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STATE-SPACE AEROELASTIC MODELING AND ITS APPLICATION
IN FLUTTER CALCULATION

Lu Shu-ch'uan*

{(Nanching Aeronautical Institute)
ABSTRACT

In this paper, the available state-space aeroelastic models
are reviewed, and several suggestions for improvement are proposed.
A new state-space aeroelastic model is also proposed. Flutter cal-
culation is carried out on two types of wings. These examples show
that the new state-space aeroelastic model is one of high accuracy
and low order. A method is presented by which the modals can be
automatically identified and the flutter point automatically determined
during the course of flutter calculation using state-space aerocelastic
modeling.

I. INTRODUCTION

In recent years active flutter suppression has been widely studied,
and research interests have included the problem of simplifying the
control law for multiple input and multiple output systems under
various limiting conditions. It is therefore necessary to establish
aeroelastic models that are compatible with modern control theories.

The crux lies in establishing a non-steady-state aerodynamic model.
The aerodynamic forces found in the literature on flutter theory
have been derived under the conditions of simple harmonic motion.

In applying the modern control theories, however, it is necessary

to have an expression for the aerodynamic forces that is valid under

*
Received in May, 1982.




any given conditions of motion, and that takes the form of a rational
function. 1In other words, the non-steady-state aerodynamic forces
at the various dispersed points on the imaginary axis of the Laplace
complex plane need to be extended to the entire plane. Further-
more, this approximate expression should be a rational function

of the Laplace variable s. 1Its accuracy of fitting should be high,
and the order of the corresponding aeroelastic model should be low.
This type of rational approximation was first proposed by Jones[l],
and expanded later by several other authors [2,3,4].

Although no solid proof has been given, this method of extension
does have some significance. For, in flutter calculation, the problem
of greatest concern is that of determining the critical conditions,
under which the motion is simple harmonic motion. The error for
the points in the neighborhood of the imaginary axis (which approxi-

mately undergo simple harmonic motion) cannot be too large either.

We have reviewed various methods that are presently available,
and proposed some suggestions for improvement. We have also pro-
posed a new state-space aeroelastic model.

Because several state-space coordinates are introduced in the
state-space aeroelastic model which are not present in the original
structural model, extra roots are produced. A brief discussion
is given on their properties. The first and second derivatives
of the characteristic values with respect to velocity have been
derived in this paper, and have been used to automatically identify
modals (including the extra roots) and automatically determine the
flutter point.




II. PRESENTLY AVAILABLE NON-STEADY-STATE AERODYNAMIC MODELS
The Laplace transform for the flutter equation of motion is
(MIS+ (B s + (KX (8) =a (A {X(s)) (1)
where [X(s)] is the vector of general coordiates of the model, of
order (n,l): [Ms], [BS] and [Ks] are, respectively, the mass, resistance

and rigidity matrices of the structure; s is the Laplace variable.

(A} is the matrix of the coefficients of influence of the aero-

is the dimension-

. . . — —_ sb
dynamic forces, and is a function of s, where s=—

less quantity of s. b is the half-chord length of the wing. V
is the velocity of the oncoming stream. gq is the velocity pressure.

The problem at hand is this: Given the matrix of the coefficients of
influence of the simple harmonic non-steady-state aerodynamic forces

for a set of values of k:

(AGR)I=(Fk)I+ i (G(k)) (1=1,2,-L)

wb
where k=

is the reduction frequency, find a rational approxi-

7

mation that can be used in the fitting.
The presently available rational approximations are:

1. Roger's approximation [2]:

N (Eds
(A)=(QI+(QF QI+ Y} — (2)

i=1
The resulting aeroelastic model is of order (N+2).n. In most appli-
cations [5,61, N=l i.e., the order is 6n. Usually,
r is taken to be the N values of k within the range of the reduc-
tion frequency studied.




2. Padé's approximation in matrix form [3,4]:

(Aogd = GLII=(RD((PI+(PIs ~(P)57) (3)

The resulting model is of order 3n. s

3. Karpel's approximation [(4]:

(4. )=(Q)+(QIs+(Qs*+ (D) GEI]-—[RJY'ffﬁf (4)
(n,n) (n,m) (m,m) m,n

The numbers in the parentheses below the equation denote the order
of the matrices. The resulting model is of order 2n+m.

4. Indices for fitting accuracy:

In this paper, three indices are used in evaluating the fitting

accuracy.
(1) Total relative error ¢;
L L] n
N D WFuiCk) = Fi(k)) + (Gupuii (ki) = G, (kD)D)
e = i=1 i=1 /=1
L n n
Z E Z (Fii* (k) + G2 (k1)) (5)
I=1 i=1 j=1
Fap and Gap are the F and G matrices obtained in the process of 1

fitting. 1 and j are the subscripts of the elements of the matrices.
(2) Relative error of the elements eij;

For each element of the [Fap(kl)] and [Gap(kl)] corresponding

4
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to the L values of k there is one relative error. There are Zln2

in all which we will not list here one by one. 1In fact, the error
of each element depends on the form of the approximate equation,
the manner in which each element varies with the value of k and

the relative amount of these variations. For a given set of sub-
scripts, these three contributions are of a common nature. There-
fore, the errors of elements with the same subscripts can be super-

posed, 1i.e.

L
S UF i) = F (k) + (Guapri (ki) = Gy (kD))
! =1

€= . -

. L
Y k) +G iR (6)
1=

(3) Error in flutter velocity €yf

"=V
C,!= ’V'O 1o (7)

where Vfo is the flutter velocity in the absence of control obtained
from the data collected prior to fitting, and Vf is that obtained

from the various approximate equations.

Among the above three types of errors, ¢ reflects the total

fitting accuracy, and is the main index. After the fitting, €55
ought to be examined to see if any important model has a large
error in the range of reduction frequency of interest. €V is
also just ar index for reference only. It only indicates the
error of flutter velocity in the absence of control, while in
the presence of control, there may be very large variations in
flutter velocity.




5. Comparison and Analysis:
Two examples have been computed in this paper.

Example 1 is a triangular wing with degree of freedom n=4.
The matrix [A] of aerodynamic force is computed for k=0.1,0.2,
0.25, 0.2857, 0.3333, 0.3636, 0.4, 0.5, 0.6667 and 1 using the
method given in Reference [7] for subsonic flow. The Vfo thus
obtained is 908.4 ft/sec. (The experimentally obtained value
is 924 ft/sec.) The errors obtained from the above three fitting

equations are listed Table 1.

Example 2 is a swept-back wing, with n=3. Fitting of [A]
is done for k=0.2,0.2222, 0.25, 0.2857, 0.3333, 0.4, 0.5, 0.6667

and 1. The results are shown in Table 2.

In the above examples, when using Roger's equation, we take
N=4 and r=0.2,0.4,0.6 and 0.8. When using Karpel's equation,
we take m=4 and the initial values of r to be -0.2,-0.4,-0.6 and
-0.8.

It is obvious from Tables 1 and 2 that, among the three methods,
the fitting accuracy is highest for Roger's equation. The total
error ¢ is small, and its €j5 are particularly small. However,
it has a relatively high order. The orders of the other two methods
are half as high, but their e is rather large for the second example.
In particular, the ¢.. for some of the elements are very large.

1]
Evf is small for all three methods. Although the latter two methods
have larger ¢, their EvE remains small because of the requirements

that [A] or its imaginary part be perfectly fitted when k=kf.
The main reason for Roger's equation to have a higher fitting

accuracy is as follows. 1In the process of fitting, after r, is

determined, each element in the same matrix is independently

6
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determined. On the other hand, in the other two methods, the
elements in the same matrix must be determined simultaneously.

Thus, in the process of fitting, the accuracy of the larger elements
is ensured at the expense of that of the smaller elements. The

larger the extent of correlation, the larger the error.

Fitting accuracy is also affected by the method of fitting.
In the latter two methods, the special conditions of k=0 and of

k and k are utilized to establish the three relations for

f1 f2
the special matrices. Although the computati-~n is thus simplified,
it 1s accompanied by a large error. Moreove. che relation used

in the Karpel approximation to fit [R], [D], 4 [E] is nonlinear.

Even after many iterations, good fitting can ly be obtained

locally. This adversely affects the increas - accuracy.

When carrying out flutter calculations using the above approxi-
mations, it 1is necessary to introduce augmented state coordinates.
This gives rise to extra roots. In our two examples, the extra
roots produced by using Roger's and Karpel's equations are stable
roots. Because no restriction is placed on eigenvalues of [R]
by Pade's matrix relation, unstable eigenvalues are produced in
both examples. These extra roots arise because of the mathematical
model of aerodynamics used, and do not exist in the actual physical
model. Therefore, they can be singled out in the computations.

(See Section V.) However, in the simulation, it must be ensured

that negative characteristic values exist.

It can be seen from the above that Roger's approximation
v has the highest accuracy, and its extra roots are all stable.

However, its order is relatively high. By carefully selecting

the r, values, the fitting accuracy can be further enhanced.

Karpel's approximation has a lower order, and a fitting accuracy
improved over that of Pade's. However, the nonlinearity in the
fitting places a limit on the improvement of fitting accuracy.

See Section I1I for an improvement of this situation.

I —




Pade's matrix approximation has the lowest accuracy.

II1I. IMPROVED KARPEL METHOD - THE METHOD OF SUBMATRICES

In Equation (4), take m such that it is an integral factor
of n, and subdivide each matrix 1into several m » m submatrices.
As {

(DIGRUII—(RD'=GRUTI~-(0D) (D) ()
where 4

(@) =(DI(RID" ()

ithe following relation holds for a certain submatrix on the left

hand side of Equation (4):

(F. )+ i (G)=1Q,.,;) +ik(Q,,;)) =k (Qu. ;] + GRUT I —(0) (DI E )ik 10)

Multiplying (ik[I]-[@i]) tc both sides of Equation (10), separating
the result into the real and imaginary parts, and transposing,
one obtains

QTR AT + R ((Qy., )7 = (QuiT(Q3T) = (F.IT(QIT=k(G.IT

k ((QuudT(@37T— Q3T ~ (ENT(DNT) +4(Q, )T = (G.,)7(@)T=— k [F,,-J’} (i1)
Combine the relations for the submatrices in the same subrow and
put them in the form of a set of linear equations in the unknown
matrices Q.10 (Q.IT0)T—(C I —~(E) (D37, —(Q.37+(Q.,07 00, —WQu’y —.u
;Qi,l- deno:es the first subrow (i=1l, 2,3) of '_Qij. First solve for these
five sets of matrices, then find the eigenvalues and eigenvectors
of [61], to be formed separately into [R] and [D,]. [Q3,l]’ [92,1]'
[Ql,I] and (E] can then be solved from the other four sets of

matrices.

8
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In solving the other subrows, first express i /- o
of Eguation (lQ) as DCGRITI-TR ) , and wri
as (AR} + 1 [Al}]. Then scparate Eguatocn (10) ints the read arna

1maginary parts, giving

G =Q. ., ~k ek Cilve b (i)
e L)

) (.2%)

‘..

C=hCQy RN TAR G
Again, combine the relations for the submatrices in the same sibrow
ard transpose, and one obtains the set of lincar cguations in
the unknown matrices (Q.:%. Q.17 Q.o (D which can be scived

for readily.

It can be seen from Tables ! and 2 that, with resgpect to
the two emxamples, the fitting accuracy of the results obtained

by this method 1s much better tharn that of XKarpcel's method.

1s small! in general. s 18 very small. Only © 9 in exargle
1 1s high. This 1s because the absolute value of the element
with the same subscripts 1s the smailest. 1In examplie 2, there
are unstable extra roots, which can be elirminated by placing

restrictions on the eigenvalues.

In summary, in the above method, Karpel's rnonlinear fitting
equation is transformed into a set of linear eguations. The fitting
accuracy is thus greatly improved.

IV. A NEW APPROXIMATION

Putting together as much as possible the merits of the various

methods, we propose the following approximation:

v -
. N § D E
(.4-'1=EQ‘J+CO.JJ+EO;33" Z i+r"J‘" (14)
s =1

4J------IIlllllllIlIllIIIIIlllIIllIlIlIIIIIIIIIIIIIIIIIIIIIII.‘



The steps for determining the matrices in the above relation arc

as follows:
(l) Assign a value to N.
(2) Assign 1nitial values to r.

(3) Take di j=1 for a certain row (such as the jth row),
’

where i=1,2,....N, and determine the jth row of [Q,], [Q,] and
[Q3], as well as [Ei] (i=1,2..... N}, using the same method as
Roger's.

(4) For the other rows (e.g., the ith row), one has
N s \
|o T k? |Q T _,k'_.__yE >d —(lF(k) )1
(s lv'J) - I(L s-:.!) + 2 r.’,-k? ewm/dme = L4 R, J

. m (I=1.2.-L);
: , ) (15)
RQQ 7= P e (Ede = (1G.(R) 1) '

re J
m= 1

In the above eguation, [Ql i] represents the ith row of [Ql],

14
dm,i denotes the ith element of [Dm], etc. [Ql,i]’ [QZ,i]' [03,11
and the various dm , are solved for.

(5) Find ¢ .

(6) Determine ri (with the restrictive condition that r,
be greater than 0.05), and repeat steps (3) to (5), until the

iteration converges.

(7) If accuracy is poor, increase the value of N and repeat

steps (2) and (6}.

In the above process, the fitting accuracy is highest for
the jth row that is the first to be determined. Therefore, fitting
should be carried out first on the row where the elements with

larger absolute values or the degree of freedom corresponding

10
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to the most important model are found.

Tables 1 and 2 show the results obtained by this method (N=4).
In example 1, ¢ of this method is smaller than that of Roger's.
In example 2, it is larger than that of Roger's. This method
results 1in slightly higher €55 than that of Roger's method, while
€5 is small for both. However, the order of this method is only
about half as high as that of Roger's method. The accuracy of
our method is obviously much higher than the other two methods.

In summary, this method provides a model with high accuracy
and low order. This is because the augmented subspace corresponding
to each relation in the approximation is of order 1, while the
subspace coresponding to the relations in Roger's approximation
is of order n. Moreover, the interdependence of the elements
in our approximation is reduced to a minimum, and the values of

r are carefully selected, thus the improved fitting accuracy.

V. METHOD FOR AUTOMATICAL MODAL IDENTIFICATION AND FLUTTER POINT
DETERMINATION

From Equation {A6) of the Appendix, it can be seen that the

unified state-space aeroelastic model is given by

{@=(HI{9} (16)

For the significance of the symbols, see the Appendix. The real
part of the eigenvalue of the above equation represents the rate
of attenuation, while the imaginary part represents the frequency

of vibration.

In the above equation, [g] contains the augmented state coor-

dinates Xa. (i=1,2,...N). Therefore, N extra eigenvalues have

1

11




been introduced. These need to be distinguished from the structural

models in the computation.

To identify the modals, one needs to find the first and second
order derivatives of the eigenvalues s with respect to the velocity
V. The first order derivative of the mth eigenvalue Sm with respect

to velocity 1is

(Sa)e=Lp. ! (H).{ga}

(17)
In the equation, (p_] and {q,} are, respectively, the mth left
and right eigenvectors. The second derivative of Sm with respect
to velocity is:
M
(S)ew=Lpa | (H)m'qd + 2 Y audpe ) (HY )
1 =] (18)
i ¥m
where M is the total order of the model, and
du,=1p ] (H). {9} /(Sa—S)) (19)

With the help of these two derivatives, the modal can be

automatically identified. The main line of thought is as follows.

(1) Calculate the eigenvalues for va0. At this point, the
imaginary parts of the eigenvalues corresponding to the structural
modals approximate the individual vibration frequencies, while
the imaginary parts of the eigenvalues corresponding to the aug-
mented m~ds]ls are approximately zero. Hence, if one arranges
the eigenvalues in the order of decreasing magnitude of the imaginary
part, the first 2n eigenvalues will be the ones corresponding
to the structural models.

{2) Calculate (Sm)V and (S_) Assume the increase 1in

m'vv’
velocity to be AV, then one can use the derivative at V=Vi to

represent the eigenvalue §./,, at Vi1V +av:

12
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Suh. =S +(Sa)e AV + 1 (S AV
7., =Sm,+(Sa) 5 (Sade-A (20)

(3) Solve for the eigenvalues Sm' from Equation (16),
and compare it with S' . If the diséfépancies in the real and ‘4
imaginary parts all li%+%ithin a certain range (eg. * 10%), then
these two eigenvalues correspond to the same modal. Otherwise,

interchange the order of the eigenvalues.

{4) In Equation (20), it has been assumed that (Sm)vvv'AV3.
is a small quantity. Hence, if there is a relatively large differ-
ence between the values of S and S' , one can reduce the

step size AV until it is possigie to au%g%atically identify the

modals.

{5) The point corresponding to the condition where the real
part of the structural modal is zero is the flutter point.

Figure 1 shows the result of the flutter calculation. The
branches 1-4 correspond to the structural modals, while branch
5 corresponds to the augmented space coordinates. « =0 for the
other two modals and is not shown in the figure. From Figure la
it can be seen that the frequency of branch 5 increases sharply
with increasing velocity. Therefore, it is not possible to distinguish
the modals by traditional means (i.e., to order the modals according
to the magnitude of the frequency). From Figure 1lb, when v=360
ft/sec, there is a relatively large variation in the real part*
of the eigenvalue. Therefore, the step sizes are reduced in the
calculations to keep track of the variation. Thus, this method
can be used to identify the modals and determine the flutter point
automatically even in fairly complicated situations.

13




VI. CONCLUSIONS

1. It has been shown that the accuracy of matrix Pade approximation
is unsatisfactory even though its order is much lower than Roger's.
So does the order of Karpel's, whose fitting accuracy is better

than that of Pade's, but improvement of the accuracy is limited

by nonlinearity of the fitting equation. The accuracy of Roger's
approximation is the best because of independent determination

of elements in the same matrix, but its order is also the highest.

Improvements to thne Karpcl fltting methcd which are prircsed ivn
this paper, simply deal with the conversion of nonlinear problems -
linear ones, which not only simplifies calculation but improves the

fitting ancuracy somewhat.

imate expression gro
r» but its order nurmber is

f Roger. It gr
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14

This paper proposes first and second order derivative expression:c

. Th
- e B

[RREEE SRSy




Table 1.

Error comparison between various methods

Ei stk Roger c! 'ade’ DIEM Karpel mf € B & @*Il‘)ﬁ&
@ 1 2 12 12 ; 12 | 12
e 0.58% 1.98% 1.82% | 0.48% 0.22%
e, -0.9% -0.3% -0.6% i -0.5% 0.1%
en 0.001 0.027 0.027 0.064 0.025
¢ 0.000 0.046 0.021 ‘ 0.038 0.010
e 0.001 0.004 0.007 | 0.003 0.002
e 0.001 0.046 0.000 | 0.004 | 0.005
P 0.016 0.203 0.130 :‘ 0.336 1 0.087
€23 0.001 0.063 0.024 ! 0.056 0.004
ess 0.002 0.015 0023 0.006 0.006
€24 0.005 0.108 0 019 ! 0.068 0.015
e 0.003 0.084 0.015 | 0 061 0 001
£s2 0.006 0.066 0.031 0.052 0 008
ey 0.005 oon 0.011 . 0 004 0.001
ey, ! 0.009 | 0.057 | 004 0.01¢ 0 003
€ : 0.002 ; 0.116 0.080 0 0% 0 056
fa ; 0 002 0.048 0 009 0 029 0 0l€
e { 0008 0.01¢ i 0.037 o 06 0 005
e | 0002 0.037 i 0.027 0004 ! 0.004
Table 2. Error comparison between various methods

<)
[ | Roper ' ®EK | Karpel 1@ e n s Drzunn
i
@ P 18 'y . 10 ) ‘ 10
L4 0.55% 9.55% 21.59% 0.74% .83%
2y, 0.3% -5.5% 1.3% 0.8% 1.0%
" 0.007 0.062 0.060 0.009 0.003
€ 0.016 0.220 0.170 | 0014 0.011
e 0.002 0104 o234 | 0.004 0.001
e 0.021 .08 0.172 o015 0.048
s 0.008 0041 0.138 0.015 0.023
oy 0.005 0.034 0.242 0.002 0.005
™ 0.003 0.095 0.125 0.018 0.021
s 0.010 0.on 0.038 0.024 0.081
o 0.008 0110 0274 000 s.010

1) name of approximation; 2) Pade matrix approximation;
3) the method submatrices; 4) method of this paper; 5) order.

15
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[ 500 1000

Figure la. Variation of frequency Figure 1b. Variation of real
(imag. part of eigenvalue) with part of eigenvalue with velocity.
velrocity.

Key: 1) deg/sec; 2) ft/sec.

APPENDIX

Equation of Motion for State-Space Flutter

The Laplace transforms for the equation of motion for the
flutter of an aeroelastic system with n degrees of freedom is

((M)S*+(BIS+KDIX(S)=a AN (SH (Al)




For the meanings of the symbols, see Equation (1).

The general form of the rational approximation of [A] is

given by

N
(A)=(Q)+ Qi+ Qi+ Y (DIGUII+ (R)ES

(", 8) (m,n) p(m.m (m,m) (m, n) (AZ)

The numbers in the parentheses below the equation denote the order
of the matrices. The corespondence between the matrices in the
various approximation equations discussed in the paper and those

in Equation (A2) 1s given in Table Al.

