" FD-A133 447 PROUST: KNOWLEDGE-BRSED PROGRAM UNDERSTANDING(U)> YALE 1/1
UNIY NER HAYEN €T DEPT OF COMPUTER SCIENCE
W L JOHNSON ET AL. AUG 83 YALEU/DCS/RR-285

UNCLASSIFIED N@@ei14-82-K-8714 FsG 9/2 . NL

HEEENEEEEEER
SEEEREEREEEN
EEERRRENN:E

I 0 :'2 | FX] ﬁ
—_— s B2 22
= ¥

¥ g §20
)
m||l.25 A4 W16

MICROCOPY RESOLUTION TEST CHART |
MATIONAL BUREAU OF STANDARDS-1963-A

A e
ERERE N .
2 I I IR I, A

A R e A R N A T A A A A e i A A A A S IR AR A > e e

{ 0L

«“®y 9 l.‘
alrl Sl s

+ U

AD-Al133%7

0 . . . rild
AR AR

) Gl
[AR5 MR Y

iy
BeX
PO &

PROUST: Knowledge-Based Program Understanding
V. Lewis Johnson.and Elliot Soloway
YaleU/€SD/RR 25
August 1933

e —————— e ——

I NP,

R
B O S T Y S

S DTIC
e 1 ELECTE
é ocT 121983é

L
K

“ YALE UNIVERSITY D
; DEPARTMENT OF COMPUTER SCIENCE

DISTRIBUTION STATEMENT A

Approved for public release) 8 3 l O l 2 l 49

Nistribution. Unlimited

..................
..................

R R it i M B il i il 20 DR S TSR AP A OGN Aty
| eamiacidasie SLBL Ot L OIS CLE g Ay i I s A S i R SRR A ISR S A A A A : T o

PROUST: Knowledge-Based Program Understanding
W. Lewis Johnson and Elliot Soloway
YaleU/€SD/RR #285
August 1983

L]
73 PRI TN O e v A) Rk aiaaa ava Ty

el ol ol

L . Ce .
..... . P
P DRI W W S S I WP

—yy—— an i Ny hd Bt AR St and
P e s i AP S e - Y F} E-a Y - -

SECURITY CLASSIFICATION OF THIS PAGE (When Dere Entered)

REPORT DOCUMENTATION PAGE BEPORE COMBL ETING ¥ ORM
N —REPORT NUMBER TOOVT ACCEISION WOJ 3. RECIPIENT'S CATALOG NUMBER
#285 /')D AISIYY
4. TITLE (and Subtitle) $. TYPE OF REPONRY & PEMOD COVERED
PROUST: Knowledge-Based Program Understanding Technical
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a) . CONTRNACT OR GRANT wumative) |
W. Lewls Johnson and Elliot Soloway - N00014-82-K-0714
I3 PERFORMING ORGANIZATION NAME AND ACORESS [PnoclA'oJl.LKtla}r'?T- “o:".a_t_f'—.:. ASK

Department of Computer Science
'Yale University

New Haven, CT 06520 NR 154-492

19, CONTROLLING OFFICE NAME AND ADORESS 12. AEZPONT DATE

Personnel and Training Research Programs August 1983
J0ffice of Naval Research (Code 458) 3. NUMBER OF PAGES

Arlington, VA 22217
[Ta MONITORING AGENCY NAME & ADORESS(// differant frem Centrelling Office) | 15. SECURITY CLASS. (of this reper)

unclassified

[Ta. EEE “ASSI FICATION, DOWNGRADING |
HEDULE

e —
18. DISTRIBUTION STATEMENT (of ivie Report)

Approved for public release; distribution unlimited

17. DISTRISUTION STATEMENT (of the adetract entered In Bleck 20, I ditferent trom Report)

1. SUPPLEMENTARY NOTES

19. XEY WORDS (Centinue on reverse side if y and 1§ y by Block number)
Artificial Intelligence Debugging Aids
Expert Systems Programming Plans
(Automatic Program Understanding Tutoring Systems
\\ 20. APSTRACT (Continue an reverss olde It y and | ty by block numbet)
> This paper describes a program called PROUST which does on~line analysis and

understanding of Pascal programs written by novice programmers. PROUST takes a
input a program and a non-algorithmic description of the program requirements,
and finds the most likely mapping between the requirements and the code. This
mapping is in essence a reconstruction of the design and implementation steps :
that the programmer went through in writing the program. A knowledge base of i

programuing plans and strategies, together with common bugs associated with then], j
is used in constructing this mapping. Bugs ar. discovered W«)r"

DD "°“" 1473 coi1tion oF 1 NOV 88 i CesOLETE

JAN 73
$°N 0102 LF-014- 660! SECURITY CLASPICATION OF THiS PAGE (Uhen Date Bnteren)

.....
. ._._... A e WS . . atel e . L. l
PP PP AU IR P T VR W AT WA S POPRP. SR IPL. DPE, BY WADL L NS T WA YOI W WU W WO WAL Vi WP Wl WP UL UL IP WU Y Sy —t

|

SECUMTY CLASSIFICATION OF TuIS PAGE (When Dase Bntered

A

e2a's

:>relating plans to the code; PROUST can therefore give deep explanations of
program bugs by relating the buggy code to its underlying intentionms.

R

DM WLS)

. ——

| Accesiion Yor .
A NTIS GRAXI ¥
: DTIC TB]

Unannonnced i3
o Justification .]

._‘

By.
D;§}r1bution/
Availability Cales

peee——— -

e

Lvall and-or

‘ Dist Special

- ' ' !E\)

LA

WAL

A %

..-'.‘

b Cala¥aut oty

Y

$/N 0102- L& 014- 6401

b

NG

SECURITY CLASBIFICATION OF TRIS PASE(Then Date Entered)

. .

.

LI U R PP YA Tl Sl el Sl WP -l P I WP W —

5 - Stall Ny - ' “a SN A, S A P e B A A T T e e R N i e P . TP
e

I

%

S

X

%
o1
:;:.::

N

N

‘

{-f PROUST: Knowledge-Based Program Understanding
5 W. Lewis Johnson
- Elliot Soloway

AN

3
.
o

s
July 1983

N

:';?: Yale University

Computer Science Department

R New Haven, Ct. 06520

:':: 203-436-0606

Ny
= This work was co-sponsored by the Personnel and Training Research Groups. Psychological
_, Sciences Division, Office of Naval Research and the Army Research Institute for the Behavioral
.'- and Social Sciences, under Contract No. N00014-82-K-0714, Contract Authority ldentification
™ Number, Nr 154-492. Approved for public release; distribution unlimited. Reproduction in whole
(.{;) or part is permitted for any purpose of the United States Government.
3

3

o

This paper describes a program called PROUST which does on-line analysis and understanding of
Pascal programs written by novice programmers. PROUST takes as input a program and a non-
algorithmic description of the program requirements, and finds the the most likely mapping
between the requirements and the code. This mapping is in essence a reconstruction of the
design and implementation steps that the programmer went through in writing the program. A
knowledge base of programming plans and strategies, together with common bugs associated with
them, is used in constructing this mapping. Bugs are discovered in the process of relating plans
to the code; PROUST can therefore give deep explanations of program bugs by relating the buggy
code to its underlying intentions.

1. Introduction: Motivation and Goals

Our goal is to build a tutoring system which helps novice programmers to learn how to
program. This system will have two components: a programming ezpert which can analyze and
understand buggy programs, and a pedagogical expert that knows how to effectively interact with
and instruct students. We have focused our attention on the first component, with the objective
of building a system that can be said to truly understand (buggy) novice programs.! In this
paper, we will describe the theory and processing techniques by which our analysis system,

PROUST, understands buggy and correct programs.

Bugs in programs are sections of code whose behavior fails to agree with the program
specification. Although the presence of bugs may be indicated by various kinds of anomalous
program behavior, in general bugs are not properties of programs, but rather are properties of
the relationship between programs and intentions. [9, 10] For example, consider the program in
Figure 1-1. The programmer has written a program that reads in 2 number and then computes
the average of all the numbers between it and 99999, in integer increments. This is not what the
stated problem requires; presumably the programmer was trying to solve the problem, but a bug
has altered the program’s behavior. How do we determine what this bug is? Note that the
programmer first does a Read into the variable New, and then increments it by 1. Based on our
theory of programming knowledge, (17, 12, 18, 1] we would hypothesize that the student thought
that incrementing the variable New would return the next value of New; if incrementing Count gets
the next INTEGER value, then incrementing New should get the next input value! The student has
thus made an overgeneralization: adding one to a variable returns the next value of that
variable. The key element of the above analysis is the construction of a relationship from a piece
of code to a problem goal; the mechanism for that comstruction was knowledge about how

IMiller's SPADE-0 11} is another example of a programming tutor; unlike PROUST, it constrains the program
construction process so that less machinery is required for understanding and more effort can be devoted to pedag-gy.

.................
.......

S AT o A - i oA g By o T T T A N S T N WV NN T RTRT R R T s s
1
Abstract

programs are typically constructed, together with knowledge about novice misconceptions.

Problem: Read in numbers, taking their sum, until the number 99999 is seen. Report
the average. Do not include the final 99999 in the average.

1 PROGRAM Average(input, output);
2 VAR Sum, Count, New, Avg: REAL;
3 BEGIN

4 Sum := 0;

5 Count := 0;

8 Read(New);

7 WHILE New<>99999 DO

8 BEGIN

9 Sum := Sum+New;

10 Count := Count+l;

11 New := New+l

12 END;

13 Avg := Sum/Count;

14 Writein('The average is ', avg);
15 END;

PROUST output:

It appears that you were trying to use line 11 to read the next input value. Incrementing NEW
will not cause the next value to be read in. You need to use a READ statement here, such as yon
use in line 6.

