOARDING 1

PLY

(%] 1. 1822
96 1

45 1. 1616
LOADING 2

PLY

B 1. 8953
98 1.2115
45 1. 8122

e g v v Taw

LAMINATE STRAIMS

LOADING 1
el=+Z. 182E-03
aZ=+g, 962E~-03
26=+1, B3FE-B73
LOADING 2
n1-+B.69?E az

2=+2, 216E~-D3
as--l 467E-83

Norm. Al in GPa.

! L T 1
| 74.762] 6.518] 5.543
, I : 1
i 65181186, 267 5,543
+ . : H
| 5.548] 5.548] 11,516
[ L. 1 H

Compliznce <Jnormalized)
in 1/TPa.

1
13.321| -8, 497| -5, 768
L‘ L. ]
-9.497] 9.617| —4.3@4

T T ‘i
—6.?6QJ -4.593] &, 497

I
1
F
I
In
r
I
L '

ENGIMEERIMG COMSTANTS

El= 71.8 GFa
E2=184.8 GPa
E&= 1@. 4 GPz
v2i= B. 836
vel=-0, 435
v1E=-0, B7a

Output Produced from Example Dialogue
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10 2%k MAIN CLASSk%

20 CLEAR 75,330

30 WIDTH 20,4

40 DEFFIL 55,0

5@ DEFINT I-P:DEFDBL F
60 DIM A(3,3),B(6,9).C(6
162,0(3,32,6(3,3),XN4, 3
Y, AI(3,3): Q¢332 3) . HIB), RC
3255¢3),TC6): U5, U(?), X
(6),¥(33,2(63,E(4,3)

65 DIM W(24,6),CONC24)
78 DIM C%(18,2)

?g DEF FNDEG(X)=X*57. 295

28 DEF FNRAD(X)=X,57, 295
78

160 %k MAIN *x
185 RESTORE

110 READ IMAX.E2,ES.E6
120 ITER=1

130 GOSUB 254@

140 CLS:PRINT "OPTIMIZAT
ION OR":INPUT “AMALYSIS
C0/A)"3As

150 IF A$="A" THEN 6500
152 INPUTRATIO OR ANGLE
OFT (R/AY":1A$:IF A$="A
; THEN INPUT “DELTA":DEL
A

155 CLS: PRINT"WORKING":
PRINT" ITERATION"; ITER
170 GOSUB 2990

186 GOSUB 2338

198 GOSUB 2190

196 IF A$<>"A" THEN 208
197 DELTA=FNRAD(DELTAY:G
0SUB 19608

260 GOSUB 1680

205 CLS: PRINT"WORKING":

PRINT" ITERATION"; I TER

210 IF F$="FAIL" THEN 33
90

220 GOSUB 1370

238 ITER=ITER+1

240 IF F$="FAIL" OR ITER
>IMAX THEN 3308

250 GOTO 208

268 ’** COMSTRAINT TEST
b 3

270 G$="PASS": NC=0

289 FOR P=1 TO NPLY

296 IF H(P)=B THEN 445

300 I11=P :GOSUB 123@

310 FCR N=1 TO HL

329 FCON=-1

330 FOR K=1 TO 3

349 FOR J=1 TO 3

358 FCON=FCON+G(K, JY)XECN
» IIXECN, KD

360 MEXT J

370 FCON=FCON+SCKI*EC(N, K

)

388 HEXT K

390 IF FCOM>@ THEN G$="F
AIL": RETURN

498 IF FCONK-ES THEN 440

Comments
20-40 commands to configure the
machine
50 Implicit integer and double

precision

80-90 convert radians to degrees
and degrees to radians

130 - Gosub input

170 - Gosub invariants

180 - Gosub transformations

190 - Gosub initial feasible pt.
200 - Gosub direction

220 - Gosub new thickness

290 - if ply thickness zero,
ignore constraint

300 - Get G matrix for ply being
tested

320 - 380 Solve FCON =

Gijeiej + Giei -1

410 - 430 If FCON is close to
zero identify constraint as
active, make list in C% and in-
crement constraint counter
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Rl =d% A M A S R i -t b

2 410 NC=NC+1
2 420 C%<NC,1>=P
; A 438 Cx(NC,2)=N
R - 440 NEXT N

445 NEXT P
. 438 RETURN
456 STOP
460 k% GRADIENT %
475 UNORM=@
480 II=P: GOSUB 1238
498 FOR L=1 TO NPLY
588 IF H(L)=8 THEN 700
510 II=L: G0SUB 1128
) 528 FOR J=1 TO 3

) S39 R¢J)=0 _ _
) 540 FOR K=1 TO 3 480 - Get G matrix for designated
. 559 R(J>»=R(I)-Q(JT, KI)KEC(N ply

. KD

560 NEXT K.J .
570 FER J=1 T0 3 510 - For eaCh ply, get Q matrix
588 Y(JI)=0 N R
598 FOR K=1 TO 3 540 - 560 R = -
399 YISV CII AT (T KR 3h
| >
. 610 NEXT K,J - 3 -1
228 ZCl>=0 580 610 Y |a =
630 FOR J=1 TO 3
649 FOR K=1 70 3 3
658 ZCLY=ZCLI+BCT, Kr*(Y¢ y =
" JIKECN, KY+ECN, T2 RY KD ahk
668 NEXT K
; 670 Z(LY=ZCLI+S(IY RV
: 630 NEXT J 620 - 680 V (FCON) = [G,. (e, ==
. €98 UNORM=UNORM+2Z(L>*2Z¢L 13 1 ony

y
] ' 789 NEXT L Sei 381
3 719 UNORM=SGR CLUNORM) * 5 €q) + G (5
\ 720 FOR L=1 TO NPLY k

730 2(L)=2(L ) UNORM

N -5

T N on 690 - 730 Normalize V(FCON)
! 770 7%k STRAINS %k

780 DIM F(3,3)
‘ 799 FOR I=1 TQ 3
‘ 200 FOR J=1 T0 3
: 818 FCI, 3)=ACT, 1D+DCI, I
i *3
: 828 NEXT J,1
: 530 DETH=F (1, 1)KF (2, 2)KF

(32 3D+ 2HF (1, 2)HF (25 3IKFC 790 - 820 "F" is the A matrix

A e

>
R

]

)] hk

1,3)-FC2,2>%F(1,3)%F (1,3

P TR, P iy

d-F (1, 10F (2, 30%F(2,3)-F
(3,30%F(1,2)%F(1,2)

340 AI(1,1)=(F(2,2)%F(3,
35-F(2,3)%F(2,3)>/DETH
850 AI(2,2)=(F(1,1)*F(3,
3)-F(1,3>*%F(1,3)>/DET#
860 AI{1,2)=(F(1,3>)*%F(2,
3)~FC1,2)¥F (3,3))/DETH
879 ARI(Z,3)=(F(1,1)%F(2,
2)-F(1,2)%F(1,2)>/DET#
280 AI(1,3)=(F(1,2)%F(2,
3)-F(2,2)*%F(1,3)>)/DET#
399 AI(2,3)=(F(1,2)%F(1,
30-F(1,1)%F(2,3))/DETH
960 AI(2,1)>=A1(1,2>:A1(3
,§)3ﬂ1(2,3)=ﬁl(3,1)=ﬂ1(1
23D

AN .r.‘.f.'-.r.".- e e e
~ag 4. 2 ‘A'_-_'.;'A‘J .J'J-PJ' AP

I PR T VR G Y WP R g S s

corresponding to a point S
along the Z vector

830 - 900 invert A

920 - 970 Solve ¢=|A"%| ¥ for
each independent loading
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910 ERASE F

920 FOR I=1 TO NL

938 FOR J=1 TO 3

949 E(1,J>=0

9%@ FOR K={ TO 3

960 ECI, D=ECI. D+AI(],K
IEXNCT KD

970 NEXT K»J,1

980 RETURN

990 %% A MATRIX ¥*

1000 FOR I=1 T0 3

1610 FOR J=1 T0 3

1020 ACI,J)=0: D(1,J>=6
1838 NEXT J,»1

1640 FOR I=1 TO MPLY
1050 11=I: G0SUB 1120
1060 FOR J=1 T0 3

1670 FOR K=1 TO 3

1880 ACJT,K)=ACJ,K>+Q(J,K
IRHCID

1890 D(J,KI=D(I,K)+R(J,K
INRZCID

1108 NEXT K,J,1

1110 RETURN

1126 %% FORM O *x

1130 Q<1,1>=sCCII, 1)

1142 QC1,2)=C(1I,3>

1150 Q(1,3>=CC11,5>

11790 Q¢3,1>=CC(I1,5?

1188 Q(3,2)=C(Il,6)

1199 Q<3,30=C(11.4)

1195 @<2,3»=C(11.6"

