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I. INMDUCTION

The Analytic Sciences Corporation (TASC) recently performed a study (see
Reference 1) for MICOK on the implementation of a strapdown inertial updated
midcourse guidance scheme for application to Short Range Air Defense type
missiles. Part of this effort involved design of an Extended Kalman Filter
(EKF) to process the radar measurement data received from a "quiet radar,"
i.e., track on scan radar, as it scans a target. The target system dynamic
model was assumed to be linear in a rectangular coordinate system and the
target state vector was defined as

(x , y,9 z, (1) i g t Y:. , x, y, z, ! - , y, K),()

where (x, y, z) denote position, (i, , ) denote velocity, and (f, y, X)
denote acceleration. Since the target accelerations cannot be directly
measured they are modeled as first-order Markov processes given by the dif-
ferential equations

""--Xxjf + -x

Y .y - 4 wy (2)

-X-X + wZ

where x, Xy, Xz are specified bandwidths (nominally equal and > 0) and
wx, Vy, wz are white Gaussian noise processes with zero means and specified
spectral densities.

The dynamic system model for the target tracking filter which processes
the radar measurement data was given (see Reference 1) as

- Fz + w (3)

where F is a time-invariant 9x9 matrix and w is the system process noise vec-
tor. Expressing equation (3) in expanded form results in

x 1 00 x 0

0 0 10 0 y 0

001 z 0

S10 0 x 0

- 0 0 0 1 0 0 .(4)

0 0 1 z 0

_X x 0 0 xwx

0 0 0 -Xy 0 7 Wy

z L0 0- _X zwz
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In order to obtain a solution for x from Equation (3) an expression must be
found for the system state transition matrix defined by

* - eFAt, (5)

where At is the time interval (assumed to be constant) between measurements
and F is defined as in Equation (4).

There are several methods (see Reference 2) which may be used to evaluate
a matrix exponential of the form eFt. The two more commonly used are:
(a) expansion of eFt into a power series in t as(

eFt - I + Ft + (Ft) 2 + - + (Ft)n +-6)

2 31 n '(

and (b) the Laplace transform method whereby eFt is found as

eFt -- l{(sI - F)-l). (7)

As the order of the F matrix increases, the computations involved in obtaining
an exact evaluation of eFt using Equation (7) become extremely burdensome. As
a consequence, TASC chose to approximate e A t by using the first two terms of
a power series expansion in At, i.e.,

eFAt = I + FAt, (8)

which is very simple to calculate.

An exact expression will be developed, in this report, for the 9-state
target model state transition matrix defined by Equation (5))with the matrix F
of Equation (4). In the process, another method (based on the LaGrange-
Sylvester interpolation polynomial (see References 2 and 3) which can be used
to evaluate eFt, and which enables one to arrive at an exact expression for
eFt without requiring matrix inversion, will be illustrated.

II. MATMATICAL BACKGROUND

The method to be used in evaluating eFt will be presented in this section,
and an example will be worked to illustrate application of this method in com-
parison with the Laplace transform method. First though, some terms which
must be defined are as follows:

(a) Annihilating Polynomial: An annihilating polynomial of a square
* matrix F is a scalar polynomial f(X) for which f(F) - 0.

(b) Monic Polynomial: A monic polynomial is a scalar polynomial
f(X) - CoXk + clXk-l + .... + ck in which co - 1.

(c) Minimal Polynomial: A minimal polynomial of a matrix F is the monic
annihilating polynomial of least degree.

(d) Spectrum: The spectrum of a matrix F is the set of characteristic
values of F, i.e., the set of all scalars X for which F-XI is not invertible.
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A function f(X) is said to be defined on the spectrum of a matrix F if the
values of the function f(X) on the spectrum of F exist, i.e., if the m numbers

f(Xk), f'(Xk), - , f(k-)(Xk) (k - 1, 2, - , s)

have meaning, where s is the number of distinct characteristic values of F and
mk is the multiplicity of the k-th characteristic value in the minimal poly-
nomial (see Reference 3).

