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Abstract: VLSI technologists are fast developing wafer-scule integration. Rather than par-
titioning a silicon wafer into chips as is usually done, the idea behind wafer-scale integration is
to assemble an entire system (or network of chips) on a single wafer, thus avoiding the coste and
performance loss assciated with individual packaging of chips. A major problem with assemubling
a large system of microprocessors on aingle water, however, is that some of the proceisors, W
cellm, on the wafer are likely to be defective. Iu the paper, we describe practical procedures for
integrating wafer-scale systems "around' such faults. The procedures are deigned to minimise
the length of the longest wire in the system, thus minimising the communication tim been
cel Although the underlying network problems are NP--complete, we prove that the procedures
are reliable by assuming a probabilistic model of cell failure. We also discuss application of

thswar to problem in VLSI layout theory, graph theory, fault-tolerant systems and planar
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VLSI technologists are fast developing uafer-scae integration 1301. Rather than partitioning
a silicon water into chips as is usually done, the idea behind wafer-scale integration is to assemble
a. entire system (or network or chips) on a single wafer, thus avoiding the costs and performance
loss associated with individual packaging of chips. A major problem with assembling a large
system of microprocessors on a single wafer, however, is that some of the processors, or cello,
on the wafer are likely to be defective. Thus a practical procedure for integrating wafer-scale
aystem must have the ability to configure networks 'around* such faults.

This paper considers a variety of problems involving the construction of systolic arrays [15].
Systolic arrays are a desirable architecture for VLSI because all communication is between nearest
neighbors. In a wafer-scale system, however, all the nearest neighbors of a processor may be dead,
and thus the prime advantage of adopting a systolic array architecture may be lost if a long wire
connects adjacent processors. In general, the longest interconnection between processors wil be
a communication bottleneck in the system. Of the many possible ways in which the live cells on
a waler can be connected to form a systolic array, therefore, the one that minimisez the length
of the longest wire is most desirable from a computational standpoint because communication
overhead is least.

To illustrate the subtleties inherent in configuring systolic arrays, consider the problem of
constructing a linear (i.e., one-dimensional) array using all of the live cells in an N-cell wafer.
Unfortunately, if we wish to minimise the length of the longest wire, the problem is NP-complete
1111. Even more discouraging is that there are some arrangements of live and dead cells for which
even the optimal linear array has unacceptably long wires. Thus optimal solutions-eve if they
could be found quickly-are not always practical.

By amuming a probabilistic model of cell failure, however, many positive results can be proved.
For am ple, Figure 1 illustrates a possible solution to the problem of connecting the live cells
of a wafer into a linear systolic array. The live cells, which are denoted by snall squares, ae
connected together, one after another, in a sake-like pattern. Dead cells, denoted by X's, are
skipped over. WIth probability 1 - O(/N), the length of the bngest wire s Oft N), where N
is the number of cells in the wafer and where each cell independently has a fifty percent chance
of failure. XI

FIgure 1. A simple means of constructing a linear systolic array from the live cells on a

wafer.

. . . . .



This bound comes from the observation that the length of the longest wire that connects two
el8 in the array is Just th length of the longest sequence of dead cells in the snake-like srng.

Far & aivn set f k h, the probability that all are dead is 1/2k , and thus the probability that
any t otf 2gN Meab re dad is 1/N 2 . The chances are, therefore, less than one in N of having
to skip more tm I N calls in the entire make-like path of length N, and thus with probability
1- 0(11N) the mnim wire lenth is (g N)

To my that with probability 1-0(I/N) the maximum wire length is O(lg N) is a ubstantUally
e.enger statemenat than saying that the expected maximum wire length is O( g N). Not only is
the expected maximum wire length O(lg N), but te chances of it being much larger are miniscul.
Fthermoe, the probability can be made much higher. For example, the probability of having
to skip more than 3 ig N dead cells in the entire snakelike path is less than one in N2. A small
adjustment to the cont nt within the Big Oh results in a much higher probability.

Not surprisingly, there ae algorithms which, under similar asumpUons of cell failure, produce
far better results than the algorithm illustrated in Figure 1. For example, we will describe in
Section 3 another simple procedure which, with high probability, constructs a linear array using
wires of length O(V-W). We will also show that, up to the leading constant, the algorithm is
the best possible of its kind. By relaxing the constraint that a1l live cells be connected into the
imt aray, however, we an do much better. In fact, we will also show in Section 3 that with
high probability, a linear array containing any constant fraction (less than one) of the live cells
on an N-cell wder can be censtructed using wires of at most onutant length.

Although there am mnmerous uses for linear systolic arrays 1221, two-dimensional systolic
arrays are also importsn. Not only can the two-dlmendmeal array be used s a powerful

comuniains utri W AW parallel couputilma (15.hu Wit M es serve Wa M d-Pepe
structure in which arbitrary networks can be embedded 12, 10, 21, 41, 43. As one ml a wet,
the problem of constructing a two-dimensional away from the live cells of a wafer is - dScul
ta the corresponding problem for linear array&. Speedleolly, Section 4 contain a prod that
with high probability a two-dimensional array that ses ay constant fraction of thveIv ells
must have wires of length }I.W).

Although we do not kaw how to construct to.d ninl arrays from most of the live edl
using wires of length O(AW) or channel, of const width, we am come doe. We show in
Section 6 that with high probability, a two-dimensional array can be constructed on an N-cell
wafer using:

1) all the live cells with wires of length O(IgN IgIg) and channels of width O(lglIN),
2) any constant fraction less than one of the ivees with wires of length 0(Ajw Ig Ig N)

and channels of width O(Iglg N), and
3) at leat 0(1 / lglg2 N) of th live cells wM ithwm of length O(vAj7J) aid &=hans of

width 1.

The remainder of the paper is divided into seven tns. Section 2 more formally deemtes
our modal for wafer-scale intaration and discs.. tse puacticty of the modeling wmup sm.
The algorithms for constructing linearly connectud Votefic arrays ar presened In Section 3.
Ietmn 4 souteing the lower bound result for wire lenoth in.two-dinensional systolic arrays. In
Section 5 we present a wors-case (non bil)upier beund on the thannd wid necessary

2
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I mnlgurs a two-dinnsional array. This result has application to the faultolernt encoding of
tw.-dmemsaoal arrays in complete binary trees 131). Section 6 gives algorithms for constructing
w-dimensinal arrays in the probabilistic model. In Section 7, we mention some related problems
in pometric complexity and graph theory. The related problem are nice theoretically in that
mie ef them have tight upper and lower boundL They also suggest a wealth of interesting

quesdoes concerning the design of fault-tolerant systems We conclude the paper with some
additimal remarks in Section B.

