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SOME PROBLEMS IN THE DESIGN OF THE TUBE WIND TUNNEL

Wang Sung-gao
(Institute of Mechanics)

ABSTRACT

The problem of the boundary layer growth in the

charge tube 1s discussed.

An analytical solution is

derived and has been reduced into an algebraical express-

ion.
boundary layer growth.

The result contains various factors which affect
The calculation 1s simple and

the results agree with experiments.

- Based on F. L. Shope's model, analytical expressions
for the test section starting process are derived.

Various factors which affect the starting process are

analyzed.
for design purposes.
simpler than F. L. Shope's.

NOTATIONS

< e & 8T R AP

x
y

speed of sound

diameter of tube

length

Mach number

pressure

radius

temperature

time

axlal component of velocity

velocity of expansion wave
or volume

axial coordinate
radial coordinate

Cf coefficlent of surface

friction

—
received in October 1981.

The precision of calculation is adequate
The calqulating procedure 1is much

Reynolds' number

Y adiabatic index for gases

L characteristic time of open-
ing of valve

A area or coefficient

Subscripts

3 parameter of central flow in
gas storage tube

4y state of stored gas

e outward flow parameter of
boundary layer

t parameter of the test section
wall parameter

o} storage chamber parameter

pe exhaust parameter of storage

chamber

- - - e e
..................
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§ thickness of boundary layer f parameter of regulating plate
5% displacement thickness of = s state after starting time

boundary layer e0 parameter at the stationary
6 momentum thickness of point of the flow
boundary layer

width of opening of the
regulating plate

# density

The tube wind tunnel has a simple structure and it is relative-

ly easy to increase the pressdre of the stored gas. As the ratio
of the pressure at the stationary point of the flow in the test
section to that of the stored gas is determined by the ratio of
the area of the stored gas tube to that of the nozzle throat, one
can increase the Reynolds' number of the flow in the test section
by raising the pressure of the stored gas. Hence, sufficiently
high Reynolds' numbers can be obtalned with small equipment. The
Reynolds' number can be further increased by combining this method
with low temperature techniques.

Some special problems are associated with design of tube wind
tunnels to be used as high-Reynolds' number transonic test equip-

ment. We will discuss two of these problems in what follows:

1. Boundary layer growth in the gas storage tube '

In the tube wind tunnel, a one-dlimensional stable constant flow
1s created during the process of propagation of unstable non-
constant expansion waves. Owlng to the viscosity of the flow, a
boundary layer 1s created along the tube wall, its thickness
increasing with time. Thils boundary layer growth affects the
effective flow duration and quality of flow in the tunnel. 4

This problem has been discussed by E. Becker [1], J. C. Sivells
(2] and H. Ludwieg [3]. All of them used complicated numerical
methods. J. C. Sivells had to modify his results on the basis of
experimental results. Our analysls consists of directly integrating

the integral equation of the momentum of the unstable non-constant
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boundary layer and reducing the analytical solution thus obtained

to an algebralc expression. The axlally symmetric integral equa- 596
tion of momentum takes the following form for cylindrical flows:

10 (ge_g)-20_1 (1)

_ucal @ ')_ Oz ZC'

s (1 —2) e b
where ] j. (t '.) o (1 “.)dy

{1 =2\(1 -2« 2

P .(1 r.)(l p‘.')dy (2)

Let ' fm=Vi—zx (3)
Here, V 1s the velocity of the unstable non-constant expansion
waves. 1Its relation with the speed of sound aj in the stored gas
state has already been derived by E. Becker:

Lar- (4)

M3 is the Mach number corresponding to u_.

e -.
$
Assume that -1-;£L is independent of time, and we have
yoa—-a\é _1
(H'.. 0 )d; 2 < (5)

We use equation (5) to analyze the following factors:

(1) Assuming that Cf can be expressed as a power expansion in
0, and that the velocity distribution can be expressed as a power
expansion in ¥ we can derive from »>27, and 8/r,<1 the relation

6!
8e/8» < 10/7

Here, n 1s the inverse of the index of the expansion of the velocity
section.

