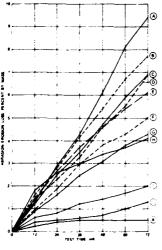


MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A



0

0

ナ

MISCELLANEOUS PAPER SL-83-16

ABRASION-EROSION EVALUATION OF CONCRETE MIXTURES FOR STILLING BASIN REPAIRS, KINZUA DAM, PENNSYLVANIA

by

Terence C. Holland

Structures Laboratory
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180

September 1983 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for U. S. Army Engineer District, Pittsburgh Pittsburgh, Pa. 15222

83 10 12 167

OTIC FILE COP

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

SECURITY CLASSIFICATION OF THIS PAGE (When Dete		READ INSTRUCTIONS
REPORT DOCUMENTATION		BEFORE COMPLETING FORM
1. REPORT NUMBER		3. RECIPIENT'S CATALOG NUMBER
Miscellaneous Paper SL-83-16	AD-A133488	
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
ABRASION-EROSION EVALUATION OF CONC		Final Report
MIXTURES FOR STILLING BASIN REPAIRS		6. PERFORMING ORG. REPORT NUMBER
KINZUA DAM. PENNSYLVANIA		
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(4)
	1	
Terence C. Holland		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U. S. Army Engineer Waterways Exper	iment Station	
Structures Laboratory	1	1
	9180	
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
	ļ	September 1983
U. S. Army Engineer District, Pitts	burgh	13. NUMBER OF PAGES
Pittsburgh, Pa. 15222		64
14. MONITORING AGENCY NAME & ADDRESS(It ditteren	t from Controlling Office)	15. SECURITY CLASS, (of this report)
	•	Unclassified
	1	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	·	
Approved for public release; distri	bution unlimited	.•
17. DISTRIBUTION STATEMENT (of the abstract entered	In Block 20, If different from	an Report)
18. SUPPLEMENTARY NOTES		
Avediable from Needamal Mari		

able from National Technical Information Service, 5285 Port Royal Road. Springfield, Va. 22161.

This is CTIAC Report No. 67

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Abrasion-erosion resistance (concrete)

Concrete properties

Kinzua Dam

Silica-fume concrete

29. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The resistance to abrasion-erosion of several concretes made with different coarse aggregates, with and without silica fume as a mineral admixture, was evaluated. Testing was done in accordance with the Corps of Engineers standard test method.

Initially, concretes made with a limestone coarse aggregate (available near the project site) and with two gabbros (from New York and Virginia) were prepared and tested. Although the gabbros were thought to be harder than the (Continued)

DD 17084 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Continued)

limestone, testing revealed very little difference in abrasion-erosion resistance among the three aggregates. The two gabbros did not show a great enough improvement to justify the increased transportation costs necessary for their use.

A polymer portland-cement concrete (epoxy-modified concrete) was also prepared using the limestone aggregate. This material showed very little improvement in abrasion-erosion resistance--certainly not enough improvement to justify the high cost of the epoxy product.

High-strength concretes (f'_c \approx 7500 psi) made using the limestone aggregate and one of the gabbros and containing silica fume and a high-range water-reducing admixture showed improved abrasion resistance. Very high strength silica-fume concretes (f'_c = 14,000 psi) showed excellent abrasion-erosion resistance.

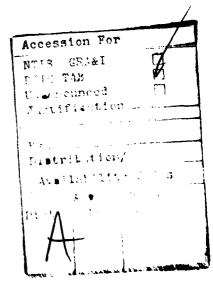
Cores taken from the fiber-reinforced concrete overlay presently in the Kinzua stilling basin were also tested. The cores showed very high abrasion losses, which agrees well with the apparent poor performance of the material in the prototype.

Recommendations were made that either a source of coarse aggregate with better abrasion-erosion resistance be located for use or the use of the very high strength silica-fume concrete be evaluated further.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PREFACE

The investigation described in this report was conducted for the U. S. Army Engineer District, Pittsburgh, by the Concrete Technology Division (CTD) of the Structures Laboratory (SL), U. S. Army Engineer Waterways Experiment Station (WES). Authorization for this investigation was given by DA Form 2544, ORPED-82-48, dated 21 April 1982.


The investigation was performed under the general supervision of Mr. Bryant Mather, Chief, SL, and Mr. John M. Scanlon, Jr., Chief, CTD, and under the direct supervision of Dr. Terence C. Holland, who served as principal investigator. Mr. Steven A. Ragan prepared the concrete mixtures; Mr. Dale Glass, Mr. Frank W. Dorsey, and Mr. Roger Buttner conducted the abrasion-erosion tests. Mr. John Gribar and Mr. Stuart Long served as the points of contact at the Pittsburgh District. This report was prepared by Dr. Holland.

The information in this report was provided to the Pittsburgh District as an informal letter report (WESSC letter, "Transmittal of Letter Report," dated 10 November 1982).

Funds for publication of the report were provided from those made available for operation of the Concrete Technology Information Analysis Center (CTIAC). This is CTIAC Report No. 67.

Commander and Director of WES during this investigation and the preparation and publication of this report was COL Tilford C. Creel, CE. Technical Director was Mr. F. R. Brown.

CONTENTS

PREFACE	<u>e</u>
MEASUREMENT	
PART I: INTRODUCTION	
Purpose	
Scope	
· · · · · · · · · · · · · · · · · · ·	
Authority	
PART II: TEST METHOD, MATERIALS, AND CONCRETE MIXTURES 6	
Test Method	
Materials	
Concrete Mixtures	
PART III: TEST DATA AND DISCUSSION	
Test Data	
Discussion	
PART IV: CONCLUSIONS AND RECOMMENDATIONS	
Conclusions	
Recommendations	
REFERENCES	
TABLES 1-25	
FIGURES 1-14	
APPENDIX A: PETROGRAPHIC REPORT ON AGGREGATES USED	
APPENDIX B: EPOXY DATA SHEET	
APPENDIX C: EPOXY MANUFACTURERS CONTACTED	

grave Assessment appropriate teachers a teachers and and an expense.

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply	Ву	To Obtain
cubic feet	0.02831685	cubic metres
feet	0.3048	metres
fluid ounces per cubic yard	38.6738	millilitres per cubic metre
fluid ounces per pounds (mass)	65.1896	millilitres per kilogram
inches	25.4	millimetres
pounds (force) per square inch	0.006894757	megapascals
pounds (mass)	0.45359237	kilograms
<pre>pounds (mass) per cubic foot</pre>	16.01846	kilograms per cubic metre
pounds (mass) per cubic yard	0.5932764	kilograms per cubic metre

ABRASION-EROSION EVALUATION OF CONCRETE MIXTURES FOR STILLING BASIN REPAIRS, KINZUA DAM, PENNSYLVANIA

PART I: INTRODUCTION

Purpose

1. The purpose of this investigation was to evaluate several concrete mixtures on the basis of resistance to abrasion-erosion damage. The data developed are to be used to assist personnel of the Pittsburgh District in selecting the concrete mixture to be used during the planned repair project. Of particular interest in the investigation was a comparison of a limestone aggregate available near the project site with two traprock aggregates which would have to be imported from either New York or Virginia. Additionally, members of the District staff had expressed interest in the evaluation of a polymer portland-cement concrete (epoxy-modified concrete).

Scope

2. This investigation included testing six concrete mixtures cast using the various aggregates supplied by members of the District staff. Abrasion-erosion testing was also conducted on core samples taken from a large chunk sample of fiber-reinforced concrete removed from the Kinzua stilling basin. The investigation consisted of a petrographic examination of the aggregates, appropriate testing of the aggregates to determine properties necessary for concrete mixture proportioning; mixture proportioning and specimen casting; and abrasion-erosion and compressive strength testing. Because of the potential for application to the Kinzua repair work, the results of some related ongoing work sponsored by Headquarters, U. S. Army Corps of Engineers (HQUSACE), were reviewed and incorporated into this report.

Authority

3. The work described by this report was authorized by DA Form 2544, ORPED-82-48, dated 21 April 1982, from the Pittsburgh District.

PART II: TEST METHOD, MATERIALS, AND CONCRETE MIXTURES

Test Method

- 4. Abrasion-erosion testing was conducted in accordance with CRD-C 63-80,* "Test Method for Abrasion-Erosion Resistance of Concrete (Underwater Method)." This test procedure involves subjecting the concrete specimens to abrasion-erosion caused by the wear of steel grinding balls on the concrete surface. The steel grinding balls are propelled by water in the test chamber. The water is in turn propelled by a submerged mixer paddle. Test specimens are periodically removed from the apparatus to determine the amount of abrasion-erosion damage. The damage is quantified and reported as a percentage of original mass lost.
- 5. The development of the test procedure and data from a large variety of tests of various concrete mixtures was described by Liu (1980).

Materials

6. Materials involved in this investigation were the three coarse aggregates and one fine aggregate supplied by the Pittsburgh District. Other materials were laboratory stock. All materials used are described in the following paragraphs.

Fine aggregate

7. The fine aggregate, Structures Laboratory (SL) serial No. PITT-8 S-1, was from the Buffalo Slag Co., Franklinville, New York. This fine aggregate is classified as a glacial sand and is composed primarily of limestone and sandstone fragments. There was some clay present in the sample, but it was determined not to be a detrimental swelling clay. Test results for this aggregate (grading, specific gravity, and absorption) are given in Table 1. The results of a petrographic examination are presented in Appendix A.

^{*} All CRD-C test methods at ... bli ed in the Handbook for Concrete and Cement (U. S. Army Engineer - terways Experiment Station (WES) 1949).

- 8. This fine aggregate meets the grading requirements of ASTM C 33, "Standard Specification for Concrete Aggregates" (CRD-C 133-81a), as well as both alternates for concrete sand of the guide specification for concrete (Office of the Chief of Engineers 1978).
- 9. Review of TM 6-370 "Test Data Concrete Aggregates in the Continental United States," (U. S. Army Engineer Waterways Experiment Station 1953), showed that this fine aggregate (No. 42-78-3) was last tested in 1973. The material properties of the aggregate have not changed significantly since that time.

Coarse aggregates

er legicococa inguisianis arganisam innuesia

- 10. The first coarse aggregate, SL serial No. PITT-8 G-1, was a limestone from the Neidigh Brothers Quarry, Boalsburg, Pennsylvania. The petrographic examination (Appendix A) classified this aggregate as a dolomitic limestone that is potentially reactive when used with a high-alkali cement. Materials test data for this aggregate are presented in Table 2.
 - a. This coarse aggregate does not meet the grading specification of ASTM C 33 (CRD-C 133) for a 1-1/2 in.* to No. 4 (size No. 467). The material does meet the specification for 1 in. to No. 4 (size No. 57).
 - b. Review of TM 6-370 showed that this coarse aggregate (No. 40-77-5) was last tested in 1962. The material properties have not changed significantly since that time.
- 11. The second coarse aggregate, SL serial No. PITT-8 G-2, was a diabase from the New York Traprock Co., West Nyack, New York. The petrographic examination (Appendix A) classified this aggregate as a gabbro. Materials test data for this aggregate are presented in Table 2.
 - a. This coarse aggregate did not meet the ASTM C 33 (CRD-C 133) specifications for either size No. 467 or size No. 57. The aggregate was crushed several times using a laboratory crusher to develop the "as processed" grading shown in Table 2. This aggregate, as received, was extremely dirty and had to be washed after final crushing and prior to use. The aggregate, as used, did meet the requirements for size No. 57.

^{*} A table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 3.

- $\underline{\mathbf{b}}$. Review of TM 6-370 showed that this crushed aggregate (No. 41-74-2) was last tested in 1966. The material properties have not changed significantly since that time.
- 12. The third coarse aggregate, SL serial No. PITT-8 G-3, was a diabase from the Luck Quarry, Leesburg, Virginia. The petrographic examination (Appendix A) also classified this aggregate as a gabbro. Materials test data for this aggregate are presented in Table 2.
 - <u>a.</u> This coarse aggregate did not meet the ASTM C 33 (CRD-C 133) specification requirements for a size No. 467. It did meet the requirements for size No. 57.
 - $\underline{\mathbf{b}}$. Review of TM 6-370 showed that this coarse aggregate had not been previously evaluated for use by the Corps of Engineers.

Cement

- 13. The cement used, SL serial No. RC-888, was purchased from the Marquette Cement Co., Brandon, Mississippi. The cement meets the requirements of ASTM C 150 (CRD-C 201) for a Type I cement. The physical and chemical test results for the cement are presented in Table 3. Admixtures
- 14. The silica fume used, SL serial No. AD-536(4), was from the Reynolds Metals Company, Richmond, Virginia. Test data for this material are presented in Table 4.
- 15. The air-entraining admixture used was Hunts Air-In, from laboratory stock. It is a neutralized vinsol resin produced by Hunts Process Corporation Southern, Ridgeland, Mississippi.
- 16. The water-reducing admixture used was Hunts HPS-R, from laboratory stock. It is a lignosulphonate produced by Hunts Process Corporation Southern, Ridgeland, Mississippi.
- 17. The high-range water-reducing admixture was Dowell D-65, from laboratory stock. It is a sulphonated napthalene formaldehyde condensate produced by Dowell, Tulsa, Oklahoma.
- 18. The antifoaming admixture was Dowell D-47, a laboratory stock item produced by Dowell, Tulsa, Oklahoma.
- 19. The two-component liquid epoxy resin system, Sikadur 362, was produced by the Sika Corporation, Lyndhurst, New Jersey. It is described

by the manufacturer as an epoxy modifier for concrete and mortar. The manufacturer's data sheet for this product is presented as Appendix B. Concrete sample

- 20. A large chunk sample (3 by 3 by 1 ft) of fiber-reinforced concrete which had been removed from the Kinzua stilling basin was shipped to WES for examination. Three 11-3/4-in.-diameter cores were removed from this sample. The cores were sawed perpendicularly to the direction of coring to provide specimens suitable for use in the abrasion-erosion test. Figure 1 shows the surface of the chunk sample after the cores were drilled. Figure 2 shows one of the original surfaces of the sample which was sawed from one of the cores.
- 21. The overall appearance of the surface of the concrete sample indicated it had been subjected to abrasion-erosion wear. Examination of the cut surfaces (cut either by coring or sawing) showed a reasonably good distribution of fibers. There were several areas in which small fiber balls were observed.
- 22. Attempts were made to take smaller diameter cores (3 in.) for compressive strength testing. Because of seams in the material, no usable cores were obtained.
- 23. The specimens obtained from the chunk sample were stored in a water tank for a minimum of 28 days prior to beginning the actual abrasion-erosion testing.

Concrete Mixtures

- 24. Six concrete mixtures were proportioned specifically to be tested for this investigation. These mixtures were based upon a reference mixture used in previous abrasion-erosion testing. A brief description of these six mixtures, along with the table in which detailed mixture proportions may be found, follows:
 - a. Mixture Kinzua G1 (Table 5): Pennsylvania limestone coarse aggregate.
 - <u>b</u>. Mixture Kinzua G2 (Table 6): New York gabbro coarse aggregate.

- c. Mixture Kinzua G3 (Table 7): Virginia gabbro coarse aggregate.
- d. Mixture Kinzua G1(SF) (Table 8): Mixture Kinzua G1 with a 15 percent (by weight) replacement of cement by silica fume.
- e. Mixture Kinzua G3(SF) (Table 9): Mixture Kinzua G3 with a 15 percent (by weight) replacement of cement by silica fume.
- f. Mixture Kinzua Gl(Epoxy) (Table 10): Mixture Kinzua Gl modified to include an epoxy at an epoxy to cement ratio (by weight) of approximately 0.20.
- 25. Earlier abrasion-erosion work done by Liu (1980) showed that polymer portland-cement concrete (PPCC) (epoxy-modified concrete) was a good performer, even when used with a relatively soft aggregate. Based on Liu's results and the interest generated in the District by an item in Engineering News-Record (see para 42), Mixture Gl(Epoxy) was developed.
- 26. Mixture G1(Epoxy) was proportioned using the same parameters used by Liu: a water to cement ratio (by weight) of 0.30 and a polymer to cement ratio (by weight) of 0.20. The cement content of the concrete was increased slightly over that of the other Kinzua mixtures (534.4 to 564 lb/yd³) to bring it up to an even number of bags (94 lb each). This was done to allow a whole number of epoxy units to be used in the mixture (most manufacturers specify a dosage rate of x units per bag of cement). The epoxy selected, Sikadur 362, was available in the laboratory and was similar to that used by Liu. At the recommended dosage rate of 2 gal/bag of cement, the calculated polymer to cement ratio was 0.19. It was also felt that if a PPCC were selected to be used in the field, dosage using a whole number of units of epoxy per cubic yard of concrete would be much easier to control.
- 27. The concrete manufactured with a water to cement ratio of 0.30 showed no cohesion and was unsuitable for use. Additional water was added to obtain a workable concrete. The addition of this water changed the yield of the batch and reduced the cement content per cubic yard below that of an even six bags. In the interest of economy, additional trial batches were not made. Such batches would be required to

develop the final mixture proportions if the PPCC were to be selected for project use. The as-manufactured mixture proportions are presented in Table 10A.

