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Abstract: VLSI technologists are fast developing wafer-scale integration. Rather than par-
titioning a silicon wafer into chips as is usually done, the idea behind wafer-scale integration is
to assemble an entire system (or network of chips) on a single wafer, thus avoiding the costs and
performance Joss associated with individua) packaging of chips. A major problem with assembling

" a large system of microprocessors on a single wafer, however, is that some of the proceisors, or
cells, on the wafer are likely to be defective. In the paper, we describe practical procedures for
integrating wafer-scale systems “around” such faults. The procedures are designed to minimise
the length of the longest wire in the system, thus minimising the communication time between
cells. Although the underlying network problems are NP-complete, we prove that the procedures
are reliable by assuming a probabilistic model of cell failure. We also discuss applications of
this work to problems in VLSI layout theory, graph theory, fault-tolerant systems and planar
geometry.

Key Words: channel width, fault-tolerant systems, probabilistic analysis, spanning tree, sys-
tolic arrays, travelling sslesman problem, tree of meshes, VLSI, wafer-scale integration, wire
Jength.
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1. Intreduction

VLSI technologists are fast developing wafer-scale integration |30]. Rather than partitioning
a silicon wafer into chips as is usually done, the idea behind wafer-acale integration is to assemble
an eatire system (or network of chips) on a single wafer, thus avoiding the costs and performance
loas associated with individual packaging of chips. A major problem with assembling a large
system of microprocessors on a single wafer, however, is that some of the processors, or cells,
on the wafer are likely to be defective. Thus a practical procedure for integrating wafer-scale

* systems must have the ability to configure networks “around” such faults.

This paper considers a variety of problems involving the construction of systolic arrays [15].
Systolic arrays are a desirable architecture for VLS] because all communication is between nearest

- neighbors. In a wafer-scale system, however, all the nearest neighbors of a processor may be dead,
and thus the prime advantage of adopting a systolic array architecture may be lost if a long wire
connects adjacent processors. In general, the Jongest interconnection between processors will be
a communication bottleneck in the system. Of the many possible ways in which the live cells on [

a wafer can be connected to form a systolic array, therefore, the one that minimises the length :
of the longest wire is most desirable from a computational standpoint because communication '
overbead is least. '

To illustrate the subtleties inherent in configuring systolic arrays, consider the problem of
constructing a linear (i.c., one-dimensional) array using all of the live cells in an N-cell wafer.
Unfortunately, if we wish to minimise the length of the longest wire, the problem is NP-complete
[11]. Even more discouraging is that there are some arrangements of live and dead cells for which
even the optimal linear array has unacceptably long wires. Thus optimal solutions—even if they
could be found quickly—are not always practical.

By assuming a probabilistic model of cell failure, however, many positive results can be proved.
For example, Figure 1 illustrates a possible solution to the problem of connecting the live cells
of a wafer into a linear systolic array. The live cells, which are denoted by small squares, are
connected together, one after another, in a snake-like pattern. Dead cells, denoted by X's, are
skipped over. With probability 1 — O(1/N), the leagth of the longest wire is O(lg N), where N
is the number of cells in the wafer and where each cell independently has a fifty percent chance
of failure.

X

XX.X X
.S
X1 X X

Figure 1. A simple mul'u of constructing a linear systolic array from the live cells on a
wafer.
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This bound comes from the observation that the length of the longest wire that connects two
cells in the array is just the length of the longest sequence of dead cells in the snake-like string.
For a given set of k calls, the probability that all are dead is 1/2*, and thus the probability that
any set of 2ig N cells are dead is 1/N?. The chances are, therefore, less than one in N of having
to akip more than 2Ig N calls in the entire snake-like path of length N, and thuswitllprohbihty
1 — O(1/N) the maximem wire leagth is O{ig N).

To say that with probability 1—0(1/N) the maximum wire len;th is O(ig N) is a substantially
Wmﬁn saying that the expected maximum wire length is O(lg N). Not only is
the expected maximum wire length O(lg N), but the chanees of it being much larger are miniscule.
Furthermore, the probability can be made much higher. For example, the probability of having
to skip more than 3ig N dead cells in the entire snake-like path is less than one in N3. A small
adjustment to the constant within the Big Oh results in a much higher probability.

Not surprisingly, there are algorithms which, under similar assumptions of cell failure, produce
far better results than the algorithm illustrated in Figure 1. For example, we will describe in
Section 3 another simple procedure which, with high probability, constructs a linear array using
wires of length O(\/IgN). We will also show that, up to the leading constant, the algorithm is
the best possible of its kind. By relaxing the constraint that all live cells be connected into the
linear arrsy, however, we can do much better. In fact, we will also show in Section 3 that with
high probability, a linear array containing any constant fraction (less than one) of the live cells
on an N-cell wafer can be constructed using wires of at most constant length.

Although there are sumerous uses for linear systolic arrays [22], two-dimensional systolic
arrays are also important. Not only can the two-dimensional array be wsed 3s a powerful
communications structure for paraliel computation [15], but it can alve serve as aa ali-purpose
structure in which arbitrary networks can be embedded {2, 19, 21, 41, 43]. As one might expect,
the problem of constructing a two-dimensional array frem the live cefls of a wafer is more difficult
than the corresponding problem for linear arrays. Specifically, Section 4 contains a preef that
with high probability a two-dimensional array that wses amy econstant fraction of the live cells
must have wires of length O(VIigN ).

Although we do not kmew how to construct two-dimensional arrays from most of the live eells
using wires of length O{/E N ) or channels of constant width, we can come close. We show in
Section 6 that with high probability, a two-dimensional array can be constructed on an N-cell
wafer using:

1) all the live cells with wires of length O(lg N Igig N) and channels of width Oigig N),

2) any constant fraction less than one of the live cells with wires of length O(Vig N igig N)
and channels of width O(lgig N), and

3) at least 0(1/1glg* N) of the live cells with wires of leagth O(Vig N ) and chansels of
width 1.