The Lagrange-Sylvester interpolation polynomial for a function f(X)
defined on the spectrum of a matrix F is a polynomial r(X) defined as

r(X) 1 J- l akj(X- X Yk(X), (9)
k-1)TkM9

where

1 [di __

a j - f(X)) (j -1, 2,- ink; k 1 1, 2.- s), (10)
(J-1) LdXJ 1 \yk(X)] Xk

Y k(X) is the minimal polynomial of F with the Xk term removed, and r(X)

satisfies the conditions r(Xk) - f(Xk), r(Xk) f'(Xk), -, r(mk l)(Xk)
f(mk-l)(Xk). (k - 1, 2, -, s). The polynomial r(X) assumes the same values

on the spectrum of F as does f(X) and one has f(F) - r(F).

If the equation for the coefficients (Equation (10)) is expanded and
substituted into Equation (9), Equation (9) can be expressed (see Reference 3)
in the form

s mk

r(X) - I I f(J-1)(Xk)Okj(X) (11)
k-l J-l

where the Okj (X) represent polynomials in X, of degree less than m, which are
completely determined when T(X) is given and are independent of the choice of
f(X). Equation (11) can be rewritten to obtain the fundamental formula for
f(F) (see Reference 3):

s mk

f(F) I f(J-1)(Xk)Zkj (12)
k-l J-1

where Zkj - Okj(F) (j - 1, 2 , -, mk; k 1, 2,-, s). As for the
Ok (X) terms of Equation (11), the Zkj matrices are completely determined by F
and are independent of the choice of i(X). The Zkj matrices are called (see
Reference 3) the components of the given matrix F.

There are several methods by which the Zkj matrices can be evaluated.
The one which will be illustrated here is the method whereby certain simple
polynomials for f(X) are successively substituted into the fundamental formula
given by Equation (12). From the linear equations so generated the
Zkj matrices can be determined. For comparison, the Laplace transformation
method for finding Ft will also be illustrated.

5



Example 1: Lagrange-Sylvester Method

Suppose one wishes to find an expression for eFt where F is given as

0 1 0

F [ 0 1 • (13)

-5 4

For this given matrix F one has A(k) = Y(X) - (X-1) 2 (X-2), thus, X1 - 1,
X2  2, m- 2 and m2 -1. Checking to see that f(X) - eAt is defined on the
spectrum of F it is seen that, for the root Xl " 1 with m = 2,

f(Xl) - et exists and

f'(Xl) = et exists.

Also, for X2 - 2 with =2 - 1 it is seen that f(X2 ) e2 t exists. Hence,
f( X) - e t is defined on the spectrum of F.

Next, making use of Equation (12), f(F) can be written as

f(F) - eFt - f(l)Zll + f'(l)Zl 2 + f(2)Z 21  (14)

and the components of F can be determined as follows. First, take r(X) to be
r(X) = (X-1) For this choice of r(X), one has

r(F) - (F-I) 2 - Z2 1 . (15)

If one next takes r(X) as r(X) (X-1)(X-2) then one has

r(F) - (F-I)(F-2I) - (-1) Z12

and, therefore,

Z12 = (F-1)(F-21) •(16)

Finally, take r(X) as r(X) - 1. In this case, one has

r(F) - I - Zll + Z21

and Zll is found to be

Zll I - Z21 I - (F-I)2 . (17)

If Equation (15), (16) and (17) are substituted into Equation (14), the
resultant expression for eFt is found as

eFt = eXtZll + teltZ1 2 + eX2tZ21

- (I-(F-I)2 ]et - [(F-I)(F-2I)]tet + (F-I)2 e2t * (18)

6
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Performing the matrix multiplication indicated in Equation (18) will result in

the following expression for eFt:

0 -7 t- 1 -2 1
eF t  5 et - 2 -3 tet + -4 e2t

_48 -3 2 -3 1_4-8 4

t-2et + 22t (2+3t)et - 2e2t (-l-t)et + e2t
(-2-2t)et + 2e2t (5+3t)et - 4e2 t (-2-t)et + 2e2 t . (19)

-(-4-2t)et + 4e2 t (8+3t)et - 8e2 t (-3-t)et + 4e2tJ

Example 2: Laplace Transform Method

To evaluate eF t using the Laplace transform method given by Equation (7),
the sequence of operations to be performed would be as follows. First, form
the matrix (sI-F) as

(sI-F) 0 s -1
-2 5 s-4

The determinant of (st-F) is A(s) - (s-1)2 (s-2). The matrix inverse,
(sI-F) - l, must next be calculated and is found to be