Substitute Equation (A2) into Equation (Al). After rearranging,

one gets
2 )
. coes - o . -
STAD{A(S)>=(-S(BJ—\A;-Q 'e“[DJOEI)+(RJ)[EJ‘/L‘(S)) (A3)

where

(M) = (M) = } PBHQ,)

(B)=(B)~ ,Pbi"(Qy)

(KI=(K)— 5 Pi*Q)
If we take

!

' (X (SN =(GLII+RIMEIHX(S) (Ad)
and substitute it into Equation (A3), we obtain, after rearrange-
ment and conversion, the equation of motion for the state-space
flutter; £ 0 I3 0 . o \ ®

% —IM)MK) —(M)'(B) QMDY - a(M)'(Da) ! %
. _V ‘
X, 1 - 0 (El) E[Rl] 0 { Xe; (AS)
: : : v ’ :
X! 0 (EN) 0 -'b“(RNJ D Xen
L)

“‘¥ 17 i




This equation can be written in the concise form:

{¢: =(H){9} (A6)

The total order of the eguation is Z2N+Nm.

Table Al. Table for corresponding symbols

F®REMNR W ! 0 O Q D R, | E
D "3 » & ‘ 2 e e A

& ] (N, %) (m, %) (fn,n) (n,m) (m,m) (m, &)

Roger (N+2)s s N Q ' Q; Q 1 ] E
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Key: 1) name of the rational approximation; 2) total order; 3)
Pade's matrix approximation; 4) method of this paper; 5) with
respect to Pade's matrix approximation, we have:

Q3= ~(RIPII
Q1) =[Py
LE)=(P-TQi3 +(RIC
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STUDY ON LONGITUDINAL DYNAMIC CHARACTERISTICS OF PILOT-AIRPLANE SYSTEMS

- APPROACH TO THE METHOD FOR STUDYING PIOl PROBLEM -

Ch'en T'ing-nan Li Ch'un-chu

(Air Force College of Engineering)

ABSTRACT

In order to meet the needs for studying PIO (Pilot-Induced
Oscillation) and take the serious influence of control system nonlinearity
(e.g., clearance and friction, etc.) on PIO into account, a dynamic
structure diagram (see Figure 2) and an analog structure diagram
(see Figure 3) of longitudinal motion of pilot-control-airframe
with nonlinearity have been derived. Moreover, computations have
been carried out on a DMJ-3A analog computer for three cases as
examples, i.e., the moment arm in normal state (short arm), the
moment arm in troubled state (long arm), and the moment arm still
in troubled state (long arm) without pilot's correction, for a
fighter flying at low level and high speed. The results are shown
in Figure 4, Figure 5 and Figure 6. It is obvious that they coincide
with the actual flight and thereby it is proved preliminarily
that the structure diagram and the analecg structure diagram (i.e.,
the computation method for PIO) proposed are not only reliable,
but also of value in practical analysis and use. The results obtained
also demonstrate that the phenomenon of the longitudinal oscillation
with big amplitude for a fighter at low level and high speed is
the problem of PIO.

*
Received in January 1982.
1) PI10: an abbreviation for Pilot-Induced Oscillation
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In order to get a clear derstanding of the influenoe oI the pilot
on the pilot-airplane system, different pilot's transfer functions
have been adopted to compute the pilot-airplane system on the DMI-
3A analog computer. The results obtained prove that the mathematical
model of the pilot exerts a great influence on the pilot-airplane system

(see Figure 7).

We wish to thank Prof. Chao Chen-yen,Assist. Prof. Fang Ch'eng-

Chin and Assist. Prof. Liu Ch'ien-kany for theii guidance in this study.

I. PRESENTATION OF THE PROBLEM

Arround the 1940's, because of improved performance and range of the
flight of airplanes, there arose the problem of "pilot-induced
prolonged or uncontrollable oscillation"[3], i.e., the so-called
PIO. PIO 1is not a simple problem of stability of the airplane
itself. As described in Reference [4], airplanes in which PIO
occurred depended both on themselves and on the pilot at the control
stick for stabilization. Therefore, this is a typical stability

problem of a pilot-airplane combination.

At present, PIO has become an important problem affecting
the performance of high-speed airplanes. It has aroused great

interest, and is being studied at home and abroad. However, in

the iiterature we have studied, the effect of nonlinearity has
often been omitted. It has been clearly pointed out in Reference
[3] that control system friction and flight path are also sig-
nificant factors affecting PIO. Moreover, in some studies on

PIO at home and abroad, no consideration has been given to the

influence of the pilot. 1In others, the pilot's transfer function
has been reduced to 1. This is not appropriate, either.
21
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For example, some of the so-called "large-amplitude oscillations"z

were actually due to the pilot's participation in the control.

In order to carry out a more accurate and realistic study
of the PIO problem, i.e., the problem of stability of the pilot-

control-airframe system, we have, through research on the struct .re

and inter-relationship of the pilot, the control system and the
airframe, presented a dynamic structure diagram of the longitudina:
motion that includes nonlinearity. Computations have been carried

out on a DMJ-3A analog computer.

II. CONSTRUCTION OF THE DYNAMIC STRUCTURE DIAGRAM OF THE LONGI-
TUDINAL MOTION OF THE PILOT-CONTROL-AIRFRAME SYSTEM

The pilot controls the airplane chiefly by means of adjustment
of attitude # or overload Any. We will discuss the case of contrcl

based 0. overloadl,

In this paper, discussion will be centered on the type of
airplanes in which (1) the control before the power-assist unit

is mass trimmed, wherefore

Kn (overload feedback gain) = 0
Yy

1 . .
Ko = K ——éb—— & ( & feedback gain) = 0, and

2) "Large-amplitude oscillation” is a term used by the troops for
large-amplitude longitudinal oscillation.

1) We plan to discuss the case of control based on attitude in
another paper.
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(J) the power=-assilst uUnlt 1s 1lrroeversible, wherefore

Kar (xand & feedbuack guin) = 0,

Thus, the block diagram for the pilot-controli=-airframe syster

\

can be simplifiled to that shown 1n Fagure 1.

I3 b, fe,
r.o A i LAY b2 (LY 1Y

Figure 1. The man-rachine block diagrar of an aircra‘t whose
control is mass trimmed znd 1s of 1rreversible tyre.
Key: 1} ¢ ,
Y ’ n, ; 2) piict; 3) contrcl syster; 4) arrfrare.
}input

A. Mathematical Model of the Pilot

The study of the mathematical model of the pilot 1s a very
complicated task. Much work has already been done at home and
abroad. Specifically, the model should possess such characteristics
as nonlinearity, delay, adaptation and self-adjustment{7]. 1In
most cases, however, only one or a few of its characteristics
have been stressed for the sake of simplicity. 1In this paper,
we use the pilot's transfer function given in Reference (9]:

s otg

Ke
Coilot (5= 1375
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B. Mathematical Model of the Control System

The longitudinal control system refers toe the entire systen

from the countrol stick to the elevator. It includes the control

stick, connecteor rod, mass trim, moment arm, load mecharnisr,

tower-assist unit and the elevator. To simplify the computatiorn,

we make the following assumptions:

(1) The cffect of gravity is negligible. Because gravity
1s basically a constant, it can only have a very small influence

on eguilibrium(8].

(2) Effect of mass (inertia) 1is considered for the elevator
only. The reason 1s: for an aircraft whose control is mass traimmed
and is cf irreversible type, the overload has no effect on eguili-
brium. Moreover, 1n controlled motion, the acceleration is in
general relatively small. Therefore, the inertia produced in
the various control columns before the power-assist imjt 1S negligible

when compared to that produced by the load mechanism.

(3) The 1inertia produced in the elevator is regarded as an
inertial load on the power-assist unit and therefore 1is added

onto the values of the power-assist unit in the computation.

Based on the above assumptions, the structure diagram of the

control system can be constructed sectionally.

1. From the control stick to the power-assist unit (including

the load mechanism) :

x _=f (p,, flight path, friction)
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itudinal motion of pilot-control-airframe

Figure 2. The dynamic structure diagram of long
combined system,

3) elevator;
7) power-assist unit;
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8) airframe.
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In the above equations, X, 1s the displacement of the control stick,
P, is the moment of the control stick, x, is the displacement of
the forward-pull stick of the power-assist unit, and K1 is the

transfer ratio of the two displacements.
2. Power-assist unit:

From Reference [10], the dynamic structure diagram of the

power~assist unit is as shown in (B} of Figure 2.
3. From the power-assist unit to the elevator:

The displacement xp output by the power-assist unit causes
the elevator to deflect. Besides serving as input to the airframe,

the deflection of the elevator also has the following two effects.

(1) It produces an increment in the shearing moment in the
elevator. This increment in moment is directly fed back to the

power~assist unit.

(2) The angular velocity éz of the deflection of the elevator
gives rise to a certain resistance moment, which is also fed back
to the power-assist unit. The magnitude of this moment can be
calculated from the following relation:

= PR, s
Mresistance™ /8 Mshear, 2 b%udder'srudder‘qu v

The dynamic structure diagram for this pcrtion is as shown

in (C) of Figure 2.




C. Mathematical model of the airframe

As the problem of PIO 1s mainly associated with short-period

modes, the transfer function of the airframe will also bc¢ expressed

in terms of short periods.

The effects of the airframe are as follows. First. ;ny 1s
produced as a result of the input i‘z. This Jny 1s to be fed
back to the pilot. Secondly, the input ofjrz gives rise to . .,

and g all of which will gilve rise to an increase in the anglce

of attack of the elevator This causes an increasc

" ‘elevator”
in the shearing moment.

m L
shear clevator
The dynamic structure diagram of the airframe is as shown

in (D) of Figure 2.

D. Dynamic structure diagram of longitudinal motion of the

pilot-control-airrrame system.

From the above analysis, the dynamic structure diagram of

the pilot-control-airframe system should be as shown in Figure 2.

IIT. COMPUTATIONAL METHOD

It can be seen from Figure 2 that after the nonlinear factors
of the pilot and the control system are introduced, the solution
of the problem becomes very complicated. The authors used an
analog computer to solve the problem presented in the structure

diagram.
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Based on Reference [11] and similar works, the dynamic structure
diagram in Figure 2 can be transformed into the analog structure
diagram shown in Figure 3. (The transfer coefficients given in

the diagram correspond to those in the following computation.)

For the pure delay e 1% , the authors have used the curve
fitting method of Smith and Wood, taking

s 10—4 715+ 1187

€ 104,75+ 1St

In addition, in order to increase the simulation accuracy
for the friction characteristics, we have, on the basis of Reference
fll1], put two ratio devices in series.

For the equations used for obtaining the transfer coefficients
in Figure 3, see Reference [2].

IV. EXAMPLES

The emphasis of this study is on the man-machine system stability
of a fighter flying at low level and high speed under three typical
conditions, namely

(1) moment arm in normal state (short arm),

(2) moment arm in troubled state (long arm),

(3) moment arm still in troubled state ({(long arm), but without

pilot's participation in correction.
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Figure 3. The analog structure diagram of a fighter at low altitude and high speed
(H-2000m. M=0.9), and its moment arm in normal state (short arm) or in

troubled state (long arm).
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The analog structure diagram is basically the same for the casec
with the moment arm in normal state and that with the moment arm
in troubled state, except that the values for the constant-coefficient
parts a,b,c and d, and for the voltage and slope at deflection
point on the general function representing the moment of the control
stick are different (see Figure 3). The analog structure diagram
for the case where the pilot does not participate in controlling
the fighter can be obtained by making some changes in Figure 3.

These are:
(1) Cut the return part of the overload feedback.
{(2) Omit the pilot contribution.

The conditions for the computation are taken to be as follows.
Level of flight H=2000m. M=0.9. Weight in flight G=6652 kg.
Center of gravity located at §T=O.4l.

The result of the computation for the case with the moment
arm in normal state (short arm) is as shown in Figure 4, where

the input Ame=0.5,

Figure 4. The man-machine system
output of a fighter with its moment
arm in normal state (short arm).
Input: 0.5qg.

An. | Aa an, L]
Key: 1) (1/sec); 2) (sec). 07 —— e

t
{amo ------ “ 0.10

0.50
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The result for the case with moment arm in a troubled state

{long arm) 1s shown in Figure 5. It should be mentioned here
that in this case there is rapid divergence. If the input is
stIlll taxken Lo Ce Ame=0.5 , trhen the mathine sulckly tezimses
overloaded. We have reduced the inpuf t< Ameg=0.025 s =zt be =il .-
> prol:ing the period befcre overload cfcur: ani ti g% & ciexr
rtizture of the process of divergsnce.

Figure 6 shows the result for the case with the moment arm
still in troubled state but without pilot's correction. The input

is still taken to be :n = 0.5.
input

In order to see the effect of the pilot on the man-machine
system, we also computed the man-machine stability under the condition

in which the pilot's model was replaced by G {(S)=1. The result

pilot
is shown in Figure 7.

From the curves obtained from the computation we see that

for the fighter flying at low level and high speed:

(1) When the moment arm is in normal state (short arm), the
man-machine system is stable. This is in agreement with the actual

flight experience.

(2) When the moment arm is in a troubled state (long arm),
the man-machine system is unstable. Divergence is rapid even
for a very small input. ( In the example,an is only 0.025.)

input

This is also in agreement with actual flight experiences.

.3) When the moment arm is in a troubled state (long arm)

and the pilot does not participate in correction, the man-machine
system is stable. This agrees with the pilot's experience.
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Figure 5. The man-machine system output of a fighter with its

moment arm in troubled state (long arm). Input:
0.025g.
An,
1.0
0.5
- n —— 2.
0 0.3 ) 13 7.0 1B

Figure 6. The output of a fighter without pilot's correction and

1ts moment arm in troubled state (long arm). Input:
0.5g.
ARy (AR, s
1.5}0.75 any, (— G“S"¢§7T
ARgy teen-- 1 Ge(S)=1
1.0f0.56

0.5?0.25

Figure 7. The effect of pilot's transfer function on the man-
machine system.




Key to Figures 5,6,7: 1) (l/sec); 2) (sec).

(4) I1f, when the moment arm is in a troubled state (long arm),
the pilot's transfer function is simplified to 1 (i.e., the effects
of delay, inertia and amplification are omitted), then the man-
machine system is stable. This obviously does not agree with

what happens during actual flight.

V. CONCLUSIONS

The following conclusions can be drawn from the simulation

computations:

1. The structure diagram derived and simplified by the authors
for a man-machine system that includes the nonlinear factors of
the pilot and the control system can be used in the study of PIO.
Not only is the computation method relatively simple, but the

results are also very reliable.

2. The authors believe that the large-amplitude oscillation
breakdown that occurred to a certain fighter while it was flying
at low level with the moment arm at long arm was a PIO problem.
The divergence of the oscillation under such conditions was entirely
due to the pilot. If the pilot had not participated in the correction
then the airframe would have been stable.

3. There is a fundamental difference between the stability

of the airframe and the stability of the closed-loop including
the pilot.
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4. The pilot's transfer function has a large effect on the

computation of man-machine stability.
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STATISTICAL DETERMINATION OF A FLAW DETECTION
PROBABILITY CURVE

Lin Fujla and Huana Yucshan

{(Northwestern Polytechnical University)

Abstract

The reliability prediction and damagce
tolerance analysis of aircraft structures
based on the principles of fracture mechanics
reguire the knowledge of the ability of flaw
detection. A statistical method for deter-
mining the flaw detection probability curve
is developed and a test technicue for obtain-
ing independent flaw detection data is
described in this paper. Based on these
data and a formula proposed in this pavper,
the confidence lower limit of thke flaw
detection probability with the given con-
fidence level for an arbitrary size of a
sample and for an arbitrary value of the
detection probability can be calculated
merely with the help of the table of F-
distribution. The presented formula
occurs exactly and simply in comparison with
other approximate formulas proposed by some
authors.

As an example, the flaw detection
probability curve with 95¢% confidence is
given, which comes from the results of
inspecting corner flaws at holes in 50
specimens. The specimens were made of steel
45 and the magnetic-particle technique was
applied for non-destructive inspection.

FPinally, the simplified method for
detarmining the flaw detection probability
curve is also discussed.




STATISTICAL DETERMINATION OF A FLAW DETECTION /.
PROBABILITY CURVE

[\
—

Lin Fujia and Huang vYushan

(Northwestern Polvtechnical Urniveorzioy)

ABSTRACT

This paper describes a method for obtairing and manipulating

data for determining the flaw detection orobability curve. A

formula is given for the lower confidence 1imit that is accurate
and simple. Results of actual tests have been included. A
simplified method for determining the flaw detection probability

curve 1is also discussed.

I. Introduction

In the design of aircraft structure damage tolerance based
on the principles of fracture mechanics, it is necessary to
calculate and predict the extent of the spread of the flaw.

In engineering practices, the initial length ay of the flaw,
which is an important determining factor of the flaw spread,

is sometimes determined on the basis of the reliability of flaw
detection. For example, it is stated in the U.S. Military
Specifications on "Aircraft Damage Tolerance Requirements" [1]*
that all flaws larger than o5 must have a detection probabilitv
of 90% at the 95% confidence level. Obviously, to determine a;
by this method, one needs to determine a detection probability
curve experimentally that corresponds to the confidence level

1 - a. This is the curve representing the variation of detection
probability with the length of the flaw a, i.e., the PL(D/G) ~

« curve,

*Received in October 1981.
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axing all practical! conditicns intc consideraticn,

However, at present there is a lack of such curves ani
standard procedures t¢ follow in their determination. 1In this
paper, a method for obtaining and manipulatino data ‘or deter-
rining this type of curve is presented. The feasik_ ity of this

metnod has been demonstrated through actual tests.

II. Method for Obtaining Data for Flaw Detection

First, to simulate actual conditions, prepare a given number
of specimens with flaws of different lengths. (In the case where

a sufficient number of actual structural parts containing flaws
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are availlable, 1t 1s not necessary to take this stegp,) To
simulate actual conditions means to ensure that the specimens
are as close to the actual structural parts as possible in
material, surface smoothness, shape of the region containing
the flaw and the type of flaw. Then, usc the srecilied non-
destructive testing method to do repreated tests under the
specified conditions (including work environment, illumination,
technical competence of the inspection personnel, ctc.), thus
obtaining the number of flaws detected and the numbers of flaws

that have escaped detection.

To be sure that representative and independent tests arc
done, the total number of specimens should nct be less than 30,
and half of the specimens should be free of flaws. The number
of inspectors should not be less than 5. Each assiannent of
detection to each inspector should be completed indevendently.
In the example given later in this paper, we have proposed
several practical mecthods ror ensuring the independence of the

detection results.

A key problem in detection lies in the determination of
the number of flaws that have escaped detection. The number
of independent detections K of a flaw and the number of times
the same flaw has escaped detection J are important data in the
statistical analysis. K can be obtained directly. To determine
J, one must first decide if the "flaw" actually exists.
Experiments show that the following two methods lend themsclves

well to the solution of this problem:

1. Appropriately increase the number of independent detections
[ DO owe mmoume that Toaoo corrtadn flaw GQothee G0t o
Frovabllitvp(D-a)=p, 0. 1. 0<Pp<L. The protatiiiey o
cgcapitn detectivn g=1—p<L 1, hd o the probarilicg

roindepenident detections all escapine detection o 37

. K
v, when K fe larpge, 37 18 very

b

trlour

treoretically speaking, the flow will
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certainly be detected if a sufficient number of detections

are performed on the same flaw.

2. Apply a fixed static pull (egquivalent to half of the load
of the prepared flaw) to the specimen, and carry out the
detection under this condition, so as to render the flaw
more visible. This method allows an effective determination
of the existence of the flaw as well as a relatively accurate

determination of the length of the flaw.

III. Statistical Analysis of the Detection Data

First, divide the lenaths of the flaws into several ranges,
Use the largest value in each ranae to represent the lengths of
the flaws in that range, and fill in the detection data accordingly.
Then, determine the detection probability for each single-flaw-

length range in the following manner.

Each detection can have only one of two possible results:
either the flaw 1s detected or it is not. Assume the probability
of detection P(D/nj) = p, and the probability of not detectina the
flaw P(D/a) = q = 1 - p. Thus, the binary distribution is obeved
by the number S of flaws detected when n indevendent detections
are carried out for the flaws in the same flaw lenath range, and

one has

Pu(S =S.)=Ciep'ng™s (1)

In the equation, p is unknown Its point estimate is P = Sn/n.
To be on the safe side, it is usually required to find the lower
confidence limit Py, of p in accordance with the specified con-
fidence level 1 - a@. The probability condition that needs to be
satisfied is

P(S>S4= ) Cip/(1=p)'=0 (2)
i =S,
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In general, tables of cumulative binary distribution list
values for up ton = 30 only, and do not meet our needs. 1In
Refs. [5] and [6], the usual approximation method is used; i.e.,
when n exceeds 30 and p approaches 0 or 1, Poisson's distribution
is used to carry out an approximate calculation of P and when o
has an intermediate value and n is very large, after a definite
transformation, the normal distribution is used to carry out
approximate calculaton of p;, - For example, for n = 45, sn = 43,
x = 0.05, the value of p; as calculated using the above approxima-
tion 1s 0.894. The exact solution satisfying Eg. (2) is 0.867.
The difference is 0.027, which may not be neglected in the region
of high detection probability, as this is the region very closely
related to structure safety. Moreover, this method of approximation
is not very convenient to use. In this paper, the value of P
satisfying Eqg. (2) is found by merely using the table of F-dis-
tribution and the following exact and simplified equation:

! (3)

p= T

fotfix

In the eguation, the upper degree of freedom of the F-distribution
f1 = 2(n -~ Sn + 1); the lower degree of freedom of F-distribution /23
f2 = 2Sn; %, the upper percentage point of the F-distribution, is

found from the F-distribution according to the following eguation:

P{F>x}=a (4)

We prove Eq. (3) as follows:

0

Let Ti(x) = j.tx-le—tdt —— T function,
0
Iy, v, 9) = B¥ 7) Beta distribution function with
Yoo o y and ¢ as parameters,
1

-1 P-1 C{v) T() ;

B(y,®) = A & =
(y,2) _g t ( ) dt T Beta function,

incomplete Beta function.