2. The wafer-sale model

Las-programming the interconnect of a wafer is a promising means of achieving wafer-scale
letegra lon. This technology was pioneered at IBM 1241 and pursued in the direction of wafer-
male integration at MIT Lincoln Laboratory 130]. Figure 2 shows a scanning electron microscope
photograph of a portion of a wafer with programmable interconnect. Laser welds can be made
between two layers of metal, and by using the beam at somewhat higher power, wires can be cut.
Defective components can thus be avoided by programming the interconnect to connect only the

* good components.

Figure 2. A doe-up of laer-proammable interconnc

Figure 3 shows a typical orpnisation of a wafer-scale system with programmable intercon-

sectiom. The components are organised a a matrix of cells, and between the cells are channels
through which the interconnect runs. Figure 4 is a dlose-up of the channel structure. At the
nterection of a horisontal and vertical channel, laser-programmable connections can make a

borisontal and a vertical wire electrically equivalent. Between two cells, connections can be made
from the wires is the channel to the inputs and outputs of the two cells. Given that the inter-
connect is programmable, we shall adopt a usage of the term "wire" to mean an electrically

equivalent portion of the programmable interconnect.

(8



Figure L. A wafer-scale system of cells and programmable intercnnect

Figure d. The channel struture of awafersale systm

The presemgnment of wire segments to layers such that wires in one layer run houinomly
aad tMe other vertically is called Manhatian wiring 1161. This wiring model la" bee" stuied
mteaslvey,-but in this paper the details of the wiring are notthe central isue. Rt will be sufficient
to uudestsUm sfat about Manhattan wiring. The width of a channel need only be a constant
factor larger than the maximum number of wires that occupy any portion of the channel.

4



A natural question to ask about the use of programmable interconnections to avoid defective
cells i, If celkl re unreliabe, afy might not the interconnect fail also?" The answer is that,
indeed, interconnect does fail. But the reliability of the interconnect is much higher than the
reliability of the calls. The interconnect in the MIT Lincoln Laboratories project, for example,
takes three masking steps to fabricate, but manufacturing the active devices requires well over a
doen tepe. This project is targeting yields of fifty percent for cells and over ninety-five percent
for wires. And even if a wire fails at one point, it is often possible to break it into two usable

In this paper we shall assume that the interconnect has sufficient redundancy so that the
inability to interconnect cells arbitrarily is a rare phenomenon. In this sense, we are making the
same assumption that is used to substantiate redundancy in any fault-tolerant system. The idea

is not that the system will be completely reliable, but that its failure will depend on the failure
of the most reliable component instead of the least reliable component.

Another assumption that must be examined more closely is that the probability of cell failure
is independent and the same for all cells. Failures can be attributed to one of two causes-
materials defects during manufacturing, and mask misalignment. Materials defects are spread
uniformly, but the size of the region affected by a defect is a separate random variable. This
mum that f one point on the wafer is flawed, neighboring points are also likely to be flawed.
Nevertheless, independence of cell failures is quite a reasonable assumption because the area of
a cell is substantially larger than the expected area of a defect.

Mask misalignment is a somewhat more serious problem with respect to our modeling assump-
tions. The reason is that misalignment is a global failure mode. Misalipment due to translation
of the axes of one mask relative to the others poses no real problem in terms of the modeling as,
sumptions, however, because the effect is the same for all cells. The real problem is misalignment
due to angular rotation of one mask with respect to the others. Those cells near the center of
rotation are much more likely to be good than those far from the center. Experimental evidence
indicates, however, that the effects from angular rotation that cannot be accounted for by our
model we minimal.

The two cost functions we shall examine in this paper are channel width and mazimum wire
Length. Minimizing channel width is important because the available wafer area is essentially
Axed. If the channel width is large, the sise of the system, and hence its functionality, is reduced.
In addition, large channel widths often lead to long wires, and minimizing the length of the
longest wire is our other cost criteria.

Minimizing the length of the longest wire in a wafer-scale system is important because
communication delays can be the limiting factor of the performance of the system. Since both
resistance and capacitance increase with the length of wire, the time required to drive a wire can
grow as fast as the square of the length of the wire 1271. (See 14] for a discussion of propagation
delays through wires.) In particular, a designer that chooses a two-dimensional systolic array
architecture is counting on low overhead for communication, and will not want communication
down a long wire to degrade the performance of the system. Furthermore, for reasons of electrical
correctness, cells must be designed with signal buffers capable of driving the maximum length
wire. Since the mise of buffers varies with the ise of the load being driven, substantial area in a
cell can be saved if the maximum length wire is known to be short. As was argued previously,
this savinp in area translates to larger systems with greater functionality.
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Throghout the paper, we will consider cells which occupy an a-by-a square region on the
vfrr and whic have (independently) a probability p of failure. Unless specifically stated to the
coatrary, we will asum for simplicity that s = 1 and p = 1/2. As we will later observe, these
raetrldens have little bowring an the analysis. In addition, we will use the term "high probability'
to as. %Ait probabilt~ at keast 1 -0(N)," where N is the number of cells on the war.

We conclude this section with a simple result that places the rest of this paper in a proper
const. Give. a circuit composed of active components and wire, it is possible to construct
&.wafe t t mch more area (asymptotically) which is fault tolerait. If there are N active
empoments, szpand the layout of the circuit in each dimension byr e,/JjT, where c is a constant
chose large enough that 2lg N copies of a given active component It in the space designated to
that component in the original circuit. The probability that every one of the 2 Ig N copies is bad
is 1/N 2 , and thus with hig probability, one of the copies of every component is pod. It only
remains to hook than up in the space left for wims.

This scheme works even if components are difereat. The results in this paper are better
for systolic wrays, however, because we can utilis substantially more of the live cells at low
cost. Since the number of cells on a wafer might typically in between 160 and 1000, Ig N is a

comderbleftaction of N. Some of our algouIths use al all the Sive cells, and others use a
considerable proportion.

S.Wafer-stale lAtepaiM of lieas* connected WADson a

The snakwlhk. ase described in the intuedwitim conects with high probability all the
lii. a&l @a an N-eAl w iato, alinar aray wltb wirs ilmgt& at most Oftg N). The section
substantilly improves sad generalises this result. We csinace by showing that this bound can
be improved to 0(v'TjT), which is optimal to within a constant factor.

