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I. INTRODUCTION La.. - z

" Let (,..., be k independent normal populations "th unknown means

,(, ,... , respectively, and a common known variance iL. The population

associated with the largest is called the b population. In the subset

selection approach, wewwant to select a nonempty subset of the k populations so

that it includes the best population with a minimum guaranteed probability,

... The basic idea of the subset selection approach is that the

number of populations to be selected should depend upon the evidence supplied

by the data. The size of the selected subset depends on the sample size and

the confident level P* associated with the claim that a correct selection

(i.e. selection of any subset that contains the best) occurs. It can be said

that subject to he P*-value and the sample size, we cannot make finer distinction

among the populations that are selected in seeking the best. In this case, one

may decide to use the selected populations in equal proportions in the future.

In this sense, the average worth of the selected subset is given by

"The research of this author was supported by the Office of Naval Research contract
N00014-75-C-0455 at Purdue University and reproduction for any purpose of the
United States Government is permitted.
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where S denotes the set of indices of the selected populations, and = 1 or

0 according as 1i is or is not included in the selected subset. Our interest

is to estimate M, which we call the mean of the selected subset. It is important

to note that M is a random variable.

In this paper, we consider the subset selection rule of Gupta [4], [5],

which has known optimality properties; see Gupta and Panchapakesan [6], and

Berger and Gupta [1]. Let Y1, Y2 "9'". Yk be the sample means based on n

Independent observations from each population. The rule R of Gupta [5] is:

"Select i if and only if Y1 > max Y -dT/V"
1<jck

where d > 0 is to be determined such that the probability of a correct selection

(PCS) is P*. This value of d is shown to be given by

(1.2) j *k-l (t+d) q (t) dt = P*,

where (here and in the sequel) o and qr denote the standard normal cdf and

density function respectively.

Our present investigations relate to only the case of k = 2. The

following notations hold for the entire paper:

2 = 2c2/n ; c = dI ; e (l6 2)/o ;

(3= e ye ; y* = e+e ;~(1.3)
;,Y -Y 1-Y 2 ;Y* = YI+Y2

I1= I{y>co} ; 12 a I{Y<-co) ;

L where IA denotes the indicator function of the set A.

a .I,. *.***-
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Now, for k = 2, we get

c = I\r,

(1.4) Me 11 + + 2  -12).

* When c = 0, the rule R selects the population that yields the largest sample

mean and M is the mean of the selected population. Of course, in this case,

the minimum PCS cannot be guaranteed for P* > 1/k unless additional modifications

are made in the formulation of the selection problem. This is the aspect not

considered by those who discussed the estimation of M in this case; these are

Sarkadi [8] and Dahiya [3] for k = 2 and known T; Hsieh [7] for k = 2 and

. unknown T; and Cohen and Sackrowitz [2] for k > 2 and known T.

For any estimator M of M, the bias B(M) = E(T-M) and the mean squared

error MSE(M) = E(M-M)2. It can be shown (Theorem 2.1) that no unbiased estimator

of M, having a finite variance, exists. In Section II we define the 'natural'

estimator T and three classes of estimators TIX, T2. and T3X, obtained by making

adjustments for the bias of T. The biases and the MSEs of T,,, T2A and T are

discussed in Sections II and III respectively. Numerical comparisons of the

performances of these estimators are made in Section IV.

II. THE ESTIMATORS AND THEIR BIASES

Since Y ' N(e,o 2), it is easy to see that

(2.1) E(M) = e1 (1-s(c-6)} + 62{1-0(c+6)} +
le2

* 01 +02
1 21(c+=)+ 1(c-c) -1}

e [0*+ -t(c-6)}]

!',"" "'U","+, " " ";"" .i'..- .'.,,. -......... ,........ .'- " . - .- -
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Theorem 2.1. No unbiased estimator of M, with finite variance, exists.

Proof. See Appendix Al. C

Let us now consider the 'natural' estimator

max(ipyif lYl < cal,

(22) T mY , 2  otherwise.

