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SOME PROBLEMS IN THE DESIGN OF THE TUBE WIND TUNNEL

Wang Sung-gao

(Institute of Mechanics)

ABSTRACT

The problem of the boundary layer growth in the

charge tube is discussed. An analytical solution is

derived and has been reduced into an algebraical express-
ion. The result contains various factors which affect

boundary layer growth. The calculation is simple and
the results agree with experiments.

Based on F. L. Shope's model,,analytical expressions

for the test section starting process are derived.

Various factors which affect the starting process are

analyzed. The precision of calculation is adequate
for design purposes. The calculating procedure is much

simpler than F. L. Shope's.

NOTATIONS
a speed of sound Re Reynolds' number

d diameter of tube y adiabatic index for gases
L length T characteristic time of open-
M Mach number ing of valve

p pressure A area or coefficient

r radius Subscripts

T temperature 3 parameter of central flow in
gas storage tube

t time 4 state of stored gas
u axial component of velocity e outward flow parameter of

V velocity of expansion wave boundary layer
:, or volumeovlmt parameter of the test section

x axial coordinate w wall parameter
y radial coordinate chamber parameter

Cf coefficient of surface pe exhaust parameter of storage
frictionchamber

received in October 1981.
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6 thickness of boundary layer f parameter of regulating plate

6 displacement thickness of s state after starting time
boundary layer eO parameter at the stationary

e momentum thickness of point of the flow
boundary layer

6f width of opening of the
regulating plate

o density

The tube wind tunnel has a simple structure and it is relative-

ly easy to increase the pressure of the stored gas. As the ratio

of the pressure at the stationary point of the flow in the test

section to that of the stored gas is determined by the ratio of

the area of the stored gas tube to that of the nozzle throat, one

can increase the Reynolds' number of the flow in the test section

by raising the pressure of the stored gas. Hence, sufficiently

high Reynolds' numbers can be obtained with small equipment. The

Reynolds' number can be further increased by combining this method

with low temperature techniques.

Some special problems are associated with design of tube wind

tunnels to be used as high-Reynolds' number transonic test equip-

ment. We will discuss two of these problems in what follows:

1. Boundary layer growth in the gas storage tube

In the tube wind tunnel, a one-dimensional stable constant flow

is created during the process of propagation of unstable non-

constant expansion waves. Owing to the viscosity of the flow, a

boundary layer is created along the tube wall, its thickness

increasing with time. This boundary layer growth affects the

effective flow duration and quality of flow in the tunnel.

This problem has been discussed by E. Becker [l], J. C.. Sivells a

[2) and H. Ludwieg [3]. All of them used complicated numerical

methods. J. C. Sivells had to modify his results on the basis of

experimental results. Our analysis consists of directly integrating

the integral equation of the momentum of the unstable non-constant
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boundary layer and reducing the analytical solution thus obtained

to an algebraic expression. The axially symmetric integral equa- 596

tion of momentum takes the following form for cylindrical flows:

I_ 8 2 I C,

where * :(I - -Fie -X(I -!.dy

w- dy (2)

Let V- -(3)

Here, V is the velocity of the unstable non-constant expansion

waves. Its relation with the speed of sound a4 in the stored gas

state has already been derived by E. Becker:

V-. 3 + 1)M, (4)

2

M3 is the Mach number corresponding to ue.

Assume that is independent of time, and we have

.,:8 l +A -Lc, (5)

We use equation (5) to analyze the following factors:

(1) Assuming that Cf can be expressed as a power expansion in

e, and that the velocity distribution can be expressed as a power

expansion in X, we can derive from 7, and 8/r.I the relation

*g/8p 10/7

Here, n is the inverse of the index of the expansion of the velocity

section.

(2) The effect of Cf is obvious. Different expressions have

7 .been given for Cf for different Reynolds' numbers [4]. Comparing

3
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the formulas given by Blasius and Karman, the result obtained from

one is more than twice that obtained from the other, for Re > 107 .

(3) The effect of the width of the expansion waves is on the

velocity V of the effective expansion waves. It can be seen from

equation (4) that this effect can be neglected only for small M3 .

(4) The effect of the velocity section is expressed through

n. Taking a two-dimensional slab as an example, we have approxi-

mately

0X

-- (,+(n + 2)"

n varies as Re [5].

In the process of solving equation (5), we have been able to

take all of the above four factors into account. Calculations show

that when n = 7-9, the error produced by the assumption that

(0-X,)/e is independent of time is approximately 4%, which is

acceptable.

We take the following expression for the coefficient of fric-

tion. This is a combination of Karman's and Frankle, F. Voishel,

V's (sic) equations.