The remainder of the paper is divided into seven sections. Section 2 more formally deseribes
our model for wafer-scale integration and discusses the practicality of the modeling sssumptions.
The algorithms for constructing linearly connected systolic arrays are presested in Section 3.
Section 4 contains the Jower bound result for wire Jeagth in.two-dimensional systolic arrays. In
Section 5 we present a worst-case (nonprobabilistic) upper bound on the channel width necessary
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to configure a two-dimensional array. This result has application to the fault-tolerant encoding of
two-dimensional arrays in complete binary trees [31]. Section 6 gives algorithms for constructing
two-dimensional arrays in the probabilistic model. In Section 7, we mention some related problems
in geometric complexity and graph theory. The related problems are nice theoretically in that
some of them bave tight upper and lower bounds. They also suggest a wealth of interesting
questions concerning the design of fault-tolerant systems. We conclude the paper with some
additional remarks in Section 8. |

3. The wafer-scale model

Laser-programming the interconnect of a wafer is a promising means of achieving wafer-scale
integration. This technology was pioneered at IBM [24] and pursued in the direction of wafer-
scale integration at MIT Lincoln Laboratory [30]. Figure 2 shows a scanning electron microscope
photograph of a portion of a wafer with programmable interconnect. Laser welds can be made
between two layers of metal, and by using the beam at somewhat higher power, wires can be cut.
Defective components can thus be avoided by programming the interconnect to connect only the

‘ama

Figure 2. A close-up of laser- programmable interconnect.

Figure 3 shows a typical organisation of a wafer-scale system with programmable intercon-
pections. The components are organised as a matrix of cells, and between the cells are channels
through which the interconnect runs. Figure 4 is a close-up of the channel structure. At the
intersection of a horisontal and vertical channel, laser-programmable connections can make a
horisontal and a vertical wire electrically equivalent. Between two cells, connections can be made
from the wires in the channel to the inputs and outputs of the two cells. Given that the inter-
connect is programmable, we shall adopt a usage of the term “wire” to mean an electrically
equivalent portion of the programmable interconnect.

e e T e
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k Figure 4. The channel structure of a wafer-scale system.

The preassignment of wire segments to layers such that wires in one layer run horisontally
> and the other vertically is called Manhatian wiring [16]. This wiring model has been studied
extensively, but in this paper the details of the wiring are not.the central issue. It will be suficient
‘ to understasrd-ome fact about Manhattan wiring. The width of a channel need only be a constant
g factor larger than the maximum number of wires that occupy any portion of the channel.
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A natural question to ask about the use of programmable interconnections to avoid defective
cells is, “Zf cells are unreliable, why might not the interconnect fail also?” The answer is that,
indeed, interconnect does fail. But the reliability of the interconnect is much higher than the
reliability of the cells. The interconnect in the MIT Lincoln Laboratories project, for example,
takes three masking steps to fabricate, but manufacturing the active devices requires well over a
dosen steps. This project is targeting yields of fifty percent for cells and over pinety-five percent
for wires. And even if a wire fails at one point, it is often possible to break it into two usable

pieces.

In this paper we shall assume that ihe interconnect has sufficient redundancy so that the
inability to interconnect cells arbitrarily is a rare phenomenon. In this sense, we are making the
same assumption that is used to substantiate redundancy in any fault-tolerant system. The idea
is not that the system will be completely reliable, but that its failure will depend on the failure
of the most reliable component instead of the least reliable component.

Another assumption that must be examined more closely is that the probability of cell failure
is independent and the same for all cells. Failures can be attributed to one of two causes—
materials defects during manufacturing, and mask misalignment. Materials defects are spread
uniformly, but the sise of the region affected by a defect is a separate random variable. This
means that if one point on the wafer is flawed, neighboring points are also likely to be flawed.
Nevertheless, independence of cell failures is quite a reasonable assumption because the area of
a cell is substantially larger than the expected area of a defect.

Mask misalignment is a somewhat more serious problem with respect to our modeling assump-
tions. The reason is that misalignment is a global failure mode. Misalignment due to translation
of the axes of one mask relative to the others poses no real problem in terms of the modeling as-
sumptions, however, because the effect is the same for all cells. The real problem is misalignment
due to angular rotation of one mask with respect to the others. Those cells near the eenter of
rotation are much more likely to be good than those far from the center. Experimental evidence
indicates, however, that the effects from angular rotation that cannot be accounted for by our
mode] are minimal.

The two cost functions we shall examine in this paper are channel width and mazimum wire
length. Minimising channel width is important because the available wafer area is essentially
fixed. If the channel width is large, the sise of the system, and hence its functionality, is reduced.
In addition, large channel widths often lead to long wires, and minimizing the length of the
longest wire is our other cost criteria.

Minimising the length of the longest wire in a wafer-scale system is important because
communication delays can be the limiting factor of the performance of the system. Since both

. resistance and capacitance increase with the length of wire, the time required to drive a wire can

grow as fast as the square of the length of the wire [27]. (See [4] for a discussion of propagation
delays through wires.) In particular, a designer that chooses a two-dimensional systolic array
architecture is counting on low overhead for communication, and will not want communication
down a long wire to degrade the performance of the system. Furthermore, for reasons of electrical
correctness, cells must be designed with signal buffers capable of driving the maximum length
wire. Since the sise of buffers varies with the sise of the load being driven, substantial area in a
cell can be saved if the maximum length wire is known to be short. As was argued previously,
this savings in area translates to larger systems with greater functionality.




Throughout the paper, we will consider cells which occupy an s-by-s square region on the
wafer and which have (independently) a probability p of failure. Unless specifically stated to the
contrary, we will assume for simplicity that s = 1 and p = 1/2. As we will later observe, these
restrictions bave little bearing on the analysis. In addition, we will use the term “hsgh probability”
to mean “with probability et least 1 — O(1/N),” where N is the number of cells on the wafer.

We conclude this section with a simple result that places the rest of this papes in a proper
context. Given a circuit composed of active components and wires, it is possible to construct
8 .wafer of pot much more area (asymptotically) whiech is fault tolerant. If there are N active
components, expand the layout of the circuit in each dimension by cv/Ig N, where ¢ is a constant
chosen large enough that 2ig N copies of a given active compenent fit in the space designated to
that component in the original circuit. The probability that every one of the 2ig N copies is bad
is 1/N2, and thus with high probability, one of the copies of every component is good. It only
remains to hook them up in the space left for wires.

This scheme works even if components are differeat. The results in this paper are better
for systolic arrays, however, because we can utiline substantially more of the live cells at less
cost. Since the number of cells on a wafer might typically be between 100 and 1000, g N is a
considerable fraction of N. Some of our algorithms uss all of the live cells, and others use a
considerable proportion.

3. Wafer-scale integration of linearly connected systolic arreys

The snake-like scheme described in the intreduction commects with high probability all the
live cells on an N-call wafir into & linear array with wires of langth at most O(ig N). This section
substastially improves and generalizes this result. We comsmeace by showing that this bound can
be improved to O(\/Ig N ), which is optimal to within a constant factor.