Sine ax( 1, 2) = fY* + IYI), we obtain

1-ca 2)d

f y+a7 fIYa adY

By changing the variable of integration by setting t =(y-e)/ci and using

(A2.1) in Appendix 2, E(T) simplifies to

(2.3)2 E()T {O(C+6) - O(c-6)} + y {q~ (C+6),+ T~ (C-6)1

= E(M) + (F{ (c+6) + qf (c-8)

Thus B(T) = '{ q-(c+6) + q (c-6)).

2.1 Estimators 11

Since the bias of T is positive, we define TI, by

(2.4) TlX =T + (cY) X>0
T ~-) 0
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The bias of TI. is

(2.5) B(TlA) = E(T-M - A S (c+ Y) + q (c-Y)})
E { _i (C6 r(-6 r( (c-6)

(~qc+6) + q (2-s) + -

by using (2.3) and (A2.7). It should be noted that T l becomes T when

= , and that it reduces to of Dahiya [3] when c = 0.

2.2 Estimators T,

To motivate the definition of T2 , X > 0, consider the following

estimator

(2.6) U =.! +.-
2 2

For A 1, U is the maximum likelihood estimator (MLE) of E(M).

E(U) ~~~+ -1 E[Yo{x(c+-)1J+ E(O ! }

and using (A2.8) this is simplified to

(2.7) E(U) = *+ (+) - __
2 __

+ 1 (+C ++xSC

2A+X~ i+

Ii "€ ° • o ., . .. • "* , . ., • .. • . .. . . ." ..
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We note that the sum of the first two terms in (2.7) tends to E(M) as x

Also, it is seen clearly from (A2.7) that the last term in (2.7) is unbiasedly

estimatedby 2 ~ + c) + q.(xC; - c)})]. By subtracting this unbiased

estimator from U, we define

y* y yi
(2.8) T2k " . + [(sx(c+)1 - x(c-Y))]

T [ E (c+ ) + (A(c-)].

The bias of T2A is

(2.9) B(T2A) = = [i jI + * ', (6+c) -(6-C)] ,

which tends to zero as A tends to infinity. Finally, we note that T2 .

corresponds to tc of Dahiya [3] when c = 0; Dahiya's c corresponds to our x.

2.3 Estimators T,,

Let us first consider T3, the MLE of E(M); this is same as U in (2.6)

with A = 1. Thus, from (2.7) with X = 1,

(2.10) E(T3) = + - -

'"i ~ ~3 Y -11 *,(

-

r+ Cr (1-C + .

2Y 7V
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Hence the bias of T3 is

(2.11) B(T3) = , (+c) + D(-) 0(6+c) 0(6-C

2&. IT 1+Ec) + 0-

Noting that the last term in (2.11) is unbiasedly estimated by

. [q (pc) + q( - c)] we define

*(2.12) T3 T X -) + ' oL+C OY

+j+
2~ 1 q:(! + c) + 'T~ C)]

The bias of T3 " is

,.;' (2.13) B(T3 ) = B(T3 ) - +- [ ( ) + (

.:.- E y ,(-._E + - )+ f - ,(I + c) f €,( -C)

Now, using (A2.8) to evaluate the expectation in (2.13) and carrying out routine

manipulations, we obtain
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14,(,+c + b 6-c-)l

(2.14) B(T3,) = - (+,) (_c, + (  )- j( ) + (-

S- {,(6+c) + ,(-0

+ C' (-+c Cr-
2 v7 (.- ) + q (L -) "X A( + (  )

It should be noted that T3x is slightly different from the estimator TX of

* .•Dahiya [3] when c = 0 because he does not estimate part of B(T3) unbiasedly

as we do in (2.12).

11I. MEAN SQUARED ERRORS

We give here the expressions for the MSEs of T and TI. For T2A and T3k

the derivations become more tedious. For the numerical comparisons of the MSEs

we use numerical integration as will be explained later in this section.