Theorem 1. With proabiity I - 0(1/N), the live cz&l an an N-ceLl tooler can be connected
inaea w stal using wires f Length 0(VAi"g). Up to the Leadin costant, this bound is the beat

Proof. We first show lhow to construct a linear arme usin w~ee of length 0(j/IW). Partition
the wafer into "quae regions -containing 21Ig N ceflksich a& is awn by the dashed lines in Figure
5. The probability that each of the 2 lg N cells are dead in ane or more of the squares is at most

21N 1T-g

Which is less than 1/N. Thu with probablty 1 - O(IIfN), each of the squares contains at ltast

Construct a linear array out of the live cells in each suaon using the 'transpose of the
algorithm fuorn Section 1, encept that when an ampiy colosan is encountered, the column is
sicipped. In Figure 5, these connections are shos wMt sauid lines. Since-any pir of cells in the
some square can be linked wvith a wire of length at most 2vfljiW, the wires in each array have
length 0(v/IjW). Next, add wires, shown by dotted lin in the figure, which connect the small
arays into one large array. Because each region contains at least one live Cell, these connections
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Figure 5. A scheme for constructing linear arrays from all live cells on a wafer with wires of
length O(v~l'l ) and constant channel widths.

can be made with wires of length at most 3VI2i-. Thus every wire in the completed linear
array has length 0(v'Iij) with high probability.

That the bound cannot be improved by more than a constant factor is due to the observation
that with high probability, some live cell will be at the center of a region of O(lg N) dead cells.
Thus a wire of length fl(VigjW) will be required to link the isolated live cell to any other fie
cell. To demonstrate this bound more formally, we again partition the wafer into square regions,
but this time the squares are rotated by forty-five degrees in the plane to form diamond-shaped
regions containing 11 N -2 | Ig N cells each, as is shown in Figure 6.

cell I ." " •" " " - ,, "
ILI % 2- a % e % % 1ea.D

li % Accession For
le % NTIS GRA&I

.0/0 DTICTAB
^Wa fl3 s Unannounco'd 0]

4P 7 % a% a 'P Just if icat I l"-
I I ,/

% % % Distribution/
S % % P Availability CodeS

Ar 00 % Avail and/or

1 % % .- % Dist Special

Figure 6. An esample of an isolated cell.
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yppee a liear array can be constructed using wins of length at most Ig -1. Then
in amy ivm diamond, the center cell is not the only live cell in the diamond. The probability
that aevy diamoad avis this condition is at moet

-iIs N+3 sI N) ILN) isN-VW - -

IN

1

Thus the probability thet the optimal linear arry has a wire of length 11(v") is at least
1- O(/N).I

If all the cells ae incorporated in a Uinear array, then the maximum wire length is OVAj7)
'with high probability. But the proof of the lower bound suggests that isolated cells induce the
long wires. Instead of indet that ./1 live cells be incorpesated in the linear array, suppose we
ouy requie. that moat of the fve colts be im de.d A lNewr ara that ineorpetee mest of tbe
live cells can be constructed with constant-length wires. The proof is indirect, and depends on
the following hums. (Tbe lemma is essentially equivalent to the result of Sekanina 1361 which
states that the cube of a neomrivial connected graph always has a Hamiltonian circuit. This result
was latr reproved by Kama8mans 1121 and Rosenberg md Snyder 35.)

Lemnm 2. A qmmq fte T with maozwm wohtng L em be reivfmed ino a Nwor
amy w" uasemum wn hngtk 6L.

PFrhf. We show that, without regard for wire w6W the bear array can be constructed
usin wires of b t 3L by tracing over wiree is T nens -mr twice. The larger 6L bound
comes because the channel widths need to be doubled to meemedate the extra wires.

Chooe a node , to bethe root of T, and let T,Ts,...,T. be d mshtaes ofv a is shown
in Figure 7. (Degenerate eases not like Figure 7 ae eosMy bodled, but we do not include the
dumbl bers.)

7-
V

11pm Cmmmt imq fror a speowng tree.
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Assume as an inductive hypothesis that we have constructed linear arrays on the nodes of
TI, T2,..., T. such that no wire has length greater than 3L, and so that the end points of the
array in T are v. and us for I < s< m. Join the arrays in the subtrees by adding the following
wires: (V, U11), (Vl, S2),( V,u31),...,(,--.-,u.1). (These wires are shown as dashed lines in

Figure 7.) Each of these wires has length at most 3L, and the resulting network is a linear array
on the nodes of T with endpoints v and v., which completes the induction. For completeness,
we remark that the basis of the induction is easily verified.I

The problem of constructing a linear array with constant maximum wire length that contains
most of the live cells has now been reduced to the problem of constructing a spanning tree with
constant maximum wire length that contains most of the live cells. The next lemma shows that
such a spanning tree can be formed with high probability.

Lemma 3. There ezuits a poaitive constant c such that for any d (uhich might be a function of
N), with probability I - 0(1/N), at least 1 - 0(2 - d2) of the live cells on an N-cell wafer can
be connected in a spanning tree using wires of length at most d. Up to constants, this is the best
possible bound.

Proof. We first show that up to constants, the bound is the best that one could hope for. In
fact, we show something stronger-that for any constant t > 2 with probability I - O(1/N),
no more than 1 - 0( 2-Ida) of the live cells on an N-cell wafer can be connected in any network
using wires of length at most d. The proof is based on showing that with high probability, there
are O(N/d023d) live cells, each of which is located at the center of a region of dead cells whose
radius is at least d.

Partition the wafer into diamond-shaped regions as was done in Figure 6 to prove the lower

bound of Theorem 1, except make the ise of each region be 2d2 cells. The probability that any
particular region consists of am isolated live cell at the center of 2d - 1 dead cells is 2- 20 . The
probability that T or fewer of the N/2d2 regions are like this is thus

(Nfde\ z (I - _() 2 -2d'zz

< 
. m .d222ia2 .

'..

When T assumes the value N/8200, the largest term in the sries occurs for z - T, and thus

the preceding expression can be bounded above by

T'e u'j217 = (1/N).

In order to prove the upper bound, consider the graph whose vertices are live cells on the
wafer and whose edges connect cells which are within distance d of each other on the wafer. In
what follows, we will show that there is one main connected component in this graph, and that

* 9 .7



the total sle of all other isolated components is a small fraction of N. More specifically, we will
show that thee exist mstants c and e' such that the probability that more than '2--Cd2 N live
ells re islated is O(I/N).