- 28. The silica-fume mixtures using the Kinzua investigation aggregates were developed because of the high resistance to abrasion-erosion seen in the proprietary and nonproprietary silica-fume concretes tested under the HQUSACE-funded abrasion-erosion study. The two mixtures (G1(SF) and G3(SF)) were first attempts that were intended to show whether addition of silica fume would be beneficial. These mixtures were developed by replacing 15 percent (by weight) of the cement with silica fume. The same water-reducing admixture was used in the silica-fume concretes as was used in the other Kinzua mixtures. The water-cement ratio was increased to obtain a workable concrete with a slump of approximately 2 in. These mixtures were not intended to be viewed as recommended proportions for repair since they were simply experimental in nature.
- 29. In addition to the mixtures proportioned using the Kinzua investigation aggregates, several other mixtures are cited in the data and discussion part of this report. These mixtures and the table in which exact proportions may be found (if available) are:
 - <u>a.</u> Chert reference concrete (Table 11): This is the current standard which is used for comparison purposes for abrasion-erosion testing.
 - b. Densit concrete. This is a proprietary concrete product containing silica fume, high-range water-reducing admixtures, and calcined bauxite aggregates. The samples were prepared by the manufacturer and no mixture details are available.
 - c. Mixture SF1 (Table 12): This is a nonproprietary silicafume concrete containing natural silica sand and 3/4-in. crushed granite coarse aggregate.
 - d. Mixture SF2 (Table 13): This is a nonproprietary silicafume concrete containing manufactured granite sand and 1/2-in. crushed granite coarse aggregate.
- 30. Because it is not considered essential for this report, data on all of the materials used in the mixtures not containing Kinzua aggregates have not been included.

PART III: TEST DATA AND DISCUSSION

Test Data

- 31. The materials properties for the fresh and hardened concretes are presented in Table 14. Data presented for each concrete include water:cementitious materials ratio, slump, air content, compressive strength, modulus of elasticity, and Poisson's ratio.
- 32. Abrasion-erosion test data and photographs of the specimens after testing are presented as follows:

Mixture	Abrasion-Erosion Test Data	Photograph
Kinzua Gl	Table 15	Figure 3
Kinzua Gi	Table 15	rigure 3
Kinzua G2	Table 16	Figure 4
Kinzua G3	Table 17	Figure 5
Kinzua Gl(SF)	Table 18	Figure 6
Kinzua G3(SF)	Table 19	Figure 7
Kinzua Gl(Epoxy)	Table 20	Figure 8
Kinzua Cores	Table 21	Figure 9
Chert Reference	Table 22	Figure 10
Densit	Table 23	Figure 11
Silica Fume 1	Table 24	Figure 12
Silica Fume 2	Table 25	Figure 13

33. The abrasion-erosion test data are plotted in Figure 14.

Discussion

Abrasion-erosion test results

340. The initial review of the performance of the three basic mixtures, Kinzua Gl, G2, G3, raised a question, particularly in view of the results presented by Liu. That question concerns the performance of the two traprocks (diabases/gabbros) in comparison to the limestone. Based

upon Liu's results, the traprock samples would have been expected to perform significantly better than the limestone sample. Based upon the information plotted in Figure 14, it can be seen that there was very little difference in the performance of the concretes containing these three aggregates.

- 35. The answer to this apparent anomaly lies in the difficulty of attempting to prejudge the performance of a particular aggregate based upon a rock name. The resistance of an aggregate to abrasion-erosion damage is apparently closely related to the hardness of the aggregate. However, it is impossible to assign a correct value for hardness based upon a name such as traprock or limestone. Aggregates described using either term may exhibit a range of values for hardness (or any other property) based upon chemical composition, grain size, and degree of weathering.
- 36. The three Kinzua investigation aggregates, along with the WES laboratory stock limestone (used by Liu), the chert used in the reference mixture, and the Iron Mountain traprock used by Liu, were tested to determine relative hardness. Testing was accomplished by sawing a representative aggregate particle, polishing the surface, and scratching with a steel needle. The rankings, from hardest to softest, were: Iron Mountain traprock, chert, Kinzua G3, Kinzua G2, laboratory stock limestone, and Kinzua G1. The differences among the last four aggregates were not very great nor was the difference between the top two aggregates very great. There was, however, a significant increase in hardness between the bottom four and the top two.
- 37. Based upon the relative hardness of the aggregates, the performance of the three primary concretes appears reasonable. The slightly higher loss for Mixture G2 over Mixture G1, even though aggregate G2 tested harder than G1, may be attributable to the very large grain size of the G2 aggregate.
- 38. To comment further on the performance of Mixture Gl, consider the following data taken from Liu's report for concrete containing the laboratory stock limestone aggregate:

Mixture	f', psi	Loss, %
T1	3470	9.1
T2	6870	6.1

If a straight-line interpolation is made using the compressive strength of the Kinzua Gl concrete, 5710 psi, a loss of 7.1 percent is predicted. This prediction agrees very well with the measured value of 6.9 percent. Since the relative hardness of the aggregates is very similar, the test results appear to be reasonable.

- 39. The two concretes containing the Kinzua investigation aggregates and silica fume, Mixtures G1(SF) and G3(SF), show losses of only 72 and 70 percent, respectively, as great as the same mixtures without the silica fume. When compared to the concretes intentionally proportioned for high strength, Mixtures SF1, SF2, and Densit, the performance of the mixtures containing the Kinzua investigation aggregates and silica fume appears to be reasonable.
- 40. The performance of Mixture G1(Epoxy) is somewhat surprising. This concrete (Table 10A) is very similar to Mixture G1 (Table 5) with the exception of the addition of the epoxy. The compressive strength of Mixture G1(Epoxy) was approximately 1340 psi less than that of Mixture G1. The abrasion loss was much less than would have been expected for a concrete with a compressive strength 4370 psi, but the loss was higher than anticipated based on Liu's work with a similar mixture. Apparently, the epoxy coated the coarse aggregate particles and increased their resistance to abrasion, but it did not add to the compressive strength of the concrete. Why this occurred is not clear. This finding is not in keeping with the results reported by Liu or by Nawy and Sauer (para 42).
- 41. The performance of the specimens made from the fiberreinforced concrete taken from the stilling basin was in keeping with
 other data on the abrasion-erosion resistance of fiber-reinforced
 concrete reported by Liu and with additional testing accomplished since
 publication of Liu's report.

Polymer portland-cement concrete

- 42. Essentially from the beginning of this test program, the District representatives had expressed an interest in the possible use of a PPCC as the repair material. This interest was apparently based, in part, on a news item that appeared in the Engineering News-Record (ENR) (1980). This short article described work done on PPCC at Rutgers University by Professors Edward G. Nawy and John A. Sauer. The article mentioned the properties of the PPCC, and it also stated that, "The product costs about \$12 to \$15 more per cu yd than standard concrete."
- 43. Liu had tested a PPCC in the first phase of abrasion-erosion testing. The material had performed very well. Based upon that performance and the low cost figure cited in the ENR article, the District requested that a similar material be included in the test program.
- 44. Professors Nawy and Sauer were contacted in regard to the ENR article. They furnished two reports (Nawy et al. 1978 and Sauer et al. 1975) describing their work. During discussions, both stated that they did not furnish the cost figures to ENR. In fact, they had received their epoxy products at no cost from the manufacturer.
- 45. To develop a basis for comparison, 11 epoxy manufacturers were contacted to determine which ones manufactured a product suitable for use in PPCC (Appendix C). Of the 11, 4 had such a product. The approximate list price for the epoxy needed for a 6-bag concrete mixture at the manufacturer's recommended dosage rate (all were close to a polymer to cement ratio of 0.20) ranged from \$342 to \$639. While some savings could be anticipated on a large volume purchase, the cost per cubic yard of concrete would still be very high.
- 46. In addition to the high cost of the epoxy product itself, there are other factors which could be expected to affect the cost of the concrete. These would include the short pot life of the epoxy and concrete, the more complicated batching sequence, the possible health hazards to the work crews, and any premium which a contractor might charge.

Edge treatment

- 47. The proposed plan of repair for Kinzua calls for removal of fiber-reinforced concrete and replacement with a more abrasion-erosion resistant material only in the slabs most severely damaged. There are no plans at the current time to replace the slabs adjacent to the training walls on either side of the stilling basin. The slabs which will not be removed may show some loss of concrete, particularly adjacent to the slabs which will be removed. To preclude having a discontinuity in the surface of the stilling basin, the District plans to use a filler material which can be placed at the surface elevation of the replacement concrete and then feathered out to meet the surface of the slabs not removed. The District specifically requested assistance in selecting an epoxy mortar or similar product to be used in those areas.
- 48. The Corps has used a variety of epoxy mortars in stilling basin repairs (McDonald 1980). In general, these mortars have not performed well. A better approach than using an epoxy mortar would be to use the same material selected for the replacement sections for the tapered sections. Rather than attempting to feather the material, those slabs not being removed totally should have enough fiber-reinforced concrete removed to allow replacement with the main repair material to a minimum depth of 4 to 6 in.

Reinforcing mat

- 49. During a review meeting held on 22 September 1982, the question of using a reinforcing mat in the replacement material was discussed. The District would like to avoid use of a mat since the reinforcing steel could serve as an additional abrasion-erosion causing agent if future damage were to expose and free the steel. Portions of dowels used to anchor the fiber-reinforced concrete have been found in the stilling basin. The appearance of these dowels indicates that they may have been causing damage to the concrete in place.
- 50. From an abrasion resistance point of view, the presence or absence of a reinforcing mat is not a significant factor. There may be advantages to having a mat to help anchor the replacement overlay. However, adequate anchorage can also be achieved through the use of sufficient dowels.

PART IV: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 51. The poor performance of the fiber-reinforced concrete in the Kinzua stilling basin has also been seen in the abrasion-erosion test. The good correlation between the results from the field and the results obtained in the laboratory helps to establish the credibility of the test procedure.
- 52. There does not appear to be a significant difference between the abrasion-erosion resistance of the limestone and the two traprocks. There appears to be no advantage to importing either of the two traprocks to the project site for use in the replacement concrete.
- 53. The abrasion-erosion resistance of the concretes proportioned for high strength using silica fume and a high-range water-reducing admixture was excellent. These concretes performed similarly to polymer concretes (PC), polymer-impregnated concretes (PIC), and polymer portland-cement concretes (PPCC). The silica-fume concretes are significantly easier to manufacture than PC, PIC, or PPCC, and they should be significantly less expensive to produce and place. Addition of silica fume to the two mixtures containing the Kinzua investigation aggregates improved the abrasion-erosion resistance of the concretes. It appears possible, through the use of silica fume and appropriate admixtures, to develop a concrete using the locally available limestone aggregate (G1) which will have a resistance to abrasion-erosion at least as good as that of the chert reference concrete.
- 54. The use of a silica-fume concrete will require careful control and inspection. The batch plant will have to be capable of handling the silica fume in whatever form it is made available by the producer (slurry or dry). To achieve the full potential benefits of the silica fume, it will be necessary also to use a high-range water-reducing admixture (HRWRA). The use of a HRWRA will raise the problems normally associated with these products, particularly slump loss versus travel time from the batch plant. Overall, it must be recognized that a silica-fume concrete

is a sophisticated material that will require greater than normal care and inspection. Unless the District is willing to commit the necessary resources to insure that the concrete is properly manufactured and placed, it would be better to select a more conventional concrete for the repair material.

- 55. Anchorage design should be based upon anticipated uplift forces which would be expected on the stilling basin overlay. Dowels should be sized and spaced based upon loss of all bond between the replacement and underlying materials. Since a relatively thin overlay is anticipated (12 in.), the dowels will probably need to be hooked to achieve the full development length of ACI 318 (American Concrete Institute 1977).
- 56. Because of the unexpected nature of the results obtained from the PPCC, the results of this one test may not be representative of the material. If this material were a serious contender for selection as the repair material, additional testing would be necessary to confirm the present results or to determine the cause of the anomaly. However, since use of a PPCC has been essentially decided against because of its high cost per cubic yard, additional testing does not seem justified. The use of either a PC, which would contain no portland cement, or a PIC would also be prohibitively expensive based upon anticipated material and labor costs.

Recommendations

- 57. There are three options which currently appear to be available to the District.
 - a. Use a better quality aggregate with an abrasionerosion resistance similar to that of the reference chert or the Iron Mountain traprock. Use of such an aggregate would permit use of essentially a conventional concrete mixture. Minimum testing would be required to develop final concrete mixture proportions.
 - b. Use the local limestone aggregate in conjunction with silica fume and high-range water-reducing admixtures to develop a high-strength (approximately 15,000-psi)

- concrete with abrasion-erosion resistance at least as good as the chert reference concrete. This approach would involve additional laboratory testing to develop the concrete mixture proportions. This option would result in field placements requiring a high level of control and inspection.
- <u>c</u>. Use a better aggregate to develop a silica-fume concrete. This approach would involve approximately the same degree of testing as item b and would present the same requirement for control and inspection during the field placements.
- 58. Selection of one of the above options will lead to a concrete with a resistance to abrasion-erosion much better than that of the fiber-reinforced concrete. Selection of either option b or c could lead to a concrete with an abrasion resistance comparable to that of PC, PIC, or PPCC, at a much lower cost.

REFERENCES

American Concrete Institute Committee 318. 1977. <u>Building Code Requirements for Reinforced Concrete</u> (ACI 318-77), American Concrete Institute, Detroit, Mich.

Engineering News-Record. 1980. "Concrete Mix Adds Strength," Vol 205, No. 21, pp 25-26.

Liu, Tony C. 1980. "Maintenance and Preservation of Concrete Structures; Abrasion-Erosion Resistance of Concrete," Technical Report C-78-4, Report 3, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.

McDonald, James E. 1980. "Maintenance and Preservation of Concrete Structures; Repair of Erosion Damaged Structures," Technical Report C-78-4, Report 2, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.

Nawy, E. G., Ukadike, M. M., and Sauer, J. A. 1978. "Optimum Polymer Content in Concrete Modified by Liquid Epoxy Resins," Polymers in Concrete, Special Publication 58, American Concrete Institute, Detroit, Mich.

Office of the Chief of Engineers. 1978. "Civil Works Construction Guide Specification: Concrete," CW-03305, Washington, D. C.

Sauer, J. A., Nawy, E. G., Sun, P. F., and Cook, C. 1975. "Strength Improvements in Mortar and Concrete by Addition of Epoxies," presented at the IV Interamerican Conference on Materials Technology, 29 Jun-4 Jul, Caracas, Venezuela.

U. S. Army Engineer Waterways Experiment Station. 1949. <u>Handbook for Concrete and Cement</u> (with quarterly supplements), Vicksburg, Miss.

