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A Srol /,» b k
ILet/#T,\k) . @g be k independent normal populatIOf(zyith unknown means

(3}9 <_j C%E respectively, and a common known variance The population

Fhate w6 )
associated with the 1argestqib is called the b; st population. In the subset
*her s

#
selection approach, iwe-want to select a nonempty subset of the k populations so

that it includes the best population with a minimum guaranteed probability,

TP k~<P* < T The basic idea of the subset selection approach is that the

number of populations to be selected should depend upon the evidence supplied
by the data. The size of the selected subset depends on the sample size and

the confidence level P* associated with the claim that a correct selection

(i.e. selecti&h of any subset that contains the best) occurs. It can be said
that subject toiyhe P*-value and the sample size, we cannot make finer distinction
among the popu]af%ons that are selected in seeking the best. In this case, one
may decide to use the selected populations in equal proportions in the future.

In this sense, the ayerage worth of the selected subset is given by

1The research of this author was supported by the Office of Naval Research contract
N00014-75-C-0455 at Purdue University and reproduction for any purpose of the
United States Government is permitted.
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(1.1) M= T e, I,
ies '/ ies !

where S denotes the set of indices of the selected populations, and Ii =1or
0 according as m is or is not included in the selected subset. Our interest

is to estimate M, which we call the mean of the selected subset. It is important

to note that M is a random variable.

In this paper, we consider the subset selection rule of Gupta [4], [5],
which has known optimality properties; see Gupta and Panchapakesan [6], and
Berger and Gupta [1]. Let Y], Yz,..., Yk be the samplie means based on n
independent observations from each population. The rule R of Gupta [5] is:

"Select =, if and only if Y, 3_]qu Yy - dt//n "
<dzk
where d > 0 is to be determined such that the probability of a correct selection

(PCS) is P*. This value of d is shown to be given by

(1.2) [ o1 (t+d) ¢ (t) dt = p*,
where (here and in the sequel) ¢ and ¢ denote the standard normal cdf and
density function respectively.

Our present investigations relate to only the case of k = 2. The

following notations hold for the entire paper:

~

Zrzln ;s €

Q
n

d/v2 8 = (8,-8,)/0 ;

e = 6]-02 H 0* = 9]‘"92 H

Y]+Y2 ;

1.3 <

-
L]

Y]-YZ I

I I,=1

1° Livscoy 3 12 ® Tiveecoy 5

Lwhere IA denotes the indicator function of the set A.
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Now, for k = 2, we get

o 1 (pr),
(1.4) e]+e2
M e]I] + 9212 *—= (I-I]-IZ) .

(2]
[

When ¢ = 0, the rule R selects the population that yields the largest sample
mean and M is the mean of the selected population. Of course, in this case,
the minimum PCS cannot be guaranteed for P* > 1/k unless additional modifications
are made in the formulation of the selection problem. This is the aspect not
considered by those who discussed the estimation of M in this case; these are
Sarkadi [8] and Dahiya [3] for k = 2 and known t; Hsieh [7] for k = 2 and
unknown t; and Cohen and Sackrowitz [2] for k > 2 and known <.

For any estimator M of M, the bias B(M) = E(T-M) and the mean squared
error MSE(M) = E(ﬁ-M)z. It can be shown (Theorem 2.1) that no unbiased estimator
of M, having a finite variance, exists. In Section II we define the ‘natural’
estimator T and three classes of estimators Tlx"TZX and T3x’ obtained by making
adjustments for the bias of T. The biases and the MSEs of T]x’ TZA and T,, are
discussed in Sections II and III respectively. Numerical comparisons of the

performances of these estimators are made in Section IV.

II. THE ESTIMATORS AND THEIR BIASES

Since Y N(e,oz), it is easy to see that

(2.1) E(M) = 0,{1-0(c-8)} + 6,{1-0(cts)} +

81%9,
—5— {o(c+s)+ o(c-5) -1}

= %-[e*+ so{e(cts) - o(c~5)}].

...............................
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Theorem 2.1. No unbiased estimator of M, with finite variance, exists.