In the above, 0 sy < 1; Y, 6> 0.

The probability density function for an F-distribution

with given degrees of freedom f1 and f2 is

() e s

(X fu f)=—— LY — T
o r (’rm Gooty T

Transforming into an equation in the variable

(x>0)

le

one can deduce that Y obeys the Beta distribution with parameters

Hh
rh

1 2
YEgoe 0= 3

£ £ £
. 2, fy, £
P{F > xj = I<f2"‘_+ Fx 2 ) ) (5)

On the other hand, one can prove by repeated integraton

by parts that

2 Cip, (1 =p) ' =nCl J:"i’-“( 1~ 1)*%d!

i =S,

It is easily seen that

. 1
W = gL R 5. 1)




Therefore, {

n . .
:E: i i n-i _ _
Can(l - pL) = I(pL, Sn' n sn + 1) (6)
i=8
n
."
By letting 1
f
35— = n - Sn +1, 1i.e., f1 = 2{(n - Sn + 1) , and
2
T'—"Sn, 1e,f2=2S
and comparing Egs. (5) and (6), one can see that if x satisfies
Eq. (4), i.e., P{F >~ x} = a , then the value of P calculated
from Eq. (3) must satisfy Eq. (2), Q.E.D. /24
The P(D/:) vs. a and PL(D/a) vs. 1 curves are obtained by

plotting the results of statistical analysis of inspection data

for each flaw-length region.

Iv. Example

We used 454 steel to make 50 specimens with dimensions
as shown in Fig. 1. Cracks were prepared by means of a high-
frequency fatique tester. Half of the specimens were kept
crack-free, while the rest contained cracks of different lengths.
Inspection was carried out by means of the magnetic particles
method. To ensure the independence of the test results, the fol-

lowing requirements were imposed on the inspection process:

(1) The results of the inspection were recorded by a specially
designated person. The 8 inspectors did their jobs

separately without exchanging information or discussion.
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(2) All the specimens had to have the same external appearance,

without any noticeable marks on their surfaces.

(3) Two separate inspections of the same specimen by the same

inspector had to be spaced by at least two davs in time.

&6

- - =
o

300

30

Figure 1. Specimen configuration.

Data analysis of the results of inspection is given in
Table 1. The results are plotted in Figure 2. Flaw length 4
refers to the length of the crack along the surface of the

specimen.

Table 1. Analysis of the results of flaw detection (1 - » = 95%)

Key: 1) Flaw-length range (mm); 2) Total number of flaws;
3) Number of flaws detected; 4) Point estimate of detection i

probability; 5) Upper degree of freedom in the F-distribution;
6) Lower degree of freedom in the F-distribution; 7) Upper
percentage point of the F-distribution; 8) Lower confidence
limit of detection probability.

lhacwram RE PiRommeagit Fosntane  FREN FrABim RAAEs
BE mE 5 R LLL I o METR

€ 3] 12" : }' L;p=‘;‘" /1=2(ﬂ—$.+1)‘ fs =25, | P{F>x}=a B ,i‘!!;;
0.41~0.60 513 158 0.308 7i2 316 1.18 0.273
0.6:~0.80 264, 152 0.576 226 { 304 1.23 ) 0.522
0.81~1.00; 111 95 0.836 ; 34 190 1.49 ’ 0.789
1.01~1.20 1571 141 0.898 i 34 282 1.47 l 0.849
1.21~1.40 . 191 175 0.916 ' 34 350 1.46 0.876
1.41~1.860 225 213 0.917 R 26 426 7.52 0.915
1.¢1~1.80. 176 169‘l 0.960 16 338 1.88 0.926
1.81~2.00 . 65 65 ] 1 000 2 130 3.07 0.953

43




P w|PD o

1
* PD'aX

0.2 o PDaX

Figure 2. P(D/a) vs. a and PL(D/u) vs. a curves obtained from

inspection data.

Key: 1) Point; 2) (mm).

As the position and direction of the cracks in the given example /25
were definite and as expected, detection probability was rather
high.

V. The Form of the P(D/:) ~~ a Curve and the Simplified
Detection Method

As it takes a lot of time and manpower to do a thorough
determination of the flaw detection probability curve, we
propose a simplified engineering method. The basic idea is
to make use of available information besides the data obtained
for the present inspection. First, determine the form of the
P(D/a) ~ a curve and some of the parameters, based on given
information. Then, take a few specimens (about 10), and carry
out the inspections in one or two of the flaw-length regions.
The remaining parameters can be estimated from the results
obtained. Ref. [8] contains the experimental curves showing
the ability of four nondestructive testing methods to detect
surface cracks. The detection results given in this paper for

using the magnetic particles method for detecting cracks can

44




also serve as a useful reference., Following is a discussion

of three forms of P(D/a) ~ a curve.

1. The power-expansion form used by Yang-Trapp [2]

| (_Q:JL)- , 0,< 6 <a,

g,—a,
SaYye )
P(D/ a) 3 0 R a<al
‘ 1 » 0>0
a;, a, and m are constants to be determined. The physical

meaning of a, and a, is obvious. Therefore, these two constants

1
can be determined empirically. Thus, only m needs to be
determined from experiments performed under given conditions.
Note that as a, has a larger effect on the results, one should

be conservative in choosing its value.

2. The exponential form used by Davidson [3]

0, 8 <a,
P(D’a)=

C.(l-expf-cg(a“a&):}. a>ao

cir 3 and ¢, are constants to be determined. cq is very
1 = 0.98~0.99).
The reason that <y is not set equal to 1 is due to the fact

close to 1, and can be chosen in advarce (e.g., cC

that even very long cracks can sometimes be overlooked in an
inspection. a, has a definite physical meaning, and can be
determined empirically. Thus, only c,y needs to be determined
through the detection process.

3. The Weibull probability distribution used by Heller-
Stevens [9]

(4

p(n/o)=1—e,p[-(°)' J a>0

In this equation, b and ¢ are the undetermined constants. As an

engineering approximation, one can assume that b is the same for
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the same nondestructive testing method. Only c needs to be
determined experimentally. An advantage of this type of function
is that 1t reflects the fact that even very small cracks can
sometimes be detected, while it is sometimes possible to overlook

a very large crack.

It remains to be determined which of the above three forms
best describes the actual situation. As far as curve fitting
is concerned, as the first two forms contain more parameters
which can be estimated from a set of data obtained in the experi-
ment, they can perhaps be better fitted to the experimental
data. Table 2 gives the results of fitting these three forms
of functions to the data obtained for our example. The residual
standard deviations are given for the purpose of comparison.

Figure 3 gives the three fitted curves.

As in the engineering approximation mentioned above, only
one parameter needs to be experimentally determined for any of
the forms; the multiple-parameter fitting feature of the first
two forms is no longer an advantage. In this case, choosing /26
the third form simplifies the plotting process as one can do

it on the readily available Weibull probability paper.

l a &« a2 = “‘. YANG-TRAPPY "A*DAVIDSON! ;.,'. WEIBULL %
‘ Py 3 o= 0.53% 5 b =2.08

& orona T et cconeB

3 .ﬁ;i!! ‘ 0.058 ‘ 0.050 0.061

Table 2. The Results of Least Square Analysis.
Key: 1) Functional Form; 2) Estimated Value of Parameter;

3) Residual Standard Deviation; 4) Form; 5) mm; 6) mm—l.
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Figure 3. Three Types of P(D/:) vs. a curve.

Key: 1) Experimental point; 2) Form; 3) (mm).
Vi. Conclusion

Every nondestructive testing method has a certain range of
sensitivity. Methods that are effective in the range of short
crack lengths may have decreased sensitivity in the range of
long crack lengths [8]. Therefore, while using a particular
method, one must bear in mind the range of effectiveness of

the flaw detection probability curve.

Many nondestructive testing methods have their flaw
detection ability based on the area of the flaw. In this case,
the statistical method of this paper is still applicable if the
flaw length is replaced by the area of the flaw.

Many of the comrades of the former Room 504 of Northwestern

Polytechnical University participated in the experimental work
of this paper. We thank them all.
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MULTI-LEVEL SUBSTRUCTURAL ANALYSIS IN MODAL
SYNTHESIS -- TWO IMPROVED SUBSTRUCTUPRAL
ASSEMBLING TECHNIQUES

Liu Guoguang and L1 Juniie

(Aircraft Structural Mechanics Research Institute)

Zharg Dewen penned

(Beijing Institute of Structure and Environment Encinecrina)

Abstract

Most of the prevalent mod:l synthesis
methods [1~10] are referred! to as "single
level synthesis." Their application to
dynamic analysis of large complex structures
may be limited by computer capacity. Two
improved substructural assembling technigues,
called "multi-level synthesis" and "succes-
sive synthesis,”" are presented in order to
raise computation efficiency and to be
avaslable for calculation of large structures
on a computer with small interior capacity.
In the present paper the "rigid substucture
technique"” [11] is also employed.

A typical example has been calculated
with satisfactory results. Numerical cal-
culations show that the accuracies of the
two improved assembling methods are trustworthy
provided the freguency criterion proposed in
this paper is adopted.

Introduction

The substructure model synthesis established by Hurty [1)
is one of the methods of substructural dynamic analysis. 1t

has made possible the calculations of dynamics of large

Received August 1981,
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structures using a computer with limited capacity. At the same ]
! time, 1t ensures the independence of the design, modification

and tests of the parts.

The emphasis of the "fixed-interface .sethods" (1, 2] and the
"free-interface methods" [3-6] that have been prevalent for A

many years has been on the cheoice of the substructure (static

i,

or dynamic) modes. The assemblinag of substructures has remained
in the stage of "single-~level synthesis." This type of

assembling method is still subject to limitation by the capacity

of the computer. 1In this paper, two improved assemblina

technigues, called "multi-level synthesis" and "successive
synthesis," are proposed. These technigues can lower the !
requirement on the interior capacity of the computer, and make !
i i1t possible to do calculation of large structures on a computer

with small interior capacity. Moreover, computation efficiency

1s thereby increased. 1In particular, when the substructures
| are appropriately subdivided, the successive synthesis method
: can reduce the bandwidth of the stiffness matrix and the mass

matrix.

Because of limited space here, only the important points
of the "multi-level synthesis" and "successive synthesis" wil?
be described in terms of the "pseudo-fixed-interface" mode '7, &
of the free-interface method. Some derivations will be omitted.
For the "rigid substructure technique" and related ecuations,
please see Ref. [11]. For the "pseudo-structure analysis" usc¢?
for free substructures, please see the HAJTF—Il Theory Handbook
to be published, as the method presented in this paper has

already been adopted by HAJIF-I.

1. HAJIF-I 1is an abbreviation for "Aercnautical Structural
Cynamic Analysis Systems.”
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. e N ae. Y N Al e
IT. Improved Assemblin s Mochod 7 == "Moo iat ol S

The so-called "multi-love!l synthes:s” s an extengrn L
conceprt ¢f the "sinale-level synthesis” and o furcher aheoraco-
tion in the general conrdinites,

In Figure 1, 1-5 represent the clastic substructures, antd s

|

1 and 2 represent the rigid substructures.  The syster show:
in Figure 1 can be analyzed dynarmically ust

substructure system givern :in Figure 2. In the f2llcwinT, let

parts can be treated as 1ndividual substruce
belonging to tne neighbor:ng elastic substructures., (S¢e Feif,

{11] for the advantaze and metl.cd of this l;rroaci.)

Figure 1. A general structure Figure 2. A malti-lovel (tro. -
systen. type) sukstructuor

system.

First, we use the method of finite element analysis to
establish the direct eguation of motion of the elastic substructure
r of the 0th (original) level:
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The superscripts B and I denote interface and interior, respectively.

B. . . .
‘Rr' ls the interface reaction force,
Based on the Rayleigh-Ritz analysis, we use the auxiliary
~ . . ®xN .
mode G, *  and the principal mode {77 of the free interface to

h .
describe the displacement (ur-in the free-interface method,

From Refs. [3-6] we know that
CBB B1
. N -1,.N ,1 r r q
[h}i = {G)_ - (*_ 10 .1 e 17 = (2)
Y er e'r er _
r IR 11
G G
Y r
. :N . . . . N .
In the ¢quation, [‘er] 1s the set of elastic modes in I.r], with the
correspending cigenvalue matrix
(3)
(Q), =0 ot hese
The subscript n is the number of rescrved elastic modes. To

calculate the complete flexibility matrix [G]r, apply the

"pseudo-method" to the free interface substructures.

. . NG .
The principle mode l:r' 1s a set of low order eigenvectors
taken from the characteristic equation of Eao. (1) according to
the criterion

w, = ( a )P"m-u>m'

(4)

1

N. . . .
;r to be normalized. 1In Eg. (4),  is determined

P

We require
as a statistical parameter. The exvonent P denotes the total
"level" number, while p denotes the "level" at which the
substructures undergoing synthesis are found. max is the
maximum accurate angular frequency of the entire structure that

one desires to obtain.
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Based on the free-interface method given in Refs. [3-8],

neglecting residual inertia, we assume that
{u) = (G2, {RY + (&% 1o (5)

According to Ref., [5) and Ref. (6}, by starting out from Eg. (5),
one can eliminate entirely the components along the interface
coordinates, in the general coordinates described below.

However, in order to unify the synthesis schemes of the free-
interface and fixed~interface methods so as to simplify the
procedure, we change Eg. (5) into one in the "pseudo-fixed-

interface"” mode:

(w)=[$$i$ﬁ{ ------ }=Z®J(pJ

In the equation, (fg} and (:t} are named "pseudo-restricted
mode" and "pseudo-fixed-interface principal mode," respectively.
Then, the equation of motion in the general coordinates fpr1
1s obtained by the usual method. For the eguations involved,
see Refs. [7] and [8].
Now, take several "Oth" level substructures to assemble
a "1st" level substructure <1, r>. Take the synthesized
coordinates of <1, r> to be
(q<x.,>)=L3<|'.'r> P’l" p’r W‘P (7)
The superscript T denotes matrix transformation. {éil r;
14
is made up of (u{} e {uil and independent components in
{u?} .o (ug}. From geometric considerations, we have
{py =TI {gcim>}
(8)
Wi =T et
(9]
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from which we can write

Wl =T a1} (1o

u, =77 3. 5.5} {11)

We give [T] the general term of "assembling matrix." To clarify
how we arrived at Egs. (10) and (11), we use the substructures 4

and'g in <1, 2> of Fig. 2 as examples:

L )

PSR Y B R
{U:: = ‘l.: b= 0 0 [ < 4"; r= :TE\ :a'\l.'!>) (]2)
i‘ ‘u: }D. 0 0 J\ i .u; |
! hl
tul D000 o (13)
Uy 3 ~
i z{ }J 2 } < o ={T"24ad)
2‘“: L 3[’0 0 0 : ! ] '
s J

\
For the definition of {rDr] see Ref. [117]. {fui} is the colum vector
of the r ~ r interface coordinates.

We have, based on the concept of the generalized Ritz method
described above, the displacement of the assembled substructure
<1, r> in terms of the displacement functions that are continuous
only in each original substructure. Now, we derive the stiffness
matrix and mass matrix of <1, r> from its strain energy and
kinetic energy, respectively, and obtain

(Kews) = 2 (T)TC&ICT) )

Mes) = Z,' (T7m3 (T + Z COHCHBIND) (15)
r
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To avoid having to handle a great number of null elements, one
should use the expanded forms of Egs. (14) and (15) in the
computation using the computer. One can also execute Egs. (14)

and (15) according to the finite element assembling procedure.
Band-shaped [K<1,r>] and [M<1,r>] can be obtained from the latter.
Note that the second term of Eg. (15) can be obtained without

going through matrix operations, but merely by placing [mEI] at the
correct position in [M
{utl.

] -- the position corresponding to
1,

It is easy to obtain from the principle of virtual work the /31
interface reaction force of the assembled substructures, {R<1 r>}’
’
Thus, the equation of motion of <1,r> is

[M<ll'>J {a<h'>} + (K(x.r>] <q<“v>> = {R<1.V>> (l 6 )

Regard Eq. (16) as the direct equation of motion of sub-
structure <1,r> of the "1lst" level, and make subdivisions similar
to Eq. (1). Then, analyze the static and dynamic modes of all
the "1lst" level substructures in the manner the "Oth" level
substructures were analyzed, and take several "lst" level sub-
structures to assemble a "2nd" level substructure. The analysis
is the same as before except that one has to replace r and <1,r>
with <1,r> and <2,r>, respectively, and to formally eliminate
from the right-hand side of Eq. (15) the second term that is
associated with rigid substructures (on the premise that all
the rigid substructures have been assembled into the "1st" level
substructure).

The equation of motion of the single assembled substructure
(which is given the name <(e>») of the final level that is obtained
by repeating the above procedure of synthesizing the levels one
by one is the equation of motion of the entire structure. It has

the following form:

[M<c>] (a<.>} + (K<'>] (Q<n>) ={0 }

(17)




We should point out that, if in the above "multi-level 1
synthesis" all the "Oth" level substructures are assembled into

one substructure, then we have the prevalent "single-level
synthesis."

{
As "multi-level synthesis" allows the assembling of only a 4

-

few substructures (or assembled substructures) at a time, and

as the interface coorcdinates of the substructures of the previous
level always have some components that degenerate into interior
coordinates in the present level, each synthesis can be kept on a
small scale.

I1XI. Improved Assembling Method II - "Successive Synthesis"

The main idea of "successive synthesis" is to synthesize the
general equation of motion of a substructure (or assembled sub-
structure) with the direct equation of motion of another
substructure (or assembled substructure) and to obtain the equation
of motion of the total structure by such successive assembling of
each of the direct equations of motion of the fassembled)

substructures.

7,
{

e I
OOOO0@EE

Figure 3. A tree-type substructure system for successive synthesis.

Figure 3 shows a tree-type substructure system for successive
synthesis applied to the system shown in Figure 1. 1In the figure,
() denotes the substructure whose general equation of motion is
used in the snythesis, and () denotes assembled substructure.

56

4_________—.#




P ——

We obtain from the usual synthesis procedure the general

equation of motion of substructure r

. . . (18)
(';‘u)] \'bu)) + (ku)) {P(r)) = (R(n}

Note that successive synthesis can be regarded as one mode of
multi~level synthesis. Hence, its frequency criterion is still
taken to be Eg. (4).

Synthesize Eg. (18) and the direct equation of motion of
substructures r+l and t

(Mo Y G} + CRrotd Ut} = {Ryar} (19)

(20)
w2k = (R

The synthesized coordinates are

_ BT _IT|T
gt = Lq<r>q<r,\J

B . B . B
{q\r>}1ncludes those components of {u§ﬁJ and {u r+1>} that
constitute the interface coordinates of substructure {r) and
the {ué} of the rigid substructures that are located on the edges.
{q<§>} is naturally made up of the independent components of

B B I, -~ _ i 3
{u<r>}, {ur+1} and{uf] (r =1, 2, ...) that have degenerated
(with respect to <{r)) into interior coordinates as well as

{ui+1} and {p<§\}. For example, for the assembled substructure
/

1,

BT|T

B - IT I _ IT BT NT | T
tagy? = g ; agy ) = Ly

:2u1 :P(l /32

Now we establish the following assembling matrix [T]:

. A
() =(Tosllgor)s ()= (To){gesty {(ws}=(T2) {g0>} (21)
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The stiffness matrix and mass matrix associated with <r) are

obtained in a similar manner as Egs. (14) and (15):

(K<')] = (To]t(i(o] [T<v>) + [Tul]'(hud [Tul)

(22)
(23)
(M) = (T 05) () Tand + (T, )7(m,, I (T, 3 + (T2 )7 (I CT2)
Similarly, we can obtain the interface force {R<r>} of ~r>.
Note that Egs. (22) and (23) are band-shaped matrices whose
bandwidths reach a minimum in chain type structures. Therefore,
the direct equation of motion for {r> is
[M<'>J (a<r>) + [K<r>) (Q<r>} - <R<v>, ( 24)
The next step is to synthesize the general equation of
motion of Eg. (24) with the direct equation of motion of r + 2,
(mesad fidrs) + Chosd {trag} = {Ry) (25)

(If r + 2 has connected to it a rigid substructure r + 1 then set

up [méill and [. ] of £ + 1 to be used in the synthesis.)

£+1Pr+2
The synthesis procedure is as described above. In this manner,
the equation of motion of the single assembled substructure {e)
obtained by the successive assembling of all the substructures
is the equation of motion of the total structure. 1Its form is

necessarily similar to Eq. (17).

IV. Discussion, Example and Conclusion

Compared to the prevalent single~level synthesis, the two

improved assembling methods presented in this paper have the
advantage of keeping each synthesis on a fairly small scale.
Thus, they are very useful for calculation of dynamic problems
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of large complex structures on a computer with small interior

capacity.