The approach will be to find a crude upper bound on the number of paths which can define
the oster boiidary of an isolated region. (See Figure 8.) For any given path which defines the
outer boundary of a potentially isolated region, we will show that the probability is very small
that all the cells are dead in the corresponding width-d boundary region. In particular, the longer
the path that defines a potentially isolated region, the smaller the probability that the region is
actually isolated.

isG\ aeci

IL deoa c±ic

a W. it if. V.r.4 I

Figure 8. Examples of isolated regions.

Because there are N positions at which a path can start and at most four ways it can continue
at each step, there are at most N41 paths consisting of r consecutive cells. Thus there are at
most

sts of k difterent paths of length r.
The number of paths of length r is quite a formidable number, and at first glance it sees

unlikely that our approach will work. The probability is quite small, however, that each of k
given paths actually defines a region which both is lated and contains at least one live cell. For
a region to be isolated, its boundary region mtostmist of at leat rd/8 dead cells, where 2 ! d.
The probability that all krd/8 -cells are dead in the boundary regions of k potentially isolated
regions with a boundary of length r is 2-*d/l. Thus the probability that there are actually k
isolated regions, each containing one or more five sells, with outer boundaries of length r is at
most (N&2Ivt-"/S)/k!, which for k > eN/2"/l s and d > 32 is less than 1/N2.

10



Observe that a region with an outer boundary of length r contains O(r2) live cells. Thus for

d > 32, with probability I - 0(1/N) at most

E _O(r2) = d2 N
vi2'd/1*623/6

live cells are isolated from the largest component on the wafer, which implies that for c < 1/16
at most 0(2-dN) live cells are isolated. For d < 32 the same result holds by simply adjusting
the constant hidden by the Big Oh.n

By choosing d to be a sufficiently large constant, Lemma 3 ensures that with high probability, a
constant fraction of the live cells on the wafer can be connected into a spanning tree with constant
wire length. Because we know all wires will be constant length, Prim's minimum spanning tree
algorithm [28] can be modified to run in linear time instead of the normal O(N 2 ).

Theorem 4. With probability 1 - 0(1/N), any constant fraction (ess than 1) of the live cells
on an N-cell wafer can be connected in a linear array with constant-Li.gth wes.

. Proof. Straightforward from Lemmas 2 and 3.1

To conclude this section, we provide a theorem which states our results on constructing linear

arrays in their fullest generality. The proof is similar to that of Lemma 3, and is not included
here

Theorem S. With probability 1 - 0(1/N), at least I - i of the live cells on an N-celL wafer can
be connected in a linear array using wires of length O(sN ci'-) and channels of width 2, where p
i the probability of f particular cell dying, s is the side length of each cell, and I/N < _ p < 1.
This bond cannot be improved by more than a constant factor for any p, c, or a.

4. A lower bound for wafer-scale integration of two-dimensional systolic aWays

The problem of linking the live calls on a wafer to form a square two-dimenuonai array is
substantially more difficult than the correeponding problem for linear arrays. The main ditfculty
with constructing two-dimensional arrays 6 that constant length wires no longer sulce whem we
throw away some of the live cells. In this section we provide a lower bound on the length of the
longest wire required by a two-dimensional array. This bound was first discovered by Greene
and Ganal [8]. Our proof (which is similar to but more general than that in 18]) was obtained
independently from an idea due to Joel Spencer [40].

Tbemm . With probability I -O(I/N) ewry realisatin of any rn-cell two-dimension army
on an N-ctell wafer has a we of kngth fl(Vji), for all rn= f(g 2N).

Poof. The proof conisdt of two parts. In the AM, we show that with high probability, the
wafer contains a large number of regularly spaced square reglons of I Ig m cells, each of which is
dead. In the second pert of the proof, we show that any realisation of an rn-cell two-dimensional
array must contain a cycle of four cells that surrounds the center of one of these dead regions.
Thus one of the wires in the 4-cyle will have length Jv4rsm.

11
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First, partition the N-cell wafer into square regions with m/32 cells each, and then partition
each of these regions into square subregions with I Ig m cells each. We claim that with high -'

probability, every m/32-cell region contains a I gm-cell subregion in which every cell is dead,
as is illustrated in Figure 9.

32

TMe probability that amy patiular I Ig m-celf sulqu DOn a t in"s One live ceon is
I -- MIA . Thus the PpolblbilkyJ that each or the I Itmei W" orei in a particulw m/32-edl
r peg!= Wontn at koet me live Coll is

(1' ___-,_)__ s" e.ccli--

damc I + x :5 e's for 24 x. The probability VWs ow or WMJ tire 32,N/m m/32-edi regions
faile to contain a totaly dead I Ig m-cll subregion i t-muA

33N

for n = fl N), which completes the irst half' of te pnef.
V we can show "ha 4-cycle of the two-dimsftjo~ray easese the center of one oftthe

18 w-adl deud noesie, the prod will be ceupk bomestef tht*IfureY the- 4-€ e/e w ifa
he&6 t Ies" I Vg" .More generally, however; if' my eyrie In the array sulibunda the- cater
of a deed nubreglon, then mw wire in the amop mwo-lhim length jVI/1 -. This obsermton
follows because

o - 512
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1) ive7 4 lMtd Cycle is two-dimensional array can be decomposed into the sum ofi dited, 4-cycde, ad

2) Uh eumber f times a cycle "wraps" around a point in the plane is equal to the sum of
th sumber of wraps for each 4-cycle in its decomposition.

Thus a two-dimeslmal array with a cycle that enclom the center of a dead region must also
contain a 4-cycle that surrounds the center of the dead region.

I We must sow show that with high probability, every realisation of every rn-cell two-dimensional
&ray contains a cycle that encloses the center of a square region of I Ig rn dead colls We al-
ready know that with high probability a wafer contains contains a dead subregion of this sine
in every square region of m/32 cells. Assume for the purposes of contradiction that an rn-cell
two-dimensional array can be realised on such a wafer so that no cycle of the array surrounds the
center of one of the dead regions. Consider a line drawn between the rmter, of two dead regions.
If any wires cross this line, their removal will disconnect the two-dimensional array into two or
more components, as is shown in Figure 10.

mbWft *,.t "LOA

4 _ __" I* a • ,,M_,

lFlgure 1,. Disconnecting a two-dnenlonad array.

Ameg si peirs of neighboring dead regions (ie., pairs contained in m/132-cU regions that
iw es ed01 or corler), there is ait least one pair for which removal of the wires pasing between

them diseosmect the array nto two pieces, ech with at least rn/S cells. Since at most 4,/'7i =
rq7 ie can cress the line between the centers of two neighboring dead regions, by removing
omly L/7 wires, we can disconnect an rn-cell two-dimensional array into two pieces, ech with
at hest rn/$ odIn But it is well known that ahy such disconnection requires v' wires to be
removed, and we have obtained the contradiction that completes the proof.l

The most interesti case of Theorem 6 is when the two-dimensional array to be constructed
hasI m - 0(N ) cells.