. 1953. "Test Data, Concrete Aggregates in the Continental United States" (with periodic supplements), Technical Memorandum No. 6-370, Vicksburg, Miss.

rabte			: AKK	rega	Le D	ala.	 -									
STATE:	NY	INDE	X NO.:					REGATE		TEST	ED BY.		AEWI			
LAT.		LON					DAT	A SHEET		DATE	19		198			
LAB SYM			8-TT						TYPE	OF MA	TERIAL	F	lne A	lggreg	ate	
LOCATIO	N: Fr	ankl	lin,	NY												
PRODUCE	ER: P	uffa	alo S	lag	Co.											
SAMPLED		D: ++	- a b w	ah D	- 	ict Pe										
TESTED		Kinz	tua D	am am	ISLI	ICL IE	ELSUMM	<u> </u>								
			<u> </u>													
USED AT	<u> </u>															
				Man												
PROCESS				Non	<u> </u>											
GEOLOGI	CAL FOR	MATIO	N AND A	GE:												
							,									
GRADI	ING (CRE	-C 103)	ICUM. %	PASSIN	(G):		TEST	RESULTS	ļ		١.			. , .,		FINE
SIEVE	3-6"	1 1/2 - 3"	-1 · j "	84-3"	FINE				_		'	-6"	1 -3	" }-1}	#4- 1	AGG.
SIEVE	3-0	1,7-3	7-17	74-7	AGG.	BULK SP	GR. S.S.D.	(CRD-C 10	7. 108	3						2.63
6 IN.								D-C 107, 10							+ -	1.6
				t	 	 					+			= =	-	1
5 IN.		-			├			S, FIG. NO.		0-C 121	' -					+
4 IN.	<u> </u>					SOFT PAR	RTICLES, %	(CRD-C 13	0)		+		-		+	+=
3 IN.	 			<u> </u>	}	% LIGHTE	R THAN SE	GR	(CRD	-C 122	'					 -
2 1N.				L	 	3 FLAT	ND ELONG	ATED ICRE	-C 11	9, 120)					-	
2 IN.	L			L'	<u> </u>	WT AV %	LOSS, 5 CY	C MgSO4 (C	RD-C	115)						<u> </u>
1 ½ IN.					L	L.A. ABR	ASION LOS	5, % (CRD-C	117,	145) GF	RADING.			_		<u> </u>
1 IN.			L		<u> </u>	UNIT WT,	LB/CU FT	(CRD-C 106	i):							
₹ IN.						FRIABLE	PARTICLE	S, % (CRD-0	142)							
j in.								B/DEG F. (C							T	
in.							ITY WITH N			SC,MM/						1
NO. 4					100	ì	D-C 128):		r	RC,MM/				+	+	
NO. 8					93	101	0-0 (20).		— <u>-</u> -'							
					71											
NO. 16	 		 -		47			OPERTIES								
NO. 30	— —					TYPE		T, RATIO:_		DAYS		<u> </u>		DAYS		 ~
NO. 50			 		20	LINEAR T	HERMAL E	XPANSION,	MILLI	ONTHS	DEG F	. (CRD	C 125, 1	26):	_т	 -
NO. 100	 	<u> </u>				 	ROCK	TYPE		PARA	LLEL	ACF	ross	ON	AVE	RAGE
NO. 200				L	2	 						ļ		<u> </u>	_+_	
-500 _(a)					0	 				<u> </u>						
F.M. (b)	LJ				2.62	L										
(e) CRD-C	105	(b) CR	D-C 104			MORTA	R:									
							, in the second	FINE AGO	REG	NTE				OARSE AG	GREGATE	
MORTAR-	BAR EXP	ANSION	AT 100F	r, % (CR	ID-C 123	1):	2 MO.	6 MO.	9 N	10.	12 MO.	3	MO.	6 MO.	9 MO.	12 MO.
LOW-A	LK. CEM	ENT:		% NO:	O EQUI	VALENT:				\neg		\top				
	LK. CEM					VALENT:						1-				1
SOUNDNE							L	·								
		NCKET	E ICHO-C	40, 114									-+	FAT	HW-CD	HD-CW
FINE A						RSE AGG:						DFE				
FINE A					COAL	RSE AGG:						DFE 3	00			
PETROGR	APHIC D	ATA IC	MD-C 127	7):												
2																
REMARKS	:															

PROPERTY TO SERVICE AND SERVIC

Table 2. Coarse Aggregates Data.

			Percent Passi	ng	
		G1	G2	G2	G3
Sieve Size	CRD-C 133	As Received	As Received	As Processed	As Received
1-1/2 in.	100	100	100	100	100
l in.	95-100	98	67	98	100
1/2 in.	25-60	31	3	29	32
No. 4	0-10	2	2	2	1

	_Gl	_G2	<u>G3</u>
Specific Gravity CRD-C 107	2.71	2.93	2.99
Absorption CRD-C 107	0.39	0.75	0.48

Gl: Limestone, PA

G2: Diabase, NY

G3: Diabase, VA

Table 3. Cement Test Data.

ro: Structures Laboratory Rosearch Group ATTN: Terry Holland		POR	RT OF TESTS TLAND CEME .C-888			Struck Water ATTN:	ways E Cem & Box 6	Laborat xp Stat Pozz (31	ion Group
						Vicks	burg,		
TEST REPORT NO. WES-188-82	BIN'NO.		CWT REPRES				DATE:		May 82
SPECIFICATION: ASTM C 150,				DATE	SAMPL		13 May	82	
COMPANY: Marquette Cement	E LOCATION RE		randon.	MS			RANO:		
	1	QUINE	MENTS	Τ			Τ		
SIO2, 5	22.0			 	-+		 		
Al ₂ O ₃ , 7,				 	\dashv				
	2.9			 					
Fe ₂ O ₃ , 5	3.4		- 	 			 		
so ₃ . 4	2.6			┪	\dashv		 		
			+	 	\dashv		 -		
LOSS ON IGNITION, ". ALKALIES - TOTAL AS No ₂ O, %	0.50		 		\dashv				+
_ 	0.07			 			 		
No ₂ O, %	0.66			 					
K ₂ O, %	0.16			 			 -		
CoO, %	63.2			 	\dashv		 		
			 	ļ			 	+	
C A 3	54			 			 		
G ₃ A, 3	5								
c ₂ s, 3	22			 			-		
C3A + C3S, 7	59			 	-		ļ		
C ₄ AF. %	9			 					
C ₄ AF + 2 C ₃ A, %	19		-}	}			}		
HEAT OF HYDRATION, 7D, CAL/G				ļ					
HEAT OF HYDRATICN, 28D, CAL/G			_	∔					
SURFACE AREA, SQ CM/G (A.P.)	3680			 			ļ		
AIR CONTENT, %	10.1			 -	-			_	
COMP. STRENGTH. 3 D. PSI	3310			-	.		ļ		
COMP. STRENGTH. 7 D. PSI	4015				-		<u> </u>		
COMP. STRENGTH, 28 D. PSI	5150		-	 	\dashv		 		
FALSE SET-PEN. F/I. %				}	-		-	_	
SAMPLE NO.	1			1	_				
AUTOCLAVE EXP., 1	0.04			ļ	-		ļ		
INITIAL SET, HR/MIN	3:15			 			ļ		
FINAL SET, HR/MIN	5:30			 	_		1		
SAMPLE NO.				ļ	_		<u></u>		
AUTOCLAVE EXP., 4				<u> </u>	\perp		ļ		
INITIAL SET, HR/MIN				_	\perp				
FINAL SET, HR/MIN	1		1	ì	Ì		1	1	ì

CC: McDonald

THE INFORMATION GIVEN IN THIS REPORT SHALL NOT BE USED IN ADVERTISING OPERLESTROMOTION TO INDICATE EITHER EXPLICITLY OR IMPLICITLY ENDICATE METHIS PRODUCT BY THE U. S. GOVERNIER.

Table 4. Silica-Fume Data.

lable 4.	Silica-rume	Data.								
Structures Laborate						Report No	WES-21	15-82		
USAE Waterways Exp		١,	REPORT OF	TESTS		Admixture No: AD 536(4)				
ATTN: Cem & Pozz I	Init	1	ON POZZ		L.					
" 7. Box 631	- 0.0					ate:				
V. asburg, MS 39	180	l				2	4 June 82			
POZZOLAN CLASS:			PTION: si							
COMPANY: Reynolds			ON: Richmo		(See(l)below)	 			
MEMO NO:	DAT	E:		JOB NO:			441-5866.	12SC51		
MEMO SUBJECT:										
		CHEMIC	CAL COMPO	SITION		*	 			
SiO ₂ %	95.80	Moistu	re Conten	t % 0.	30 C	203	%	l		
Al ₂ 0 ₃ %	1.11	LOI, %	(750°C)	1.	27 C	nloride	%			
Fe ₂ O ₂ %	0.11	LOI, %	(1000°C)							
MgO Z	0.06	TiO2		%						
SO ₃ %	0.11	P205		%				i		
CaO %	0.24	Mn203		%						
Alkalies	Water Sol	uble	Availabl	e (C-618	Acid	Soluble	Total	Alkali		
Na ₂ 0 %										
K ₂ 0 %					1					
Total as Na20 %			l		1					
<u>' </u>	***************************************		HYSICAL T	FCTC	····					
Specific Gravity:	2.21		eness: 14		retaine	d on 325	Sieve			
	000		m/cc, por				e(2)below			
Tests with portland					· · · · · · · · · · · · · · · · · · ·					
Portland Cement Co.	· Medusa	<u> </u>	·			TI				
L tion: Clinchfiel	d. GA					1				
Coment No	& Type: SAS	-423-82	II, LA,	HH		1				
Autoclave Expansion	. 20% Repla	cement.	% 0.00)		71				
% Replacement of Cer	ment by Vol	ume	0	30	60	0	, 35	%-0€		
Heat of Hydration,	7 days, Cal	/ gm				Contro	1	Control		
Heat of Hydration,	28 days, Ca	il/gm]				
Compressive Strengt	h, 7 days	si	(Lime-Po:	zolan AS	TM C-311	D) 1840				
Compressive Strengt	h, 28 days, j	si	(cured @	100°F)	1	5340	6350	118		
Compressive Strengt			Water Red	uirement	% of C	ontrol: 1	23	1		
Compressive Strengt						J	1			
Compressive Strengt						<u> </u>				
Compressive Strengt		osi			<u> </u>					
Water - Cement Rati	0		<u> </u>			↓				
Flow %			L	<u> </u>	L	Ш				
(1) Reynolds Chemic (2) e=0.703, SA 349	als Amorpho	ous Siliç	ea, RS-1	(6-50 _. 1bs	. bags)S	heffield,	, Alabama 1	Plant.		

⁽²⁾ e=0.703, SA 34900 cm²/cc e=0.710, SA 30400 cm²/cc

Table 5. Mixture	Proport	ions. Ki	nzua	G1.							
		RE	PORT O	F SELECTION ETE MIXTURE PORTIONS			-		,,-		
		Ì		RD-C 3)							
PROJECT NAME: Kinzua Stilling B	nain Pan	oiro		SYMBOL:		_		DATE:	1007	·	
CONCRETE REQUIRED FOR:	asın kep	airs		SERIAL NO.:				Sep	1982	<u>-</u>	
CONCRETE REQUIRED FOR.									zua (21	
			MAT	ERIALS					-		
PORTLAND CEMENT, SS-C-192,		P0776	DI ON 08 C	THER CEMENT:				ALD. EN	T. ADMIX	YTUBE:	
TYPE: I ADDITIONS:		TYPE:		THE CEMENT.							ir-In
BRAND AND MILL: Marquet	te	SOURC							ոսու ^{ււ} 2.3		
											
	AGGREGATE						SE AG	GREGA			
TYPE: Glacial Sand				TYPE: Limes	stone	2			Si	IZE: 1	in.
source: Buffalo Slag Franklinvill	Co. e. NY	<u> </u>		source: Neic Boal	ligh Lsbur	Bro	s. (PA	Quari	су 		
MATERIALS	MATERIALS SAMPLE SERIAL NO.		} ,	SIZE RANGE	COA		BUL	K SP GR	(SSD)	AE	SORP %
PORTLAND CEMENT	RC-	888			XIIII		<u> </u>	3.15	5		
•											
FINE AGGREGATE	PITT-8			4 - 200			2.63			1.6	
COARSE AGGREGATE (A)	PITT-8	G-1	No.	<u>4 - 1 in.</u>	ļ		2.71		0.4		
COARSE AGGREGATE (B)	 		 		}					 	
COARSE AGGREGATE (C)	 		 		 					 —	
COARSE AGGREGATE (D)	MIXTURE	DATA	<u> </u>		 			PECIME	N DAT	<u> </u>	
									T		ME
	MIX BY	S. S. D. WEIG		SOLID VOL	1	CYLIN	IDERS		ı	BEA	
MATERIALS	MIX. BY WEIGHT	S. S. D. WEIG ONE CU YD E (LB)		SOLID VOL ONE CU YD (CU FT)	SIZE:	CYLIN	DERS		SIZE:	BEA	
MATERIALS PORTLAND CEMENT		ONE CU YD E	BATCH	ONE CU YD	SIZE:	CYLIN	DERS	PSI	SIZE:	AGE	PSI
	WEIGHT	ONE CU YD E	BATCH	ONE CU YD (CU FT)	+		DERS		+		
PORTLAND CEMENT **WRA	WEIGHT	ONE CU YD E	BATCH	ONE CU YD (CU FT) 2.719	+		IDERS		+		
PORTLAND CEMENT **WRA • FINE AGGREGATE	WEIGHT	534.4 1189.6	BATCH	ONE CU YD (CU FT) 2.719 7.249	+		IDERS		+		
PORTLAND CEMENT **WRA • FINE AGGREGATE COARSE AGGREGATE (A)	WEIGHT	ONE CU YD E	BATCH	ONE CU YD (CU FT) 2.719	+		IDERS		+		
PORTLAND CEMENT **WRA • FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B)	WEIGHT	534.4 1189.6	BATCH	ONE CU YD (CU FT) 2.719 7.249	+		IDERS		+		
PORTLAND CEMENT **WRA • FINE AGGREGATE COARSE AGGREGATE (A)	WEIGHT	534.4 1189.6	BATCH	ONE CU YD (CU FT) 2.719 7.249	+		IDERS		+		
PORTLAND CEMENT **WRA • FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C)	WEIGHT	534.4 1189.6	BATCH	ONE CU YD (CU FT) 2.719 7.249	+		IDERS		+		
PORTLAND CEMENT **WRA • FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D)	WEIGHT	534.4 1189.6 2000.1	BATCH	ONE CU YD (CU FT) 2.719 7.249 11.828	+		IDERS		+		
PORTLAND CEMENT **WRA • FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER	WEIGHT	534.4 1189.6 2000.1	BATCH	7.249 11.828	+		IDERS		+		
PORTLAND CEMENT **WRA FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45	WEIGHT	1189.6 2000.1	BATCH	7.249 11.828 3.854 1.350 27.000	38	AGE			+		
PORTLAND CEMENT **WRA • FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0 • 45 SLUMP (IN.)4; 2	WEIGHT	1189.6 2000.1	BATCH	7.249 11.828 3.854 1.350 27.000 5/A, % VOLUME: THEO. UNIT WT (L.	38 B/CU FT	AGE			+		
PORTLAND CEMENT **WRA FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.)4: 2 BLEEDING (%)2:	WEIGHT	1189.6 2000.1	BATCH	7.249 11.828 3.854 1.350 27.000 5/A, % VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT	38 B/CU FT): 154	4.5	PSI	+		
PORTLAND CEMENT **WRA FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.)4: 2 BLEEDING (%)2: AIR CONTENT (%)3: 5.1	WEIGHT	1189.6 2000.1	BATCH	ONE CU YD (CU FT) 2.719 7.249 11.828 3.854 1.350 27.000 5/A, & VOLUME: THEO. UNIT WT (LACTUAL UNIT WT) THEO. CEMENT F/	38 B/cu FT (LB/cu I	1: 15/	4.5		+		
PORTLAND CEMENT **WRA FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) WATER AIR 5% TOTAL W/C (WT): 0 • 45 SLUMP (IN). 4: 2 BLEEDING (%). 2: AIR CONTENT (%). 5 • 1 AIR CONTENT (%). 1 C Adculated on the basis of: 2 Expressed as the percentage of 3 in the entire batch as mixed.	WEIGHT 1.00 mixing water sep	1189.6 2000.1 238.8 238.8	concrete	ONE CU YD (CU FT) 2.719 7.249 11.828 3.854 1.350 27.000 5/A, % VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F/ ACTUAL CEMENT F/	38 B/CU FT (LB/CU I	1: 15/	4.5	PSI	+		
PORTLAND CEMENT **WRA FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0 • 45 SLUMP (IN.) ⁴ : 2 BLEEDING (\$) ² : AIR CONTENT (\$) ³ : 5 • 1 AIR CONTENT (\$) ⁴ : I Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete contents	WEIGHT 1.00 1.00 mixing water sepontaining aggrega	1189.6 2000.1 238.8 3962.9	concrete t	ONE CU YD (CU FT) 2.719 7.249 11.828 3.854 1.350 27.000 5/A, & VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F/ACTUAL CEMENT when tested by CRD-Cin. sieve.	38 B/CU FT (LB/CU I	1: 15/	4.5	PSI	+		
PORTLAND CEMENT **WRA FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) WATER AIR 5% TOTAL W/C (WT): 0 • 45 SLUMP (IN). 4: 2 BLEEDING (%). 2: AIR CONTENT (%). 5 • 1 AIR CONTENT (%). 1 C Adculated on the basis of: 2 Expressed as the percentage of 3 in the entire batch as mixed.	WEIGHT 1.00 1.00 mixing water sep ontaining aggrega	1189.6 2000.1 238.8 3962.9	concrete sthe 1-1/2-may be re-	ONE CU YD (CU FT) 2.719 7.249 11.828 3.854 1.350 27.000 5/A, & VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F/ACTUAL CEMENT when tested by CRD-Cin. sieve.	38 B/CU FT (LB/CU I	1: 15/	4.5	PSI	+		
PORTLAND CEMENT **WRA FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0 · 45 SLUMP (IN.)4; 2 BLEEDING (%)2: AIR CONTENT (%)4: 1 Calculated on the basis of: 2 Expressed as the percentage of 3 in the entire batch as mixed. 4 in that portion of the concrete of 5 For "other cement," pozzolan, a	mixing water sep ontaining aggregatecond size of fine tability, plasticit	ONE CU YDE (LB) 534.4 1189.6 2000.1 238.8 3962.9 arating from the site smaller than e aggregate, as y, bleeding, etc.	concrete sthe 1-1/2-may be re-	ONE CU YD (CU FT) 2.719 7.249 11.828 3.854 1.350 27.000 5/A, & VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F/ACTUAL CEMENT when tested by CRD-Cin. sieve.	38 B/CU FT (LB/CU I	1: 15/	4.5	PSI	+		
PORTLAND CEMENT **WRA FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.)4: 2 BLEEDING (3)2: AIR CONTENT (3)4: 1 Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete co. * For "other cement," pozzolar, a REMARKS: Condition of mix, work	mixing water sep ontaining aggregatecond size of fine tability, plasticit	ONE CU YDE (LB) 534.4 1189.6 2000.1 238.8 3962.9 arating from the site smaller than e aggregate, as y, bleeding, etc.	concrete sthe 1-1/2-may be re-	ONE CU YD (CU FT) 2.719 7.249 11.828 3.854 1.350 27.000 5/A, & VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F/ACTUAL CEMENT when tested by CRD-Cin. sieve.	38 B/CU FT (LB/CU I	1: 15/	4.5	PSI	+		
PORTLAND CEMENT **WRA FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.)4: 2 BLEEDING (3)2: AIR CONTENT (3)4: 1 Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete co. * For "other cement," pozzolar, a REMARKS: Condition of mix, work	mixing water sep ontaining aggregatecond size of fine tability, plasticit	ONE CU YDE (LB) 534.4 1189.6 2000.1 238.8 3962.9 arating from the site smaller than e aggregate, as y, bleeding, etc.	concrete sthe 1-1/2-may be re-	ONE CU YD (CU FT) 2.719 7.249 11.828 3.854 1.350 27.000 5/A, & VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F/ACTUAL CEMENT when tested by CRD-Cin. sieve.	38 B/CU FT (LB/CU I	1: 15/	4.5	PSI	+		
PORTLAND CEMENT **WRA FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.)4: 2 BLEEDING (3)2: AIR CONTENT (3)4: 1 Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete co. * For "other cement," pozzolar, a REMARKS: Condition of mix, work	mixing water sep ontaining aggregatecond size of fine tability, plasticit	ONE CU YDE (LB) 534.4 1189.6 2000.1 238.8 3962.9 arating from the site smaller than e aggregate, as y, bleeding, etc.	concrete sthe 1-1/2-may be re-	ONE CU YD (CU FT) 2.719 7.249 11.828 3.854 1.350 27.000 5/A, & VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F/ACTUAL CEMENT when tested by CRD-Cin. sieve.	38 B/CU FT (LB/CU I	1: 15/	4.5	PSI	+		
PORTLAND CEMENT **WRA FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.)4: 2 BLEEDING (3)2: AIR CONTENT (3)4: 1 Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete co. * For "other cement," pozzolar, a REMARKS: Condition of mix, work	mixing water sep ontaining aggregatecond size of fine tability, plasticit	ONE CU YDE (LB) 534.4 1189.6 2000.1 238.8 3962.9 arating from the site smaller than e aggregate, as y, bleeding, etc.	concrete sthe 1-1/2-may be re-	ONE CU YD (CU FT) 2.719 7.249 11.828 3.854 1.350 27.000 5/A, & VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F/ACTUAL CEMENT when tested by CRD-Cin. sieve.	38 B/CU FT (LB/CU I	1: 15/	4.5	PSI	+		

