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LIST OF SYMBOLS
a. coefficient multiplying rooftop distributions

c semi-chord of the duct

C," sectional list coefficient

C pressure coefficient (= p/.pU2)
p

2

gm see Equation (23)

h height of rooftop pressure distribution

H see Equation (20)m

Im see Equation (5)

J see Equation (24)m

K kernel function for calculating a (see Equation (29))m m

Kx  kernel function for calculating ym(x) (see Equation (34))
mM number of rooftop distributions used

p pressure

Qm-1/2 Legendre function of the second kind of order m-1/2

r radial coordinate

r radius of the duct

0

R Descarte distance

s dummy radial coordinate (also radius of the duct)

u axial perturbation velocity (= D /ax)

U forward speed of ship

x axial coordinate

X point at which rooftop pressure distribution begins to descend to zero
0

YM ordinates of camber line

argument of Legendre functions - see Equation (6)

m pitch angle of section

y tangential coordinate

&i

k .. AMA
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jump

Fa small quantity

E see below Equation (3)

0 dummy tangential coordinate

dummy axial coordinate

P mass density of fluid

velocity potential

SUBSCRIPTS

c calculated

i index to distinguish different unit rooftop pressure distributions

j index to distinguish different unit rooftop pressure distributions

m harmonic order

me measured

ii
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INTRODUCTION

It is proposed, and an analysis is developed, to design a non-

axially-symmetric duct intended to shroud a propeller. One of the first

experimental indications of the possible benefits to be secured from

ducts having non-axially symmetric distributions of camber was given by

Shpakoff and Turbal at the Twelfth ITTC in Rome, 19691. Unfortunately,

the official proceedings give only three curves which compare the varia-

tion in axial blade bending moment at the root of a model propeller operating

behind a model of a tanker with a) no duct; b) symmetrical duct; c) non-

symmetrical duct. The results show that the bending moment variations

were much larger with the symmetrical duct than with no duct, and were

greatly reduced by the duct with circumferentially distributed camber.

This experience surely refutes the oft-repeated conception that a duct

homogenizes the inflow. This trend is confirmed by calculations employ-

ing a program developed by Tsakonas, et a12 which showed that vibratory

thrust was predicted to be increased by 20 percent by a simple duct as

compared to the ductless case.

In 1973, Turbal 3 advanced a theoretical method for calculating the

shape of ducts which, in his terms, ''rectifies'' the wake Flow. Turbal

attempted to calculate a duct which annuls the total axial and tangential

velocity nonuniformities. This is unnecessary if one desires merely to

reduce the blade rate shaft thrust and torque as well as the transverse

and vertical forces and moments about the horizontal and vertical axes.

It is also unnecessary if one merely wishes to inhibit the onset of in-

termittent blade cavitation. With the first objective in mind, it is

only necessary to calculate additive camber distributions which induce

opposing spatial flows inside the duct at the n-l, n and n+l harmonics

(n being the blade number). With the second objective in mind, it is

only necessary to calculate additive camber distributions which induce

spatial flows opposing the lower order harmonics, say 1, 2 and 3.

Since the Fourier harmonics are linearly independent and the theory pre-

sented is a linear one, it is possible to design a duct to achieve both

objectives simultaneously. Turbal's analytical method does not allow

any insight into the physics of the problem and appears to suffer from

numerical instabilities.
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In the next section, an analytical method, using linearized theory,

is presented for calculating the circumferential camber distribution of

a non-axially symmetric duct and to assess the amount by which the axial

velocity which is present in the absence of the duct is reduced by the

duct.

THEORY OF NON-AXIALLY SYMMETRIC DUCTS

We imagine a duct without a propeller immersed in the wake of a

single screw ship or submarine, and limit our attention to wakes which

have port-starboard symmetry (i.e., the ship is on a straight course;

the submarine could be trimmed up or down, but not yawed). We seek to

calculate a duct camber distribution which will induce axial flow compo-

nents opposing those of the given wake over the locus of the disc of

the propeller at spatial frequency m. (The frequency m may take on

values of 1, 2, n-1, n, n+l, etc.) The camber distribution must be such

that the kinematic boundary condition on the duct surface is satisfied.

The unknowns are the camber distribution, as well as the pressure distribu-

tion on the duct, as functions of the chordwise and circumferential co-

ordinates.

We begin by expressing the pressure field in cylindrical coordinates

in terms of a pressure jump Xp on the cylindrical surface s = r 0

I 2- c i dm
p(x,r,y) = T f f p ()sdde(1)s

0 -c

where R is the Descarte distance between the fixed point (x,r,y) and the

dummy point (,,s,e). In other words

/= 1 (2)
R { (x- ) 2 

+ r 2 
+ _ 2rs cos (6-y) }

By expanding I/R into a Fourier series in 9-y, it can be shown that

1 27r c ) r 2  s2
p(x,r,y) 4 1 E: Qs 2 Q+ r2/2 + ]cosm(y-e)sd~de

_ ~m '-c i s m-1/2 2rs()m=o o -c r/ s r (3)

Because the onlu 'aZue of s in which we are interested is s =r, the
two symbols ,iMb be used interchangeabZy. C

2
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where E = 1 for m = 0m

= 2 otherwise

QM-l/2 is the associated Legendre function of the second kind of half

odd integer order. The properties of the Legendre function are given,

for example, in Ref. 4.

