
AD-A132 030 AVIONICS SOFTWARE: WHERE ARE WE?(U) RAND CORP SANTA I
MONICA CA W R WARE SEP 82 RAND/P-6?86 SBI-AD E?50 779

UNCLASSIFIED F/G 912 NLIII



1.0i 1. 111112

I'l_liii -
iiiJL15 11111--.4

MICROCOPY RESOLUTION TEST CHART
NA.IIN , .



AVIONICS SOFTWARE: WHERE ARE WE?

Willis H. Ware

September 1982

cl-

-. J

P-6786

This docunit has been apoved
fcr p;'bli r .'c e Grid solo; its



The Rand Paper Series

Papers are issued by The Rand Corporation as a service to its professional staff.
Their purpose is to facilitate the exchange of ideas among those who share the
author's research interests; Papers are not reports prepared in fulfillment of
Rand's contracts or grants. Views expressed in a Paper are the author's own, and
are not necessarily shared by Rand or its research sponsors.

The Rand Corporation
Santa Monica, California 90406



/

C@ .

AVIONICS SOF'VARE: WHERE ARE WE?*

9

Abstract

Since the digital computer first flew in an avionics system 25
years ago, the art has progressed from small very slow vacuum
tube machines with limited memory to fast chip-based machines
that not only do sensor processing but also integrate a
variety of data sources into many capabilities--among others,
navigation, sophisticated weapons delivery, programmed menu-
displays to the air crew. As onboard computer hardware has
proliferated, software inescapably has also. From a few hun-
dreds of program words at the beginning, flight software is
commonly many tens-of-thousands of words; frequently, a few
hundred thousands; and in some cases, even a million. Thus,
implementation and management of software resources has become
a major problem area for military services. The paper ex-
plores dimensions of the issue as it now exists, suggests many
positive actions under way, and proposes a direction in which
the future may well move. It concludes that software will
continue to be troublesome; progress will come slowly.

Before asking where are we in avionics software, we first ought to

ask where have we been; then we can ask where we are going. Among the

earliest, if not the first, digital computers to fly was one in the MA-l

fire control system. It was developed in the early 1950s for the F-102

fighter to control the Falcon missile and folding fin rockets. A vacuum

tube machine using subminiature tubes, it operated only at hundreds of

operations per second. It could not accommodate the full dynamic

behavior of the fire control and launch calculations; primarily it sup-

plied constants to the analog computation of the fire control equations.

Its operational program, measured in hundreds of words, was contained in

*Presentation at AGARD AVP Symposium on "Software for Avionics" at

The Hague, Netherlands, September 6-10, 1982.



-2-

a small magnetic drum on which individual instructions were spaced cir-

cumferentially to accommodate the latency time of memory access.

Parenthetically one might wonder whether anyone today would still know

how to do minimum latency programming. The program was done in a

machine language, and life-cycle support of software had not yet emerged

as an ongoing operational issue for military services. Interestingly,

MA-l still flies in a solid-state version in the F-106; its operational

life has exceeded 25 years.

By contrast, the Air Force F-16 fighter is among the most highly

automated of deployed operational aircraft. Instead of vacuum tubes,

F-16 avionics uses modern microelectronics; its fire control computer

has 32,000 words of memory and runs at some half million operations per

second. While 128,000 words of computer program fly in every opera-

tional F-16, of this only about 30,000 words are written in the high-

order language JOVIAL J-3B-2. The rest are in the machine language of

whatever computer happens to be involved, e.g., the microprocessors in

the stores management subsystem, the signal processor in the radar, the

microprocessor in the heads-up display. As a second example, the U.S.

Navy F-18 flies 400,000 words of program which executes in some 13

machines; about 2 percent of it is in an HOL. The LAMPS helicopter also

has some 400,000 words of program on board; of it about 30 percent is in

an HOL. Turning to larger aircraft, the U.S. Navy P-3 land-based air-

borne early-warning vehicle has 700,000 words on board, 128,000 words of

core memory, but also over one million words of diagnostic and mainte-

nance programs. Originally done in assembly language, it is now approx-

imately 70 percent in HOL after a major upgrade. The analogous Air

*1



-3-

Force AWACS has 512,000 words of memory. Some modern-day military air-

craft have a centralized computing function with point-to-point wiring

for signal paths, whereas others--notably recent tactical fighters or

upgrades--use data bus architectures with some measure at least of dis-

tributed processing. Some onboard systems have a capability for

degraded modes of operations as equipment fails, but others have virtu-

ally no fallback capability.