Cerela•1y I With proiitpii 1 - 0(1/N) every reaLuatoia of anyl twlo-dsneniocli arrayl that
utlliles any conutant fraction of the llie elia en an N-cellwafer ha. a ire of lentht D(vlg-N)-

ofIL83
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S. A dlvide-and-conquer method for constructing two-dlimensional systolic arrays

The principal focus of this paper is the construction of qistolic arrays on wafes such that

the maximum wire I@W~h is minimized. In this section we ignore maximum wire length as a
cost =asure and look at the problem o1 constructing systolic arrays when only channel width
is at issue. In doinaseshalextendhe g eral VLSI layot results of 191 and f21]to the
wafer-scale situation where some of the cells may be faulty. Furthermore, the analysis of this
siction is wrt ce and met probabilistic, and thus all possible configurations of live and dead
coils, however uniktely, cnbe handled.

The basic result of this section is that a two-dimensional array can always be constructed from
aflthe live calls of anN-" lwafer if the channels have width (g N). This result will be used
in the next seaction as a subroutine in methods that achieve better bounds for wire length. The
divide-and-conquer teebsiqe used in the construction is similar to general VLSI layout methods
based on eartr P6I] 21 sd bufaretors 119).

We first prove a result on encoding two-dimensional arrays in complete binary trees & I&
ROLIVMINber'g131 where some of the leaves may be dead. An encodnpof agraph G =(V,E) in
a tree T is a one-to-one mapping f from the vertices V to the leaves of T. In our cme, f must
mapV toe lexrsof T. gcb a mapping = be eztandedmtaayleytsnap Ztote paths of
T, where f maps (sa,v) to the unique simple path connectinig It") to A(4

LemsmaS. Let Tbe acomplete binary tree with each of its N katue. labeled as either 'Nuee r
"ded,' and let M be MAt isumber of live leaves. Thea for =1g M-element tw-dimeaaoW a rray
0, there exsts an enad*q ff 1G in T sc ha.n O(A VE**es oflarwe maped 1 f to an

* edge of T that has k d,.mmdent buses.

Awj~f We rely on the fadt that every7 tree beass We*ge .me-aparatr *Weorem Pg5. That
is, if the vertices of the tree are given arbitrary weights, remuval of a single vertex will partition
the tree into two composmasts, each with les them ft-Anhr Sea eight. In our case, we 'weight
the Inarnal nodes and dead leave of the tree T with see A Nt I laves With e. Thea, is
zi., a inglez wwzupw oftetrea e reio t ak Oin troo woop oso, eahwith a

The construction of f is obtained by a dlvidetead-comquer aigrith.a. 1% etAwt by attempling
to encode the original tsdesoalarroy G in Os eji Sen ?. Of conie, the number of
live cells on a wafer will sarely be a perfect square, and the onbartays corresponding to internal
nodes of the tree will not be square either. We sW alslow tOn ouiginal arry to be missing some
sels frm the bottommestow and 0. siogs advese. Any ashay AM Us generated mo
%* missing som cellshfom each of its four edgemd ni hei general have the Aape sheinI
ip"u 11.

Each recursive iteration attempts to encode an ws-elemet mibariy (6 of G in a subtree t of
T. Using the weigbted sepavior for troes, we AM., in, a inl adge Whose emovEl Partitise
the tree t' into two subtrees, each with at least mi/3 live leaves. The two-dimensional array
is then cut into two subarrays with the corresponding aumler of live cells. ft cutting Parallel
to the short dimension, we can ensure that the ubarrays of 6' have peImeter O(V/ui) wdch is
important for the analysis later on. Finally, the tweo umbrrays of (are encoded recursively in

14



Figure 11. A 6-by6 array that is missing some border tells.

the two subtrees of tThe recursion terminates when the mubarray to be encoded consists of a
dn*j votex v of G. When this happens, the edge immediately above the single live leaf of the
corresponding'subtre of T is removed, and the vertex v is mapped to the live leaf.

It remains to be shown that this encoding maps only 0(Ak) edges of the graph G to any edge
e leading out of any k-leaf subtree T' of T. Look at e and those edges beneath in 2W as they were
cut during the execution of the algorithm. (See Figure 12.) The first cut of one of these edges
partitions some subtree t' which contains 7" into two portions, each with at least one-third the
live leaves of t. One of the two pieces is asubtree T"ofT7'into which asubarray is encoded.
The number of connections from this subarray that pass through e is at worst the perimleter of
the subarray, and the number of elements in the subarray is at most k. (This worst case occurs
when 7= 2' and e is the first edge cut.)

TT

Figure 12. The relationships among trees in-the proof of Lemma 8.
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Therdore, only O(%41) connections from this subarray can possibly pam through e to _ T.
No other edges from within 7' pas through e to the rest of t, but some in T'- T might. The
mubt,. t - 7v, however, ba at most two-thirds the live leves of t, aad thus only O(Vj-k)
additional connections comsponding to the second cut can pass through e. By induction, the
sum of the perimeters of all arrays that could pan through e is bounded by O(VI) because the
anies decrease. poum.tkally.I

The encoding of a two-dimenonal array in an N-le complete binary tree corresponds
naturally to an ambeddinm of the array in an O(Nyd &e of maea 117, 18, M. fgure 13
shows a 16-leaf tree of meshes. The root of the complete binary tree has O(VN) onnections
passing through it from one side to the other. In the correspondling tree of meshes, te switching
of these connections is accomplished by a 0(-/N)-by-e(v/R) mesh at the root. The two subtress
of the root of the complete binary tree correspond recunivsi to the two subtreee at the re4 of
the tree of mess The levm of the complete binsry tree wN be meddd in mineD mbe at
most a constant distance from the leaves of the tree of meshes because the meek at the root of
the tree of meshes is a constant factor larger than rfN--gp-fN.

.z.T

Figue 13. The 16-leof trwe of mesbe.

The uppe levd meshes of the tree of meshes, mcs may a whim the bettem level maeshe
we empty, and small meshes near the bottom contain the cdhe of the two-dimensioaal atray. If
we chop off the unused lower level meshes, we obtain a Ared ftree of smeaes whoe leMes
eeu s6 teon h ellb of the ds o . The m t m e that . Ieetemi

,ead meem.sm be embedded on wafer with ekmwmebo idth 0(lN).