Proof. See Appendix Al. C

Let us now consider the 'natural’' estimator

max(Y],Yz) if |Y| < co,
(2.2) T=

Y*

7 otherwise.

Since max(Y,,Y,) = %{Y* + |Y|}, we obtain
* -Co - ® -
EM=F+3 [ e a+d [Iylle®dda.
-c0 Co

By changing the variable of integration by setting t = (y-6)/c and using
(A2.1) in Appendix 2, E(T) simplifies to

(2.3) E(T) = %* + %‘1 {o(c+s) - o(c-8)} + % {q (c+8) + ¢ (c-6)}

E(M) + % {q (c+8) + ¢ (c-8)} .

Thus  B(T) %{¢(c+6) + ¢ (c-8)}.

2.1 Estimators Tu
Since the bias of T is positive, we define T]A by

(2.4) T, =T -52‘1{¢(c+%) + HC%)} » 220




The bias of T]A is

(2.5)  B(T;,) = ELT-# - B (g (c4]) + ¢ (c-D)]

9 {q(c*s) + q(c-8)} - 2 (¢ (££8) + ¢ (&),
2% ¥ 27 2 7z

by using (2.3) and (A2.7). It should be noted that T,, becomes T when
A = 0, and that it reduces to ﬁx of Dahiya [3] when ¢ = 0.

2.2 Estimators T,,
To motivate the definition of TZA’ X > 0, consider the following

estimator

(2.6) U=

N|-<

%[o{x(c+—)} - O{A(C-—)}]
For A = 1, U is the maximum likelihood estimator (MLE) of E(M).

E(U) = § - E[Ye(r(chh)1] + 3 ELYeta(Y - €)1

Nlo
N| -

and using (A2.8) this is simplified to

(2.7) E@) = § + [3‘&‘:12 Fc_l:]

vl A et M e
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We note that the sum of the first two terms in (2.7) tends to E(M) as A + =,
Also, it is seen clearly from (A2.7) that the last term in (2.7) is unbiasedly

estimated hy [q {x(-+ c)} + q-{x(—-- c)}]. By subtracting this unbiased

estimator from U, we define

(2.8) Ty, =¥ +¥ [eta(esD)) - enr(e-I]

- $ [e e} + ¢ ((e-D)10.

The bias of TZA is

(2.9)  B(T,) = [,Mt +o’—(§'—°l - o (5+c) -0(6-c)] ,
2 Anl

which tends to zero as A tends to infinity. Finally, we note that TZA

53 corresponds to t. of Dahiya [3] when ¢ = 0; Dahiya's c corresponds to our i.
- 2.3 Estimators T,
Let us first consider T,, the MLE of E(M); this is same as U in (2.6)
o with A = 1. Thus, from (2.7) with » = 1,

(2.10) E(Ty) =5 +3 [45(%) - 0(9/-;_3)]

s 2 [q(“—*i) : q(%‘)].
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Hence the bias of T3 is

(2.11) B(Ty) = [(G*C) * o9 - astc) - ols- c)]
+ 2 s*cy é-c .
= [ =]

Noting that the last term in (2.11) is unbiasedly estimated by

52'- [cp (c!,+c) + ¢({- - c)] ,» we define

Y Y Y Y Y
(2.12) T3A = T3 - A[‘Z’%¢(7§_‘+ E) + 0(72_: - 7;_') - 0(-0-"' c) - 0(5‘ -c)

+ 3 §¢(§+ ¢) + ¢ (¥- c)z]
The bias of T3A is

(2.13)  B(T3,) = B(T,) - f& [«r (‘l/;) + q(i'/—;)]

N>

elv o+ 1 S .5 - o(= -
[3¢(/2_+/20)+ - R AR c)”

Now, using (A2.8) to evaluate the expectation in (2.13) and carrying out routine

manipulations, we obtain
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214 8(15) = § [0 zw(i};_) ' <»(ﬁ'/—;)$ . “3""%‘? ' o(“'T;)z

- {¢(s+c) + ¢(6-c)ﬂ
o s+c 5-C s*cy §-C
‘2 [3‘:( 8y 4 g (&L )f \/—3 9 + )],

It should be noted that T3A is slightly different from the estimator TA of
Dahiya [3] when ¢ = O because he does not estimate part of B(T3) unbiasedly

as we do in (2.12).

