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Aerosol Direct Fluorination Syntheses: Alkyl Halides 1, Neopentyl
Chloride and Bromide-Free Radicals versus Carbocations
by

J. L. Adcock, W. D. Evans and L. H. Grossman

The direct fluorination of alkyl halides to perfluoroalkyl halides would
provide a method of obtaining specific fluorocarbons in which the site for
further reaction has been preselected prior to fluorination. The fluorina-
tion of chloroalkanes by metathesis using HF, F~ or SbF3 does not provide for

prior selection of residual halogens although specific fluorocarbon halides

may be obtained as products.1 Several investigators have shown the feasi-

bility of maintaining carbon-chlorine bonds during cobalt trifluoride fluori-

nations,2 and during electrochemical fluorinations.

There has to our knowl-
edge however, been only one published report of an elemental direct F

fluorination of an alkyl halide to a perfluoroalkyl halide.” 1In this paper

we would like to demonstrate the facility of maintaining a primary chlorine
substituent during aerosol direct fluorinations. The stability of this
chlorine substituent to both elemental and photochemically generated atomic
fluorine at 20°C is exceptional. The stability of bromine substituents is,
however, very low and they tend to be oxidized by elemental fluorine at
temperatures as low as —-60°C. Generation of carbocations is indicated in the

fluorinations of alkyl bromides but not in the fluorinations of alkyl '

chlorides.




Results and Discussions

The aerosol direct fluorination process has been described in detail
elsewhere.5 Two major elements of the process involve contact of elemental
fluorine with a finely-divided-particulate reactant aerosol over a gradual
temperature and fluorine concentration gradient followed by “photochemical
finishing” of the highly fluorinated product by ultraviolet irradiation of
the effluent under ambient fluorine concentration conditions at ca. 20°C.
The two steps may be separated for analytical purposes simply by making
control runs with the mercury lamp off. The reactant aerosol is formed by
adsorption/condensation of hydrocarbon onto a sodium fluoride preaerosol.

Initially two prototype molecules for probing the feasibility of the
alkyl halide reactions were chosen because of their sensitivity to mechan-
istic reactio; paths and their expected, near-ideal, reactor-process
behavior. The first candidate, neopentyl chloride, was prepared by the
method of Wiley, et. al. from neopentyl alcohol.® It was shown to be uncon-
taminated with isopentyl chloride by gas chromatography and by proton nuclear
magnetic resonance. The aerosol fluorination of this molecule was uneventful
and produced product in 79.6% purity (glc assay) direct from the reactor
trap. Isolated ylelds of pure perfluoroneopentyl chloride were 747% of
theoretical. The remaining 20% of the material in the product trap was
composed of approximately 207 F-isobutane, 20%Z F-isobutyl chloride, 40%
F-pivaloyl fluoride and the remainder numerous very small peaks with reten-
tion times greater than F-neopentyl chloride.

The second candidate, neopentyl bromide, was produced also by the method
of Wiley, et. al.,6 and was shown to be free of isopentyl bromide by gas
chromatography and proton nmr. The aerosol fluorination of neopentyl bromide

was carried out under conditions similar to those for the chloride. The




product consisted of 80% F-isopentane, 10% F-isobutane, elemental bromine and
lesser products.

The most significant result of the neopentyl bromide fluorinations is
the near total rearrangement of the neopentyl moiety to the isopentyl. Such
rearrangements must certainly occur early in the fluorination because low
fluorine, control runs without photochemical finishing [ Rxns (2) + (5),
Table 1] produce exclusively rearranged products or unreacted starting
material. Reactions 2 through 5 represent stepwise reductions in neopentyl
bromide to fluorine mole ratios from approximately 1:12 to 1:1. Product
distributions for neopentyl bromide reactions (1) through (5) are also given
in Table 1.

The major product isolated at l:l stoichiometry (Rxn 5) is 2-methyl-2-
butene (9). As the fluorine to neopentyl bromide ratio is increased (Rxn 4)
2-methyl-2-butene (9) disappears and 2,3-difluoro-2-methylbutane (10) becomes
the prevalent product. However "abnormal” products having the geminal
difluoromethylene group are collectively of near equal prevalence. These
abnormal products increase as the relative amouat of fluorine increases (Rxns
3 and 2) and the amount of 2,3-difluoro-2-methylbutane actually decreases in
reaction 2. Compounds having this geminal difluorosubstitution (Cmpds 3, 4,
5, 6 and 7 Table 1) are classified "abnormal" because none are the statis-—
tically probable products expected from fluorine attack on the products (9
and 10) prevalent at the lowest stoichiometries.