- Theorem 1. With prabedility 1 — O(1/N), the live cells on an N-cell wafer can be connected
in a linear array wing wires of length O(\/ig N ). Up to the leading constant, this bound is the best
possible.

Proof. We first show hew to construct a linear array using wires of length O(v/Ig N ). Partition
the wafer into square regions containing 2ig N cells-each as is shown by the dashed lines in Figure
5. The probability that each of the 21g N cells are dead in one or more of the squares is at most

N _g—agn 1

2gN 2NigN'
which is less than 1/N. Thus with probability 1 — O(1/N), each of the squares contains at least
otve live cell.

Construct a linear array out of the live cells in each square using the “transpose” of the
algorithm from Section 1, emcept that when am ampty colutnn is encountered, the column is
skipped. In Figure 5, these connections are shownn with solid lines. Since any pair of cells in the
same square can be linked with a wire of length at moet 2/21g N, the wires in each array have
length O(v/Ig N). Next, add wires, shown by dotted lines in the figure, which connect the small
arrays into ope large array. Because each region contains at least one live cell, these connections
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Figure 5. A scheme for constructing linear arrays from all live cells on a wafer with wires of
length O(\/Ig N') and constant channel widths.

can be made with wires of length at most 3/2IgN. Thus every wire in the completed linear
array has length O(v/Ig N) with high probability.

That the bound cannot be improved by more than a constant factor is due to the observation
that with high probability, some live cell will be at the center of a region of Ni{ig N) dead cells.
Thus a wire of length 0)(y/Ig N') will be required to link the isolated live cell to any other live
cell. To demonstrate this bound more formally, we again partition the wafer into square regions,
byt this time the squares are rotated by forty-five degrees in the plane to form diamond-shaped

" regions containing Ig N — 2iglg N cells each, as is shown in Figure 6.
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Suppose a linear array can be constructed using wires of length at most /4 ig N = 1. Then
in any given diamond, the center cell is not the only live cell in the diamond. The probability {
that every diamoad avoids this condition is at most

S Lo s ooy ) g B i A 2

(1 — 3N+l Nyaw=tmew (1 _ ‘_l_;,_’!)" =
<e “!';'!)mmﬁm'w)
- ¢“H"‘-“I'E'fc'ﬁ 3
3 g =N 1
; 1
Thus the probability that the optimal linear asray has a wire of length 0)(vIgN) is at least . i
1 - O(1/N).a ' 1
If all the cells are incorperated in a iinear array, then the maximum wire length is 6(y/Ig N) o]
"with high probability. But the proof of the lower bound suggests that isolated cells induce the

long wires. lnstead of imsisting that all live cells be incorporated in the linear array, suppose we
only require that most of the live cells be included. A linear asray that incorpeates mest of the
live cells can be constructed with constant-length wires. The proof is indirect, and depends on
' the following lemma. (The lemma is essentially equivalent to the result of Sekanina [36) which
. states that the cube of a neatrivial connected graph always has a Hamiltonian circuit. This result
was later reproved by Karaganis [12] and Rosenberg and Snyder [35].)

Lemma 2. A spanning tree T with mazimum wive length L con be transformed into a kineor
arroy wilh mazimum wive length 6L.

PR A Y U 08

Proof. We show that, without regard for wire widths, the linear array can be constructed
weing wires of leagth 3L by tracing over wires in T oo mwre than twice. The larger 61 bound
comes because the channel widths need to be deubled to accomedate the extra wires.

Choose a node v to be the root of T', and let T3, T3, ..., T bu the subtress of v ss is shown

R L

é
i in Figure 7. (Degenerate eaves not like Figure 7 are ensily bawdied, but we de not include the
, dessils here.)
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Assume as an inductive hypothesis that we bave constructed linear arrays on the nodes of
T:,Ta,..., T such that no wire has length greater than 3L, and so that the end points of the
array in 7, are v, and y,y for 1 < § < m. Join the arrays in the subtrees by adding the following
wires: (v,uy1), (v1,421),(v2,481)---»(Ym—1,Um1)- (These wires are shown as dashed lines in
Figure 7.) Each of these wires has length at most 3L, and the resulting network is a linear array
on the nodes of T with endpoints v and v,,, which completes the induction. For completeness,
we remark that the basis of the induction is easily verified.§

The problem of constructing a linear array with constant maximum wire length that contains
most of the live cells has now been reduced to the problem of constructing a spanning tree with
constant maximum wire length that contains most of the live cells. The next lemma shows that
such a spanning tree can be formed with high probability.

Lemma 3. There ezists a positive constant ¢ such that for any d (which might be a function of
N), with probability 1 — O(1/N), at least 1 — 0(2“") of the live cells on an N -cell wafer can
be connected in a spanning tree using wires of length at most d. Up to constants, this is the best
poasible bound.

Proof. We first show that up to constants, the bound is the best that one could hope for. In
fact, we show something stronger—that for any constant ¢ > 2 with probability 1 — O{1/N),
10 more than 1 — O(2~%4") of the live cells on an N-cell wafer can be connected in any network
using wires of length at most d. The proof is based on showing that with high probability, there
are (N /d?23%°) live cells, each of which is located at the center of a region of dead cells whose
radius is at Jeast d.

Partition the wafer into diamond-shaped regions as was done in Figure 6 to prove the lower
bound of Theorem 1, except make the sise of each region be 2d? cells. The probability that any
particular region consists of an isolated live cell at the center of 2d — 1 dead cells is 224", The
probability that T or fewer of the N/2d? regions are like this is thus

é(N /:d’)(2—u')’(l - 2—2") T2 ( 2-242).. 2 (fai,)z 3;:;’: '

<y

When T assumes the value N/84%22¢, the largest term in the series occurs for z = T, and thus
. the preceding expression can be bounded above by

(T+ (T+1) - ,—,.‘,—.w(d”‘:")r=ou/1v).

In order to prove the upper bound, consider the graph whose vertices are live cells on the
wafer and whose edges connect cells which are within distance d of each other on the wafer. In
what follows, we will show that there is one main connected component in this graph, and that

--------
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the total sise of all other isolated components is a small fraction of N. More specifically, we will
show that there exist comstants ¢ and ¢ such that the probability that more than ¢’2—<4* N live
cells are isolated is O(1/N).