-'S.. 3.1 Mean Squared Error of T

We note that M and T can be written as

(31)M =. {e* + e(I11-I
:".':: (3.1I)

T {Y* + Y(11-2)1

Now, M - T = 1 {(Y*-B*) + (Y-e)(I1-I2 )}. Since Y and Y* are independent and212
E(Y*-e*) = 0, it is easy to see by direct evaluation that

. . . . . 4 - . . 4
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2 2 2 -c-6 t2
(3.2) MSE(T) = S + f j %(t) dt +  f t q(t) dt

4 4 CS4,. C-6 _

" 2 2 + (c-6) (c-6) + (c+6)q (c+6) + D(6-c) -V(6+c)},

using (A2.3).

-' 3.2 Mean Squared Error of T,,

Letting V= cF(c +!) + f(c- ), we have

(3.3) MSE(TlA) = E[(T-M) - V]

= MSE(T) + (xa2/4) E(V2) - XaE[(T-M)V].

By repeated applications of (A2.6),E(V2) can be evaluated in a straightforward

manner to yield

(3.4) E(V+) = [ + ' / (6-c) + 2q 6+2

Again, noting that V (which is a function of Y) and Y* are independent, it is

easy to see that

(3.5) E[(T-M)V] = y E[(Y-e)1iV] - E[(Y-e)I 2 V].

The right-hand side of (3.5) can be written as a sum of four integrals

each of which is either of the form in (A2.4) or in (A2.5). Thus we get

4 E[(T-M)V] = BI + B2 + 83 + B4, where

- .
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_ 1(c+6 / 3c-6\ + c+6 '(3c-6 +

22

(3.6)

Ba + -

Now we can obtain MSE (T1A) by using (3.2), (3.4), and (3.6) in (3.3).

Remark 3.1. For i = l, 2, 3, T - M is of the form --(Y*-e") + g(Y),

* where g is some known function. Hence, MSE(TiX) = a2/4 + E[g 2 (Y)); the

* expectation of the product term is zero. After suitable change of variable,

E[g 2 (Y)] can be numerically evaluated using the Gauss-Hermite quadrature

*: formula. Our results in the next section were obtained by using the 20-point

*! formula.

IV. COMPARISON OF THE ESTIMATORS

In this section we make some comparisons of the performances of TIx, T2 "

* and T3X based on the values of their biases and the MSEs computed in units

of a and 02, respectively, for 6 = 0 (0.5) 4 (1) 7; c = 1.645, 1.9600, 2.576;

X = O, & exp {-c2/4}, 1, V7. These biases and MSEs are given in Tables IA

through IC and Tables 2A through 2C respectively. For convenience, 97 exp {-c2/41

is denoted by x c in the tables.

Remark 4.1. The choices for values of x are based on the following

considerations. For X = 0, TlX becomes T. The value x = 1 corresponds to

......... .. "... ..... "- ' i..." " i l i i' l l i -' ' '' '= l ' l''I---- -
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using MLEs in constructing the estimators. Further, B(TlA) decreases in x

and if we let x to be the value for which B(TlA) = 0, < 2. Also, A6

2
" tends to 0 or '2 exp {-c /4} according as 6 tends to infinity or zero.

Remark 4.2. The c-values chosen here correspond to P* = 0.90, 0.95, 0.99,

the usual values of interest in selection problems. The value of c = 0

(P* = 0.50) is not of interest in our selection problems. This is the case
considered by Dahiya [3]. As pointed out earlier, Tlx and T2x in this case

coincide with Mx and tc of Dahiya. For T 1 , our choices for values of x are

included in Dahiya's tables. For T2A, x = 1 is the only common choice. However,

we do not report our values in this case, as it is not of main interest here.

* Finally, Dahiya defines a hybrid estimator Hc for his problem; however, Hc is

really our T. But his c-values are chosen arbitrarily and they do not correspond

to P*-values of common interest.