III. MEAN SQUARED ERRORS

We give here the expressions for the MSEs of T and T]A.

the derivations become more tedious. For the numerical comparisons of the MSEs

For TZA and T3A

we use numerical integration as will be explained later in this section.

3.1 Mean Squared Error of T

We note that M and T can be written as

M= (e% + o(I,-1,)} ,

(3.1)
T=g (% + Y(I,-1,)} . \

Now, M - T = %-{(Y*-e*) + (Y-e)(I]-Iz)}. Since Y and Y* are independent and
E(Y*-e*) = 0, it i{s easy to see by direct evaluation that

ST s ~,
'i'kLLLI—LLALLL;'ALA'
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(3.2)  MSE(T) = & +9 [ g(t)dt+S [ t2 () dt

f §F "3 ]

2 c-§ -

%]

<

3 2

= 7 {2+ (c-8)g(c-8) + (c+s)q (c+s) + o(s-c) - os+c)l,
J

p: using (A2.3).

;‘ 3.2 Mean Squared Error of T]A

Letting V = ¢ (c + %) + ¢ (c - %), we have

(3.3)  MSE(Ty,) = E[(T-#) - A2 v]?

» = MSE(T) + (no2/8) E(VZ) - AcE[(T-M)VI.

X By repeated applications of (A2.6),E(V2) can be evaluated in a straightforward
R manner to yield

" - 222

: 2y _ 1 A [2 j /2 §%+3c

(3.4) E(VF) = = [¢3\/3_(6+c)2+ ¢3 3 (6-c)$ + 2¢q ‘L—s'“l; ]
’
15 Again, noting that V (which is a function of Y) and Y* are independent, it is

L

easy to see that

(3.5)  E[(T-M)V] = % EL(Y-0)1,V] - % EL(Y-0)1,V1.

The right-hand side of (3.5) can be written as a sum of four integrals
each of which is either of the form in (A2.4) or in (A2.5).
4 E[(T-M)V] = By + B, + B, + B,, where '

Thus we get
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Now we can obtain MSE (T]A) by using (3.2), (3.4), and (3.6) in (3.3).

Remark 3.1. For i =1, 2,3, T, - M is of the form 5{¥*-6%) + g(¥),
where g is some known function. Hence, MSE(Tix) = 02/4 + E[gz(Y)]; the
expectation of the product term is zero. After suitable change of variable,
E[gz(Y)] can be numerically evaluated using the Gauss-Hermite quadrature
formula. Our results in the next section were obtained by using the 20-point

formula.

IV. COMPARISON OF THE ESTIMATORS
In this section we make some comparisons of the performances of Tlx’ TZA
and T, based on the values of their biases and the MSEs computed in units

of o and o2, respectively, for 6 = 0 (0.5) 4 (1) 7; c = 1.645, 1.9600, 2.576;

A =0, /2 exp {-c2/4}, 1, ¥2. These biases and MSEs are given in Tables 1A
through 1C and Tables 2A through 2C respectively. For convenience, vZ2 exp {-c2/4}
is denoted by Ae in the tables.

Remark 4.1. The choices for values of A are based on the following

considerations. For » = 0, T,. becomes T. The value A = 1 corresponds to

1A
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using MLEs in constructing the estimators. Further, B(T]A) decreases in A
and if we let A, to be the value for which B(T,,) = 0, i < /2. Also, A

tends to Q or V2 exp {-c2/4} according as § tends to infinity or zero.