Figure 1-1: Example of analysis of a buggy program

While we have not built a pedagogical expert yet, it would certainly need the tvpe of
information produced in the above analysis. That is, an intelligent tutoring system would need
to know:

e what the bugs in the student’s program are, and where they occur;
o what the student was intending to do with the buggy code;

¢ what misconceptions the student might have which would explain the presence of the
bugs.

What is an appropriate method for deriving information such as this from a program? One
way might be to compare the input-output behavior of the program against the expected input-

L LN

output behavior. The information which this approach would provide is insufficient, particularly

LI 4

with larger programs, because a number of bugs might result in the same input/output behavior.

°BIP [21] makes use of input/output behavior in its program analysis; consequently it only deals with ~mail
programming problems.

MY © SRTArSTRIN OO 8 3

,
/3

'i
-,
|'.-
.0
b

A Shn Jase Sgn e Jiage sies Jiane e g e iiane Jhaes diuiie June et A Jhme i i diat

For example, many different bugs can cause a program to go into an infinite loop. so simply
knowing that a program goes into an infinite loop is insufficient for determining what the bug is. |
Enhancing input-output analysis with dataflow analysis, or other compiler analysis techniques, |
will not help in cases where the code does not have any obvious structural anomalies, such as in

the preceding example.

What is missing in the above methods is a detailed understanding of the relationship between

-;ff the program text and the program’s intentions. We suggest that a method for building such a 1
f' description involves (1) recreating the goals that the student was attempting to solve fi.e.. what
problem the student thought he was solving), (2) identifying the functional units in the program
h that were intended to realize those goals. In effect, the programming expert needs to analyze the

L3 buggy program by reconstructing the manner sn which st was generated. The claim is that the
trace generated by the programming expert does actually correspond to what the student was
thinking, although not necessarily to the utmost detail; the pedagogical expert would then use

ﬁ that trace in subsequent tutoring ac:t,ivit,y.4 In this paper, we briefly highlight the theorctical
basis for reconstructive program analysis, and we detail how PROUST goes about building the
T reconstruction.

2. The Role of Plans in Program Understanding
Knowledge about what implementation methods should be used in programming is codified in

a PROUST in the form of programming plans. A programming plan is a procedure or strategy for
-
- realizing intentions in code, where the key elements have been abstracted and represented

explicitly. It is our position that expert programmers make extensive use of programming plans,
rather than each time building programs out of the primitive constructs of a programming
N language. This claim is based on a theory of what mental representations programmers have and
. use in reading and writing programs. In [17, 8, 19, 20] we describe various empirical experiments
which support our theory. Thus, PROUST is directly based on a plausible, psychological theory of
the programming process. Note that codifying programming knowledge in term< of plans is not

>,
-~ unique to PROUST: the Programmer's Apprentice, [12] for example, also makes extensive use of
', <
-t plans.”

‘ Figure 2-1 is an illustration of how plans are realized in programs. The figure shows a correct
»

: - 30ne area in which many compilers do a reasonable job is analyzing syntactic errors. Although it would he
: worthwhile to construct a parser which produces error reports aimed at novices, this is outside of the scope of cur

current work.

Most intelligent tutoring systems at least tacitly assume such a correspondence. [7, 8, 3|

5Sniffer {15] is a prototype of a debugging system which is based upon the Programmer's Apprentice.

i

‘-'.4‘. l““‘l'l

implementation of the problem shown in Figure 1-1, together with four plans that this program
uses. Two of them, the RUNNING TOTAL VARIABLE PLAN and the COUNTER VARIABLE PLAN, are
variable plans, i.e. they are plans which generate a result which is usually stored in a variable,
Such plans typically have an initialization section and an update section, and carry information
about what context they must appear in, e.g. whether or not they must be enclosed in a loop.
The other two plans, the RUNNING TOTAL LOOP PLAN and the VALID RESULT SKIP GUARD, are
control plans; their main role is not to generate results but to regulate the generation and use of
data by other plans. The RUNNING TOTAL LOOP PLAN is a method for constructing a loop which
controls the computation of a running total; in this program it also controls the operation of the
COUNTER VARIABLE PLAN. The VALID RESULT SKIP GUARD plan is an example of a skip guard.
i.e. a control plan which causes control flow to skip around other code when boundary conditions
occur. In this case it prevents the average from being computed or output when there is no
input.

Problem: Read in numbers, taking their sum, until the number 99939 is seen. Report
the average. Do not include the final 99889 in the average.

PROGRAM Average(INPUT, OUTPUT);
VAR Sum, Count, New, Avg: REAL;

-

Counter Variable BEGIN
Plan = ==emmemee- > Count :=0;
| --=-> Sum := 0; Running Total Loop Plan
| | Read(New); <
Running Totall | WHILE New <> 99999 DO <------- l
Variable Plan| I BEGIN |
| meesee- > Sum := Sum + New; <--=--=- |
-------------- > Count := Count + 1; |
Read(New) ; Commmmoe-
END; Valid Result Skip Guard
IF Count > 0 THEN <---
BEGIN <---=---=-=-= ---|
Avg := Sum/Count; <==-==-cocmmm=ocoee !
WriteIn(Avg); <--- - I
END < --- |
ELSE <--m==smomooomomommoeoceceeeeee |
Writeln('no legal inputs'); ¢----=--=-= |
END.

Figure 2-1: Programming Plans

Recognition of plans in programs forms the basis of our approach to program understanding.
But plan recognition alone is insufficient. Novices often use plans that would never occur to an
expert, because they do not have a good sense of what is a good plan and what is not. PROUST's
knowledge base of plans has therefore been extended in order to include many stylistically
dubious plaus.6 Unfortunately, the more alternative plans there are in the system. the harder it

%The process of collecting novice rograms and - alyzing them is deseribed in [2], 9], and [10).

LI NPT IE S ST .J

A

~
-~

¥
)
Rar

e P20
1

“..
ettt

oA
Ty

i
e N L4
KIS

Ve

~ Iy | I.' LS
,*_;’_.«‘_;{- 2

Y -
.

,.
LAY A

198y 5

KA

R L W T E S g L w FTR TE T wov

(44

is to determine which plans the programmer was using. Further::ore, program behavior depends
not only upon what plans are used, but how they are organized; it is thus possible for a program
to use correct plans yet still have bugs. In order to cope with these problems a method is needed
for relating plans to other plans, and to the programmer's underlying intentions. This process,
and the way it is used to search for the right interpretation of the program, is described in
Section 4.

3. A Typical Problem in PROUST’s Domain

PROUST's knowledge base is currently tailored to analyze the programming problem in Figure
3-1.7 This problem (hereafter referred to as the Rainfall Problem) is a more complex version of
the averaging problem shown in Figure 1-1. Among other computations, a program that solves
this problem must

1. count the number of valid inputs (i.e., days on which there was zero or greater
rainfall), and

2. count the number of positive inputs (i.e., days on which rain fell).
Novices attempt to realize these two goals in a variety of correct and buggy ways. Since coping
with variability is one of PROUST's main objectives, examining how PROUST handles this specific
set of goals should be illustrative. Thus, in what follows, we will focus on PROUST'S techniques for
processing {ragments of code that implement these goals.

Noah needs to keep track of rainfall in the New Haven area in order to determine when to launch
his ark. Write a program which he can use to do this. Your program should read the rainfall for
each day, stopping when Noah types “99999”, which is not a data value, but a sentinel indicating
the end of input. If the user types in a negative value the program should reject it, since negative
rainfall is not possible. Your program should print out the number of valid days typed in. the
number of rainy days, the average rainfall per day over the period, and the maximum amount of
rainfall that fell on any one day.

Figure 3-1: The Rainfall Problem

4. Relating Goals to Code via Plans
In order to relate the plans in a program to the program requirements, PROUST makes explicit
the goal decomposition underlying the program. A goal decomposition consists of
o a description of the hierarchical organization of the subtasks in a problem.
e indications of the relationships and interactions among subtasks, and

¢ a mapping from subtask requirements (goals) to the plans that are used to implement
them.

"We are cuzrently extending PROUST to handle a range of introductory programming problems.

S Ak a2 shi alab o At AL S EEOARMEGER LN SRR i R R N

ii*t

i

i 6

‘.:.-_: The plans which a goal decomposition specifies are matched against the program; this results in a
mapping from program requirements to individual statements.

N In attempting to understand all except the most trivial programming problems, two issues

39

b: must be squarely faced:

e
Le.
ey
i

o the goal decomposition of a problem may not be unique, and
e one program may be associated with more than one goal decomposition.
We deal with each issue in turn in the next two sections.

4.1. The Space of Goal Decompositions and Programs

Figure 4-1 illustrates how alternative goal decompositions can lead to different program
implementations. A single problem description, at the top, can result in several different goal
decompositions, which in turn result in a number of different programs, depending upon which
plans are used. Some of these programs may be correct, others buggy. Buggy programs are
either derived from incorrect goal decompositions or from incorrect implementations of correct
goal decompositions. Each path from the problem description down to an individual program is
a program interpretation; we call this set of possible derivation paths the interpretation space
associated with a problem.