The approach will be to find a crude upper bound on the number of paths which can define
the outer boundary of an isolated region. (See Figure 8.) For any given path which defines the
outer boundary of a potentially isolated region, we will show that the probability is very amall
that all the cells are dead in the corresponding width-d boundary region. In particular, the longer

the path that defines a potentially isolated region, the smaller the probability that the region is '
actually isolated.
| iso\ated :

vtsl' on _

!

cell N

—dend cells :

in boundu.vy 4

region N

ath formng __. —main ;

osjgr \,.Md':?,.’ ¢ omPonM"’ _j

Figure 8. Examples of isolated regions.

Because there are N positions at which a path can start and at most four ways it can continye
at each step, there are at most N4" paths consisting of r consecutive cells. Thus there are at

N Nkygrs

4 .

( k ) < k! .

sets of k different paths of length r.
The number of paths of length r is quite a formidable number, and at first glance it seems .;

unlikely that our approach will work. The probability is quite small, however, that each of & :

given paths actually defines a region which both is isolated and contains at least one live cell. For
a region to be isolated, its boundary region must consist of at least rd/8 dead cells, where r > d.
The probability that all krd/8 cells are dead in the boundary regions of k potentially isolated 3
regions with a boundary of length r is 2=*"/5, Thus the probability that there are actually & 3
isolated regions, each containing one or more live eells, with outer boundaries of length r is at 1
most (N#2374—4r4/8) /j1 which for k > eN/274/18 and d > 32 is less than 1/N2. 1
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Observe that a region with an outer boundary of length r contains O(r3) live cells. Thus for
d > 32, with probability 1 — O(1/N) at most
N

Z eN O(r’)=0( d2N )

&, ore/re 9d?/16

live cells are isolated from the largest component on the wafer, which implies that for ¢ < 1/16
at most 0(2—“"a N) live cells are isolated. For d < 32 the same result holds by simply adjusting
the constant hidden by the Big Oh.§

By choosing d to be a sufficiently large constant, Lemma 3 ensures that with high probability, a
constant fraction of the live cells on the wafer can be connected into a spanning tree with constant
wire length. Because we know all wires will be constant length, Prim’s minimum spanning tree
algorithm [28] can be medified to run in linear time instead of the normal O(N?).

Theorem 4. With probability 1 — O(1/N), any constant fraction (less than 1) of the live cells
on an N-cell wafer can be connected in a linear array with constant-L.ngth wires.

Proof. Straightforward from Lemmas 2 and 3.3

To conclude this section, we provide a theorem which states our results on constructing linear
arrays in their fullest generality. The proof is similar to that of Lemma 3, and is not included
here.

Theorem 5. With probability 1 — O(1/N), at least 1 — ¢ of the kive cells on an N-cell wafer can
be connected in a kinear array using wires of length O(s\/log, ¢ ) and channels of width 2, where p
is the probability of a particular cell dying, s is the side length of each cell, and1/N < e < p< 1.
This bownd cannot be smproved by more than a constant factor for any p, €, or s.

4. A lower bound for wafer-scale integration of two-dimensional systolic arrays

The problem of linking the live cells on a wafer to form a square two-dimensional array is
substantially more difficult than the correcponding problem for linear arrays. The main difficulty
with constructing two-dimensional arrays is that constant length wires no longer suffice whea we
throw away some of the live cells. In this section we provide a lower bound on the length of the
Jongest wire required by a two-dimensional array. This bound was first discovered by Greene
and Gamal [8]. Our proof (which is similar to but more general than that in [8]) was obtained
independently from an idea due to Joel Spencer |40)].

Theerem 8. With probebility 1 —O(1/N) every realization of any m-cell two-dimensional erray
on an N-cell wafer has o wire of length 0(\/Igm ), for alim = Oig? N).

Proof. The proof consists of two parts. In the first, we show that with high probability, the
wafer contains a large number of regularly spaced square regions of § igm cells, each of which is
dead. In the second part of the proof, we show that any realisation of an m-cell two-dimensional
array must contain a cycle of four cells that surrounds the center of one of these dead regions.
Thus one of the wires in the 4-cycle will have length §/Igm.
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First, partition the N-cell wafer into square regions with m/32 cells each, and then partition
“each of these regions inte square subregions with §lgm cells each. We claim that with high ¥
probability, every m/32-cell region contains a } Igm-cell subregion in which every cell is dead, i
as is illustrated in Figure 9. kY
3
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dead subregions 4
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Figere 8. The distribution of dusd § igm-celf subregions.

The probability that amy particular §lgm-cell subregion contains st least one Kve cell is
1 — m'/%, Thus the probability that each of the § Igwi-cell subregions in a particulse m/32-cell
region contains at least one live cell is

m/Blgm
(l - m-m) < il b ,

since 1 4 z < ¢® for 2%t 2. The probability thut one or moreof the 32N /m m [32-cell regions
fails to contain a totally dead § igm-cell subregion is st most

2 m i = oft/Y,
for m = £)(ig’ N), which completes the first half of the proof.

If we can show that a 4-cycle of the two-dimensional array encloses the center of one of the
§ 1g m-call dead regions, the preof will be compiete becawe one of the wiret'of the 4-cycie Will hisve

of s dead subregion, then some wire in the aswrsy mwet-have length §/Igm. This observation

3
:
3
i Jength at Jeast §1/Igm . More generally, however; if eny cycie in the array surrbunds the center
y follows because

A
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1) every directed cycle in a two-dimensional array can be decomposed into the sum of
directed 4-cycles, and

2) the sumber of times a cycle “wraps” around a point in the plane is equal to the sum of
the sumber of wraps for each 4-cycle in its decomposition.

Thus a two-diraensional array with a cycle that encloses the center of a dead region must also
contain a 4-cycle that surrounds the center of the dead region.

. We must now show that with high probability, every realisation of every m-cell two-dimensional
array contains a cycle that encloses the center of a square region of §igm dead cells. We al-
ready know that with high probability a wafer contains contains a dead subregion of this sise
in every square region of m/32 cells. Assume for the purposes of contradiction that an m-cell
two-dimensional array can be realised on such a wafer so that no cycle of the array surrounds the
center of one of the dead regions. Consider a line drawn between the ~anters of two dead regions.
If any wires cross this line, their removal will disconnect the two-dimensional array into two or
more components, as is shown in Figure 10.

ot Mﬂ:l’k
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vemoval of of o deadregion
wires cvasgs
dofled Vime wa
::"‘ ‘::.“ pe 2. dinntm gional
Mp‘lu, un-.’
eadh with at
east § caiis.
a
”e 1eation,

Figure 10. Disconnecting a two-dimensional array.