The facility with which neopentyl cations rearrange to isopentyl cations
1s a well known phenomenon.7 It is also known that neopentyl radicals do not
show a pronounced tendency to rearrange.e This leads to the inescapable
conclusion that the fluorination of neopentyl bromide must produce inter-

mediate carbocations, although highly polar species or carbene type




Reaction Number (1)(3) (2) (3) (4)
Fluorine:Hydrocarbon mole ratio 195 12 4 2,5
Prod No. Product Name Product DistributionP
| 1 Neopentyl Bromide(c) - - 15 28
; 3 3,3-Difluoro-2-methylbutane - 18 14 6
| 4 2,3,3-Trifluoro-2-methylbutane - 10 2 4
3 1,3,3-Trifluoro-2-methylbutane - 18 6 2
6 3,3,4-Trifluoro-2-methylbutane -
- }e) 16 5 5
7 1,3,3,-Trifluoro-2-fluoromethylbutane -
8 F-Isopentane 80 - - -
9 2-Methyl-2-butene - - - -
10 2 ,3-Difluoro-2-methylbutane - 11 20 20
F-Isobutane 10 - - -
Residual Peaks(d) 10 27 38 35
(a) Photochemical stage operative here only.
(b) Area Percent of total injection by peak integration of the thermal
conductivity gas chromatogram.
(c) Unreacted starting material.
(d) Small peaks in gas chromatogram.
(e) Inseparable mixture, tentative identification by 19¢ and 'H MMR.

TABLE 1

RESULTS OF AEROSOL FLUORINATIONS OF NEOPENTYL BROMIDE
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intermediates cannot be totally eliminated. Furthermore these carbocations

and their precursor intermediate(s), {?} (2) Scheme I, must account for the
“abnormal” fluorine products (3-7) containing the difluoromethylene group
[Scheme I].

CHj (|:H3 (|3H3 cI:H oF

|

CH3-C-CH,Br ~» {?} +* CH3-CH-CF2—-CH3 + CH3CF-CFy-CH3 + CH3-CH-CF»-CHj
l

CH3 2 3 4 E)
1
$H3 ?HzF . ?F3
CH3-CH-CF2-CHpF +  CHpF-CH-CFp-CH3 -2, CF3~CF~CF,-CF3
[} 7 8
Scheme I

The nature of these intermediates are not known but their behavior bears a
striking resemblence to the rearrangements of the neopentyl cation observed
by Skell, et al. [Scheme II].7 Skell, et. al. observed that all derived
products of the rearrangement were consistent with the deuterium label in the
3-position, i.e., exclusively derived from A.

CH3 CH3

[ PRI + +

CH3-C-Cp2t + cH3-C’ D, + CH3-C-CDp-CH3 + CH3-C~CH2—CDoH
l [ ! |

CH3 CH3 CH3 CH3
1002 A 0% B
Scheme II

A protonated cyclopropane derivative was thus discounted because it could
cleave either of two ways producing t-amyl derivatives consistent with the

deuterium label 1in the 4-position (derived from B) also, which was not
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observed. Karabatsos, et. al. observed this rearrangement of neopentyl
cations using a 13-C label and obtained the same result.10
One hypothetical scheme (Scheme IIT) which not only provides a reasoned
approach to all of the products produced, but also addresses the product
shift as the fluorine stoichiometry is increased, is in effect two schemes.
The basic postulate supported by reaction 5 (Table 1) is that fluorine
attacks only the bromine and that depending on the stoichiometry either (or
both) an alkylbromine difluoride (2a') or an alkylbromine tetrafluoride (2a)
is formed. Conceivably 2a' may disproportionate giving the known inter-
halogen anion, BrF  and the carbocation 2b' which through Scheme II produces
the t-amyl cation "A" and by loss of a proton 2-methyl-2-butene (9) the
largest single product in reaction 5, As the fluorine to alkylbromide ratio
1s increased significant amounts of the alkylbromine tetrafluoride (2a) are
produced leading to formation of the fluorinated carbocation (2b) which
through Scheme II produces the fluorinated t-amyl cation (2¢). The major
product in reaction 4, 2,3-difluoro-2-methvlbutane, may be produced by
fluorine addition to 9 or by fluoride ion trapping of 2c. Both routes "A”
and "B"” are probably operating. As the fluorine:alkylbromide ratio is
increased further (reactions 3 and 2) the proportion of route "A" is
diminished over route "“B" since the other products produced by route "B"
alone (3,4 and 5) are increasing while that product (10) produced by route(s)
"¢ (and "B") is diminishing. It is also likely that the beta fluorinated
t-amyl cation (2c) contributes less to product 10 than expected because of
its ready rearrangement (1,2-hydride shift) to the alpha fluorinated
secondary butyl cation (2d). The sigma inductive destabilization of (2c) by