82 4s+ 5 s-4 11

(si-F)_ 1 2 s(-4) a (20)
2s -5s + 2 (2

The expression for eFt is calculated by taking the inverse Laplace transform
of each term of (sI-F)-1 . If Equation (20) is expanded using partial frac-
tions, the result is given by

2 1 3 +2 2 1 1 +1

(g-1)2 s-2 (s-l)2 s-1 s-2 (s-1)2  s-1 s-21

2 2_ + 3 + 8 2 ) (21)
(s-1)2 s-i s-2 (8-1)2 s-1 s-2 (s-1)2 s-1 s-2

(g 1"2 4 + 4 s 31 + 8 8 (s 12 3 + 4

" (s-1)2  s-I s-2 (81 2  s-1 s-2 (-1 2  -1 -2

and taking the inverse Laplace transform of each term then gives the final

expression for eFt as

7
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-2tet + e2t (3t+2)et - 2e2t (-t-l)et + e2t

eFt - (-2t-2)et + 2e2t (3t+5)et - 4e2t (-t-2)et + 2e2tI• (22)

L(-2t-4)et + 4e2t (3t+8)et - 8e2t (-t-3)et + 4e2t

Comparing Equations (22) and (19), it is seen that both approaches result in
the same ansver; however, evaluation of •Ft using the Laplace transform method
involves more of a computation burden than does the method using matrix com-
ponents, even for a 3x3 matrix.

III. TARGET MODEL STATE TRAINSITION MATRIX EVALUATION

A. Introduction

In this section the matrix exponential eFt, with F as defined in
Equation (4), will be evaluated to obtain an exact expression for the target
state transition matrix for several different combinations of X., Xy, XZ . The
first step in the process is to evaluate the determinant of (F-XI) as

i i

-XI I 0

1 - 0 I I

I

-iX-X 0 0

0 0 o -KY-K o

0 0 -z-

= X6 [X 3 + (Xx+Xy+Xz)X 2 + (Xxxy+ X )z+Xyxz)X + )xyxz ]• (23)

The characteristic values, therefore, are given by

X1 - X2 -3 -4 - X5 - X6 - 0, X7 - Xx, X8 -ky, X9  -z. (24)

The next step is to determine the minimal polynomial of F. The minimal poly-
nomial of a matrix will contain each of the distinct characteristic values of
the matrix with a multiplicity not greater than each root has in the charac-
teristic polynomial. The candidate choices for the minimal polynomial of F
are thus:

(X+x)(X)L(x+X_)X

(25)

(X+XX) (X+Xy) (X+Xz)X 6

and the actual minimal polynomial will depend on the values chosen for Xx,
1y, Xz.

8



B. Case With X,,, Xy3 XZ Positive, Unequal

Using each of the expressions in Equation (25) in turn, T(F) is eval-
uated to determine which expression will result in V(F) !-0. Upon performing
this procedure, the minimal polynomial (for the X's of this section) is found
to be

y(X) - X2(X+Xx)(X+Xy)(X4xz)* (26)

The fundamental formula for f(F), as given by Equation (12), will therefore be

* f(F) -f(Xl)Zll + fl(Xl)Zl 2 + f(X2)Z21 + f(X3)Z31 + f(X4 Z41

-f(0)Zll + f'(OZ 1 2 + f(-Xx)Z2l + f(-Xy)Z31 + f&-Xz)Z41. (27)

For f(X) -eXt one has f(F) - e~ so that, using Equation (27),

eFt e e l + t.XlZ 12 + e 21 + e ~Z31 + eX41

-(Zll+tZl 2) + . xtZ 2 1 + e XY Z31 + e ztZ 4 1. (28)

The components of F can now be found by choosing simple polynomials for r(X).
This process is illustrated in the following steps for
r(X) -r(X 1 )Zll + r'(Xl)Zl 2 + r(X 2 )Z2 1 + r(X3 )Z31 + r(X 4 )Z 4 1 .