Ameng all pairs of neighboring dead regions (i.e., pairs contained in m/32-cell regions that
share an edge or corner), there is at least one pair for which removal of the wires passing between
them disconnects the array into two pieces, each with at least m/3 cells. Since at most 4\/»;78 =
\/mk wires can cross the line between the centers of two neighboring dead regions, by removing
oaly \/mh wires, we can disconnect an m-cell two-dimensional array into two pieces, each with
at least m/3 ealls. But it is well known that any such disconaection requires /m wires to be
removed, and we have obtained the contradiction that completes the proof.}

The most interesting case of Theorem 6 is when the two-dimensional array to be constructed
bas m = @(N) celis.

Corollary 7 With probability 1 — O(1/N) every realization of any two-dimensional array that
utilizes any constant fraction of the live cells on an N-cell wafer has a wire of length O(VIgN ).

13
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§. A divide-and-conquer method for constructing two-dimensional systolic arrays

The principal focus of this paper is the construction ef systolic arrays on wafers such that

the maximum wire length is minimised. In this section we ignore maximum wire length as a

cost measure and Jook at the problem of constructing systolic arrays when only channel width

. is at issue. In doing so, we shall extend the general VLSI layout results of [19] and {21] to the

wafer-scale situation where some of the cells may be faulty. Furthermore, the analysis of this

séction is worst case and mot probabilistic, and thus all possible configurations of live and dead
cells, however unlikely, can be bandled.

The basic result of this section is that a two-dimensional array can always be constructed from
all the live cells of an N-cell wafer if the channels have width fi(ig N). This result will be used
. in the next section as a subroutine in methods that achieve better bounds for wire length. The
divide-and-conquer technique used in the construction is similar to general VLSI layout methods
based on separators [21] sad difurcators [19].
We first prove a result on encoding two-dimensional arrays in complete binary trees 4 la
Rosenberg [31] where some of the leaves may be dead. An encoding of a graph G = (V,E) in
a tree T is a one-to-one mapping f from the vertices V to the leaves of T. In our case, f must
map V to live leaves of T. Such s mapping can be extended naturally to map F teo the paths of
T, where { maps (u,v) to the unique simple path connecting f{u) to f(v).

Lemma 8. Let T be a complete binary tree with each of its N leaves labeled as either “live” or
®dead,” and let M be the number of live leaves. Then for eny M-element two-dimensional array

G, there exists an encoding f of G in T such that only O(VE) edges of E are mapped by 1 to an
edge of T that has k descondent legves.

Proof. We rely on the fact that every tree has o weighted one-separsior theorem {23]. That
is, if the vertices of the tree are given arbitrary weights, remeval of a single vertex will partition
the tree into two components, sach with less than twe-thirds the waight. In our case, we weight
the internal nodes and dead leaves of the tree T with sero andl the live leaves with ene. Then, in
fact, a single edge of the tree can be removed to aglit the tres imte twe components, each with at
least A /3 leaves.

The coastruction of f is cbtained by a divide-and-conquer aigorithm. We start by sttempting
to encode the eriginal twe-dimensional array & in the eriginal tsoe T'. Of couree, the number of
live cells on a wafer will zarely be a perfect square, and the subarrays corresponding to internal
nodes of the tree will not be square either. We shall allow the eriginal arvay to be missing some
sells from the bettomment row and the rightment caluma. Asy subsrray thet is generated may
e missing some cells from each of its four edgss, and will in general bave the shape showa in
Figure 11. ‘

Each recursive iteration sitempts to encode an m-element subarray € of Gin a subtree T of
T. Using the weighted separstor for trees, we determime 2 single edge whose removal partitions
the tree T into two subtrees, each with at least m/3 live leaves. The two-dimensional array &
is then cut into two subarrays with the corresponding number of live cells. By cutting parallel
to the short dimension, we can ensure that the subarrays of & have perimeter O(\/m), which is
important for the analysis later on. Finally, the two subarrays of G are encoded recursively in
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Figure 11. A 6-by6 array that is missing some border cells.

the two subtrees of 7. The recursion terminates when the subarray to be encoded consists of a
single vertex v of G. When this happens, the edge immediately above the single live leaf of the
corresponding subtree of T is removed, and the vertex v is mapped to the live Jeaf.

It remains to be shown that this encoding maps only O(vVk) edges of the graph G to any edge
e leading out of any k-leaf subtree T’ of T'. Look at e and those edges beneath in TV as they were
cut during the execution of the algorithm. (See Figure 12.) The first cut of one of these edges
partitions some subtree T which contains 7' into two portions, each with at least one-third the
live leaves of T. One of the two pieces is a subtree T* of T" into which a subarray is encoded.
The pumber of connections from this subarray that pass through e is at worst the perimeter of
the subarray, and the number of elements in the subarray is at most k. (This worst case occurs
when T¥ = T" and e is the first edge cut.)

Figure 12. The relationships among trees in'the proof of Lemma 8.
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Therefore, only O(Vk) connections from this subarray can possibly pass through e to 7' — T*.
No other edges from within 7 pass through e to the rest of T, but some in 7Y — 7" might. The
subtree 7' — T%, boweves, has at most two-thirds the live leaves of T, and thus only O(/k)
additional connections corresponding to the second cut can pass through e. By induction, the
sum of the perimeters of all arrays that could pass through ¢ is bounded by O(Vk) because the
series decreases geometrically.§

. The encoding of a two-dimensional array in an N-leaf complete binary tree corresponds
paturally to an embedding of the array in an O{N)-leaf tree of meshes [17, 18, 19). Figure 13
shows a 16-leafl tree of meshes. The root of the complete binary tree has O(VN) connections
passing through it from one side to the other. In the corresponding tree of meshes, the switching
of these connections is accomplished by a ©(VN)-by-6(vN) mesh at the root. The two subtrees
of the root of the compiete binary tree correspond recussively to the two subtrees of the reet of
the tree of meshes. The leaves of the complete binary tree will be embedded in small meshes at
‘most a constant distance from the leaves of the tree of meshes because the mesh st the root of
the tree of meshes is a constant factor larger than v N-by-vN.

amne 0wt e 1 s U e 0 n W g

Figure 13. The 16-leaf tree of meshes.

mwmmummammmmmumwm
are empty, and small meshes near the bottom contain the celis of the two-dimensional array. If
we chop off the unused lower level meshes, we obtain a shortened tree of meshes whose leaves
covrespend te the calis of the two-dimensional asray. The next lemma shows that & shortesed
tass-of meshes can be embedded on a wafer with chanaels of width Oflg N).