(2) The effect of Cf i1s obvious. Different expressions have
been given for C, for different Reynolds' numbers [4]. Comparing
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Lale's

the formulas given by Blasius and Karman, the result obtained from
one 1s more than twice that obtained from the other, for Re > 107.

i

4.
. a"%,

(3) The effect of the width of the expansion waves 1s on the
velocity V of the effective expansion waves. It can be seen from
equation (4) that this effect can be neglected only for small M3.

AP TRUNIX

O,

(4) The effect of the velocity section is expressed through
n. Taking a two-dimensional slab as an example, we have approxi-
mately

L3 To 44 P AN

T G+rG+2)’

8
)
n varies as Re [5].

In the process of solving equation (5), we have been able to
take all of the above four factors into account. Calculations show
that when n = 7-9, the error produced by the assumption that
(3'-'.M@ is independent of time is approximately 4% which 1is
acceptable.

We take the following expression for the coefficient of fric-

,% 4 tion. This 1s a combination of Karman's and Frankle, F. Voishel,
4 V's (sic) equations.
- (0.242)° 1+ 2=l yg)™" (6)
Ct = g Res + 1.1696)(lg Rep + 0.3010) ( 2 ‘)

Inserting this in equation (5), and integrating, we obtain,
after rearrangement,

597
" 0.0293(V: — x) - ry—1 -0
i o= 2 1+ —M
3 o, v g k)] (1+21tm) 7
AN a .' ’ .
E After %“%%md% are calculated, the above equation can be written
as
A by
A R .,_4'.‘;. ~ ;: R S ..“ R T T R el ._:.-_-..._ ................. ‘_-.'_ TR L Y ..:_ }\; ARSI,




C = B(8/rs) — A(8/r,)? (8)
on s (e 2 T . LT
4 (2a+2)(2-+3)\1+2n+1'1_"')+..,(2n+1)(2n+2)( nf:) (9)
+2 T

n 2 T n
B-(u+2)(n+3)(]+u+l-f‘)+u, (n+1(n+2) (l n T, \
00293(1’:—2)

c-r.u:(me.)l'(x + 1= I=1lyg)e . -

When we are calculating for the thickness of the boundary
layer at the entrance of the nozzle, x = 0. If we let —;_'-'--1,
then -

4 Qa+1)(2n+2) +u, 2(2a+1)

- ”. 1 1
ey prar sy oy s S (10)

0.0293V:
rol1g (2Reg) I* (1 + ’T“ M;)“'

Cm
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The procedure for the calculation is very simple: given Ty
M3, Red asd ay. Assume values gor f- and find Re6 and Ree. From
M3 find o and V. PFrom n and T find A and B. After C 1s found,
ﬁ%« can®be readily obtalned. eFigures 1 and 2 give the calculated 5985
results as compared with experimental results. The agreement is
very good. Our computation has a fairly High accuracy, at least,

for .!-‘0.75
Te

&
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Figure 1. Comparison of cal- Figure 2. Comparison of calculated :
culated results with experimental results with experimental -
results of AEDC results of Goettingen .
+ experimental values for g experimental values for

M3;=0.265 Re=3.,0x10’ M3=0.2 Rey 5.1x10"
=—==J. C. Sivells calculation o0 experimental values for
—our calculation M3=0.3 'Red=7.3x10“

----H. Ludwieg's calculation
———our calculatlon

2. Analysis of the starting process

The tube tunnel 1s an equlpment for short-duration operations.
The total process takes place within a time period on the order of
102 msec, while the starting time for the flow in the transonic test
section to reach equilibrium can sometimes be on the same order of
magnitude, and takes up a sizeable portion of the total time. To
increase the effective operation time, one must shorten the starting
time. Reducing the starting time, however, results in an increase

T WS T YSRTeS. T VS F Y VY wy |
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in the aerodynamic load on the wall of the test section and the :
- regulating plate. Therefore, it is important to study the starting
process, analyze the major factors and obtain simple and convenlent

oy

“

computation methods.

o« 0 .
TR B9 ¥ TR R

We employ the method of concentrating parameters [6]. We
found out from analysis that an analytical solution can be obtained
by using an ordinary differential equation to describe - : starting
process. Under the conditions of supersonic flow, the 1ation of
conservation of mass within the storage chamber is

.‘_*: L(.ZL)-}. 30 Ay, &_)_ ae A — 4, A
X a \p,) 173V, (p.. .73 7, (11)