1. r(X) X(X+Xx)(X+xy)(X+Xz)

r'(X) -4X
3 + 3(Xx+Xy+Xz)X2 + 2(XxXy+xXz+Xyxz)X + XxXy~z

F(F+XxI)(FXy I)(F+XZI) - (0)Zll +XxXyXzZl2 + (0Z 21 + (OZ31 +

* (O)Z41

Z1 X [~ F(F+XxI)(F+X yI)(F+XzI)] (29)

2. r(X) -(X+Xx)(X+Xy)(X+xz)

r'(X) . 3X2 + 2(Xx+Xy+Xz)X + (XxXY+"Xxz+XyXz)

(F+XxI)(F+XYI)(F+XZI) -XXyxzZll + (XxXy+XxXz+XyXz)Zl2

+OZ1+ (0Z 31 + (0Z 41

Zl (XxXyxz)-lI .XXXY+XxXz+xyxz)F](F+XXI)(F+X yI)(F+Xzi) (30)

3. r(X) -X(X+Xy)(X+XZ)

rt(X) -3X
2 + 2(Xy+Xz)X + XyXz

F(F+XI)(F+XzI) - XyXzZl2 + [-X3x+(Xy+Xz)X 2ixXxkXYzIZ21

Z~i ~3 1 (X+Xz)X2~xxyX% F~ (F+xxi) (F+XyI)(F+XZI~3)

9



4. r(X) - X(X+kx)(X+Xz)

r'(X) - 3X2 + 2(X1+Xz)X+X Xz

F(F+XxI)(F+XzI) - XxXzZl2+(-Xy) [ 2y-(Xx+Xz)Xy+Xxz]Z31

Z31  - [-X3y+(Xx+Xz)X2y+xXyXz]- F (F+XxI)(F+XzI)-

(l)yF+x) ( F+XyI )(F+XzI)] (32) "

5. r(X) - X(X+X)(X+Xy)

r'(A) = 3X2 + 2 (Xx+Xy)X+XxXy

F(F+XxI)(F+XyI) - X1xIZ12 + (-Xz)[X 
2z-(x+y)Xz+XxXy]Z41

Z41  1 [-X3z+(Xx+Xy)X2z-xxyz]
- I F (F+xI)(F+XyI) -

If Equatioi.s (29) tnrougi. (33) are now substituted into Equation (28) the
desired expression for eFt will be obtained as

eFt - (Xx- )(F+XxI)(F+yI)(F+Xz I) +
e-

x+ +y eF(F+XyI)(F+XzI) +[-X3x+ ( .y+ ) z))2-Xx~yz] ]

e-Xyt[_X3 y+(kx+k)X 2 y-Xxxy~zJ F(F+XxI)(F+XzI) +

e-zt

X3  ( e 
2  F(F+XXI)(F+yI) -[kz+( xX+X)X )'2z-AXXyX z ]

[xxYxxz+ Xz t e-Xxt

(AXXyXz)2 -XxXykz +_X 4x+(Ky+Xz)X3xkyXzX 2x]

e-Xyt +

[-X 4 y+( x+z)X3 y-xzX 
2y]

'-X t

X2 1]F(F+XxI)(F+XyI)(F+XzI)• 
(34)0[-X4 z+(kxX4ykz-xk Z z X ,X Z

Equation (34) seems formidable; however, if specific values are substituted
for Xx, Xy, Xz the coefficient terms simplify. Equation (34) mainly involves
several combinations of matrix multiplication. However, for the general case
indicated in Equation (34), when the matrix multiplications are performed and
the terms are combined as indicated, the resulting exact expression for the
state transition matrix (for the X's of this section) is as shown in Equation
(35).

10
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C. Case With Xx, Xy, 7z Positive, Equal

For the case where Xx -X" - Xz, the minimal polynomial of F is found
to be

y(X) - X2 (X+x) (36)

and the fundamental formula for f(F), as given by Equation (12), is as
follows,

f(F) - f(Xl)Zll + f'(Xl)Z1 2 + f(X2)Z21

- f(O)Zll + f'(O)Zl 2 + f(-Xx)Z21. (37)

If one again chooses f(X) - eXt then one has f(F) - eFt so that, using
Equation (37)

eFt - Zll + tZl2 + e x Z 2 1 - (38)

The components of F can be found by using the same procedure as in paragraph
B, with r(X) given as r(X) - r(kl)Zll + r'(Xl)Zl2 + r(X2)Z21. Proceeding
as in paragraph B above, one has the following results.