Lemma 9. An N-lsaf shortened tree of meshes can be consiructed on an N-cell wafer that has
o uniform-chunnel width of O(ig N) so that the lssves of the shoriened tree of meshes correspond
in o one-te-one menner with the cells of the wafes.

Proof. The first step is to construct a ©(Ig N)-layer three-dimensional layous [20, 32] of the
shortened tree of meshes. Fold the connections between the root of the shortened tree of meshes
and each of its two sons so that the sons fit naturally on a second layer over the root. Fold the

16
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connections to each of the grandsons so that they fit naturally over the sons on a third layer,
and so forth. This generates a 6(lg N)-layer three-dimensional layout where each layer has linear
area. By projecting the three-dimensional layout onto a single layer in the manner of [42, pp.
36-38), channels with a uniform width of ©(lg N) are obtained.§

The next theorem is the major result of this section.

" Theorem 10. Any M -cell two-dimensional array can be constructed from any subset of the live
cells on an N-cell wafer using wires of length O(V'N g N) and channels of width O(ig N).

Proof. Immediate from Lemmas 8 and 9.8

By using two-color bisectors [3] or fully balanced bifurcators [19], the results of this section
can be generalised to the encoding or embedding of classes of graphs other than two-dimensional
arrays. The general idea is to use these tools to bound the number of external connections from a
subgraph during the divide-and-conquer algorithm in the proof of Lemma 8. The only subtlety is
that proportional cuts are required, which involves several applications of the two-color bisector
or fully balanced bifurcator. All of the bounds on areas of graphs reported in [19] and [21]
can then be obtained in the wafer-scale model where channels have uniform width and cells can
be defective. (For a more complete description of how these techniques can be used to embed
arbitrary grapbs in a fault-tolerant manner, see [2].)

6. Upper bounds for wafer-scale integration of two-dimensional systolic arrays

Theorem 6 from Section 4 gives a lower bound of f}(v/IgN) on the length of a wire in any
realization of a two-dimensional systolic array that utilises all or most of the live cells of an N-cell
wafer. We do not know how to achieve this lower bound, but we can come close. This section
gives three nontrivial upper bounds for wire length and channel width. Of the three methods,
however, only the algorithm in the proof of Theorem 13 achieves the lower bound of Theorem 6.
Unfortunately, this algorithm utilises only m = 6(N/Iglg? N) of the live cells.

We first present a divide-and-conquer algorithm that constructs a square two-dimensional
array using all the live cells on a wafer. In the first stage, the wafer is recursively bisected, and
the number of live cells in each half is counted. Based on the count of live cells in each half of the
wafer, the algorithm computes the dimensions of the two subarrays that must be constructed,
and then recursively constructs the subarrays. The two subarrays are then linked together to
form the complete array.

The algorithm remains in the first stage until subproblems with ©(ig V) cells are encountered.
At this point the techniques used in Theorem 10 are used to complete the wiring of a 6(ig N)-cell
subarray. The exact crossover point between the first and second stages can be set at subproblems
of sise clg N, where c is any constant sufficiently large to ensure that with high probability, every
¢lg N-call region contains f(ig N) live cells. (For example, a choice of ¢ = 2 will suffice.)

Figures 14 through 17 illustrate the divide-and-conquer procedure. Figure 14a shows a 64-cell
wafer which contains 36 live cells. In what follows, we step through the algorithm as it constructs
a B-by-6 array, which is identified as the “overall target” in Figure 14b.

17
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Figure 14b. The target: a 6-by-8 wyetolic array.

ERRNYY

" The first step is to bissct the waler vertically, which gives 19 live cells in the left half aad 17
in the right. We wish %o constrect & 19-cell subarray in the loft hall wafer aad 8 17-coll wdeeray
in the zight haif walss. Since we want the twe subusrays to fit together nicely alter they bwve
MManMd&hmmedbyﬁtm
of the 6-by-6 array shown in Figurs 15.
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Figure 15. Partitioning the target.

We now invoke the procedure recursively on the two subarrays, but this time we bisect each
of the balves horisontally. For example, when the left half wafer is bisected, the 19 live cells are

. divided into 9 calls above and 10 cells below, as displayed in Figure 16. The algorithm continues

in this fashion, alternating between horisontal and vertical divisions, until the wafer and the
target have been partitioned into ©(lg N)-cell regions, at which point the algorithm proceeds to
the second stage, and the technique of Theorem 10 applied.

wpper left
fars&t - o o
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lower left
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In this example the number of cells is small enough that the second stage construction csn be
performed by inspection. The inspection strategy can be used effectively in practice. Since the
socond stage operates on regions of sise O(Ig N), the routings of this sise can be precomputed.
The second stage then consists of a single table lookup. At worst, this strategy costs polynomial
time aad space.

Figure 17 shows the final solution to the problem ia Figure 14. For clasity the wires have got
been routed within the channels of the wafer. Notice that each quadrant contains the specified
targets for second level of recursion. The dashed lines represent wires that connect cells in
different quadrants of the wafer.

ﬂgmlv.mdlm-dwlrh‘dm&m“.

The next theorem describes how well the divide-and-conguer algorithm performs with respect
to wise length aad channal width.

Theorem 11. With probebility 1 — O(1/N) & twe-dimvensionsl errey con be constructed from
the live cells on en N-cell wafer using wires of length O{ig N iglig N) end channels of width
\iglg N).

Proof. mmmwmummmmmummmm
‘l'henﬂydthdmdodhtommﬂmﬂh;uthmmathemmhm.

We begin at the first level of recursion. Consider the wires that link a cell in the left subarray
to & cell in the right subarray, as is illustrated by the two examples in Figure 18. For the most
M&Mﬂumhmﬂhﬁommmmﬁmmuuhdvu
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of the wafer. The length of the longest wire in the channel, as well as the width of the channel
itself, is proportional to the longest vertical distance that a single wire must traverse.