PROBLEN DESCRIPTION

GOAL DECOMPOSITION 1 Gi::/gECOHPOSITION 2 COAL DECOMPOSITION 3
CORRECT CORRECT CORRECT CORRECT CORRECT
PROGRAN PROGRAM PROGRAM PROGRAM PROGRAM
BUlGY BUGGY BUCGY BUGGY BUGGY BUGGY BUGGY BUGGY BUGCY BUGGY
PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAM PROGRAN PROGRAN PROGRAM

Figure 4-1: Search space of possible programs

Figures 4-2 and 4-3 illustrate two different solutions of the Rainfall Problem (Figure 3-1) and
their corresponding goal decompositions. We focus here on two specific aspects of the problem:?
(1) counting the valid inputs (daily rainfall greater than or equal to zero), and (2) counting the
number of rainy days (daily rainfall strictly greater than zero).

Figure 4-2 shows a fragment in which these two goals are realized directly. First, a COUNTER
VARIABLE PLAN is used to count the valid ipputs; this is realized in the code that computes the

8There are other differences in the goal decompositions of these programs besides the ones mentioned here.
However, we will not analyze them in this discussion.

-

P
'.'.A'd

P

A !

o

R .-‘

<. value of the variable Valid. Second, the GUARDED COUNTER VARIABLE PLAN is used for connting

. the positive inputs; the variable Rainy is used in this plan.

While the program in Figure 4-3 also prints out the number of valid inputs and the number of
positive inputs, the goal decomposition in this program is different. Instead of the two gouls of

. |l .l K .- .4 -
Wl O

counting the valid inputs and counting the positive inputs, the program in Figure 4-3 uses three

goals to achieve the same end: (1) count the zero inputs, (2) count the positive inputs, and (3)
add these two counters together to derive the valid day total. The goal of counting the positive
inputs is implemented with a GUARDED COUNTER VARIABLE PLAN, operating on the variable
Rainy. The goal of counting the zero inputs is also implemented with a GUARDED COUNTER

PO

g
”

4ot

- VARIABLE PLAN, operating on the variable Dry. The counters are combined with an ADD PARTIAL
RESULTS PLAN, resulting in the variable valid.

*

» . e e
2 4 & #5882

4.2. Resolving Ambiguous Interpretations
If the mapping from problem descriptions to programs is to be rich enough to generate a

sufficiently wide variety of programs, ambiguity is an unavoidable consequence, i.e. two diffcrent
paths in the interpretation space can lead to the same program. This situation is exaccrbated

W EORY

when buggy programs are allowed: bugs add uncertainty to the analysis. For example. if one

)
L F

encounters a statement New := New+l in a correct program, one can be fairly certain th:t it is
part of a counter plan. But if the program is buggy, as in Figure 1-1, one must also consider the
possibility that this statement is intended to input new values; the only way of determining

i2alststs

which is the proper role is by looking at the program as a whole and determining which

(‘n
P

i

interpretation is more consistent with the interpretations of the other parts of the program. The
ability to enumerate and evaluate alternative interpretations is a key processing technique for a
- system that attempts to understand buggy programs.

> In Figure 4-4 we give an example of the results of PROUST's attempt to resolve ambiguons
interpretations. Figure 4-4 shows a fragment of code which might appear in a novice solution to
the Rainfall Problem in Figure 3-1. We have focused on the counter variables in the program,

Valid and Rainy; the rest of the main loop of the program is shown so that the surrounding
context may be seen. Instead of counting the positive inputs (Rain>0) and the valid inputs

e, _l‘ .4 . (.-:,

(Rain>=0), this program counts the positive inputs and the zero inputs, and does mot count the
valid inputs.

-

RN

There are two possible interpretations for this code, each of which results in a differcnt
explanation for the bugs. According to one interpretation, shown on the left side of the figure.
" the programmer intended to implement the valid input goal and the positive input goal directly.
The plans used are COUNTER VARIABLE PLAN and GUARDED COUNTER VARIABLE PLAN: the
resulting variables are Valid and Rainy, respectively. Valid appears to count only the the zero

o 08

LN

-
"
,
ke
«
-~

el

. 4 e A NI

[y
[

oA
".‘
I’\
i 8
o
A
w "y
:‘33 Plans Goa! Decoaposition
{ Plan: RUNNING TOTAL LCOP PLAN
‘_‘-::. 1. Get input, stopping at 99999
:-_*: 2. Check that input ie non-negative
Eams” e {
-: Plan: COUNTER VARIABLE PLAN 6. Count valid inputs
:—.3 Plan: GUARDED COUNTER VARIABLE PLAN 7. Count positive inpute
o
\:; PROGRAM Rainl (INPUT, QUTPYT);
3 CONST STOP=99999;
o VAR
N Sum,Rain, Max, Ave: REAL;
. Valid,Rainy: INTEGER;
’ BECIN
foe. Write!n('Enter rainfall’);
‘-:"; Sum:=0;
= Valid:=0;
.::] Rainy:=0,
L Max:=0;
- Readln;
« Read (Rain);
LS WHILE Rain<>STOP
e BEGIN
IF Rain<O THEN
'r"{ Writeln(Rain:0:2,"’ ssible rainfall, try again’)
13 ELSE
BEGIN COUNTER VARIABLE PLANGememmmeeeee0un ¢ valid inpute
Sum:=Sum*Rain;
Sl Valid:=Validel;
:f:; IF Rain>Max THEN 4
o Max:=N; UARDED CCUNTER VARIABLE PLAN@m===Cloynt poeitive inpute
& IF Rain>0 THEN
] Rainy:=Rainy+1;
END;
ono Write!n('Enter rainfall');
~': Read!n;
:.’- Read(Rain)
~ END.
- Writeln;
Writeln(Valid:0,' valid rainfails vere entered.’');
IF Valid>0 THEN

N BEGIN

e Ave:=Sum/Valid;
::: Writein('The average rainfall was ' Ave:0:2,' inches PER DAY ’):
Tt Writeln('The highest rainfall was * ,Max:0:2,' Inches.’);
" WRITELN(’There were ' ,Rainy:0,’ rainy days in this period. ’)

3

END

3 -

END.

.
.

..
R
el

Figure 4-2: Simple goal decomposition

PN

e "
IR

—T -
LU 51 0%

‘. ;‘ " l‘. ".. ".'.

.

PR SRR 5.4

PR R] ‘Jn_.‘.‘

DL 2 s ats s Aa

K]
X
’
"
o
<

L 4

9
Plaas Goal Decosposition
Plan: RUNNING TOTAL LCOP PLAN
1. Get input, stopping at 99999
2. Check that input is non-negative
Plan: COUNTER VARIABLE PLAN 6. Count zero inputs
Plan: GUARDED COUNTER VARIABLE PLAN 7. Count positive inputs

8. Combine countere

PROCRAM Rain2 (INPUT, QUTPUT):
CONST ST0P=9999,
VAR Sum,Rain Max Ave: REAL;
Valid,Rainy, Dry: INTEGER;
BEGIN
Sum:=0;
Ory:= 0,

¥ritetn('En rainfall’);

Read(Rain);
WHILE Rain<0 DO
BEGIN
Writeln(Rain:0:2
Read(Rain);
END;
WHILE Rain<>STOP DO
BEGIN
Sum:=Sus+Rain;
IF Rainz0 THEN
Dry := Dry+l
ELSE e
Rainy:=Rainy+l;
IF Rain>Max THEN Max := Rain;
Valid := Rainy+Dry e esmmeADD PARTIAL RESULTS PLANW—memmee= Combine counters
Writeln(’Enter rainfall’);
Readin;
Read(Rain);
WHILE Rain<0 DO
BEGIN
Writeln(Rain:0:2,’ is not a possible rainfall, try again’);
Read(Rain) ;
END;
END;
Vriteln;
Writein(Valid:0,’ valid rainfalls vere entered.’);
IF valid>0 THEN
BEGIN
Ave:=Sun/Valid;
Writein('The average rainfall vas ' ,Ave:0:2,’ Inches per day.’).
Writein('The highest rainfall was ° ,MAX:0:2.’' Inches.');
WRITELN('There were ‘', Rainy:0,' rainy doys in this period. ')
END
END.

not 2 possible rainfall, try again’

GUARDED COUNTER VARIABLE PLAN@===Count zero inputs

ARDED COUNTER VARIABLE PLANagmmms Count positive inpute

Figure 4-3: Alternative goal decomposition

2

NP

~

w ez

‘;; e Sy Fa ‘f‘.""\“ .:. lh 14

A .Y,

‘ _(<‘I"l, P t"q’

. &
. ¥

P
o 3

M

- 4 PPN

s’ [PP SRR SR

8 e 8
» %
a’a

5
'. - &

iy -
AN

10

Buggy Program Fragment

WHILE Ra1n¢>99999 DO
BRGIN
IF Rained THEN
writeln('Input not valid’')

ELSE
BEGIN
IF Rain=0THEN
Valid := Valid +1
ELSE
BEGIN
Rainy := Rainy+1;
E[VD,‘
Sum = SuymeRain,
END.
writeln('Enter next value *),
Read(Rain),
END,

Avg = Sum/Valid,

Goal Decomposition 1 Goal Decomposition 2

goal: count all items goal: count zero

goal: count positive items goal: count positives

l goal: combine partial counts
Bug: Bugs:

Missing copy of duplicated plan Mushed variables

segment, Missing pian

Ezplanation to student: Ezplanation to student:
This program wil| not count the You are using the variadle
numder of inputs correctly *Valid® both to count the
You increment “Valid” when total number of inpyts and
the 1nput 1s zero, but not when the number of zero inputs
1t IS positive Each variable should be ysed

to mean one and only one thing
Also, you are going to have to
add the zero count and the
positive count together

Figure 4-4: Alternative explananations for bugs

inputs, because the programmer intended to modi fy the COUNTER VARIABLE PLAN so that a copy
of the counter update appears in both the THEN branch and the ELSE branch of the inner IF
statement, and then left out one of the copies. The failure to update Valid in both branches
thus appears to be a low-level slip, such as a mistake in editing the source file.