the beta fluorine coupled to the resonance (m-donor) stabilization of (2d) by
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the alpha fluorine inverts the usual 1° < 2° < 3° carbocation stabiliza-

tion.11 Fluoride ion trapping of (2d) leads to 3,3-difluoro-2-methylbutane

(}), which by statistically-directed, radical-chain, direct fluorination

leads to product (5), 1,3,3-trifluoro-2-methylbutane and to the tentatively

identified 3,3,4-trifluoro-2-methylbutane (6) and 1,3,3-trifluoro-2-fluoro-
methylbutane (7) and, ultimately, to F-isopentane (8). Together products 3,
D and the 6, 7 mixture make up 52% of the total products in reaction 2 with
product 4, 2,3,3-trifluoro-2-methylbutane produced by proton abstraction f
2c and/or 2d followed by fluorine addition to the olefin produced, makes
an additional 10% of the total,

Support for this hypothesis is provided by Olah and Bollinger in whic
the protonation studies of i-fluoro-2-methyl-2-propanol in "magic acid,”

HSO3F-SbF5/S0,, at -80°C produced the results shown in Scheme IV. !}

CH3 CH3
| HSO 3F-SbFy | -H,0 JCli3
CH3~C-CH,F Cli3-C-CHF ——— CH3-CH2-C~ + SbF5FSO 3~
! S0,, -80° | -80° F
oH +0H
1 1 B
Scheme IV

The only carbocation detected in this system was 13 although the chloro
analog produced the chloro~t-butyl cation. Carbocation 13 requires, in
effect, two hydride shifts and one methide shift to occur for it to be
produced from a transient fluoro~t-butyl cation which was not detected by
Olah and Bollinger.11 The only unsubstantiated or unsupported parts of our
hypothesis (Scheme III) is the formation of 2a and 2a' and their "dispropor-

tionation” to 2b and 2b' respectively. The formation of perfluoroalkyl

!
12 Although a potential route

bromine tetrafluorides is however documented.
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"C" from 2a' to 2b is shown in Scheme III our evidence does not support or
require it, although it cannot be eliminated a priori. It is also
problematical whether 2a' will have sufficient lifetime to interact with a
second mole of fluorine to form 2a, or whether two moles of fluorine must act
in concert as implied by route "B" Scheme III. Whatever the mechanism
insufficient data exist to more than simply pose the question. The solution
of this problem might be obtained through matrix isolation studies. It is
however clear that fundamental differences in the mode of fluorine attack on
alkyl chlorides and bromides exist and that the consequences will likely
involve "carbocation” type rearrangements of the organic substituent,
Acknowledgement. This work was supported in part by the Office of Naval
Research whose support is gratefully acknowledged. Supplementary Material
Available. Detailed reaction parameters, full characterization of compounds

3-8 (7 pages). Ordering information is given on any current masthead page.
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EXPERIMENTAL
The basic aerosol fluorinator design and a basic description of the
process 1s presented elsewhere.’ Workup of products following removal of
hydrogen fluoride and possibly fractional collection at ambient pressures

using in-line cold traps, consisted of vacuum line fractionation; infrared

a 7 meter x 3/8" 13% Fluorosilicone QF-1 (Analabs) stationary phase on 60-80

mesh, acid washed, Chromosorb p conditioned at 225°C (12 hrs) or a 4 meter x
3/8" 10% SE-52 phenyl-methyl silicone rubber on acid washed 60-80 mesh
Chromosorb p, conditioned at 250°C (12 hrs). Following gas chromatographic
separation (Bendix Model 2300, subambient multi-controller) all products of
significance were collected, transferred to the vacuum line, assayed and
characterized by vapor phase infrared spectrophotometry, PE1330; electron
impact (70eV) and chemical fonization (CH, plasma) mass spectrometry
(Hewlett-Packard GC/MS, S5710A GC, 5980 A MS, 5934A Computer); and 'H and '°F
nuclear magnetic resonance (JEOL FX900), omniprobe) in CDClj3 with 1% CFClj
internal standard. Elemental Analvses where necessary are performed by