			PROP	SELECTION TE MIXTURE DRTIONS D-C 3)							
PROJECT NAME:				SYMBOL:				DATE:			<u> </u>
Kinzua Stilling H	Basin Rep	airs		SERIAL NO.:					1982	2	
CONCRETE REQUIRED FOR:								MIXTUR		_	
			242.75					Kinz	ua (<u> </u>	
			MAIS	ERIALS							
PORTLAND CEMENT, \$8-C-192,		Pozze	DLON OR O	THER CEMENT:					T. ADMIX		
TYPE: I ADDITIONS:		TYPE						TYPE:	Hunt	s Ai	r-Įn
BRAND AND MILL: Marquet	tte	SOURC	:E :					AMOUNT	2.3	3 oz/	'yd [']
FINE	AGGREGATE					COAR	SE A	GGREGA	TE		
TYPE Glacial Sand				TYPE: Grab	bo				SI	ize: 1	in.
source: Buffalo Slag Franklinvill	g Co. Le, NY	_		source: NY Wes	Trapi t NY.			•		-	
MATERIALS	SAMPLE SI	ERIAL NO.	s	IZE RANGE	COA	RSE	_	K SP GR	(SSD)	AB	SORP %
PORTLAND CEMENT	RC-8	88	111111		X////		\vdash			11111	
•	1		<i>**********</i>				 			<i>77777</i>	
•							T-			t —	
FINE AGGREGATE	PITT-8	S-1	No.	4 - 200				2.63	3	1	.6
COARSE AGGREGATE (A)	PITT-8			4 - 1 in.				2.93		T	.8
COARSE AGGREGATE (B)											
COARSE AGGREGATE (C)	ļ				<u></u>		_				
COARSE AGGREGATE (D)							L				
	MIXTURE						;	SPECIME	N DAT	A	
MATERIALS	MIX. BY WEIGHT	S. S. D. WER		SOLID VOL ONE CU YD		CYLI	IDER	<u> </u>	<u> </u>	BEA	MS
	 	(LB)	, 	(CU FT)	SIZE:	1		PSI	SIZE:		PSI
PORTLAND CEMENT	1.00	534.	4	2.719	HO.	AGE	╁		NO.	AGE	 _
• • • • • • • • • • • • • • • • • • • •	 				╁┈─	├	+		 	 	ļ
FINE AGGREGATE	 	1189.	6	7.249	╁	 	+-		 	+	<u> </u>
				11.828	†	\vdash	+		 	t	ļ
	l .	1 2102.				—					
COARSE AGGREGATE (A)	}	2162.	-	11.020	 		1			I	
COARSE AGGREGATE (A)		2162.	-	11.020	-	-	-				l
COARSE AGGREGATE (A)		2162.									
COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER		238.		3.854							
COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER											
COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR 5% TOTAL			8	3.854							
COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45		238.	8	3.854 1.350	38						
COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR 5% TOTAL		238.	8	3.854 1.350 27.000		y: 10	60.	8			
COARSE AGGREGATE (a) COARSE AGGREGATE (c) COARSE AGGREGATE (c) COARSE AGGREGATE (d) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.14: 1-3/4 BLEEDING (3) ² :		238.	8	3.854 1.350 27.000	B/CU FT						
COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45 BLUMP (IN.)4: 1-3/4		238.	8	3.854 1.350 27.000 \$/A, & VOLUME:	8/CU FT	FT):		8			
COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.14: 1-3/4 BLEEDING (S) ² : AIR CONTENT (S) ⁴ : 5.3 AIR CONTENT (S) ⁴ :		238.	8	3.854 1.350 27.000 \$/A, % VOLUME: THEO. UNIT WT (L	B/CU FT	FT): CU YO)	. 5				
COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.14: 1-3/4 BLEEDING (S) ² : AIR CONTENT (S) ⁴ : I Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed.	• •	238. 4125.	8 ////3	3.854 1.350 27.000 S/A, S VOLUME: THEO. UNIT WT IL ACTUAL UNIT WT THEO. CEMENT F. ACTUAL CEMENT	.B/CU FT (LB/CU ACT (LB/ FACT (L	FT): CU YO)	. 5				
COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.14: 1-3/4 BLEEDING (3)2: AIR CONTENT (3)4: 1 Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete of	ontaining aggrega	238. 4125. 4125.	8 /// 3 concrete w the 1-1/2-ii	3.854 1.350 27.000 S/A, & VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F. ACTUAL GEMENT then tested by CRD-C	.B/CU FT (LB/CU ACT (LB/ FACT (L	FT): CU YO)	. 5				
COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.14: 1-3/4 BLEEDING (S) ² : AIR CONTENT (S) ⁴ : I Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed.	ontaining aggrego second size of fin	238. 4125. carat. ng from the ste smaller than the aggregate, as	8 concrete w the 1-1/2-ii may be req	3.854 1.350 27.000 S/A, & VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F. ACTUAL GEMENT then tested by CRD-C	.B/CU FT (LB/CU ACT (LB/ FACT (L	FT): CU YO)	. 5				
COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.14: 1-3/4 BLEEDING (S) ² : AIR CONTENT (S) ⁴ : 1 Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete of 5 For "other cement," possolan,	containing aggrego second size of fin hability, plasticit	238. 4125. 4125. arat. ng from the ste smaller than the aggregate, as try, bleeding, etc.	8 concrete w the 1-1/2-ii may be req	3.854 1.350 27.000 S/A, & VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F. ACTUAL GEMENT then tested by CRD-C	.B/CU FT (LB/CU ACT (LB/ FACT (L	FT): CU YO)	. 5				
COARSE AGGREGATE (B) COARSE AGGREGATE (D) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.14: 1-3/4 BLEEDING (3) ² : AIR CONTENT (3) ⁴ : I Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete c For "other cement," possolan, a REMARKS: Condition of mix, wor	containing aggrego second size of fin hability, plasticit	238. 4125. 4125. arat. ng from the ste smaller than the aggregate, as try, bleeding, etc.	8 concrete w the 1-1/2-ii may be req	3.854 1.350 27.000 S/A, & VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F. ACTUAL GEMENT then tested by CRD-C	.B/CU FT (LB/CU ACT (LB/ FACT (L	FT): CU YO)	. 5				
COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.14: 1-3/4 BLEEDING (3)2: AIR CONTENT (3)4: I Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete c For "other cement," possolan, a REMARKS: Condition of mix, wor	containing aggrego second size of fin hability, plasticit	238. 4125. 4125. arat. ng from the ste smaller than the aggregate, as try, bleeding, etc.	8 concrete w the 1-1/2-ii may be req	3.854 1.350 27.000 S/A, & VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F. ACTUAL GEMENT then tested by CRD-C	.B/CU FT (LB/CU ACT (LB/ FACT (L	FT): CU YO)	. 5				
COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (C) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.14: 1-3/4 ELEEDING (3) ² : AIR CONTENT (3) ⁴ : I Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete c For "other cement," possolan, a REMARKS: Condition of mix, wor	containing aggrego second size of fin hability, plasticit	238. 4125. 4125. arat. ng from the ste smaller than the aggregate, as try, bleeding, etc.	8 concrete w the 1-1/2-ii may be req	3.854 1.350 27.000 S/A, & VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F. ACTUAL GEMENT then tested by CRD-C	.B/CU FT (LB/CU ACT (LB/ FACT (L	FT): CU YO)	. 5				
COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (C) WATER AIR 5% TOTAL W/C (WT): 0.45 SLUMP (IN.14: 1-3/4 ELEEDING (3) ² : AIR CONTENT (3) ⁴ : I Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete c For "other cement," possolan, a REMARKS: Condition of mix, wor	containing aggrego second size of fin hability, plasticit	238. 4125. 4125. arat. ng from the ste smaller than the aggregate, as try, bleeding, etc.	8 concrete w the 1-1/2-ii may be req	3.854 1.350 27.000 S/A, & VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F. ACTUAL GEMENT then tested by CRD-C	.B/CU FT (LB/CU ACT (LB/ FACT (L	FT): CU YO)	. 5				

Table 7. Mixture Proportions, Kinzua G3. REPORT OF SELECTION OF CONCRETE MIXTURE PROPORTIONS (CRD-C 3) SYMBOL: PROJECT NAME DATE Kinzua Stilling Basin Repairs Sep 1982 SERIAL NO CONCRETE REQUIRED FOR MIXTURE NO. Kinzua G3 MATERIALS PORTLAND CEMENT, SS-C-192, POZZOLON OR OTHER CEMENT: AIR- ENT. ADMIXTURE TYPE: I ADDITIONS: TYPE: TYPE: Hunts Air-In AMOUNT 2.2 oz/yd3 BRAND AND MILL: Marquette SOURCE: COARSE AGGREGATE FINE AGGREGATE TYPE: Glacial Sand TYPE: Grabbo size: 1 in. SOURCE: Buffalo Slag Co. SOURCE: Luck Quarry <u>Franklinville, NY</u> Leesburg. COARSE AGGR (%) ABSORP " MATERIALS SAMPLE SERIAL NO. SIZE RANGE BULK SP GR (SSD) RC-888 3.15 PORTLAND CEMENT PITT-8 S-1 No. 4 - 200 2.63 1.6 FINE AGGREGATE COARSE AGGREGATE (A) PITT-8 G-3 No. 4 - 1 in. 2.99 0.5 COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) MIXTURE DATA SPECIMEN DATA S. S. D. WEIGHTS ONE CU YD BATCH (LB) SOLID VOL ONE CU YD (CU FT) CYLINDERS BEAMS MIX. BY WEIGHT MATERIALS SIZE SIZE AGE NO. AGE NO. 534.4 2.719 PORTLAND CEMENT 1.00 ***WRA FINE AGGREGATE 7.249 1189.6 11.828 2206.9 COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) 238.8 3.854 WATER 1.350 5% AIR 27.000 4169.7 TOTAL w/c (wt): 0.45 38 S/A, % VOLUME: SLUMP (IN.)4: 2-1/4 162.6 THEO. UNIT WT (LO/CU FT): BLEEDING (%)2: ACTUAL UNIT WT (LB/CU FT): AIR CONTENT (%)3: 4.8 THEO. CEMENT FACT (LB/CU YD): 534.4 AIR CONTENT (3)4: ACTUAL CEMENT FACT (LB/CU YD) 1 Calculated on the basis of: 2 Expressed as the percentage of mixing water separating from the concrete when tested by CRD-C 9. 3 In the entire batch as mixed. 4 In that portion of the concrete containing aggregate smaller than the 1-1/2-in. sieve. * For "other cement," pozzolan, second size of fine aggregate, as may be required. REMARKS: Condition of mix, workability, plasticity, bleeding, etc.