Remark 4.2. The c-values chosen here correspond to P* = 0.90, 0.95, 0.99,
the usual values of interest in selection problems. The value of ¢ = 0
(P* = 0.50) is not of interest in our selection problems. This is the case
in this case

considered by Dahiya [3]. As pointed out earlier, T, and T

1x 2)
coincide with ﬁx and tc of Dahiya. For Tlx’ our choices for values of X are
included in Dahiya's tables. For TZA’ A =1 is the only common choice. However,
we do not report our values in this case, as it is not of main interest here.
Finally, Dahiya defines a hybrid estimator HC for his problem; however, HC is
really our T. But his c-values are chosen arbitrarily and they do not correspond
to P*-values of common interest,

Now, considering the biases, we see that TZA performs better than T]A and
T,, for small values of § (5 <1 for P* = .90 and § < .5 for P* = .95, .99).
As § increases, T2A becomes increasingly bad without adjustment for bias (i.e.
however, with A increasing the bias of TZA is very much reduced. For large
6§ (6§ >5 for P* = .90, § > 6 for P* = .95, .99), T]x performs better than T3,
and is generally better than TZA as well. For small & (8§ <1 for P* = .90, .95)

and s < 2 for P* = .99) T,, performs better than T4, for A

| A

Xc' For moderate 6,

T3, is better than T,, for 1 <.

From the point of view of MSE, an overall picture emerges as follows:

For 6 <1, T,, is the best. For 1.5 < 6 < 3, T,, is the best. When

1

3.5<6 <4, T, with small A or T3, With large 1 is the best. Finally, for

1

§ > 5, T3A with » away from zero is the best.

0);
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Table 1A. Biases of Tu(top entry), TZA(middle entry), ‘
and T3l(bottom entry) expressed in units of o
P = .90; c = 1.645; A_ = .7190
8 A
- s 0 Ae 1 V2
¥ .1031 -.0000 -.0403 -.0997
0.0 0 0 0 0
y .1434 .0379 -.0033 -.064)
N .1236 .0184 -.0227 -.0833
- 0.5 -.0275 .0091 .0086 .0062
-~ .1549 .0495 .0083 -.0524
.1680 0530 . .0l64 -.0464
. 1.0 -.1277 .0183 .0190 .0142
- .1707 .0683 .0284 -.0306
9 .1988 .0894 .0466 -.0164
= 1.5 -.3311 -.0063 .0034 .0047
.1556 .0648 .0293 -.0230
: .1876 .0856 .0458 -.0129
. 2.0 -.6386 -.0732 -.0444 -.0260
» .0973 .0292 .0026 -.0367
.1384 .0526 .0190 -.0304
- 2.5 -1.0046 -.1504 -.0977 -.0583
: .0218 -.0161 -.0309 -.0527
% .0797 .0151 -.0101 -.0473
- 3.0 -1.3684 -.1952 -.1227 -.0700
-.0329 -.0410 -.0441 -.0488
.0357 -.0073 -.0242 -.0490
3.5 -1.6944 -.1907 -.1105 -.0580
-.0507 -.0371 -.0319 -.0241
.0125 -.0129 -.0228 -.0375
_ 4.0 -1.9815 -.1517 -.0774 -.0360
: -.0421 -.0185 -.0092 .0044
. .0007 -.0054 -.0077 -.0112
5.0 -2.4990 -.0619 -.0211 -.0067
-.0126 .0062 .0136 .0245
.0000 -.0009 -.0012 -.0017
6.0 -3.0000 -.0165 -.0031 -.0005
-.0019 .0053 .0080 .0121
.0000 -.0001 -.0001 -.0002
7.0 -3.5000 -.0031 -.0003 -.0000
: -.0002 .0015 .0021 .0030
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2 Table 18. Biases of T,,(top entry), T, (middle entry),