Indeed, we have come a very long way in terms of the amount of

software that flies with modern-day aircraft, a long way in terms of the

speed, size, and power attributes of electronics, and a long way in the

level of automation. Obviously, though, the penetration of HOL

languages is neither as uniform nor as deep as is often believed. It

varies from a few tens of percent in contemporary fighters to many tens

of percent in the larger vehicles, especially those that have been

upgraded. The MA-l system is where we came from; the F-16, F-18, P-3,

and AWACS are representative of where we are.

To explore where we are, let us note some dimensions of modern

avionics software. First of all, what is "the total software job" of a

modern aircraft? The first and most obvious component is that which

flies onboard--software in a radar, in the heads-up display, in the

stores management system, in the inertial navigation computer, the air

data computer, possibly a fuel management subsystem, perhaps a separate

display and controls management subsystem, or perhaps an entirely

separate system (as in the B-1 bomber) to monitor all else for malfunc-

tions and to capture maintenance data. In the most complex of aircraft,

all such systems will be networked together by a bus arrangement often



-4-

presided over by a central computer complex. Just as we have not pro-

gressed all that far in the use of HOLs, neither does the equipment

always exhibit outstanding field reliability. It might be, however, if

one were to consider reliability relative to the increasing complexity

of systems, perhaps progress would be found better than normally

perceived. Be that as it may, onboard equipment does malfunction and

so modern aircraft have an extensive array of ground support equipment,

which for the most part is software controlled.

Among the ground-based diagnostic and repair facilities is one

often called the Avionics Intermediate Shop, generally a highly

automated complex of test stands that can examine equipments which

either have or are presumed to have failed. Supporting the AIS level of

maintenance is a depot or rear echelon capability that generally deals

with problems at the electronic card level rather than at overall equip-

ment level. Here one finds a wide variety of automated test equipments,

most of which are software driven and controlled.

Just as equipment must be maintained in operational status, so air-

crews have to be properly trained. For that purpose crew training de-

vices of many kinds are utilized for modern aircraft. Perhaps the most

widely known example of this technology is not an airborne one but

rather the crew training simulators used by NASA for manned space mis-

sions.

All the software implied by the prior discussion had to have been

developed somehow, so one commonly finds one or more program development

environments for the working programmers which includes all the diagnos-

tics, testing tools, recordkeeping tools, languages, compilers, etc.



-5-

used in modern software development and its management. Contrary to the

common perception of 25 years ago that operational software would never

change, it is now widely understood that it does and will continue to

change for a variety of legitimate reasons. Therefore, a modern

deployed highly computerized fleet of aircraft must be supported by a

facility for the life-cycle support of software. Among other things,

the latter includes a software development environment for each of the

computers whose software is to be maintained and for each of the

languages that are flying and in ground support.

However, it must also include a variety of test and simulation

tools to assure that software changes have been properly made and will

not lead to new anomalies of behavior. In addition, there usually also

must be appropriate flight vehicles, perhaps especially instrumented, to

make certain that all is well with the updated software before it is

dispatched to the field. Sometimes, especially when the computer

involved is a microprocessor, any software involved will be regarded as

simply another component of the equipment, which will be tested end-to-

end for functional performance without special explicit tests of the

software. This view has been taken, for example, in new commercial air-

craft; and hence, any life-cycle software support in such instances is
4

seen as an obligation of the vendor supplying the basic equipment.

Thus, when one speaks of "the software job" for a modern aircraft,

it proves to be an enormously large undertaking. Moreover, it implies

ongoing attention to change just as does physical modification of air-

craft. At minimum, the software job for a modern combat aircraft is a

few hundred thousand lines of code; but if all of the software develop-



-6-

ment tools must be built as well, then it can be many hundreds of

thousands. For large sensor platforms with extensive diagnostics the

corresponding number can exceed a million. The many components of the

total software job share a unique characteristic however; they must all

be kept in lock step. The ground-based test equipment must examine

equipment boxes as they are, not as they were a year or more earlier.

The crew trainers must mimic the aircraft as it is, not as it was.

Life-cycle support must match equipment as it is, or in some cir-

cumstances as it will be. Finally, we may have to do configuration con-

trol of the software by production block numbers, and in some cir-

cumstances even by the tail number of an aircraft.