Schwartzkopf Microanalytical Laboratories, Woodside, N.Y. Detailed reaction

parameters and compound characterizations (7 pages) are available as Supple-

Aerosol Fluorination of Neopentyl Chloride: 1-Chloro-2,2-dimethylpro-

pane was prepared by the method of Wiley, et. al. from neopentyl alcohol.®
1ts vapor pressure at —-10°C is such that a flow of 85 mL/m helium through
~50 mL of the material contained in a sparge tube evaporator produces a
throughput of 0.38 g/hr (3.6 mmol/h). Details of the aerosol fluorination
parameters are available as supplementary materials. For a 3h photochem-

ically finished run, 2,659g of crude product was collected which when vacuum

. N Lt et Lt ot ST o

assay of fractions; gas chromatographic separation of components using either

mentary Material, ordering information is given on any current masthead page.
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line fractionated [-131°C (2.56g), -196°C (0.09y¢ discarded)| and gas chrona-
tographically purified on the SE-52 column (15°C/5 m; 10°C/m to 75°C; S5S0°C/a
to 150°C/7 m) produced 2.03g of F-neopentyl chloride 79.6% of the crude
material collected, 74% yield based on calcu ~ted throughput. Characteriza-
tion by ‘°F MR gave Dcpy = —64.18 ppm (t) [91, BcF,c1 = ~52.29 ppa

(dectet) [2], J = 10.7 hz. Elemental Analyses: Calculated for CqF::Cl: %C
19.72, XF 68.63; Found %C 19.67, ZF 68.60. Detailed IR, Mass Spec (CI, EI)
are available as supplementary material.

Aerosol Fluorination of Neopentvl Bromide: 1-Bromo-2,2-dimethylpropane

was prepared by the method of Wiley, et. al. from neopentyl alcohol.® T1ts
vapor pressure at -10°C is such that a flow of 25 mL/m helium through -20 mL
of the material contained in a sparge tube evaporator produces a throughput
of 1.4 mmol/h. Details of the aerosol fluorination parameters are available
as Supplementary Material. Five fluorination runs were carried out differing
mainly in the photochemical finishing (i.e. run #2-#5 uv lamp off), and the
fluorine to hydrocarbon stoichiometry (Table 1). All products were vacuunm
line fractionated (-131°C, -196°C discarded) and the -131°C trap separated
gas chromatographically on the SE-52 column (10°C/4 m; 2°/m up to 55°C/i m;
50°C/m to 125°C/10 m).

The photochemically finished, two-hour run (Rxn. 1) produced 0.5629g of
crude product after removal of elemental bromine with the following product
distribution: 80% F-isopentane (62.5% yield), 10% F-isobutane and 10% other
unidentified lesser products. F-Isopentane collected displayed spectra
identical to the infrared and °F NMMR spectra published.”:14 Detailed
Mass Spectra, Infrared and 9 R are available from Supplementary
Materials.

The runs without the ultraviolet lamp (Rxns. 2-5, Table 1) produced
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similar quantities of crude product containing elemental bromine with the
product distributions listed. Characterizations of intermediate products are
available from supplementary materials; 3,3-Difluoro-2-methylbutane (2),15
2,3-Difluoro-2-methylbutane (10)16 are known compounds. 2,3,3-Trifluoro-

2-methylbutane (4) and 1,3,3-Trifluoro-2-methylbutane (5) have not been

previously characterized.
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Supplementary Material

TABLE B

CHARACTERIZATION OF AEROSOL FLUORINATION PRODUCTS

F-Neopentyl Chloride:

Infrared (cm-l):

Mass Spectra [m/e (int.)
CI (CHy):

EL (70eV):

1320(sh), 1302(vs), 1294(vs), 1239(m), 1008(s), 880(m),
773(w), 750(dblt. m).

