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\ = \,\ . ABSTRACT
\ - /
" ranner [1] proved that the Stokes flow solution for the plane flow of the

\\

Newtonian fluid is also a solution for the steady p}ane creeping flow of an
incompressible homogeneous fluid of second grade. Jli‘Z;is paper we \.
investigatesgsufficient conditions under which the above theorem can be

A e

N .
extended to three dimensional flows. ) We ‘hso investigate&pertain related
questions.
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SIGNIFICANCE AND EXPLANATION

Tanner's theorem [1] states that the Stokes flow solution for the plane

flow of the classical linearly viscous fluid is also a solution for the steady
This result

creeping plane flow of an incompressible fluid of second grade.

greatly simplifies the analysis of several problenp in non-Newtonian fluid

mechanics.

can be generalized to three dimensions.
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In this paper we discuss conditions under which Tanner's theorem

The responsibility for the wording and views expressed in this
sumnary lies with MRC, and not with the author of this report.
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SOME REMARKS ON THE CREEPING FLOW OF THE SECOND GRADE FLUID
K. R. Rajagc:pa11

1. INTRODUCTION

Tanner cbgserved {1] that the Stokes flow solution' for the velocity field
for the plane flow of the Newtonian fluid is a solution for the steady plane
creeping flow of an incompressible homogeneous Rivlin-Ericksen fluid of second
grado.. This simplifies considerably the analysis of several non-Newtonian
fluid flow problems. Huilgol [3] proved that under certain conditions the
Stokes solution for plane flow is the unigue solution to the steady creeping
plane flow of a fluid of second grade whose normal stress coefficient

u‘ < 0. TLater Fosdick and Rajagopal (4] proved that under certain conditions
in the case of a thermodynamically co-patible.. fluid of second grade, the
stokes flow solution is the unique solution to the steady creeping flow of a
fluid of second grade in general three dimensional motion.

Tanner's theorem as stated is correct. However, care has to be exercised

as the equation governing the creeping flow of a second order fluid is of a

higher order than Stokes Equation and in order that one may discuss the

frro- henceforth by a solution we shall refer to just a solution for the
velocity field. We shall make the tacit understanding that the pressure field
in the solution for the second grade fluid flow problem has to be
appropriately modified, as is well known.

'Thi. result is contained in an earlier work of Giesekus [2].
"Tho fluid is said to be thermodynamically compatible if it meets the

Clausius~Duhem inequality in all possible motions and in which the specific
Helmholtz free energy is a minimum at equilibrium.

'Dopart-ont of Mechanical Engineering, tmiversity of Pittsburgh,

Pittsburgh, PA 15261

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

' A AR
i .




B R T T N N N O Y g W W W W W dv gy e v«
B N YAy SO P T 'ul'.’w'."_.n"'-'L'-';in'-i-"".'~‘.'.".‘J'."-'_. R AR AT AL S SR Bt R ROt I TR TET
. P Y Wy . Tadh Mo, Y N h 3 . . E - - = - R o - ! -

»
’:‘ "solution® to a boundary value problem one needs additional boundary
-' conditions in order that the boundary value problem be well posed.
‘: X Tanner's result lead naturally to the following questions:
f\::s (1) Wwhile Tanner's theorem implies that the Stokes solution is a
‘;3 solution for the plane creeping flow of a fluid of second grade (wherein
- 01 € 0), is it possible that there exists a steady creeping flow solution to
"- the second grade fluid problem which is not a solution to the Stokes flow
7,
.53 problu.? Is it possible that there exists a solution to the creeping flow of
_. a second grade fluid when no solution exists for the corresponding Stokes
-:é problem?
i‘ (2) 1Is it possible to generalize Tanner's result to three dimensionsg?
‘ If not what are the sufficient conditions which guarantee the extension of
. Tanner's results to three d.t-en-iom"? Is it possible to explicitly
"' demonstrate a three dimensional Stokes flow solution which does not satisfy
- the steady creeping flow of a fluid of second grade?
" In this paper we shall provide answers to the above questions. We shall
- explicitly exhibit a steady creeping flow solution to a boundary value problem
x for an incompressible homogeneous fluid of second grade where no Stokes
~." solution exists for the corresponding boundary value problem.
_.‘ We shall also exhibit a three dimensional Stokes flow solution which does
not satisfy the equations of motion for the steady creeping flow of a fluid of 3
' second grade. Of course, the Stokes solution satisfies the equations of
. : ;fi
' *Wwhile Tanner discusses the possibility of such a solution, he concludes that
::: the Stokes solution “"appears to comprise all the useful solutions”.
,_ "‘l’ho analysis of Fosdick and Rajagopal [3] clearly indicates that
' thermodynamic compatibility is sufficient to guarantee such an extension.
: However, thermodynamic compatibility is not necessary.
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motion for the steady creeping flow of a thermodynamically compatible fluid of
second grade. We also investiagate weaker sufficient conditions under which

Tanner's result can be extended.