Thus, in addition to all the usual management difficulties associ-

ated with large and diverse software undertakings, there is now a time

synchrony aspect that can be difficult to accommodate. It is especially

so, given that the several components of software are, in the United

States Air Force at least, handled by different groups of people at dif-

ferent places, in different organizations--some military and some

contractor--and often with different planning and funding arrangements.

In one sense it can be observed that the wide exploitation of computer

technology in modern aircraft has led us into a morass of difficult

organizational and tec'mical issues; but it is part of the price to pay

for military air power capability.

Where do we stand? Computing technology continues to be very

dynamic. Software is a very manpower-intensive undertaking that is dif-

ficult to manage and frought with danger. Seemingly, the number of

successes as measured by budget and schedule are far outweighed by the



-7-

number of failures. Software generally is entirely too unpredictable at

the outset in regard to its eventual cost, the date of its eventual com-

pletion, and its ability to realize the user requirements as he really

wants them to be, versus what he perceived them to be at the outset of

the program. Finally, there is always the question of the resources

needed for ongoing life-cycle support.

What is being done about this array of problems? Special languages

have been developed and are gradually coming into use to support the

initial requirements analysis phase, and to assist in tracking the

translation of such requirements into corresponding software capability.

Some automated design techniques are slowly appearing, and there is dis-

cussion of, but not too much success in, reusable portable software.

New languages--such as ADA--are being completed and will be introduced

into military software programs. Standardization is finally achieving

some level of success; at least in the Department of Defense there now

exists military standards for data buses, for instruction set architec-

tures, and for acceptable HOLs.

Some of these techniques have just moved from the research labora-

tory into the development world, and hence their effect has yet to be

felt. Clearly, some installations and some contractors are in the lead;

but even in the best places software disasters continue to occur.

Beyond that though, there is still a major part of the software commun-

ity supporting the Department of Defense that has yet to be introduced

to the most contemporary tools, techniques, and management approaches,

and to be trained in their effective use. Some things thought origi-

nally to have been truths are yet unvalidated and may prove to be



-8-

mythology. It remains to be seen, for example, whether extensive use of

an HOL will result in cost savings either in the initial development or

in the ongoing life-cycle support. Limited evidence suggests that it

will not happen. Similarly, the arguments for standardization suggest

significant cost savings in terms of logistic support, replication of

software development support tools and environment, training of people,

etc; but in this case also, the penetration of standardization is

presently minimal and its payoffs are yet to be realized and measured.

Hence, there are advances under way that promise future benefits for

accommodating the difficulties that have appeared through wide exploita-

tion of computing technology in modern aircraft. There are other things

coming along, however, whose consequence is harder to judge. Ahead, for

example, is a new VHSIC era in semiconductor technology. Might it make

possible capturing specific functional capabilities on a chip, thereby

eliminating at least some part of a software job? Yet to be felt are

the fullest impacts of the microprocessor advances. As they grow

smaller and more capable, will we see an increasing array of equipments

that are microprocessor based, may contain extensive software, but are

treated, tested and maintained as functional equipment without regard to

software content? Is there some possibility, for example, that some

part of the software job can be passed off to thf suppliers of equip-

ment? Clearly, there has been progress in dealing with software; there

are new ideas and advances in train. What though might the future

look like? What conjectures can be made about it?

Admittedly, it is a judgment call, but in my view the odds are that

every problem we now have with software we will :ontinue to have, and



-9-

perhaps more. Why? The automation levels on newer aircraft are bound

to increase as the task environment in which the aircrew must function

becomes ever more complex. Even today's pilots commonly state that

the job in the cockpit is far beyond what can be accommodated by an

individual. Many, for example, say that of an aircraft's total capabil-

ities, a given pilot is familiar with and exploits perhaps only a third

of them. Probably, however, each pilot specializes himself to a dif-

ferent third.

One can project, I think, that avionics systems will get smarter in

the sense that their behavior will be perceived by users as having some

level of 2ntelligence. The evolving technology of expert systems and

knowledge-engineered systems is bound to find its way into aircraft, and

as it does the "IQ", so to speak, of the avionics system will gradually

increase. There are some very profound technical consequences of pro-

jections such as these not only for implementing better systems but also

for maintaining them. If we are successful in building smarter avionics

systems, will we be equally successful in assuring that they can be

maintained in operational status and repaired in the field by military

manpower?