- (Ig .+ 22)'+ 0.3010) (

Inserting this in equation (5), and integrating, we obtain,

after rearrangement,

597
V1-. + 2 _ , (7)

After & are calculated, the above equation can be written

as
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C -5(/r) - 4(al,,)3 (8)

where

x 2 T +Ln( +2 + 3 )(1 + IT.) u (2 +1)(2+)( T,) (9)

(x+2)x+3)( + n Ti

C - 0.0293(Vs - x)

r.( (24)](1 + M3 .4

When we are calculating for the thickness of the boundary

layer at the entrance of the nozzle, x = 0. If we let TL
T.

then

(2a + 1)(2n + 2) u. 2(2n + 1)

_-_ _ _v (1

C- 0.0293Vs+

C-W
re[ Ig(2Re*e)1'( + 3
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The procedure for the calculation is very simple: given ro,

M 3 , Red and Re From

M find - and V. From n and , find A and B. After C is found,
3 Ue Ue

- can be readily obtained. Figures 1 and 2 give the calculated 598::

results as compared with experimental results. The agreement is

very good. Our computation has a fairly igh accuracy, at least,

for A 0.75
Fe

S.@

/U 0

01 0.25 00

//.
0 0* / /

// I
I IU

Figure 1. Comparison of cal- Figure 2. Comparison of calculated
culated results with experimental results with experimental
results of AEDC results of Goettingen
+ experimental values for C experimental values for
M3=0.265 Re=3.0xl0 7  Mn0.2 Re 5lX10

....J. C. Sivells calculation o experimental values for
--- our calculation M3=0.3 Red=7.3x104

----H. Ludwieg's calculation
-our calculation

2. Analysis of the starting process

The tube tunnel is an equipment for short-duration operations.

The total process takes place within a time period on the order of

* 102 msec, while the starting time for the flow in the transonic test

section to reach equilibrium can sometimes be on the same order of

magnitude, and tales up a sizeable portion of the total time. To

increase the effective operation time, one must shorten the starting

time. Reducing the starting time, however, results in an increase

6



in the aerodynamic load on the wall of the test section and the

regulating plate. Therefore, it is important to study the starting

process, analyze the major factors and obtain simple and convenient

computation methods.

We employ the method of concentrating parameters [6]. We

found out from analysis that an analytical solution can be obtained

by using an ordinary differential equation to describe • starting

process. Under the conditions of supersonic flow, the iation of

conservation of mass within the storage chamber is

+_ a- Af/E) 4 A

*" P, 1.73 Vp p, / 1.73 V, (

The solution satisfying the initial conditions is

IL (.+ A-,~~ .A,A. (12)

At the end of the, starting process, pp AlP t , and we obtain

1.73 V, AVp +(A.--,)IA, (13)

In the above equation, A, reflect the

resistive effect of the wall.

When Ape - 0, we have pAf 1.73 Except for
Ae a At, there is no balance between the two sides of the above

equation.

For transonic flows, there is no closed ordinary differential

equation that can be used. On the basis of experimental and cal-

culated results, we assume that [7]

I + -. 4- (1J4)
P4

Let 1.24 --,- +

' 1.24 j.A .4,A + A'. A,(15
A .k- , (15)"

1.73 V,7a

"e ,?................... .........................................................................-"."....-..-"-..- " - ".""""." . , • " - "..'.''.''-"".'



The mass conservation equation in the storage chamber is

Its solution is + N K' a' V +
P4 P - 1.73 V "

(1-

l' l, 599

K K- K' I
SI +K (17)I+K1- -- '

Nr,

When t = tspp = Alpt, and equation (17) is a transcendental equa-

tion which can only be solved by numerical methods. However, for

the case where r,-0 and the thin plate is used for starting, or

for the case where ,,-- and the valve is used for starting, we can

obtain, respectively
(I ) - API- In I - [K'/(I + K)] I#8

1.73 V, p[ A, - K'/(1 + K)]
and

(I +K) a ' A, I _ 1- I K'/(I +K)] (19)
1.73 V, " - K'1(l + K)

To obtain meaningful results, we must place restrictions on

K'/(l+K). This places restrictions on the relations among AfAw

and A pe. In other words, the geometrical parameters of the storage

chamber are interrelated.

Similar equations and relations hritd for the case where A = 0.
pe

Analysis shows that only when Af is large and there is sufficiently

strong induced emission in the pressure expansion section will the

equipment start smoothly.