and T3A(bottom entry) expressed in terms of o

P* = .95; ¢ = 1.96; A, = .5413

A

s 0 A 1 V2
.0584 .0000 -.0495 -.0943

0.0 0 0 0 0
.1080 .0422 .0134 -.0637
.0784 .0168 -.0355 -.0826
0.5 -.0163 .0144 .0112 .0073
.1250 .0570 -.0007 -.0527
.1283 .0591 .0005 -.0524
1.0 -.0835 .0387 .0317 .0209
.1595 .0874 .0263 -.0289
.1799 .1037 .0391 -.0192
1.5 -.2419 .0308 .0321 .0216
1729 .1014 .0408 -.0140
.1994 1216 .0556 -.0040
2.0 -.5159 -.0380 -.0072 -.0035
.1366 .0755 .0237 -.023]
.1724 .1009 .0403 -.0144
2.5 -.8817 -.151 -.0719 -.0440
.0602 .0192 -.0155 -.0469
.1162 .0577 .0082 -.0365
3.0 -1.2762 -.2553 -.1232 -.0731
-.0152 -.0318 -.0459 -.0586
.0609 .0187 -.0171 -.0494
3.5 -1.6419 -.3056 -.1336 -.0744
-.0556 -.0510 -.047 -.0436
.0249 -.0021 -.0250 -.0456
4.0 -1.9586 -.2947 -.1078 -.0544
-.0580 -.0404 -.0256 -.0122
.0020 -.0056 -.0120 -.0178
5.0 -2.4970 -.1830 -.0365 -.0134
-0.0225 -.0036 .0124 .0268
.0001 -.0012 -.0023 -.0033
6.0 -2.9999 -.0818 -.0063 -.0014
-.0040 .0044 0116 .0180
.0000 -.0001 -.0002 -.0003
7.0 -3.5000 -.0288 -.0006 -.0001
-.0004 .0018 .0036 .0053
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and T3A(bottom entry) expressed in units of ¢

14

Table 1C. Biases of T, (top entry), T,,(middle entry),

P* = ,99; ¢ = 2.576; Ac = ,2692
A
s 0 A 1 V2
.0145 .0000 -.0392 -.0615
0.0 0 0 0 0
.0537 .0332 -.0225 -.054]
.0249 .0084 -.0364 -.0618
0.5 -.0045 .0162 .0096 .0053
.0709 .0479 -.0144 -.0497
.0579 .0360 -.0236 -.0574
1.0 -.0287 .0537 .0347 .0200
.1163 .0874 .0090 -.0355
L1119 .0828 .0040 -.0406
1.5 -.1057 .0782 .0603 .0363
.1682 .1333 .0386 -.0151
.1690 .1338 .0384 -.0157
2.0 -.2823 L0411 .0590 .0367
. 1896 .1527 .0527 -.0039
. 1989 .0578 .1609 -.0006
2.5 -.5871 .0109 -.0889 .0069
.1519 .0323 1197 -.0172
.1823 .1460 .0474 -.0085
3.0 -.9963 -.2909 -.0696 -,0432
.0653 .0438 -.0145 ~-.0476
1302 .0995 .0162 -.0310
3.5 ~1.4389 -.4978 -.1383 -.0832
-.0243 -.0323 -.0539 -.0662
0724 .0495 -.0126 -.0478
4.0 -1.8456 -.6442 -.1595 -.0905
-.0746 -.0706 -.0596 -.0534
.0106 .0018 -.0219 -.0353
5.0 -2.4808 -.7028 -.0890 -.0406
-.0565 -.0429 -.0058 .0152
. 0006 -.0015 -.0070 -.0101
6.0 -2.9991 -.5980 -.0223 -.0068
-.0148 -.0060 .0178 .0313
.0000 ~-.0003 -,0010 ~-.0015
7.0 -3.5000 -.4602 -,0031 -.0005
-.0020 .0010 .0091 .0138