Lemma 0. An N-Imf sortend free .of n he. em be uded m am N-cell w r I .

in a One-toomme now WO N) a. oAf the oSeF.

Proof. The Arst step is to construct a G(lgCN)-lqw thrmdimenional layot [20, 321 of the
shortened tree of meshes. Fold the connections between the root of the shortened tree of meshes

and each of its two sons a that the sons fit naturally ot a second layer over the root. Fold the

1.#
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, . .m l Ii " 

I
' l I '- "' "" ,, - ,' - - -." -" -.. . . . . . . . . . .



connections to each of the grandsons so that they fit naturally over the sons on a third layer,
and so forth. This generates a Otg N)-layer three-dimensional layout where each layer has linear
area. By projecting the three-dimensional layout onto a single layer in the manner of 142, pp.
36-38, channels with a uniform width of O(lg N) are obtained.n

The next theorem is the major result of this section.

Theorem 10. Any M-cell two-dimenional array can be constructed from any subset of the live
ce~l on an N-cell wafer using wires of length O(V1'1 IgN) and channea of width O(Ig N).

Proof. Immediate from Lemmas 8 and 9.1

By using two-color bisectors 131 or fily balanced bifurcators 1191, the results of this section
can be generalised to the encoding or embedding of classes of graphs other than two-dimensional
arrays. The general idea is to use these tools to bound the number of external connections from a
subgraph during the divide-and-conquer algorithm in the proof of Lemma B. The only subtlety is
that proportional cuts are required, which involves several applications of the two-color bisector
or fully balanced bifurcator. All of the bounds on areas of graphs reported in 1191 and 1211
can then be obtained in the wafer-scale model where channels have uniform width and cells can
be defective. (For a more complete description of how these techniques can be used to embed
arbitrary graphs in a fault-tolerant manner, see 121.)

. Upper hounds for waer-scale integration of two-dimensional systolic anays

Theorem 6 from Section 4 gives a lower bound of fl(/lVW) on the length of a wire in any
realisation of a two-dimensional systolic array that utilises all or most of the live cells of an N-cell
wafer. We do not know how to achieve this lower bound, but we can come close. This section
gives three nontrivial upper bounds for wire length and channel width. Of the three methods,
however, only the algorithm in the proof of Theorem 13 achieves the lower bound of Theorem 6.
Unfortunately, this algorithm utilises only m = O(N/ Ig lg N) of the live cells.

We first present a divide-and-conquer algorithm that constructs a square two-dimensional
array using all the live ells on a wafer. In the first stage, the wafer is recursively bisected, and
the number of live cells in each half is counted. Based on the count of live cells in each half of the
wafer, the algorithm computes the dimensions of the two subarrays that must be constructed,
and then recursively constructs the subarrayL The two subarrays are then linked together to
form the complete array.

The algorithm remains in the frst stage until msbproblems with e(lg N) cells an encountered.
At this point the techniques used in Theorem 10 are used to complete the wiring of a O(lg N)-cell
subarray. The exact crossover point between the first and second stages can be set at subproblems
of ise c ig N, where c is any constant sufficiently large to ensure that with high probability, every
c Ig N-cell region contains O(lg N) live cells. (For example, a choice of c = 2 will suffice.)

Figures 14 through 17 illustrate the divide-and-conquer procedure. Figure 14a shows a 64-cell
wafer which contains 36 live cells. In what follows, we step through the algorithm as it constructs
a 6-by-6 array, which is identified as the "overall target" in Figure 14b.

17
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Figur 16L. A 64-Cef wafer that cans 36 five cais.

lipmr 14b. Tb. tarpt~ a Sy4 qgsftk anq.

14The ArAl ip is t* bismet the wma verticly, whiu g~n 19 live eel i& the kft ha ae 17
is the do. W& wisb I ames 1-a -G subw$is ** tlft a a aam a 17-all ntwmr
is 9 the sigh h k. we want the tow mbuq to ft Uqother aicl afWe they we

of the 6-by-S array shown npgre 15.
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Ilir

Figure IS. Partitioning the target.

We now invoke the procedure recursively on the two subarrays, but this time we bisect eah
of the halves horizontally. For example, when the left half wafer is bisected, the 19 live cells are
divided into d calls above and 10 cells below, as displayed in Figure 16. The algorithm continue
in this fashion, alternating between horizontal and vertical divisions, until the wafer and the
arM he been partitioned into e(]g N)-cel] regions, at which point the algorithm proceeds to

the uecond utage, and the technique of Theorem 10 applied.

.7,.

If Per- let

sf/a/-""-/owe j/ IA 4

tret --

Figure 16. Partitoning the left target.
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In this aampe the number of calls is sall Onough that the second stage construction can be
performed by inspection. The inspection strateg y can be used effect ely in practice. Since the
second "ts opUMeats reions of mile e(ig N), the routings of this size can be precomputed.
The second stage then const of a single table lookup. At worst, this strategy costs polynomial
time md spue.

PFiure IT shows the a molution to the problet in Figum 14. For c1atY the wires have et
bqsn routed within the channels of the wafer. Notice that each quadrant contains the speafed
taqsmt for second levd of recusion. The dashed lines represnt wires that connect cel in
difern quadrmt of the wafer.

X x :

P 4

.4b

" x

Figue 17. C--Ft em muium, stt of t S." Wray.

The next theorem describem how well the divide.8n.aaed qmr algorithm performs with respect
tovbe lmmth md cbamud id

Itmesqm U1. WEm Amif IueM 1-0(1/N) a 8we61u wrpm be cvmettdftuin jh
She celub en a N-ceU wvAr uo* vieof /mq O(lgN IlglgN) enad chanmme of wmhlgN).

Proof. The Ov alm godrthm just -dmd pmies the bound in the thesemm.
the aalyals I. divided Into two parto esmpoSi to the two stage of the atorithm.

W begin at the fis level of recursion. Conider the wire that link a cell in the leWt nmbarray
t A cll in the igt subarray, as is iustrat by the to ezamples in Figure 18. For the most
-art, th a6 4u i m s be aestd A in h ebaud that s ates the lA Mad fht bakes

a



of the wafer. The length of the longest wire in the channel, as well as the width of the channel
itself, is proportional to the longet vertical distance that a single wire must traverse.

The length of the longest wire in the center channel depends on the distribution of cells in

each quadrant. For example, if we are extremely lucky and the live cells are regularly spaced,
the longest wire may have constant length, as in Figure 18.. But if we are very unlucky, half the

live cells might occur in the upper right quadrant and the other half in the lower left quadrant

(Figure 18b). To connect the two halves, some wire will have length O(VfN).

