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ESTIMATIOK FOR INFINITE DINENSIONAL
4 ORNSTEIN-WiLENDECK PROCESSES

by

Ian W. McKeague

ABSTRACT

-!The maximum likelihood estimator for parameters in the gen-

erating operator of an infinite dimensional Ornstein-Uhlembeck

process is shown to be consistent and asymptotically normal. The

generating operator of the process is assumed to be in the form of a

finite linear combination of fixed commuting dissipating operators

and the coefficients in the linear combination represent the -

known parameters.
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1. Introduction.

Infinite dimensional Ornstein-Uhlenbeck processes have re-

cently been of interest as models arising in a wide variety of

physical phenomena: quantum mechanics [3], scattering theory

-10], neural response [11], stochastic control [S], chemical re-

action problems [S, 12] and as limiting cases in infinite particle

systems [6]. From the point of view of applications it is important

to have a statistical theory for the estimation of unknown para-

meters in such models. Despite the presence of a considerable

literature (see the survey in [2, Ch. 9)) on estimation for finite

dimensional diffusion processes, estimation for infinite dimensional

diffusion processes has received little attention. The recent paper

of Bagchi and Borkar 1] appears to be the first to address such

psmblems.

In the present paper we-.study the asymptotic behavior of the maximum

likelihood estimator for parmeters in the generating operator of an

infinite dimensional Ornstein-Uhlenbeck process. The parameters are

coefficients in a finite linear combination of known operators which

are assumed to commute. The estimator is shown to be consistent and

asymptotically normal. Our approach is quite different from [1].

2. Preliminaries.

The basic theory to be used in this work is the generalization
of Ito's stochastic calculus to abstract Wiener spaces due to Kuo [7].

Lot B denote a real separable Danach space with norm 11-1.f .it is

known E9] that each Gaussian measure on the Borel sets of B can be

induced from the canonical Gaussian cylinder set measure on

-------- .....
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,C.

a separable Hilbert space H contained in B, through the injection

i of H into B. The triple (i, H, B) is known as an abstract

* . Wiener space. Denote the inner product on H by <., .> and the norm

by 1-1. The pairing between B and B* is denoted (., . As in [7]

assume the following condition on (i, H, B): There exists a sequence

Qn of finite dimensional projections on B such that (1) Qn (B) c

A range (C*), (2) Qn converges strongly to the identity in both B and H.

* Let Wt, tU denote the B-valued Wiener process derived from

(i, H, B), see [9). Suppose that Xt, t>O is a B-valued Ornstein-

Uhlenbeck process satisfying the following stochastic integral equa-

tion

(2.1) x, a xo * f A(x5)ds + W , t k 0,

where x0 e B and A:B . H is a bounded linear operator. By [7,

Theorem 5.1] (2.1) has a unique, non-anticipating, continuous so-

lution. Let T and T denote the measures induced on C((O, T3, B) by

(x0 Wt, te:o, TJ) and (Xt, te[0, TJ) respectively. From [8), T

TX
and T re equivalent and

T

(2.2) i x) = expE Jo(A(Xt), dXt) - y Ifo"A(Xt) 2dt],

, where the stochastic integral in this expression is defined in [7].

The true generating operator A of the observed process will be de-

noted A0 . Since the maximum likelihood estimator of A0 is not de-

fined in general it is necessary to restrict the family of possible

generators. Assume that A0 can be expressed uniquely in the form

"N * ', ,oI."I "" , ". ". '. . " ". ", '. ". ".. " " ". "", • * ' ' " .
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I a Aj. where A1, ... Akk are given bounded linear operatorsjul j J,

0 0mapping B into H and *s, ... , z are real constants. Let al. ...

denote the true values of the coefficients al, ..., an and write

them in a column vector as aO . The maximum likelihood estimator

6T of C& can be derived from (2.2) [cf. 4) and is given by

"-l

dT a C'Ip,

iwhere j= J(A(Xt), dXt)'

cii - 1o J Xt) Aj(Xt)>dt.