From the above analysis, we know that the major factors affect-

ing the starting process areA,,/A,, V,/V,, A/A,, 4,/A, and L/a4. . With

respect to the tube wind tunnel, the auxiliary exhaust is very

important, and the duration and frequency of opening the exhaust

has a very large effect on the starting load. A,-A,cAp, is a con-

dition favorable for the flow.

8



We performed calculations on several published sets of data

for AEDC model tube wind tunnels using our analytical method of

solution. The method is easy and convenient to apply and except for

certain special cases, the results obtained agree very well with

those obtained via numerical methods. The discrepancies are gener-

ally 10% or less. For example, for the case of starting with the

value where Mc. = 1.10, the AEDC value ts = 76 ms, while the analy-

tical solution gives ts = 80 ms.
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SIMPLIFIED NAVIER-STOKES EQUATIONS AND COMBINED SOLUTIONOF NON-VISCOUS AND BOUNDARY LAYER EQUATIONS*

Kao Chi
(Institute of Mechanics, Academia Sinica)

ABSTRACT

This paper presents a part of the technical report

[2) in which the author studied the simplified Navier-

Stokes equations and the combined solution of nonviscous

and boundary layer equations. From the full Navier-

Stokes equations and an analysis of the combined solution

of nonviscous and boundary layer equations, simplified

Navier-Stokes equations were worked out. A perturbation

analysis which differs slightly from the match-perturba-

tion expansions of inner-outer layers developed by Van

Dyke [l] shows that the solution of the simplified Navier-

Stokes equations is uniformly valid with accuracy of

O(Re 1 /2 ) in the whole flow field, where Re p

is the density of free stream, U. the x-componenV of velo-

city, L the characteristic length, u., the dynamic viscosity

of free stream.

The simplified N-S equations possess the properties of para-

bolic-hyperbolic equations. Under equilibrium conditions, it is much

easier to use the method of the forward-progressing calculation to

solve the simplified N-S equations than to solve the full elliptical

N-S equations by means of numerical methods. .While solving the

simplified N-S equations, one simultaneously obtains the non-viscous

external flow as well as the viscous boundary layer flow. Theoret-

ically, this is superior to the conventional procedure of first com-

puting for the non-viscous flow and then computing for the viscous

boundary layer flow. With respect to many types of flow fields, the

simplified N-S equations can realistically reflect their mechanical

*received in May 1981
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aspects. For instance, one can use these equations to accurately.

calculate for the complex flow diagram of the interaction among

viscous boundary layer, the high-entropy layer and the non-viscous

external flow of hypersonic diffracted flow fields.

Methods for solving the simplified N-S equations are currently

under research. In fact, satisfactory answers have not yet been

found for problems regarding the mathematical properties and stabi-

lity of these equations, the correct way of presenting the Cauchy

problem, and the degree of accuracy that can be reached b y the flow

calculations. Besides, different authors hold different points of

view. This paper presents part of the technical report [2] the author

gave in 1967 in which he obtained the simplified N-S equations from

an analysis of the combined solution of non-viscous flow and viscous

boundary layer equations, and used the perturbation method to show

that one can obtain from that set of equations a solution that is

accurate to the order O(Re -1 2 ). It should be pointed out here that

the author later became aware of a similar derivation of the simpli-

fied equations, given in [3].

1. Simplified N-S equations

Let x and y be the orthogonal coordinates along the wall and

perpendicular to the wall, respectively (see Figure 1). Let u and

v be the corresponding velocity components and p, p, T, u and A be

the density, the pressure, the temperature, the viscosity coeffi-

-: cient and the coefficient of thermal conduction, respectively. Take
2

the parameters U, and pO U0 of the oncoming stream to be the char-

acteristic values of velocity and pressure, respectively, and the

fixed wall length L to be the characteristic value of length. Assume

that the order of magnitude of p and u can be estimated from p.

and U.. From the standpoint of non-viscous external flow and that

of viscous boundary layer flow, we make an estimate of the various

terms in the full N-S equations as follows.

xnxi-viscous flowr V-1 L, - Id4OL U .1 G~ ~
botoary- L L L L -

layer flow UL 6% 1 J& (1.1).
L L L

o e' - ", -. " . " - " " . , " - . . . ' ' - . . ' ' ' . . . . . , . . .- ' , * . . , - , ' ' . . . . ." * 1 1"



a! + .i~p8

a & + 4

"'s, IT"Y- - N " E'""Y! ""

ron-viscous flow M M L. Lii AUL I L1
L L 1. L L L

bourxdarv layer flow S V.I i. U- Re'ia.wz e'A.a" r a L

(1.2)

Here -- + - 0 (two-dimensional flow), 1 (axially symm- 607

etric flow); H 1 1 + ky, where k is the curvature of the wall sur-

face; PMUML ,U 8 where 6 is the thickness of the
MW Lboundary layer; 0 t and 0n represent all the terms in the tangential

and normal momentum equations, respectively, that are of order of

magnitude equal to or less than O(t .I" . We discuss the case for

Re,; I1 as follows:

1) For y > 6, omitting the terms in the full N-S equations

that are of order o( ei- U we obtain the Euler equations. For

8, ,we omit the terms in the full N-S equations that are of

order equal to or less than O( ;&A! and obtain Prandtl's boundary

layer equations.