1. r(X) = 1

r' (X) - 0

I - Zll + Z21 (39)

2. r(X) - X(X+Xx)

r'(X) - 2X + Xx

F(F+XxI) Z12 (40)

3. r(X) X2

-lk 2X

F2 - Z21 (41)

From steps (1) and (3), Z1 1 may be found to be

Zll - I - F2 . (42)

If Equations (40k through (42) are substituted into Equation (38), the
expression for e~t will be obtained as

12
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eFt - I - F2 + F2 t + Ft + e-XxtF2

- I + (e -xt+t-1)F2 + Ft (43)

When Equation (43) is expanded, the resultant matrix expression for eFt (for
the X's of this paragraph) is as follows,

S1 0 0 t 0 0 a 0 0

0 1 0 t 0 0 a 0

0 0 1 0 0 t 0 0 a

1 0 0 b 0 0

eFt= 0 0 1 0 0 b 0 (44)

0 0 1 0 0 b

c 0 0

0 0 0 c 0

0 0

where
a t -1 + e- x t  (45)

b - (1-Xx)t + (1-e-XX)Xx (46)

c - 1 + (e- xt-1)X
2 + (Xx-l)xxt. (47)

D. Case With One Root Zero; Remaining Roots Positive, Unequal

To begin this paragraph, assume that X - 0 and that Xx and Xz are
positive, unequal. Based on this assumption the minimal polynomial of F is
found to be

y(X) - X3 (X+XS(X+Xz). (48)

For the conditions of this paragraph, the fundamental formula for f(F) is

f(F) f(-Xx)Zll + f(O)Z 21 + f'(0)Z 22 + f"(0)Z 23 + f(-Xz)Z31 (49)

and eFt will be given by

eFt - xtZll + Z21 + tZ22 + t2Z23 + eZtz (50)

The components of F are again found by the same procedure used in
paragraphs B and C where, in this paragraph, r(X) is given by
r(X) - r(-Xx)Zll + r(O)Z21 + r'(O)Z2 2 + r"(O)Z23 + r(-Xz)Z31.

1. r(X) = X3(X+Xx)

13



rl()- 4X3 + 3X, X2

r'(X) - 12X2 + 6XxX

F3 (F+kx I) -X o*z)3

Z31 -- (F4+X F3) (1

2. r(X) X3

r'(X) - 3X2

r"(%) - 6X

F3 - -X3xZ11  X3z Z31

- x)F3 + X3 ( 1 X)(F 4+X F3) (2

3. r(X) - 1

r'(X) - r"(X) -0

I - Zl+ Z1+ Z31

Z21 - I - Zl Z3 I +3 + ( 3  -4.z~F+x3

4. r(X) X2~x X~~ 2

rt(X) -2X

r"(X) -2

F2 - X~ l+ 2Z23 +XzZ31

lt [F2 +( 'x+"!) F3 + 1L F] (54)
xxxz xxxz

5. r(X) -X(X+Xx)(X+xz)

r'(X) -3X
2 + 2(x+"IXz)X XxXz

-"X 6X + 2(Xx+Xz)

F(F+X11)(F+XzI) - XxXzZ22 + 2(XX+XZ)Z23

/x~x / 2 +xxz+x 2

Z2 ~ F4  
1 xX ~F 3 +F. (55)2x2 ) 2z X2xX2z /

14



If Equations (51J through (55) are substituted into Equation (50), the
desired expression for e t (for the X's of this paragraph) is given in matrix
form as shown in Equation (56).

1 0 0 t 0 0 aX2x-bXx+1/2t 2  0 0

0 1 0 0 t 0 0 112t 2  0

0 0 1 0 0 t 0 0 aX2z-bXz+1/2t 2

1 0 0 -aX 3x+bX2 x1 /,2Xxt2+t 0 0

eFt= 0 0 1 0 0 t 0 (56)

0 0 1 0 0 -aX 3 z+bX2z-1/2Xzt 2+t

aX4xbX3 x+l2X2xt2-Xxt+l 0 0

0 0 0 1 0

0 0 aX4z-bX3 z+l2 2 zXt 2-kzt+

where

a- _(___-__) + (XK~xxzx (x +x t + 2kx:z X~z(Xx-kz)

e + (X2x+xXzzX (2 +

( ziX Xxe +
73-~z X3~z(~-

-" For a case where kx - 0, with Xy, Xz positive, unequal, the minimal
.*- polynomial of F is

. and the fundamental formula for f(F) is given by

Xf(F) - f(O)Zl + f'(O)Zl 2 +f"(O)Zl3 + f(-Xy)Z 2 1 + f(-Xz)Z31 (58)

b =.*

In a similar fashion, for Xz 0 and x, Xy positive, unequal, the minimal

polynomial of F is

• Y(X) = X 3 (X+Xx)(X+y) (59)

and the fundamental formula for f(F) is given by

f(F) - f(-x)Zll + f(-Xy)Z21 + f(O)Z 3 1 + f'(0)Z 3 2 + f"(O)Z 33 * (60)

The expressions for eFt corresponding to Equations (58) and (60) are given in
Equations (61) and (62), respectively.