Upon carrying out the indicated differentiation with respect to s,

Lhe field pressure becomes

1 E: 2 1 c-__ f cosm(y-9) de fAp (a ,) md (4)
P1 0rs o -c

where

4rs(m +)[s2 - r2 - (x - ,) 2 ]

+-1/2 - Z Qm} (5)m ~[(x_ )2+(r-s)2 ] [(x_:) 2 + (r+s)2 ]  Q l/1/2

and the argument of all the Q functions is

Z (X-,) 2 + r 2 + s 2  (6)2rs

If the pressure jump 5p is expressed as a Fourier series in 3,

.p= ZPn(,)cosne (7)
n=o

and the field pressure is also expressed as a Fourier series in y,

p= pm (x,r)cosmy{ (8)
m-o

Then, upon substituting (7) into (4) and carrying out the e-integral,

it can be shown, as a consequence of the orthogonality between the trig-

onometric functions, that

SVkn P= S zn =X, 6 OCJC.mes >it, = the ., fnctions arc ', arithnicI
infinite. Althouh this sing7uXarity is inte-orabZe, it offers rrobZems 7n
the numer'ca eoaZuation of the integraZs 'hzich can be avoided altogether b-,
taking the aximum vaZue of r to be s-E where c i- a smaZZ quantity.

3 I
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E -c
pm(x. r ) = m f p() ImdF (9)

8,VrJ s -c

As a consequence of the linearized Bernoulli equation

p = Ou 3x (10)

Equation (9) can be restated:

f _Cp (jId (11)
U 3 x m m cm( 'M 164-r/s -cS~( m (!

where C is a pressure coefficient. Equation (11) gives a relationship
p

between the axial flow inside the duct and the pressure jump acrnss the

duct sections for every Fourier component. If the pressure jump were

known, the axial velocity could be calculated. It is our desire to choose

a pressure jump such that the induced axial velocity nullifies, as much

as possible, the nonuniformity of one or more Fourier components of the

ship wake and that has shockless entry at the leading edge. Thus, Eq.

(11) is, in fact, a Fredholm integral equation of the first kind to de-

termine .C in terms of (I/U : /=x) . Examination of the corresponding

two-dimensional integral equation has disclosed that the solution is not

unique. Presumably, the three-dimensional equation given here has the

same property. If so, the property is advantageous because it means

that there is more than one pressure distribution that will do the job.

The following method was originally proposed to solve Eq. (11):

We define a rooftop pressure distribution for the mth harmonic as

fol lows:

AC ( ) = h, -c x
p 0

(12)

.C (:) = h( C-- ) .p c-x o
0

The lift coefficient on the section is then

14
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Z f (13)

2C P 

When h = 1, the resulting distribution is said to be a unit rooftop. We

now consider several unit rooftops that differ only in the numerical value

of x and distinguish them using the subscript i. The correct pressure

distribution will consist of a linear sum of M of these unit rooftops

weighted by unknown coefficients a.. Thus,

M
AC =  a. AC (14)

Corresponding to each unit rooftop is a radial distribution of axia :ity

at a specified station x designated as u.. Thus

u (r) = aiu i(r) (15)

where the subscript c means that the velocity is calculated. We now con-

sider a penalty function

s-E 2
I = f rdr [u - u ] (16)me c

0

where the subscript me means that the velocity is measured. The weighting

factor r is introduced to emphasize the outer radii of the duct where the

propeller is most heavily loaded. We wish to determine u so that itc

equals urn as best it can. We, therefore, minimize I with respect to each

of the a.'s and set the minimum equal to zero. Upon substituting (15) into

(16) and carrying out these operations, we are led to the following system

of equations for the a.'s.

s-c M s-E
frdr u.u = a i  j u.u. rdr I 1 j < M (17)

o j m i=l o3I

05 0
S-r

The coefficients f u.u.rdr forma symmetric matrix. Calculations of the u.'s
ji

and the matrix coe ficients were carried out using Eq. (11) for five different

unit rooftops with x =0andx =-l.O, -0.6, -0.2, +0.2, +0.6 leading to a five-
0

by-five matrix. It was found that the matrix was highly ill-conditioned.