12008 Q(2,2)=C(1I1,2)

1219 Q<¢2,1)=CC(II1, 3>

1228 RETURN

1230 **¥ FORM G **

1240 G(1,1)>=BCII, 1)

1258 G{1,2>=B(I1,3>

1260 6(1,3)=B(1I,S)>

1278 G(2,1>=BC(II1,3>

1280 G(2,2>=B(11,2)

1290 G(2,3>=BC(I1I.6)

1388 G<3,1>=BC(II,5)

1319 G(3,2>=BC(l1,6)

1328 G(3,3)=B(II.4)

1336 S<1)=B(II,?)

1348 S(2>=B(11,8)

1350 S(3>=B(1I,%

1368 RETURN

1370 *#% NEW H VECTOR *%
13802 SMAX=1E1Q

1390 FOR I=1 TO MPLY
1460 IF 2(I><{>8 THEW S=-
H(I>,2(1)

1410 IF S>8 AND S<SMAX T
HEN SMAaX=S

1429 NEXT 1

1430 F$=""

1440 IF SMAX> 10 THEN F$
="FAIL": RETURN

é45@ S1=8: S2=SMAX: S=SM
X

1460 IF HC=9 THEN 1598
1478 GOSUB 773: GOSUB 26
%)

1489 IF G#="FAIL" THEN S
2=5 ELSE S1=5

é490 IF S1=SMAX THEN 153

1000 - 1100 The matrix D is
formed so that along the 2 vector

|al = |a] + [p| - s

where S is a scalor

1130 - 1210 Convert C array into
3 x 3 Q matrix for ply designated
by II

1240 - 1350 Convert B array into
3 x 3 G matrix for ply designated
by II. Linear failure terms
placed in vector S

380 - 1420 Find distance along

1
Z to find hi = (0 constraint

1450 - 1500 Bisection method to
find distance to next constraint.
If no constraints violated at

S = SMAX then stop search
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1508 S=(S1+S52>/2

1510 IF S2-S1<E2 AND Si=
@ THEN F$="FAQIL": S=B: G
0T0 1659

1528 IF S1-/(52-51><4 THE
N 1478

1538 S=S-2

1535 SREF=9

1548 FOR I={ TO MPLY
1558 H(Id=H(IX>+2(]>*3
1530 IF H(I><E2 THEN H(I1
=l

1570 SREF=SREF+HCI)>*H(I)
1580 NEXT 1

1599 S$=08:SREF=SQR(SREF)
1600 GOSUE 999: GOSUB 77
8: GOSUB 2028

1610 IF SREF-S<E2 THEN F
$="FAIL"

1620 FOR I=1 TO NPLY
1638 HCI>=H(I)*S/SREF
1648 NEXT I

1650 S=0

1660 BOSUB 390: EOSUB 77
D: GOSUB 269

1670 RETURN

1680 %k DIRECTION Xk
1690 Z2=@: UNORM=1

1788 FOR I=1 TO NPLY
1718 X<{I)>=0

1720 Z=2+SGNCHC(I3)

1730 HEXT I

1748 2=1/80R(2>

1758 IF NC=0 THEN 1868
1768 FOR I=1 TO NC

1728 P=CX(I, 1>t H=CX(l.2
b

1780 30SUB 460

1790 FOR J=1 TOD MPLY
1889 LET X(J)=X(J»-2¢J>
1810 MEXT J,1

1315 UNORM=9

1820 FOR J=1 TD NPLY
1839 UNORM=UNORM+X (JI¥X(
I

1848 NEXT J

1850 UNORM=SGR(UMORM>: T
EST=0

1868 FOR I=1 TO HPLY
1870 X(1)=X(1>/UNMORM
1880 TEST=TEST+X(I)%Z¥SG
NCHCI YD

1899 NEXT 1

1968 UNORM=0

1910 FOR I=1 TO HPLY
1920 Z2(I)=X(1)-TEST*2*SG
NCHCTD)

1932 UNORM=UMORM+2{1)%2Z(
1)

1940 NEXT I

1950 IF UNORM<{IE-A THEM
Fe=“FAIL": RETURN ELSE
F‘.Cl n

1968 UNORM=SGRC(UNDRM)
1979 FOR I=1 TO MPLY
1980 Z(I1)=2¢13/UNORM
1998 NEXT 1

2000 G0SUB 990

2010 RETURN

1530 - 1600 at point halfway
between constraints, use strain
ratio routine to find how much
the laminate thickness can be
reduced

1610 If change in thickness
small, set flag to halt program

1620 - 1660 Update h vector, A
matrix, strains

1760 - 1840 For each active
constraint call gradient sub-
routine. Sum negative of each
gradient into X and normalize X

1860 - 1890 Take dot product of

"X and unit normal to thi = const.

plane

1910 - 1940 Z is a vector parallel

to the Ihi = const. plane and
pointing away from the active
constraints

1950 if the magnitude of 2
is very small, a local minima has
been reached
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2020 ’*x STRAIN RATIO %%
2038 FOR P=1 70 NPLY
2040 IF H(P>=9 THEM 2168
2050 11=P: GOSUB 1230
2860 FOR N=1 TO NL

2070 B#=0:C#=0

2088 FOR I=1 70 3

2098 FOR J=1 TO 3

2100 CR=CH-SREF*SREF*G(I
» IYRE(N; ID¥ECN, I

2119 NEXT J

2120 B#=B#-SREF*S(I>*E(N
- 1)

21368 NEXT 1

2148 SUAL=(-B#+SOR (B#*B
#-4XCHX(1-E6 D)/ (2¥(1-ES

2150 IF SVAL>S THEM S=Sy

21S5 NEXT N

2168 NEXT P

2188 RETURN

2198 ’xx IFP **

2200 2=1/SAR(MPLY)
2210 FOR I=1 TO NPLY
2220 2{1)=2: H(I»=Z
2238 NEXT 1

2248 GOSUB 999

2258 5=8: SREF=1
2260 GOSUB 77@: GOSUB 2@

2270 FOR I=1 TO NPLY
2280 H(I)=H(I)*S

2299 NEXT 1

2308 S=0

2316 GQSUB 998: GOSUE 77
8: GOsUB 2¢0

2320 RETURN

2338 ’#*x TRANSFORM *x
2348 FOR I=1 TO NPLY
2350 C2=COS(Z#T(I))>»: C4=
COS(4%T(I>)

2360 S2=SIN(2¥T(I))>: S4=
SINC4%TCIN)

2378 B(I,1)=UC1)+C24Y(2)
+C4*U(3)

23388 B(I,2)=UC1)-C2%U(2)
+C4XYU(3)

2398 B(I,3>=U(4)-C4%U(3>
2499 B(I,4)=U(S)-C4¥U(3)
2419 B(I,S3>=82/2%U(2>+54
*U(3>

2420 B(I,6>=52/2%U(2)-54
*U(3)

2438 B(I,7)=UCEI+C2HI(?)
2448 B(I,8)=U(e)>~-C2%U(?7)
2458 B(I,9>=82%U(7)

2468 C(I,1>=UC1)+C2¥IC2Z)
+CaxI(3)

2478 CCI,2)=UC1)~CMJ(2)
+C4xUU(3)

2480 C(I,3)>=UC4)-C4%U(3)
24908 C(I,4)=UCS)~-CaHI(3T)
2508 C(I,5)=82-/2%U(2)+34
*UJ(3)

2510 C<1,6>=52/2%3(2)-54
*Y(3)

23520 NEXT 1

2538 RETURN

2030 - 2140 For each possible
constraint solve for S in

2
.. E.E. lfﬂiggil—- + G.e. 1523§21L
ij 173 SZ i1 S
..1=—E6
2150 Take smallest value

(corresponds to closest constraint)

2200 - 2310 For equal ply ratios,
find the smallest laminate thick-
ness which does not violate any
constraints. Initialize A matrix,
strains, and constraint list