15



'100 too tt 2  0 0

0 10 0tO0 0 aX2 -bky~.4/t 2  0

0 01 0O0t 0 0 aX2 z bXz+2t2

1 00 t 0 0

eFt - 0 0 10 0 -aX3 Y+bk2y-lt 2 X~kY+t 0 (61)

O 0 1 0 0 -aX3 +b)X2 -ift fzt

10 0

0 0 0 aX4 -bX3 t2~ 2 y-X t+1

0 0 aX4 -bX3z t2

where

zt) ~2 +)t+Y-X X

xze Xy t X + xK X'

(2X~ x7x
xzx /

1 0 0 t Xxzxft2  02 0X

010 yXz ~(X-z OtO 0) aybXyX22

1 0 0 aX b~~& 0 0

0 1 0 01t0 0 -a 3 X2 -kfl2t 2 + 0 (2

0 1 0 0 t0 t2

0 X~Xx 07 1A 0 0 0

t22
0 0 0 aX~-bX3 +L3x2 c+0 0

' 2 YXY

0 01

where

16



X b-Xx + - Xa3~ 2Xx~ xx (3
Xt XXt ______ __

Xye___ X x xXX+X xX Y+X2y
X~xxxxy Xy(Xx-Xy)+ 2XX ( X2 X2 tb 

-) x y
+ x3x+x2xxy+xxx 2y+x3)+ 3xX3 y

E. Case With One Root Zero; Remaining Roots Positive, Equal

For a case with, for instance, Xx - 0, Xy - Xz > 0, the minimal poly-
nomial of F is found to be

y(X) - X3 (X+X y) (63)

and the fundamental formula for f(F) is thus given by

f(F) - f(O)Zl1 + f'(O)Zl2 + f"(O)Zl 3 + f(-Xy)Z 2 1. (64)

The expression for eFt is, therefore, given as

eFt ZII + tZ 1 2 + t 2 Z 1 3 + e-YtZ2 i (65)

and the components of F can be found as follows:

1. r(X) -3

r'(X) = 3X2 ; r"(X) = 6X

F3 -X3yZ21

2 - (T--y)F3 (66)

2. r(X) - X2 (X+Xy)

r'(X) = 3X2 + 2XyX ; r"(X) - 6X + 2Xy
F2 (F+X I) - 2XyZ13

Z I3 F2 (F+X y1) (67)

3. r(X) 1

r'(X) - r"(X) - 0

I - Zll + Z2 1

17
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z11  3 rP (68)

4. r(X) -LX~y

r'(X) - 2X + y ; r"(%) - 2

F(F+XyI) - XyZ12 + 2 1 3

(-)F(F+XyI) - ( )F2(F+kyI). (69)

If one substitutes Equations (66) through (69) into Equation (65), the desired

matrix expression for eFt can be written as shown in Equation (70).

1 0 0 t 0 0 1 2t 2  0 0

0 1 0 0 t 0 0 1t 2 -aky 0

00 OO D0t 0 0 1/ 2 -ak

100 t 0 0

eFt 0 0 1 0 0 t-1/2t 2 Xy+ak2y 0 (70)

0 0 1 0 0 t-1/t2Xy+aX2y

1 0 0

0 0 0 1-kyt 2 2y-aX3y 0

0 0 1-k t4 2 y -aX 3

where

1 t t 2  e- Y
a 3 +2  

k -y y 2 3 y

If one has a case with X.' 0, Xx "y > 0, then eFt is as shown in
* Equation (71).