This means that the axial flow in the duct is unable to distinguish one

5



R-2298

unit rooftop from another or, put another way, that the shape of the

axial velocit' protile in the duct is virtually the same regardless of

the shape of the pressure distribution on the duct. For this reason,

the concept of representing the pressure distribution on the duct by

several unit rooftops had to be abandoned. It was recognized that the

velocity profile in the duct is primarily dependent on the magnitude of

the total sectional lift and is insensitive to the shape of the distribu-

tion. Thus, we selected only one unit rooftop to represent _1C . The one
P

chosen was for x = +0.6 and, in this case, the matrix equation (17) re-
0

duces to a single equation for a. =h. The result is

S-

jrdr u u.
me

h = 0 (18)

* rdr u.,

0

Once h is determined in this .ay, the lift coefficient on the duct section

can be calculated using Eq. (13).

It is stated on page 529 of the paper by Van Manen ind Oosterveld

that the sectional lift on an axially symmetric duct should not exceed

unity at the risk of inducing stall. In our case, the lift varies circum-

ferentially, alternating between positive and negative values slnce it is

proportional to cos m .. Because the max mum lift is only experienced

local lv as .ie proceed around the circu"-ere,ce, tne Van Manen and

Oosterveld limitation may be too restrictive. However, it is certainly

a conservative limitation and, in the absence of any other criterion, we

will use it.

Now, the lift coefficient calculated using Las. !18) and (13) may

be smaller or greater than unity. If it is greater than unity, it must

be reduced to unity in accordance ith our criterion and the value of h

must be correspondingly reduced. This means that the duct can be expected

to cancel the m th harmonic of the measured axial velocity -,nly partially.

We present now an example of how a duct may be expected to affect

the axial flow. For the example, only the first harmonic of a wake will

be considered. The data is taken from Figure 27 of Hadler and Cheng 6

which is reproduced here as Figure 1. Only the data for the first harmonic

and Model 4602, indicated by circles, will be considered. The chord of

6

. .. . . .4l I . . . I .. . . . . r
I I I I I I . . I i i . . .. .
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the duct is taken to be equal to the radius (s =2); the section where

the first harmonic is to be rectified is the midsection (x=O); the roof-

top distribution begins to fall off at 0.8 of the chord (x =.6). Then0

C I as calculated using Eqs. (18) and (13) becomes C, = .9766, which is

within the Van Manen and Oosterveld limitation. A plot of the data from

Figure I is reproduced in Figure 2, together with the modified wake harmonic

to be expected with the duct in place. It can be seen that the large

velocities at the outer radii have been significantly reduced. At the

inner radii, the negative velocities have become more negative. On the

other hand, it is well known that intermittent cavitation occurs primarily

at the outer radii where the bulk of the blade loading takes place, and

so the beneficial effects of reducing the axial velocity at the outer

radii should more than compensate for the deleterious effects of increas-

ing the axial velocity at the inner radii.

It is the ultimate purpose of this project to design and build a

duct according to the precepts set forth here. Consequently, a series

of wind tunnel measurements taken behind a wake screen were carried out

at the Princeton wind tunnel by Professor R. Hires. The screen was designed

to simulate the flow in a ship wake. Details of the experiments will be

presented in a subsequent report. For present purposes, we present only

the result of the amplitudes of the first harmonic of the measured wake

This is shown in Figure 3. The results of carrying out the computations

indicated by Eqs. (18) and (13) show that C = 3.0. Since this exceeds

the Van Manen and Oosterveld limit, C was reduced to unity and the modified

wake with the duct in place is also shown in Figure 3. It can be seen

that the modification created by the duct is a smaller percent of the

total in this case than it was for the Hadler and Cheng wake previously

analyzed. This is because the lift coefficient had to be reduced to

unity in accordance with the Van Manen and Dosterveld limitation.

7K? ;EOMFTRI 9F Th PQT SECT I S

Up to this point we have examined the effect of a duct rooftop

load distribution on the flow inside the duct. At this juncture, we

.he ae from raius to pa,is ven though the wake
screen ore ... .'. ... .t t The in ct cannot be exrec te to foTow

7

....
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determine the geometry of the duct for the same load distribution.

The starting point for our investigation of the geometry is Eq.

(11). Upon differentiating with respect to r and simplifying, we find

(I I = m/2 (19)p

3r !- f C ( ) H (x- ) d (19)
U rxm 8-n PMp m

where

H(x-) 1 Q +
m s (Z+) { 2 m-1/2

(Z-3)Qm+1/2 - (Z 3 - 4Z+l)Qm_ 1/2
2(m+1/2)- Z 2 

- I + Q-re+1/2-ZQm-I/ 2]

(m +1) (20)

m-I12 - Z+l [m+1/2 m-1/2

(m +3)

Qm+l/2 - Z +l I Qm+3/2- Z Qm+1/2 ]

We let c = 1 so that the unit of measure is the half-chord of the

duct, and integrate Eq. (19) with respect to x from far upstream where

all disturbances vanish.