2. ANALYSIS AND REMARKS
The Cauchy stress T in an incompressible and homogeneous Rivlin-
Ericksen fluid of second grade is related to the fluid motion in the following

manner (c.f. Truesdell and Noll ([5))

2
Z=pl+ur, + e, taA, (1 )
where U is the viscosity, c1 and “2 material moduli commonly referred to :

as the normal stress moduli, p is the indeterminate pressure and A 1 and

A, kinematical tensors defined as (c.f. Rivlin and Ericksen [6])

A, = grad y + (grad !)'1' ¢ (2),
2, T
A, =g * (grad y)'A, + A (grad y) , (2),

where y denotes the velocity and %t- the material time differentiation.

If the fluid is thermodynamically compatible in the sense of the

definition in the footnote in the introduction, then the material moduli have

to obey the following restriction (c.f. Dunn and Posdick [7])
u> o0, u1>o and 014-32-0. (3)
It is not our aim here to get into a lengthy discussion about the validity or
otherwise of the above restrictions. On the contrary we include the general
class of second grade fluids in our analysis and we indicate in addition the
consequences of the requirement (3). ‘ :
On substituting the constitutive expression into the balance of linear

momentum

LR
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ay
" v T +pb =9 o=

.‘_:;-f one obtains that
{

why + o (Ay x y) + a8y + (a, + a A4y + 24iv((grad y)(grad y) "1}

- Ply *xy) - py =grad P, (4)4)
o
vhere

x P=p-aviy -1 (20 +a ) + L oigi? 4 pe (4)
= P 1=~ 4 1 2''= 2"~ ’ 2
:'.: and

E ¥y=ocurly.

<2 In the above equations A denotes the laplacian, |v| denotes the usual

3
B innerproduct norm of v and |A| the trace norm of A Also in deriving the
above equations we have made use of the fact that

i dvy=0, (s)
" . since the fluid is incompressible and we have assumed that the body force

" field is conservative and hence derivable from a potential, i.e.,

\.3' B = -grad ¢.

:',: In the case of steady motion, if one ignores the inertial terms, the

> above equation reduces to

M T FS

% uy + o, (Ay x y) + (a, + a,){p Ay + 2aiv((grad y)(grad y)']} = graa P  (6),
" where

: ;- -chv-l(ZG *a)lnlz. (6)

P = 00T =3 190 7 8012 2

We eliminate P by taking the curl of equation (6), to obtain

-

3, uby + a,curl(dy x v) + (01 + az)curl{g‘Av

+ 2a1v((grad y)(grad "1} = 0 . m*

L)

v
K
.
"

B
-
>
',.
.

*It is obvious from equation (7) that in the case of a thermodynamically -0
compatible fluid of second grade the Stokes solution Aw = 0 is also a By
solution to (7). In [4], it is shown that it is the unique solution to (7)
provided certain conditions are met.
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It is important to note that equation (4), if of higher order than the
equation governing Stokes flow. Thus, in order that the problem be well
posed, one needs boundary conditions in addition to the boundary conditions
| for the Stokes problem. Tanner's theorem does not address this question.

Tanner's theorem states "Any plane creeping Newtonian velocity field with

incompressible fluid with the same boundary conditions”. He does

E given velocity boundary conditions is also a solution for the second order
’
% not make any restriction on the additional boundary condition that is required

for the creeping second order fluid flow problem.

We gshall now consider the first question posed in the introduction. We
exhibit a solution to a creeping flow problem for second grade fluids which is
exact when a corresponding solution does not exist for the Stokes flow
problem.

Let us consider the flow of a second grade fluid past a porous plate

which is subject to suction (Figure 1). We then seek a solution of the form

u= “(y) ’ (9)1
\
w=0, (94

which automatically satisfies (5). It then follows from (9) that

3 =0 . (10)

Figure 1
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The appropriate boundary conditions are

du
u(0) =0 and u+ Ui as y*> =, i 0 as y + =, 1)

Let us suppose we are concerned with an incompressible fluid of second grade

whose normal stress moduli 01 satisfies 01 < 0. PFurther, let us suppose

that ¢ > 0. Then, it follows that

avo

It is trivial to verify that

uly) = U (1 - &™)

’
with T

m=—E ¢o0 Q‘!‘
%1% N

is a solution to (10). A similar result can be established by considering the

blowing problem for an incompressible f£luid of second grade wherein 01 > 0.