**WRA: Hunts HPS-R, 26.72 oz/yd

Table 8. Mixture Proportions, Kinzua Gl(SF). REPORT OF SELECTION OF CONCRETE MIXTURE **PROPORTIONS** (CRD-C 3) PROJECT NAME SYMBOL Sep 1982 Kinzua Stilling Basin Repairs SERIAL NO. CONCRETE REQUIRED FOR MIXTURE NO. Kinzua G1(SF) MATERIALS PORTLAND CEMENT, SS-C-192, POZZOLON OR OTHER CEMENT: AIR ENT. ADMIXTURE AD-536(4)TYPE: Silica Fume TYPE: I ADDITIONS TYPE: None BRAND AND MILL: Marquette source Reynolds Metals Co. AMOUNT ! Sheffield, AL FINE AGGREGATE COARSE AGGREGATE TYPE: Limestone size 1 in. TYPE Glacial Sand SOURCE: Buffalo Slag Co. SOURCE Neidigh Bros. Quarry Boalsburg, PA Franklinville, NY COARSE SAMPLE SERIAL NO SIZE RANGE BULK SP GR (SSD) ABSORP % PORTLAND CEMENT RC-888 3.15 · Silica Fume 2.22 AD-536(4) PITT-8 S-1 No. 4 - 2002.63 1.6 FINE AGGREGATE No. 4 - 1 in. PITT-8 G-1 2.71 0.4 COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) MIXTURE DATA SPECIMEN DATA S. S. D. WEIGHTS ONE CU YD BATCH (LB) SOLID VOL ONE CU YD (CU FT) MIX. BY WEIGHT CYLINDERS BEAMS MATERIALS SIZE SIZE NO. AGE AGE PORTLAND CEMENT 454.2 2.311 80.2 0.579 · 15% Fume by Wt ***WRA 1186.8 FINE AGGREGATE 7.232 COARSE AGGREGATE (A) 1195.4 11.800 COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER 4.538 AIR 2% 0.540 27.000 3998.1 W/(C + SF): 0.53S/A, % VOLUME: THEO. UNIT WT (LB/CU FT): 151.1 SLUMP (IN.)4: 2-1/4 BLEEDING (%)2: ACTUAL UNIT WT (LB/CU FT): AIR CONTENT (%)3: THEO. CEMENT FACT (LB/CU YD): AIR CONTENT (%)4: ACTUAL CEMENT FACT (LB/CU YD): 1 Calculated on the basis of: 2 Expressed as the percentage of mixing water separating from the concrete when tested by CRD-C 9. 4 In that portion of the concrete containing aggregate smaller than the 1-1/2-in. sieve. * For "other cement," pozzolan, second size of fine aggregate, as may be required. REMARKS: Condition of mix, workability, plasticity, bleeding, etc. **WRA: Hunts HPS-R, 26.72 oz/yd

Table 9. Mixture	Proport	tions, Ki	nzua	G3(SF).							
			CONCRE PROP	SELECTION TE MIXTURE DRTIONS D-C 3)						_	
PROJECT NAME:	SYMBOL:	DATE	DATE								
Kinzua Stilling H	SERIAL NO.:	Sep	Sep 1982								
CONCRETE REQUIRED FOR:		MIXTU	MIXTURE NO.								
·-		Kin	Kinzua G3(SF)								
			MATE	RIALS			····				
PORTLAND CEMENT, SS-C-192,	THER CEMENT:	AIR- E	AIR- ENT, ADMIXTURE:								
<u> </u>				ica Fume				TYPE: None			
BRAND AND MILL: Marquett	nolds Metal	AMOUN	AMOUNT ¹ :								
5115	AGGREGATE		She	ffield. AL							
	 , 		COAR	SE AGGREG							
TYPE: Glacial Sand	TYPE: Grabbo size: 1 in.										
soumce: Buffalo Slag Franklinvill	g Co. Le. NY			SOURCE: Luc	ck Quesbur	arr	y VA				
			COARSE			BULK SP GR (SSD) ABSORP %					
	RC-888		312E RANGE		AGGR (%)				7//////////////////////////////////////		
PORTLAND CEMENT	AD-536(4)				Y ////////		3.15 2.22		<i>\(((((((((((((((((((</i>		
· Silica Fume	AU-330(4)		 				2.22		 		
	PITT-8 S-1 N		No 4	No. 4 - 200			2.63		1.6		
FINE AGGREGATE COARSE AGGREGATE (A)	 			- l in.	<i>YIIIIIII</i>		2.99		0.5		
COARSE AGGREGATE (B)	1111 0 0 3		10. 4		 		2.,,		 		
COARSE AGGREGATE (C)			-						<u> </u>		
COARSE AGGREGATE (D)	<u> </u>		Ì		†				†		
	MIXTURE	DATA					SPECIM	EN DAT	·A		
	MIX. BY S. S. D. WEIGHTS			SOLID VOL	CYLINDERS		DERS	S BEAMS			
MATERIALS	WEIGHT			ONE CU YD (CU FT)	SIZE:			SIZE:			
PORTLAND CEMENT	1.00	454.2		2.311	NO. AGE		PSI	NQ.	AGE	PSI	
· 15% Fume by Wt		80.2	2	0.579				$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	<u> </u>		
***WRA	ļ				L	ļ	<u> </u>	 	↓		
FINE AGGREGATE	ļ	1186.8		7.232		ļ	↓		↓		
COARSE AGGREGATE (A)	ļ — — —	2201.6		11.800	<u> </u>	ļ	 	 	<u> </u>		
COARSE AGGREGATE (B)		ļ			<u> </u>	ļ	 	∔—	 		
COARSE AGGREGATE (C)	<u> </u>		}-		}	}	 	+-	 	ļ <u>-</u>	
COARSE AGGREGATE (D)	<u></u>	001.6		/ 520		-	 	-	₩-		
WATER		281.5		4.538 0.540		 	 	+	 		
			<i>''''</i>					+	₩		
AIR ZA	***************************************	4204 3						1	!		
TOTAL		4204.3		27.000	38				<u> </u>		
W/(C + SF): 0.53				27.000	38	. 15	8.9	<u> </u>	<u> </u>		
TOTAL W/(C + SF): 0.53 slump (IN.14: 2				27.000 \$/A, % VOLUME: THEO. UNIT WT (LE	CU FT		8.9	1	<u> </u>		
TOTAL W/(C + SF); 0.53 SLUMP (IN.) ⁶ ; 2 SLEEDING (S) ² :				27.000 S/A, % VOLUME: THEO. UNIT WT (LE	LB/CU FT	(T):		<u> </u>	<u> </u>		
TOTAL W/(C + SF): 0.53 BLUMP (IN.)4: 2 BLEEDING (%)2: AUR CONTENT (%)3: 1.3				27.000 S/A, % VOLUME: THEO. UNIT WT (LE ACTUAL UNIT WT (THEO. CEMENT FA	D/CU FT LB/CU I	(T): CU YD)	534.4				
TOTAL W/(C + SF); 0.53 SLUMP (IN.) ⁶ ; 2 BLEE CONT (S) ² ; AIR CONTENT (S) ⁴ ; 1 Calculated on the basis of: 2 Expressed as the percentage of		4204.3	3	27.000 5/A, % VOLUME: THEO. UNIT WT (LE ACTUAL UNIT WT) THEO. CEMENT FA ACTUAL CEMENT F	D/CU FT LB/CU F CT (LB/	(T): CU YD)	534.4				
TOTAL W/(C + SF): 0.53 BLUMP (IN.)4: 2 BLEEDING (%)2: AIR CONTENT (%)4: I Calculated on the basis of:	mixing water sep	4204.3	concrete w	27.000 b/a, % VOLUME: THEO. UNIT WT (LE ACTUAL UNIT WT I THEO. CEMENT PA ACTUAL	D/CU FT LB/CU F CT (LB/	(T): CU YD)	534.4				
TOTAL W/(C + SF): 0.53 SLUMP (IN.) ⁴ : 2 BLEEDING (%) ² : AIR CONTENT (%) ⁴ : 1.3 AIR CONTENT (%) ⁴ : 1 Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed.	mixing water sepontaining aggreg.	4204.3	concrete wi	27.000 b/A, % VOLUME: THEO. UNIT WT (LI ACTUAL UNIT WT I THEO. CEMENT PA ACTUAL	D/CU FT LB/CU F CT (LB/	(T): CU YD)	534.4				
TOTAL W/(C + SF): 0.53 SLUMP (IN.1 ⁶ : 2 SLEEDING (%) ² : AIR CONTENT (%) ⁴ : 1.3 AIR CONTENT (%) ⁶ : 2 Expressed as the percentage of 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete co	mixing water set intaining aggregi econd size of fis	orating from the stee smaller than the aggregate, as	concrete with e 1-1/2-in may be requ	27.000 b/A, % VOLUME: THEO. UNIT WT (LI ACTUAL UNIT WT I THEO. CEMENT PA ACTUAL	D/CU FT LB/CU F CT (LB/	(T): CU YD)	534.4				
TOTAL W/(C + SF): 0.53 BLUMP (IN.)4: 2 BLEEDING (N)2: AIR CONTENT (N)4: 1.3 AIR CONTENT (N)4: 1 I Calculated on the basis of: 2 Expressed as the percentage of 3 in the entire batch as mixed. 4 in that portion of the concrete co. For "other cement," pozzolan, s	mixing water set ontaining aggreg econd size of fis ability, plasticis	parating from the sate smaller than the aggregate, as try, bleeding, etc.	concrete with the 1-1/2-in may be requ	27.000 b/A, % VOLUME: THEO. UNIT WT (LI ACTUAL UNIT WT I THEO. CEMENT PA ACTUAL	D/CU FT LB/CU F CT (LB/	(T): CU YD)	534.4				
TOTAL W/(C + SF): 0,53 SLUMP (IN.)4: 2 BLEEDING (%)2: AIR CONTENT (%)3: 1,3 AIR CONTENT (%)4: I Calculated on the basis of: 2 Expressed as the percentage of: 3 In the entire basch as mixed. 4 In that portion of the concrete co. 5 For "other cement," possolan, s REMARKS: Condition of mix, work	mixing water set ontaining aggreg econd size of fis ability, plasticis	parating from the sate smaller than the aggregate, as try, bleeding, etc.	concrete with the 1-1/2-in may be requ	27.000 b/A, % VOLUME: THEO. UNIT WT (LI ACTUAL UNIT WT I THEO. CEMENT PA ACTUAL	D/CU FT LB/CU F CT (LB/	(T): CU YD)	534.4				
TOTAL W/(C + SF): 0,53 SLUMP (IN.)4: 2 BLEEDING (%)2: AIR CONTENT (%)3: 1,3 AIR CONTENT (%)4: I Calculated on the basis of: 2 Expressed as the percentage of: 3 In the entire basch as mixed. 4 In that portion of the concrete co. 5 For "other cement," possolan, s REMARKS: Condition of mix, work	mixing water set ontaining aggreg econd size of fis ability, plasticis	parating from the sate smaller than the aggregate, as try, bleeding, etc.	concrete with the 1-1/2-in may be requ	27.000 b/A, % VOLUME: THEO. UNIT WT (LI ACTUAL UNIT WT I THEO. CEMENT PA ACTUAL	D/CU FT LB/CU F CT (LB/	(T): CU YD)	534.4				
TOTAL W/(C + SF): 0,53 SLUMP (IN.)4: 2 BLEEDING (%)2: AIR CONTENT (%)3: 1,3 AIR CONTENT (%)4: I Calculated on the basis of: 2 Expressed as the percentage of: 3 In the entire basch as mixed. 4 In that portion of the concrete co. 5 For "other cement," possolan, s REMARKS: Condition of mix, work	mixing water set ontaining aggreg econd size of fis ability, plasticis	parating from the sate smaller than the aggregate, as try, bleeding, etc.	concrete with the 1-1/2-in may be requ	27.000 b/A, % VOLUME: THEO. UNIT WT (LI ACTUAL UNIT WT I THEO. CEMENT PA ACTUAL	D/CU FT LB/CU F CT (LB/	(T): CU YD)	534.4				

Table 10. Mixture Proportions, Kinzua Gl(Epoxy). REPORT OF SELECTION OF CONCRETE MIXTURE PROPORTIONS (CRD-C 3) PROJECT NAME Sep 1982 SYMBOL Kinzua Stilling Basin Repairs SERIAL NO CONCRETE REQUIRED FOR MIXTURE NO. Kinzua Gl(Epoxy) MATERIALS PORTLAND CEMENT, SS-C-192, POZZOLON OR OTHER CEMENT. EDOXY AIR- ENT. ADMIXTURE TYPE: Sikadur 362 TYPE None TYPE: I ADDITIONS: SOURCE: Sika Chemical Co. AMOUNT! BRAND AND MILL: Marquette FINE AGGREGATE COARSE AGGREGATE size l in. Glacial Sand TYPE: Limestone Neidigh Bros. Quarry SOURCE: Buffalo Slag Co. SOURCE. Boalsburg, PA Franklinville, NY COARSE MATERIALS SAMPLE SERIAL NO. SIZE RANGE BULK SP GR (SSD) ABSORP ~ 3.15 RC-888 PORTLAND CEMENT 1.09 Epoxy No. 4 - 2002.63 1.6 PITT-8 S-1 FINE AGGREGATE 0.4 No. 4 - 1 in. 2.71 COARSE AGGREGATE (A) PITT-8 G-1 COARSE AGGREGATE (8) COARSE AGGREGATE (C) COARSE AGGREGATE (D) MIXTURE DATA SPECIMEN DATA SOLID VOL ONE CU YD (CU FT) S. S. D. WEIGHTS ONE CU YD BATCH CYLINDERS BEAMS MIX. BY WEIGHT MATERIALS (1.8) SIZE SIZE 564.0 2.869 AGE AGE P\$I NO. NO. PORTLAND CEMENT 109.3 1.607 ·*Epoxy ·**WRA FINE AGGREGATE 1218.7 7.426 12.116 2048.9 COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) 2.712 169.2 WATER 0.270 AIR 1% 27.000 4110.1 TOTAL W/C (WT): 0.30 38 S/A, % VOLUME: THEO, UNIT WT (LB/CU FT): 153.8 SLUMP (IN.)4: 2 BLEEDING (%)2: ACTUAL UNIT WT (LB/CU FT): THEO. CEMENT FACT (LE/CU YD): 564 AIR CONTENT (%)3: AIR CONTENT (%)4: 1 Calculated on the basis of: 2 Expressed as the percentage of mixing water separating from the concrete when tested by CRD-C 9. 3 In the entire batch as mixed. 4 In that portion of the concrete containing aggregate smaller than the 1-1/2-in. sieve. * For "other cement," pozzolan, second size of fine aggregate, as may be required. REMARKS: Condition of mix, workability, plasticity, bleeding, etc. *Epoxy:Cement ratio: 0.19 or 2 gal/94 lb cement **WRA: Hunts HPS-R, 28.3 oz/yd^3

NOTE: 6.7 lb water were added to proportions shown above to obtain workable mixture.

Table 10A. Mixtu	re Propo	rtions,	<u>Kinzu</u>	a						
			F CONCR PROF	F SELECTION ETE MIXTURE PORTIONS RD-C 3)						
PROJECT NAME:				SYMBOL:			DATE			
Kinzua Stilling B	asin Rep	airs		SERIAL NO.:				p 198	2	
CONCRETE REQUIRED FOR:								IRE NO.:	-1 (D	
							K1	nzua	GI(E	poxy)
}				ERIALS			 -			
PORTLAND CEMENT, 85-C-192,				отней семент: Ер	оху		AIR- E	ENT. ADMIX	KTURE:	
TYPE: I ADDITIONS:				dur 362			ľ	Non	e	
BRAND AND MILL: Marquet	te	SOURC	:∈: Sik	a Chemical	Co.		AMOU	NT ^I :		
FINE /	AGGREGATE			T		COAR	SE AGGREG	ATE		
TYPE: Glacial Sand				TYPE: Limes	tone			S	ize 1	-in.
source: Buffalo Slag Franklinvill	Co. e. NY			source: Neid Boal	igh sbur	Bros	Quar	ry		
MATERIALS		ERIAL NO.		SIZE RANGE	COA	RSE	BULK SP G			ISORP %
PORTLAND CEMENT		-888	11111		AGGR	((%) /////		15	0111	
·Epoxy	 		<i>111111</i>					09	<i>7////</i>	
	 		+						 	
FINE AGGREGATE	PITT-8	S-1	No.	4 - 200		4///	2.	63	 	1.6
COARSE AGGREGATE (A)	PITT-8	G-1	No.	4 - 1 in.	····		2.		†	0.4
COARSE AGGREGATE (B)										
COARSE AGGREGATE (C)										
COARSE AGGREGATE (D)										
	MIXTURE	DATA					SPECII	MEN DAT	A	
MATERIALS	MIX. BY WEIGHT	S. S. D. WEI ONE CU YD E (LB)		SOLID VOL ONE CU YD (CU FT)	SIZE:	CYLIN	IDERS	SIZE:	8EA	MS
PORTLAND CEMENT	1.00	537.	2	2.733	NO.	AGE	P\$I	NO.	AGE	PSI
· *Epoxy	<u> </u>	104.	6	1.538		I			\mathbb{L}_{-}	
·**WRA	ļ	ļ			<u> </u>	↓	<u> </u>	4	↓	
FINE AGGREGATE		1106.		7.069	<u> </u>	L	_	┷	↓	
COARSE AGGREGATE (A)		1951.	2	11.539	<u> </u>	<u> </u>	<u> </u>		ļ	ļ
COARSE AGGREGATE (8)	<u> </u>	 	+		ļ	 	↓	-	∔	
COARSE AGGREGATE (C)		 			├		-		 	
COARSE AGGREGATE (D)	 		,	2 051	 		<u> </u>		┼─	
AIR 1%	111111111	238.		3.851 0.270		┼	 	+	 	
			<i>uuu</i>	27.000	\vdash	╁	 	 	+	
W/C (WT):		<u> </u>								<u> </u>
SLUMP (IN.)4: 2				\$/A, % VOLUME: THEO. UNIT WT (L)						
BLEEDING (%)2:				ACTUAL UNIT WT						
AIR CONTENT (%)3:				THEO. CEMENT FA						
AIR CONTENT (%)*:				ACTUAL CEMENT						
I Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete co	-			when sessed by CRD-C						
* For "other cement," pozzolan, s										
REMARKS: Condition of mix, work								1-0-1-		
*Epoxy:Cement Ra **WRA: Hunts HPS	tio: 0. -R, 27.0									