2370 - 2450 Transform failure
parameters in following order
B(I,2)=G22 B(I,6)=G26
B(I,3)=Gl2 B(I,7)=Gl
B(I,4)=G66 B(I,8)=G,
B(I,9)=G3
2460 - 2510 Transform modulus
in following order
C(I,L)=Q22 C(I,6)=Q26
C(I.3)=Q12




2540 Xk INPUT X%k

2550 CLS

2608 PRINT "PRESS ANY KE
Y WHEN“:PRINT "DESIRED M
ATERIAL"sPRINT"APPEARS"

2610 FOR K=1 YO 75@:NEXT
2620 FOR M=8 TO &

2640 IF M=6 THEN M$="NEU
MATERIAL" ELSE GET™M,EX
SEVs UX, ES, TRLY, XT, YT, KCs
VYC,SS>M$

3359 CLSIPRINT M$:SOUND

28,1

2668 FOR J=1 TO 209

2670 IF INKEY$<>"" THEN

2700

2675 NEXT J,M

2680 GOTD 2620

2700 IF M=6 THEN GOSUB 2
0080:G0TO 2600

2705 CLS:PRINT “Z "sh&:"

E

2710 PRINT "HOW MAMY*
2720 INPUT "PLY GROUPS":
NPLY

2730 CLS: PRINT "ENTER P
LY GROUP“

2749 PRINT "ORIENTATIONS

2750 FOR_1=1 TO 200

2760 NEXT 1

2770 CLS

2780 FOR I=1 TO HPLY

2799 PRINT “PLY "31

2800 INPUT T(D)

2810 TCI>=FNRADKTCID)

2820 NEXT I

2839 PRINT "ENTER NUMBER
Fll

2849 PRINT " INDEPENDENT

LORD"

2850 INPUT "CONDITIONS":

NL

2900 FOR I=1 TO NL

2910 CLS:FRINT "LOAD “31

3% IN MPa, "

2920 INPUT "N1="3XN(I,1)

2939 INPUT "N2="3XM(I1,2)

2948 INPUT "N6="3XN(I,3)

2959 FOR J=1 T0 3

2960 KNCI,JI=XNCI, JI*1E6

2970 NEXT J, 1

2989 RETURN

2990 *¥% INUARIENTS *x

3050 UY=1/(1-UXKUXKEY/EX

)