In the other interpretation, on the right side of the of the figure, the program is assumed to
arise from a goal decomposition where the positive values and the zero values are counted
separately and then added together. The programmer uses the variable Valid to refer to the
count of zero values and Rainy to refer to the count of positive values. The plan to add valid
and Rainy together is missing. We could claim that the plan is missing because of an editing ~lip.

TGRS

11

However, the context in which the counter plans appear weighs against this hypothesis: the

average computation uses Valid in the denominator of the division, implying that Valid is the

valid input counter as well as the zero input counter. We call variables which are used in

. contradictory ways such as this mushed variables. Mushed variables are very serious bugs: they
reflect radical deficiencies in the programmer’s ability to design programs. Therefore this goul
decomposition is less highly valued than the previous goal decomposition. PROUST has a number
of heuristics for deciding among alternative interpretations such as these.

5. The Understanding Process: An Example Of PROUST In Action

In the preceding sections, we (1) described what difficulties a program understanding system
must overcome in order to analyze a program accurately, and we (2) gave an example of the
results of PROUST's analysis. In this section, we will illustrate PROUST's processing capabilities.
First we will describe the overall strategy by which PROUST searches through the space of
potential interpretations for one that best accounts for the student’s program, and then we will
describe how PROUST actually produces the analysis already depicted in Figure 4-4.

5.1. Searching the Interpretation Space
Clearly, one can't possibly enumerate beforehand the space of program interpretations: there
are just too many ways to construct correct and buggy programs. Rather. starting with the

[y
aata

problem specification and a database of correct and buggy plans, transformation rules®. and bug-
misconception rules, PROUST constructs and evaluates interpretations for the program under

rd
o

consideration. In effect, the goal decomposition and the plan analysis of the program evolve
simuitaneously. To constrain the generation process, PROUST employs heuristics about what
plans and goals are likely to occur together.

The evaluation process is prediction driven: based on the current candidate interpretation for
the program, how well do other parts of the program con form to PROUST's expectations? For
example, if, in a program that attempts to solve the Rainfall Problem, PROUST has assumed that
the variable Count is keeping track of the number of valid days, PROUST would expect to see
Count in the depominator of the average daily rainfall calculation. If this expectation is
confirmed, then PROUST is more confident of its interpretation, and vice versa. PROUST employs
heuristics that evaluate matches, near-misses, and misses of its expectations. Examples of
construction and evaluation processes will be given in the next section.

The fact that PROUST constructs and evaluates interpretations anew for each program. and

9These entities will be explained shortly.

12

does not rely on a prestored set of possible interpretations, provides it with an important
capability: PROUST readily generates interpretations for programs that it (and we) have not seen
previously. That is, unlike some diagnostic systems that effectively choose a fault from a set of
predefined faults, [16, 4] PROUST actively constructs diagnoses. Given the variability in programs,
PROUST needs such a capability in order to be effective. 10

5.2. Putting It All Together: Two Examples

Rainy :
Valid :
Max := 0;
Read(Rain):
WHILE Rain<>99999 DO
BEGIN
IF Rain<O THEN
Writein(*Input not valid’)

Sum ;= 0;

0;
0;

ELSE
BEGIN
IF Rain=0 THEN (a)
Valid := Valid+! (b)
ELSE
BEGIN
Valid := Valid+l; (c)
Rainy := Rainy+l;
END;

Sum ;= Sum+Rain;

IF Rain>Nax THEN

Max := Rain;

END;
Writein(’Enter next value:');
Read(Rain);
END;

Avg := Sum/Valid;

Figure 5-1: Excerpt of Rainfall Program

In this section we will illustrate how PROUST actually goes about analyzing a program. \We
will show two examples; one is a correct program and the other is a buggy program.

5.2.1. Analysis of a correct program

Our first example, in Figure 5-1, is an excerpt from a correct solution to the Rainfall Problem
in Figure 3-1; it is based on the program fragment shown in Figure 4-4. Although this program
functions correctly, there is one construction which is unusual; the valid input counter valid is
updated in two places instead of one. That is, Valid is updated in each branch of the conditional

19pALOSY [14] is also capable for recognizing novel faults; however, it assumes that there is only one fault. whi-h the
programmer must describe beforehand.

BATTAS S e A A A Al S el L Sl S AN A Aot Nl et

13

statement at (a); the update at (b) is executed when Rain is zero, and the update at (¢) when
Rain is positive. The program in this figure illustrates the variability possible in programs:

coping with this type of situation requires additional machinery, as will be seen shortly.

Assume that PROUST has carried out a partial plan analysis of this program already. and has
made the following tentative assumptions:
e the variable Sum is the running total variable,
e the variable Valid keeps tracks of the number of valid days,

e the update on Valid should be in the loop, embedded inside a test for negative
rainfall (IF Rain < 0 THEN....).

The processing that continues from this point is illustrated in Figure 5-2. PROUST maintains an
agenda of goals that remain to be worked on; at this point in the analysis the agenda includes the
Count goal for valid inputs, the Sum goal, and the Count goal for positive inputs, to name a few.
PROUST selects the first goal on the-agenda, as shown at (a), checks that it is ready for analysis,
and then determines whether or not it needs to be decomposed. The entry in the knowledge base
for Count stipulates that it is most commonly implemented in an undecomposed fashion, so
Proust consults the plan database looking for appropriate plans for realizing this goal. It finds
only one plan plan: the COUNTER VARIABLE PLAN (b). It then makes tentative bindings for the
plan variables, and determines where each segment of the plan should be found. The resulting

structure, shown at (c}, can then be matched against the student’s program.

Figure 5-3 shows the results of matching the instantiated plan against the code. There is a
o unique match for the initialization step of the plan, but instead of there being one match for the
update step, there are two matches. Furthermore, PROUST expects the update to be at “top
level” inside the loop, i.e. it should not be enclosed inside code which might disrupt its function.
Instead it discovers that each update is enclosed in an IF statement which restricts its
application. PROUST treats the plan as a pear-match for the program, but the plan cannot be
accepted until the match discrepancies are accounted for.

PROUST has a number of different methods for explaining a plan difference; one of them is to
{ use trans formation rules to relate the code to the plan. One such transformation is shown ig
- Figure 5-4.!' Each transformation rule has a test part and an action part. The test part consists
of a conjunction of micro-tests. each testing various aspects of the program; the action part
usually indicates how to modify the code in order to nullify the effect of the transformation. In

a this case the Distribution Transformation Rule applies. This is a rule for recognizing plans in
.-k 3 3
v situations where a set of computations have been divided into parts using a CASE statement or an

NpRoUST currently has 15 such transformations in its database. Some rules, such as the Dictriinrvion
Transformation Rule, are quite general: others, such as the transformation which changes Valid<>0 into va!: 4> :f
Valid is a counter variable, are plan specific.

S e -
ERRUR T R S S SR S S N “ e s e ta .0 P A

AN Y W W T Y T T LT, T v N T TR

N e e s T Y N T T Te w e _a e e ow BC L L . R I
P‘--l‘""'—";‘.‘-“v-—r..'..‘r".".'.'.'..'."‘ At AR I AN A R S P L

E

o

3 14
: Agenda of Goals
gosl: Count{ {New=Ra:n, {Count=Val d)
o goal: Sum({New=Ran, fTotal=Sun)}
‘;: goal: Count({New=Ra i, o.t. {New >0}
2) goal selection

[~
. 1
. goal: Count(fCount=Val d)
)
e b) plan retrieval
N
: !
N

Counter Variable Flan
P Inst step: 2ouny = 0
X Update step: 2Count = 2Countel

tentative variable bindings

‘ <) i Countavalig
':‘: Counter Variable Flan
y Init step: Valid =0

({above WHILE loop}
. Update step: Valid = Valrdel
< {in WHILE loop above Read)
. Figure 5-2: Simple mapping from goals to instantiated plans
2 IF-THEN-ELSE construct, and where the plan update is duplicated so that a copy appears in each
] branch. The control flow branches in this case are the two branches in the IF-THEN-ELSE
construction which test for Rain=0 and Rain>0. The rule checks to see whether there is exactly
. one Valid:=Valid+1 statement for each possible branch of the test. It then combines the two
-~ updates and moves the result to an appropriate place outside of the test. Once this is done the

counter plan matches successfully.

5.2.2. A buggy example
We will now show how PROUST analyzes the buggy program shown in Figure 4-1; a more

IR
v IRt Rhe B

complete version is given in Figure 5-5. When PROUST analyzes buggy programs such as this. it
goes through much the same process that it goes through in analyzing correct programs: the muin
difference is that PROUST must consider more alternative interpretations in order to find the most

«tata%atas

R

Sum := 0;
Valid := 0. =Valid := 0 [nit step:
Rainy := 0; EXACT MATCH
Max :=0;
Resd(Rain);
WHILE Rain<>99999 DO
BEGIN
IF Rain<0 THEN
Writein(*Input not valid’)
ELSE
BEGIN
IF Rain=0 THEN
Valid := Valid+lwe Valid := Valid+l Update step:
ELSE TWO MATCHES; BOTH EMBEDDED INSIDE
BEGIN UNEXPECTED CODE
Valid := Valid+l;
Rainy := Rainy+l;
END;

Sua := Sum+Rain;

IF Rain>Max THEN

Max := Rain;

END;
Writeln('Enter next value:');
Read(Rain);
END;

Avg := Sum/Valid;

Figure 6-3: Plan matching

9lid := Valid+l;
IF Rain=0 THEN

IF Rain=0 THEN

Valid := Valid+ emmmene= {}
ELSE BEGIN: ELSE BEGIN;
Valid := Valide+l; ->{}
Rainy := Rainy+l; Rainy := Rainy+l;
END; END;

Figure 5-4: Program transformation
plausible explanation for the bug.