The solution satisfying the initlal conditions is

2oy + A=A ),_;5.;,;5.«...,, _ A=A

: : P Ape Ao, (12)

At the end of the starting process, pp = Alpt, and we obtailn

_'.ﬂ_é.L . - l‘”"'(de—l‘n)/(f,
2 R e yry oy y e (13)

In the above equation”n-(’l/&')'m.v Sy = (Pc/?n)':-t, 4, reflect the
resistive effect of the wall.
Py A— A 84, _
When Ape = 0, we have p, Ppee Ape 1J3(’ %) . Except for
A = A there is no balance between the two sldes of the above

| e t?
2 equation.
3 For transonic flows, there is no closed ordinary differentlal

equation that can be used. On the basis of experimental and cal-
culated results, we assume that (7]

-5:--!4-(1—#):“"'- ' (14)
N ' - s 4 Ay
Let k 1.247:?(;:4 b)
: ‘12420 (e g 4 AL 4,
: A (et 44 (15)

. Ne (1 +K)-2a A2
. A+85 7

............
A e B
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The mass conservation equation in the storage chamber is

s '+ 80 Ape /s,
Its solution 1s E‘(k)"'N‘ZL‘KL——'[#‘*'(l—'#)e""l

) P 1.73 V'
.&--/l- Kl “- K' l—ﬂ )e-"' (16)
n VT T+k 1+K | __6
Nz 599
! 1—p K ~8e/v,
Ty 6 1+K ' (17)
l — ——
Nrt,
When t = ts,pp = Alpt’ and equation (17) is a transcendental equa-

tion which can only be solved by numerical methods. However, for
the case where r,—0 and the thin plate 1s used for starting, or
for the case where %% and the valve is used for starting, we can
obtaln, respectively

e Ape g oy 1=K/ +K))p
A+K 173 v, ” te pld,—K'/(1 +K)] (16)
and :
e Are , oy 1=K/ +K)) (19)
a+K375 V', ", .~h4,p-—K'/(l + K) 4

To obtain meaningful results, we must place restrictions on
K'/(1+K). This places restrictions on the relations among ApsAy -
and Ape' In other words, the geometrical parameters of the storage
chamber are 1lnterrelated.

Similar equatlons and relatlons hc1d for the case where A e = 0.
Analysis shows that only when Af 1s large and there 1is sufficiently
strong induced emission in the pressure expansion section will the
equipment start smoothly.

From the above analysls, we know that the major factors affect-
ing the starting process ared,/4,, Vo/Ve» 4)// 4 A/Ac and Lyfa.. . With

respect to the tube wind tunnel, the auxiliary exhaust 1s very
important, and the duration and frequency of opening the exhaust
has a very large effect on the starting load. 4,— 4,4, 1s a con-
dition favorable for the flow.

PRRPPIAY S SOl S G PP L P A
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We performed calculations on several publlished sets of data
for AEDC model tube wind tunnels using our analytical method of
solution. The method 1s easy and convenient to apply and except for L
certain special cases, the results obtained agree very well with s
those obtained via numerical methods. The discrepancies are gener-
ally 10% or less. For example, for the case of starting with the
value where M_ = 1.10, the AEDC value tg = 76 ms, while the analy-
tical solution gives t = 80 ms.
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%2 SIMPLIFIED NAVIER-STOKES EQUATIONS AND COMBINED SOLUTION
- OF NON-VISCOUS AND BOUNDARY LAYER EQUATIONS#* q

% Kao Chi
(Institute of Mechanics, Academia Sinica)

ABSTRACT i

This paper presents a part of the technical report
(2] in which the author studied the simplified Navier-
Stokes equations and the combined solution of nonviscous

and boundary layer equations. From the full Navier-
Stokes equations and an analysis of the combined solution
of nonviscous and boundary layer equations, simplified
Navier-Stokes equations were worked out. A perturbation
analysis which differs slightly from the match-perturba-
tion expansions of inner-outer layers developed by Van
Dyke [1] shows that the solution of the simplified Navier-
Stokes equations is uniformly vallid with accuracy of
O(Rew-l/z) in the whole flow field, where Rew=gﬁg~£, pm.'

: is the density of free stream, U, the x-componen? of velo-
%: city, L the characteristic length, u, the dynamic viscosity
of free stream.