The computer programs to provide higher levels of automation and

expert systems will be enormously more complex than even the worst of

today. The programming job will be more difficult to do and will use

more sophisticated techniques; thus one can imagine that the management

task of producing such software, and testing it to assure that it is

adequately error-free, will also increase in difficulty. If smart and

highly automated systems are to be accepted by their users, then they

iA



i-1-

must be available when needed and they must perform as expected when

needed. Thus we have ahead of us the task of handling much better the

whole business of malfunctions, anomalous behavior, fault detection,

maintenance and repair.

It is commonly acknowledged throughout the industry that there now

is a serious shortage of properly trained personnel--both for creating

computer programs as well as for managing the process--and the situation

is not likely to improve. Computer technology is still diffusing so

rapidly through the world at large that the demand for such talent is

high everywhere. Hence, the commercial organizations that support mili-

tary systems will ha,'e to compete with a rapidly expanding commercial

world for what is already in short supply.

Everything clearly suggests that aircraft will continue to get ever

more expensive; therefore looked at as a resource to be maximally

exploited for military advantage, a faster sortie turnaround rat will

be essential. This point reflects itself partly in the issue of manag-

ing faults and error problems, but it also reflects itself in the ground

maintenance aspect--notably rapid testability and identification of

trouble, efficient means for removing-and-replacing, and fast checkout

of an aircraft on its way to the next sortie.

Look now at technology push and technology suction. Whether one

country likes it or not, potential opponents will make tec'nological

advances that result in new capabilities and opportunities for military

action. To counter such ever-increasing threat, at least equal progress

will be needed in order to remain superior. Thus, the military estab-

lishment will always require the best of technology to accommodate an



enlarging threat. The technologist himself, as he perceives the need of

the military services, will encourage use of his capability. Thus, mil-

itary systems will always be on the forefront of technology.

For most of the parameters important to flight performance and the

technologies behind them, there simply is not much room to grow. Pro-

gress in such things as propulsion, lift-to-drag ratio, or thrust-to-

weight ratio will be measured in a few tens of percent at the best. In

contrast, growth in raw computing power still promises at least a factor

of 10--and perhaps even 100--as we move into new more elegant semicon-

ductor and switching technology. If--and it's a big if--we can build

software whose growth in capability approximates that of computing

hardware, then we may be able to vigorously exploit a resource not com-

monly perceived as part of an aircraft, namely data available to it from

sensors and information that can be derived from such data. It is con-

ceivable to my mind, that while the usual vehicle performance parameters

may grow only slowly, large increases in military capability may

nonetheless be achieved through a highly automated, wholly integrated

information infrastructure to manage the vehicle and support its crew.

As we better understand decisions and actions that a pilot makes,

complex information processing systems can be designed to do things that

were formerly the prerogative solely of the human mind. With new prog-

ress in electronic technology and therefore in computer hardware, we

will be able to architect systems whose individual components are not

only highly reliable but whose system availability is even higher. This

will not minimize the whole issue of health status monitoring, fault

diagnosis, and repair; but it probably will affect how maintenance is



-12-

done, the magnitude of the logistics tail, and the geographical location

of repair facilities. Military aircraft will continue to push the fore-

front of information technology; and because skilled personnel will con-

tinue to be in short supply, and because we will be building ever more

elegant systems, things in the software world are not likely to get much

better in terms of the overall job, in spite of all of the positive

efforts now under way.

Life-cycle support is not likely to change either, although its

details may somewhat. Historically, what was once called maintenance of

software was seen as a nuisance to be minimized. It is now understood

that the changeability of software--as awkward as that may be or as

demanding of resources as it may be--is still the easiest way to accom-

modate inevitable change in the military threat and the unavoidable

changes demanded by operational users. Whatever the problems of modify-

ing software might be, it is still easier and less expensive than modi-

fying physical equipment. Among other things, replication of software

is automated, error-free, and inexpensive. It can be shipped to the

field for installation rather than bringing every serial number of some

equipment back to a depot for modification.