Figure 5-86 shows what happens when the COUNTER VARIABLE PLAN is matched against this
program. This time there is one good match for the counter update; unfortunately it is inside of
an unexpected IF statement. The Distribution Transformation Rule is invoked to explain the
plan difference, but it predicts that there should be two updates, so it does not fully explain the
problem. PROUST therefore looks for another rule which will explain the difference between the
prediction made by the Distribution Transformation Rule and the observed code. A rule applies
which states that if an single instance of duplicated code is missing, it is explainable as n low-

“level slip. This completes the mapping from the plan to the code.

Whenever an interpretation presumes the presence of a bug, it is necessary to make sure that

b
KRNI
PV RO

BT

SO R NCRON
saatataty 0

o
R

.
e e
LR P Y §

16

Sum :=
Rainy
Valid
Max := 0;
Read(Rain);
WHILE Rain<>99999 DO
BEGIN
IF Rain<0 THEN
Writein('Input not valid®)
ELSE
BEGIN
IF Rain=0 THEN
Valid := Valid+1
ELSE
BEGIN
Rainy := Rainy+l;
END;
Sum := Sum+Rain;
IF Rain>Max THEN
Max := Rain;

0:
0;

Moo

END;
Writein(’Enter next value:');
Read(Rain);
END;
Avg := Sum/Valid;

Figure 5-5: A buggy program

there are no other interpretations which presume fewer or less severe bugs. PROUST therefore
goes back and looks for another way of of implementing the Count goal. PROUST has in its
knowledge base an alternative method for decomposing Count goals, namely to implement
counters for particular intervals and then combine the partial counts. One of these subgoals can
be unified with the Count positives goal that already exists in the agenda. The two Count goals
are thus transformed into a set of three goals. Plans can then be chosen and instantiated for
each of these goals, as was done in Figure 5-2. The result plans, and the results of matching
them, is shown in Figure 5-. This time two match errors are found. First, Valid is the counter
for zero values; but the average predicts that Valid is the main counter; Valid is a mushed
variable. Second, the ADD PARTIAL RESULTS PLAN is missing altogether. PROUST ranks bugs

" according to their severity; missing plans that do not pertain to some boundary condition are

moderately severe bugs, and mushed variables are extremely severe bugs. Therefore this
interpretation is less highly valued, and the analysis involving the transformation holds.

PR AA NN | J 44

17
Sum := 0;
. Valid := 0= Valid := 0 [Init step:
" Rainy := 0; EXACT MATCH
4 Max := 0;
E: . Read(Rain);
i WHILE Rein<>99999 DO
" BEGIN
IF Rain<0 THEN
\ ¥ritein('Input not valid’)
X ELSE
. BEGIN
J IF Rain=0 THEN
h Valid := Valid+]@——————V3alid := Valid+l Update step:
ELSE predicted by distribution transformation
j BEGIN
% Raiiny := Rainy+l; Valid := Valid+l Update step:
END; 29? condition for transformation violated
‘ Sum := Sum+Rain; EXPLANATION: low-level slip
. IF Rain>Max THEN
. Max := Rain;
x END:
) Writein('Enter next value:');
: Read(Rain);
END;

Avg := Sum/Valid;
; Figure 5-8: Transformation with bugs
3

6. Performance -- Preliminary Results

As a preliminary test of PROUST’s capabilities, we tested PROUST on 208 different novice

solutions to the Rainfall Problem shown above. We collected these programs by modifying the
' Pascal compiler used by the students in an introductory programming course so that each

syntactically correct version of the program was stored on tape [2]. We ran PROUST on the first

syntactically correct version from each student, so that we could see how PROUST behaves when

faced with a large number of bugs.
: In Table 6-1 we see how PROUST performed on this corpus of programs. Of the 208 programs
k . in the sample, PROUST only commented on 137 of them (679%). The remaining 336 PROUST
] decided that it didn't understand the program well enough to make a reasonable assessment of
the bugs. Thus, rather than venturing a guess, PROUST remained silent. On those programs
' that it did feel confident of its analysis, it was correct almost!? 94% of the time! In an
: educational setting, we felt that no advice was better than bad advice. Thus, we built into

12There were still 32 “false alarms:" cases where PROUST said there was a bug, but there really wasn't.

.............................

.............

18

Guarded Counter Variable Plan
(dry day counter)

Init step: 7?Count := 0

Guard step: IF Rain = 0 THEN

Update step: ?Count := (2Count + 1)
MUSHED VARIABLES!

Read(Rain);

WHILE Rsin<>99999 DO
BEGIN
IF Rain<0 THEN
Writein('Input not

iA*) Guarded Counter Variable Plan
(rainy day counter)

ELSE
BEGIN
IF Rain=0 THE nit step: ?Count := 0

Valid := Valid+ Guard step: IF Rain > 0 THEN
ELSEQ———/ Update step: ?Count := ?Count + 1

BEGIN /
Rainy := Rainy+l;

END;
Sum := Sum+Rain; Add Partial Results Plan
IF Rain>Max THEN
Max := Rain; Update step: Vaiid := (2Suml + ?Sum2)
END; [fSumi=Valid, $Sum2=Rainy/
Writein('Enter next value:*®); MISSING PLAN!
Resad(Rain); b

END;
Figure 5-7: Matching alternate plans

PROUST a number of heuristics that it would use to assess its confidence in its analysis. From
the data in Table 8-1, it seems that when PROUST thought it had a good analysis, it was indeed
correct.

Total number of programs: 206
PROUST actually gave complete bug reports for 137 programs (67%)

Total number of bugs (from 137 programs) 444

Bugs recognized correctiy: 419 (94%)
Bugs not reported: 25 (6%)
False alarms: 32

Table 6-1: Preliminary results

Clearly, the next stage is to improve PROUST's overall performance. Moreover, in looking at
the cases where PROUST failed, we see no fundamental obstacle to getting PROUST up to the
80% overall correct rate. However, we can can characterize the kinds of programs which will
always cause problems for PROUST as follows: 1) very unusual bugs, which occur too
infrequently to justify inclusion in PROUST’s knowladge base, 2) programs which contain novel
plans which PROUST has no means for predicting, 3) ambiguous cases which can only be
resolved through dialog with the student. For these cases, we would suggest that the student sce

...................
...............

)

l

i}

19

a hyman teacher.

7. Concluding Remarks

Is all the machinery described in this paper necessary in order to understand buggy and correct
programs -- programs that are only about 1 page in length? The answer, in our minds at least. is:
undeniably yes. If anything, PROUST is the minimum that is required! The basis for this
conclusion is twofold:

1. In Artificial Intelligence research, systems have been built to understand stories of
moderate length that require machinery similar to that employed by PROUST. [13, 3]
Certainly, programs are as complicated an entity as are stories.

2. We attempted to build a bug finding system that used a database of bug templates
in a contezt-independent fashion to analyze programs similar to those analyzed by
PROUST. That system, MENO, [16] failed miserably: in order to cope with the
variety and variability in actual programs, a system must be able to understand how
the pieces of the program fit together - which is a highly contezxt-dependent process.

Finally, all programmers intuitively know that the mapping from problem specifications to
code is a complex process. What PROUST has done -- which we feel is its major contribution -- is
lay that mapping process open\ to inspection: since PROUST comstructs a program in its attempt
to understand the program under analysis, we can “see” the programming process in action. Ry
making the programming process explicit, our work joins with that of the software engineering
community to change programming from an ethereal art to an object of scientific inquiry.

. - .~

Y . Ve T, -t [y - . . - - - . - . -
PPN . . L AN ot T N T e L T et e T R S L .

LI B B I I I AP I S R AR I S I T IR A R L S S A DT S AP YL U PR TR IP R R D . T

DA
F I S)

£ S

"o s e

(hiabd IR

o Do Y,

P —
AR ALY

I. Proust’s analysis of a sample program

1
2
3
4
5
6
7
8

9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
4
48

PROCRAM RAINFALL (INPUT ,QUTPUT):

CONST

SENTINEL = 99999;

VAR
RAINFALL, VALID, HIGHEST, AVERAGE, TOTAL :

RAINDAY : INTECER;

BEGIN
(*»INFORNATION IS ENTERED INTO THE TERMINAL+)

WRITELN('PLEASE ENTER THE AMOUNT OF RAINFALL FOR EACH DAY SEPERATLY'):
WRITELN('THIS PROCRAM WILL THEN FIGURE OUT THE AVERAGE, HIGHEST, TOTAL');
WRITELN('NUMBER OF RAINY DAYS, AND THE NUMBER OF VALID RAINY DAYS ENTERED');
WRITELN('PLEASE MAKE SURE THE NUMBERS ARE POSITIVE');

WRITELN(’ENTER RAINFALL’);
READLN;
READ(RAINFALL);

(*TEST FOR INVALID ENTRYs)
IF RAINFALL < O THEN

WRITELN('THE DATA IS IMPOSSIBLE PLEASE CHECK AND REENTER DATA');
WRITELN(’PLEASE REMEMBER THE NUNBERS NUST BE POSITIVE').