Now, considering the biases, we see that T2x performs better than Tlx and

. T2A for small values of 6 (6 < 1 for P* = .90 and 6 < .5 for P* = .95, .99).

As 6 increases, T2x becomes increasingly bad without adjustment for bias (i.e. x 0);

however, with x increasing the bias of T2A is very much reduced. For large

6 (6 > 5 for P* = .90, 6 > 6 for P* = .95, .99), Tlx performs better than T3 ,

and is generally better than T2, as well. For small 6 (6 < 1 for P* = .90, .95)

and S< 2 for P* = .99) T1, performs better than T3, for X < Xc' For moderate 6,

ST3x is better than Tlx for x < c

From the point of view of MSE, an overall picture emerges as follows:

For 6 < 1, T2A is the best. For 1.5 < 6 < 3, T is the best. When

3.5 < 6 < 4, Tlx with small x or T3A with large x is the best. Finally, for
3,,

6 >5, T3, with x away from zero is the best.

,-
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Table 1A. Biases of Tl,(top entry), T2,(middle entry),

and T3,(bottom entry) expressed in units of a
P* = .90; c = 1.645; Xc  .7190

0 Xc 160

.1031 -.0000 -.0403 -.0997
0.0 0 0 0 0

.1434 .0379 -.0033 -.0641

.1236 .0184 -.0227 -.0833
0.5 -.0275 .0091 .0086 .0062

.1549 .0495 .0083 -.0524

.1680 .0590 .0164 -.0464
1.0 -.1277 .0183 .0190 .0142

.1707 .0683 .0284 -.0306

.1988 .0894 .0466 -.0164
1.5 -.3311 -.0063 .0034 .0047

.1556 .0648 .0293 -.0230

.1876 .0856 .0458 -.0129
2.0 -.6386 -.0732 -.0444 -.0260

.0973 .0292 .0026 -.0367

.1384 .0526 .0190 -.0304
2.5 -1.0046 -.1504 -.0977 -.0583

.0218 -.0161 -.0309 -.0527

.0797 .0151 -.0101 -.0473
3.0 -1.3684 -.1952 -.1227 -.0700

-.0329 -.0410 -.0441 -.0488

.0357 -.0073 -.0242 -.0490
3.5 -1.6944 -.1907 -.1105 -.0580

-.0507 -.0371 -.0319 -.0241

.0125 -.0129 -.0228 -.0375
4.0 -1.9815 -.1517 -.0774 -.0360

-.0421 -.0185 -.0092 .0044

.0007 -.0054 -.0077 -.0112
5.0 -2.4990 -.0619 -.0211 -.0067

-.0126 .0062 .0136 .0245

.0000 -.0009 -.0012 -.0017
6.0 -3.0000 -.0165 -.0031 -.0005

-.0019 .0053 .0080 .0121

.0000 -.0001 -.0001 -.0002
7.0 -3.5000 -.0031 -.0003 -.0000

-.0002 .0015 .0021 .0030

7. . .. .-.-.... ... ......... .....-.-1 .... ... ... "-... -....
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Table lB. Biases of T1 (top entry), T2 (middle entry),