3068 QXX=UVKEXKIES: QYv=

UYKEYX1ES

3070 QXV=UYKUXKEVK1ES: Q

S=ESH1E9

3080 UC1)=(3HOXX4IHOVY+2

AQAY+440S) /3

3090 UC2)=(QXX-Q¥Y)>,2

3100 U(3)=(@XX+QYY~-2XGXY

-4%0S)> /8

n

~~~~~
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2600 - 2675 List available
materials.Get% is an HX-20
command to get data from a non-
violatile RAM file

3050 - 3280 Calculate invariants

for use in transformations. Note

that some variables like EX and

EY get reused, so their value may

not be what you might expect after
routine is called
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3118 UC4)=(AKX+QYY+EXQARY
-4%QS) /8

3120 UCS)=(AKK+QYY-~2%QRY
+4%QS) /8

3138 EX=1E-12/(XT*XC): E
Y=1E-12-CYT*YCH: ES=1E-1
2/(58%5S)

3140 FX=(1/XT-1/KCO~1EL:
Fy=(1/¥YT-1-YC)/1ES

3158 EXY=-SAR (EX*EY)>-2
3160 GEA=ER*OXRXIQHN+2KEN
YRQKRK QY +HEYKQAYRGRY
3179 GYV=EXFQXYRQXY+2KEX
YRQUEQYY+EVRQYY4HQYY
3180 BXY=EXKORXFQXY+HEX' %
CORXAQYVHQEYEQRY D + EVRERY
*Qyy

3190 GSS=ES*GS*QS

3200 GH=FHRQRIHFYRLRY
3210 GY=FREQXVHFYRRYY
3220 U{1=(IHEXK+HIHGEYY+2
*GXY+4¥GSS) 28

3230 U(2)=(GXK-GYY)> 2
3248 U(3)=(GXK+GYY~ZHEAY
-4*G§S) -8

3258 UC4)r=(GHM+GYV+EHERY
-4%G55) /8

3268 U{S)=(GEK+GYY-2%EKY
+4¥GSS) -8

3270 U(6)I=(GR+GY)I 2

3280 YLK?I=(GN-GY)/ 2

3290 RETURN

3390 ¥k QUTPUT X

2302 SOUND 15.2:S0UNDSE,

3305 K¥="Hit any kev tc
cont":Us="MN-m"

331a CLS: TEST=8

3320 FOR I=1 TO HPLY
3330 TEST=TEST+H(I>: NEX

T1

3359 PRINT "ToTAL THICKHN

ESS="

3369 PRINT TEST:" m. "

I370 PRINT USING "#itké. #
#$ Plies";TEST-TPLY

3375 PRINT K33

3320 A$=INKEY$:IF As>""
THEK 3389

3398 IF INKEY$="" THEN 3
399

3408 CLS:PRINT"Press ¥ i

f printout’, "of disrlave
d result is desired. Pr
asg Nif not"s

2416 FOR I=1 TO 69@:MNEXT

1
3415 AS=INKEY$:IF AS<CO""
THEN 2415
3420 CLS:RESTORE £129
2425 JJ=9:A$=IHKEVY$
3430 FOR I=1 TO 8
3440 READ AS$:CLS:PRINT:P
RINT a$:50UND 28,1
3445 as=INKEYS:IF af=""
THEN 3445
3458 PRINT A$3:FOR KK=1
TO ?S1NEXT KK

103
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3455 IF As="¥Y* THEM JJ=J
J+1:C%<IT, 10 =1 :
3460 NEXT 1 7
3464 IF JJ<>8 THEN LPRIN
T STRINGS(24,"5">
3465 FOR KK=1 T0 JJ
3479 ON Cx<KK,1)> GOSUR 5 (
909, 5200, 4000, 4209 . 440,
4600, 4300, 7500 !
3485 LFRINT !
3498 NEXT KK
2495 CLS:PRINT"FINISHED"
1K$
Q . =Illl ?' X
g“&ESéFRE,sKE"s THENZ43 2400-3234%0 EBranch for various
4909 Tk PLY RATIO#X output routines
4902 CLS:LPRINT "Total t
hickness="
4004 LPRINT USIHG “. #8##
Anan m, “STEST
4006 LPP‘INTEUGINP " #EH#. 4000-7540 Output routines and
#% Plies"s TEST-TFRLY o a : P
4003 LPRINT laminate anal»sis
4038 A$="AMGLE FATIOD #
PLIES"
4040 LOCATE 9, 1:PRINT A%
sLPRINT A%
4950 FOR I=1 TO HPLY
4060 A=CINT{(FNDESCTCIN
*1E2))/1E2
4970 B=CINT((HSID 7 TEST*L
E4))/1E4
4280 C=CINT(CHCIY/TPLY#*1
E2))/1E2
4990 PRINT A:TABCE23EBITA
BC13)3C
4108 LPRINT asTRBCEI BT
aB(13>3C
4120 NEXT I
4150 RETURM
4209 ¥k STREHGTHX*
421@ LPRINT "STRENGTH RA

TI108" -
STRAIN®: defined as the value of R in

4228 LPRINT ">1 IS SAFE"

4225 FOR 1=1 TO HL 2
4238 LPRINT "LOADING "I C;58485R" + Gye,R -1 =0
4235 LPRINT "PLY"

4240 FOR P=1 TO MPLY

4245 IF H(P)=0 THEN 4385

4256 11=P:GOSUE 1239

4255 A#=B:E#=0

4268 FOR J=1 TO 3

4265 FOR K=1 T0 3

4270 AR=AR+GCT, KOXECT, J)

¥ECT,K)

4275 NEXT K

4290 BA=B#+S(DXECT, J)

4235 NEXT J

4290 AN=(-EN+SORCENKEN+4

XEW) )/ (2KAR)

4295 A=F IX(ANK1E4+, 5)/1E

4

4300 LPRIMT FHDEG(T(P)Y);

TAB(1@)3A

L 4305 NEXT P, 1

e 4310 RETURN
l',‘ .
','
r"t
N
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4400 * *XSTRAIMNS**

4410 LFRINT TARB(4):"LAMI
NATE STRAINS®

4420 FOR H=1 TD NL

4430 LPRINT "LDADING "M
4448 LPRINT USING "el=+#
« BBHE-Q3"EC(MN 1)XIES
4450 LPRINY USING "el=+#
BERE-O3"E(N, 2)%1ET
4468 LPRINT USING "=6=+#
 BHRE-BT"IEC(MN, 3O¥LES
4465 NEXT N

4479 RETURN

4600 * kA MATRIX¥*

461@ CLS

45628 LFRINT"MNorm. 1Al in
GPa, *

4630 FOR I=1 TO 3

4649 FOR J=1 TO 3

4650 DCI,I)=ACT, I)~1EQ-T
EST

4662 NEXT J,1

4678 G0SUB 7ovB

4£30 RETURN

4389 A IMVERSE

4213 LFRINT"Comrliznce
tnormalized)"”

4820 LFRINT"in 1/TFa. "
4838 FOR I=1 TO 3

4340 FOR J=1 T0 3

43850 DC(I,J>=AI(1, JX*TEST
¥1E12

4868 NEXT J,1

4878 GOSUB 70069

4339 RETURN

5009 LPRINT "Material Pr

oper ties"

5019 GETZM,EX>EY:UM,ES, T

PLY»XT YT %HC,VCHr 55, MS

315 LPRINT M$

928 LPRINT "EX="3;EX3 "GP

@30 LPRINT "EY="3EV;“GP
5049 LPRINT "E5="3ES;"GP

50850 LPRINT "UX="j;UX
5069 LPRINT "M¥="3;XT:"MPa

5078 LPRINT "X>="3¥C3"MP

a

5872 LPRINT "v="3¥T:"MPa

5074 LPRINT "vy’="t4C;"MP
all
S89 LPRINT "S="33S3 "MPa

5998 LPRINT "Plw Thickne
ss"3 TPLY"m"

5835 RETURN

5209 * ¥¥LOAD Kk

5219 FOR I=1 TO ML

5220 LPRINT "LOADIMG “31
5238 FOR J=1 70 3

5240 AE=STR$(J): IFJI=3THE
N g‘= " 6"

5250 LPRINT "H"sQ$s;"="3X
NCI, D) 71E65US

5260 NEXT J» 1

5279 RETURN

105
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€809 DATA 10,5E-5,. 1, 1E-

[

6128 DATA Pla properties
,Loads, Total thickness &

plu ratios,Strenzth

ratios

6132 DATA Laminate strai
ns.Stiffness matrix:Comp
liance matrix,Ensineerin

9 const.

£500 %k AHALYSIS ¥#

£505 ngT .

6510 TEST 4500-4570 MAIM f formi
6520 FOR 1=1 TO HPLY T pa IM for performing
€530 PRINT “MUMBER OF PL only laminate analysis <number
IES &T",FHDEGCT(I) >3 "DEG of plies is & given’

REES": INPUT H(D

€540 H{D=H{ I TPLVITEST
=TEST+HCID

£550 NEXT

6555 CLS

£560 S5=0:605UB 2970603y
B 23370:GOSUE 99@:505UB 7
70

6578 GOTO 3308

72008 ’FANCY

7919 LPRINT " ——————

-_—T
7020 LPRINT USIHG " |##4.
##473D(1,1),0(1,23:D(1-3

)

703D As="}- +
"

7940 LPRINT A$

7852 LPRINT USING " |###.
#44030(2,12,002,27.002,3

)

7060 LPRINT w$

7879 LPRINT USING "|###.
BH#"30C3,12,003,2),043,3

)
7089 LPRINT *‘——i—
R S—
7199 RETURN i
7500 ¥k ENG, CONST. **
7505 LPRINT "ENGINEERING
CONSTANTS” : LPRINT
7510 LPRINT USING"E1=###
. # GPa"31/A1C1,1)/TEST 1

E9
7515 LPRINT USING"E2=###
. # GPa"31/A1¢2,2)/TEST /1

E9
7520 LPRINT USIMG"ES=###
. % GPa"s 1/A1(3,3)/TESTA1

E9
7525 LPRINT USING"E2=###
. % GPa"31/A1(2.2)/TEST 1

E9

7530 LPRINT USING"u21=##
. Hu8Ts -A1CL, 2 AT, LD