C /2 x +1
- m-j - o f dx' f-1 ACp () H (x'- ;r)d (21)

Let t = x-x'. Then

S/2= 1

m --- f dt f ZC H (x-t-r)d (22)
m o -l P m

On interchanging the order of integration,

/2 +12 " ,I C J (x-,)d ,- g (x) (23)

U r - PM m m

where
Jm (x) = f H (x-t)dt 

(24)
0

8

m 

it
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Now consider the linearized boundary condition on the duct. This

,hat lI = lope of the duct at r = s. Now, the slope consists

part , ore due to the pitch, , of the section, and the other due

:o te S!Lpe of the camber 1Ine. Thus, if the camber 1ine is defined as

,- c. a- - n. (I it' ) 25

S+ v, >X (25)

-Ll-i' ' E,; . 1 [etC or"e

\ t - q1,;")(72 6

U.on i teqra t q \ vi th respiect to x 4 rom the Iead io edge .ihere. by defini-

:!o , = 0, ie obtai'I

,, - -1 \Ix' ,!,, (27)

We det ine v to be zero at the IraiI inq edqe al o, wi that, u pon sett inam
I( vi, e ,qbtai' the fol! IO~viir' ( ¢×lre;'< ii fm

-o t' n t l)d<o (28)

(28

Subst i tit i tr , I .- f rom Fq. i 2 ) ad i'iterchani i nq the order of

j - 1 r ;~ t i ))

/7
-c K, ," - (29)

- I

,~- t, (30)

, ." l ' ;i J , Eq. (24), and letting u=t -x, we find

- - (u)du (31)

.•- - .. ...

- -'
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This double integral can be manipulated into two single integrals as

shown in Appendix A. The result is

Km (l+u- ) H (u)du + 2 Hm(u)du (32)

-(0-0) m+

The point u=0 must be excluded because the integrand is singular in the

Mangler sense. The final result, ready for numerical computation, is

K ($)= f(leu- )H (u)du + f (l+u- )H (u)du +2 f H (u)du - (1-)m ( ) m mm
- 0- 0 E ]+ (33)

where c is a small quantity.

To summarize the computation of a , it is deter-mined from Eq. (29)m

with K(F) given by Eq. (33) and H m(u) given by Eq. (20) with Z = 1 +u 2/2s2 .

Moreover, the kernel K(s) is logarithmically singular at = ± I and, al-

though these singularities are integrable, they present problems in numer-

ically calculating the integral in Eq. (29). The problems can be avoided

by changing the limits on the integral in Eq. (29) from ±1 to ±(l-E) where

c is a small quantity.

In a similar manner, from Eq. (27) we can obtain an expression for

the ordinates of the camber line with a considered to be known.m
/2 1- m (l+x) =m -- AC Pm ( )d Kxm(W (34)

where
x

K () : [ Jm (xI-)dx1  (35)
m -1

or, using the definition of J , Eq. (24), and letting u = t - xm

x

K : f dx I H m(u)du (36)
m - -x

In a manner similar to that presented in Appendix A, the order of integra-

tion can be interchanged, the xi integral can be carried out, and the

final result is

10
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K = Hm(u)[x+u-E]du + (l+x) f H(u)du (37)m -x m I >

-E

K = f H (u)[x+u-E]du + H (u)[x+u-f]duXm - (x-E) mE m

Co

(l+x) f H (u)du 4_ (x-&) (38)
I+ M < x

where, again, e is a small quantity.

To summarize, the ordinates of the camber line are given by Eq. (34)

where Kx is defined by Eqs. (37) and (38) and Hm(u), Z, am are defined

as before. Once again, the kernel K is logarithmically singular atx

=-l and = x. The singularity can be avoided by changing the lower

limit in Eq. (34) to -(l-E) and surrounding the point E = x by a small

interval which is excluded from the integration scheme.

THE RESULTS OF SOME NUMERICAL COMPUTATIONS

The value of a for several values of m were calculated for them

case s=l, x=O, x0 =0.6. The results, together with one isolated case

with s =2, are shown in Table 1.

Table I. Va hes ofI a

m/C£ (s-l) 1m/C (s=2)

1 0.2912 0.1563

2 0.5607 N.A.

3 0.8322 N.A.

4 1.1038 N.A.

5 1.3356 N.A.

It can be seen that, as m increases, the angle a increases, andm
this means that the duct section must work harder and harder to produce

the necessary axial flow to cancel a unit wake inflow. Fortunately, the

magnitude of the wake inflow as the order of the harmonic increases tends

A subroutine for calcuZating the Legendre f:inctions was deveZoed based
on ra series jiven in Reference 4 for 1 < Z < 1.09 ind based on a standard
hypergeometric series for Z 1.09.

11
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to get smaller and smaller so that, in practice, the higher harmonics

can usually be dealt with without exceeding the Van Manen and Oosterveld

limit.

The cases m=1, s=1,2 indicate that a greater value of C is re-

quired for the case s =2 (chord- radius) than for the case s =1 (chord=

diameter) to achieve the same axial flow in the duct, and this is intuitively

correct.