and T3.(bottom entry) expressed in terms ofa

53* =.95; c 1.96; Xc .5413

0 1 r

.0584 .0000 -.0495 -.0943
0.0 0 0 0 0

.1080 .0422 .0134 -.0637

.0784 .0168 -.0355 -.0826
0.5 -.0163 .0144 .0112 .0073

.1250 .0570 -.0007 -.0527

.1283 .0591 .0005 -.0524
1.0 -.0835 .0387 .0317 .0209

.1595 .0874 .0263 -.0289

.1799 .1037 .0391 -.0192
1.5 -.2419 .0308 .0321 .0216

.1729 .1014 .0408 -.0140

.1994 .1216 .0556 -.0040
2.0 -.5159 -.0380 -.0072 -.0035

.1366 .0755 .0237 -.0231

.1724 .1009 .0403 -.0144
2.5 -.8817 -.1511 -.0719 -.0440

.0602 .0192 -.0155 -.0469

.1162 .0577 .0082 -.0365
3.0 -1.2762 -.2553 -.1232 -.0731

-.0152 -.0318 -.0459 -.0586

.0609 .0187 -.0171 -.0494
3.5 -1 .6419 -.3056 -.1336 -.0744

-.0556 -.0510 -.0471 -.0436

.0249 -.0021 -.0250 -.0456
4.0 -1.9586 -.2947 -.1078 -.0544

-.0580 -.0404 -.0256 -.0122

.0020 -.0056 -.0120 -.0178
5.0 -2.4970 -.1830 -.0365 -.0134

-0.0225 -.0036 .0124 .0268

.0001 -.0012 -.0023 -.0033
6.0 -2.9999 -.0818 -.0063 -.0014

-.0040 .0044 .0116 .0180

.0000 -.0001 -.0002 -.0003
7.0 -3.5000 - .0288 - .0006 - .0001

-.0004 .0018 .0036 .0053
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Table IC. Biases of TlA(top entry), T2,(middle entry),

and T3 (bottom entry) expressed in units of a

P*= .99; c = 2.576; Ac = .2692

A 0 c 1

.0145 .0000 -.0392 -.0615
0.0 0 0 0 0

.0537 .0332 -.0225 -.0541

.0249 .0084 -.0364 -.0618
0.5 -.0045 .0162 .0096 .0053

.0709 .0479 -.0144 -.0497

.0579 .0360 -.0236 -.0574
1.0 -.0287 .0537 .0347 .0200

.1163 .0874 .0090 -.0355

.1119 .0828 .0040 -.0406
1.5 -.1057 .0782 .0603 .0363

.1682 .1333 .0386 -.0151

.1690 .1338 .0384 -.0157
2.0 -.2823 .0411 .0590 .0367

.1896 .1527 .0527 -.0039

.1989 .0578 .1609 -.0006
2.5 -.5871 .0109 -.0889 .0069

.1519 .0323 .1197 -.0172

•1823 .1460 .0474 -.0085
3.0 -.9963 -.2909 -.0696 -.0432

.0653 .0438 -.0145 -.0476

.1302 .0995 .0162 -.0310
3.5 -1.4389 -.4978 -.1383 -.0832

-.0243 -.0323 -.0539 -.0662

.0724 .0495 -.0126 -.0478
4.0 -1.8456 -.6442 -.1595 -.0905

-.0746 -.0706 -.0596 -.0534

.0106 .0018 -.0219 -.0353
5.0 -2.4808 -.7028 -.0890 -.0406

-.0565 -.0429 -.0058 .0152

.0006 -.0015 -.0070 -.0101
6.0 -2.9991 -.5980 -.0223 -.0068

-.0148 -.0060 .0178 .0313

.0000 -.0003 -.0010 -.0015
7.0 -3.5000 -.4602 -.0031 -.0005

-.0020 .0010 .0091 .0138

.4
. . . . . . . . . . . . . . . . .
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Table 2A. MSEs of Tlx(top entry), T2A (middle entry),