The length of the longest wire in the center channel depends on the distribution of cells in
each quadrant. For example, if we are extremely lucky and the live cells are regularly spaced,
the longest wire may have constant length, as in Figure 18a. But if we are very unlucky, balf the
live cells might occur in the upper right quadrant and the other balf in the lower left quadrant
(Figure 18b). To connect the two halves, some wire will have length 3(vN).
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Figure 18a. A distribution of live cells which might allow a narrow center channel.
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The length of the longest wire in the center channel can also be influenced by the distribution
of cells within a quadrant. For example, if the upper left quadrant contains VNJB live cells
(about the right number), but they are distributed as in Figure 19, then the center channel still
contaius a wire of leagth f(VN).
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Figure §0. Another distribution of:live-cells which requires a wide center channel.

Most often, we are not 8o unlucky ‘that a wire in -the weuter ¢hannel has leagth 0(¥/N),
but neither are we lucky enough that all wires are constant length. We now shew that with
-high "probability, we are more lucky than unlucky because ‘the leagth of the longest wise in
Ahe:esster is. O(ig N). ‘The key 4o the analysis:is to prove that the live-cells are distributed 20
evenly that with high prébability, the total vertical distortion of the wires iz the center ¢hanne!
fower all subproblems of -size N{ig N)) is Ofig N). .In-onder $0.do 30, we :fisst obhoerve that for
all positive v, ‘with probability 1 — O(e™"’) the ‘feur quatisants in-the ith mibproblem each
bave m/4 = O(r\/m) live cells, where m = N[2*+! 4 O/N)gN /2°). Thus with probability
*1—0fe—""), a subprebiem contributes st mest O{r)-distortion-¢f wires in the-center channel that
are connected to the subarray at the level of the subproblem. There are 6(ig N) subproblems
that can contribute to Al distortion of a-given wire:in the center channel. Using spantard
ssatibinstoriAl-sygumenty involving sums of random varisbles, it is now possible 10 abow:thatethe
womnt case of the sum-of she-distortiens is' O(lg'N) with prebatillity 1 — O(1/N).

The same observations can be used to prove a -high-probebility bound of O(/igN igm) en
the distortion of wires that connect subarrays of sise-m-a= Q(ig N). Thus it is sufficient-that
the channbisshetwesn sabpotbioms with-m oelis bave width O(VIigN Igm). By semming.over sl
(ig N)-sised subpsdblecns, it can be checked. thatat thispoiat, the sverope channel midth-en the
waler is O(1), which is beesuse the channels inside O@ig Nusised subproblems have not been used
at dll. "The-coustant ‘aversge channe! width can' besschiowsd.as.a mazimum without inereasing
thedength: ohany. wire by. more.than O(ig N). The Mdea is so-distribute the 8(\/ig V' Igw)smidth
hiantiscassessrasigbbesing unused - channels. As the detsils-of this. acgument are samewbat

Wmm concludes thefirst: stage :of the-asalysis.

[1.]
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The analysis of wires that link cells within a ©(lg N)-cell subproblem differs substantially
from the preceding analysis because live cells within a small region can have arbitrarily irregular
distributions with high probability. The regions of irregularity are small enough, however, that k
the worst-case distributions are not really all that bad. For example, if a ©(Ig N)-cell region has J
the structure shown in Figures 18b or 19, then the maximum distortion of a wire at the top level
of the recursion is just O(vIgN).

In fact, the analysis of Section 5 ensures that the algorithm constructs a two-dimensional N
array in each m = ©(ig N)-cell region using wires of length O(/m lgm) = O(VIgN Iglg N) and
channels of width O(lgm) = O(lglg N). Thus the entire two-dimensional array is constructed
2 using wires of length O(ig N Iglg N) and channels of width O(lgig N). The extra Iglg N factor
' in the wire length bound comes about because a wire with O(lg N) distortion crosses O(ig N)
) channels, each of width Ofiglig N).3
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The wire length analysis of the algorithm in Theorem 11 is fairly tight. For example, the
algorithm requires wires of length f2(ig N) with high probability. Thus, if the lower bound in
Theorem 6 is to be achieved, a different algorithm must be discovered. It may be possible to
improve the channel width bound, however. Any improvement in Theorem 10 would directly
lead to an improvement in the channel width bounds in both Theorem 11 and the next theorem,

" which shows how to construct a two-dimensional array from most of the live cells on a wafer.
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Theorem 12. With probability 1 — O(1/N) a two-dimensional array can be constructed from
any constant fraction (less than 1) of the live cells on an N-cell wafer using wires of length
O(VigN Iglg N) and channels of width O(lglg N).
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Proof. The key idea is to partition the wafer into N/clg N square regions, each containing
m = clg N cells, where c is a sufficiently large constant. With probability 1—O(1/N), each of the
regions contains at least m’ = §c{1 — 2/4/c)lg N live cells. Using the technique of Theorem 10,
we can therefore construct an m'-cell two-dimensional array in each region using wires of length
O(v/m Igm) = O(VIgN Iglg N) and channels of width O(lgm) = O(iglg N). The N/cligN
two-dimensional arrays are then connected together into one large array with § N(1 — 2//c)
live cells. The added wires have length at most O(v/Ig N Iglg N), and the channel width is not
substantially increased.§
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For each of the two previous results, the channels on the wafer have width O(igig N). The

b, next theorem shows that with high probability a two-dimensional array can be constructed from

f many of the live cells on a wafer using channels of unit width. Furthermore, the lower bound of
' ' f)(vIgN ) on wire length given in Theorem 6 is achieved by this construction.

- Theorem 13. With probability 1 — O(1/N) at least a fraction 0}(1/ igig® N) of the kive cells on
an N-cell wafer can be connected into @ two-dimensional array wsing wires of length O{IgN)
3 aend channels of unit width. '

2 .
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Proof. The proof is similar to that of Theorem 12. As before, we partition the wafer into
square regions with cig N cells each. The constant ¢ must be chosen large enough to ensure that
with high probability, each region contains Ig N live cells. We next partition each clg N-cell
region into square subregions with ¢’ Igig? N cells each. Consider all pairs of indices ¢ and j in
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the range 1 < 4,7 < Ve Iglg N. For a given region of clg N cells, at least one pair (i, 5) satisfies
the condition that at least 1/c of the cells in the (i, j) positions of of the subregions are alive.
(Otherwise, it is impossible for Ig N of the cells in the region to be alive.) Notice that by ignoring
those cells not in the (i, j) positions of a subregion, the (i, j)-positioned cells together with all of
the channels of the region form a “subwafer” with

1) m=clgN/cIglg? N cells total,

2) atleast m/c =g N/c'Iglg? N live cells, and

3) channels of width V¢’ Iglg N = O(lgm).