Lt 1 4 .
‘I. A'_II 's!' Al 4

1
]

The simplified N-S equations possess the properties of para-
bolic-hyperbolic equations. Under equilibrium conditions, it is much
eagsler to use the method of the forward-progressing calculation to
solve the simplified N-S equations than to solve the full elliptical
: N-S equations by means of numerical methods. .While solving the
» simplified N-S equations, one simultaneously obtains the non-viscous
. external flow as well as the viscous boundary layer flow. Theoret-

ically, this 1s superior to the conventional procedure of first com-
puting for the non-viscous flow and then computing for the viscous
boundary layer flow. With respect to many types of flow fields, the
- simplified N-S equations can realistically reflect their mechanical

¥ ;
received in May 1981
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aspects. For 1instance, one can use these equations to accurately
calculate.for the complex flow diagram of the interaction among
viscous boundary layer, the high-entropy layer and the non-viscous
external flow of hypersonic diffracted flow flelds.

Methods for solving the simplified N-S equations are currently
under research. In fact, satisfactory answers have not yet been
found for problems regarding the mathematical properties and stabi-
lity of these equations, the correct way of presenting the Cauchy
problem, and the degree of accuracy that can be reached by the flow
calculations. Besides, different authors hold different points of
view. This paper presents part of the technical report [2] the author
gave in 1967 in which he obtained the simplified N-S equations from
an analysis of the comblned solution of non-viscous flow and viscous
boundary layer equations, and used the perturbation method to show
that one can obtain from that set of equations a solution that is
accurate to the order O(Rew-l/z). It should be pointed out here that
the author later became aware of a simlilar derivation of the simpli-
fied equations, given in [3].

1. Simplified N-S equations

Let x and y be the orthogonal coordinates along the wall and
perpendicular to the wall, respectively (see Figure 1). Let u and
v be the corresponding velocity components and p, p, T, u and X be
the density, the pressure, the temperature, the viscosity coeffi-
cilent and the coefficient of thermal conduction, respectively. Take
the parameters U_ and p Ui of the oncoming stream to be the char-
acteristic values of veloclity and pressure, respectively, and the
fixed wall length L to be the characteristic value of length. Assume
that the order of magnitude of p and u can be estimated from o
and u_. From the standpoint of non-viscous external flow and that

of viscous boundary layer flow, we make an estimate of the various

.terms in the full N-S equations as follows.

R T A 2 At
Us

= = v ~LN ol ==

non~viscous flow %} £%. £§. é% ‘ ucl%. uc1§ R =2 ng.i
v n, s o L v. < Ua =Y (1.1)

layer flow == - ¢ 32 b e 7 SRhS=F
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(1.2)

Here s=;S¢0 % ._, (two-dimensional flow), 1 (axially symm-
etric flo&); H=1+ ky, where k 1s the curvature of the wall sur-
face; Rew= £oUaLl i-O(Re:"*) where § is the thickness of the
boundary layg;; 0: and on represent all the terms in the tangential
and normal momentum equations, respectively, that are of order of
magnitude equal to or less than o(h;:_z_’;)’ . We discuss the case for
Re.»1 as follows: '

l) For y > §, omitting the terms in the full N-S equations
that are of order o(nz:‘-lii) we obtain the Euler equations. For
y<4, | we omit the terms in the full N-S equations that are of
order equal to or less than o(ns:"‘—‘%) and obtain Prandtl's boundary

layer equations.

2) When solving the Euler's equations and the boundary layer
equations simultaneously, a mathematical singularity exists on the
boundary line y = §. The asymptotic value of the solution of the
Euler's equations as y(>§) + 8§ will not agree completely with that
of the solution of the boundary layer equations as y(<6) » §. The
actual order of magnitgc;l)e of this singularity 1is O(Rzz'“%) . One
should note that as Vo 0, the various inertial terms in the normal
Euler equation are also of the order of magnitude O(Re:"‘-'f:)