and T3X(bottom entry) expressed in units of 2

P* = .90; c = 1.645; Xc = .7190

X0 X1 42-i

.3825 .3605 .3580 .3606
0.0 .2500 .2932 .2925 .2935

.3195 .3704 .3962 .4403

.3841 .3596 .3564 .3582
0.5 .2614 .2917 .2942 .2997

.3196 .3726 .3999 .4466

.3836 .3566 .3529 .3545
1.0 .3288 .2992 .3100 .3273

.3256 .3795 .4085 .4594

.3778 .3575 .3566 .3625
1.5 .5318 .3418 .3622 .3916

.3525 .3952 .4214 .4699

.3783 .3764 .3822 .3973
2.0 .9402 .4332 .4570 .4882

.4107 .4265 .4434 .4791

.3983 .4188 .4320 .4568
2.5 1.5628 .5508 .5652 .5818

.4878 .4697 .4732 .4891

.4337 .4691 .4865 .5157
3.0 2.3499 .6464 .6398 .6310

.5516 .5061 .4974 .4941

.4676 .5051 .5218 .5485
3.5 3.2456 .6857 .6552 .6244

.5780 .5198 .5039 .4877

.4885 .5184 .5311 .5509
4.0 4.2284 .6710 .6243 .5854

.5697 .5128 .4952 .4738

.4996 .5100 .5142 .5206
5.0 6.4994 .5842 .5412 .5187

.5247 .4909 .4789 .4627

.5000 .5019 .5027 .5038
6.0 9.2500 .5264 .5071 .5017

.5042 .4916 .4868 .4800

.5000 .5002 .5003 .5004
7.0 12.5002 .5058 .5007 .5001

.5004 .4973 .4961 .4943

° .. . - ;* . . . * .
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Table 2B. MSEs of Tl (top entry), T2 (middle entry),:':2x

and T3,(bottom entry) expressed in units of a

P* .95, c = 1.96, Xc = .5413

o 0 16c

.3147 .3090 .3104 .3166
0.0 .2500 .2802 .2760 .2755

.2975 .3204 .3449 .3709

.3277 .3191 .3187 .3240
0.5 .2545 .2806 .2785 .2798

.3042 .3316 .3609 .3920

.3545 .3396 .3355 .3387
1.0 .2902 .2834 .2882 .2947

.3201 .3574 .3975 .4405

.3726 .3538 .3480 .3509
1.5 .4244 .2992 .3148 .3286

.3422 .3846 .4328 .4859

.3750 .3606 .3592 .3663
2.0 .7500 .3508 .3744 .3920

.3779 .4119 .4565 .5092

.3779 .3766 .3851 .4004
2.5 1.3282 .4510 .4691 .4793

.4358 .4470 .4743 .5130

.3983 .4123 .4315 .4547
3.0 2.1404 .5776 .5697 .5605

.5052 .4883 .4915 .5081

.4337 .4572 .4820 .5081
3.5 3.1082 .6822 .6337 .6021

.5585 .5202 .5026 .4983

.4676 .4918 .5149 .5378
4.0 4.1626 .7296 .6415 .5966

.5764 .5298 .5010 .4836

.4972 .5087 .5189 .5285

5.0 6.4941 .6797 .5660 .5061
.5404 .5061 .4807 .4608

.5000 .5026 .5049 .5070
6.0 9.2500 .5904 .5140 .5042

.5087 .4941 .4824 .4724

.5000 .5003 .5006 .5009
7.0 12.5002 .5359 .5017 .5002

.5010 .4969 .4935 .4905

4i

4V
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Table 2C. MSEs of T1 (top entry), T2 (middle entry),