------

.................
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Table 2A. MSEs of Tn(top entry), Tzk(middle entry),
- and T3A(bottom entry) expressed in units of 02
L P* = .90; c = 1.645; A_ = .7190
A
] 0 A 1 V2
.3825 .3605 .3580 .3606
0.0 -2500 .2932 .2925 .2935
-3195 .3704 .3962 .4403
o .3841 .3596 .3564 .3582
- 0.5 .2614 .2917 .2942 .2997
-3196 .3726 -3999 .4466
.3836 .3566 .3529 .3545
1.0 .3288 .2992 .3100 .3273
-3256 -3795 -4085 14504
.3778 .3575 .3566 .3625
X 1.5 5318 .3418 .3622 -3916
= .3525 .3952 -4214 13699
: .3783 .3764 .3822 .3973
2.0 -9402 -4332 .4570 .4882
‘ -3107 .4265 .4434 .4791
" .3983 .4188 .4320 .4568
- 2.5 1.5628 .5508 .5652 .5818
N, .4878 -4697 .4732 .4891
' .4337 .4691 .4865 .5157
o 3.0 2.3499 .6464 .6398 .6310
3 .5516 .5061 -4974 -4941
y .4676 .5051 .5218 .5485
i’ 3.5 3.2456 .6857 .6552 .6244
.5780 .5198 -5039 .4877
: .4885 .5184 6311 .5509
7 4.0 4.2284 .6710 .6243 .5854
% .5697 .5128 .4952 .4738
oo .4996 .5100 .5142 .5206
T 5.0 6.4994 .5842 .5412 .5187
3 .5247 .4909 .4789 .4627
.~ .5000 .5019 .5027 .5038
& 6.0 9.2500 15264 .5071 .5017
% .5042 .4916 .4868 -4800
g .5000 .5002 .5003 .5004
- 7.0 12.5002 .5058 .5007 .5001
- -5004 .4973 .4961 -4943




Table 2B. MSEs of T]A(top entry), Tzk(middle entry),
2

and T3A(bottom entry) expressed in units of o

P* = .95, ¢ = 1.96, Ao T .5413

S A 0 A 1 V2
N 5 ¢

: .3147 .3090 .3104 .3166
' 0.0 .2500 .2802 .2760 .2755
) .2975 .3204 .3449 .3709
% .3277 3191 .3187 .3240
: 0.5 .2545 .2806 .2785 .2798
¥ .3042 .3316 .3609 .3920
.3545 .3396 .3355 .3387
: 1.0 .2902 .2834 .2882 .2947
X .3201 .3574 .3975 .4405
. .3726 .3538 .3480 .3509
1.5 .4244 .2992 .3148 .3286
.3422 .3846 .4328 .4859
.3750 .3606 .3592 .3663
2.0 .7500 .3508 .3744 .3920
.3779 .4119 .4565 .5092
! .3779 .3766 .3851 .4004
¥ 2.5 1.3282 .4510 .4691 .4793
g .4358 .4470 .4743 .5130
% .3983 .4123 .4315 .4547
; 3.0 2.1404 .5776 .5697 .5605
i .5052 .4883 .4915 .5081
" .4337 .4572 .4820 .5081
4 3.5 3.1082 .6822 .6337 .6021
: .5585 .5202 .5026 .4983
.4676 .4918 .5149 .5378
3.0 4.1626 .7296 .6415 .5966
.5764 .5298 .5010 .4836
.4972 .5087 .5189 .5285
5.0 6.4941 .6797 .5660 .5061
.5404 .5061 .4807 .4608
.5000 .5026 .5049 .5070
6.0 9.2500 .5904 .5140 .5042
.5087 .4941 .4824 .4724
.5000 .5003 .5006 .5009
7.0 12.5002 .5359 .5017 .5002
.5010 .4969 .4935 .4905
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Table 2C. MSEs of T, (top entry), T,, (middle entry),

and T3A(bottom entry) expressed in units of o2

P = .99; ¢ = 2.5763 A_ = .2692 |

1 2
.2723 .2750
.2587 .2574
.2830 .2902
.2816 .2839
.2612 .2600
.2960 .3065
.3045 .3055
.2685 .2688
.3305 .3505
.3281 . 3275
.2853 .2904
. 3751 .4079
. 3426 .3424
.3272 . 3405
.4189 .4618
.3546 . 3597
.4124 L4312
.4599 .5033
.3825 .3970
.5353 .5474
.5007 .5322
L4317 .4556
.6536 .6440
.5352 .5472
.4848 .5128
.7167 .6801
.5492 .5421
.5284 .5468
.6534 .5989
.5107 .4862
.5128 5186
.5456 .5197
.4783 .4602
.5023 .5033
.5072 .5016
.4856 .4783

.........