Figure 11 A distribution of live cells which might allow a narrow center channel.

//

'
L1/

Figum Ib. A distribution of live cells which requires a wide center channel.
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The length of the longest wire in the center channel can lo be influenced by the distribution

of cell within -a quadrant For eample, if the upper left quadrant contains N live cells

(about the right number), but they are distributed as in Figure 19, then the center channel still

contains a wire of length fl(VN).

[i L 13 %1 .4 ! ai I I

/ s ll -.

Fk5ege. . other distribution o.fle" w requis a wide enterchanne.

Mod often, we m net so unluckytht a vire in tie mer hennel has lWqh),
but neither anre we lucky enough that all wires are coustant length. We now @bew that with
-high -pobability, we re mere lucky than unlueky b6causethe length of the longest wie in

theemter isO(gN). '7hb, yto the analyasis. lopawtit the live-eels are distrilbOta eo
evenly that with high psMability, the total vertical diatortion of the Mires in the center channel
-wer all sbproblems ofs d e ng iN)) is 0(lg N). 'I er 4o do -so, wei mt ; ere tat-ror
Al postive r,-with prohbslty I - O(e- ) the fer qut. Ithe i t, , ae mpati em 4wI
have m/4 ± O(rv live cdlls, where m = N/20+1 j+f- W NX-). Thus with probibility
1-O(e- '), a subpeclm entributes at =est O(v)ristevti wire in thecenter eham lthat

are connected to the nulerray at the level of the sabprobluu. There are O(gN) subproblems
that can conwlbute to the distortion of a-,iven * etin S1e center channel. Using 4 dmad

b+th -atavolvin sums, of nadom wm slIt a, nw peslble to+Am"att¢he
w a +e.,-.uwfard.torli m ItWN) with praaimt 1- O(tN).

The sem observations can be used to prove a hig-probability bound of O(vql jN !)- e
tSe disortion of witm that cMnnect ubarrays of ajse-mwr rlg N). Thus it is sdiciest At
the ebm- m m lm__ - e .... us sielwhve~wldlbth O(AVW1I).BDy -- *-'wr d

Og N)sled- It am be checbdh tateat therint, t swr ,e. eheemel i1LA.the
mwi is 0(1), which is -bease the channels inW*4W VIdins 4 subproblems hvemet .beenped
at dl. Ybveit'Swwrage ehanel width em echeds'a maximum withMat i m.,gtb e .ie wiwr.,by r than o(lg N). The Nsa Isitodistrbute the e(vqA jY"jbc.ddth :

" s..u..........e.v.e las. As the dsils'of this, agument ae 4 t .
. .. ...... lm. This eTauludee*,t t steag of the-mialy.s.
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The analysis of wires that link cells within a O(lgN)-cell subproblem differs substantially
from the preceding analyis because live cells within a small region can have arbitrarily irregular
distributions with high probability. The regions of irregularity are small enough, however, that
the worst-case distributions are not really all that bad. For example, if a O(Ig N)-cell region has
the structure shown in Figures 18b or 19, then the maximum distortion of a wire at the top level
of the recursion is just O(Viij).

In fact, the analysis of Section 5 ensures that the algorithm constructs a two-dimensional
az ay in each m = O(lg N).cell region using wires of length O( /m ig m) = O(v jW Ig lg N) and
channels of width O(Ig m) = O(lg Ig N). Thus the entire two-dimensional array is constructed
using wires of length O(lg N lg Ig N) and channels of width O(lg Ig N). The extra Ig lg N factor
in the wire length bound comes about because a wire with O(lg N) distortion croses O(lg N)
channels, each of width O(lg Ig N).l

The wire length analysis of the algorithm in Theorem 11 is fairly tight. For example, the
algorithm requires wires of length fl(g N) with high probability. Thus, if the lower bound in
Theorem 6 is to be achieved, a different algorithm must be discovered. It may be possible to
improve the channel width bound, however. Any improvement in Theorem 10 would directly
lead to an improvement in the channel width bounds in both Theorem 11 and the next theorem,
which shows how to construct a two-dimensional array from most of the live cells on a wafer.

Theorem 12. With probability I - 0(1/N) a two-dimensional array can be constructed from
any constant fraction (less than I) of the live cells on an N-cell wafer using wires of length
o(v 7J Ig lg N) and channels of width o0(g Ig N).

Proof. The key idea is to partition the wafer into N/c Ig N square regions, each containing
rn = clgN cells, where c is a sufficiently large constant. With probability I-0(1 /N), each of the
regions contains at least Mi' = Jc(I - 2/./c)IgN live cells. Using the technique of Theorem 10,
we can therefore construct an m'-cell two-dimensional array in each region using wires of length
O(f Ig m) = 0(vij lglg N) and channels of width O(Igm) = O(Iglg N). The N/lIgN
two-dimensional arrays are then connected together into one large array with IN(I - 2/V)
live cells. The added wires have length at most O(vij'J Ig Ig N), and the channel width is not
substantially increasedi

For each of the two previous results, the channels on the wafer have width O(Iglg N). The
next theorem shows that with high probability a two-dimensional array can be constructed from
many of the live cells on a wafer using channels of unit width. Furthermore, the lower bound of
fl(V'j) on wire length given in Theorem 6 is achieved by this construction.

Tbeorem 13. With probability 1 -O(1/N) at least a fraction 0(1/Ig lg' N) of the live cels on
an N-cell wafer can be connected into a two-dimeional array sin# wires of length O(y'jW)
md channels of unit width.

Proof. The proof is similar to that of Theorem 12. As before, we partition the wafer into
quare fegions with c lgN calls each. The constant c must be chosen large enough to ensure that

with high probability, each region contains IgN live cells. We next patition each c gN-cel

region into square subregions with e If 11! N cells each. Consider all pairs of indices i and j in
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the range 1 < i,j 5 vie lgIg N. For a given region of cIg N calls, at least one pair (4j) J1atisfes
the condition that at least 11c of the calls in the (iij) positions of of the subregions are &liye
(Otherwise, it is impossible for Ig N of the cells in the region to be ailive.) Notice that by ignoring
those cells not in the (tiJ) positions of a subregion, the (i, jposationed cells together with all of
the channels of the region form a "subwafer with

7..1) ,n=cgN/lg le N cells total,
2) atle&Atm/c=lgN/c'lglg2 Nlivecls, and
3) channels of width %f/- gIg N = O(gm).