Although the method of successive analysis requires a larger
number of syntheses than multi-level synthesis, it requires a
small number of eigenvalue problem analyses, and thus has a
slightly higher accuracy. Nevertheless, under the condition of
the frequency criterion given by Eg. (4), the accuracy of multi-
level synthesis is also very satisfactory. (See Table 1, C})

We should point out that to relatively increase the accuracy

of multi-level synthesis, one should fully utilize its ability
to assemble several substructures at once, and reduce the number
of eigenvalue problem analyses to a minimum. Furthermore, under
most conditions, the method of successive synthesis has a better
ability to reduce the bandwidths of the stiffness matrix and the
mass matrix. It has, therefore, a higher computation efficiency
in general. However, successive snythesis is inferior to mulit-
level synthesis in that it cannot be applied to the modes of
natural parts. When using the method of successive snythesis,
one should use the general equation of motion of identical sub-
structures and symmetrical substructures in the snythesis so as
to be able to reduce the amount of computation work based on the
"identity" and "symmetry" characteristics. In summary, the best
effect can be obtained by a tactful combination of multi-level
synthesis and successive synthesis. Hence, a combined "multi-

level successive synthesis" possesses the effectiveness and

flexibility that "single-level synthesis" lacks.

When using the rigid substructure technique, it is not
necessary to perform a series of matrix operations following
the procedure given in Ref. [11], but just to establish the matrices
[mEI] and [iDr]' To save computer time, we suggest that all rigid
substructures be directly assembled into the "1st” level substructures.

We calculated the frequency and vibration modes of an aircraft

(Figure 4) using the fixed-interface mode of the multi-level
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synthesis. Two schemes were used for subdividing the structure,
one with 6 substructures and the other with 4 substructures.

The method of successive synthesis was applied to the 4-sub-
structures scheme1 of Figure 4, using the fixed interface mode.
The results of these calculations are tabulated in Table 1 along
with the results of finite element solution for the entire air-
craft and single-level synthesis. The errors of each method are
given with reference to the values obtained from the finite
element method, taken to be accurate.

Figure 4. A dynamic substructure model of an aircraft.
Key: 1) Substructure.

From the error analysis for (:)'— CD in Table 1, we see that /34
the result of computation not only depends on the order of

accuracy imposed on it but also is greatly affected by the
selection of the frequency cut-off condition. Obviously, it

is not reasonable to use the same cut-off frequency for every
level. Comparison of @ and @ shows that the accuracy

obtained by using Eq. (4) as the frequency criterion in the
multi-level synthesis is not any lower than that of the single-
level synthesis.

1. Combine substructures 3 and 4, and substructures 5 and 6 to

form new substructures. This gives a 4-substructures scheme.
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Table 1. Comparison of accuracies of two improved substructural agsembling methods with

those of other synthesis methods.
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Key: 1) Non-zero order of fregquency; 2) Finite element method;

3) Fixed-interface single-level synthesis; 4) Fixed-interface
multi-level synthesis; 5) 6-substructures model; 6) 4-substructures
model; 7) Successive synthesis (fixed-interface mode); 8) Single-
level free-interface method (pseudo-fixed~interface method);

9) Without residual inertia [7]); 10) With residual inertia [8];

11) Rubin method; 12) Psuedo-method; 13) Note:

Note:
1) Except for (:) , the results have been obtained by using
the single-level synthesis frequency criterion ., = au ,
_g max
a = 1.5, «_ = 405 rad (200 rad for (3)), and 107° as

convergence condition.

2) The convergence condition for (:) is also 10-6, but Eg. (4)
of this paper 1is used as frequency criterion, and o = 1.5,
w = 133.33 rad.
max

3) The convergence condition for (:) is 10710,

4) "Rubin method" refers to the computation of [G] of free-

interface substructure by means of the relation given by

Rubin [4].
5) "pPseudo-method" refers to "pseudo-structure analysis."
6) All results have been calculated for the 4-substructure

model if not otherwise indicated.

62




The values of . obtained statistically in this paper are
all lower than its conservative value 1.5. Also, @ - in

Table 1 show that taking the residual inertia into consideration

does little to improve accuracy of the results.

We want to thank Prof. Chao Ling-ch'en for proof-reading
and making corrections on this paper, Prof. Huan Wen-hu and
Assist. Prof. Chu Te-mac for their valuable suggestions, and
Deputy Chief Engineer Kuan Te for his helpful instructions.
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Several .t [2=-47 have gresented
nunerical resulits which demonstrated oo J
stifferning of B-node and 12-node quedr:-
lateral 1sorparametric ¢lements when
distorted B-noude or 12-~node uuadrilateral
isoparametric element 1s sicnificant. Tho

results are not as good as those cbtained
by usinyg guadrilateral element consisting
oI two cr four linear strain triancics.
The resuits obtained by distorted elcuruents
are essentially cocnsistent with thosc
obtained by undistorted elements 1£f 9-rode
element 1s used as guadrilateral isocpara-
metric element and Lagrange polynomiz.s ag
interpclation functions. Numerica. resuits
show that 9-node isoparametric element 1s
superior to 8-node 1soparametric element,
l12-node isoparametric element and guadri-
lateral element consisting of two or four
linear strain triangles.

I. Introduction

Isoparametric elements are a fairly important type of
finite elements. The usually adopted shape functions belong
to the family of "Serendipity" functions {[1]. In recent years,
several authors have demonstrated the stiffening of 8-node and
12-node quadrilateral isoparametric elements when the elements

are distorted from a rect . :gular shape, which has an adverse

Received in February 1982.
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effect on the computed results. Stricklin, et al. [2] used a
cantilever beam as example to compare the effect on computed
results produced by five different element configurations.
When the shape of the quadrilateral is severely distorted

from a rectangular shape, the results obtained by using

8-node elements are not acceptable. The results also show
that it is better to use the guadrilateral element formed by
two or four linear strain triangles than the 8-node quadri-
lateral isoparametric element. Backlund {3] used 2 x 2 Gaussian
integration points on the 8-node guadrilateral element and
recalculated the example given in ([(2]. The calculations show
that the results are slightly better than those obtained by
using the 3 x 3 Gaussian integration points, but no substantial
improvements have been achieved. The same problem was taken up
by Gifford (4], using 12-node quadrilateral isoparametric
elements to give the results for the maximum tip deflection

and maximum stress as computed with 3 x 3 and 4 x 4 Gaussian
integration points. Numerical results show that, even if 12-
node elements are used, when the gquadrilateral is distorted,
the results are still not as good as those obtained by using

quadrilateral elements formed by two or four 6-node triangles.

Through numerical examples, we have shown that the 9-node
quadrilateral isoparamet.. ' elements with Lagrange polynomial
as shape function are not only preferable to 8-node isopara-
metric elements, but also preferable to 12-node isoparametric
elements as well as quadrilateral elements formed by 6-node
triangles. As the computed results are not very sensitive to
changes in the shape of the guadrilateral, the 9-node quadri-

lateral isoparametric element is a superior isoparametric element.

II. Computed Examples and Results

The shape function and computation procedure for 8-node

and 9-node quadrilateral isoparametric elements have been




given in Refs. [1] and [5], and will not be repeated here.
We give below the results of the computation carried out on

these two examples.

Example 1: Figure 1 shows a cantilever beam [2-4] in /

1%

five different element configurations, under load P. The com-
puted results given in Refs. [2-4] and the results we obtained
using 8-node and 9-node elements in the computation are collected
in Tables 1 and 2.

To examine the effect of mesh configuration and the
accuracies of the two kinds of isoparametric elements under
other load conditions, we list in Table 3 the numerical results
of using 8-node and 9-node isoparametric elements in the cal-

culations performed on the same beam under a moment M.

1 M

=
B
]

E=1x10"
v=0.,3
P=100
66.66. 0, M =10000

75,10,

i _—

25,0,

33.33.0,

83.33.10,

16.67,0, 50,

Figure 1. A cantilever beam and element configuration.




Table 1. Tip deflection of a cantilever beam under load P
as shown in Figure 1 (v = 0.04032 by beam theory

including shear strain).

Key: 1) Mesh; 2) Quadrilateral formed by triangles [2]; 3) Two
triangles; 4) Four triangles; 5) 1l2-node gquadrilateral [4];

6) 8-node quadrilateral; 7) 9-node guadrilateral.

n - 2ITY LIRS veamago | Gevimzt ") evaman
n — s — e — ——— —_— PR e
l}_f:a&"urzam‘ 3x3 1 ax4 $x3 @ 2x2 | sx3 2x2
1 } : | o0.03054 ! 003758  €.03101 004023
1 ‘ 0.03001 0.03087 ; 0.0376! 0.03761 | e300 | 0.03755 0.03100 | © 04027
l : l 0.03054 ' 0.03758 0.03101 | 0.04023
! l 003720 | o037 | 003817 00402
1 0.03719 0.03804 0.03875 .  0.93875 0.03721 | 003872 0 0366 0 04027
: . 0.03720 . 0 0387} 0 03817 0.04023
l ‘ { 0.03877 0.03922 0.03937 | 0 04023
4| 003871 0.03935 | 0.03926 | 0.03926 0.03876 0.03922 0.03937 | 0 04027
[ t ) 0.03877 0.03920 | 0.03837 0 04027
l l 0.006¢4 | ©.014¢8 | 0.03165 ' 0 04e34
¢ | ooues | ooz ’ 0.01870 0.01542 0.00847 0.01463 0.03164 0.04134
t
: ! 0.00643 0.01456 | 0.03167 0 04434
' ! 0.01766 0.03026 0.03326 0 042¢2
! |
5 0.0382¢ | 0.03845 . 0.03165 | 0.02928 . ©0.01773 0.03112 0.03326 0 04131
: 3 . 0.01768 0 03117 9.03326 0.04262
-

Table 2. Peak stresses at the root of a cantilever beam under /38
load P as shown in Figure 1 (:600.0 by beam theory).

Key: 1) Mesh; 2) 8-node; 3) 9-node; 4) 12-node [(4].

, - . '~ T A 39 L 12WA4) 129 404D

‘ 2x2 t 2x2 Ix3 ex4

1 i £600.0 1600.0 ‘ $600.0 ' $600.0

2 £600.0 $600.0 £600.0 £600.0

3 £600.0 £600.0 £600.0 £600.0

. +262.9 +605.6 +668 2 -~ 480.2

-142.2 ~614.8 -394.5 - 305.2

5 +400.3 +603.8 +850.2 v762 7

~385.8 ~608.9 -602.0 -~ 565.1




Table 3. Tip deflection and peak stresses of a cantilever beam

under a moment M as shown in Figure 1 (2 x 2).

Key: 1) Mesh; 2) Tip deflection; 3) Maximum stress; 4) 8-node;
5) 9-node; 6) Beam theory.

' ] Prxr amas ‘ 28 X H
* Msrr Bora (grae M:rvs [Borva (Graw
005735 1 g 0sng | , f
1 0.05728 , 0. 0%iw) | +600.0 } 6.0 )
093735 ! 00000 l
, 0 03413 005000 !
2 0 05214 008300 +600.0 | %600.0
i 0 05848 0 06000, !
; ° L ‘ N
' 003399 0 08739 |
3 l 0 058435 0.051.00 0.06000 +600.0 ! +600.0 ; +600 0
| 0 038wy 0 0600Y
0 02138 0 0+ o0 . ‘
‘ 0 02287 o ceo30 | DY L zs000
\ 0.02572 0 0f000 | \ : i
0.04723 0 08000 ‘ ! {
5 0 04713 ] 0.06000 Pooresd 1 6000
0 vi5s3 0 06000

Example 2: Figure 2 shows a cantilever beam in two element
configurations, under load P or under a moment M. The results of
computation using 8-node and 9-node elements are given in Table 4.
The peak stresses in the table have been obtained by calculations
using the method given in Ref. [6].

Figure 2. A cantilever beam and element configuration.

0. 40, 100. 40, P M
100, 20, )
0,0, 100, 0, 200, 0,
E = 21000
vs0.3
190, 40, P=120
M = 32000
/ o
100, 9, 200, 0,
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Table 4. Tip deflection and peak stresses of a cantilever beam /39

under load P or moment M as shown in Figure 2 (2 x 2).

Key: 1) Load; 2) Mesh; 3) Tip deflection; 4) Peak stress at the
root; 5) 8-node; 6) 9-node; 7) Beam theory; B8) Concentrated

force P; 9) Moment M.
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2.9320

|
3
! .
— —Mﬁ“—J—_—————j 2.9486 - ——— ..———_1 $80.00
|

l
]
|
a
f
2.8575 i 2.9315 ‘ }
o 1
2.8469 | 2.9231 v8r 06 vsr o1
.
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2.93%9 -84.&3 - 80 92

| ‘ 2.8¢49 2.9228
2.8517 2.9301

| 5.7114 )
5.7109 |

1 5.6636 | 5.7094 !
‘ ; 5.7109 ‘ i |

, 5.7114 |

- 5.7143 —— 2120.0
5.6916 5.7176 | |

§.6253 5.7008 ;

2 56768 5.711] 1

!

q . 5.6857 . 5.7087 |
| 5.6917 i 5.7176 :

III. Discussion and Conclusion

The results of our computation show that it is preferable
to use 2 x 2 Gaussian integration points for 9-node isoparametric
elements. This is in agreement with the results of computation
given in Refs. [3-5] for 8-node and l2~-node isoparametric elements.

Although isoparametric elements may have any shape at all,
rectangular shapes are preferable. The greater the deviation
from the rectangular shape, the larger the error in the computed
results. This phenomenon is especially apparent in the 8-node
and 12-node isoparametric elements of the Serendipity family,
while it is not noticeable in the 9-node isoparametric elements.
For example, for the meshes 4 and 5 given in Table 1, the results

obtained by using the isoparametric elements of the Serendipity
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family have up to 60% error, which is totally unacceptable.
The corresponding error in the stresses is also very large.
On the other hand, when 9-node isoparametric elements are used,
the errors are small, only a few percent. This is a major
advantage of the 9-node element over the 8~node or 1l2-node

element.

It is an important subject to mathematically analyze the
effect of the shape of the elements on the results of compu-
tation. However, not much progress has been made in this
direction. 1In Refs. [8] and [9], the method of Taylor's series
expansion has been applied to the study of the effect of the
shape of the element boundary on the accuracy of high-order
elements, with the conclusion that when the elements have
curved boundaries, the convergence of the high-order elements
will be on the same order as that of the linear element.
However, Ref. [10] gives an explanation of this phenomenon
from a different angle of view, and disagrees with the above
approach. The elements used in our calculations are quadri-
laterals with the points on the straight sides located at the
positions of the mid-points. The results of our calculations
can not be explained from either of the above viewpoints.

The use of Lagrange polynomial as interpolation function
for regular elements (rectangles and parallelpipeds) was first
proposed by Argyris et al. [7}]. Ref. [5] regards this kind of
element as being inferior to the isoparametric elements belong-
ing to the Serendipity family, which are currently very popular.
However, the results of our calculation clearly show that the
9-node isoparametric elements are superior.

We point out in passing that the degree of freedom of the
inner nodes of the 9-node elements can be eliminated via the
method of matrix reduction after the stiffness matrix of the
elements are formed. Thus, the interior capacity of computer

required by the total stiffness matrix is the same for 8-node
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and 9-node elements. Therefore, the interior capacity of
computer demanded by these two kinds of elements is basically

the same.
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APPLICATION OF LASER HOLOGRAPHIC INTERFEROMETRY /41
TO VIBRATION ANALYSIS OF
AEROCRAFT BEAM STRUCTURE MODEL

Chin Juan-ch'an

(Ch'inhua University)

Wang Shen-hsiao, Ch'en Kuo-ping, Shen P'ei-ch'ing

(Hongan Corporation)

Abstract

This paper describes how to make use
of laser holographic interferometry in
vibration analysis of aerocraft beam
structure models. Various vibration modes
for two kinds of simplified models (three-
beam and five-beam) of the same wing have
been photographed by means of laser
holography. Meanwhile, their natural
fregquencies and node distributions have
been obtained from theoretical calculations,
The good agreement between the results
demonstrates that both the experimental
and the theoretical results are reliable.

The vibration analysis of three-beam
and five~beam models for an aerocraft wing
beam construction shows that some difference
exists between their five~order vibration
modes. This indicates the existence of
some difference in rigidity between the
simplified models. The simplification of
the simple three-beam models leads to some
errors, and the five-beam model proves to
be more trustworthy.

Received in June 1981.
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I. Introduction

The beam structure is very commonly seen in aerocraft
structures, especially in the wings of the aircraft. The
actual structure is usually a fairly complicated multi-beam
structure that needs to be simplified for the purpose of
computation or experimental studies. Suppose a reasonable
model has been obtained. It is required that this model be
simple and yet possess the mechanical properties (especially
such dynamic properties as dynamic stiffness) of the original
structure. In the process of simplification, however, it is
inevitable that there will be some difference in stiffness
distribution between the model and the original structure
because of the assumptions, simplifications and combinations
made. Hence, to test the validity of the model, it is
necessary to perform theoretical and experimental vibration
analysis on the model.

The objects of our study are the three-beam and five-
beam models of the wing. (See Figure 1.) These simplified
models have been obtained by idealizing the actual wing
structure. This structure is one of a beam with variable
cross-section. Obviously, the three-beam model promises
simplicity in calculations and construction. Yet, how well
does it represent the original structure? This question can
only be answered by a vibration analysis. Thanks to the
development in the techniques and methods of calculation, it
is now possible to apply finite element analysis to the problem
and obtain the natural frequencies and node distributions of
the structure via accurate theoretical calculations. As early
as in the 60's, laser hologravhic interferometry was shown to
be an effective tool in experimental vibration analysis.
However, at present, it has not yet been very widely applied.
We carried out experimental and theoretical vibration analysis
on the above two models with the purpose of finding a simplified
model that is reasonable as well as simple.
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II. Vibration Analysis by Laser Holographic Interferometry

Vibration analysis by laser holographic interferometry is

an optical method that possesses many merits:

1. The distribution of vibration modes of the entire wing
model can be obtained in the same holographic picture. /42
2. The method has very high sensitivity, with the spacing

between the fringes as small as 0.16 um,

3. The measurement does not require contact with the wing
model, thus eliminating the effect of the additional

mass of the transducer when one is used.

4. The frequencies and vibration modes of various orders can
be accurately determined, and the measurement is not

affected by the frequency range.

Two commonly used methods of vibration analysis are the time-
averaged method and the method of double-exposure of frequency
glittering and pulses. As we are interested in obtaining the
node distribution, we used the time-averaged method. 1In the
reconstructed holographic image, the following relationship
exists between the fringes and the amplitude of vibration:

I=K”[2XR—A(1’ y)(oose,+cose,)} (1)

In the above equation, J, is the first-order Bessel function,

0
A is the wavelength of the laser used, A(x, y) is the amplitude

of vibration at various points on the object, 81 is the illumina-

tion angle, i.e., the angle between the beam illuminating the
object and the direction of vibration, and 62 is the observation
angle, i.e., the angle between the line joining the object and

the photographic film and the direction of vibration.
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our method of steadying the specimen and other elements in the
optical path, precise’y adjusted and stabilized the natural
frequencies and mon. .ed them with a piezoelectric crystal
chip on the oscilloscope, and carefully adjusted the optical

path to ensure an appropriate ratio of reference and object

light intensities (approximately 4:1). We were thus able to

obtalin better quality holograms.

III. Experimental Results and Comparison with Calculated Results /

w

The experimentally and theoretically obtained values of
the natural frequencies of the two models and their errors

are tabulated separately in Tables 1 and 2.

Table 1. Natural frequencies of three-beam model (Hz)

Key: 1) First-order frequency; 2) Second-order freqguency;

3) Third-order fregquency; 4) Fourth-order frequency; 5) Fifth-

orcder frequency; 6) Measured value; 7) Calculated value;
8) Error.
1] -pex D ewe Fopus # amnx = Epms
(7Y nma j BT | 410 1 540 ! 820 1155
-y Hua Med 3846 519.8 735 7 879 6
‘;ji » | 3.T% 6.2% 3 7% 10 2% 15 2%

Table 2. Natural frequencies of five-beam model (Hz)

Key: 1) First-order frequency; 2) Second-order frequency;
3) Third-order frequency; 4) Fourth-order frequency; 5) Fifth-
order frequency; 6) Measured value; 7) Calculated value;

8) Error.
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our nethod of steadying the specimen and other clements in the

optical path, preciscly adjusted and stabilized the nuatural
frequencies and monitored them with a pieczoelectric crystal
chip on the oscillos.:pe, and carefully adjusted the optical
path to ensure an appropriate ratio of reference and object
light intensities (approximately 4:1). We were thus able to

obtain better quality holograms.

III. Experimental Results and Comparison with Calculated Results /

15

The experimentally and theoretically obtained values of
the natural frequencies of the two models and their errors

are tabulated separately in Tables 1 and 2.

Table 1. Natural frequencies of three-beam model (Hz)

Key: 1) First-order frequency; 2) Second-order frequency;
3) Third-order frequency; 4) Fourth-. .der frequency; 5) Fifth-

order frequency; 6) Measured value; 7) Calculated value;

8) Error.
N T TS I PR ST H meex B xnns
6‘ axa 150 ! a0 , 840 ‘ 820 1155
-y #na ‘ lad 4 LY IR 519.8 735 7 879 6
ai! 2 ‘ 3TN 6.2% L 10 2% 15 2%

Table 2. Natural frequencies of five-beam model (Hz)

Key: 1) First-order frequency; 2) Second-order frequency;

3} Third-order frequency; 4) Fourth-order frequency; 5) Fifth-
order frequency; 6) Measured value; 7) Calculated value;

8) Error.
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The above data show that the measured values are very
close to the calculated values. 1In particular, the errors F
for the first three orders are all within 6%. The calculatecd
values are generally lower than the measured values. This 1sg
attributable to the fact that it is difficult to ensurec comp.ctc

steadiness of the root during the course of the experiment.