and T3 (bottom entry) expressed in units of a2

P* = .99; c = 2.576; Xc = .2692

A 0 Xc 1

.2729 .2717 .2723 .2750
0.0 .2500 .2637 .2587 .2574

.2687 .2721 .2830 .2902

.2852 .2829 .2816 .2839
0.5 .2514 .2658 .2612 .2600

.2753 .2802 .2960 .3065

.3167 .3114 .3045 .3055
1.0 .2667 .2707 .2685 .2688

.2922 .3011 .3305 .3505

.3518 .3423 .3281 .3275
1.5 .3399 .2821 .2853 .2904

.3153 .3287 .3751 .4079

.3722 .3602 .3426 .3424
2.0 .5600 .3210 .3272 .3405

.3482 .3626 .4189 .4618

.3750 .3650 .3546 .3597
2.5 1.0313 .4211 .4124 .4312

.4030 .4117 .4599 .5033

.3779 .3748 .3825 .3970
3.0 1.8026 .5957 .5353 .5474

.4836 .4800 .5007 .5322

.3983 .4039 .4317 .4556
3.5 2.8230 .8087 .6536 .6440

.5685 .5509 .5352 .5472

.4337 .4452 .4848 .5128
" 4.0 3.9832 .9916 .7167 .6801

.6227 .5951 .5492 .5421

.4885 .4986 .5284 .5468
5.0 6.4663 1.1131 .6534 .5989

.5989 .5711 .5107 .4862

.4996 .5030 .5128 .5186
6.0 9.2491 1.0119 .5456 .5197

.5302 .5151 .4783 .4602

.5000 .5006 .5023 .5033
7.0 12.5001 .8689 .5072 .5016

.5047 .4994 .4856 .4783

* .-. .
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Taking the bias and MSE together into account, the relative performances

of these estimators can be largely summarized as follows: For 6 < 2, T2A is

the best. For 2 < 6 < 5, one of Tlx and T3x is always better than or as good

as T2X. When 6 > 5, T2  is never the best. However, for 6 > 2, there is no

clear choice between T and T3, because the bias and the MSE pull each in

opposite directions.

°. . . ....
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APPENDIX 1

Proof of Theorem 2.1. Since Y* and Y are jointly sufficient

for E(M), we restr .ict our attention to unbiased estimators that

are functions of Y* and Y. Let r(Y*,Y) be an unbiased estimator

of M such that V(n" < ~.Let Z be such that it is independent of

Y* and Y, and Z ", N(6/b, 1/b ), where b > 0 is known. Applying

the Neyman Factorization Theorem to the joint distribution of Y*,

Y and Z, we see that Y* and W = Z + Y/a are sufficient for 6* and

6. Thus n, E[nICY*,W)] is a function of Y* and W only. Also,

E(ri) E(n) and V(.rt1) :S V(yn) by Rao-Blackwell Theorem. Now, let

b2

T 2 + b 2 W f (bc* + DW) - 0 (bc* -DW)I

-[Dv {pbc* + DWJ + D ep {bc* -DWI]

1l R 2, say,

where bc* =c A 2and D - b2 / /1 + 2. Using (A2.7) and

(A2.8), it can be seen that E(.n2 ) =E(M). Since E(n, "2 0,

it follows that n, n with probability 1 by the completeness of

(yW. ThsV(n2) =V(-nl) < V (n) < 00.

To complete -the proof, we obtain a contradiction by showing

that V(n2) can be increased indefinitely by letting b - .To see

*this, we first note that V(R) < -which implies that V(R < 00.

It is also easy to see that 0 < E(R < Hence, 2( hc
E(2) E( 2) whc

implies that E[D 2 CP2{bc* + DW)] <. On the other hand, using (A2.7)

2
and the fact that cp (a) cpq(v'a)//r7 r, we can see that
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E[D 2 cp2{bc* + DW}] . b 1 (/b(6 +c')

1+b "  + +2hb A/ + 2b 3

a quantity which tends to infinity as b * . o

.

• . -. • . -q -. • . . o - o . . . . . . . , ° . . . • - . , •
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APPENDIX 2

We state a few results relating to normal distribution. We omit the

proofs, which are straightforward.

b
(A2.1) f t 4r (t) dt = (a) - (b).

a

(A2.2) f c{ (t+ )} (t) dt - l 0 )
i5-m

b
(A2.3) f t 2  (t) dt = a qf (a) - b qF(b) + o(b) - s(a).

a

(A2.4) f t q(t) q(t+a) dt = q( (Via + - ) + vr (/fa +
a 2 /21 r2 /2r2 r

m-m

L N T-b
(A2.5) f t = 4(t) (t+a)dt- b - + o 12- b

(A2.6=) f [ t) (t+ ) ( It) dt -c+

' Let Y N(e ). Then

(. A2.7) E [q (I + 011 1 C16.)

(- A2.8) E [Yo ) (I + 01) = 'D (6, + a - .I6+

AZ # A~
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