By choosing e' large enough, the technique of Theorem 10 can be applied to construct within
each c lg N-cell region, a two-dimensional array with lg N/clg lge N ceils using wire of length
O(./ii- Ig mn) = O(VfjVW). These arrays can then be easily connected together to form a two-
dimensional array with N/cc' Ig Ig2 N cells and wires of length O(9IQjJ .

for syetting m = f(NI lN), it can bechocked that Theorem13 achievus the lmmbound&
wo ire length proved in Theorem 6. The cell utiusation, however, leaves something to be desired.

We have summarized the results or this section in the following table. Each bound is achieved
withprobability I- O(/Nb where Nis thenumber ofcelloonthe wafer, pis theprobabilty

* that a particular call is dead, and s is the side length of each cell. (Wires awe srsumed to have
width one.)

Table L Doands on wire -length and channel width for twodimemisnal away.

Portion of liW Wire length Channel width
cells wed

All 0(l091/p N (8 + logs legj,, N)) o(log, Meg,,, N)

Constant fraction + ~ ~ ~o 2 og 1

(less than one) 0jo/pN(8 oolgS N)) 012 9/pN)

ni(o.log,/, N)) VT91N)

7. Ulated mael., ad problem

The problema of incorporating all the live calls of a wder into a linear aray so that the
maximum wire length is minimised has been studied in mere standard graph-theoretic models
and has come to be known as the Bottleneck ftuaelingr Sakesman problem IT). In addition, the
wafer-nsab moel of N cells which fail independently with probability 1/2 is essentially equivalent
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to the well-studied geometric model in which N points are thrown down randomly in a unit square

[1, 9, 13, 29, 37, 441. Thus the algorithms for constructing linear arrays described in Section 3 can

also bo applied to the Bottleneck Traveling Salesman problem in the geometric unit-square model.

For example, our results can be modified to show that with high probability, all of the points in

the unit square can be joined into a hamiltonian path using wires of length O(v'1 /VN), the

least possible. In addition, most of the points can be joined in a linear array using wires of length

!O(./vIN), again the least possible. Although neither of these results have been explicitly stated

in the literature, the first result is really just a minor extension to the prior work of Karp 1131 and

Bentley, Weide, and Yao 11]. The latter result of joining most of the points differs substantially

from previous work, however. To the best of our knowledge, the only result of a similar nb.tur.

is due to Erd6s and Renyi 151 who showed that most graphs with N verti:es and N edges have

large connected components.

Channel widths do not play an important role in the unit-square model because the lines

drawn between points are infinitesimally narrow. Thus the algorithms in the proofs of Theorems

11 and 12 can be modified to construct with high probability, two-dimensional arrays containing:

1) each of N points thrown randomly into a unit square using edges of length no more

than O(Ig N/vrN), and
2) any constant fraction (less than one) of N points thrown randomly into a unit square

using edges of length no more than O(v/Ig'1/VN).

Since the lower bound of Theorem 6 can be extended to the unit-square model, the second result

above is optimal, and thus there is no need to extend the result of Theorem 13.

The problems considered heretofore in this paper also have an interp.etation in a purely graph

theoretic model. Suppose we are given a two-dimensional grid graph, and assume that each node

in the grid has independently a probability p of of being bee. We wish to And a subgraph of the

grid that contains only good nodes and that forms a smaller two-cOmensiona! grid. Pk, zazU

Figure 20 illustrates the embedding of a good three-by-three grid is a partially UA four-by-four

grid.

4Z,4

Figur 20. A pood 3-by-S grid formed in a partially bad 4-by-4 grid. Good nodes ane denoted
4, by black dots.

25

C. . . -



j -.o o - . . . . . .

Tie objectives we might choose to optimise in such a problem arme
1) numag h e d fthe good grid,
2) u4nilissig the maximum distance between neighbors,
3) misimising the total distance between all pairs of neighbors, and
4) minimizing t maximum number of times an edge in the partially bad grid is utilised.

Thee pararneters rousily correspond in the wafer-scale model to the usage of live cells, maximum
wire length, total wire length, and maximum channel width, respectively.

The beauty of the graph theoreac model, however, is that it generalises naturally to broader
Cda"s Of graphs. For usample, the @me kinds of questions can be reasonably asked about
the dis of k-dimensional grids fo: any k, the class of complete binary trees, or the class of
byp-rcubes. In each case, the appropriate problem might be:

"A network i te ci" is gien, but some portion of the nodes fail. How do we use the edges
end peed nodeo the network to const,,ct a somewhat smaller netweork of the some type?"

For linear graphs the answer to the question is straightforward. This paper provides a starting
point for two-dimensional grids. For other classes, the answers are as yet unknown. Also of
interest is the problem of embedding a graph from one class in a partially bad graph from a
differen class. Remarch in this area should lead to a greater understanding of the fault tolerance
of setworks.

L Cedudi remarks

Far all the thwebci analysis in this paper, some of the algorithms described are quite
piattlmI. Not ely are they fast, but they produce good results because the constants are small.
Fr nmaple, the mubods of Section 3 can be used to show that there is a simple, linear-time
aleorthm to emsect m--? of the live cells on an N-cell wafer into a linear array using wires of
Mgth 1, 3, or 3 amdhad eds of width at most 2. The method from Section 6 for connecting
al tI li sil into a two-dimensional array, modified to do table lookup on small subproblems,
app. to be substatialy better than what has been used in practice [38.

In additien to providing algorithms for constructing one- and two-dimensional arrays, the
tecbniquM in this mper can also be used to construct arbitrary networks on integrated
ciruit waters. There are two ways this can be done. First, one could embed the desired network
in ;, two-aiaz-'tional array using the methods described in 12, 19, 21, 42, 431 and then construct
the twowdimeneonal array using the proced-res from Section 4. Alternatively, one could apply
the divlde-and-conquer pncess directly to the network. For example, the latter approach can be
used to onstruct with high probability a complete binary tree from the live cells using constant
died width and edges of length Oj /Hl Ig N), the least possible.

Semi of the problems msntioned in this paper have been studied independently by Greene
aed Gam. In their resent paper 181, they prove most of the results found in Section 3 as well as
the bw bead w 4. Their aalyids of linearly connected arrays is somewhat dllrmt
frem rs, bwer, as they rely on percolation theory from statistical physics.

a aMim Haming 126, U1, Hedlund 1101, Kore 114j, and Fusell and Varman (61 leek
at the basic problem of eonstructing arravs from defective arrays. Each gives algorithm hut
Rie theoretical or stistical analysis. Rosenberg 133, 341 has also investigated issues of fault
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