Points on the camber line for the case m=1, s =2 were calculated

and are shown in graphical form in Figure 4 and in tabular form in Table

II. These points were fitted to a polynominal passing through the points

(1,0) and (-1,0) using a least square fit, and the resulting polynomial is

Yl
= (l-x2 ) [a + a x + a x 2 + a x3 + a x4] (39)

C, 0 1 2 3

where a = 0.155770
al = -0.01669

a2 = 0.05212

a3 = -0.05540

a4 = -0.03812

It should be pointed out that, because we are dealing here with the

first harmonlc,Eq. (39) must be multiplied by cose, and also that a, must

be multiplied by cose. Thus, both the camber and pitch angle vary circum-

ferentially. Since the sections are at -t1cose, this effect can be achieved

simply by tilting the complete duct at angle a ,. For all higher harmonics

no such simple recourse is available, and the local pitch angle must be

built into the duct.

It is because of the relative simplicity of the first harmonic that

the Princeton tests and the computations carried out thus far have con-

centrated on this case. The ultimate purpose will be to build a duct

based on the camber line of Eq. (9), to tilt it at the angle a, = .1563,

according to Table I, and to mount it in the Princeton tunnel behind the

same wake screen as used in the preliminary tests and then, by taking

measurements inside the duct, to prove the efficacy of a non-axially

symmetric duct by demonstrating a reduction in the first harmonic of the

12
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wake as shown theoretically in Figure 3. Such a duct is shown sche-

matically in Figure 5.

CONCLUSIONS

A theory for the behavior and design of non-axially symmetric ducts

intended to shroud a propeller is presented. Measured wake data is also

presented, together with the modification of the wake caused by an appro-

priately designed duct. Moreover, the shape of such a duct is calculated

for one case. It remains to build a model of such a duct and measure

the modified wake inside it to demonstrate the tenets of the theory, and

also to show that non-axially symmetric ducts can be expected to be useful

in ameliorating transient propeller cavitation and vibratory shaft forces.

The results of this ongoing program will be presented in a subsequent

report.
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TABLE II

POINTS ON THE CAMBER LINE OF THE DUCT

TO BE USED IN PRINCETON WIND TUNNEL TESTS
K y/¢ I

.9 .0280361

.8 .0564023

.7 0847943

.6 .109061

.5 .126248

.4 .138521

.3 .146653

.2 .153209

0 .156918

-.2 150040

-.3 .143592

-. 4 .134574

-. 6 .107941

-. 8 0682754

14
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APPENDIX A

REDUCTION OF THE DOUBLE INTEGRAL

K() = f dx f H (u)du-1 -x

In the u,x plane, the integral is carried out over the shaded re-

gion defined by the sketch below:

//

x-- -u += + I
U'

x x

If the order of integration is changed, we must integrate on x

first. Thus, we integrate over the triangle defined by the lines u =, -x,

u ''+1, x=+], and then add the integral over The semi-infinite rectangle

defined by the lines u =17+I, u=-, x= 1. The result is

0l+0) +1
K m Q) H M (u)du j dx + f H(u) fdx

After the x-integrals have been carried out, the result is Eq. (32).

A-I
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APPENDIX B

COMPUJTER PROGRAMS

The five computer programs that were used in the numerical computa-

tions are presented herein, together with descriptions of what they do

and with a dictionary for each, relating Fortran variables to analytic

variables for input and output statements.

B-I
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PROGRAM I

Calculates /C for given m, s, xL 0

FORTRAN ANALYTIC DESCRIPTION

VARIABLE VARIABLE

S s

M m

XO x

A Lower limit of outer integral

Input B Upper limit or outer integral

AERR Absolute error tolerance forouter intrgral

RERR Relative error tolerance for outer integral

EPSK E Lower limit of certain inner integrals

AERRK Absolute error tolerance for inner integral

RERRK Relative error tolerance for inner integral

ALPHA ./CL

Output CK Value of outer integral

B-2 j
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E X E A L Y2

COMMO , I/COK2/XO,C,CL,ESK,AERRK,RERRK
CO'~kiON/COM1i/LC.,LC2,L.C3,LC4,LCS
LC1=i
L C2 -
LC3= C
LC4=J
LC5= '

kFAD(5,9.32) A,E,AEqR,RE-RR
)02 F R'!7(41-F)

CILL UJ7rSET(I,Lr.L)
S = S * S

CL4l.
C "L L Q C OlS T
CRZFCADRE(FK2,A, ,AERR,RER,ERR,IE-R)
PX=1. /C16. *2 [*
ALPHA=PX*CK
'RITE(6,9i13) ALPHA,CK

903 OR MA T IX, A LP HA E 1E4 .6, 2 X , C E ,14. 6

B- 3
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X 7 2'. r'2

C C *Y.'C N CS .C;1/C, A 2Q-9Q

AlG(3),A3Q(3),E C3),S1 'C3),33 .(3),FAC(3)

C C 0N/ C CVFT/D Q(3 ),S ,A XJ

C ','MC 0/CM LC 1 L C2, LC 3 LC 4 L C5

A I= EP S ~

3 12 . 5*

F I
I F (GQ, .1. 3J 3O 7U1

C2=DC,'IpC-FT2,2,-'2,AE,R'ER7R,?ROR,1Ed)

11 CONTINUE

IF(XO.LT.G.A?;D.G.LT.C) !DP=H*(C%')/(CXO)
FK2=FK1*DP

R - U R,,'

B-4



CO:~:;/CJ1/LCILC2, LC3, /-i LOD,
LC2=LC2+1
i;EL=T*T/ (2. *A,)
Z=fDEL.+1.
Z1=Z+1.