18
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1 0t0 axx 0 0

01 0 0t 0 0--~

2t
0-~4~- 0 1-00X 3  0 0

t22
0 010 t-tk x xX2 xx 0

Ft t2 2X~
eo a cas w 1h 0, ~ 0 0, Ft kllbeas shw in0 uto (7)

t 2

100t -tO x -a%3 0 00

00 0t 0 t X

L 0

001 e~

t 2

1 0 00 ty--axx 0 0

0 1~t 0 01t0 0 t2 0 (2

001001t 0 0 t- ~
2 2

1 l 0 t-t 2+,2aX x 0 0

0 0 0 1 0 t0(2

0 00 0 0~t~~2a~

1.9



where

1 t t 2  e - 11x t

3  x2x  2%x X3x

IV. CONCLUSIONS

In order to verify the expressions developed for eFt in Section III, a
computer program was written which would integrate the target equations (2),
for an arbitrary set of initial conditions and X's and for w s 0, to generate
time histories of target position, velocity and acceleration along the x, y,
z axes. A listing of the program is presented in Appendix A. Using this
program, data was generated for each of the cases considered in Section III.
Table 1 lists the target state initial conditions and the values used for Xx,
Xy and Xz for each computer run case. The target state transition matrix from
Section III, which corresponds to each of the cases listed in Table 1, was
then used to generate target state data for comparison with the computer out-

;* put.

A representative set of data indicating the results of the comparison is
presented in Figures 1 through 12. This data represents the target position,
for each of the cases in Table 1, for both the computer solution and the state
transition matrix solution. As can be seen, the data output matches in each
instance and the state transition matrix expressions in Section III are
verified.

TABLE 1. TEST RUN CONDITIONS

Case Xx  Xy Xz  Paragraph

1 1. 1. 1. C

2 3. 2. 1. B

3 2. 0. 1. D

6 0. 1. 1. E

NOTE: Target state initial conditions in each case wereI" as follows:

x(O) - 100. y(O) - 200. z(O) - 2000.

i(O) - 2000. ~-(O) - 400. -(0) - 300.r(0) - 300. y(O) -- 2000. X(O) = 700.

20
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APPEN)IX A

DIGITAL SIMULATION PROGRAM

A listing of the digital simulation program which was used to integrate
the differential equations describing the target acceleration components,
Equation (2), in order to provide time histories of target position, velocity
and acceleration components is presented in this Appendix. The simulation
permits target state initial conditions and values for %x, Xky Xz to be varied
by the user and uses an external line-printer plot routine to provide data
plot outputs.

33
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u'"i 'o'..GRAr' Ei.. AWi:7 74E% E 0A ZNS

-~ *~~MwiL USE 7HE RUNCE-AUT7tA 4 vBi7Wt

t'I,,D t/ - X -4

HE AD IN Ct) X(l x.47

7 rE

;EAU L-AMb A 'SK, -A.%K -4

READ tP - KlA. XI ; KY, 9 '

i F 7ir E E G 0 0 2 1

(DO 4C A.{

GO TO (3L,.bQ,3-C.,40i,.UT TA

30 CONTINUE

I1ME 4 ~E .

CONTINUEi
* tO CALL RuN~o

I F ($ 0u:N; NE 0 GO T
wR ITE ,6. 14 ) T i ME x~ tII

* FORMAr Qy,4&U c.

-LR I TE x x5

.- flPMcJ7.V Z~

stC -Eu O~:'
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WRITE ko,200.)TIME. X( I), XC2)X(3)
200 FORMATC2X.4(G12. 6.2X))

WRITE (6.205)Xl4).XC5).X(6)
WRITE(6. 205)X (7), X C). X(9)

205 FORMAT (2X.3(Gl2.6,2X))
199 CONTINUE

KOUNT1'=KOUNTI+l

IF(KOUNTI EQ. MKOUNT) KOUNT1=O
& 0GO TO 10004

21 CONTINUE
GO TO 511

241 STOP
END

SUBROUTINE RUNK
COMMON X(9).DX(9),KUTTA.DTNX
DIMENSION XA(9).DXA(9)
GO TO (10,30,50,70), KUTTA

10 DO020 1 = 1NX
XA(I) = X(I)
DXA(I) = DT* DXCI)

20 )((1) = X(I) + 5*DXA(I)
RETURN

30 TDT = 2. * DT30 HDT =.5 *DT
DO 40 1 = 1.NX
DXACI) - DXA(I) + TDT * DXCI)

40 X(I) -XA(I) + HDT * DXCI)
RETURN

50 DO060 1 = 1,NX -

VDT = DT * DXCI)
DXACI) = DXA(I) +2. *VDT

60 X(I) = XA(I) + VDT

70 DO 80O1= 1NX
so XCI) - XACI) + (OXACI) DT *DXCLI;)6.

RETURN
END

N:3
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