Probatic Programme Assessment Languages and Assessment

Table 11. Mixture Proportions, Chert Concrete. REPORT OF SELECTION OF CONCRETE MIXTURE **PROPORTIONS** (CRD-C 3) PROJECT NAME SYMBOL: DATE: Sep 1982 Abrasion-Erosion Round 2 SERIAL NO. CONCRETE REQUIRED FOR: MIXTURE NO.: 1-28 MATERIALS PORTLAND CEMENT, SS-C-192, POZZOLON OR OTHER CEMENT: AIR- ENT. ADMIXTURE: TYPE: Hunts Air-In TYPE: I ADDITIONS: TYPE: BRAND AND MILL: Marquette AMOUNT! 3.3 oz/yd3 SOURCE: FINE AGGREGATE COARSE AGGREGATE size: 3/4-in. TYPE: Natural Silica Sand TYPE: Natural Chert source: Runyon Sand and Gravel source: Runyon Sand and Gravel Vicksburg, MS Vicksburg, MS COARSE AGGR (%) MATERIALS SAMPLE SERIAL NO. SIZE RANGE BULK SP GR (SSD) ABSORP % PORTLAND CEMENT RC-850 3.15 No. 4 - 2002.63 0.4 CL-32 S-1 FINE AGGREGATE 2.1 COARSE AGGREGATE (A) No. 4 - 3/4CL-32 G-1 2.53 COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) MIXTURE DATA SPECIMEN DATA S. S. D. WEIGHTS ONE CU YD BATCH (LB) SOLID VOL ONE CU YD (CU FT) CYLINDERS BEAMS MIX. BY WEIGHT MATERIALS SIZE: SIZE 2.971 NO. AGE 584.0 PORTLAND CEMENT 7.017 FINE AGGREGATE 1151.6 1807.6 11.450 COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) 4.212 WATER 1.350 3806.0 27.000 W/C (WT): 0.45 38 S/A, % VOLUME: THEO. UNIT WT (LB/CU FT): 148.4 SLUMP ((N.)4: 3-1/2 GLEEDING (%)2: ACTUAL UNIT WT (LB/CU FT): THEO. CEMENT FACT (LB/CU YD): 584.0 AUR CONTENT (%)3: 5.3 AIR CONTENT (%)4: ACTUAL CEMENT FACT (LB/CU YD): 1 Calculated on the basis of: 2 Expressed as the percentage of mixing water separating from the concrete when tested by CRD-C 9. 3 In the entire batch as mixed. 4 In that portion of the concrete containing aggregate smaller than the 1-1/2-in. sieve. * For "other cement," pozsolan, second size of fine aggregate, as may be required. REMARKS: Condition of mix, workability, plasticity, bleeding, etc.

Table 12. Mixtu	re Propoi	ctions, S	<u>Silica</u>	Fume 1.						
			F CONCRE PROP(SELECTION ITE MIXTURE DRTIONS D-C 3)						
PROJECT NAME:		_		SYMBOL:			DAT	re:		
High-Strength Con	ncrete (S	Saucier)		SERIAL NO.:			S	ep 198	32	
CONCRETE REQUIRED FOR:							MIX	TURE NO.:		
							l s	F1		
	- , 		MATE	RIALS						
PORTLAND CEMENT, SS-C-192,		i i		THER CEMENT:				· ENT. ADM		
TYPE: I ADDITIONS:				ca Fume	1 - 0			e: Nor	ıe	
BRAND AND MILL: Marqueti	ce	SOURC		nolds Meta ffield, AL	IS C	ο.	AMC	DUNT ¹ :		
FINE	AGGREGATE		Sile	IIIEIG, AL		CO48	SE AGGRI	CATE		
N-41 C41-				TYPE: Crushe	34 C				3	/4-in.
TYPE: Natural 511:	ica sand			TYPE: CLUSIN	eu G	Lanı	LE		SIZE: J	/ 4 – 111 •
source: Runyon Sand Vicksburg, N		vel		source: Camal						
			T		COA				T	
MATERIALS	SAMPLE S	ERIAL NO.	Si	ZE RANGE	AGGR		BULK SF	GR (SSD)	AE	SORP %
PORTLAND CEMENT	RC-8	388					3.	15		
'Silica Fume	AD-536	6(4)					2.	22		
									.]	
FINE AGGREGATE	CL-32 S	5-1	No. 4	- 200			2.	63	1 (0.4
COARSE AGGREGATE (A)	CL-14 (G-1B	No. 4	-3/4 in.			2.	68		0.7
COARSE AGGREGATE (B)			Ī						T	
COARSE AGGREGATE (C)									T	
COARSE AGGREGATE (D)			T						1	
	MIXTURE	DATA					SPEC	IMEN DA	TA	
	MIX. BY	S. S. D. WEI		SOLID VOL		CYLIN	IDERS		BEA	MS
MATERIALS	WEIGHT	ONE CU YD E	BATCH	ONE CU YD (CU FT)	SIZE:			SIZE	:	
PORTLAND CEMENT	1.00	799.0	0	4.065	NO.	AGE	PSI	NO.	AGE	PSI
·Silica Fume		141.0		1.018		 			1	
**Admixtures	-					 -		1		
FINE AGGREGATE		1396.0		8.507			1		1	ļ
COARSE AGGREGA"E (A)		1738.		10.397	 		 		 	
COARSE AGGREGATE (B)						t	 		\top	
COARSE AGGREGATE (C)						-				
COARSE AGGREGATE (D)					-		 	_	+	
WATER		188.0	0	3.013				_	+	
AIR				0.000					 	
TOTAL		4262.	7	27.000		T	1			
W/(C + SF): 0.20				S/A, % VOLUME:	45					L
slump (in.)4: 0				THEO. UNIT WT (LI		. 15	7.9			
BLEEDING (%)2:				· · ·			., .,			
ALECONTENT (%)3:				ACTUAL UNIT WT (94	0.0		
		· · · · · · · · · · · · · · · · · · ·		THEO. CEMENT FA				0.0		
AIR CONTENT (%)4: 1 Calculated on the basis of:				ACTUAL CEMENT	ACT (L	J/CU Y	D):		_	
2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete co				•	9.					
* For "other cement," pozzolan, a						-				
REMARKS: Condition of mix, work					-		-			
**Admixtures: HRWR: Dowell										
	D-65, 4% ell D-47			ntitious m	ater	ials	3			

Table 13. Mixtur	<u>ce Propor</u>	rions.	SILICE	rume Z.							
	_		OF CONCR	F SELECTION ETE MIXTURE PORTIONS RD-C 31							
PROJECT NAME:				SYMBOL:			DAT				
High-Strength Cor	ncrete (S	aucier	:)	SERIAL NO.:				ep 19			
CONCRETE REQUIRED FOR:								TURE NO).:		
			MAT	ERIALS							
PORTLAND CEMENT, SS-C-192,		PC	ZZOLON OR C	THER CEMENT:			AIR	· ENT. AC	DMIXT	URE:	
TYPE: I ADDITIONS:				ca Fume	_			e No	ne		
BRAND AND MILL: Marquett		so	She	molds Meta ffield, AL	als C						
	AGGREGATE			+			SE AGGRE	GATE			
TYPE: Crushed Grant SOURCE: Crushed from		aggreg	gate	TYPE: Crus	ak Qı	ıarr	у		SIZI	<u>e</u> : 1/.	2-in.
	,			l Tho	mpso	n, G	A	_			
MATERIALS	SAMPLE SI	ERIAL NO.] :	SIZE RANGE	COA	RSE (%)	BULK SP	GR (SSC	o)	ABS	ORP %
PORTLAND CEMENT	RC-	-888			XIIII		3	.15			
·Silica Fume	AD-5	36(4)					2	.22			
•					<i>V////</i>						
FINE AGGREGATE	CL-14 M			- 200				.74	\perp		.5
COARSE AGGREGATE (A)	CL-14 C	5-1B	No.	-1/2 in.	 		2	.68		0	. 7
COARSE AGGREGATE (B)	 				╂	-			_		
COARSE AGGREGATE (C)	 				┼				\dashv		
COARSE AGGREGATE (D)	MIXTURE	DATA			╁┈╴		SPEC	IMEN D	ATA		
	MIX. BY	S. S. D.	WEIGHTS	SOLID VOL	1	CYLI	DERS			BEAN	
MATERIALS	WEIGHT		D BATCH	ONE CU YD	SIZE:			SI	ZE:		
	 -	├ ──		(CU FT)	+	$\overline{}$	_	_	$\overline{}$		
PORTLAND CEMENT	1.00	799	0.0	4.065	NO.	AGE	PSI	_	o .	AGE	P\$I
·Silica Fume	1.00	├ ──	0.0		+	AGE	PSI	_	$\overline{}$	AGE	P\$I
·Silica Fume ·**Admixtures	1.00	799 141	1.0	4.065 1.018	+	AGE	PSI	_	$\overline{}$	AGE	P\$I
-Silica Fume -**Admixtures FINE AGGREGATE	1.00	799 141 1438	0.0 1.0	4.065 1.018 8.412	+	AGE	PSI	_	$\overline{}$	AGE	P\$I
Silica Fume **Admixtures FINE AGGREGATE COARSE AGGREGATE (A)	1.00	799 141	0.0 1.0	4.065 1.018	+	AGE	PSI	_	$\overline{}$	AGE	P\$I
-Silica Fume -**Admixtures FINE AGGREGATE	1.00	799 141 1438	0.0 1.0	4.065 1.018 8.412	+	AGE	PSI	_	$\overline{}$	AGE	Pši
Silica Fume **Admixtures FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B)	1.00	799 141 1438	0.0 1.0	4.065 1.018 8.412	+	AGE	PSI	_	$\overline{}$	AGE	Pši
Silica Fume **Admixtures FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C)	1.00	799 141 1438 1754	0.0 1.0	4.065 1.018 8.412 10.492	+	AGE	PSI	_	$\overline{}$	AGE	Pši
Silica Fume **Admixtures FINE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D)	1.00	799 141 1438 1754	3.0 3.0	4.065 1.018 8.412 10.492 3.013 0.000	+	AGE	PSI	_	$\overline{}$	AGE	PSI
Silica Fume **Admixtures FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR TOTAL		799 141 1438 1754	3.0 3.0	4.065 1.018 8.412 10.492	NO.	AGE	PSI	_	$\overline{}$	AGE	PSI
Silica Fume ***Admixtures FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (C) COARSE AGGREGATE (C) WATER AIR TOTAL W/(C + SF): 0.20		799 141 1438 1754	3.0 3.0	4.065 1.018 8.412 10.492 3.013 0.000 27.000	NO.			_	$\overline{}$	AGE	PSI
Silica Fume **Admixtures FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (C) WATER AIR TOTAL W/(C + SF): 0.20 SLUMP (IN.)4: 0		799 141 1438 1754	3.0 3.0	4.065 1.018 8.412 10.492 3.013 0.000 27.000 s/A, 3. VOLUME:	45 45	, 16		_	$\overline{}$	AGE	PSI
Silica Fume **Admixtures FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (C) WATER AIR TOTAL W/(C + SF): 0.20 SLUMP (IN.)*: 0 SLEEDING (%)2:		799 141 1438 1754	3.0 3.0	4.065 1.018 8.412 10.492 3.013 0.000 27.000 \$/A, % VOLUME: THEO. UNIT WT (L	45 -9/CU F1	n. 16	0.0	N	$\overline{}$	AGE	PSI
Silica Fume **Admixtures FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (C) WATER AIR TOTAL W/(C + SF): 0.20 \$LUMP (IN.) ⁴ : 0 \$LEEDING (%) ² : AIR CONTENT (%) ³ :		799 141 1438 1754	3.0 3.0	4.065 1.018 8.412 10.492 3.013 0.000 27.000 \$/A, % VOLUME: THEO. UNIT WT THEO. CEMENT F	45 -9/CU FT (L9/CU)	-1: 16	0.0	N	$\overline{}$	AGE	PSI
SIlica Fume **Admixtures FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (C) WATER AIR TOTAL W/(C + SF): 0.20 SLUMP (IN.) ⁴ : 0 BLEEDING (%) ² : AIR CONTENT (%) ³ : AIR CONTENT (%) ⁴ : 1 Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed.	mixing water sep	799 141 1438 1754 188 4320	3.3 4.6 3.0 (b) 9	4.065 1.018 8.412 10.492 3.013 0.000 27.000 SVA, % VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F ACTUAL CEMENT F	45 -8/CU F1 (L8/CU) ACT (L8/	-1: 16	0.0	N	$\overline{}$	AGE	PSI
SILICA FUME **Admixtures FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (D) WATER AIR TOTAL W/(C + SF): 0.20 SLUMP (IN.)4: 0 SLEEDING (%)2: AIR CONTENT (%)3; AIR CONTENT (%)4: 1 Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete circulated on the circ	mixing water sep	799 141 1438 1754 188 4320 parating from the smaller to	3.3 4.6 3.0 1.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	4.065 1.018 8.412 10.492 3.013 0.000 27.000 S/A, % VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F ACTUAL CEMENT F A	45 -8/CU F1 (L8/CU) ACT (L8/	-1: 16	0.0	N	$\overline{}$	AGE	PSI
SIlica Fume **Admixtures FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (C) WATER AIR TOTAL W/(C + SF): 0.20 SLUMP (IN.) ⁴ : 0 BLEEDING (%) ² : AIR CONTENT (%) ³ : AIR CONTENT (%) ⁴ : 1 Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed.	mixing water sepontaining aggregorecond size of fix	799 141 1438 1754 188 4320 coarating from the aggregate in a garding from the aggregate.	1.0 3.3 4.6 3.0 3.0 the concrete than the 1-1/2-, as may be re	4.065 1.018 8.412 10.492 3.013 0.000 27.000 S/A, % VOLUME: THEO. UNIT WT (L ACTUAL UNIT WT THEO. CEMENT F ACTUAL CEMENT F A	45 -8/CU F1 (L8/CU) ACT (L8/	-1: 16	0.0	N	$\overline{}$	AGE	PSI
*Silica Fume ***Admixtures FINE AGGREGATE COARSE AGGREGATE (A) COARSE AGGREGATE (B) COARSE AGGREGATE (C) COARSE AGGREGATE (C) WATER AIR TOTAL W/(C + SF): 0.20 SLUMP (IN., 4: 0 SLEEDING (%) ² : AIR CONTENT (%) ³ : AIR CONTENT (%) ⁴ : 1 Calculated on the basis of: 2 Expressed as the percentage of 3 In the entire batch as mixed. 4 In that portion of the concrete c. * For "other cement," pozzolan, s REMARKS: Condition of mix, worl **Admixtures: HRWR: DOWell 1	mixing water sep ontaining aggrega second size of fin kability, plasticit	1438 1754 188 4320 arating from the aggregate, by Wet	the concrete han the 1-1/2-as may be reetc.	4.065 1.018 8.412 10.492 3.013 0.000 27.000 S/A, % VOLUME: THEO. UNIT WT (LACTUAL UNIT WT (LACTUAL CEMENT FACTUAL CEMENT FA	45 45 Le/cu F1 (Le/cu ACT (Le/ FACT (Le/	11: 16: T1: CU YOU Y	0.0	N	$\overline{}$	AGE	PSI

Record Total Control C

SECTION OF THE PROPERTY OF THE

Table 14. Properties of Fresh and Hardened Concrete Mixtures Tested.

Statement of the last of the l							
Mixture	W/C (by Weight) (1)	Slump,	Air Content, %	Average Compressive Strength psi (2)	Modulus of Elasticity 10 ⁶ ps1 (3)	Poisson's Ratio (3)	Abrasion-Erosion Loss, % by Mass @ 72 hr
Kinzua Gl	0.45	2	5.1	1 -	5.25	l	6.9
Kinzua G2	0.45	1-3/4	5.3		5.05	0.21	7.7
Kinzua G3	0.45	2-1/4	4.8	5,670	5.00	0.19	6.1
Kinzua Gl(SF)	0.53	2-1/4	1.3		7.90	0.24	5.0
Kinzua G3(SF)	0.53	2	1.3	8,480	5.15	0.19	4.3
Kinzua Gl(Epoxy)	0.30 (4)	2	NA	4,370	3.80	0.23	6.9
Chert Reference	0.45	3-1/2	5.3	4,740	NA	NA	4.1
Densit Concrete	NA	NA	NA	24,900 (5)	8.30	0.21	0.5
Silica Fume l	0.20	0	NA	14,010 (6)	NA	NA	2.0
Silica Fume 2	0.20	0	NA	12,910 (6)	NA	NA	1.3

Water: cementitious materials ratio, if applicable. £66£99 NOTES:

Average of three 6- by 12-in. specimens unless noted otherwise.