CL2=Dw-L*lL

I (CaL.L21)~ 7 UC , 1

~2=c O1 2 E, 2

P3Q2I =D,,) 2.+7 D-L*

Co 0 EI DC 17 L + f I + CDELC3 ,L C 5l

LCI = Q4C;1 ( Z
7 U? NZ,2

Q3=QQ1(B-5
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PROGRAM 2

Calculate Y(x)/C for given m, 3, x ,/CL o L

FORTRAN ANALYTIC DESCRIPTION
VARIABLE VARIABLE

s S

M rn

xx x

XO xxoo
0

Input ALPA /cL
A Lower limit of first outer integral

B Upper limit of second outer integral

AERR Absolute error tolerance for outer integral

RERR Relative error tolerance for outer intf-oral

EPS Integrate from A to XX-EPS and from
XX + EPS to B

Output YY Y/CL

ALPA X/CL

CK Sum of Ist and 2nd integrals

CKI Ist Integral

CK2 2nd integral

B-6
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cXr, '. A 13E, 2

C C Y P C~ C 0 T /D 3 (3, 5 JA
C 0 C :C 0'Yle2/X iC C L

C 0UO / CO M X I / LXX CLC3L

L C 2 =.,
LC3=0
LC4=0
LC 5 =
')EADC5,9JI) M,!,XXLH

READ(5,90i2) A,3, AERR, RER,EPS
2 FRM2AT(5')

CALL UERS 7 T(1,L7-VL)
SQS*S

P1:3.1415927

A2:XX+E.ps

C=1 .
CL1l.
CALL QCONST
CK1=FCADRPECFK2, A1,H1,AERR,RE-RR,E-RR,IER")
WRITE(6,90033) CKI

910J33 FOkdMAT(lX,zE14.6)
CK2=FCA!YR -(FK2, A2,22,AER-,R,RERR, ERR, IER)
CK=C(1 +CK2

iY=PXA*CK-ALPhA*(XX+1.)
' PITEC6,933) YY,ALPHA,CK,CKI,CK2

0 3 ORMAT ( IX, Y El ,4. 6, 2X, LP riA ,El4. 6 t2X,
I /1X,'C( =,3--14.6)

B-7
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EXT7OA L F "ui.i,i T2
C cC!.* '3N 3,4,Gl

C01!43';I-. ' (5,(3 )lA(3 ACQ(3 ),f G'4(3)

CC: YN/Cd'A 2/A 22(6,3 ),SU22(6,3 )

CCMYO'9"CJ4K2/ 1(0,C,CL, EPSK
CrYIM.MO4/CflMl/LCI,LC2,L C3,LC4,LC5
CONMVON/ CDJx x/ xx
LC5=LC5+l

All:EPSK
E I1I = X X( - 0
A12=E2,SY

A 13 =1 + G

2 2= - xx
i22 1. + 5

23S I NF£ I N'

F Y X 1 I * X X
F 1=0.
IF Cu.EQ.1.) GO TO 11
IF(G.GT.XX) G0 TO 111
C1=CCAUPE( FT1I, 111,AErR,,RERR,ERROi,I ER)

C3=DCADc:-'(FT,Al3,El3,AE-RRRERR,ERPJR,Ifz-R)
FY1=Ci+C2*XXC34.*(XX-3)/ES
SQ T2l 11

JC1E1CCA'(rT2,A22222,AERR,R--RR,EPRRR,1[ER)
C2DAR7-TA333A~,ERERRIR
F ~I= Cl +F XX*C 2

lF(-C.LT.Z. Al .. LE.XJ) DP=4
1 IF ( W.LT .G AIND.C;. LT .C) DP= H*(C-G)/C-x 0

p E 7 "1 P N
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CC~'2.~j SM,GGGC;

C-n2M r;/C,..m'I. CI ,LC2, LC3,LC4,LC5
LC2=LC2 +1

DEL=-*T/(2. *SQ)
Z = 0E L +I

DEL2=D.-L'D'L
~ 30 TO 11

IF(DEL.L7.1.7Z-7) ISO '70 91
12= ?2 ( DPL, I)

~f~2.+D')/(*07KL) *.%-(I2 .+EL) *1

2-=./:(2)frC()*(Q2,(2.'.D5)*L0D..L2...DcL))Q,

11 CCNTIN~UE

Q2=QQ1CZ, 2)
03Q3Cl (Z,3)
,AP1=DQC2)/Zl*CQ2-Z*Q1)
P2=!JQ( 3)/ZL*tU3-Z*Q2)

R £7T UP RN
EAD

COMMGN S,M,Go COtMM0'/C21/LCI,LC2,LC3,LC4,LC5
COMMCN/COM4XX/XX
LC1=LC1+1o FT1.=CXX-T-G)*FT(T)

END
cc

FUNCTICN F'T2CT)
C0M!'0'l S,M,eG
CO'U.MC-/C2'.!1/LC1 ,LC2, LC3,LC4,LC5
C c M X. ON / C J."! X x / x x
LCI=LCl1.1
FT2=(XX+T-G)*'T( r)
RFTUqN
END

B-9
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PROGRAM 3

Computes weighted average at square of calculated axial

velocities.