The above suction boundary value problem can be solved exactly (c.f.
Schlichting [8]) in the case of the Newtonian fluid even when inertial effects
are included. The appropriate equation in this case is

dau pvb dzu
3t u 2 .,
dy dy

subject tc the boundary conditions (11). It follows that the solution in this
case is ;3?
- l‘pv Y BRI

u(ly) = q_(1 - e ° ) . I

However, if one ignores the inertial effect completely the problem has no

solution which would satisfy the boundary conditions.

However, we have shown

.....
ot

.........
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that the corresponding problem in the case of a fluid of second grade does
"have a solution.

We now proceed to answer the second question, namely we exhibit a three
dimensional Stokes flow solution which does not satisfy the steady creeping
flow of an incompressible homogeneous fluid of second grade. Thus Tanner's

theorem cannot be generalized as it stands into three dimensions.

Consider the Stokes flow of a Newtonian fluid between two parallel plates

rotating about different axes with constant but differing angular velocities

(see 'Figure 2). The appropriate boundary conditions for the velocity field i -

1'][& 3 ‘.".'l"l‘!

are ,’_-_Q
Qza h R
u-T-nzy, v-ﬂzx, w=0 at z=3 -__::'N
Q1a h .L B 5
u'-T-91y, v-91x,w-0 at zZ=-5. .'
and ,
ur¥e, v+ri® as x,y+t>. B o}

.JQQZ
)
h
e a —> l . o

Figure 2

It is pretty straightforward to verify that the unique solution to the f.'lﬁ:;:_;‘

Stokes problem is given by :_'-_.

) L
4".
- - -
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EX

i‘ 9. -0 a_ +0

- - |2 =2 1 - a

% u . n z + 7 | (y h z) , (8),
( P - -

R vse EZ___gl z + 23—:-21 x (8)
"4 ! h 2 j ’ 2
“ v=0, (8),

vhere u,v and w denote the x,y and 2z components of the velocity ¥

\ respectively.

:? It is now easy to verify that (8)1' 2,3 do not satisfy the equation which
governs the creeping flow of a second grade fluid., However, if the fluid is
% thermodynamically compatible, then since a, + a, = 0, it follows that

."'y (8)1' 2,3 in fact satisfies (7).. The above result clearly shows that Tanner's
~ result cannot be generalized without some restrictions. The following two

5: results follow trivially frqm (7).

" Theorem 1: A sufficient condition that the Stokes solution satisfy the

‘ equations for the steady creeping flow of an incompressible homogeneous fluid
% of second grade is that a +a, = o'.

- Theorem 2: A sufficient condition that the Stokes solution satisfy the

25 equations for the steady creeping flow of an incompressible homogeneous fluid
:-:' of second grade is that

A.Ay + 24ivi(grad y)(grad !)T] = grad ¥ ,

y . for some scaler field V.

J '['-n]u- result is in fact a consequence of the analysis of Fosdick and Rajagopal
T 3).

’It has been brought to may attention by Prof. Millard Johnson that the

-, condition that a_  + a, = 0 implies that the ratio of the normal stress

" differences be -1}2 whfch is the case in the co~rotational model of Goddard

and Miller [10]. The condition that the ratio of the normal stress
o differences be -1/2 is also qualitatively in keeping with the model of Johnson
and Segalman [11].

._’




)y A
Theorem 1 does not require that the fluid be thermodynamically compatible T
since 01 is not required to be non-negative. It is easy to show by

extending Huilgol's analysis that the above solution is unique when a 1 <0 "“—“;

and o, + a, = 0. When 01 > 0 and a, + a, = 0, the uniqueness results of o

Fosdick and Rajagopal apply.

The class of 3 dimensional flows wherein the hypothesis of Theorem 2 ) ...

apply are non-trivial. Consider for instance the steady flow betwaen two
infiite parallel plates rotating with the same constant angular velocity 1

about non-coincident axes (c.f. Rajagopal [8]). In this case the velocity y _,q

field is of the form B F

u = -Qfy - g(2)] , :"

v =Qlx - £(z)] , {——T.

w=20., .

It is pretty straightforward to show that

5152 + 2div([{(grad y)(grad g)T] = grad ¥ , Ei?;ﬁ;

where

1
b = 2 [f'2 + 9'2] .

Theorem 3: A necessary and sufficient condition that Stokes solution satisfy
the equations for the steady creeping flow of an incompressible fluid of
second grade is that

(@, + a,){a,by + 2aivi(grad y)(grad y)"1} = grad ¥ ,

for some scaler field V.

Acknowledgement. I would like to thank Professors Millard Johnson, Robert v l

Bird and Arthur Lodge for useful discussions regarding the above work.
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