3. Results.

An operator A:B * H is said to be dissipating if <Ax, x> s 0,

for all xtH, and synetric if <Ax, y.> a <x, Ay>, for all x, yCH.

Assume that A0 is dissipating and symmetric. Since i is a compact

operator, see [150, *8 :H H is compact. Thus i* has a spectrum

consisting of countably many eigenvalues and since i*A* is symetric,

the eigenvectors belonging to district eigenvalues are orthogonal.

Let the (strictly negative) eignvalues of i*A* be denoted {'ne nkl},

where Xn > 0 and each eigenvalue is counted according to its multiplicity.

Let corresponding orthonormal eigenvectors be denoted {en, n2l1.

Assume that {en, nkl) is a CONS for H. The following condition is to

be imposed on operators A:B o H.

(Cl) il i*A'(en) 12. <
i.

nn

Theorem 3.1. Suppose that the operators Al, ..., Ak commute and

satisfy condition (C1). Then

(a) a 0 -"a ° as T.
OT
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(b) r T-Go) - . N(O, V as T -, , where V is the kxk

matrix 0 1 given by

CJ*Ae. .*A*
2 *I I

This result will be proved through a series of Lamata for

which the conditions of the Theoreu ar assumed to hold.

Lem& 3.2. 1 Mj J1 a T ..

Proof. Fix nktl Define processes YJa <eDA(X), A (W)

for J a 1, 2. Then Wt a is a tto-dimensional Wiener process

with covariance (sAt) . where w a (aj) is a 2x matrix with

oi = 4i*A*e i*A,!e~ Lo A*(e ).Then Y3satisfies the

stochastic differential equation

dYJ a lj(%(Xt))dt t, d k t 0

But #j ((Xt)) a, (A;I* ,xt) a cASA^o , Xt)

a(Ati*A8e* Xt) since Ao ad A, cate

a -,,(Aej, Xt)

0- Yi.

Thus Y = t satisfies dYa -nYtdt + t.

Lot

F9 1 -0 12 o 
..aPvoU MPrff2

0 .. ................



Then has diagonal covariance (sAt)Pzp" where

PE a1 a12 "

2 2
0 022J

(Ut) 96tifies dut u -nUtd dZt .

NOW Y *Put . 1  -0iij ,soth1
t t i ft 02 t sota

22

I1 y2 = lU2+0' CU-22 3.u 2
Yit t 022 t

and it follows from the ineendene of U1 and U2 and the ergodic

4I theorem that

1 I 01 l TI 12.
e.as.

ie" T< Ai(Xt),,, <*,,A(Xt):,-dt -o <I"At"' i.'e,,
0 n 2ZA

n

a.s. as T . ,, Since

c 12 ,.oI <ne, Ai(Xt), <o, A 2 (XtWdt, ,s.,.
nol

the proof of the Lea viii be complete if we show that

4, I fT e ,, A ,. .,
0 n AI(Xt) dt s

uniformly in T. Now. since -n. AI(Xt): is a one dimensional

Ornstein-Uhlenbeck process it is easily chocked that

2 S2<6na, AI ¢Xt)2, a e0'nt<Oejq At (jr);,

Var.o,, A1 (X)2 - I n-%1 (1-e -2nt)
2n

.--I' .-~---. ~ ' ** .* . -* * 44 * 4 ~ *
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Thus 
n  2

yJkRen. Al(IXi)p' 2dt <e n A, (X0)' > 2-1~~)
n

for all T ) 0. The proof is completed using the fact that AiCXo)cH

and condition (Cl). 0

SLSm 3.3. Let A:B . H be a bounded linear operator which cozmtes

with A0 and satifies condition (Cl). Then

T a;j (AXt). dt) e. N(O, D) as T -

wheoe D = T I n ,
VP a.