FORTRAN ANALYTIC
VARIABLE VARIABLE DESCRIPTION

S s

M m

X x Location of propeller plane

LI Determine the two values of x to be

L2 tused (both values are same)
Input same A Lower limit of outer integral
as 4

B Upper limit of outer integral

AERR Absolute error tolerance for oyter integral

RERR Relative error tolerance for outer integral

Output Cl Denominator of Equation (18)

B-10
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C CM1.-1'11/ CfW/A1122(o, 3) E 2 2(5, 3)

CCr!Yo 11/ C.Y /x c. 4, Li , L2
CXMYC "CC:4i /LC1I , LC2, LC3, LC,;, LC5

~CATC

CALL CT

C?~~ ~ ~ '-

ITE(6,'43) Cl

40
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CCMZ N/ Cg: r2/A Q22C623,B Q2 2(6 3

COM.O/C'F/Ra4,CL,X,KXJ
CCMPAO./CO:-FX/XXOC 4),L1,L2
COMMON;/COM-1/LCI,LC2-, LC3,LC4,LC5
IF(Ar;SCP).GT..E-d) GO TU 11

GO TO 22
1.1 CONTINUE

PI=3. 1415927

XV=XXI,(Li)
CGI =DC kN- ( , 3,A- Fk Ro E

X,' = XX2 CL 2)
CG2=DCADE(F Ae 2 , AERR, iERR, E R-, rER)
Sv12=CG2*(I./(8.*PI*SwS, T(R*S)))
F X=R*SK1*SK2

22 CONTINUE
R< F T U R .i

FUNCTICN F(G)
COMY'O1 S,.M,GGSG
COXMO?/CCXFT/DQ(3),SG, !.M.
CC!" UC'1/C3VMF / R, CL, X, X J
COMiMON/COV/LC1,LC2,LC3,LC4,LC5
LC1=LC1+l
c=1.
BK=(X-o)*C X-G)

0 KI=(R-S)*(R-S)

BKP=4*R*S*DQ(2)*(S*S-R*R-BY)/((BK+RK1)*C3KRK2))
3 Z=CBK+R*RS*S)/(2*R*S)

H1~l.
IF C(-C.LT.G). AND.(G.LE.XJ)) PM=H
IF (C X0.LTr.G). A!".(C.LT.C) ) PM=H*(C-G)/ (C-XJ)
IF (Z.1-7.1.0J9) GO TO 51

, 2:QQ1 (Z, 2)
G.O TO 1it0

51 C CS T I NU
DEL=Z-l

Q2=QU2C DEL, 2)
I fle F=PM*(-Ql,3KP*(02-Z*,.l))

RET UR~N
PiD

B- 12
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PROGRAM 4

Computer h using least square fit between measured and calculated

axial velocities.

FORTRAN ANALYTIC

VARIABLE VARIABLE DESCRIPTION

s s

M m

x x Location of propeller plane
Li Determine the two values of x (to be

Input L2 used (both values are the same
same as 3 A Lower limit of outer integral

B Upper limit of outer integral

AERR Absolute error tolerance for outer integra,

RERR Relative error tolerance for outer integral

AAAA Denominator of equation (18) (from program 3)

XXO(LI) [Two values of x used

XXO (L2) 0

Cl Numerator of Equation (18)

Output AAAA /CL

HHHH h h to give least square fit

CCLL CL  computer from H obtained by this

program from Equation (13)

B-13
0
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1 17..,A~I ),..( uI(3,(3,A

C C'! 03 A3"

C ,. C ), U.. (9)B" 22
C C> YCJN:CCC1-. rD(3, S2 LC2,AC4,LC

C119 R3 C u 1111,2 T2222,933333,.444449

1 .555555.35,.66666, .275/77,9 88,.