.....
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Taking the bias and MSE together into account, the relative performances
of these estimators can be largely summarized as follows: For § < 2, TZA is
the best. For 2 < § < 5, one of T]A and T3x is always better than or as good
as T,,. When s > §, T,, is never the best. However, for & > 2, there is no
clear choice between T]A and T3A because the bias and the MSE pull each in

opposite directions.




g e —— .-_v.‘rv,-j“..‘.__‘§

. 19

i APPENDIX 1

Proof of Theorem 2.1. Since Y* and Y are jointly sufficient

for E(M), we restrict our attention to unbiased estimators that
o are functions of Y* and Y. Let ﬁ(Y*,Y) be an unbiased estimator
- of M such that V(n) < ». Let Z be such that it is independent of

Y* and Y, and Z N(G/bz, 1/b2), where b > 0 is known. Applying

b the Neyman Factorization Theorem to the joint distribution of Y¥*,
‘%;- Y and Z, we see that Y* and W = Z + Y/o are sufficient for 6* and
- §. Thus n, < E[n| (Y*,W)] is a function of Y* and W only. Also,

E(ny) = E(n) and V(n;) < V(n) by Rao-Blackwell Theorem. Now, let

. L2
s . *
S n, = [X— + bW { & (bc* + DW) - & (bc* - DW)}]
. 2 2 2 .
1+b
ff -[D ¢ {bc* + DW} + D ¢ {bc* - DW}]

*
o
-

= R1 - RZ’ say,

K

a; where be* = ¢ /1 + b2 and D = bz/ /Y1 + b2, Using (A2.7) and

'55 (A2.8), it can be seen that E(nz) = E(M). " Since E(n1 - nz) = 0,
v it follows that ny = N, with probability 1 by the completeness of
o (Y*,W). Thus V(n,) = V(ny) < V(n) < =

gg To complete the proof, we obtain a contradiction by showing
tf that V(nz) can be increased indefinitely by letting b - ». To see

this, we first note that V(Rl) < o which implies that V(Rz) < o,

S I
LY R Gl WY L NOL AR

It is also easy to see that 0 < E(RZ) < o, Hence, E(Rg) < « which

implies that E[D%pz{bc* + DW}] < », On the other hand, using (A2.7)

S
Fd

and the fact that wz(a) = ¢(vZa)/v/2n, we can see that




............
--------------------------------------------

20 (
22 1 ot 1 /Zb (8 + c*)
E[D"p"{bc* + DW}] = ] cp{ ’
I 1+b° Son? U /1 2t
a quantity which tends to infinity as b » w, 0O

PRI I W W QLY W SIS YL Whds ‘1
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L APPENDIX 2
We state a few results relating to normal distribution. We omit the
: proofs, which are straightforward.
b
N (A2.1) [t ¢(t) dt = ¢(a) - ¢ (b).
a
- (A2.2) [ ¢ {a(t+s)} ¢ (t) dt = L q <—°L>
—o m ‘ol
" o o
N b,
(A2.3) [ t° ¢(t)dt=a ¢(a) -b q(b) + a(b) - #(a).
a
:T:" < 1 a a a a a
. (A2.4) [ t ¢(t) ¢ (ta) dt = 5 ¢ (-2) [¢(/2’3+——)+-—¢(/2%+—)-——].
a 2 Z Z 2
(A2.5) }b t ¢ (t) ¢ (tra) dt = - 1 ¢ (-2 [cr(f?b-ﬁw-—‘"- a»(—“-/ib)]
5 - 2 zZ vz ‘
7 1 (a%+8°-ap)
] (A2.6) | ¢ (t+a) ¢ (t+) ¢ (t) dt = T = .
.':." -0 /6-;
N
i Let Y ~ N(6,02). Then
3 (A2.7) E[¢3a(§+ c)g] = - 3" sel
e +a v‘i+a
-
_. (A2.8) E[Y°3a(§ + c)i] =9 ¢ 30_(§+C) ; + oga T Mf .
- v';*'a v‘i"‘a ’i*'a
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paper we consider the case of k' = 2. 1In Section II we define the
'natural’ estimator T and three classes of-estimators T]A, TZA and
T3x’ obtained by making adjustments for the bias of T. The biases
and the MSEs of T]A, TZA and T3x are discussed in Sections II and III
respectively. ‘Numerical comparisons of the performances of these

estimators are made in Section IV.
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