Figures 2 and 3 show the vibration modes of the two
simplified models obtained by holographic reconstruction and the
corresponding node distributions obtained by calculation with
the help of a computer. Comparison of these results shows that |
the tendencies of the location and shape of the nodal lines
are the same for the two methods, except for the fifth-order
vibration of the three-beam model, whose reconstructed nodal
lines 1lie on the side beams while the calculated nodal lines
extend to the root region. There 1s also an appreciable dif-
ference in the measured and calculated frequency values for this

mode of vibration.

It is worth noting that the fifth-order vibration mode

is different in form for the two models. That of the three-
beam model is of the torsion form, while that of the five-beam
model is of the bending form. This difference 1is borne out by
both the measurement and the calculation. Analysis indicates
that there is a reduction in torsional stiffness associated

with the three-beam model. Hence, even though this simple

model has the merits of ease of construction and simplicity of
calculation, it suffers from loss of fidelity in simulation and
dynamic stiffness, and therefore should not be used. Analysis
of the experiment shows that laser holographic interferometry is

an effective and direct method of vibration analysis.




Figure 2. Three-beam wing modGul
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{a) Vibration modes by holographic reconstruction.

*

Key: 1) Third-order; 2) Fourth-order; 3) Fifth order.

(b) Node distribution by calculation
Key: 1) Third-order; 2) Fourth~order; 3) Fifth order.




Figure 3. Five-beam model /

|

(a) Vibration modes by holographic reconstruction.
Key: 1) Third-order; 2) Fourth-order; 3) Fifth order.
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(b) Node distribution by calculation.
Key: 1) Third-order; 2) Fourth-order; 3) Fifth order.
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ON EXPERIMENTAL METHODS FOR DETERMINING /4
CRITICAL SPEEDS

~

Yan Litang and Li Qihan

(Beijing Institute of Aeronautics and Astronautics) y

Abstract

In this paper the experimental methods
for determining the critical speeds of rotor
systems are investigated. The methods reviewed
here are the peak amplitude method and those
based on the characteristics of critical speeds,
such as the 90 degree phase lagging, and the
rapid change of phase angle.

The peak amplitude method commonly used
will introduce significant error in practice
if the shaft is out of round or initially bent,
or it is observed under the condition of
acceleration. Even if the tests are performed
at constant speeds the undamped critical speed
will still be much higher in case of heavily
damped rotors, while the method based on the
90 degree phase shift is more suitable for
these cases.

For the lightly damped rotors, which are
just the cases for many practical rotors, the
method based on the rapid change of phase angle
when passing through critical speed is more
applicable, since the rotors may be more safely
tested with acceleration which does not affect
the measured results of critical speeds by using
this method.

A modified Nyquist plotting procedure is
presented, in which a trial weight is put on
the node section of the higher order mode shape,
and necessary tests are made only at some speeds
near the critical. The vibration vectors with-
out error are then obtained and a circular polar
plot can be made. With the aid of the plot the
critical speed can be calculated in accordance
with the fact that the increment of speed is
nearly proportional to the increment of phase

Received in December 1981
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lagging angle in the vicinity of a critical
speed.

It is suggested that the first critical
may be experimentally determined at lower
speeds for the rotors with asymmetric stiff-
ness; these are the cases for many real
rotors. The sub-critical is measured in
this method and its double is then the first
order critical speed. 1t is known that at
sub-critical the vibration freguency is twice
the speed, while at critical the vibration
frequency is equal to the speed. Therefore,
it is possible to distinguish the sub-critical
from the first critical by comparing the
measured frequency with speed. This method
is considered as a safer and simpler method.

Finally the feasibility of the method
to determine the critical speeds in the
static states of the rotors is described.

ABSTRACT

In this paper the experimental methods for determining
the critical speeds of rotor systems are investigated. We
have reviewed the peak amplitude method and the method based
on the 90° phase lag and the abrupt change of phase in the
vicinity of the critical speed. We have included a method
for determining critical speed that is a modification of the
vibration mode circle method that is usually applied to the
problem of flexible shaft balancing. A convenient and safe
method for determining the critical speed using low speeds
is proposed. Finally, the method for determining the criti-
cal speed with the rotor not rotating is discussed. The
principles on which the various methods are based are
elucidated with physical concepts and simple mathematical
expressions. The merits, demerits and range of application
of each method are examined.
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I. Introduction

The problem of the critical speed has long been recognized,
and has been extensively studied. Research on critical speeds
is usually centered on the method of computation and on ways to
eliminate damages associated with them. Not many studies were

made on experimental methods for determining critical speeds.

In fact, there are many situations where it is not possible to
take into consideration all the important factors when calcu-
lating for the critical speeds of rotors with sophisticated
structures. In these cases, the accuracy of computed results
is low. Hence, experimental methods for determining critical
speeds are of great significance.

The critical speed of the rotor bearing system refers to
the rotational speed of the rotor at which reasonance in the
transverse direction is caused by an imbalance in the rotor
that is undergoing steady rotation. Unless otherwise stated,
this is taken to be the critical speed in the absence of damping.
Rotating bearings are widely used in modern aircraft engines and
commonly used experimental equipment. Therefore, the rotors are
usually lightly damped, and not much difference exists between
the critical speed in the presence of damping and that in the

absence of damping.

Some aircraft engines use low-stiffness elastic bearings,
or have low-stiffness bearing structures. At the first- and
second-order critical speeds of such a rotor system, the bending
of the shaft is small. The distortion occurs mainly at the
bearings. Some papers refer to these two critical speeds as
rigid-body (modal) critical speeds. At the third- and higher-
order critical speeds, there are more pronounced bending distor~
tions of the shaft. These critical speeds are referred to as
bending critical speeds. Thus the vibration modes at the critical
speeds are differentiated. Others refer to rigid-body critical

speed as bearing resonance, and regard the bending critical speed
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as the true critical speed of the rotor. 1In these papers, the
bending critical speeds are differentiated by the ratio of the
amount of shaft bending to the total distortion, while several
values of the stiffness ratio (2KL3/EJ) are used to differen-
tiate among the rigid-body critical speeds of shafts of uniform
cross-section on elastic bearings. In our opinion, it is more
appropriate to refer to the first- and second-order critical
speeds as rigid-body critical speeds than as bearing resonances,
the latter implying that only the bearings resonate while the
rot:zr does not. 1In fact, the rotor-bearing system is one whole
system in which it is not possible to have local resonance of

the bearings only. Even if the amplitude of vibration of the 1
rotor is very small or zero, this should be regarded as a par- 1
ticular mode of resonance rather than simply a bearing resonance,

not to mention the fact that at the so-called bearing resonance,

even though the rotor is hardly bent, its vibrational displace-

ment or rotational angle is nevertheless appreciable. 4

We can go one step further in the generalization, and regard
the rotor, the bearings and the casing as forming one whole unit--
the engine. The critical speed is thus the rotational speed of
the rotor at which imbalance in the rotor causes a transverse
resonance of the engine. The vibrational modes are specified
by the amplitudes of vibration of the rotor, bearing, and casing.
One should not call those modes with large casing vibrational /48

amplitude casing resonance, and those with large rotor vibra-

tional amplitude, critical speed.

Resonances attributable to aerodynamic or other sources of
oscillation in the engi e may not be referred to as critical
speeds. It is not difficult to distinguish these from the
resonances arising from rotor imbalance. One only needs to
see if the resonance frequency is equal to the rotational speed.
Of course, occasionally, the frequency of resonance due to some

other source of oscillation may equal rotor speed, but such

coincidences are rare.
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II. A Commonly Used Method for Determining Critical Speeds--
the Peak Amplitude Method

In this method, the rotational speed corresponding to the
peak amplitude of a rotor undergoing steady-state motion is
taken to be its critical speed. The amplitude at the critical
speed is usually very large, and it is not possible to maintain
the critical speed. Therefore, it is common practice to take
measurements during acceleration or deceleration pact the critical
speed, which inevitably affects the results. The critical speed
measured during acceleration tends to be on the high side, while
that measured during deceleration tends to be on the low side.
Hence, better results are obtained by taking the average of
these values. As acceleration and deceleration have their
associated difficulty 1ir control and measurement, and do not
have the same magnitude of effect on the rotational speed,
taking the average of their effects does not necessarily produce

accurate results.

This method of measuring the critical speed of a rotor
undergoing steady-state motion is applicable to rotors with
small imbalance or high damping only. At high damping, however,
th: results obtained with this method tend to be on the high

side even though the measurements are made under steady-state
conditions. Moreover, deviation from the cylindrical shape or

initial bending of the shaft will also result in measurement

errors.

II1I. Determination of Critical Speed from the Phase of Vibration

Many rotors have a phase lag of 90° at critical speed,
irrespective of the amount of damping. At low damping, the
phase lag undergoes an abrupt change in the vicinity of the
critical speed. This is the so-called "inflection" phenomenon.
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The critical speed can be determined from these two characteristics.

1. Determination of critical speed from rotor "inflection"

Because the phenomenon of "inflection" is equally pronouncel
whether the rotor is accelerated past the critical speed at low
acceleration or steady-state measurements are made in the vicinity
of the critical speed, the measurements are made with the rotor
being accelerated past the critical speed for the sake of convenience
and simplicity. The source of the reference signal is marked on
the shaft. The phase difference between the peak value of shaft
vibration and the reference signal is measured with a phase-gain
meter, and the region of rotational speeds in which the phase lag
undergoes an abrupt change is located, and the critical speed is
thus determined. If a phase-gain meter is not available, one can
record the vibration vaveform on an oscillogram and study its
characteristics {Figure 1), The location of the critical speed
is determined by finding the speed for which the ratio of the
distance between the vibration peak and the reference signal to
the wavelength has the largest variation. 1In Figure 1
(a/b) ; - (a/b), is the largest; therefore, the critical speed
lies somewhere between n., and n,. If, while passing through

2 3
the critical speed, the shaft undergoes an appreciable /4

O

|

bending distortion, then one can attach a sensitive strain

Jauge to the surface of the shaft along the direction cf the
length of the shaft and record the strain sianal ¢ (Fiagure 2)

on an oscillogram. The rotational speed at which the average
strain on the shaft incurs a change in sign for the first time
1s the disired critical speed. As the rotor can be accelerated
past the critical speed, the problem of maintaining the critical
speed is avoided. The method of measuring shaft strain has the
added advantage of eliminating error due to deviation of the

shaft from a cylindrical shape or that due to initial bending.
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Figure 1. Oscillogram of different Figure 2. Variation of strain
speeds in the vicinity of Ny for on the shaft passing through
determining N Ny showing the phase change.

2. Determination of critical speed from the 90° phase lag

The phase lag is determined by measuring the angle between
the direction of the force causing imbalance and that of the
steady-state vibration. The rotational speed at which this
angle equals 90° is the critical speed. There are many ways of
measuring the direction of the imbalance vector, as discussed
in detail in studies related to rotor balancing [1]. The direction
of vibration can be determined by making a reference mark on the
shaft and using a phase-gain meter for the measurement, or by
recording and studying the oscillogram. Because acceleration
and deceleration past the critical speed will cause a corresponding
increase or decrease in the phase lag [2], this method should be
used only for steady-state measurements, and is applicable to
relatively heavily damped rotors. As the phase lag is determined

from measurement of the direction of the vibration vector, the
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accuracy of the result will be affected by deviation of the

shaft from the cylindrical shape.

3. Determination of critical speed using the vibration

mode circle

We illustrate below the principle of the method of vibraticr
mode circle using as example a rotor of single concentrated mass.

The equation of motion of this rotor is
mz-~bz+kZ=Fe*

where m is the concentrated mass of the rotor, Z is the radius

of motion of the rotor, b is coefficient of viscous damping,

F 1is the imbalance force mwze, £ is eccentricity of mass, and

k is the transverse stiffness coefficient at the location of the
concentrated mass. The steady-state solution of the above

equation is given by

e (2)

7 =1(0%)/(w? ~ = 2u0w,i) e

where u = b/2m¢c, and wi = k/m is the critical speed. Writing

Z as
Z = (x + iy)el*'t
one obtains
(oL @ ’-L{- “L]
-l AT Rl QYT (3)

For a given rotor, g and ¢ have given values, and at a fixed
rotational speed, the above equation describes a circle. When

«w is varied, the figure is no longer a circle, but closely
approximates a circle. If we take a few points . = har the curve
obtained should be close to a circular arc. Using this arc to
complete the circle will enable us to obtain a circle closely

approximating the vibration mode circle for , = .

"




As there are other factors that need to be taken into

consideration 1in practice,
does not yield accurate results.
vectors in the measurement.
measured for a given rotational speed
is added at a chosen cross-section,
is determined for the same rotational
vibration vector due to the imbalance
is given by

A-=;l_—;l

If the error vector 1is the

eliminated in the process of subtraction, and the Xm obtained

a very accurate gquantity.

same in both measurements,

the plot of the measured vector 2
Instead, we make use of three

First, the vibration vector Xy ic

S

ni. Then a trial weilight

and the vibration vector ZZ

speed. Therefore, the

caused by the trial weight

(4)

then it

is

The error vectors of deviation of

shaft from the cylindrical shape and of initial bending are

constant guantities.

If the trial weight is placed at the

node of a higher-order mode of vibration then the error caused

by the higher-order vector 1s also constant.

method with the following example.

Take an
shaft as the
direction in
17 o On3 and On4
Ny, Ny, Ny, and n, in the vicinity of

vectors On Oon for the

Plot these vectors, and make a circle

and n The rotational

3 4
point C is the desired critical speed.

A (Figure 3).

n. . As the phase laa can be regarded

relationship with rotational speed in

reference direction specified by 0°.

which the trial weight is applied.

We illustrate this

angular position in a plane perpendicular to the

Tris 1is the
Obtain the Xm
four rotational speeds
the critical speed .
passing through Ny, Ny,
speed corresponding to

ay is the phase lag at
as having a linear

the narrow region in the

vicinity of the critical speed, especially for lightly damped

rotors, we have

n, — N,
fn,—n,
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From this, the c¢ritical speed is calculated to be /5

o

l

m.‘(”‘Yg+";Ys)/(Y:+7,) (6)

Here the speeds at which the measurements are made need not be
equally spaced, so as to avoid the critical speed. 1If Xm
contains error vectors of constant magnitude, then the circle
maintains its shape while it is shifted in position. 1If Xm
contains other errors, then the figure will deviate slightly
5' from the circular shape, and the critical speed obtained contains
a slightly larger error.

Figure 3. Illustration of plotting Xm circle to determine n.,-

Iv. Method for Determining Critical Speed at Low Rotational
Speed

For a rotor with asymmetrical stiffness under the action of
the gravitational force, there exists a sub-critical speed, i.e.,
the amplitude becomes very large at a rotational speed equal to
half the first-order critical speed. Hence, it is possible to
obtain the critical speed by measuring the sub-critical speed
and multiplying the result by 2. Unevenness in the wall thickness
of the shaft and asymmetry in the tightness at the connections are
some of the factors giving rise to asymmetry in stiffness. 1In
practice, these factors are inevitable, and such rotors will
incur displacements at the frequency of 2w under the action of

91

Tﬁ:==5---------------_-_-_--_--._-.‘



: the gravitational force. This is equivalent to a rotor with

i uniform stiffness under the action of an oscillating force of

: frequency 2.. The frequency of the resonance caused by this
force is equal to wal® The resonance occurs at a rotational
speed of %‘cl' and is not accompanied by the phenomenon of
"inflection." These facts can be used to distinguish the sub-
critical from the critical speed (Figure 4). Does there exist
a sub-critical speed for the second-order critical speed? The

! second-order speed arises from the dipole moment. Only when

the relation kxl = ky2 # kyl = kxz holds for two locations on

the shaft separated by a relatively large distance, which is

equivalent to the action of a dipole moment varying at the

frequency of 2., can there be a second-order critical speed.

Such situations are rarely encountered, but are not absolutely

impossible. First- and second-order sub-critical speeds can
also arise from static or dynamic imbalance. However, because
of the small amplitudes, these are difficult to measure. The

sub-critical speed occurs at a low speed, and the vibrations
associated with it are small. Therefore, this method can be
applied in steady-state measurements to find the critical speed
that is higher than the operating speed, and hence has a definite

superiority over other methods.

Figure 4. Schematic oscillogram at sub-critical speed, showing
the vibration frequency is double the rotational speed.
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V. Feasibility of Determining Critical Speed with the Rotor

not Rotating

The effect on the natural frequencies of the moment of
inertia of a rotor that is not rotating but undergoing bending
vibration in a plane is different from that of the mass spin
moment of a rotor undergoing synchronized rotation. The stiff-
ness of the connections of a rotor made up of many parts that

\ operate under the conditions of high speed and high temperature
i is different from that of a rotor that is not rotating and is

of a rotor vibrating in a plane at normal temperatures is in
general not equal to its critical speed. However, in cases where
the moment of inertia is very small, and where the stiffness of
the connections of the rotor does not vary very much with speed
and temperature, the transverse resonance frequency can be a

good approximation to the critical speed. Although fairly large
errors sometimes result from determining the critical speed by
measuring the transverse resonance frequency of a rotor vibrating
in a plane, this method is nevertheless valuable as a means to
obtain a rough estimate of the critical rotational speed because
of its simplicity.

Conclusion

In this paper we have discussed the merits, demerits and
range of applicability of various methods of experimentally
determining the critical speeds of a rotor.

In cases where neither the imbalance in the rotor system
nor the damping is large, the critical speed can be accurately
and conveniently determined by acceleration past the critical
speed and making use of the "inflection" phenomenon.
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For the lightly damped rotor with large imbalance or pro-
nounced errors in shaft shape, or if there is mixing in of a
higher order vibration, one can use the method of the vibration
mode circle, and eliminate the effect of constant error vectors.

For the heavily damped rotor, with the exception of the
case where there is crowding of several orders of critical

speeds, the critical speed can be determined from the characteristic

of a 90° phase lag between the direction of the imbalance and the
direction of steady-~state vibration.

In the case of a rotor with asymmetrical stiffness, where the

sub-critical phenomenon is pronounced, the critical speed can be
determined from the sub-critical speed measured under the condi-
tions of low~speed steady-state motion or low acceleration. The
special merit of this method lies in the low speeds used.

The critical speed of those rotors with small moment of
inertia, in which the stiffness of the connections will not be
greatly affected by high temperatures or high speeds, can be
determined from the resonance frequency of the two-dimensional
bending vibration of the rotors.

We have repeatedly used all of the above methods except the
method of the vibration mode circle, and have accumulated a fair
amount of experience.
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Abstract

It is important but also difficult to .
study three-dimensional elastoplastic .
finite element analysis of aeroengine
structures, which have a complex configura-
tion and various heavy loads. The stress
distribution in the engine structure is a
necessary datum for fracture mechanics and |
fatigue damage. For this reason the stresses
in elastic and plastic zones deserve to be
taken into account in many engineering fields.

In order to ensure adequate accuracy, a
i three-dimensional 20-nodes isoparametric ele-
j ment is selected and a straightforward
numerical solution method--an efficient
method of frontal solution--is adopted.

For saving computational time and reducing
main memory space, a cubic fourteen points
Gaussian integral is applied. Moreover,
with the aim of economizing man-power and
gaining quite high accuracy the cubic finite
element meshes are automatically generated.

The programming is also discussed in
general, including constitutive equations,
solution algorithm and strategy for solving
large problems. Practice has shown that the
program written by the authors is very
advantageous to solving elastoplastic problems.

Two typical specimens for experimental
investigation are provided: a notched thick
plate in which the local stresses are higher

Received October 1981
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than the nominal applied stresses, and a
thick plate with a central hole in which
the stress distribution along the inside
edges is also higher than that of the
other places. The theoretical analyses
and the experimental results coincided
favorably.

I. Introduction

Recently great interest has been shown in the problem of /53 !
elastoplasticity in this and other countries, and a lot of i
research has been carried out on this subject. The appearance 1
of finite element analysis and the use of computers have made ;
possible great progress in the study of elastoplasticity, so ::
that improved and more nearly accurate knowledge has been
obtained about structural design limits, plastic stress fatigue,
extension of the tip of a crack, etc.

The increment equation for elastoplastic finite elements
as obtained from the variational principle [1, 4, 5] can be

solved by the method of initial load, by varying the stiffness,

or by the method of first- or second-order self-rectification [2].
Accurate results can be obtained by taking Prager's effect into
consideration, while using various theories [6, 7, 9] on hardening
in the computation, and by step-wise linearization of the non-
linear equations, along with continual modifications.