Formula]:

287 (10) CsFyp°7Cl; 285 (44) CsF19°°Cl; 269 (39.7)
CsFyy; 247 (95.5) CsFg0 or CsFgoocl (237cl); 181 (100)
CyFy; 87 (21) cFp37cl; 85 (70) cFp%°cl; 69 (38) CFj.

285 (.3) CsF19°°C1; 269 (20) CsFi1; 181 (31) CuFy7; 87
(19) cFp37cl; 85 (60) cFp3%cl; 69 (100) CFj.

% MR (0cpcy, = O ppm) [Integ]
¢cF3 = -64.18 ppm (t) [9]

¢CF201 = -52.29 ppm
Elemental Analyses:

Calc. 4C 19.72

Observed %ZC 19.67

J = 10.7 hz,
(dectet) ([2]

CsF);Cl1
4F 68.63

#F 68.60
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TABLE B (CONTINUED) (2)

g&IsoEentane:
Infrared (cm 1):®  1260(sh), 1255(vs), 1225(vs), 1147(mw), 1090(w),

1060(vw), 980(m), 930(w), 888(m), 720(m), 635(vw), !

610(vw), 525(w)

Mass Spectra [m/e (int.) Formulal:

CI (CHy): 182 (100.0) C4F7H; 136 (36.5) CsFy; 132 (51.6)

C3FsH; 69 (50.3) CFj.

EIl (70eV): 269 (5.5) CsFy1, M-F; 219 (1.6) CyFaq; 200 (2.5)
CyFg; 181 (11.8) CuF7; 150 (4.5) C3Fg; 131 (21.6)

C3Fs; 119 (34.7) CzFs; 100 (616) CoFy; 69 (100) CF3.

19 NMR (€CFCl3 = 0 ppm), €DCl3)®  CF3-CF-CF(CF3),
a b c d

$a = -81.2 ppm (undecet) (3] Jyc = 1.47 Jap = ?€

d = ~72.92 ppm ( noneted) [6] Juq = 5.86 Hz Joq = 1.47 hz
¢p = ~119.9 ppm (heptet-d) [2] Jpq = 10.99 hz
¢c = -187.4 ppm (muit) [1] Jpe = 2.93 hz

(a) Sadtler, Infrared # 41640P(1967).

(b) R. D. Dresdner, F. N. Thimoe and J. A. Young, J. Amer, Chem. Soc., 1960,
82, 5831.

(c) Some uncertaintfes exist in coupling constants because 1.47 x 2 = 2,94,
2.93 x 2 = 5,86.




TABLE B (CONTINUED)(3)
3,3-Difluoro-2-methylbutane:
Infrared (cm™'):  2980(s), 2900(m), 1480(m), 1390(s), 1360(w), 1260(s)
1200(sh,s), 1160(vw), 1110(s), 1050(m), 920(s), 880(w),

730(w) .

Mass Spectra [m/e (int.,) Formula]:

CI (CHy): 125 (0.6) CsHjgF, + CHgY, 107 (0.7) CgHgFy,
89 (100) CsHjgF, 69 (2.1) CsHg.

EI (70eV): 93 (13.5) C,H7F2; 78 (2.0) C3H4F 3, 77 (7.6) C3aH3F o,
69 (18.4) CgHg; 65 (69.7) CoFoH3; 47 (8.2) CH.F;
43 (100) C3H.

d,e

1
r+ 'y o CH3~CFp~CH(CH3) 2

a b ¢ d
1.51 ppm (t) Jab
= 1,5-2.15 ppm (mult)
1.0 ppm (d) Jed
¢p = -97.96 ppm (q.d) Jab

18.8 hz

O O
[ I ]
i [}

]

6.83 hz
18.%9hz, Jp. = 12.3lhz

]
-9
[l

d. ¢$CFC130.0ppm; 1.0% CFCl3/99% CDCl3; SCHCl3=7.25ppm.

e. V. I. Golikov, A. M. Aleksandrov, L. A. Alekseeva, and L. M. Yagupol'skii,
Zhurnal Organicheksoi Khimii, 1974, 10, 297-99 (In Translation UDC 7.412.22
+ 463.4).