Corollary 3.4. 4 ( f~A(Xt) . dWt) 0 as T .*

Proof of La 3.. Lot w,:H - H denote the projection onto sp(e1 , ... ,

Denote

RT I.J(vmA(Xt)., Y

and let f. 1 A8(en) Note that P ff.) -en. Thus

0 t I n t

w ~ * We. The (WtaO ),n-i, q.,Pmar. ndpdet

standard Wisner processes. By the proof of Leoma 3.2

T Ii'A'(n) 12

4r oA(Xt). en>d # *A 0a)2as

as T -., for a i ... , a. Thus, by Kutoyant's CentuWl Limit Theorem

for stoebastic integrals £2, p. 405] it follows that

RMT N(o, DO) as T , where

N ', iT, 
S '

'' r -, , * ,' * * *'* * ,t
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a 1i*A*(e, WI
I A n,--- y E7. Theorem 3.2],

- * 4 IA(Xt,) -. tAC,)2dt

XtT 2
902<eC n, A(X) dt

* 0 as a . -, amiformly in T > 0,

by the ptoof of Loa 3.2. In particular R A- Rr as ,, -

tm2amly in T ; 0. By the usual method of interchange of limits

[13. p. 28] with respect to weak convergnce, we conclude that

.L r b- o, D) as T -  . 0
Given Leamas 3.2 and 3.3, the proof of Theorem 3.1 now follows

:.4 along the lines of the proof given by Brown and Hewitt [4, p. 236]

for the one dAmnsional case.

a) ftoaigous versibn.s- eo;e" r 3;1., ould. be. obt #tfed for

other generalized Ornstein-Uhlenbeck processes considered in the

literature [69 11, 12], provided the appropriate absolute continuity

results are available. However,..one would need to be ver6. careful.} in

.-41lh cases, to avoid the problem of singularity. -Two.geniralized Ornstein-

Uhlenbeck processes (dkten by the satk Wiener pr6cess) on a space. of

distrtibutions can have singular stationary measures, see [16, 17).

b) It is clear froa our method of proof that the assumption,

(CnD. 1) is complete in H, can be weakened-to

range (A,) c span'%, n' 1, for J a 1, ... , k.

c) The comutativity assumption in Theorem 3.1 may appear restrictive,

but it is often satisfied in applications. For example, in the neural

It~



response model of Va.15111 lI t is of Interest to estimate para-

meters A,, 62 which represent characteristics of the neuron arising

In the following equation for the neuron potential V(x, t)a.

dV a (0 2V
1-7- 82V)dt * dW,

where N Is white noise In space-time. V is a CEO, Ul valued

diffusion process observed over time [0, T3. Theorem 3.1 is not

applicable, but since the differential operator -u2 and the identity
3x2

Operator cOMte we eCpect that estimation Of Olt 02 is still

possible. Indeed, mne way of doing this is to restrict analysis to

tLo finite diesinloz'stein-Iliembecc process AeCt) a (%O(t)t ... ,Ant)

where Ak(t) can be expressed Ell. p. 247) in terms of the observed

process V. The unknown parameters 6O. 82,appear through the eigenvalues

AkOf the separated problem. which ft this case are given by

Ck,0 pw 2 i 2 L 2 S k a 0)* The process An(t) satisfies the stochastic

diffrential equation

dAPCt) w -FAa (t)dt + dB"(t),

where I(t) Is an (n~l).dimensional Wiener process with covariance

(uAt)R, R = (Pjk) With Pkdefined in Ell, p. 2463, F Is the diagonal

matrix with diagonal elements Ak~ Ii k 0, a.. 0 ii. The usual methods

(2, Ch. 93 of estimation for finite dimensional diffusion processes

canmbe applied toA 0(t). Providedn aI,1 so that 61s962 are

idetIfi*le, Mhe maxim likelihood estimator of (o Is2 ) based on

obeervatioa of A" ft) Is, consistent and asymptotically normal.
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