READLN;
READ(RAINFALL);

(*IDENTIFICATION AND CALCULATIONS#)

BEGIN
WHILE RAINFALL <> SENTINEL DO
IF RAINFALL > HIGHEST THEN
HIGHEST := RAINFALL;
TOTAL := RAINFALL + TOTAL;
IF RAINFALL >= O THEN
VALID := VALID + 1;
IF RAINFALL > O THEN
RAINDAY := RAINDAY + 1;

END;
REPEAT

UNTIL RAINFALL = SENTINEL;

(*FIND AVERAGEs)
AVERAGE := (TOTAL / VALID):

(+PRINTS OUTPUT#)

WRITELN(' ' VALID:2,°VALID RAINFALLS WERE ENTERED.'):
WRITELN('THE AVERAGE RAINFALL WAS' AVERAGE:8:2,'INCHES PER DAY');
WRITELN('THE HIGHEST RAINFALL WAS' HIGHEST:8:2, INCHES');
WRITELN('THERE WERE' RAINDAY:2, 'RAINY DAYS IN THIS PERIOD')

49 END.

RS

21

Bug Report
1. The WHILE statement at line 29 and the BEGIN statement at line 29
are reversed. The BEGIN should come after the WHILE.
2. Your main loop is missing a READ statement. As it stands your loop will
process the same input value over and over.
Perhaps you intended line 24 to serve this purpose. If so, there may
be a bug there.
3. You left out the initialization for the variable VALID.
4. You left out the initialization for the variable TOTAL.
5. You left out the initialization for the variable RAINDAY.

6. You left out the initialization for the variable HIGHEST.

7. You need a test bto check that at least one valid data point has been

_input before line 42 is executed. The average is not defined when

there is no input.

8. You need a test to check that at least one valid data point has been
input before line 46 is executed. The average is not defined when
there is no input.

9. You need a test to check that at least one valid data point has been
input before |ine 47 is executed. The maximum is not defined when
there is no input.

Perhaps you intended line 33 to serve this purpose. If so, there may
be a bug there.

10. Your test for valid input at line 20 won’t work, because it's outside
the main loop. Remember that you have to test ALL the input for validity.

11. The loop at line 39 doesn't do anything; it will loop forever.
In particular, it will not maske the program loop back to the beginning,
if that is what you had in mind.

A Pt S S e e e

R |

“
\
N
!
N
N
™
s
)
-
:
)
S

)

2l

8l

[4]

(5]

le]

[7]

(8]

(9l

[10]

22

References

Bonar, J. and Soloway, E.

Uncovering Principles of Novice Programming.

1983.

SIGPLAN-SIGACT Tenth Symposium on the Principles of Programming Languages, in
press.

Bonar, J., Ebrlich, K., Soloway, E.
Collecting and Analyzing On-Line Protocols from Novice Programmers .
Behavioral Research Methods and Instrumentation 14:203-209, 1982.

Brown, J. S., Burton, R. R., and de Kleer, J.

Pedagogical, Natural Language and Knowledge Engineering Techniques in SOPHIE I, 1.
and III.

In Sleeman, D. and Brown, J. S. (editors), Intelligent Tutoring Systems. Academic Press,
New York, 1981.

Clancey, W. J., Bennett, J. S., and Cohen, P. R.
Applications-oriented Al Research: Education.
Technical Report HPP-79-17, Stanford Heuristic Programming Project, July, 1979.

Dyer, M.
In-Depth Understanding.
Technical Report 219, Computer Science Department, Yale University, May, 1982.

Ehrlich, K., Soloway, E.

An Empirical Investigation of the Tacit Plan Knowledge in Programming.

1983.

in Human Factors in Computer Systems , J. Thomas and M.L. Schneider (Eds.), Ablex
Inc., in press.

Genesereth, M. R.
The Role of Plans in Intellegent Teaching Systems.
In Brown, J. S. and Sleeman, D. (editors), Intellegent Tutoring Systems. New York, 1981.

Goldstein, I. P.
The Genetic Graph: a Representation for the Evolution of Procedural Knowledge.
Int, J. of Mun-Machine Studies 11:51-77, 1979.

Johnson, L., Draper, S., and Soloway, E.

An Effective Bug Classification Scheme Must Take the Programmer into Account.
1983.

SIGPLAN/SIGSOFT Workshop on High-Level Debugging, in press.

Johnson, L., Draper, S., and Soloway, E.
Classifying Bugs is a Tricky Business.

1983.

NASA Workshop on Software Engineering, in press.

1]

(12]

3]

[14]

[15]

[16]

[17]

18]

(19]

(20]

(21]

..........

23

Miller, M. L.
A Structured Planning and Debugging Environment for Elementary Programming.
Int. J. of Muan-Machine Studies 11:79-95, 1978.

Rich, C.

A Formal Representation for Plans in the Programmer’s Apprentice.

In Proc. of the Seventh Int. Joint Conf. on Arti ficial Intelligence, pages 1044-1052.
ICJAI, August, 1981.

Schank, R. and Abelson, R.
Scripts, Plans, Goals, and Understanding.
Lawrence Erlbaum, Hillsdale, New Jersey, 1977.

Sedlmeyer, R. L. and Johnson, P. E.

Diagnostic Reasoning in Software Fault Localization.

In Proceedings of the SIGSOFT Workshop on High-Level Debugging. SIGSOFT,
Asilomar, Calif., 1983.

Shapiro, D. G.
Sni ffer: a System that Understands Bugs.
Technical Report Al Memo 638, MIT Artificial Intelligence Laboratory, June, 1981.

Soloway, E., Rubin. E., Woolf, B., and Bonar, J.
MENO-II: An Al-CAI Programming Tutor.
1983.

Journal of Computer-Based Instruction, in press.

Soloway, E., Ehrlich, K., Bonar, J., and Greenspan, J.
What do Novices Know about Programming.

In A. Badre and B. Shneiderman (editor), Directions in Human-Computer Interactions.

Ablex Inc., Norwood, New Jersey, 1982.

Soloway, E., Ehrlich, K., Bonar, J.

Tapping Into Tacit Programming Knowledge.

In Proceedings of the Con ference on Human Factors in Computing Systems. NBS,
Gaithersburg, Md., 1982.

Soloway, E., Ehrlich, K., and Gold, E.

Reading a Program Is Like Reading a Story (Well, Almost).

In Proceedings of the Cognitive Seience Con ference, 1983. Cognitive Science Society.
Rochester, N.Y., 1983.

Soloway, E., Bonar, J., and Ebrlich, K.

Cognitive Strategies and Looping Constructs: An Empirical Study.
1983.

Communications of the ACM, in press.

Wescourt, K. T., Beard, M., Gould. L.. and Barr, A.

Knowledge-based CAI: CINS for Individualized Curriculum Sequencing.

Technical Report 290, Stanford Institute for Mathematical Studies in the Social Sciences,
Psychology and Education Series, October. 1977.

Lant ave Soie e e & 3 S anac i Menae ~haCatas JNS SA S AIC RIS

'f;.;é!
1
.I
o
'.i
‘A
1]
4
R
y
4
K
&
‘I
‘4
)
g
L
N
*q
¥
o

fol

Rk

FTr ey,

U
)
()

!
!

-~ OFFICIAL DISTIRUBTION LIST -

*
- Army Private Sector
:} Technical Director 1 copy Dr Michael Gemesereth 1 copy
. U S Army Research Institute for the Departaeat of Compster Sciesce
2 Behbavioral and Socia! Scrences Stasford University
-~ 5001 Ersenhoyer Avenue Stanford, Caiiformia 94305
Alexandria. Virgimip 22333
Dr - Dedre Gentrer 1 copy
Hr James Baker 1 copy 80!t Beranet B Newern ‘
Army Research Institute 10 Mow!ton Street ‘
5001 Eisendoyer Ayenye Cambrigge. Massachusetts 02138
Alexangris, Virgimia 22333
Dr Robert Glaser 1 copy
pDr Beatrice J Farr 1 copy Learning Research & Development Center
U § Army Resesrch Institute University of Pitishergh
5001 Ersenhover Avenve 3939 0'Hara Street
Afexandria. Virgimia 22333 Prttsburgh, Peansylvanta 15260
Dr Mifton S Kat2 1 copy Or Joseph Gogues 1 copy
Wiiliams Technical Area SRI Iaternstionsi
U S Army Research Institute 333 Ravenswood Avense
5001 €i1senhover Avenye Menlo Park. Califormia 94028
Alexandria, Virginia 22333 .
Dr Bert Green 1 copy
Dr Marshall Narva 1 copy Johas Hophking Unyiversity
U S Army Research Institute for the Departaest of Psychology
Behavioral & Socia! Sciences Charles & 34th Street
5001 Eiseahower Avenue Baltimore, Maryland 21218
Alexandria, Virgimra 22333 !
I
Dr Harold F O'Nerl Jr 1 copy Dr Jawes G Greeso 1 copy
Director, Training Research Lad LRDC
Army Research Institute University of Pittshergh
5001 Eisentower Avenve 3939 0'Wara Street
Alexandria, Virgiara 22333 Pittsburgh. Pennsylvania 15213
Commander, US Army Research Institute 1 copy
for the Betavioral & Social Sciences Or Barbara Hayes-Roth 1 copy
Attn PERI~BR (Dr Jtudith Orasany) Department of Computer Scieace
5001 Ersenhover Avenve Stanford University
Alerandria. Virgims 22333 Stanford, Californta 95305
Joseph Psotka, Ph D 1 copy Dr Frederick Hayes-Roth 1 copy
Actn PERI-IC Teknowledge
Arsy Research Iastitute 525 University Avense
5001 Eisenhower Avenve . Paio Aito, California 94301
Alesandris, Virginig 22333
Gleng Greeswa id, Ed
Dr Rodert Sasmor 1 copy Human Inteiligence Newsietter 1 copy
U S Army Research Institste for the P 0O Bor 1163
Benavioral and Sociat Sciences Birninghom, Michigan 48012
5001 Ei1senhower Avenve
Alesandria, Viegintg 22333 Dr Ear! Hust 1 copy
Department of Psychology
Or Robert Wisher 1 copy University of Washiagton
Arsy Resesrch Institute Sesttle, Washington 98105
$001 Eisennover Avenve
Alezandris, Virginis 22333 Dr Marcel Just 1 copy
Departaest of Psychology
Carnegre=Me!lon University
Pittsburgh, Pennsyfvania 15213

s ST o PN

RS N VIl J.TEEN T TS a8

Y.