Tested in accordance with CRD-C 19-75, using same cylinders tested for compressive strength.

Design water:cement ratio was 0.30. Additional water was added to obtain slump shown.

Average of two 4- by 8-in. specimens. Average of two 3- by 6-in. specimens.

Table 15. Abrasion-Erosion Test Data.

Concrete mixture: Kinzua G-1

			SPEC	IMEN			
elapsed		A		В		С	average
test time hours	wt, 1b	percent loss	wt, 1b	percent loss	wt, lb	percent loss	percent loss
0	38.30	0.0	38.50	0.0	38.70	0.0	0.0
12	37.80	1.3	38.10	1.0	38.20	1.3	1.2
24	37.30	2.6	37.50	2.6	37.85	2.2	2.5
36	36.80	3.9	37.10	3.6	37.50	3.1	3.5
48	36.30	5.2	36.80	4.4	37.00	4.4	4.7
60	35.80	6.5	36.30	5.7	36.55	5.6	5.9
72	35.40	7.6	36.00	6.5	36.20	6.5	6.9

Table 16. Abrasion-Erosion Test Data.

Concrete mixture: Kinzua G-2

			SPEC	IMEN			
elapsed		Α		В		С	average
test time hours	wt, 1b	percent loss	wt, 1b	percent loss	wt, 1b	percent loss	percent loss
0	40.10	0.0	39.70	0.0	39.60	0.0	0.0
12	39.30	2.0	39.10	1.5	39.05	1.4	1.6
24	38.90	3.0	38.60	2.8	38.50	2.8	2.9
36	38.50	4.0	38.10	4.0	37.90	4.3	4.1
48	37.95	5.4	37.60	5.3	37.40	5.6	5.4
60	37.40	6.7	37.10	6.5	36.90	6.8	6.7
72	37.00	7.7	36.70	7.6	36.50	7.8	7.7

Table 17. Abrasion-Erosion Test Data.

Concrete mixture: Kinzua G-3

			SPEC	IMEN			
elapsed		A		В		С	average
test time hours	wt, 1b	percent loss	wt, 1b	percent loss	wt, 1b	percent loss	percent loss
0	40.25	0.0	40.70	0.0	40.50	0.0	0.0
12	39.70	1.4	40.05	1.6	39.95	1.4	1.5
24	39.15	2.7	39.55	2.8	39.45	2.6	2.7
36	38.70	3.9	39.15	3.8	39.10	3.5	3.7
48	38.30	4.8	38.85	4.5	38.70	4.4	4.6
60	37.95	5.7	38.60	5.2	38.40	5.2	5.4
72	37.60	6.6	38.30	5.9	38.10	5.9	6.1

Table 18. Abrasion-Erosion Test Data.

Concrete mixture: Gl (Silica Fume)

			SPEC	IMEN			
elapsed		A		В		С	average
est time hours	wt, 1b	percent loss	wt, 1b	percent loss	wt, lb	percent loss	percent loss
0	39.30	0.0	39.85	0.0	38.50	0.0	0.0
12	38.30	NG*	38.80	NG*	37.50	NG*	NG*
24	38.60	1.8	39.05	2.0	37.75	1.9	1.9
36	38.15	2.9	38.65	3.0	37.30	3.1	3.0
48	37.90	3.6	38.40	3.6	36.85	4.3	3.8
60	37.60	4.3	38.15	4.3	NG**		4.3
72	37.30	5.1	37.90	4.9	NG**		5.0

Notes: * Weights incorrect - scale not set at zero.

^{**} Timer failed during run.

Table 19. Abrasion-Erosion Test Data.

Concrete mixture: G3 (Silica Fume)

			SPEC	IMEN			
elapsed		Α		В		С	average
test time hours	wt, lb	percent loss	wt, 1b	percent loss	wt, 1b	percent loss	percent loss
0	38.40	0.0	40.90	0.0	41.85	0.0	0.0
12	38.10	0.8	40.50	1.0	41.45	1.0	0.9
24	37.90	1.3	40.10	2.0	41.20	1.6	1.6
36	37.60	2.1	39.75	2.8	40.75	2.6	2.5
48	37.35	2.7	39.50	3.4	40.55	3.1	3.1
60	37.00	3.6	39.20	4.2	40.30	3.7	3.8
72	36.80	4.2	39.00	4.6	40.10	4.2	4.3

Table 20. Abrasion-Erosion Test Data.

Concrete mixture: Kinzua Gl(Epoxy)

			SPEC	IMEN			
elapsed		A		В		С	average
test time hours	wt, 1b	percent loss	wt, 1b	percent loss	wt, 1b	percent loss	percent loss
0	37.80	0.0	38.35	0.0	38.00	0.0	0.0
12	37.20	1.6	37.70	1.7	37.70	0.8	1.4
24	36.80	2.6	37.30	2.7	37.35	1.7	2.3
36	36.40	3.7	36.95	3.7	37.00	2.6	3.3
48	35.90	5.0	36.45	5.0	36.60	3.7	4.6
60	35.50	6.1	36.00	6.1	36.35	4.3	5.5
72	34.75	8.1	35.60	7.2	35.90	5.5	6.9

Table 21. Abrasion-Erosion Test Data.

Concrete mixture: Kinzua Cores

			SPEC	IMEN			
elapsed		Α		В		С	average
test time hours	wt, lb	percent loss	wt, 1b	percent loss	wt, 1b	percent loss	percent loss
0	33.40	0.0	33.40	0.0	33.20	0.0	0.0
12	32.90	1.5	33.00	1.2	32.80	1.2	1.3
24	32.30	3.3	32.60	2.4	32.20	3.0	2.9
36	31.85	4.6	32.30	3.3	31.50	5.1	4.3
48	31.10	6.9	31.90	4.5	30.90	6.9	6.1
60	30.30	9.3	31.60	5.4	30.00	9.6	8.1
72	30.10	9.9	31.10	6.9	29.40	11.4	9.4

Table 22. Abrasion-Erosion Test Data.

Concrete mixture: Chert Reference

			SPEC	IMEN			
elapsed		A		В		С	average
hours	wt, 1b	percent loss	wt, 1b	percent loss	wt, 1b	percent loss	percent loss
0	36.70	0.0	36.30	0.0	35.95	0.0	0.0
12	36.00	1.9	35.70	1.7	35.35	1.7	1.8
24	35.75	2.6	35.35	2.6	35.00	2.6	2.6
36	35.70	2.7	35.20	3.0	34.75	3.3	3.0
48	35.60	3.0	35.10	3.3	34.60	3.8	3.4
60	35.50	3.3	34.90	3.9	34.55	3.9	3.7
72	35.35	3.7	34.85	4.0	34.30	4.6	4.1

Table 23. Abrasion-Erosion Test Data.

Concrete mixture: Densit Concrete

			SPEC	IMEN			
elapsed	A		В		C		average
test time hours	wt, 1b	percent loss	wt, 1b	percent loss	wt, lb	percent loss	percent loss
0	44.10	0.0	43.60	0.0	43.70	0.0	0.0
12	44.00	0.2	43.50	0.2	43.60	0.2	0.2
24	43.90	0.5	43.40	0.5	43.60	0.2	0.4
36	43.85	0.6	43.35	0.6	43.60	0.2	0.5
48	43.80	0.7	43.30	0.7	43.60	0.2	0.5
60	43.80	0.7	43.30	0.7	43.60	0.2	0.5
72	43.80	0.7	43.30	0.7	43.60	0.2	0.5

Table 24. Abrasion-Erosion Test Data.

Concrete mixture: Silica Fume 1

SPECIMEN							
elapsed test time hours	A		В		С		average
	wt, 1b	percent loss	wt, 1b	percent loss	wt, 1b	percent loss	percent loss
0	39.70	0.0	39.60	0.0		0.0	0.0
12	39.50	0.5	39.35	0.6			0.6
24	39.45	0.6	39.25	0.9			0.8
36	39.30	1.0	39.10	1.3			1.2
48	39.20	1.3	39.00	1.5			1.4
60	39.10	1.5	38.90	1.8			1.7
72	39.00	1.8	38.75	2.1			2.0

Table 25. Abrasion-Erosion Test Data.

Concrete mixture: Silica Fume 2

	SPECIMEN						
elapsed test time hours	· A		В		С		average
	wt, 1b	percent loss	wt, 1b	percent loss	wt, 1b	percent loss	percent loss
0	40.30	0.0	40.00	0.0		0.0	0.0
12	40.15	0.4	39.90	0.3			0.4
24	40.10	0.5	39.85	0.4			0.5
36	40.00	0.7	39.85	0.4			0.6
48	40.00	0.7	39.75	0.6			0.7
60	39.90	1.0	39.60	1.0			1.0
72	39.75	1.4	39.55	1.1			1.3

Figure 1. Chunk sample of fiber-reinforced concrete from Kinzua stilling basin after cores were drilled for abrasion-erosion testing. The surface of the sample was leveled using a grout to provide a flat drilling surface. The small holes in the sample are from attempts to take small diameter cores for comparison testing.

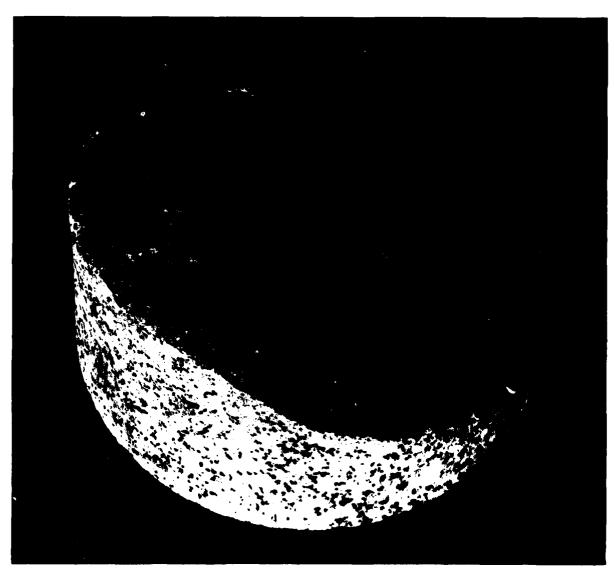


Figure 2. Top portion of large diameter core taken from chunk sample. Specimen for abrasion-erosion testing was sawed from beneath the portion shown. The surface shown is the original wearing surface from the stilling basin.

Figure 3. Abrasion-erosion specimen at conclusion of testing, mixture Kinzua Gl.

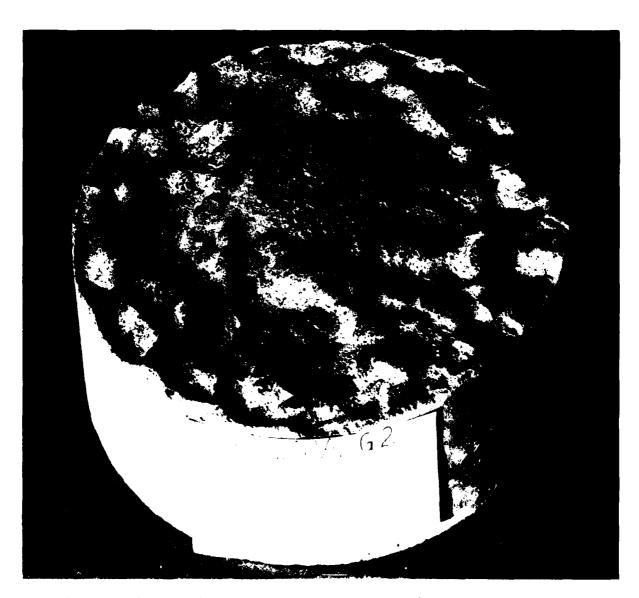


Figure 4. Abrasion-erosion specimen at conclusion of testing, mixture Kinzua G2.

on bronding totalesses andiopsia luxusees, services and property serepares

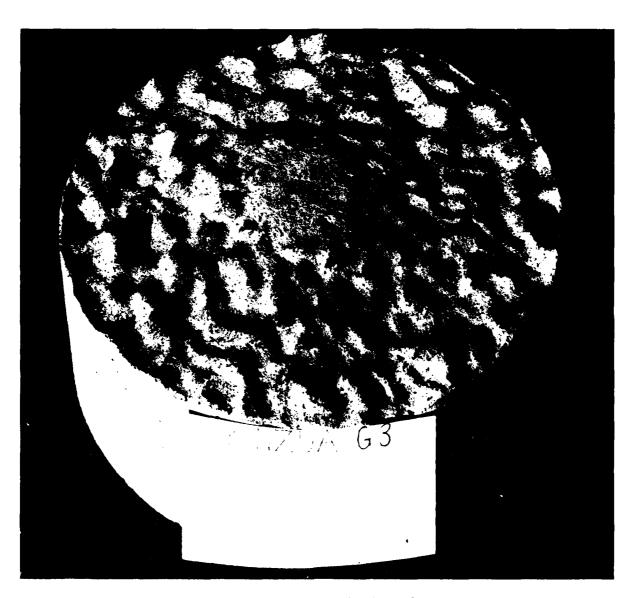


Figure 5. Abrasion-erosion specimen at conclusion of testing, mixture Kinzua G3.

Figure 6. Abrasion-erosion specimen at conclusion of testing, mixture Kinzua Gl(SF).

Figure 7. Abrasion-erosion specimen at conclusion of testing, mixture Kinzua G3(SF).

Figure 8. Abrasion-erosion specimen at conclusion of testing, mixture Gl (Epoxy).

a continue of continues and substitution and an area of the continues of t

Figure 9. Abrasion-erosion specimen at conclusion of testing, Kinzua cores.

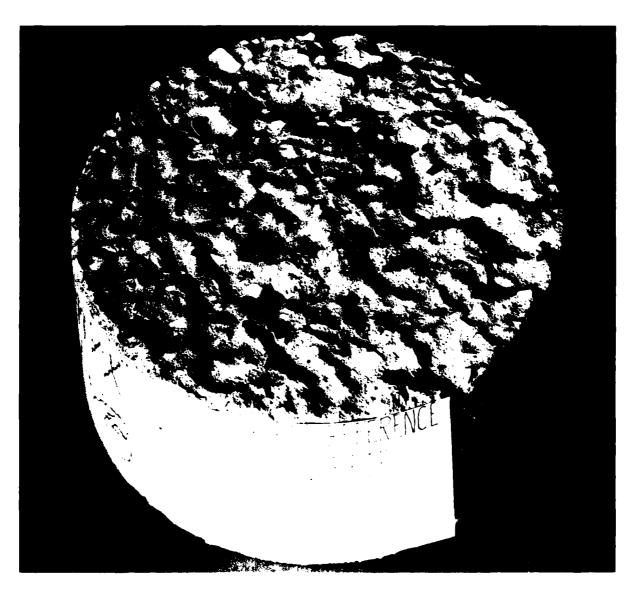
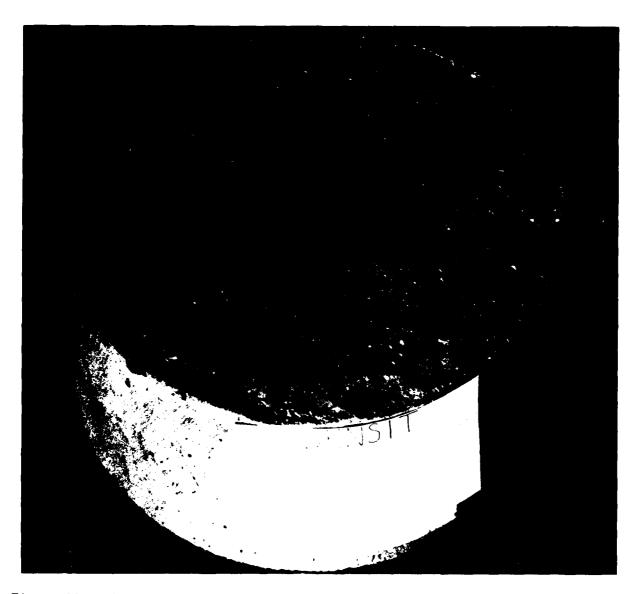



Figure 10. Abrasion-erosion specimen at conclusion of testing, chert reference concrete.

things are the companies and an area and a companies are and the companies of the companies

Figure 11. Abrasion-erosion specimen at conclusion of testing, Densit concrete.