The structure of the various complex parts of an aerocengine
can be realistically analyzed only by means of three-dimensional
elements. The stress distribution is very complicated, and the
equations are of high orders, hindering the task of elastoplastic
analysis. With these points in mind, we have made improvements
both in the design of the program and in the computational
method, so that problems of a medium scale can be handled on
the FELIXC-256 machine.
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I1I. Fundamental Equations

The well~known equation of elastoplastic stress is

{o}y=(D'"{e} (1)
In the equation, [Dep] = [De] + [Dp] ’ [De] is the constant-
coefficient elasticity matrix, and [DP] is a function of stress.
Therefore, the stress {o¢} and the strain {e¢} are non-linearly
related. [DP] is expressed as [1]:

LT
o]

90 )

—— (2)

Under the condition of combined load addition and removal, it
is appropriate to use the increment theory in the description

of the structural equation and the computation of circulative /54 #
stress. The increment form of Eg. (1) is

(3)
{do} = (D7) {de}

Computations on the hardening materials used in engines
are usually performed with the help of various hardening models,
such as the isotropic hardening model, the moving hardening
model, and the modified hardening model. Fig. 1l(a) shows the

%4y

Sy

Figure 1. Three hardening models

Key: 1) Curved surface representing added load; 2) Curved surface

representing submission. 98




isotropic hardening model. The curved surface representing sub-
mission expands outward uniformly in the plastic flow, and main-
tains its original shape, orientation and location of the origin.

Hence, the submission function on this surface is given by:

flo.)=K=FW,) (4)

In the above equation, K is a certain constant, and F(W_) is
plastic work. This model cannot be used to compute Prager's
effect, but is easy to apply. Figure 1(b) gives the moving
hardening model [6], in which the shape and size of the sub-

mission surface remain the same, but the origin is displaced
along the direction of the plastic strain increment. Prager's
effect can be taken into account here. The submission function

ankbiconcclimaiithn

of this model is given by

f(0i;—a;;))=K*=const (5)

where aij denotes the amount of displacement of the origin in

the various directions, and daij = Cde?j' Figure 1l(c) shows
the model [7] obtained by modifying the moving hardening model.

The contortion of the curved surface can be taken into account
with this model, where the plastic flow is in the direction of
the sum vector CP of the increment vector OC of the origin and

the stress vector OP. The submission function of this model is ;
f(o—a;))=K" (6)
In the equation, K is not a constant, and daij = (oij - aij)du, du > 0.

The non-linear increment equation derived from the varia-
tional principle can be written as

(K" {A8) = {AF) —{AR} (7)
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In the above equation, {AR} is equivalent to a kind of virtual
load. It is the stress-strain function in the previous iteration,

i.e.,

(AR =f,, (BIT(L*) (Aehdv (8)

Thus we see that every time Eq. (7) is solved, the {aAR} in it is
always related to the stress-strain increment.

It is in general considered appropriate to use three-
dimensional 20-node isoparametric elements to analyze a three-
dimensional structure. However, the three-dimensional problem
requires a large interior capacity of the computer. The computation
is time-consuming, and is complicated by the iterative procedure
applied to the solution of the nonlinear equations. Hence, we

have adopted the following measures:

1) Reduce the number of integration points from the usual 27
to only 14. It has been shown via examples [18] that the
results obtained by the two methods differ only by about
1 part in a thousand, while the latter cuts computational
time to one-half of that required by the former.

2) Improve the method of frontal solution. The use of the
method of frontal solution enables one to fully utilize
the peripherals of the machine. When solving for the
stiffness coefficient, one can store most of the data on /55
magnetic disk, leaving in the interior only a small amount
of information immediately needed in the computation.
Thus, the elasticity and plasticity can be handled side
by side, and whether the method of initial load or that
of varying stiffness is employed, only a small amount of
variables needs to be input.

3) Calculate the stress at the Gaussian points. It can be
shown that the most accurate values for stress are those
100




obtained at these points. As the order in which the material
enters into plasticity is also calculated at these points,

it is not necessary to calculate the stress at the nodal
points. We have thus eliminated the computation required

to extrapolate the stress from the Gaussian points to the
nodal points.

4) The finite element mesh information is automatically

generated. This method of automatic information gene -
tion is applicable to all complex three-dimensional 1
structures. All one needs to do is to input a few {
characteristic values of the shape, and the mesh infc - |
tion of the element can be obtained by applying the frontal
solution method to the sequence number of the elements and {
the nodes and the coordinates of the nodes. This information
is sequentially recorded on the magnetic disk.

III. Results and Analysis

To examine the reliability and accuracy of our method, we

did experiments ~n the plasticity of two typical types of thick
plates, and carried out many calculations. 1

1. Experiment and calculations on a thick plate with a
hole in the center: The dimensions of the plate and the stress- :
strain curve for a point at the edge of the hole are shown in '
Figure 2. The material used is Lyl2-CZ. The computed points and
the experimental points all fall on a smooth curve. When the

symmetry of the structure is employed in the computation, a
quarter-model is used, which is divided into 32 solid isopara-
metric elements, with a proper increase in density near the
edges of the hole. j

The points of measurement are taken to be on the Gaussian

points of the elements as much as possible. To ensure the accuracy
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of the positions of the pcliits of measurement, the symmetry

<

of the structure is employed to disperse these points in the

corresponding regions on the opposite sides.

Figure 3 gives the diagram of extension of the plastic
region under the conditions of the various stress ratios cm/:s,
as obtained separately from computation and experiments. As
the stress is concentrated at the edges of the hole, submission
starts when om/oS = 0.59. With the increase in load, the computed
diagram of extension of the plastic region agrees completely with
that obtained experimentally. In the figure, "." denotes a

calculated point or an experimental point.

Ou/04) E=¢a00kg/mm?
0y=29 4kg mrf

%7k¢m@1w¥smn

1.0 —
~ s ol [0

0.6}

0.2

0 0.4 12 7.0 7.8 3.6 Tl kL o

Figure 2. A stress-strain curve of a given point on the edge

of a central hole in a plate.

Key: 1) Average stress on the smallest tangential surface;
2) Experimental point; 3) Calculated p:-int.

2. Experiment and calculations on a thick plate notched
on two opposite sides: The dimensions of the plate and the
experimental curve for a point on the edge of a notch are shown
in Figure 4. As above, a gquarter model is adopted, and 32
elements are taken. Application of the strain gauge and other
procedures are the same as for the first example. The points
on the edges of the notch go into the state of plasticity first
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when the stress ratio is 0.59. Figure 5 shows the extension
of the region of plasticity for various stress ratios (:m/:s).
The calculated curves agree extremely well with the experimental

curves. The results are very satisfactory.

In this country, experiments on elastoplastic stress-strain
measurements have mainly been limited to the two-dimensional
problem. Little work on the three-dimensional problem has been
done. To ensure the reliability of the data, we attack the pro-
blem in steps: solve for elasticity + solve for plane elasto-
plasticity » do experiments orn plane elastoplasticity - compute
for three-dimensional elastoplasticity. After these reliable /56
experiments and calculations have been performed, the results
can be used as a basis for studying the complex problem of engine

structure using our method.

The methods commonly used in this country for measuring
plastic strain include the method of microscopic study of
hardening [17], the grating fringe method and the use of a
strain gauge. The method of microscopic study of hardening
consists of the determination of stress-~strain values from

measurements on hardening of the plastic region with the help

% ruun
(BR/0D

Figure 3. Comparison of the calculated curves with the experimental

ones of a plate with a central hole.

Key: 1) Point of entrance into plasticity; 2) Experimental results
(for various om/os); 3) Computed results (for various cm/os).
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Figure 4. A stress-strain curve of a given point on the edge
of a notch in a thick plate notched on opposite sides.

Key: 1) Average stress on the smallest tangential surface;

2) Experimental point; 3) Calculated point.
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Figure 5. Comparison of the calculated curves with the experi-

mental ones of a notched plate.

Key: 1) Point of entrance into plasticity; 2) Experimental
results (for various om/os); 3) Computed results (for various

cm/os).

of an electronic microscope. This method is not realizable in /57
ordinary laboratories, because of the equipment required and the

amount of time and difficulties involved. In the grating fringe
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method, one measures by means of optical photography the large
plastic deformation of a metal during the process of punching

and hot crushing. This method is more suitable for measuring large
plastic deformations. Neither of these two methods can be
conveniently applied to measurements on small local plastic
deformations.

Based on our past experience with point-type strain gauges
{1 x 1 mm}) and careful investigations, we have chosen specially
designed point-type strain gauges made with copper-foil wires.
Before applying the strain gauges to the specimen, the positions
of the calculated points are first located. The specimen is washed
and dried, and the strain gauges are attached to it by means of a
metallic adhesive. Care is taken so that the specimen is not
exposed to heat or moisture, and measurements are taken right
after the strain gauge is attached.

The experiments are performed on a 10-ton universal testing
machine. The load is evenly increased after the material enters
into plasticity. The instruments used are the common pre-adjusted
balance box and static resistance strain indicator. The value of
strain is recorded after each addition of load. Because measure-
ments have to be made at a large number of points (in both the x
and y directions), the data have to be recorded by many people at
the same time so as to prevent data drifting. Repeated tests
show that accurate results can be obtained for regions with small
plastic deformation. When the plastic deformation is large, the
strain gauge itself may enter plastic deformation, and in some
cases come off the specimen. Therefore, we see that the method
employed depends on the material being tested and the range of
plastic deformation involved.

3. Three-dimensional extension of the plastic region on
the tip of a type I crack: The rule of extension of plastic
regions is a key point of interest in the study of plastic
breakdown criteria. We choose the three-dimensional model
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shown in Figure 6. Its dimensions are 2b x 2c x t = 15 x 15 x 8 (mm).
The material is Lyl12-CZ, and the physical parameters are the same

as those given in example 1.

25 0.8

y
?1/1 T .r ! A Ll o

z

() ()

Figure 6. Three dimensional calculation model of a type I crack.

Making use of the symmetry of the structure, we carry out
calculations on one-eighthof the model. The mesh of the elements
is as shown in Figure 6(b). The crack has length 2a = 5 mm, and
is under a uniform tensile stress. The mesh is decreased toward
the tip of the crack, with the smallest side measuring 0.5 mm.

The finite element meshes are automatically generated by means

of a geometric series. 1In all, there are 60 elements and 424
nodes. The elements have regqular shapes, and the ratios of their
length, width and height are within the allowable range of values,

so that desirable element characteristics are ensured.

Figure 7(a) shows the extension of the plastic region along
the direction of the thickness of the plate. The curves extend
from the center to the sides, and have a flaring shape. With
increasing load (om/os numbered 1, 2, 3 and 4), the plastic
region gradually goes deeper into the plate. Figure 7(b) shows
the extension of the plastic region on the surface of the thick
plate near the tip of the crack. It can be seen from the figure
that the plastic region on the surface of a three-dimensional plate
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is very similar to that of the two-dimensional problem. This is
due to the fact that the stress condition on the surface of the
three-dimensional plate closely approximates that on a plane.
Figure 7(c) is a typical solid diagram of a three-dimensional
plastic region. This plastic region is symmetrical with respect
te Lhe tip of the crack, and extends outward forming a "kidney"
shape. The size of the "kidney" shape undergoes an appreciable

change along the thickness of the plate.

We now compare the two-dimensional plastic region of the
type I crack with the three-dimensional result. The stress

field is known to be:

/58
'r’—__
x| y 1 E
; — 2 x ,'
- 3 t
4 I
l VX 0./0, ]
/- I 1—0.375 !
I 2—0.457 1
3—0.541 L.
) 4—0.625 (O
)
Figure 7. Three dimensional extension of a plastic region.
Key: 1) Plastic region.
K, 0 (e 8 _31)1
o,.—_—y—/;z?r:_—cos 2 ( 1 —sin 2 sin ) ‘
K, 8 ( 8 _39)
9=, 2‘_”‘_(:05 ) 1 +sin g SN, (9)
g _ i
T"=7 Z;r——— sin Z’COS 2 Cos B

Oy =My =T,g= 0
After the specimen enters into plasticity, the V. Mises criterion
is applied:

9,= ;/_!?" {(0,— 0’)‘+ (O’,"‘U.)’+ (al_al)’+ 6 ('=r+ Y='+ 1':-)l b (10)
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Substituting Eq. (9) into Eg. (10), we obtain:

3
'=—21{<T'3ms‘g—( 1 +3sin2l (11)

where r is a dimension of the plastic region. The "kidney"-
shaped region is obtained by plotting in polar coordinates,
as shown in Figure 8. When 8 = 0°

e

Te= “gno} (12) \

Figure 8. Two-dimensional plastic region of a crack under uniform
tensile stress.

Key: 1) Tip of crack.

IV. Conclusions

1. The study in this paper is based on the study of plane
and axially symmetric elastoplasticity. This is why we have been
able to reduce the difficulty associated with the three-dimensional
elastoplastic problem and increase the reliability and accuracy of
the results.

2, In order to facilitate the application of three-
dimensional computation of elastoplasticity to practical engineering
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problems, we have adopted a series of measures to minimize
interior memory requirements,reduce computing time and increase
accuracy of computation. These measures may represent a break-

through in the study of the three-dimensional non-linear problems

of materials.

3. The present method and procedure can be used in the
computation of three-dimensional problems of different types
of complex structures, in calculations performed on parts with
complex load (bulk load, surface load and concentrated load),
and in finding the dimensions and rule of extension of the
plastic region of the tip of a crack (type I, II1 or III). To
realize the various objectives, one only needs to change the
automatic element partition and the characteristics of the load.
No changes need to be made when the method is applied to the
problem of plane and axially symmetric elastoplasticity.

4. When the necessary changes have been made, this method
can also be applied to the calculation of circulative loads and
the study of plastic fatigue.

5. Because of limited machine capability, we have not been
able to include the high-temperature effects (which require the
calculation of the temperature field). However, the present
method provides an important basis for the study of such high-
temperature effects on engine plasticity and deformation.
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AN AZIMUTH RATE INERTIAL NAVIGATION SYSTEM /61

Jen Szu-tsung
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Abstract

A new type of inertial navigation system
combining the customary platform type with
the strapped-down type is put forward. 1In
this system the azimuth rate platform without
azimuth-stabilizing loop, coordinate resolver
and azimuth synchronizer is adopted. The
azimuth angles of platform and vehicle will
be obtained by an integrator from azimuth
rate signals measured by an azimuth gyroscope
supported on a horizontal gimbal. This type
of inertial navigaton system is suitable for
vehicles without large-pitching maneuver, such
as transports and aerodynamic and ballistic
missiles.

Operational principles of the azimuth rate
platform, mechanization equations, distinguish-
ing features of initial alignment, and calibra-
tion and compensation for drifts of gyroscopes
are discussed in this paper. Error propagation
characteristics caused by various error sources
for navigation positioning, velocity and
attitude are simulated on a digital computer.
Simplicity in platform structure, small volume
and weight, high reliability, possibility of
calibration and compensation for drifts of the
azimuth gyroscope are the distinctive advantages
of this inertial navigation system.

Moreover, by using a specific optical system
and referring to given azimuth angles of land-
marks and geographical latitudes, it is possible
to accomplish not only fast alignment, but also
calibration and compensation of horizontal
gyroscope.

Received in November 1981.
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I. Statement of the Problem and Brief Description of Platform

Structure

The inertial navigation and guidance systems widely used
in aeronautics, navigation and aerodynamic missiles are of
diverse kinds. Basically, however, these can be grouped into

two major types: the platform type and the strapped-down type.

The fundamental characteristic of the platform type system
is that it has a stabilizing loop which, via a gimbal, separates
the inertial components from the motion of the vehicle. Thus
the inertial components operate under favorable conditions and
have relatively small dynamic ranges. In particular, the effect
of gravitational acceleration is reduced to a minimum in semi-
analytical systems working in the ground coordinate system, and
the relations used in the calculations are simpler, with the
result that the systems work with high accuracy. Nevertheless,
the platform type system has certain disadvantages, such as
complexity of structure, high manufacturing cost, relatively
large volume and heavy weight, and a large number of gimbals

and conducting rings that have an adverse effect on reliability.

The inertial components of the strapped-down type system
are directly attached to the vehicle. Thus the system has a
simple structure, high reliability, and high accuracy due to
the fact that attitude information need not be transformed via
electro-mechanical elements. However, such a system operates
under unfavorable conditions, especially when the vehicle under-
goes violent motions, with exacting requirements on the dynamic
range, and especially on the gyroscope. Moveover, because the
direction of the relative gravitational field of the inertial
components is constantly changing, compensation for error and
gravitational effect is a complicated process. This places a
higher requirement on computer wordlength, speed and memory
capacity. Thus, the accuracy of the strapped-down system
cannot be ensured without great difficulties.
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For most vehicles, owing to specific reasons related to
structure and dynamics, there is a large difference between the
angular rate of the rolling motion and that of the course-
changing motion. For example, the rolling angular rate of an
airplane may reach or exceed 360 degree/second while its course-
changing angular rate is usually around 2-3 degree/second, with /62
a maximum value not over 10 degree/second. Hence, even if one
can say that an angular rate of 10 degree/second can be sensed
with a regular inertial gyroscope without great difficulty, this
is not the case with angular rates exceeding 360 degree/second.
In order to fully utilize the merits of the platform type and
strapped-down type inertial navigation systems, we present
below a new azimuth rate inertial navigation system that has a
simplified platform, reduced manufacturing cost and improved
reliability. The platform of this system does not contain the
azimuth-stabilizing loop, the coordinate resolver and azimuth
sychronizer. The azimuth angles of the platform and the vehicle
are obtained by an integrator from the azimuth rate signals

measured by an azimuth gyroscope supported on a horizontal gimbal.

When this type of system was first proposed in 1978, it was
named "strapped-down azimuth inertial navigation system" or
"semi-strapped-down inertial navigation system." Generally
speaking, to simplify the platform, one could also have a
"strapped-down pitching system" or even an "azimuth and pitching
strapped-down system" that contains only one rolling-stabilization
axle. However, one needs to take into consideration the fact that
it is most advantageous to use this type of system in the semi-
analytical inertial navigation system with horizontal coordinates
that has low azimuth angular rate. This system is fundamentally
similar to "rotating azimuth," "free azimuth" and "floating
azimuth" systems. 1In addition, when the platform has an error
in attitude, the azimuth gyroscope is not completely "fixed"
to the vehicle, so that the term "strapped-down" loses its
meaning. Therefore, we switched to the name "azimuth rate" or

"analytical azimuth" inertial navigation system.
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The external features of the rate azimuth platform are as
shown in Figure 1. The platform can be made up of two gyro-
scopes with two degrees of freedom, or one angular rate with one
degree of freedom and one gyroscope with two degrees of freedom,
or one angular rate with one decree of freedom and two integrating

gyroscopes each with one degree of freedom.

Figure 1. Configuration of the azimuth rate platform. 3

Figure 2. Scheme of the azimuth rate platform.

Figure 2 is a schematic diagram of the azimuth rate platform

made of two gyroscopes with two degrees of freedom. The two
gyroscopes, 2 and 6, and the three accelerometers, 10, 11 and 15,
are mounted on the platform 9 to form the inertial measuring

component supported by the horizontal gimbal 17, which is, in turn,
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supported by stands attached to the vehicle 1. 1 Lts rermal
operating mode, the axle of gyroscope 2 is verticully criented,
It stabilizes the pitching and rolling axles of the platform
via the corresponding amplifiers 3 and 14, and the corresponding
stabilizing circuits 16 and 13. The mainr axle of gyroscope 6 is
orthogonal to that of gyroscope 2, and brings about self-locking
via the amplifiers 5 and 8 in the feed-back loops. It operates
at the given rate. The feed-back current of the circuit around
the azimuth axle is a measure of the rate of change of the azimuth u
angle. Thus, the azimuth angle can be obtained by passing this
: signal through the integrator 4. As the support axle of the 4
horizontal gimbal is parallel to the longitudinal axis of the '
vehicle, the angle-sensing component 7 can output rolling signals.
Similarly, the pitching signals are obtained from the angle- 1
sensing component 12. It is clear that the structure of the
platform is thus very much simplified. However, if the pitching

angle is expected to exceed 60°, one needs to add to it an 1

external rolling loop and the corresponding stabilizing circuit
so that its operation will not be affected by the dynamic motion

of the vehicle.

If the azimuth rate inertial navigation system is not to be
used in vehicles that undergo full~-cycle rolling and pitching,
then there will be no need to use conducting rings, and soft
conducting wires can be used in all parts of the platform. /63
This will result in a simplified platform structure, ease of

maintenance and improved reliability.

As the azimuth rate gyroscope operates under conditions
similar to those in a strapped-down system, it may have an
increased error in the assigned coefficients and increased non-
linearity as compared to the gyroscope in an ordinary platform
because of the large dynamic range. Nevertheless, the accuracy
of the azimuth gyroscope operation can be easily ensured because
of a reduced gravitational effect brought about by the shock-
proofing action of the horizontal gimbal, and the fact that the
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platform is basically horizontal. Furthermore, when tunc¢ pulsca

rebalancing loop is used, additional errors due to transformation
can be avoided.

II. Mechanization Equations and Block Diagram of Structure

Choose the geographical coordinate system NWV, where N
stands for north, W stands for west, and V stands for the
skyward direction. As shown in Figure 3, the ideal platform
system XTYTZT rotates about the vertical axis V, along with

the vehicle. The angle formed by X, and the meridian N is the

T

azimuth angle of the platform, a.

Figure 3. Coordinate system.

The velocity of the platform relative to the earth is
determined by the following set of equations:

vi=fr— Q2Qr+ o)V 4 (2Qu+ou)y
Vy=fy—=(2Qu+ o)V x+ (2Qx+w05)V;
Ve=f:— (2Q:+ o)V v+ 2+ )V s— 9

(1)

where fi is the force as sensed by the accelerometer;

9 is a component of the angular rate of the earth's
spin;
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«~., 1s a component of the angular velocity of the rotation
of the platform relative to earth;

g 1s gravitational acceleration; and b denotes the

angular rate of the platform due to the motion of

the vehicle.