3) Therefore, in order to eliminate the singularity that arises
in the simultaneous solution of the non-viscous external flow and
the viscous boundary layer flow, we should omit all terms in they<s,
full N-S equations that are of order equal to or less than.c:@u?lﬁﬁ
The resulting equations are the simplified N-S equations. Solving
these equations simultaneously with the Euler equations, we can
remove the singularity and obtain solutions with accuracies on the
order of O(Rc:"‘-vfi) that are uniformly valid throughout the entire
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N flow fleld.
o)
;.-_ As described above, the simplified N-S equations are obtained
i by neglecting all terms in the full N-S equations that are of order
b . 2 .
) equal to or less than O(Re:‘%) as estimated from the standpoint
of the boundary layer. These equations are given below (along
2 with the continuity and energy equations)
by
- —-' (pur’) + b (var') -0
s '(_'s.*av o)1, 8 (o (1.3)
. ’\u Ox 6y H T H s Oy "Oy
N Ou o (k.
~
o ’(H Or +'6y };1) 8 30y ( ov
’l
o 5 bn 608
) 1 8 . sin e .
2, == + 222 22
>, H 9« ( oy e dy
: L2 BT (22,2 (1.5)
Y = Har = oy .
5 -2 oT ,  oT
: - 208 IT) + 2 (2 3L + ma3T) + e ]
A - A 0- O .. & (1.6)
vwhere (0 ) ™ _L.o’ Al (H)

4 '
cp is the specific heat under constant pressure. The simplified N-S
equations (1.3)-(1.6) do not contain % terms. When u # 0, they
have four redundant characteristic values and two non-zero real

characteristic values. Therefore, these equations possess the char-
. . acteristics of parabolic-hyperbolic equations [4] and the method of
forward-advancing calculation can be applied under equilibrium con-

. ditions. It should also be noted that in the simplified N-S equa-

tions, when y(<§) + §, 3”- from O(R®)- 0(1) and the order of

< magnitude of all viscous terms become o (Re* =2 U « Ther ore, the
simplified N-S equations, accurate to the order O(RR-'” , will
smoothly change into a set of Euler equations for y>»# . In other

'1 words, to obtain the solutions for the entire field that are accurate




to the order O(Re:"‘UTz') , 1t 1s not necessary to sqQlve the simpli-
fied N-S equations simultaneously with the Euler's equations. 1In
principle, 1t will be sufficient to solve only the simplified N-S
equations, given the initial and boundary values, i.e., the proper-
ties of the oncoming stream (or shockwave) and the wall surface.

2. Discussion on accuracy

A uniformly valld and consistent solution on the order of
'o g,:‘"%?) can be obtained when one applies the simplified N-S
equations to the computation of the entire flow field, including the
non-viscous external flow and the viscous boundary layer. In order
to prove the validity of this statement, we need to make use of a
perturbation expansion that is slightly different from the usual
match-perturbation-expansions of the inner-outer layers [1]. Within
the viscous boundary layer og€r<? , the solution of the full N-S
equations (1.1) and (1.2) can be expanded in terms of &=Rel? g3s
follows: _
8/Ue ™ ;g + sy + 8%+ -+ '
/U= 0, + 80,y + 89+ -+ !
/o= pp+ spy + &pp + -+ -
# e ™= pie+ S + &y + - ‘(2.1)
[p(X, Y) = po(X)1/epalU% == pjy + 8pp + 6%p 4 « - - )

in the above X ==s/L, Y =y/sL, ".'Rﬂ:m’ %-0(1)3 Bign By * 00

and the quantitiles UygsUyqsces and their partilal derivatives with
respect to X and Y are all of order 0(1). Substituting the expan-
sions in equation (2.1) into the N-S equations (1.1) and (1.2) and
comparing terms in the same power of €, we obtailn

Ou On !E‘SXQ 9 Ou
() Pie ('“ ox T "5y X Ty ("" ay)
1 o i
Kipisty aY (2.2)

o(s") pun ‘QS%'XEHL + 0y Ou, + 'n% + kinirio| + Pu(ﬂn Oy + 'n%gy")
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In the above, g miL, r,=r/L, Pu(X) = p(X)/paU%; . Similar expansions

can be obtained for the continuity equation and the energy equation.
It should be pointed out that in the present expansion, the first-
order equations (2.2) of order 0(1l) and the second-order equations
(2.3) of order 0(e) of the N-S equations for y<& are different from
those obtained from the usual match-perturbation-expansions of inner
outer layers [1]. In the usual expansions, the first and second
order equations for the normal momentum for < $ are, respectively:

gl&-o
ay

%y .
Y [ YW )

Hence, 1n the usual expansions, a mathematical singularity of order
0 (g.;ﬂ -‘{z) exits on the boundary y = 6 when' either the first order equations
or the second order equations of the inner and outer layers are
solved simultaneously.