7549 LPRINT USING"vEl=##
LRI RICL, 3 A0, 1)
7550 LPRINT USING*uvi6=##
L RU AL, 3/A1¢3, 3
7560 RETURN

106
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2008 FRINT"REUIEW CTR NEW

- 2219 INPUT “DATA (R/ND";
9020 IF A$="R" THEM 9190
9238 FRINT"WHICH MATERIA
L":PRINT"WILL YOu"

9948 INPUT "REPLACE (B-5
sl

9058 INPUT "EX(GPar="1EX
9968 IMPUT "EVW{GFai=":EY
9870 INPUT "Ux=":ux

9875 INPUT "ES(GPa)="3ES
2080 IMPUT "R(MPa>=":%
9998 INPUT "¥° (MPad=":ux
9108 INPUT “Y(MPaj=":¥
2118 INPUT "%’ (MPas="3 v
9120 IHPUT "SiMPa)="33
9138 _INPUT "THICKNESS <m
Y="3 TPLY

9140 INPUT "NAME <15 CHR
. MAX. 2"3M$

3150 PUT%I,EX, EN. UKLES, T
PL‘\)? % Vs s Y ’D!”$

9166 PRINT “ADDITIOHAL":
INPUT “CHANGES ©%/N3"3as
9170 IF As="v" THEN 9a0@
9158 RETURN

3199 PRINT"REUVIEW WHICH"
: INPUT"MATERTAL (H-5)"tH
9209 GOSUESEOD

9218 GOTO 9169

9580 DPEN "I".#1,"CA51:D

ATA"
Q 9519 FOR [=9 TO S
9520 INPUT #1,EX,EV.UX.E

Sy TsRe Yo K% Y 52 1ME

9538 PUTZILEX, EV W ES, T
Y EXYY, 5 M

9540 NEXT

2550 CLOSE #1

9568 DELETE 45

35709 G070 S0

189083 °THETA

16019 L=4

18029 SREF=8

19839 FOR I=1 TQ NFLY
10R4R SREF=SREF+HC I *H(]
3

10950 MEXT

108368 FOR P=1 TO MPLY
19979 C2=2¥COS{T¥TIPI
19980 CA=4*COS(4¥TIF)>
10999 S2=2¢SINCZETIPY)
19108 S4=44SIMHC(4¥TP)
18116 DC1, 1)=-(2)¥32-1)(
3I0%34

13129 DC2,2)=U(2)k52-UC3
Y%34

16139 D3, 3)=U(3>%S4
10148 DC1,3)=(20k02/241)

FOO0-7210  Enter material
properties into library

FS00-9570 Routine +or
automaticall» entering material
properties from a cassetts
tape. To use, line 45 should
read GOTO 9S00, and load
program. With tape =till
connected, run program and the
properties will load.

10000 mAngle optimization
subrocutine

10110-12120  Angular
derivatives of failure
parameters

(Z#*C4
161590 D(2,3>=U(2)*(2,2-U
(3)%C4
)_':-
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18160 D(1,2>=D(3,3):D(2,
15=DC1, 232D(Z, 20=002, 70
D(3513=DC(1,3)

18178 XC1)=-L (P52
18188 X(2)=-X(1>

18198 X(33=UC7IxC2

10200 II=F:G50SUB 1274
182168 FOR N=1 TO HL
16226 FCOH=-1

122338 FOR K=1 TO 3

18248 FOR J=1 7O 3

18259 FCON=FCON+5(J, ka*E
(N> JOKECH, K2

18268 HEKT J

19270 FCON=FCON+SCH I #ECN
s K2

12286 MEXT K

10290 L=L+1

19388 CONCL)Y=FCON

18318 FOR PF=1 TO HPLY
19320 C2=2HCOS(Z¥TIPPI):
CA=44CUS 44T (PP

19338 S2=Z¥SIH{2¥T FFH:
S4=4%SINI4%T(PP))

18348 A0, 1)==D022 #5821
2%S4

18354 AC2, 2>=UC2O*52-113
I¥354

18368 A3, TD=UC3 %34
18378 AL, Id=UC2I%02-2+41)
CZORC4

18388 AC2.3)=U(2>¥(2-2-1)
C33*C4

18390 R, 2)=AC3, 3 1A,
10=AC1 . 200 ACZ, 2=/02, 30
A3, 10=A(1,3)
18406 FOR J={ TO
la41a FCJ»=A
@429 FOrR K=1 70 3

18478 FCJI=R{II+A( T, KIFE
(M KY*HCP)

18446 NEXT K.J

18459 FOR J=1 TO 3

164608 Y(J>=n

16478 FOR K=1 TO 3

18428 VCID=Y(I)-AI T, Ko*
R{KD

18490 MEXT K.J

16568 DUM=@

185192 FOR J=1 TO 3

19520 FOR K=1 10 3

19539 CUM=CUM+G(T, E k(Y
TIHECH, ED+ECN, JI¥Y KD )
19545 IF P=FP THEM [iM=D
UM+LCT, EDRECH, JA¥ECH, KD
19550 HEAT K

16563 DUM=DUMSOId¥ T
19576 IF P=FP THEM DUM=D
UM+XCTIRECH, T

16580 HEXT J

19598 WL, P>=0UM

10699 HMEXT PP

18618 NEXT M.P

10620 ZMAX=9

10639 FOR P=1 TO HNPLY
é8640 DUM=@: DbUM2=a3: DIIM3=

(2
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10250-10270 Calculate value of
failure esquation for each load

10340-103%0  angular

derivatives of @& matrix
terms

10400-10470 Sclve for
partials of strain with
respect to angle

10310-10400 Solve
equaticon (z¢>

10630-10700 Sove far
equation (28
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19650 FOR J=1 TO L

10668 CUM=DUM+CONC( Tr® (]
P

19578 DUM2=DUM2+W(T.P)
18623 DUMI=DUMI+CIONCT)
18698 NEXT J

16708 ZCP=DUM-DLIMZ*0IM3
<HPLY

19718 IF ABS{(Z(P)) *ZMAKX
AND Z¢F><>@ THEN ZMAX=rB
S(ZPI2

16720 XCPY=0

19730 MEXT P

13742 FOR I=1 TO NPLY
19759 IF ZmAa¥=0 THEM RET
URN ELSE Z{Ir==2(I3-ZMAX
18768 MEXT 1

19779 T=1:TEST=SREF
16736 FOR I=1 TO HFLY
19793 CONCID=RCToe i r=2
CIOT

18308 NCID=CIMTCE(T) )
13318 TCD=TOIM+0ECIN-C0
NCIMDO*DELTR

19228 MEXT

18332 GOSUE 2IZ0:
UB 294:GOSLE 77a
18349 GOsSUB 2020
18g5a IF S<TEST THEM T=T
+1:TEST=3:1G0TQ 16723
13266 FOR I=1 T3 HFLY
18378 TCIx=T{I2-CR0I0~C0O
NCIX>*DELTA

18384 MEXT

1029 S=eG0SUB ZZ3B:5035
UB 92a: GOSUE 7Fa:505UB 2
B2a
18999 FOR I=1 TO HPLY
18910 HCI)=HCIY¥2/ SREF
1893@ II=Pi1GOSUB 1276
19940 HEX

189368 IF T=1 THEM FETURM
ELSE GOTO 1a0ee

S=RE0s
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10790-10740
Er largest

Hormalize 2
component

10730-10320 Incremental
step of all angles

162zt Update
transformations,
and scale total

cstrains,
thickness

&0-108280 aAfter minimum
t, go back one step

1070010740 Update ply
aroup thickness

10740 I+ any progress
made, go back and try a

new direction.
return to main

I+ naot,
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APPENDIX C

Orthotropic Laminate Optimization Program

The following program produces a thickness optimized laminate that
is constraint to be orthotropic. A search can be made for the best
orientation of the orthotropic axis. In the final result, ply angles
are measured from one of the orthotropic axes (the original 1 axis) plus
a rigid body rotation is given. Angles appear to stay constant, but the
rigid body rotation must be added to get the angle to the laminate 1
axis (see Figure 15)., The failure theory is based on the strain sphere
approximation of the first-ply failure inner-envelope. The laminate
must remain balanced. Instead of entering both the plus and minus
angle, only one is entered and the program assumes the presence of the
other. The final thickness must be divided evenly between a plus theta
and a minus theta ply group.

Running the program is similar to running the program listed in
Appendix B. The only differences are that if optimimum orientation is
desired, the search limits and maximum error must be entered., The
search limits are the angles between which the best laminate is thought
to lie. If a minimum is not found between the given limits, the program
automatically extends the limits, but this is time consuming.