" T A HB Y VAT,

Air Force

US Aig Foree Office of Scieatific
Research

Life Sciences Directorate, ML
Bolling 3i1r Force Base

Washiagton, DC 20332

Dr Earl A Allgis
M@ AFHRL (AFSC)
Broots AFB. Texss 78235

Bryas Dalimen
AFHRL/LRT
Lowry AFB, Colorado 80230

Dr Genevieve Haddad
Program Maaager

Life Sciences Directorate
AFQOSR

Bolling AFB, DC 20332

Or Joha Tangney
AFOSR/NL
Bolirng AFB, DC 20332

Dr Joseph Yasatule
AFHRL/LRY
Lowry AFB, Colorado 80230

Marine Corps

H Willism Greeryp
Education Advisor (ED3Y)
Edvcation Center, MCDEC
Quantico. Virginia 22134

Specist Assistant for Marine
Corps Matters

Code 100M

0ff1ce of Naval Research

800 N Quincy Street
Artington, Virgrmiz 22217

Dr A L Siafkosky
Sciertific Advisor (Code RD=1)
HQ. US Marine Corps
Washington, DC 20380

Departsent of Defense

Defense Technica! Informstion Center
Cameron Station, Bldg S

Alexandris, Virgimip 22314

Atts IC

Militery Assistant for Traiming and
Personsel Technology

Qff re of the Under Secretary of Defense

for -=sesrch 8 Engrineering
Room. 30129, The Pentagon
Wasnington, DC 20301

Major Jack Thorpe

DARPA

1400 Wiison Bive
Artiagton, Virginia 22209

[

copy

1 copy

-

copy

-

copy

1 copy

12 copres

1 copy

1 copy

...

S T e et N
s atatatat

Dr Dsvid Kieras
Departaent of Psychology
University of Arizons
Tuscos. Arizosa 85721

Dr Waiter Kistsch
Departaest of Psychoiogy
Unsversity of Colorado
Bovider, Colorado 80302

D Stephen Kossiyn
Departmeat of Psychology
The John Hophins University
Baltisore, Marylsnd 21218

Or Pat Langley

The Rodotics Institute
Carnegie~Meiion University
Pittsburgh, Penasylvanis 15213

Dr Nl Larkn

Departmest of Psychology
Carnegre=Melion University
Pittsburgh, Pesasyivanes 15213

Dr Afan Lesgold
Learning RED Center

University of Pittsburgh

3939 O’Mara Street

Pittsburgh. Perasylvania 15213

Or Jim Leven

University of Califorais

at San Drego

Laboratory for Comparative
Huaan Cognition - D003A

La Jolla, Catifornia 92093

Dr Michael Levine

Department of Educational Psychology
210 Education Bldg

Usiversity of Iilinors

Champaign, lilinois 61801

Dr Marcia Linn
University of Catiformia

Director, Adolescent Reasosing Project

Berkeley. California 94720

Dr Jay McCleiland

Department of Psychology

L)

Canbridge, Massachesetts 02139

Or James R Miller
Computer Thought Corporation
1721 West Pisao Highusy
Pisno. Terss 75075

Or Mars Miller

Compster Thought Corporatios
1721 west Plano Highusy
Plano, Tezas 75075

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

e v g
, .0
o s e

(et
-
ARAAN

e

. '..‘..‘\ k

Y

N N &
AL A

-‘.
&% 5

4

-‘.4-'-';“ Y0t

¥
A

R A
L2 L L R

AL N

r 4 I -
l‘ l':' .l' a':o' i)

0’4

[Vec%a ts s
L RR B

P

AL S

e ‘(Al Wl

3‘

Ravy

Robert Adiers

Code W71}

Husan Factors Ladoratory
RAVTRAEQUIPCEN

Orisndo, Florids 32013

Code N711
Atta: Arther § Disives
Saval Training Equipaent Conter
Orissdo, Florids 32013
L

Lisison Scientist

Office of Naval Research
Branch Office. Loadon

Box 39

FPO New York, New Yort 00510

Or Richard Cantone
Navy Research Ladoratory
Code 7810

Vashington, DC 20375

Chief of Naval Edecation and Trainiag
Lisson Office

Air Force Numan Resosrce Laborstory
Operations Training Devision
WILLIAMS AFB, Arizoss 85224

Or Staniey Cotiyer
Office of Naval Techeology
800 # Quincy Street
Arlington, Virginig 22217
COR Mike Curran

Office of Nava! Research
800 N Quency Street

Code 270

Artingtos, Virginig 22217

Or Johs Ford
Navy Personnei RED Ceater
San Diego, Califorass 92152

Dr Jede Franklin

Code 7510

Navy Research Lavoratory
Washington, DC 20375

Dr Mike Geynor

Kavy Researck Laborstory
Cote 7510

Weshingtos, DC 20378

Or. Jis Nolise

Code 14

Novy Persosaci RED Center
Sea Diego, Colifornia 92152

Or E¢ NHetching
Sevy Personsel RED Center
Soe Diego, Colifornia 92152

1

et Ay

copy

copy

copy

copy

copy

copy

copy

copy

copy

copy

copy

copy

Dr Toa Morse

Xeroz PARC

3333 Coyote #ill Road

Palo Alto, Californis 94304

Or Alles Muaro

Bebavioral Techsology Laboratories
1845 Eleas Avesse, Fourth Floor
Redondo Beach, Califormis 90277

Dr Donaid Norsan

Cogaitive Science, C~015

Usiy of Califorera, Sas Diego
Ls Jolla, Califormis 92003

Or Jesse Orisssiy

Isstitete for Defense Ansiyses
1801 W Beauregard Street
Aterandris, Virginig 22311

Professor Seymour Papert
20C-109

M7

Cambridge, Massachusetts 02139

Or MNancy Peaniagton
University of Chicago
Graduste School of Busisess
1101 € S8th Street
Chicago, lilieors 60837

Dr Richard A Pollsl
Director, Special Projects
MECC

2354 Hidden Valley Lasne
Stillvater, Mianesota 55082

Dr Peter Poison
Department of Psychology
University of Colorsdo
Boulder, Colorado 80309

Dr. Fred Rest

Physics Departaent
Usiversity of Catiforare
Berkeley, Califoraia 94720

Dr Laurer Resnick

LROC

University of Pittshergh

3639 O'Hars Street

Pittsdbergh, Pesasyivenias 15213

Mary S Riley

Progras 1a Cogattive Science

Center for Humsa Isformation Processisg
University of Califorars, Sas Diego

Ls Jolis, Codiforara 92093

Dr Andrev Rose

American Institutes for Research
1055 Thomes Jeffersos Street, NV
Vashiagton. DC 20007

1 copy

1 copy

1 copy

1 copy

B .
AR LR

Dr Norman J Kerr

Chief of Nava) Technical Training
Naval Arr Station Mesphis (75)
Miilington, Temnessee 38054

Dr James Lester

ONR Detachment

495 Susmer Street

Boston, Massachvsetts 02210

Dr William L Matoy (02)

Chief of Navai) Education and Trarming
Naval Atr Station

Fensacals, Flortds 32508

Dr Joe Mclachlan
Navy Persoane! RED Center
San Diego, Cahifornia 2152

Or William Montague
NPRDC Code 13
San Diego. Californra 92152

Lidrary. Code P20IL
Navy Personne! RED Center
San Diego, Califormia 92182

Techmical Dirgctor
Navy Personne! RED Center
San Ocego, Catiforais 92152

Command ing Officer

Navai Research Ladoratory
Code 2627

Washington. DC 20390

Gffice of Naval Research
Code 433

800 N Quincy Street
Arlingvon. Virgrmia 22217

Personnei & Training Research Group
Code 442PY

Office of Naval Resesrch

Ariiagton, Virginia 22217

Office of the Chief of Navat Operations
Research Development & Studies Branch
0P 118

Wasnington, OC 20350

LT Frask C Petho. M3C. USH (P D)
CNET (N-432)