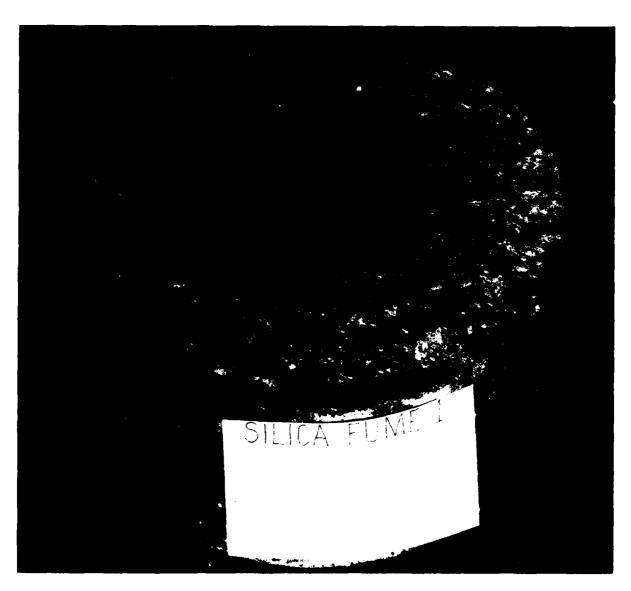


Figure 12. Abrasion-erosion specimen at conclusion of testing, Silica Fume 1.

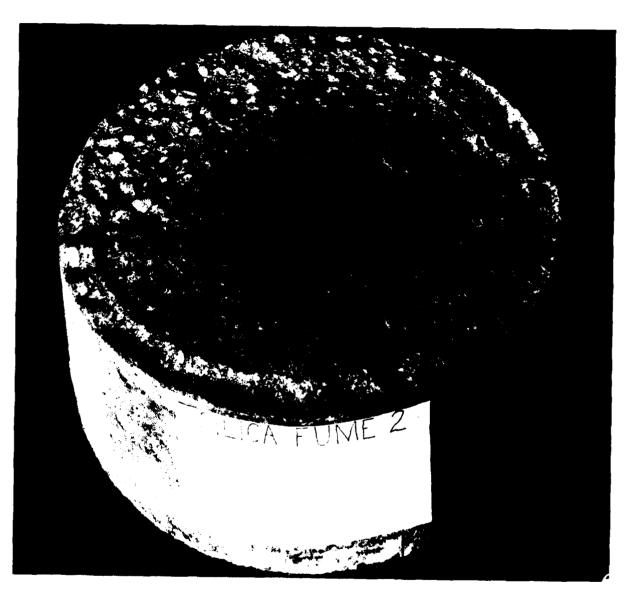


Figure 13. Abrasion-erosion specimen at conclusion of testing, Silica Fume 2.

THE PROPERTY OF THE PROPERTY O

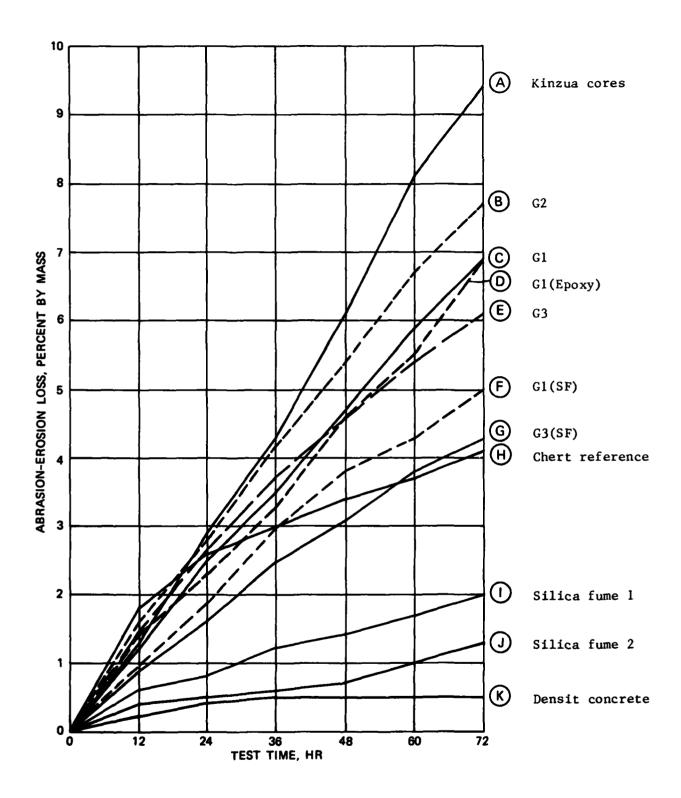


Figure 14. Comparison of abrasion-erosion performance of tested concretes

APPENDIX A: PETROGRAPHIC REPORT ON AGGREGATES USED

MEMORANDUM FOR T. C. HOLLAND, CONCRETE TECHNOLOGY DIVISION, STRUCTURES LABORATORY
SUBJECT: Limited Petrographic Examination of Four Aggregate Samples

1. These materials are under consideration as concrete aggregates for repair of the stilling basin at Kinzua Dam. Each sample was a small bag of unsized material identified as follows:

a. Coarse aggregate.

- (1) <u>PITT-8 G-1</u>. Limestone from Neidigh Bros. Quarry, Boalsburg, Pennsylvania.
- (2) PITT-8 G-2. Diabase from New York Traprock Co., West New York, New York.
 - (3) PITT-8 G-3. Diabase from Luck Quarry, Leesburg, Virginia.
- b. Fine aggregate PITT-8 S-1. Glacial sand from Buffalo Slag Co., Franklinville, New York.
- 2. Each sample was inspected visually and with a stereomicroscope. A representative portion of each sample was ground to pass a 45- μ m (No. 325) sieve and examined by X-ray diffraction (XRD). A slurried slide of the sand was treated with glycerol and examined by XRD.
- 3. <u>PITT-8 G-1</u>. The particles were fine-grained blocky dolomitic limestone with subangular to subrounded edges. Mineral constituents were calcite, dolomite, quartz, and clay-mica. The sample was coated with dust and was medium dark gray (N4). (1) The texture and composition of this rock suggested that it could be potentially reactive when used with high-alkali cement. This can be evaluated by length-change testing of the rock if an adequate sample is available (i.e., larger particles).
- 4. <u>PITT-8 G-2 and PITT-8 G-3</u>. These two samples of igneous rock were both listed as diabase. A more correct rock name by the classification system of Shand⁽²⁾ would be gabbro. X-ray diffraction showed each to consist of plagio-clase feldspar, pyroxene, amphibole, and some quartz and clays. Color was dark gray (N3).⁽¹⁾ Particle shape was blocky to pyramidal. Sample G-2 was much coarser grained than G-3. Sample G-3 seems to contain more clayey material and may be less durable because of this difference.

⁽¹⁾ The Rock Color Chart Committee, E. N. Goddard, Chairman, "Rock Color Chart," 1975, The Geological Society of America, Boulder, Colorado.

⁽²⁾ Shand, S. J., Eruptive Rocks, 3rd ed., John Wiley and Sons, Inc., New York, New York, 1947.

WESSC 15 July 1982

SUBJECT: Limited Petrographic Examination of Four Aggregate Samples

5. PITT-8 S-1. This sand was composed of rock and mineral fragments with larger particles ranging from blocky to tabular. Recognizable rock types were limestones and sandstones. XRD showed the presence of quartz, plagioclase and potassium feldspars, calcite, dolomite, and clays. The clays were chlorite and/or vermiculite, clay-mica, and maybe kaolinite. There was no swelling clay.

JOYCE C. AHLVIN

Concrete Technology Division

Structures Laboratory

APPENDIX B: EPOXY DATA SHEET

Sikadur 362 Epoxy modifier for concrete and mortar

Technical Data

Description:

Sikadur 362 is a pre-proportioned, 2-component, high-solids liquid epoxy-resin system. Components are supplied in kit form.

Developed exclusively by Sika, it is formulated specifically for use in portland-cement concretes and mortars. Sikadur 362 will not affect setting time.

When added to your mix, '362' gives you epoxy-modified concrete and mortar with unique advantages . . . Sikadur forms a continuous film that coats your coarse aggregate, bridges the micro cracks in the cement-gel matrix, and produces a structural material of greater durability.

Where to Use:

- Developed to help you patch and resurface concrete.
- Especially suitable for bridge decks, parking structures, on-grade slabs, hydroelectric facilities, water-treatment plants.
- Produces high-performance concrete and mortar at costs between conventional concrete and mortar and epoxy concrete and mortar.

Advantages:

- Added to conventional concrete and mortar, Sikadur 362 will substantially increase strengths over standard mixes 2 ways:
 - a) reduces water content to minimize shrinkage cracking
 - b) adds epoxy benefits to improve
 - compressive strength
 - resilience
 - tensile strength
 - flexural strength
- Produces high adhesion to existing concrete to create a bond in the composite that cannot be separated at the glue line.
- Reduces absorption.
- Freeze/thaw resistance increased dramatically no change in dynamic modulus (physical properties) was reported even after 362-modified concrete was subjected to 950 cycles of rapid freeze/ thaw, per ASTM C-666 procedure.
- More economical than all-epoxy mixes, 362-modified mixes are ideal for bridge decks, parking structures, etc.
- Thermally compatible for outdoor patching and surfacing in both shallow and deep replacement patches.
- May be used on grade; 362 does not produce a vapor barrier.

TECHNICAL NOTES:

Packaging: Sikadur 362 is packaged in 2-gallon kits.

Shelf Life: 1 year.

Storage Conditions: Keep in cool, dry place.

Color: Straw when mixed.

Pot Life: Approx 30 to 40 minutes.

Proportion: Use Sikadur 362 at the rate of 2 gal/sack of cement, one kit per bag.

Dosage may be increased for special applications.

Limitations: Sikadur 362 concrete and mortar should be mixed with as low a water

content as is consistent with proper placing and consolidation.

Not recommended for use at temperatures below 50F. Keep material between 65F and 85F during mixing. Do not intermix with organic

solvents.

Material not to be used with air-entrained cements or with any air-

entraining agents.

Do not feather-edge. Minimum thickness is ½ in.

SIKA A Comp 9.69 1b/ga1

B Comp 8.52 1b/ga1

2 00mp 0132 25, ga.

26 Aug 82 List price 2 gal unit \$53.25/gal

or \$106.50 per kit

HOW TO USE:

Surface Preparation: Concrete surface must be clean and sound. It must be pre-dampened,

but be free of standing water.

Chip surface to remove laitance, grease, oil, curing-compounds, impregnations, waxes, friable concrete, and other bond-inhibiting materials. Surface must be roughened to assure optimum bond of

the topping; chip to a 1/4-in. profile.

Mixing:

WOODER, BRIDERING BRIDERS

AND STATE OF THE PROPERTY OF THE PARTY OF TH

Prepare a Bond Coat (for all applications.)

Mix 1 sack portland cement, 188 lb sand, 4 to 4.5 gal water in mortar mixer, and hold.

Pre-mix 2-gal unit of Sikadur 362. Add contents of B component to A component container, mix with Sika paddle on low-speed (400- to 600-rpm drill). When blended, add to mortar mix and agitate until epoxy-modified bond coat is uniform. Add up to 3.5 gal additional water as necessary for fluidity.

Scrub into surface using stiff-bristled broom. Apply topping before bond coat loses moisture.

Patching/Topping Mortar

Portland cement 1 sack Concrete sand 282 lb Sikadur 362 2 gal Water 5.5 gal

Approx yield 3.2 cu ft

To mix, follow bond coat procedure. Use only that amount of water to give you proper handling and consolidation.

Concrete Mix

Portland cement 1 sack Concrete sand 296 lb %-in aggregate 163 lb Sikadur 362 2 gal Water 5.5 gal

Approx yield 4.2 cu ft

Mixing procedure: Place coarse aggregate in mixer and add all of Sikadur 362 A and B components. Mix for approx 3 min. Add sand, some water, then cement. Mix until blend is well dispersed. Add enough or all of remaining water to obtain desired slump. (Water content will vary depending on moisture in sand.)

Note: Mixes are only suggested as guides because local aggregates vary. Your working mix proportions, therefore, should be based on available aggregate.

Application:

Place 362 epoxy-modified concrete or mortar in conventional manner. Finish with a vibrating screed. After screeding, allow bleed water to come to the surface, then finish with steel trowel. Wipe trowel with Sika Equipment Cleaner or other solvent to make it easier. Do not feather-edge Sikadur 362 mixes. Minimum thickness is ½ in.

Curing:

Cure with wet burlap and/or polyethylene sheeting for a minimum of 24 hr. A 3-day cure is recommended.

Contact SikaService for additional information.

Caution:

A Component — For Industrial Use Only! Warning! May cause skin sensitization or other allergic responses. Avoid inhalation of vapor. Use good ventilation particularly if material is heated or sprayed. Prevent all contact with skin or eyes. If contact with skin occurs, wash immediately with soap and water. In case of contact with eyes, flush immediately with water and contact a physician.

B Component — DANGER! CAUSES (SEVERE) BURNS. Contains alkaline amines: strong sensitizer. Do not get in eyes, on skin, on clothing. Avoid breathing vapor. Keep container closed. Use with adequate ventilation. Wash thoroughly after handling.

FIRST AID: In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes. Remove contaminated clothing and shoes. Call a physician. Wash clothing before reuse. Discard contaminated shoes.

WEAR PROTECTIVE CLOTHING, GOGGLES, GLOVES, AND/OR BARRIER CREAMS.

Keep out of reach of children. For industrial use only.

Guarantee

Every reasonable precaution is taken in the manufacture of all products and compiling of data to assure that they shall comply with Sika's exacting standards. To the best of our knowledge information given is correct and the products as sold are satisfactory for the purpose proposed by Sika. However, no guaranty of results using these products and data is given because every possible variation in methods of use or conditions under which they are applied cannot be anticipated. Sika is not responsible if the material is used in a manner to infringe patent held by others.

Distribution

Distributors in principal cities. National network of Sika-approved Applicators.

District Offices

213-792-5127
415-775-1551
303-458-7452
203-646-0385
813-688-8600
404-761-7143
312-298-2810
314-533-1683

Al (Atlanta) 404-761-7143

LA, Baton Rouge ... 504-927-1859 MA, Boston 617-631-9247 MD, Rockville ... 301-340-7348 MI, Southfield ... 313-552-1012 MO, Kansas City ... 913-381-0333 NJ, Cherry Hill ... 609-662-3595

NJ, Lyndhurst 201-933-8800

NY, Middletown 914-343-3554

NC. (Chester. SC) 803-377-3272
PA. Philadelphia 215-887-8010
PA. Pittsburgh 412-279-1176
SC. Chester 803-377-3272
TX. Dallas 214-661-3610
TX. Houston 713-461-3010
WA. Redmond 206-883-8758
WI. Milwaukee 414-272-3100

er 308. Sika is a registered train USA. Printed in USA.

Executive Office

P.O. 297, Lyndhurst, NJ 07071 • Tel. 201-933-8800 • TWX 710-989-0288

Sika Corporation

APPENDIX C: EPOXY MANUFACTURERS CONTACTED

Following is a list of manufacturers contacted during the attempt to find epoxies suitable for use in fresh concrete. If the company had a suitable product, the product name and approximate cost of epoxy only per cubic yard of concrete are given. Costs are based upon list price information furnished by manufacturers during September 1982.

- Rocky Mountain Chemical Casper, Wyoming 307-265-3227 Product: Product No. 7, \$342.
- Sika Corporation
 Lyndhurst, New Jersey
 201-933-8800
 Product: Sikadur 362, \$639.
- Dural International Corp.
 Deer Park, New York
 516-586-1655
 Product: Duralguard, \$454.
- 4. American Metaseal Co. Carlstadt, New Jersey 201-933-1720 Product: None
- 5. Protex Industries, Inc. Denver, Colorado 302-935-3566 Product: None
- 6. Thermal-Chem, Inc.
 Elk Grove Village, Illinois
 312-364-0364
 Product: None
- 7. General Polymers
 Cincinnati, Ohio
 513-631-0649
 Product: Product data supplied
 is for an epoxy mor-

is for an epoxy mortar system.

8. Adhesive Engineering Co. San Carlos, California 415-592-7900 Product: None

- 9. Delta Plastics Visalia, California 209-732-4823 Product: None
- 10. Epoxy Industries
 Ravena, New York
 518-745-6193
 Product: None
- 11. Concrete Epoxy Technical
 Systems, Inc.
 Trevose, Pennsylvania
 215-322-7310
 Product: CETS 112, approximately \$350.

FILMED

10-83