All angles (and the error) are entered as degrees.
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10 %% MAIN CLASS¥*

20 WIDTH 20,19

3@ CLEAR 75,330

48 DEFFIL 55,0

S8 DIM XN¢3,35,Q11(4),02

2¢4),Q012¢(4),Q66(4),H(4),

R(3HT(H

68 DIM X(4),Y¥(3)>,2¢4),E(

3,33,C%(4),U(5),U(3)

70 DEF FHRAD(X)=X/186%3.
14159

80 DEF FNDEG(X)=X%188/3.
14159

99 RESTORE

180 RERD EZ,ES,E6

110 ITER=1

128 GOSUB 18370

139 GOsSUB 2180

149 GOSUB 1728

156 INPUT "OPT. ROTATION
(YNYU3AS

168 IF A$="Y" THEN GOTO

4138

176 GOSUB 1520

188 GOSUB 11&0

190 CLS:PRINT "WORKING, I

TERATION"; ITER

200 IF F$="FAIL" THEN 25

8

218 GOSUB &40

220 ITER=ITER+1

230 IF F$="FAIL" THEN 25

5]

249 GOTO 189

250 H=6

269 FOR 1=1 TO NPLY

270 H=H+HCIYINEXT 1

286 GDTO 2330

290 **x CONSTRAINT TEST*

*

369 G$="PASS"t NC=0

318 FOR N=1 TO NL

326 FCOM=CE(N, 1)¥E(N, 1)+

E<CN> 2)XEC(M, 2)+E(N, 3>%E(N
2 3)72) 7EMAX-1

338 IF FCOM>8 THEM G$="F

AIL"¢RETURN

348 IF FCONK-ES THEN GOT

0 379

358 MC=MC+1

368 C$(NC)=CHRF(N)

370 HEXT N

280 RETURN

400 *¥* GRADIENT **

412 UNORM=9

420 FOR L=1 TO NPLY

436 IF H{L)>=@ THEMN Z<(L)=

@:60T0 526

440 R(1)==-Q1 1{LY*EC(N, 1>~

R12CLOY*EC(N, 2)

459 R(2)=-QI2CLI¥ECN, 1)~

Q22<LI*ECN, 2)

460 R(3>=-066(LI¥ECN,3)

470 Y(1)=AT1 1*R(1)+Al112%

RC2)

480 Y(2)=ARI12%R(1)+R122%

RC2)

S wh -'l-.-:.C..>-IQ- fel e e e TR
AR A AR N AN RN -
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K A Jh St B

100 Error and numerical offset
constants

120 Input
120 Invarients
140 Transformations

&0 Branch for optimum
orientation

1706 Imitial feasible point
180 Direction

210 New position in desiagn
space

10
o
]
i
()]
w
fom]

Equation (&

400-520 Partial derivatives of
strain
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498 Y(3I>=A166%R(3)

508 Z(L)I>=2%Y(1)*E(N, 1)+2
Y (2)¥E (N> 2) +Y(3IXE(N, 3D
519 UNORM=UNORM+2(L>*2¢L

)

520 NEXT L

538 UNORM=SQRC(UNORM>
548 FOR L=1 TO NPLY - , )
550 2¢L>=2<L)»/UNORM S30-250 Normalize gradient
960 NEXT L

570 RETURN

5808 ’xk STRATINS *xk
599 Fi1=A11+D11%S

608 F12=A12+D12%S SP0-420 Update & matrix for
610 F22=A22+D22%S point =

6%0 FA6=R66+DEEXS

630 DET=F11%F22-F12x%

640 ;:,111:;225[2;&7“ F12 d00-470 Invert A& assuming
650 al22=F11/DET orthotropic laminate

660 Al12=-F12/DET

670 ale6=1,Fe6 480-710 Solwe for strains

688 FOR I=1 TO NL

698 ECI, 1D=AT11%XNCI, 13+
AT12%¥XNCI, 25 .

709 ECL.2)=AT12%ANCI- 10+
AI22%XMNCI, 2)

718 ECI,3)=A166% NI, 3
728 MEXT [

7?30 RETURN

748 Txx A MATRIX *%

798 A11=D:A22=0:012=01 A6

€=0

263 D11=6:D022=0:D12=0:D6 750-800 Form & matrix

778 FOR I=1 TO HPLY _ . .

730 AL1=R1I+G11CID*H(T 35S0-1000 Bisection search for
D11=0D11+Q11(1>%2¢1> next constraint

798 A22=A22+022C[I¥HCI):
022=D22+G22C¢1 Y *2(1>

800 A12=A12+Q12CII*HCI):
D12=D12+Q12(12%2¢1)

810 AE6=AEE +06ECIIAHCD) |
1D6E=DEA+AES (1)*Z(T) |
220 HEXT I

832 RETURN

840 REM **kNEW POSITION
L2 2

850 SMAX=1E10

860 FOR I=1 TO HPLY

870 IF 2¢I><>@ THEM 5=-H
(1572¢1)

880 IF S)0 AND S(SMAX TH
EN SMAX=S

898 NEXT 1

900 F$=""

910 IF SMAX> 18 THEM F$=
"FAIL": RETURN

920 S1=0: S2=5MAX: S=SMA

X

930 IF HC=0 THEN 1070
940 GOSUB S588: GOSUB 290

950 IF G$="FAIL" THEN 52
=§ ELSE S1=5

960 IF S1=SMAX THEM 1619
970 S=(S1+452>.2

980 IF S2-S1<E2 AND 51=0
THEN F$="FAIL": 5=0: GO
T0 1138

999 IF S1-/(52-S1)<4 THEN
948

1008 S=S/2
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1010 SREF=@
1920 FOR I=1 TO NPLY
- 1830 HCID=H(I)+2(1)X%*S

N 1048 IF H(I)<E2 THEN H(I
)=9
1058 SREF=SREF+H(I>*H(I)
1960 NEXT 1
1870 S=0:SREF=SQR(SREF:
1088 GOSUB 748: GOSUB 53
8: GOsSUB 1518
1899 IF SREF-5<E2 THEMN F
s:IIFQILII
1100 FOR I=1 TO NPLY
1110 HCI)=H(IM*S/SREF
1120 NEXT 1
1138 S=0
1146 GOSUB 740: GOSUB 52
B: GOSUB 299
1158 RETURN
1168 *%k DIRECTION #*#
1179 W=0: UNORM=1
1188 FOR I=1 TD WPLY
1190 X<I1>=6
1280 W=L+SGNCHCI D))
1219 NEXT I
1220 W=1/SQRW)
123@ IF NC=8 THEN 1350
1248 FOR I=1 TO NC
1238 N=RSC(CS(I>)
1268 GOSUB 409
1270 FOR J=1 TO MWPLY
1288 LET X(J)=X(J)-2(D
1290 NEXT J,1
1309 UHORM=9

1328 UNORM=UNORM+X{J %X

D

1338 NEXT J

1349 UNDRM=SQR(UHORM): T

EST=0

58 FOR I=1 TO HPLY

1360 K(I>=X(I)-UNORM

1376 TEST=TEST+X(I)*W¥SG

MCHCT 3

1389 NEXT I

1399 UNORM=0

1490 FOR I=1 TOQ MPLY

14160 Z(I)=XACI)-TESTHW*SE

NCHC(DD >

1420 UNORM=UMORM+Z(I)>*2(

I

1430 NEXT 1

1440 IF UNORMSI1E-6 THEN

F$="FAIL": RETURN ELSE

Fg=""

1459 UHORM=SORC(UNORM)

1460 FOR I=1 TO NPLY

1479 2<1>=2(1>/UNORM

1438 NEXT 1

1490 GOSUB 740

1500 RETURN

1519 **k STRAIN RATIOD #x%

1520 FOR N=1 T0O ML

1530 SURL=SREF*SREF - (1-E

63 7EMAXKCECN, 1 XE(HN, 1)+E

CH> 2)%ECN, 2)+E (N> 3)XE(N,
.‘_':" 3072)

‘ 1318 FOR J=1 TO MWPLY

LT A
VRS XS IR

PR A fre e SecheSe M iiheans St ot il ek k. i A ﬁ'7‘-"'n'-'T1

1010-11490 At halfwayr point,
rescale lamiate and update
thickness wector

1170-12480 Get gradient of each
active constraint

1270-1340 Sum gradients and
normalize result

1350-1490 Project onto
constant thickness plane. Test
for minimum and normalize final
result

1520-1560 Find distance +rom
fartheet constraint to origin
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1548 SUAL=SQR(SUAL >
1556 IF SUAL>S THEN S=5U

AL
N 1568 NEXT N
-’ 1570 RETURN

1580 "xx [FP *¥

1599 W=1/SARI{NPLY)

1680 FOR I=1 TO NPLY
1618 Z(IX=W: HC(I>=W

1620 NEXT I

1630 GOSUB 740

1648 S=9: SREF=1

1650 GOSUB S20: GOSUB 15
19

1668 FOR I=1 TO MPLY
1670 H{IX=H(I)*S

1688 NEXT I

1698 S=0

1708 GOSUB 740: GDSUE 58
f: GOSUB 290

1718 RETURN

2 4 & e -
. L e

[

.o ..

. 1728 %% TRANSFORM &

3 1730 J=GXX+QY\+2%GHY I K=0Q

" SS-QxY

A 1748 FOR I=1 TO NFLY A . .
. 1758 C2=C0S(TCIX>C2=C2% 1730-1310 Transformation ot
= £2 elasticity matrix, assuming

1760 S2=SINCT{I)):52=582%
s2
3 1770 Q11C1)=C2XCZAEHM+E2
;. KS2KQY Y+ 2KG2KC2ZH QY4240
€S>
- 1780 Q22(1)=52%XS2KOXK+C2
3 KC2ZHQY Y+ ZHCZRE IR QY +240)
. 2S)
‘ 1798 QI2CI)=C1-¢011C10+Q
Y 2 22¢12))72
N 1209 QE6CI)=( J+2KK~(R11(
N 154Q22¢13))/2
- 1319 NEXT 1
- 1829 RETURN
5 1839 7kkk INPUT ik
1848 CLS
, 1859 PRINT "PRESS AHY KE