By choosing ¢’ large enough, the technique of Theorem 10 can be applied to construet within
each cig N-cell region, a two-dimensional array with Ig N/c’Iglg? N cells using wires of length
O(y/m lgm) = O(VIgN ). These arrays can then be easily connected together to form a two-
dimensional array with N/cc’Igig? N celis and wires of length O(vIigN ).8

By setting m = (N /Igig? N), it can be checked that Theorem 13 achieves the lower bounds
for wire length proved in Theorem 6. The cell utilisation, however, leaves something to be desired.

We have summarized the results of this section in the following table. Each bound is achieved
with probability 1 — O(1/N), where N is the number of cells on the waler, p is the probability
that a particular cell is dead, and s is the side length of each cell. (Wires are » sumed to have
width one.)

Table L. Bounds on wire length and channel width for two-dimensional arrays.

Portion of live Wire length Channel width
cells used

Al O(togy/, N (s + logy losy, N)) 0ot g, )

fracti
ca::.nt:mr::;. O(V log, N (' + log, l“i/} N )) O(l‘"z log, /o N)

“(‘/ (1083108, ¥ )’) o(iosy, W)

7. Related models and preblemn

The problem of incorporating all the live cells of & wafer into a linear asray so that the
maxzimum wire length is minimised has been studied in mere standard graph-theoretic models
and has come to be known as the Bottleneck Traveling Salesman problem [7]. In addition, the
wafer-scale medel of N eslls which fail independently with probability 1/2 is essentially equivalent
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- to the well-studied geometric model in which N points are thrown down randomly in 8 unit square
(1,9, 13, 29, 37, 44). Thus the algorithms for constructing linear arrays described in Section 3 can
also be applied to the Bottleneck Traveling Salesman problem in the geometric unit-square model.
For example, our results can be modified to show that with high probability, all of the points in
the unit square can be joined into a hamiltonian path using wires of length Oo(vigN /\/'ﬁ ), the
Jeast possible. In addition, most of the points can be joined in & linear array using wires of length
O(1/VN), again the least possible. Although neither of these results have been explicitly stated
in the literature, the first result is really just a minor extension to the prior work of Karp {13] and
Bentley, Weide, and Yao [1]. The latter result of joining most of the points differs substantially
from previous work, however. To the best of our knowledge, the only result of a similar nuture
is due to Erdos and Renyi [5) who showed that most graphs with N vertices and N edges have
large connected components.

Channel widths do not play an important role in the unit-square model because the lines
drawn between points are infinitesimally narrow. Thus the algorithms in the proofs of Theorems
11 and 12 can be modified to construct with high probability, two-dimensional arrays containing:

1) each of N points thrown randomly into a unit square using edges of length no more
than O(ig N/VN), and :
2) any constant fraction (less than one) of N points thrown randomly into a unit square
using edges of length no more than O(VIgN /VN).
Since the lower bound of Theorem 6 can be extended to the unit-square model, the second result
above is optimal, and thus there is no need to extend the result of Theorem 13.

The problems considered heretofore in this paper also have an interp:etation in & purely graph
theoretic model. Suppose we are given a two-dimensional grid graph, and assume that each node
in the grid has independently a probability p of of being bad. Ve wish to find 2 subgraph of the
grid that contains only good nodes and that forms a smaller two-a'mensicna! grid. M exanijls,
Figure 20 illustrates the embedding of a good three-by-three grid iu a partially dad four-by-four
grid.




...................

The objectives we ight choose to optimise in such a problem are:
1) maximising the sise of the good grid,

2) mizimising the maximum distance between neighbors,

3) minimising the total distance between all pairs of neighbors, and

4) minimising the mazimum number of times an edge in the partially bad grid is utilised.
These parameters roughly correspond in the wafer-scale model to the usage of live cells, maximum
wire length, total wire length, and maximum channel width, respectively.

" The beauty of the graph thecre‘ic model, however, is that it generalises naturally to broader
clasees of graphs. For sxample, the same kinds of questions can be reasonably asked about
the class of k-dimensional grids fo: any k, the class of complete binary trees, or the class of
hypercubes. In each case, the appropriate problem might be:

“A network in the class s given, but some portion of the nodes fail. How do we use the edges
end good nodes of the network to construct a somewhat smaller network of the same type?”

For linear graphs the answer to the question is straightforward. This paper provides a starting
point for two-dimensional grids. For other classes, the acswers are as yet unknown. Also of
interest is the problem of embedding a graph from one class in a partially bad graph from a
different class. Research in this area should lead to a greater understanding of the fault tolerance
of networks.

8. Concludiag remarks

Por all the theoreticzs analysis in this paper, some of ihe algorithms described are quite
peactical. Net caly are they fast, but they produce good results because the constants are small.
For ezample, the methods of Section 3 can be used to show that there is a simple, linear-time
algorithm to connect G:~# of the live cells on an N-cell wafer into a linear array using wires of
Jength 1, 3, or 3 and channels of width at most 2. The method from Section 6 for connecting
all the live colls into a two-dimensional array, modified to do table lookup on small subproblems,
sppears to be substaatially better than what has been used in practice [38].

In additien to providing algorithms for constructing one- and two-dimensional arrays, the
tachaiques uced in this paper can also be used to construct arbitrary networks on integrated
cireuit walers. There are two ways this can be done. First, one could embed the desired network
in & two-disuc=vional array using the methods described in |2, 19, 21, 42, 43] and then construct
the two-dimensional array using the procedures from Section 4. Alternatively, one could apply
the divide-and-conquer process directly to the network. For example, the latter approach can be
weed fo comstruct with high probability a complete binary tree from the live cells using constant
ehannel width and edges of length O /N/Ig N), the least possible.

Some of the problems mentioned in this paper have been studied independently by Greene
and Gamal. In their recent paper [8], they prove most of the results found in Section 3 as well as
the lower bound iw Sectivn 4. Their analysis of linearly connected arrays is somewhat different
frem ours, howaver, as they rely on percolation theory from statistical physics.

In sddition. Maaning {25, 28], Hedlund (10}, Koren [14), and Fussell and Varman 6] look
at the basic problem of constructing arravs from defective arrays. Each gives algorithms but by
Httle theoretical or statistical analysis. Rosenberg [33, 34] has also investigated issues of fault 5
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