In the non-viscous external flow region where y > §, the solu-
tion of the N-S equations (1.1) and (1.2) can be expanded in terms

of € as follows:
./v.--.+‘.‘+ﬁ.+ see

0/Ua ™ 0q+ 800 + 8%vg + - -+
P/P--Pco""ﬁa"'l'p‘-b--- (2.4)
'(x’ Y')/p-vz-'.+."+“p‘+ LY

In the above equations Ye-y/L, and the quantities Uggs Ugys--- and
their corresponding partial derivatives with respect to X and Ye
are all of order 0(1). Substituting (2.4) into equations (1.1) and
(1.2), and comparing terms in the same power of ¢, we obtaln
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g It can be readily seen that in the reglon y > § of non-viscous 610

flow, the 0(1) approximation of the N-S equations, i.e., the set

of first-order equations (2.5), is the Euler equations, while the

approximation accurate to 0(e) i.e., the second-order equations

(2.6), 1is a modified solution that takes into account the effect of

the displacement thickness of the boundary layer. Solving equations

. (2.9) and (2.5) simultaneously; one can obtain a solution accurate

- to 0(1) that is uniformly valid in the entire flow field. Solving

: equations (2.2), (2.3) and (2.5), (2.6) simultaneously via match-
perturbation-expansions, one can obtain a solution accurate to
O(Rex™ that is uniformly valid in the entire flow field.

X oo,

2Nt Al SL S

g Cra b

A Comparing the simplified N-S equations (1.4) and (1.5) as well

as equations (2.2) and (2.3) with equations (2.5) and (2.6), one can
> prove that the solutlion to the simplified N-S equations satisfies
the following relation, taking u as an example

y<a |-"——(-..+--.)l<0(-'-n-:'>
¢ (2.7)
7>_’, | -— (..+ ll..) < O(Rg,‘)

Equation (2.7) holds for the other variables as well. Hence, the
solution to the simplified N-S equations 1is accurate to O(Re"®)
and 1s uniformly valid in the entire flow field.

Y




3. Conclusion

a_ The actual form taken by the simpliflied N-S equations will
i vary slightly, depending on whether the viscous terms of order

O(Rez?) are neglected or not. In general, such varlations are
considered small [3]-[7]. Nevertheless, to obtain a solution that
. is accurate to the order O(RezY)) and uniformly valid in the entire
K flow field, it would probably be advisable to use the simplified
2 N-S equations (1.3)-(1.6) presented by the author [2].

- _ The simplified N-S equations can be used to obtain an accurate
5 description of the complex interference phenomenon among the non-

; viscous flow, the high-entropy layer and the boundary layer flow

in the shockwave layer [3]-[7]. They can also be applied to other

‘e flow field calculations, such as non-equilibrium flow, flow in a

: tube, distant wake flow, shock-boundary layer interference and the
viscous diffracted flow near pointed head and blunt head three-
dimensional bodies. The simplified N-S equations have also been
applied to the computation of such complex flow fields as segregated

'-’-'l a l.

2 flow, near wake flow and compressed flow near corners. One should
. note, however, that the simplified N-S equations possess the pro-
perties of parabolic-hyperbolic equations only when the viscous

{ effect is dominant, i.e., when u ¥ 0. For y > 6§ where one can
f neglect the viscous effect,ni.e., u = 0, these equations become the
5 Euler's equations with corresponding characteristic roots
-lewpnl -y BrEey/ M ~1
_ll 1, H'. dpu=H o

Here C 1s the speed of sound and M 1s Mach number. For M>1, 1,,

are real characteristic roots belonging to the hyperbolic family,

pr : and the simplified N-S equations retain the same mathematical
classification. For M<I1, 3 are complex characteristic roots,
belonging to the elliptic family, and there is a change in the math-
ematical classification of the simplified N-S equations. In the
region where the simplified N-S equations are elliptic equatlons,
the Cauchy problem 1s not applicable. It is, therefore, necessary
to obtain the solution by an iterative method or some other speclal
I treatment.
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