A ¥ WHEN ","DESIRED MATERI
. AL", "APPEARS"
v, 1969 FOR K=1 TO 7S@:HEXT
2 1279 FOR M=g TO &
' 1320 IF M=f THEN M$="HEl/
MATERIAL" ELSE GET%M,EX
JEY»UX. ES, TPLY, XT> YT XC»

orthotropic laminate

- YC, 53, M$

' 1898 CLS:PRINT M$: SOUND

: 20,1

" 1998 FOR J=1 TO 208
1918 IF INKEY$<>"" THEM
1940

1928 NEXT J.M

1930 GOTO 1256

1940 IF M=6 THEN GOSUB 3
" 750265070 1856
. 1958 CLS:PRINT "% "iM$3"

1968 PRINT "HOW MANY"
4 1978 IMPUT “PLY GROUPS":
MPLY
.. 1988 CLS:PRINT"ENTER PLY
SO GROUP"
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2478 CLS:PRINT"Press V i
£ rrintout","of diszplaze
d result is desired. Pre
zs N","ifT not"s

2420 ITER=1

2498 FOR I=1 TO €93:HEXT

I
2500 A$=INKEY$:IF [l
THEN 2560
2518 CLS:RESTORE 4639
2520 J=a:A$=1HKEY'S
2538 FOR I=1 T0 &
2549 READ AFICLSIPRINT:P
RINT A%$:SOUND 20,1
2550 Af=INKEY$:IF A$=""
THEN 2550
2560 PRINT af$::FOR KK=1
TO ?S:NEXT KK
2579 IF Aag="¢" THEN J=J+
1:C%{J-10=1
2530 NEXT 1
2599 FOR K=1 TO J
2608 ON C%<K.1) GOSUB 32
19,3350, 2650, 2730, 2294, 2
339, 3998

2619 LFPRINT

2620 NEXT K

2638 CLS:PRINT"FIMISHED"
'K$

2648 IF IMKEY$=""THEH2:4
8 ELSE RUN

2650 % PLY RATIOw%
2660 CLS:LFRINT "Total ¢
hickness="

2670 LPRINT USING ", ####
AN m PSTEST

2680 LPRINT USIMNG “###44,
##% Plies"sTEST-TPLY

2699 LFRINT

2709 LFRIMT “ANGLE PRATI
0 #FLIES"

2716 FOR I=1 TO NPLY
2720 A=CINTC({FHDEG{T{I>>
*1E2))/1E2
2723 B=CINT((H(I)/TEST*1
E4))/1E4

2748 C=CINT(CHCIOD/TPLY ¥
E2X»/1E2

2750 LPRINT AsTAB(EISEST
ABC13)3C

2760 NEXT 1

2779 RETURH

2729 ’¥x STRENGTH® &

2?99 LPRIMT "STRENGTH FA
T103"

2809 LPRINT "1=ULTIMATE
STRAIM":
2819 LPRINT ">1 IS SAFE"
2820 FOR I=1 TO NL
2839 LPRINT "LDADING "1
2848 A=E{L, 1 )%ECI, 1D+E ]
S2IMECLS2)-ECI-30RECL, D)
72
2350 A=S0-(EMAX/ M)
2260 LPRINT "R="3A4
2370 MNEXT
2839 RETURN

2510-2820

Branch for wvarious

output routines

2650-3520
laminate
11§

CQutput routines and
analyeis
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2 2890 **xSTRAINSKkK

A 2920 LPRINT TABC(4): "LAMI

. NRTE STRAINS”

23 2918 FOR N=1 TO NL
SR 2920 LFRINT "LOADING "N
- 2938 LPRINT USING "=l=+#
. HHHE-DB3" s ECN, 1)#1E3
2940 LPRINT USING "e2=+#

- o BREE-O3"IECN, 20%1E3

o 2950 LPRINT USIHG "eo=+$
.t . HHIE-B3"SECN, 3O%1ET

3] 2968 NEXT N

. 2972 RETURN

29380 ° kR MATRIXk¥

2999 CLS

I089 LPRINT"Norm. Al in

)

- GPa. "

. 3010 DCL, 12=R11:DC1. 2=/
.~ 21002, 2y=a221 0403, 3I=R66
;) 020 DC1,3)=0:0(3, 17=0:0

(2,3y=83D0(3,2)=0:D(2, 1)=
DC1,2)

2838 FOR I=1 7O 3

@40 FOR J=1 TO 3

2858 LCLJr=DCL, Iy ~TEST
1E®

3860 NERT J,1

38V9 GOSUB 3434

3980 RETURN

I3 *A INVERSE

LR RAOKA

& 3100 LPRINT"Comeliance
e (normalized>"
N 3118 LFRINT"in 1/TPa. "
Ny 3120 DCL, 1)=AT11:001,20=
: AI12:DC(2,2)=4122:D(3,3)=
Y Al6s
0 3138 DC1,3y=M:0(2, Tr=a:D
{3, 2»=@:D(3, 17=A
314@ D2, 10=0(1,2)
; 3156 FOR I=1 TO 3
i 3168 FOR J=1 TD 3
X 3179 DI, T2=LoI, Ty ¥TEST
- 1E12
3120 MEXT J,1
3199 GOSUB 3430
. 3209 RETURN
- 3218 LPRINT "Material Pr
oFertias"
X 3220 GETM,EX,EY,UX.ES, T
", PLY s KT YT, 50,90, 55, M8
> 3238 LPRINT M3
7248 LPRINT "EX="3EX;"SP |
" o j
- 3259 LPRINT "E¥="3EV;"GP
A" i
¥ 3260 LPRINT "ES="3ES;"GF
e an
o 3270 LPRINT “tm="313 .
- 3289 LFRINT “#="3XT;"MPa i
- 3299 LPRINT “X’=";XC;"MP |
XS 2" !
- 3380 LPRINT “y=";vT;"MFz !
- 1]
A 3310 LPRINT "W =":iwC; P |
1 3" .
- 3320 LPRINT "S=":55; "MP3
AREES S 3330 LPRINT "Plw Thickre
A - 25" TPLY"m"
" 3240 RETURN
N
A
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5550 * ¥¥L_OADSHK
3360 FOR 1=1 TO NL

3379 LPRINT "LOADING “31
3330 FOR J=1 TD 3

3790 A$=STR$(ID: IF J=3THE
N Aas=" &"

3395 A=CINTC(XNCI, I3 1E3)
Z1E3

3400 LPRINT "NU3Ag:v=";q
1Us

3410 NEXT J,1

3420 RETURN

3430 *FANCY

3443 LPRINT " r——————

-
3450 LPRINT LISING "|##4,
#48°1DC1, 1), 001, 2>, D41, 3
3

3460 Ag=" +

ey
3479 LPRINT A#

T428 LPRINT USING " |###.
#8302 10,002,205, 00(2, 3

)

2490 LFRINT m¥

3568 LPRINT USING " |###,
RS0 3, 10,003, 20,003, 3
)

3519 LPRINT "\t
P W T

3520 RETURN

3?50 PRINT"REVIEW OR NEW
3750 INPUT "DATA (ReN)v:
¥

3770 IF Ag="F" THEN 395@
3730 PRINT"WHICH MATERIA
L"tPRINT"WILL You»

3799 IMPUT "REPLACE (B~5
231

3300 INPUT "EX(GPaj="1EW
3218 INPUT "EY(GPa)>="3EY
3820 INPUT “UK="3;ux

3830 IMPUT "ES(GFa)=":ES
3343 THPUT "XcMPa)=";¥
3838 INPUT "w’<MPajd="1uxx
3868 INPUT "YiMPazy=";\
3870 IMPUT “¥* (MPay="jyy
3880 INPUT "S(MPaj=";g
3590 IHPUT “THICKNESS (m
y="3TPLY

3908 IMPUT "MNAME (15 CHR
« MAX. X" iMs

3918 PUTXILEX,EY,UK.ES, T
PLY> %5 ¥s KXs Y5 5, M$

3920 PRINT "aDDITIOMAL":
IHPUT "CHAHGES (W/HD“3as
3930 IF At="v" THEM 3750
3340 RETURN

3959 PRINT"REVIEW WHICH"
t INPUT"MATERIAL (B-S)“iM
2960 GOSUB3210

3978 GOTO 3928

17
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PR Ry Wy B

SUA AT N
i " At

3980 OPEN “I“,%1,"“CASi:D
ATAR"

3999 FOR I=0 TO S

4008 INPUT #1,EX.EV. I, E
ST Ve RdL WY S M

4818 PUTXI.EX-EY.UXES.T
2 X Va2 R¥a WY, 5, M8

4828 NEXT

4838 CLOSE #1

4848 DELETE 45

4650 7 ARKKROTAHT I ONKk

4965 CLSIPRINT "WORKING"
4070 A=~ROT-RQTSUM: ROTSU
=ROTSUM+A

4030 A=FNRAD(~AD

4690 C=COS(AIIC2=C¥C
4160 S=SINCAIIS2=SkE
4118 FOR I=1 TO NL

4128 RC1I=HNCL, 1302+ MM(
I, 2)K524XNCT, I3k2H S
4138 R{O2I=¥HOT, L0HE240MC
1, 22%C2-H3NC T, 3Hk2%S
4149 R{I)=—XH(I, 130
NCTs 2XRLAS+ENCT, Jo
20

4198 XNCL-10=R1MIMHIT. 2
3=RC2) DHENCT, TH=R(3D

41608 NEAT 1

4178 RETURH

4138 ’x¥ANGLE SEARCH®*
4190 INPUT "LOWER SEARCH
LIMIT*:S1

4195 INPUT "UPPER ZERRCH
LIMIT"3S2

4200 IF 32¢(=S1 THEM 4198

4219 INPUT "MAX. EFRROR":

El

4229 ROTQUM‘B

4230 UC1y=51:U(SH=32
4240 U(I3=(51452)-2

4250 U=+ ) -2
4260 U4 =CD(D+I(Z1 2
4265 AR=1:BB=5

4278 FOR II=nA TO EB

4289 ROT=UCII>

4298 GOSUB 4060:GOSUB 44
5

4709 V(II»=H

4719 NEXT

47320 UMIN=U(1):T=]

4338 FOR [=2 TO S

4740 1IF UCDICUMIN THEN U

MIN=UCT )2 I=]

473590 NEXT

260 IF J=1 THEM 422
4365 IF JI=5 THEN 4778
4378 YO =U{J-123X801=1J(
I-17

4380 Y=L Y1 R(21= T
4398 V(=W T+1) X3 r=1i(
J+17

4400 U1)r=x(15:U(2Tn=K(2)
D)= K(T)

4410 V(1= CLoiUC3=(D)
PUS=YI)

e -

4420 IF U(S)>-UC1x4{=E1 TH
EN 4540
B T A & ATy \¢\

el e Sl S Ml Sl e I e ity