The computation for the navigation can be carried out with
the help of the relation that holds among the directional cosine
matrix [C}, its rate of change, and “i where the longitude 2,
latitude L and azimuth angle a are the angles indicating the
relative orientation of the platform system with respect to the
geographical coordinates:

(C)=(Clw) (2)
In the above equation,
sin ) sina sin A cos a asLask]
i —sinLcosAcosa sin LeoosAsina . (3)
(C)= —cosisina —00S % COS @ cos L sin A

—sin/ sinAcosa sinlsinAsina sin ]
ocos [ cosa —cos [ sina

0 — O 0
[m]z[ ©z, 0 -y J

—®y g 0
Obviously, w and wy are the control guantities as calculated

by the computer from VY and Vx and the curvature of the earth,

and they are applied to the gyroscope to keep it level; whereas
Wy Can only be obtained by subtracting @
rate feed-back control rate w

2b from the azimuth

cZb’ i.e.,

Oz =0, — Qn (5)

Furthermore, if one considers the height information from
atmospheric pressure and the information given by the vertical

accelerometer as forming one combined height system, then the
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mechanization of the azimuth rate inertial navigation system
can be represented by the block diagram shown in Figure 4.

<
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Figure 4. Block diagram of the azimuth rate inertial navigation

system.

Key: 1) Combined height system; 2) Curvature computation;

3) Computation of directional cosine matrix; 4) Platform;

5) Ai’ Gi--accelerometer and gyroscope of the corresponding
axle; ha--height information from atmospheric pressure;

Spo eR--pitching and rolling attitude information; AO' LO--
initial latitude and longitude; Q--angular rate of earth's spin.

ITII. Distinguishing Features of the Initial Alignment of the
Azimuth Rate Platform

If imperfections in the structure are neglected, then the
azimuth of the ideal platform system will be that of the parked
vehicle. Thus, if the azimuth of the parked vehicle is specified
by means of some signs or marks placed on the runway or parking
area, then not only can fast alignment be achieved, but calibra-
tion and compensation can be carried out for all the gyroscopes.

In order to explain the problem, we need to set up the attitude
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error equations first. When the attitude error angles are

considered as small quantities, one obtains

S (6)

In the above equation, ¢ is the vector representing the attitude

" s the angular velocity vector

error angle. wT = Q =[QX QY QZ]

of the ideal platform.

0 1 Py

—-@
[ 1 0 Y ] is the attitude error matrix.
wy —‘px 1

up = wo *+ :ZPP + E is the vector representing the angular rate

of rotation of the platform system.

- _ . T . .
w, = [“xc “ye 0]° is the control applied to the platform. /65

- _ T _ " _ T .
Yobp = (0O szP] = [0 O“YQX Gy + QZ] is thi angular rat;
of rotation of the platform due to the vehicle. E = [EX EY 0]

is the angular rate of drifting of the platform.

Substituting the appropriate relations into Eq. (6), one obtains

!’x"@..“QCOS stﬂ +¢|QS“\ L +Ex
Oy =0y, —PrQsin L 4+ QcosLsina + E,
O =Qzar— % Qcos L cosa + P,Qcos L sina — Qsin L

(7)

This equation shows that the azimuth attitude error undergoes no
change during the initial alignment of the azimuth rate platform.
This clearly reflects the fundamental characteristics of the
initial alignment of the system. Eg. (7) can be represented

by means of the block diagram shown in Figure 5. The coefficients
Kl’ K2 and K3 directly determine the dynamic characteristics of
the leveling process, and therefore should be carefully chosen

to meet the basic requirements of transit time and interference-

proofing.
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Figure 5. Block diagram of initial alignment loops.
Under steady-state conditions, one obtains from Eg. (7)
m"‘(co)=El‘QCOSLCOSG
(8)
@y, (o) =Ey+ Qeos | sina
From this, the azimuth angle is calculated to be
o _Q)"(oo) _ . Qceos [ sina +€v (9)
a.=tg —-(—u“(w)">*- tg QCOSLCO-‘“ —I:x
Obviously, the drift of the platform has a direct effect on the
accuracy of the calculation of the azimuth angle. Assume that
a, = a + Aa, and let wa(w) = @ cos L cos ¢, and wYC(w) =  cos L sin a.-
Then, one obtains from 2Zg. (8)
i ﬂsEl
Qoos L sinaA (10)
Qcos Loosapa=E,
Multiplying the above equations by sin o and cos a, respectively,
and adding, one obtains the computational error of the azimuth
angle
pam-_Exsina +Evra __ En
Qcos L " QeosL (11)
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In the above equation, Ew = Ex sin o + EY cos o is the effective
westward drift of the platform. This conclusion is exactly the

same as that arrived at for other systems.

To calculate the compensation for the drift, one can first
calculate and compensate with respect to the angular rate of
the earth's spin, and then find the effective northward drift
to be

Ex,=w,,(00)cosa, + ®y,(co)sina,~ E ccosa, + E,sina, (12)

Projecting this onto the corresponding axle, one obtains the
compensation for the drift to be

E x = Ensco8a,~ E «co8*a, — Esinacosa, (13)

év = = EN.Sin¢.~Ev$i|l’aa - Eimsaﬂﬁ" a,

The errors in the compensation thus obtained are given by /66
théx—Ex=-(Exmau+Emo)dnao (14)
dEy=Ev— Ey= — (Esina, + Eycosa,)cosa,

i.e., they are dependent on the effective westward drift which

cannot be determined by measurements.

After the platform is leveled, b =qosin L is a known
quantity. Given the gyration coefficient KG of the gyroscope,

one can find the compensation for the drift of the azimuth of

the platform from the equation I(x) = KGQZb - EZ relating the

controlling current and the azimuth angular rate:

éz’*KcQSinL—l(w) (15)

If the azimuth of the runway or certain landmarks is specified
beforehand, then the azimuth angle of the platform or the longi-
tudinal axle of the vehicle can be readily determined with a
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leveling device, a sighting device or some other special optical
system. Thus, not only can one achieve fast alignment, but it
will also be possible to calibrate the drift of the platform
along the horizontal axle. 1In fact, assuming the measured
azimuth angle introduced into the computer is a,, one obtains
from Eg. (8)

Bx=0,(°)+ Qoos L cos @ — Qoos [ cosa,

(16)
Ev=my‘(°0)— Qcos [ sina -+ Qcm[_g'na'
Obviously, if the azimuth angle contains no error, the control
quantity under equilibrium will be equal to the drift of the
platform. When the error in azimuth is Aa, one can obtain from
the relation a = a + Aa the error in compensation for the drift:
SE«=Qcos LsinaAa
(17)

8Ev= Qcos [.cosaa

Of course, when the moment-measuring device has high accuracy
and the error of the platform structure is small, the compensa-
tion is equal to the drift of the gyroscope. It is clear that
the accuracies of the azimuth of the platform and the compensa-
tion for drift are mainly dependent on the accuracy with which
the azimuth of the longitudinal axis of the vehicle with respect
to the runway or landmark is measured, and on the accuracy with
which the azimuth of the runway or landmark itself has been
determined, plus the mounting accuracy of the platform with
respect to the vehicle. It can be seen from Eq. (17) that when
a =0, SEX = 0; while when o = 90°, §E, = 0. These relations are
exactly the same as those that hold in the calibration of the
customary platforms. Furthermore, the accuracy of the latitude
introduced into the computer also has an effect on the accuracy
of compensation. For example, neglecting the error in latitude,
when L = o = 45°, in order to keep Gfx and GEY below 0.02°/hr.,
one needs to ensure that the error in azimuth Aa < 12'. This

shows that the present method has a definite practical significance
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in cases where the length of the runway or the distaence between
the landmarks is not very short and where the accuracy of mounting
the platform on the vehicle is relatively high. O0f course, if

the accuracy of the measurement of the azimuth angle can be made
to reach about 6' by means of optical methods, then one will be
able to compensate for platform drifts approximating 0.01°/hr.

IV. Computer Simulation of Navigation Error

In order to obtain a better understanding of the performance
of the azimuth rate inertial navigation system, we perform
computations using Egs. (1) and (2) and the corresponding error
relations under the following conditions: the errors in the

calibration coefficients of the gyroscope and accelerometer

AKG = AKa =1 x 10-4; errors in the structure Gi = tﬁ = 20";
gyroscope drifts ex = €y = 0.01°/hr., e, = 0.02°/hr; deviation
of the zero position of the accelerometer Vy = Yy = 1 x 10-49;
initial velocity on = VYO = 0; errors in initial attitude

%0 = ¢§O = 5 x 10% radians; initial values of the theoretical
position Ly = 40°05, AO = 116°36"', @y = 45°00'; initial values
of the calculated position Lc0 = 40°07°', AcO = 116°38"', 0 =

45°03'. We assume that the flight course is described by the

following parameters:

(/) % , (i” ol /67
3.3 0<1<30 ' _
2.0 30< t <60 0.0 °<'\;6°
ax=| 1.0 60< t <200 ©n= 15 80 4 §240—
0.0 200< ¢ <4284 9.0 2‘°<'<‘f"°
-1.0 4284< 1 <4464 —Ls 4170 1 4290
—33 B <4500 [ 0.0 4290<C t <4500
3. -
l 3. [ *'w) (B)
(*/»') (B 0.0 0< 1<30
0.0 0< 1t <60 Vatg3.5 30<Ct <060
o = onl . 60< t €240 V= Vatgl. 0" 60< 1 <490
0.0 240< t <4170 0.0 490<C t <2970
ouVy 4170 t <4290 —xtgl” 2970<C t < 4248
0.0 4280< 1 <4500 —Vatgd”  4248<C 1 <4464
Key: 1) (m/sec?); 2) (sec); 3) (degree/sec). ' 00 B4 1 <4500
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The most important results of the computation are shown in
Figures 6-10.

Figure 6 shows the flight course of the airplane from
taxiing along and lifting off the runway, through circling and
cruising, and finally to turning and landing, and the corresponding
calculated values. It is clear that the difference between the

calculated and theoretical values varies with different flight
directions and distances.

Figure 7 gives the time history of position deviation. It
can be seen that it undergoes an oscillatory variatior. The
amplitude of the error in longitude AX is larger than that
of the error in latitude AL. This is because with increasing

latitude, the longitude corresponding to the same distance error
will be larger.

/
il

1000 W Wl ()

K,
Figure 6. Flight course. Figure 7. The time history of
Key: 1) (degree); 2) (sec) position deviation.

Figure 8 gives the time history of attitude deviation. It
can be clearly seen that the attitude error of the platform
undergoes large variations with different azimuth angles owing

to the lifting and landing maneuvering. However, its maximum
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value is still within the allowable range. In the linear,
constant-speed cruising stage, the variation is a periodic
oscillation.

=
I . A 1 8.
® & 1 2000 3000 4 )
L3
»

- 0.004-

-0.0ost

Figure 8. The time history of attitude deviation.

Key: 1) (degree); 2) (sec).

The time history of azimuth deviation is shown in Figure 9.
It is clear that the variaticn of the azimuth deviation is rather
slow, with its maximum value not exceeding 0.06 degrees. 1If one
considers that the initial deviation is 3', then the actual
variation in the deviation is even smaller. At higher latitudes,
the variation in the deviation is slightly larger. This is also
in agreement with the general rule. On the whole, this gives a
higher accuracy than that of the output obtained by means of such
transforming elements as the sychronizer. This explains why the
strapped-down system has a smaller attitude deviation than the
platform system that outputs via electro-mechanical elements.

v

o'oos\w‘”\

0 1090 2000 3000 00 (@)
a-

Figure 9. The time history of azimuth deviation.

ar(1)

Key: 1) {(degree); 2) (sec).
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Figure 10. The time history of velocity deviation.

Key: 1) (m/sec); 2) (sec).

Figure 10 gives the time history of velocity deviation. It
can be seen that during lifting and landing, the velocity deviation
undergoes large variations because of its dependence on the
angular rate of circling. However, its period of variation can

be calculated from the cruising stage.

V. Conclusion /

1S

From the above, it can been seen that the azimuth rate
inertial navigation system is better suited for vehicles that
do not undergo large pitching and rolling. The system combines
the merits of the platform-type and strapped-down-type inertial
navigation systems, and avoids certain shortcomings of each of
these systems. This type of platform has simplicity in structure
{using a small rumber of components), small volume and weight,
high reliability, and the ability to provide azimuth rate signals
of the flight instrument directional damping passage. Thus it
eliminates the need for a directional damping gyroscope, and is

capable of providing more nearly accurate flight direction signals.
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Another unique feature of the system is that calibration
and compensation can be carried out for platform drift on every
alignment. An aspect also worth taking note of is that it is
possible to achieve fast alignment, calibration and compensation
for horizontal drift by means of a leveling device or other
optical systems, making use of the known azimuth of the runway

or landmarks.

As the azimuth rate of an ordinary vehicle approximates
that of the rotation of the platform in the customary rotational
azimuth inertial navigation system, no special requirements
need to be placed on the computer of the system. Naturally, the
software system approximates that of an ordinary semi-analytical
inertial navigation systemn. .
Finally, we would like to point out that, relatively speaking,

the disadvantage of the azimuth rate inertial navigation system is

that it is not suitable for fighters that perform special stunts.
As the platform itself does not have rotational degree of freedom
about the azimuth axle, it is not convenient to carry out dual-
position calibration and alignment, but only alignment for a

single position.
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OPTIMAL GUIDANCE LAWS FOR MISSILES WITH /
SECOND-ORDER CHARACTERISTICS

|\l

Li Chung-ying

(Beicning Institute of Aeronautics and Astronautics)

ABSTRACT

The problem o€ optimal intercept guidance
laws for missiles ras been studied by a lot
of authors at home and abroad. [1, 3, 4, 5]
But the mathematical models for missiles were
assumed too simple, i.e., either as an ideal
particle or as a first order delay link [1].

As a primary contribution this paper has
made researches on the optimal intercept
guidance laws based on a mathematical model
with second order characteristics. By
taking minimum control energy consumption as
the performance index, the optimal intercept
guidance laws have been derived from the
minimum principle in the following two cases
of terminal state:

1. The terminal miss-distance 1is zero;

2. The final state is a zero-control
intercepting curved surface.

The conjugate state equations and the
state equations have been solved by use of
Laplace Transformation. Through consider-
ably complex computation, the optimal
intercept guidance laws have been deduced
in the following a.ralytical forms

1 (1) ==K (b, 0,t)(x;c+xf)~ L (E, ®.8)x,0
2. (1) ==K (t,o, T8 ) (x +x )~ Lu(E, 0, T, B)xy

Through appropriate selection of the
terminal time t_ or the time of lead T, the
results obtaine& above may be transformed

Received 1in May 1981.
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into the optimal guidance laws which are
composed of the proportional navigation
with varied coefficients and the correc-
tional terms associated with acceleration
and the angular rate of change of the
line-of-sight. These results are similar
to those of missiles with first order
delay link in form and have no need of any
additional parameter. However, the com-
putation is more complex and the results
are more accurate.

Finally, the optimal intercept guidance
laws are studied in the case of the proper
frequency of a missile . approaching to
infinity, i.e., in the case of an ideal

particle. The results are the same as those
obtained by the other authors.

Notation

relative position vector of missile and target
relative Qelbcity vector of missile and target
relative acceleration vector of missile and target
rate of change of relative acceleration vector
missile control vector

optimum missile control vector

relative damping coefticient of missile

proper frequency of missile

degenerate-state vector

Lagrange multiplier, undetermined constant vector

initial time, final time

time required to reach zero-control intercepting curved

surface

time between reaching the zero-control intercepting
curved surface and hitting the target
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angular velocity of the line-of-sight between missile
and target

N rate of change of the angular velocity of the line-of-
sight

1,8 real values chosen according to need

I. Statement of the Problem

i The dynamical model of the relative motion cf the missilc

and the target is described by

X, =Xy x,(l)=x, ()
X=X, xl(’c)z-‘u

X =x, x,(1,) = x,,

=-0x—2kwx, + o' x,(1)=0

The performance index is -

J(,,):%J-" uudt (v EEER) (uT indicates transposition) (i
te

where uiR3, and te is given beforehand. Let the target set be

{ 9:0x, (1) x, () %, (1)) = 0
(3)

gl(xl(")' kz(’r)v (1)< 0

The problem is to find the optimum guidance laws for the
system described in (1), and guide the system from the given

initial state (2) to the final state (3), keepinag the perfomanae
index at its minimum value.

We will find the optimum guidance law for two different
target sets in the following.
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11. Minimum-Energy Guidance Laws for the Case Where the Terminal

Miss-Distance is Zero

The target set is described by
xl(tf) =0

The other parameters of the terminal state have no restrictions

placed on them.

Based on the maximum principle [2], we write the Hamiltonian

for the problem as

1., .r T .7 .y
H= ,)u'-u‘-/,~x,+A,~x,+/.,-x‘J-f‘.(—w'x,—zgwx..; wy)
o

(4)
where Al’ \2, A3, A4 are the degenerate-state vectors of the
dynamical system (1).

The degenerate-state equations for the system are
{M(t)=0
2:0t)==x(1t) {5)
ACt)==) (1)~ (1)
A t)==h( 1)+ 28wr (1)
The interception conditions of the system are given by
[ A|(fl)'—‘ v
kz(fr)= 0
A()=0 (6)
A‘(f!)g 0

On the basis of the minimum principle, ihc optimum guidance
laws and the corresponding degenerate-state parameters should

make the Hamiltonian function a minimum. From

el
0
o
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we obtain

a(t)=—-w% (t) (7)

From Eg. (7) one can see that, in order to obtain the

optimum guidance laws, one must find the state vector A4(t).

From the first two equations in Eq. (5) and the corresponding

boundary conditions one can obtain

Al(‘)-_-v
l,(f):v(f,—t)

w

Hence, /7

ALW(t)==v(@=t1)+0" (1) (8)

SetNow, find the first derivative of the fourth equation of

Eg. (5), and obtain
n
A(t)==a,(t)+2804,(1)
Substituting Eqg. (8) into the above equation, one obtains

(9)
xn( ! )—250)14( t )+m’)\4( t )= v (tf_ ‘)

from equation (7) we know that to find the rule of optimal control
we must only determine that 3, (t) will work. 1In ecquation (9)
let

hence equation (9) becomers g
B (T)+2L0i (T o, ( 1) =y (9*)

then

When 1 = 0, t = tf and 2, (0) = 0. Assume A,{(0) = 0.
A 4 4

. nonhomogeneous | ) )
Eq. (9') is a second-order emamssm Iinear differential equation

with constant coefficients. Using Lagrange's transformation,
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one finds its solution to be

2 ~ler T_
WEDERAGE %\[2;m91+“2§_m£,)’,,,sin91] (10)

where

Qsm( 1 _Ex)l/l

Suhe+itting Eq. (10) intc Eq. (7), one obtains the ojtir.l

rontrol law

_ { 28 1 ewpen
B(1) == v (= )= et [ZioosQ({,- 1) (1)

* iz—i—z:E;)}‘vaSi“Q(”— f )]}

To completely determine the optiral control law, we need

to determine the constant vector y. For this gurpose, we have
. ) system mode equation se
to insert Eqg. (11) 1nt04 g. (1), and solve for the state parameters.

lWe obtain’from the third equation of Eqs.;t(l)

X5 (£) = X ,(t)

set
Substituting the fourth equation of Eq.,, (1) into the above

equation, we get

% (t)=—otx(t)—2tox,(t )+o%u (1)

set
Now, substitute the third equation of Eq.,‘(l) into the above

equation, and we obtain

%,( 1) +2kax,(1)+oin(! Y=%( 1)

Substituting Eg. (11) into the above equation, we obtain

134




.. {
X, + 2twx,+ wx, :—vco'l(f,— ] )__2£~+J_ -te g1 [Zist(f,- 1) (12)

*iyrsnac- 0]}

This is again a second-order uneven linear differential equation
with constant coefficients that can be solved by means of the

Lagrange transformation. The final results are
2Nyl
n()==- viu- t)—[f'+“‘°'Qf‘) ] “to'sin (C + ¥,)
l -l (rget)
—Am(]—a’)'ﬁe‘ r sin(Q (¢,~ t)"'*.)
—(a'+b%) =e't-u/‘”cos[Qf+¢,]-4m( 1 l_‘g,)ﬁe-“(',")si“[Q(’I- t)+4) (13)

Q U 1% 0 -jar
+4£w’(]—£')’ 1€ tocy cos(Q(,— ¢ )+¢.J}+x,, 'l—»i?e t cos( Q1+ ¥,)

In the above equation /74

ot [
v ()
el

Wt [T+ )

@ = gt 1 oy (@)

45“’2( 1 _El)l/

%‘ +E )f —sin (O + ¥,)

The above are all functions of the given parameters ¢ and . of

the missile, and of the terminal time tf, and are invariant for
a given tf.
Substituting Eq. (13) into the second equation of Eg. (1)

and integrating, making use of the given initial condition, we
obtain



{

x, (1) =Xyt — — (et oc0s (Qf, + ¥y + 9,) — €t 'cos(Qf + bat+ ¥.))