While computer hardware apparently will be no problem in a real

sense because of progress in the semiconductor industry and such spe-

cialized efforts as VHSIC, sensors and instrumentation may be a problem;

they have been in the past in other areas of automation. We will need

to know, for example, what the aircrew is up to, which way they are

looking, what they are intending to do, what they are planning to do in

the next minutes. How will the crew communicate its intentions to



-13-

automated systems? I can imagine that the development of appropriate

sensors to make measurements not only on the world but also on the crew

and the aircraft--and they will obviously be computer-based ones--might

be a pacing item in moving up the level of automation.

If this is a valid projection for the future, then one must focus

immediately on the software issue of the future. Clearly, airborne com-

puter hardware is progressing extremely rapidly, and one can stipulate

that it is unlikely to be the pacing item. On the other hand, we will

continue to have all the problem dimensions now associated with and

understood about software. We will certainly encounter new ones, some

of which have been suggested. We may have to build software intensive

systems that function on various aircraft, systems that are cross-

service, or even multinational systems. One way or another though, we

who are in the computer hardware and software world of military aircraft

can look forward to a continuing growth of onboard computery, and a con-

tinuing ever-widening exploitation of information. After all, informa-

tion is the universal commodity that keeps all complex systems function-

ing, and to make better use of it, we have only digital technology.

The military user will state his operational requirements as best

he can perceive them, but software intensive systems are so complex in

their eventual behavior that the user often cannot understand what he

wants until he has first seen and has used the end product. For rela-

tively simple software-based systems, this issue may be inconsequential

or even absent. For the most involved ones, however, we will probably

have to accept a fairly intense modification, update, and support

activity in the early part of operational life as the user really comes



-14-

to understand what the system can do or might do. This is quite aside,

of course, from whatever design flaws or anomalies of behavior remain in

the delivered software for whatever reason. The odds are that life-

cycle support of software will never stop throughout the entire life of

an air vehicle or its systems. Moreover it has become clear that every-

thing is likely to have a much longer operational lifetime.

The real pacer of an information intensive avionics future is

almost certainly to be the frontend intellectual understanding of just

what functions the user wants, and how they become software. We will

need research emphasis for many years to understand how to develop and

manage not only user requirements, but also their translation into

software requirements. In this regard, one must note that the precision

of dialogue demanded by the software design process is rarely matched by

the precision with which user requirements can be stated and transferred

to software designers.

While we should not predict the future with gloom and doom,

nonetheless I think we must realistically acknowledge that software will

continue to be troublesome. Moreover, it will almost certainly continue

to be seen as the culprit for a whole variety of ills. I do think that

changeability of software, and hence its life-cycle support demand, will

increasingly 1,e acknowledged as a positive feature rather than an annoy-

ing nuisance that cannot be avoided. Thus, some of the past negative

attitudes toward software in this regard will gradually erode. While

the software world has devoted itself in the decade of the 1970s to

understanding and developing specialized management techniques for

implementing it, the problem in software is often an incomplete intel-



-15-

lectual understanding at the beginning of what it is really supposed to

do.

Of course the computer software scene will improve somewhat; there

are a lot of positive actions under way. We will improve our mechanics

of organizing and managing software projects. Occasionally some

software project will even go smoothly because it will represent a task

that is conceptually simple; or a task that is fully understood intel-

lectually; or a task that has already been done before, and therefore a

kind of software prototype exists. In particular, the intellectual pro-

totype of the job to be done will be understood. To be sure, HOLs will

improve and they will help; but system developers are moving slowly into

them. New HOLs such as ADA will undeniably be very useful in providing

a structured way in which to describe software requirements. Moreover,

such languages will provide an unambiguous way to communicate among peo-

ple that are involved in the user requirements, in system requirements,

and in software requirements phases.

Let us acknowledge all the positive steps now under way to improve

the whole software situation in the broad. Let us take credit for all

the improvements that will happen in and from HOLs, improvement in

management techniques, improvements in descriptive languages, and all

else. No matter how good we get, software in my view will continue to

be troublesome and progress will come slowly. There will be the ever-

increasing demand for military capability to counter new threats;

software that must be built will ever-increasingly try to implement com-

plex intellectual information processes; the unavoidable intellectual

understanding of the frontend requirements process will continue to be a



-16-

pacer. It is not a dreaded future though; it is an exciting one as we

in the avionics business learn how to create a fully integrated informa- i
tion infrastructure for military aircraft. Unlike the relatively stable :1
future of many technologies involved with the air vehicle itself, we in

the avionics business have several decades of dynamic future as we

learn how to exploit information as a resource to achieve large advances 1

in military capability.

.1