NAS

Persacols, Florigs 32508

0r Gary Poock

Cperations Resesrch Development
Code S3PK

Nsvai Postgraduste School
Monterey, Catiformia 93940

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

6 copies -

1 copy

6 copies

1 copy

1 copy

1 copy

Dr Erast 7 Rothhopt
Betll Laborstories
Myrray Hill, New Jersey 07974

De Williaw B Rouse

Georgrs Institute of Techsology
School of Industrial & Systess
Eagineering

Atlants. Georgis 30332

Dr David Rumeidart

Center for Human Informat:ion Processiag
University of Califorasa, Sas Diego

La Jolia, California 82093

Dr Michae! J Samet
Perceptronics, Inc

6271 Variel Avenve

Woodland Hells, Catifornia 91364

Or Roger Schaak

Yale University

Departuent of Computer Sciesce
PO Bor 2158

New Haven, Comnecticut 06520

Dr Walter Schneider
Psychology Departqent

603 E Daniel

Champaign, Iiiinors 61820

Or Atan Schoenfeid
Mathematics and Education
The University of Rochester
Rochester, New York 14627

Mr Cotin Sheppard

Applied Psychology Umit
Adnsratty Marine Techsology Est
Tedd ington, Middlesex

United Kingdom

Or H Waliace Sinatko

Program Director

Maspower Research and Advisory Service
Smithsonian Institution

801 North Pitt Street

Alesandris, Virgimia 22314

Dr Edward E Smith
Boit Beranek & Newmas
50 Moulton Street
Cambridge, Msssachusetts 02138

Dr Richard Seow

School of Edecation
Stanfore Usiversity
Stanford, California 94308

Dr Kathryn T Spoedrr
Psychology Department
Browa University
Provideace, Rhode Isiend

02912

e

a ‘7*1‘1'1‘1'31
e >, . : .

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

Medical Research Coencil
App!ieg Pegedroiogy Unit
15 Chovecer Rosed
Combrioge CO2 2fF
ENGLAND

Xeros PARC
3333 Coyote M1 11 Road
Palo Alvo. Caitfornia 94308

M e A g S e B et Sl Chuchechae i it el SO O LR A S M AR
Dr Git Ricard 1 copy
Code N711 Or Robert Steraderg 1 copy
NTEC | Department of Psychology
Orlsado. Florida 32813 Yale University
Bor 11A, Yale Station
Dr dorth Scaaiand 1 copy New Haven, Consecticet 08520
CRET (N-5)
NAS, Pessacola, Florida 32508 Or Albert Stevens 1 copy
Bolt Beranel & Newnan
10 Moultoa Street
Dr Robert G Sa:th 1 copy Cambridge, Massachusetts 02238
0ffice of Chief of Naval Operations
oP-987H David E Stose, PA D 1 copy
Washington, DC 20350 Haze!t:ne Corporation
7680 01d Spriaghouse Rosd
Dr Alfred F Saode, Director 1 copy McLean, Virginta 22102
Training Anslysis & Evalustion Group
Department of the Navy Dr Patrick Suppes 1 copy
Oriando, Florida 32813 Iastitute for Mathematical Studies n
the Social Sciences
Dr Richard Sorensen 1 copy Stanford Usiversity
Navy Personne! R2D Center Stanford, Califormia 94305
San Diego. Califoraia 92152
Dr Xikumi Tatseoks 1 copy
Dr Frederick Steinhetser 1 copy Computar Based Education Research Labd
CNO - QP11S 252 Engrneering Research Ladboratory
Navy Annex Urbsna, Iilreors 61801
Artington, Vieginia 20270
Dr Masrice Tatswoka 1 copy
Roger Weissinger=Baylon 1 copy 220 Education Bldg
Department of Administrative Sciences 1310 S Sixth Street
Navail Postgraduate School Champa:gn, IiTincis 61820
Monterey, Califormia 93940
Or Perry W Thoradyke 1 copy
Mr John B Woife 1 copy Perceptronics, Inc
Navy Persomne! RED Center 545 Middlefiald Rosd, Suste 140
San Diego, Californ:a 92152 Menlo Park, Califera:s 94025
Dr wWallace Welfeck. III 1 copy Dr Dovglas Towne 1 copy
Kavy Persosne! RAD Center Usiversity of So Califoraia .
San Diego, California 92152 Beraviora! Techrology Labds
1845 S Elena Avenue
Private Sector Redondo Besch. Califorais 90277
Dr Jora R Angerson 1 copy Dr Kurt Van Ledn 1 copy
Department of Psychology Xeros PARC
Carnegre~Metion University 3333 Coyote Mill Rosd
Pittadburgh. Penasylvanis 15213 Pato Alvo, Californis 94304
Or Jche Arsett 1 copy Dr Keith T Wescourt 1 copy
Department of Pgycrology Perceptronics, Inc
" University of Varwich $45 Migdtefr1etd Road. Suite 140
Coventry Cv4 7AJ Menio Park, Cslirfornia 94025
ENGLAND
Dr Michae! Atwood 1 copy Wiliiam B Whitten 1 copy
ITT = Progremsing Beli Ladoratories
1000 Orosoqee Lane 20-610
Stratfore. Cosnecticet 08497 Noimde!, New Jersey 07733
Dr Alan Beddetey 1 copy Dr Mide Wil isms 1 copy

]
!
]
»
i
I
i
4
N
:
'
.
?
]
3
i
.
"
L]
[]
'
-
:
i
A
!
"

Z g e g

L]
Dr Pavricia Baggett
Department of Psychology
University of Colorado
Bouider Colorago 80309

Ms Carole A Bagley

Minnesota Educational Computing
Consortium

2354 Midden Valiey Lane
Stillvater, Minnesots 55082

Dr Jonathaa Baaron
80 Gienn Avenve
Seruyn, Pennsyivania 19312

Mr Ayron Barr

Department of Computer Science
Stanford University

Stanford, Califorata 9430S

Or John Black

Yaie University

Bor 11A. Yale Station

New Maven, Coanecticut 06520

Dr Joha S Brown

XERQX Patlo Alto Research Center
3333 Coyote Road

Paio Alto, Catifornia 94304

Dr Bruce Buchanan

Department of Computer Science
Stanford University

Stanford, California 94305

Dr Jaime Cardonel|

Department of Psychology
Carnegre=Mellon University
Pittsburgh. Pennsylivanta 15213

Dr Pat Carpenter

Department of Psychology
Carnegre=Me!lon Unsversity
Pittsdburgh, Peansyivanis 15213

Dr wiltiam Chase

Devartment of Psychoiogy
Carnegre~Meilon University
Fittsdurgh, Pennsylivanss 15213

Dr Michetine Chy

Learaing R 8 D Center
University of Pittsburgh

3939 0°'Mars Street

Pittsdergh, Pemnsylivanis 15213

copy

copy

copy

copy

copy

copy

copy

copy

copy

copy

copy

Civilian Agencies

Dr Patricis A SButler
NIE-BRN Bidg. Stop #7
1200 19th Street NW

Waskegton, DC 20208

Or Sesan Chipman

Learning snd Development
Rations! Institute of Education
1200 19th Street W

Vashisgtos, OC 20208

Edusrd Esty

Departament of Education, OERI
MS 40

1200 19¢th Street, W¥
Washington, DC 20208

Edward J Fuentes
Department of Education
1200 19th Street, N¥
Washington, DC 20208

TARE, TaK

National Institute of Education
1200 19¢th Street. MW
Washiagton, DC 20208

Dr John Mays

Nations! Institete of Educstion
1200 19th Street, WV
Washington, DC 20208

Dr Arthur Melmed

724 Browe

U § Dept of Education
Washiagton, OC 20208

Dr Andrew R Molnar

Office of Screntific and Engineering
Personne! and Educatrion

Natiora! Science Foundation
Washiagton, DC 20550 -

Everett Patmer

Research Screntist

Mait Stope 239-3

NASA Ames Research Center
Moffett Field, Californis 94035

Dr Msry Stoddard

C 10, Mat Stop B296

Los Alamos Natioma! Laboratories
Los Alamos, New Mexico 87545

Thief, Psychologica! Research Branch
U s Coast Guard (G-P=~1/2/TP4Q)
Washington, DC 20503

"

—

=

-

T BT T TR TR TR T AT N TRy s

copy

copy

copy

copy

copy

copy

copy

copy

copy

copy

copy

LU
Cant o po o

>h
-

£

”
,,:.

P
AN

PERTRAIRSYY -

4 e

2"

.
o

3 ..'I_.;’_.}.‘;.’ l.‘

0 2
PN
LN Y

&
I’

. *
CRLILF
P

AT
KR N

BE

v
pe > LR Y

ey

L P i Gt Y Y el - Aol i s

PN

Dr William Clgncey

Department of Computer Scieace
Stanford University

Stanford, Califoraia 94306

Dr Altan M Colluns

Boit Beranek § Newman, Iac

50 Moulitor Street

Cambridge. Massachesetts 02138

ERIC Facility=Acquisitions
4833 Rugby Avenve
Bethesda, Maryland 20014

Mr Wallace Fewrzeig

Department of Educationat Techaology
Bolt Berasek and Newman

10 Mouiton Street

Camdridge. Massachusetts 02238

Dr Dester Fletcher
WICAT Research lastitute
1878 S State Street
Orem. Utah 22333

Or Johna R Frederitsen

Boit Beranek & Nevman

50 Mouitos Street

Casbridge. Massachusetts 02138

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

St . Aiaoe it BaACE s Tt S S I S b)
L e T N A N T A T S e

Dr Frank Withrow 1 copy
VU § Office of Education

400 Marylaad Avense SW

Washisgton, DC 20202

Dr Joseph L Yousg. Director 1 copy
Memory & Cogritive Processes

Nations | Science Foundation

washisgton, DC 20550

T AT -t St et

" U P TV S RSP B T S |