3980-4040 FRoutirne tor
automatically entering materia)
propertiecs fraom cassette tape,
To use, line 45 should read
GOTO 3980, and run Frogram with
tape still connected

4070-4170 Transform
new axis svstem.

lcade to

4220-4€10 QOne-dimersicona)
search for best rigid body
rotation
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3990 PRINT "ORIENTATIONS

2000 FOR I={ TO 358
2010 NEXT

2020 CLS

2030 FOR I=1 TO NPLY
2040 PRINT "PLY "31

2050 INPUT T(D)

2060 TID=FNRAD(TC(I )
2870 NEXT I

20988 INPUT "NUMBER OF LO
ADINGS="3sNL

2098 FOR I=1 TO HNL

%1?8 CLS:PRINT “LOADING
2119 INPUT “*N1(MPa)=";4N
(I, 1

2120 INPUT "MN2(MPar="3xN
(I,2>

2130 THPUT “MNe(MPay=";xN °
I.3

2148 FOR J=1 TO 3

2150 XNCI, J>)=WN(I, JY#1E6
2168 NEXT JIMEXT I

2178 RETURN

2130 7wk INUARIENTS%%
2198 Uy'=1/01 -UNKUISHEY B X

2 2190-2210 Calculate G'= from
2208 QXH=UVEELK1ED: @Yy=l) enqQineering constants

YHEVRIESD -

2210 QXY=UYRUNKEYXIE: (S

S=ESX1EQ . . i
2220 U{1>=XT/EX 2220-2210 Find esmalilest strain
2238 U(2)=XC/EX component. It becomes the

2248 UC3)=vT EY radius of the strain-sphere

22508 UC4>=YC-EY

2268 UCS)=SS5-ES-SQRCZ)
2270 EMAX=UC1)*U(15-1EE
2280 FOR 1=2 TO 5

2298 UCIo=UCIoRUCT 7 LEE
2300 IF UCID<EMAX THENM E
Max=UC1>

2318 NEXT 1

2320 RETURN

2330 dkk QUTPUT *x

2348 SOUND 15, 2:SOUNDSA,

Y4

2350 K$="Hit anvy key +o

cont, ":Us="MN/n"

2260 CLS:TEST=0

2365 IF F$="ROT" THEN LP

RINT "RIGID BODY", "ROTAT
ION OF"sUC3D s "DEGREESY

2379 FOR I=1 TO HPLY

2380 TEST=TEST+HC(IIINEXT
1

2390 PRINT "TOTAL THICKHM

ESS="

2409 PRINT TEST:" m."

2410 PRINT USING "###n. 4

# Plies";TEST-TPLY

2428 PRINT K$3

2430 LOCATE 2,0

2440 A$=IMKEY$: IF As(O""
THEN 24408

2450 1F INKEY$="" THEN 2
450

19
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UC)=CUC+UCL )2
=S +UCT )

a2
FOR 11=2 TO 4 =TEP

4439
4448
L 4452
- 2
4468
4470
50
4430
4420
4500
4549
4553
59
4550 ROT=0:GOSUE 4050
457@ FRINT "CFT. ORIEHTA
TION="3UCT)

4580 FRINT “TOTAL OF "3\
¢Z3/TPLY, "PLIES";

4530 SOUND 15,2¢5
.2
4509
500
4565
4519

ROT=U(II1
GOSUBR 458 GOSUE 45

U{ITr=H
NEAT

GOTQ 4323
ROT=0(Z2

(0SUB 4asa: GOSUE 4o

IF IHKEY$="" THEN 4

FE="pOT"

GOTO zw’n

4528 DATA SE-S.. 1, 1E-&

4530 DATA FPl= Frnpwrtl &z

sLoads, Totsl thickness &
Fla ratics,Strenath

ratios

4649 DATA Laminate st

nssStiffness matriy. o

liance matrix

rai
OMF

4658
4668
4574
4639
728
4£99
47069
T8
4718
472
473
4740
4750

PHKOPT, RATIO#X
GOSUB 1539
SOSUE 1168
IF F$="FAIL" THEM 4
30SUB 348
IF Fe="FAIL"

GATO 4670

H=8

FOR I=1 TO HPLY
H=H+H{1 >

MEXT 1

4768 RETURN

4779 UL =400 =0d)
SUCZy=005 2 00 2= S
4729 EEL=U(2)-U(1>

4798 UC3i=U02d+DEL U g )=
LBe3O+DELICS '-U<4)+[EL
42080 AR=TIEB=S

4210 G0TO 42?8

4320 U(S) = 2o (Sa=i2)
$4=UCE) 4= 1)
4339 DEL=U<(S)~114)

4340 UC3)=(d)~-DEL: (2=
BC3-0EL UL 2=U( 2y -DEL
4250 AR=1:EB=3

4869 GOTO 4270

THEHN 4

e h e a aa,

T TR eaap—

A R I T - e -
PAP WA W P WPV W N W W ey

LI AT Al S o W YLV v Iw{YT

4550-47450 VYersicn
by optimum angle
optimize ply ratio
trial orientaticn

of MAIN used
csearch to
o3 at each

4770-48480 Routine to adjust
search bounds i¥f minimum rot
found in given limits

duced from "
t:g:oavaﬂab|o copy.
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i Gerald V. Flanagan was born in Luray, Virginia in 1956, He

3 attended the assachuetts Institute of Technology were he obtained an

i S.B. in Aeronautical and Astronautical Engineering, and recieved his Air
; Force commission as a Second Lieutenant through AFROTC. While at MIT he
: worked as a research assistant at the Technology Laboratory for Advanced
| Composites under Dr. James Mar. From 1979-1982 he worked at the Air

2 Force Foriegn Technology Division as a propulsion system technology
:: analyst. This was followed by an assignment to the Air Force Materials
‘ Laboratory's Mechanics and Surface Interactions Branch under Dr. Steven
3 Tsai, There, his research responsibilities included design optimization
:; and nechanics of composites.
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The mathematical complexity of this problem dictates the use of non-linear
optimization techniques. Although there are sophisticated optimization programs
available capable of solving for the ply ratios, these programs are not often
used in preliminary design because they require a larae computer and some
knowledge of the program's operation. As an alternative, specialized laminate
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optimization programs were developed which are compact and efficient enough to
run on microcomputers. Only stresses at a point and inplane loads and deflec-
tions are considered. The programs are simple to use and require no knowledge
of optimization. Techniques are developed in this thesis that find minimum
thickness laminates with either ply ratios or ply angles as design variables.
In addition, a method is presented for finding the ootimum orientation for the
axis of symmetry of an orthotropic laminate. The orthotropic laminate program
uses an approximate failure theory, as suggested by Tsai, that has been found
to speed computations dramatically.

Many test cases were run with these programs to demonstrate tne weight
savings possible over quasi-isotropic laminates. Of particular interest is
performance of the laminates uncer multiple independent loads. Initial
orientations for the programs to operate on were studied, and 0/90/45/-45
lamirates were found to be an effective starting point for design.

The aoproximate fajlure criterion made analytic investigations of
optimized laminates possible. A method of plotting maximum strain energy
density as a function of the shear-stress-free laminate orientation is derived
to demonstrate how the laminates adapt to multiple design load requirements in
the optimization process. Also, an optimality criterion is derived which is
satisfied by each ply group at the minimum thickness condition.
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