CALL U-ST-(,L-7VL)
REAC(5,9J1 ) S,M,X,Ll,L2

9,q2 FOF'4AT(4F)
REAN25,901) AAAA
?I=3. 1415927
DC 111 T=1,9

I111 C C.14T I ME
S Q S *S
CALL WCONST
C1=FCADRS(-fXA,B, AERR.,RERR,ERR, IER)
IF(Ab3(AAAA) .LT.1.E-S) AAAA=1.
HHHH=C1/AAAA
CCLL=.25*HHHii*(3.+XXO(Ll))
WRITE (5, 90 3) XX (L1 ),XXO(L2),Cl
'PITTC b,90'3) AA AA.,iHHHICCLL

?03 FD~lJ'T( X, 3EI4. 6)

B- 14
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COM M 7N /C 3t R /RR P~ C L X, X 0
C . ' N~ ;ICC; Y F X / X . 0) 4) L 1 , L 2
C OV%0 C!</!'i / LCI , LC2, LC 3, L C,L C5
IF(A53(R).&;T.I.-E) CC TC 11
F =

OT; 22
11 ZCNTI';UE

RRRR=P
1T=3. 14159z~7

A -1.

W = xY J ('w1)

; X =R~*SKi *5 ?2
22 C rONT7I N JE

C
FUNCTION FCC)
COMMCN S,MCGG
COMMJ'l/COM'FT/DQ(3 ),SQ,AA0
CO!JX'kfC3'AF/R, CL, X, XJ
CC!A O/CO\!1/LC1,LC2 ,LC3,LC4,,LC5
LC1 =LCI .1

Z=(91K+R*R+S*S)/(2*R*S)

o IF P(CLTM=HJ.GLEX)
IF (CXu'.LT.G).ANiD.CC.LT.C)) P4H*(CG)/C-XO)
IF (Z.LT.1.39) G3 TO 51

3C iC Z 1)

51 CNIU

.i2=1;.2 ?( '-L, 2

FUNJCTI:Z FI';TP(R)

B- 15
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IF(k.C . 11P (I. )) I 1 O TO 1
F I TP UL U I + : : I )I IU ' I+ 1 ) U x l)) (R -  ( )

R P '(1))
GC ?L 11

I COI T I NUE

J) ? TURN

E " D

0

0
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PROGRAM 5

Calculates associated Legendre Function Q m1 / Z) for given m

and Z. (Used as subroutine for all foregoing programs.)

B-17



R-2 298

sub2Ju~T1NE7 TS CJVDJTE Cr:STA:;T$; JEE- ~ ill* AN.D

S UE R SU 7 T 'IECJ'

1 Cl()A,() -()SQ3,0 .3),FACC3)

COMM N/ CF T/ t. ( 3Sa A vJ

cc CONSTA~iTS F*O; 137 Q F!JNCTItT;

A2Q=1. 7724539

D Q (2) =lc *- 5

J Q( 3) =~Q i)J 1.5
00,1(I1 11+1

I Q T) D I + )*.

CALL J! Y9A1 A I ,1~ I) I
C AL L GMY,% A A 13 (I) P 3 C (I, I -;;R 3)

DO 2 L=2,500~

2 C l1T INU E
1 CONTINE

c

ZDC 3 L=1,'
1\22:IQ( L)+ *5

DO 11. 1 1) N 2 1

0CQ22=C 122*1 .1(2.*11.
11 CONTIN4UE

Ar22C1,L)=S./2.*ALO3(2. )-2.*CQ22

DO 40J I=1,5

C2.(,P+)*2)A22( L) *(2.*(r*22*w241./4 )I+l
(NP+1 )/(.*(NFl))J

40 CONTINUE
3 C ONTI I J E
'-C

CC CALCULATIDN GF V10) ,USFD PY FUNICTION FT
Im1zo.
"1O 8 (=1,V

B- 18
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c 1C C I 3
c "k. C.] 1 /.l IA V )AIQ(3),A1 (3),£ ;(2 ),31 (3), 3.(3),FAC(3)

CC: i . Cj'4i / L 1, L C2, L C 3 LC4 C5
LC3:LC3+1
ZF= ./ (Z'Z)

D0 J = (L)*F*Z7
Do 2:' 1=2,51,'
FL I =I

IFC ( T) . T .L 1. J;'..,; ) S 70 5

22 S0"T I':UE

3 CC", I :JE

PETURN

-C
z C S-C'iD U FUNCT7IL1.

FT'N C " . (D L , L )
CDMa!v/C 3 2/A 22 ( , 3), St22 (o, 3 )
CM YON/C3OI / LCI,LC2,LC3,LC4,LC5
I-C i= LC 4+ I

T-'STJI= .
TEST 2Z.
DO 4Z 1Ii,5
'SP=I-I

S U I:S UI ,i A Q22(1,LU) DEL * F

T STI=ABS( SU1 )
TES T2 A S( SU2)

IF(ASSTESTi-TESTOI).T..5JOJLX3) GO TO 4
IF(A3S(TET2-EST£2).LT.. i.Z3 3.BI) SO TO 5,3o TESTUZTESTI
TESTJ2=TEST2

4g CCNTINUE
O 5 CONTI';UESQ 2S UM1 + ALOG( DEL) DSU2

£7_ .U N
END

B-19
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Figure 1. Radial Variation of Shaft-Frequency Wake Harmonic

for NSRDC Model 4602 (from Hadler & Cheng SNAME

Trans., Vol. 73, 1965)
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