2) When solving the Euler's equations and the boundary layer

equations simultaneously, a mathematical singularity exists on the

boundary line y - 6. The asymptotic value of the solution of the

Euler's equations as y(>6) -P 6 will not agree completely with that

of the solution of the boundary layer equations as y(<6) - 6. The

actual order of magnitude of this singularity is 0 Re. One(>5) .
should note that as yA o, the various inertial terms in the normal
Euler equation are also of the order of magnitude O(R0 ;1 ."

L)

3) Therefore, in order to eliminate the singularity that arises

in the simultaneous solution of the non-viscous external flow and

the viscous boundary layer flow, we should omit all terms in they' a,

full N-S equations that are of order equal to or less than O(Re:% U.

The resulting equations are the simplified N-S equations. Solving

these equations simultaneously with the Euler equations, we can
remove the singularity and obtain solutions with accuracies on the
order of 0 :aAI) that are uniformly valid throughout the entire

12



flow field.

As described above, the simplified N-S equations are obtained

by neglecting all terms in the full N-S equations that are of order

equal to or less than O(Re'-L.) as estimated from the standpoint
of the boundary layer. These equations are given below (along

with the continuity and energy equations).
* . (purl) + A2 (pHri - 0
Op + +L (1.3)

H ax e- H "- a B+8

ffe y ayHO3 ay 87

608

Octu aT + V T\ - (i..+ 2L) -(1.5)

2 (O T + + Pin ....
(l.5

(&Is a, - +, L(a 16

c is the specific heat under constant pressure. The simplified N-S
" equations (1.3)-(1.6) do not contain terms. When U # 0, they

have four redundant characteristic values and two non-zero real
characteristic values. Therefore, these equations possess the char-

acteristics of parabolic-hyperbolic equations [4] and the method of

forward-advancing calculation can be applied under equilibrium con-

ditions. It should also be noted that in the simplified N-S equa-

"'tions, when yC'6) * 6, from O(Ma)-o0(l) and the order of
magnitude of all viscous terms become O(Ra'.. Thereore,, the
simplified N-S equations, accurate to the order U\.e7) , will
smoothly change into a set of Euler equations for , . In other

* words, to obtain the solutions for the entire field that are accurate

13
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to the order O(R,:1 U it is not necessary to sQlve the simpli-

fied N-S equations simultaneously with the Euler's equations. In

principle, it will be sufficient to solve only the simplified N-S

equations, given the initial and boundary values, i.e., the proper-

ties of the oncoming stream (or shockwave) and the wall surface.

*- 2. Discussion on accuracy

A uniformly valid and consistent solution on the order of

0 0(R--* can be obtained when one applies the simplified N-S
equations to the computation of the entire flow field, including the

non-viscous external flow and the viscous boundary layer. In order

to prove the validity of this statement, we need to make use of a

perturbation expansion that is slightly different from the usual

* match-perturbation-expansions of the inner-outer layers [l]. Within

the viscous boundary layer O4474 , the solution of the full N-S

- equations (1.1) and (1.2) can be expanded in terms of -e' 2 as

follows:
• s/U. - wi + SmA& + S2Uj2 + • • •

V/Su. - vie + aria + e*,,2 + -

,/.p + spit + 620j. +...

0/'.pi +sit+ 2J (2.1)
[PMX Y) - P.(X)JIU. ip,+ Spa + S2pga +-

in the aboM X - ,L, Y - ysL, a- R."', 0-O(l); ,. iu,. -..

and the quantities Uio,uil,... and their partial derivatives with
respect to X and Y are all of order 0(l). Substituting the expan-
sions in equation (2.1) into the N-S equations (1.1) and (1.2) and

comparing terms in the same power of e, we obtain

Pa °Xis &f ( + "", 0.-- + -L (oftsl

ay' (2.2)

o(+) p A& + . + + ,. + M...] + ,,(.. . + ,A )
L O y &Y X*W +ps ax e

... a . a . . . - - . . . * * . * . * * ' , * * .* . * - . . - - I . -



y * " + + :)
ay a 609

Pi xi.e~o +  vio alys 2k ,,.*,.+ je. -p. 2(

+ ± P )A+ DY' BY e x  aY ) + r-, ay

In the above, &-/L, r1-/L, (X)-p.(X)/p.U; . Similar expansions

can be obtained for the continuity equation and the energy equation.
It should be pointed out that in the present expansion, the first-
order equations (2.2) of order 0(1) and the second-order equations
(2.3) of order 0(e) of the N-S equations for ,4a are different from
those obtained from the usual match-perturbation-expansions of inner
outer layers [1]. In the usual expansions, the first and second
order equations for the normal momentum for 7<8 are, respectively:

9 -0

ay

Hence, in the usual expansions, a mathematical singularity of order
(Ra&0 U) exits on the boundary y - 6 when either the first order equations

or the second order equations of the inner and outer layers are
solved simultaneously.

In the non-viscous external flow region where y > 6, the solu-
tion of the N-S equations (1.1) and (1.2) can be expanded in terms
of e as follows:

a/U. - . + 8N .+ 4...
* /U. - A + ea. + a2V + ...

P/0 -Po + g's + #2 '.. (2.4)
P(X, Y,)/p.UiJ - P. + .+s', 84...

In the above equations Y ey/L, and the quantities ueo, uel,... and
their corresponding partial derivatives with respect to X and Ye
are all of order 0(1). Substituting (2.4) into equations (1.1) and
(1.2), and comparing terms in the same power of £, we obtain

15
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OV 0 + +e + (U,,, + UO')'o- H OY, R a-

N&_ 0.1 + HVV.

+uj OP'N+ (2811 2a .+ V0 (e.-W , (2.6)usSI X H OX 8Y H J•

+Pa+- 0  _..~) (2.6)
+ 4\ H X OY, -- ay,

It can be readily seen that in the region y > 6 of non-viscous 610

flow, the 0(1) approximation of the N-S equations, i.e., the set

of first-order equations (2.5), is the Euler equations, while the

approximation accurate to 0(e) i.e., the second-order equations

(2.6), is a modified solution that takes into account the effect of

the displacement thickness of the boundary layer. Solving equations

. (2.4and (2.5) simultaneously; one can obtain a solution accurate

to 0(l) that is uniformly valid in the entire flow field. Solving

equations (2.2), (2.3) and (2.5), (2.6) simultaneously via match-
perturbation-expansions, one can obtain a solution accurate to

Q(3a "*) that is uniformly valid in the entire flow field.

Comparing the simplified N-S equations (1.4) and (1.5) as well

as equations (2.2) and (2.3) with equations (2.5) and (2.6), one can

prove that the solution to the simplified N-S equations satisfies

the following relation, taking u as an example

Equation (2.7) holds for the other variables as well. Hence, the

solution to the simplified N-S equations is accurate to o(Re;,,)

and is uniformly valid in the entire flow field.
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3. Conclusion

The actual form taken by the simplified N-S equations will

vary slightly, depending on whether the viscous terms of order

O(R,4a) are neglected or not. In general, such variations are

considered small [3]-[7]. Nevertheless, to obtain a solution that

is accurate to the order O(Re;=) and uniformly valid in the entire

flow field, it would probably be advisable to use the simplified

N-S equations (1.3)-(1.6) presented by the author [2].

The simplified N-S equations can be used to obtain an accurate

description of the complex interference phenomenon among the non-

viscous flow, the high-entropy layer and the boundary layer flow

in the shockwave layer [3]-[7]. They can also be applied to other

.4 flow field calculations, such as non-equilibrium flow, flow in a

*- tube, distant wake flow, shock-boundary layer interference and the

-" viscous diffracted flow near pointed head and blunt head three-

dimensional bodies. The simplified N-S equations have also been

applied to the computation of such complex flow fields au segregated

flow, near wake flow and compressed flow near corners. One should

note, however, that the simplified N-S equations possess the pro-

perties of parabolic-hyperbolic equations only when the viscous

effect is dominant, i.e., when U 0. For y > 6 where one can

neglect the viscous effect, i.e., 0 = , these equations become the

Euler's equations with corresponding characteristic roots

Here C is the speed of sound and M is Mach number. For M >1I,1&

are real characteristic roots belonging to the hyperbolic family,

and the simplified N-S equations retain the same mathematical

classification. For M <1 4A are complex characteristic roots,

belonging to the elliptic family, and there is a change in the math-

ematical classification of the simplified N-S equations. In the

region where the simplified N-S equations are elliptic equations,

the Cauchy problem is not applicable. It is, therefore, necessary

to obtain the solution by an iterative method or some other special

treatment.
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