2,3-Difluoro-2-methylbutane:

Infrared (cm—‘):

Mass Spectra [m/e (int.) Formula]:

CI (CHy):

EI (70eV):

V9 4 'y rde CH3-C H F C F(CH3);
a be d e
§a = 1.32 (d-ded) Jap = 6.6 hz
§p = 4.47 (deqed) Jac = 23.2 hz
§a = 1.34 (d-d) Jad = 1.0 hz
$¢c = ~151.60 (d+d+hept.) Jpe = 47.6 hz
¢q = -184.32 (med-q-d) Jpd = 12.7 hz
Jed = 9.8 hz
Jee = 2.0 hz

d. ¢CFCl3 = 0.0ppm; 1.0%Z CFCl3/99% CDClj3; 6CHCl3 = 7.25ppm.

e. W. J. Middleton, J.

TABLE B (CONTINUED)(4)

3000(s), 2950(m), 1465(m), 1385(s), 1170(s), 1120(s),
1085(s), 960(m), 865(m), 740(w).

107 (2.1) CsHeF2; 89 (100) CgH)oF; 69 (9.6) CsHg,
61 (1.7) C3HgF.

93 (13.0) CuH7F2; 79 (25.6) C3HsFp; 61 (100) C3HgF;
60 (17.7) C3HsF; 47 (14.4) CoH,F.

Jde = 21.5 hZ

Org. Chem 1975, 40, 574-8. ¢-152.0 & ~185.5 ppm.

=t et M Tt




TABLE B (CONTINUED)(5)
2,3,3-Trifluoro-2-methylbutane:

IR (cn~!): 3000(m), 2980(w), 1880(vw), 1485(w), 1390(m), 1260(m),
1170(vs), 1100(w), 1030(w), 940(m), 850(w), 740(w).

Mass Spectra [m/e (int.) Formula]:

CI (CHy): 143 (10.5) CsligF3 + CHgt; 125 (17.0) CsHoF3;
107 (100) CgHgFp; 89 (24.6) CsHygF; 87 (13.7) CgHgF.

EI (70eV): 111 (3.6) CyHgF3, M-CH3; 95 (8.3) CyHgF2; 93 (16.2)
CuH7F2; 69 (15.3) CsHg, CF3; 65 (51.9) CoH3Fp;
61 (100) C3HgF; 47 (15.6) CoH4F; 43 (17.5) C3Hy, CyF;
41 (19.2) C3Hs.

19 and ‘W wwd CH3~CF 2-CF(CH3) 2

a b c d ;
§5 = 1.65 (ted) Jap = 18.05 hz (*H), Jae = 1.95 hz ]
§4 = 1.737 (d-t) Jeg = 21.73 hz ('), Jpe = 1.22 hz ‘
op = -105.70 ppm (q) Jap = 18.3 hz (1%F)
¢c = -154.21 ppm (heptet) Jeg = 21.36 hz (19F)

d. ¢CFC13 z 0.0ppm; 1.0% CFCl3, 99% CDCljz; S8CHCl3 = 7.25 ppm.
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TABLE B (CONTINUED)(6) ;
1,3,3-Trifluoro-2-methylbutane: {
IR (cm—l): 2990(m), 2940(sh), 1750(w), 1470(m), 1400(s), F

1300(sh,m), 1250(s), 1215(s), 1170(s), 1110(vs),
1040(s), 990(m), 930(s), 870(sh,m), 740(w).

( !
‘ Mass Spectra {m/e (int.) Formulal: %
CI (CHy): 143 (12.9) CsHgF3 + CHg™; 125 (60.4) CsHgF3; 123 (19.3) b

CsHgF3; 107 (100) CgHaFp, 89 (54.6) CsHioF; 87 (63.1) '

CsHgF. h

EI (70eV): 93 (10.4) CyH7Fp; 78 (25.6) C3H4Fg; 77 (23.2) C3H3Fy; ﬁ

69 (86.4) CsHa; 65 (100) CoHaFp; 61 (18.4) C3HgF.

d CH3-CF 2~CH(CH3 ) ( CHF) ;

a b c d e f

19 and 'u

8§, = 1.60 ppm (t) Jap = 19.05 hz
6. = 1.5-2.0 ppm (broad multiplet)
64 = 1.10 ppm (d) Jde = 6.83 hz

1}

47.37 hz (*H)

8o = 4.5 ppm (dem) Jos
$p = -95.5 ppm (m)
g = =226.77 ppm (t+d) Jof

47.3 vz (19F), Jog = 21.37 hz
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