“30 -
o( 1 —£9)
— v {(n- £ )+[ﬂ+(3“’1€:’—)—2]’ " in @i+ )

~te )
+ (d’+£i_)l_ Lo(t,ol)ms(o.t+‘ba+\b )+ 4wf( 1= ‘_1)1 .Slﬂ[o(f,— { )+ ‘bc \L ]

(14)

l.u' 133 0? Lo(l, [31

s (= 1) F bt B+ grgic _pyieos QG 1)

T (1=t
rhtwd= (=) Cltte £ @)}

In the above equation

et

C.(ipts, &.w)=—[f%+(5‘°"“)f"]” €2 sin Qi+ b+ 0

Qx
2313
_._(a_z+al)) )_e-tc('hlolCOS(Qfo'*'\b3+¢4) 40);(1 )l ;(e tergtegy Sln[Q(fy_f.)

Qe to(1-1g)

b3 = SN CQ (1) + e + 90} — b gy Q (=i

+ o+ ¥J

Substitute Eqg. (14) into the first eguation of Eg. (1) and

integrate, making use of the corresponding initial condition.
We obtain /

|5

x(1 )=x|o+x20( t -fo)"}’

**Tx". D) [e“"o( 8 =1:)cos(Qfo+ o+ %)
-lefg

e € o (e + o 20) + o8 (O + b+ 24) ]

2 s 117 eler
- v i( f,li—“ ’é*)—[fz (_____&mfg;—l) ] e‘—“—sln(§?1+¢1+2¢c)
1/2 g.u *r)
(0 +(:‘ ) e stoury ncoS(Q‘l+¢,+\l! )+ ‘0)’( 1 ! E!)l 5 SI“EQ(‘I 1 )+¢°—- ')w‘)

(15)
epu, o

(.(I 1)

4&)’(1 _gz)]_‘s‘nfg(fr 1)+ b, + 2%, ]+4Eg‘¢(l a,), ,008(Q@~ 1 Y+ 6, +2¢,)

—(tt- )+ttt o) i+ (PR ) c g b 0) )
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In the above eguation,

(‘o(f“f‘,. a, (D):—Cl(j" t.' E' m)‘._’_ [P+Q1,+])1 ]l 3 et

Q* w?

}
X Sin(QF + b, + 29, + (a* +b i —e o8 (01, + by + ¥,)
eg.. l' 9 o e(ou’l 0!

~ 0t (18 SIn{Q U —1,) + b, — 29, )+4w'(1 £y $SINCQE —=1) + ¢+ 2y )
o Y
T4 cu‘( 1 _ax)x 308 (Q (4, — f.)+‘b|+2‘b J {
The constant vector v can be determined from xl(tf) = 0. ‘
v mer (=) + o T “)[""."(""J“(QHw‘”‘) ]
“tos, [ : ‘
_ e lm: cos(O, cos(Q1,+ by + 2¢, )lx‘(l S )" ‘
(1) 1
twi+ 1) Slery \ as +l" ) Sset ! B+ U .
[12 ( = Q- : } e?n<1w51n(Qfl+ "b1+21¥4)_ ( (D- I(m(Q.‘-Lw__‘ 104) 1

(zw:,

Q
4(03( l E!)l 1 Sln(‘lo 2¢4) _“D'(l )1 1Sln(.¢b+2'¢l) 4;&0‘( 1 “E’)l F
x cos (Y, +2¥,) +C, (I dy, &, o), +C.(11 &, w)}”? (16)

Substituting the value of v into Eq. (11), we obtain

u(t)= _‘(xw*'-’u =1+

® ( l R E)) [ ot —1,)c0s (1, + ¥4, +¥,)

t
“tery
e (Qlo+‘bo+2¢‘)+— "l cos(Q,+ ¢°+2w.))- x {(:,_ 1)
2k et 2t~ ((1,=1.)
- (ZECOSQUI t)+ (1 - E’)' LSinQ (4, — t)]( R
[ me(’;'l)’ ]l L ] gn(m,+ ¢‘+2¢ ) &%’_l__e a&-',m(m’+ ,"+*‘)

e 3
+‘ml(] tl)l '3 s‘“(*o 2*4) ‘mS(l al)l ‘2 s‘“(*o*’z\b )+4E<ﬂ‘( 1 _El)l 2

X cos(¥y+ 290+ C,(fu fy £, @)+ Cyltptn £, )} (17)

Let ” /
F (flv’no 50 m)="[f’+-(ELt:o-¥l—)']’ ! _’.‘_‘__m“(m’+*'+2*‘) (d +b1)]/l

B

-tter, e 1y i 1
Xe cns(Qh+ ’bs““.) +‘?“(l_£l)l/:ﬂ“(‘o"2*o)" m_l-'—&ij

x sin(¥,+29,) +‘£T(—IQ—_?;-T:°°'(¢.+2%) +C(nte, £, @)1,
+C0(fh ,.v a v O)
137




Under the condition that tf is given, F (tf, tO’ £, w) 1is a

constant quantity determined by the missile parameters
Eg. (17) can be simplified t»

z and .,

and the time to. Thus,

8=~ {me s+ 5T [t —t)com(@ty + ¥+ 45

e':'%- (Qy+ %y +2¥,)+ -gi.lm(ﬂfﬁ*-”“’-))\"‘ {("" "

eo(f,-f) )
—ﬁ—-&-——l(;’—[Zicosg G-t)+ (1 z)xz ~resinQ (- )])

((t,—1.)
Gty P, b o)} (18)

is

The optimum guidance law at t = t0
u(ty)=-— 1 X+ x5 (2, — 1, Y+ w(1 };’)[ .:.'.(tf_fo)m(Qfo +,+ b))

.g.

—ﬁe:g"ACOS(Qfo‘F\bo-Fﬂ\b.)'*' © M(Qf,+¢.+2¢‘))-X-‘(f,—f,)

25 e g.u’ o) zsf 1— _ ( 0)8
-3 +—?—-[ EcosQ (3,— t)+(l—;)‘ 38in Q (1t 1)J) —3

. (19)
+F(thtn &vw)}‘

Let

~t®(fy-fo)

sin (Q (=1,) +b0) |

2t e

Kt £, 0)= (=)= 25 4 g
1 —1,)°
{( 3 +F(@ntn &, ‘D)}

et

L Q@nts &, )= (-D—(_],l; Ez)[ tefo(d,—1,)cos(Qfy + ¥,
o 25
XCOS(Q‘0+ ¢.+2'¢.)+‘%‘“'*COS(QB',+¢°+2¢.)] l(fl—f )— »

c(l.lur'.,)“(f)(h () +9 | x {Q"——a""l*F (i 210}

Egq. (19) can thus be written in the simplified form

a(t,)=—K(@{nt, L, m)(’w““n(’;"’o)) =~ Lty &, ©@)xy (20)
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By a proper choice of the time tf - to, we can change the
guidance law expressed by Eg. (20) into one that consists of a
proportional guidance term with variable coefficients (that is,
proportional to the angular velocity of the line-of-sight) and
a modifying term that is related to acceleration and the angular
acceleration of the line of sight. [1] /77

When w + «, the dynamic response of the missile disappears,
i.e., there is neither oscillation nor delay in the response of

the system. At this time, F(tf, to, £, w) = 0.

K(hJ”£.®)=jzf%y—

L(ihfm E,(D)S 0
Therefore,

_ 3 lxetxe(t—1)) (21)
(f!'-fo)z

which is the optimum guidance law for the instantaneous response

l-‘(io) =

of the mass point. By choosing different values for te -ty
one can obtain proportional guidance laws with different
coefficients. [3]

II1. Guidance Laws for the Case Where the Final State is a

Zero-Control Intercepting Curved Surface

When the dynamic system (1) is guided towards the zero-
control intercepting curved surface L, its target set is
represented by [1, 2]:

{xl(T)+“xx(T)=0; R=0 (22)
x%(T)=0

Assume that the time T of entry into the zero-control inter-
cepting curved surface L has already been chosen, while the

time interval u between the time of entry into the zero-control
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intercepting curved surface and that of hitting the target is to
be determined.

x3(T) = 0 is necessary to keep the system within the curved
surface L after it has been guided into it.

The performance index is still given by Eg. (2), and the
Hamiltonian function H of the system remains the same. Hence,
the dynamic system (1) has the same set of degenerate-state
equations as described by Eq. (5), but the interception conditions
are changed to

M(T)=v
A(T)=vi (23)
A(T)=0

In the above, v and k are Lagrange multipliers, and are undetermined
constant vectors. Solving Eg. (5) under these boundary conditions,
we obtain

Mit)=v

M(1)=v(T+r—1t)

a(t)==v(T+Hr— 1)+ (1)

1 (1) =283, (1) A (1) + v (T+H~=1)

On the basis of the results obtained in Section II, we have

la(f)=‘£;’{(T+“— t)——%—+-c1;e""’”"’[2£oosQ(T+u— t) (24)
28'—1 _ _
+ SR+ r = 1]

Substituting A4(t) into Eq. (7), we obtain the optimum
guidance law

2t

[

#(t)=-—v {(T+ H—t)- +%e"“"""[2€ws9(7+ W—1)

7 (25)
+-(f‘-_‘?)1,~,— SinQ(T + K — :)]}
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Substituting Eq. (25) into Egq. (1), we can solve for

x3(t), xz(t) and xl(t) by the same procedure used in Section II.

(1)==v {(T+w= :)—[(r+ Yt e @mil%,i”’—l—)—']' i (Q+ )

_‘_(:;(‘;“";‘,smmcr*u— £) +4,) = (g + bV et T
1-(1‘0& n
x 008 (Qf + %) = ———— 55 rsin (Q(T + B — 1) +%]
4o (1 -8

Qe-gum-:)

@?‘W[Q(T+u—t)+¢ll+ -—E,e toos( Q1 + ¥,)

+

£ =2t Gy )[ 10008 (Qiy + ¥y + ¢‘)—e""ooS(Qt+¢°-L\b‘)

118
—Vi[(Tﬂ‘-P) t -§]+[(T+ B+ (,w(T5P)+l)] 'io sm(Qf-HD.-Hb)

~te(TeweD)

Ly T IR
+£Lﬁgl_gm”“cm@ﬁ+%+¢)+];%?f?fT
te(Tea-0)
SnCQ(T = i = £ )+ o= $) = Ia%l_—)lagn[Q(T*u—:H—\bwb)
Qe -to(Teu-n > {g )
- sl QT+ B — )b (T+HH=

-
Tazwi(1 ~g)F

+CJT+uJM£.wﬂ

2 (t)=x,+x,(t =1 )+ — (9(1— ) [e'l"o( ! —fo)m(Qto+‘bo+¢.)

= T cos(Qfy e+ 200+ et 240 )

1 . ‘
T FE Y (GOl Go(T+ w21 € s+ 2%)
(0 "b)‘ Sle TeBen (Q‘J_‘b "'\b)-{’- ei‘(rwu)
of ¢ o= TR -
el.(fou )

xsin{Q(T + 1 = )+ =20 = sy E,)1,sinCQ(T~H*—t)"r‘lm-z‘b.l

1’]‘

L@ (Tonet)
‘l.e‘ﬁ—»),,oos[cz(r+u—r)+¢c+2¢.l—((Tw)u A
)
)

£
+C(T+utmg<ns+il%“”t—g $C(T+ M 1o &y 0

45
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(26)

(27)

(28)




Letting t = T in Eg. (28), we obtain

—_— 3 _‘)
1 (T)=xUT)= v 'I(T 3*0 . Jf,(rz :

s )
'+A11(To u'v &vm)i

where

.t:( T)=X;¢+Z”(T _f’) + (L)( lxsi ‘:2) [e't"[( T —f.,)cos(Qtﬁ» ¢a+ \bo)

~lely -{ey

7 hl
= O O T 2b) - T cos (0T -+ 29, |

AXUT, b so0)= =74 upg GeTW ) J o s eT 200

(a!:ﬁx), ! SlecTeu: e-l.\"‘—*“
Sre cos(QT+¢,+¢J+WL:)u

-tew

x sin(Qu+ wc—gu‘o)__mvl — t2)1 x_Sin (Qu+ ¢c+2¢.)
S

O leu
+Egrfr:;y1wﬁ9“+¢ﬁﬂwafm7“rPd”&.w)T

+C0(T+ u”.v E,(D)

Letting t = T in Eg. (27), we obtain

(T =M= v 70w r oy saxy(r, v, 1. o)

where

’:( T)=xy+ le‘"__?j [e""'oos(Qi., + \bo+ ¢4) —e".’m(QT-F *o + *4)]

+ 1 11 '.
AX(Tomtow)=[(T+m)t+ (E“’(T;‘:) D ] eosin@r+ 4
topnyr -l taTens
+ (@D i cog (T 4 4y 4 v+ AN

~le
Xsin QU+ b, — ) — ,(‘; t,),,Sln(QH+‘ba+¢)

O ~low

1ot eI B R)+CU(T + Kt L, @)

142

(29)

(30)

PR S




I

As the system should reach the target set at t = T, the
following relation should be satisfied:

From Egs. (29) and (30), we obtain

N TY+-ux3(T)—v {JT.;?J_’_ +B(T =) ~#(T—1)+AX (T, 1, £, 0)

+HAX (T, 8, &, w)}= 0

from which we can solve for v.

v = X(T)+8x3(T)
T=ir T

B (T =) BT =1)+ AX (T, 1, &, @) +HAX (T, B, §, @) (31

substituting Eg. (31) into Eg. (25), we obtain the optimum
guidance law
_ . . . ( 2% 1 teireson
"(‘)=-[11(T)‘Y'px:(r)3"l(T+i‘— t) - m""ae
2

: 21 _ (LT =1
x[z;cosQ(T+u—t)+-(1_:£,),,st(T+u t)]} 1 3 (32)
F U (T =) 4R (T =)+ AX (T, B, &, @) +HAX(T, B, L, co)}"
The optimum guidance law at t = tO is given by /80
2t 1 -
G = — (T +Ra(TN] (T + 1 -1 ="~ scizmy T
-1,)* -
eain(@ (T + 1 —1) +0) {IF 4w (T =t 4T =10
= (33)
FAX (T, B, b, @ +BAX(T, B, &, ®);
The above equation can be written as
i(1)=—-Ku(T,#, b, 0)(x+x,(T+H (34)

"’f.)]-‘LL(T, “9 E L] m)‘u

where
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A’L(Tv u" t' Q)):{(T+ u—té)_ 2‘: +6»( 1{.’.’&!56.‘.‘”‘-")

— . o .
xﬁnHN?”fu—h)+%}}%(T3&l7+U(T—hV+H17—Q)
-1

+AV(T. 1, 5, 0)+R\Y (T, 1, i.w)} 4
L(T. k.5, 0)= 11_;’1) [e"-“”°(’1"+ B —tg)eos( Qi =~ vy +$.) y

_ :)t"""fcos(Qfo+ W+ 29, + ie*"’(‘OS(QT+' Yo+ 2vy,)

(T ~1)°

=i TR (QT F 9 (T T (T =)

-1
+AXN (T, H, b, 0)+HAX (T, 1, &, w)}

The tf in vir bar
section should be replaced with T + yu.

a and b in all the equations of this

In the optimum guidance law given by Eg. (33) or Eg. (34), i

u 1s still not determined. Only when . is determined can one
say that the guidance law has beer completely determined. For
this purpose, we make use of the condition x3(T) = 0. Although
we have taken x_ (T) = 0 into consideration while setting up
the boundary conditions for the state equations, it has not
really been used in the process of establishing the optimum

guidance law as the latter is independent of X To make sure

3
that the system will stay within the zero-control intercepting
curved surface after it enters this curved surface, we must
choose y such that x3(T) = 0. Letting t = T in Eg. (26), we

obtain

x5 (T)==v!u —[(T )t (—E“’(—T%#-)*—‘—)f]”e-msin(or+ v)

_éx)z SIN(QR A4 P,) — (0P + b)) ZgrieaTe

_ lid
qw(l
Loy — et : ; Qe t="
XS(QT =90~ gy SO+ _py
Xeos(Qur ) |+ e e s (QT + ) = 0

Substituting Eg. (31) into the above equation, we obtain
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an
[

3 - Nt S
— (XN T )BT {“ —[(7‘ ~ H)s (RelT T,;u) D } et Ql vy )
_-Ld(fl -t ‘.\m(g.’“‘-’w’.)_(dl"b:)‘ ettt T o= QT - vy)

e . Sy Qe te”
Taw(r —gy ST

Taei( -
_ ]
xl (7: .JtC)" - P(T—fc)"u:(r"ig)"‘_ﬂ-Y;(T. K, L' w)

|
1S (B =) |

FHAX(T 1, b 0)) 4R Teon(QT + ) = 0 (35)

This is a high-order transcendal eguation which can be solved
for » by means of numerical methods. It is possible to have 1
several values of u that satisfy Eg. (35). In this case, the
smallest positive value of i should be chosen. Of course, it
is also possible that no value of ; exists that satisfies

Eg. (35). This corresponds to the case where the system has
been guided to the zero-control intercepting curved surface

but cannct be kept within that curved surface. Here, guidance
toward the zero-control intercepting curved surface becomes
meaningless. From a physical standpoint, however, the equation

should have a solution because the control that causes the rela-

tive acceleration to be zero does exist.

Wwhen . » =, the missile loses its second-order characteris-
tics, and becomes a mass point that responds instantaneously.
At this time, KL(T' v, &, w) and LL(T, v, 5, ) of Eg. (34)

become

] T+e—-t
Ru(T. 0 i'm)_(T,? XY (T =0 =T 1)

L(T.H,E,0)=0
The optimum guidance law u(:) becomes
,,xl_e'f'xn(T‘F H 'l«)

(i) ==, _ ;i (T + 1 —14,)
Q-si+ BT =1, 4K T =3,) (36)
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This is the very result obtained for guiding an instantaneously
responding mass point toward the zero-control intercepting

curved surface L. [8]

IV. Conclusion

We have obtained above the optimum guidance laws Eg. (20)
and Egq. (34) for two kinds of target sets for missiles with
second-order characteristics. These two equations are similar
in form. 1If we express the acceleration of the missile in
terms of the rotational angular velocity and the rate of change

of the angular velocity of the line of sight, and let

_x{r(axw"'Bxl:)

<1, (ux. - sza)

T—t,=—

7 .
— i, = —.x’.c_(ax_:c_t'BX,,)
T + K fo X;O(wa-g- Bx“)

then both Eq. (20) and (34) can be written as [1]

/82
ﬁ(xlh X209 60v“;)cv a’ B9 Eo o, u)
-- X
Ll-(xlo’ Xage Cl, By Ev (l)' IJ) xlfo_(axlo+‘3xzt)
1 +Bx, - .
x [mif‘:ﬂl x|o+“’ox(axxn+8xzo)]+[AL(xm X a, B, Lo, B)
X
xx;;(dxic-rﬁxn) 2L (x40 %y, @, B, &, @, #) (37)
Izox_:o

x{)(uxri;-ﬁ; Bxye) ]60 X (ax,,+ Bxyy)

In the above equation, w and w are the angular velocity and the
angular acceleration of the line of sight, respectively; o and 8

are real numbers that can be chosen according to need.

It can be seen from Eg. (37) that, under the condition of
a specified transit time, the optimum guidance law for a missile
with second-order characteristics is made up of a proportional
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guidance with variable coefficients and a modifying term that
is related to the angular acceleration of the line of sight and
the acceleration. Although it is fairly complicated to compute
for the coefficients of this equation, these coefficients are

known functions of x a, B, &, ., and y. Therefore,

X
10" 720’
armed with the advanced electronic technologies of today, one

should be able to attack the problem without much difficulty.

As the mathematical model chosen for the missile in this paper
is one step beyond that given in the listed references, the

resulting guidance laws certainly possess higher accuracies.
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! AN OPTIMAL GUIDANCE LAW VIA FIRST-ORDER INERTIAL LOOP /

|

Chen Hsueh-yu

(Kueichou Electro-Mechanical Design Research Institute)

ABSTRACT

An optimal guidance law which considers
dynamic factors of missile and target via first
order inertial loop in three dimensional space
is studied on the basis of the theory of
differential games. An optimal feedback guidance
law is given in vector form, and the control
rigidity parameter "k" is introduced into the
feedback gain. The "k" is a scalar with
determinate physical meaning. It represents
the response characteristics and controllability
of the system. Hence, in addition to being a
function of time the feedback gain is related
with the characteristics of the system.

Finally, several problems are discussed
in brief: first, the degeneration of the
optimal guidance law proposed is discussed
under certain conditions; then, for the
convenience of realization, a suboptimal
guidance law is given in finite rigidity
case by means of further simplification;
and also the controllability of the system
is illustrated. 1In addition, the case of
£ # 1 is considered in Appendix.

With the progress in numerical techniques, the extensive
use of microcomputers and microprocessors has provided
favorable conditions for the utilization of numerical simula-
tion techniques for the purpose of increasing the efficiency
of tactical missiles in battles. Hence, with respect to the

guidance system, it is desirable to obtain a better description

Received in December 1981.
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of the system by taking into consideration some factors that
affect guidance accuracy, and to achieve real-time control by
synthesizing more effective guidance rules. 1In other words,
the study of tactical missile guidance laws using modern
control theories is of great significance.

To go one step further in the study of guidance laws so
as to be able to more effectively intercept the targets, it is
not sufficient just to consider kinetic factors, but one must
also take into consideration the dynamical factors of the
missiles and the targets. The simplest case is where these
factors are considered simply as a first-order inertial loop,
i.e., there is a time lag 1 between the input of control and
the output of payload. Two cases are usually considered with
respect to the dynamics of the target, the first being that the
target moves at constant acceleration and the payload is a
constant. The second case involves an indeterminate situation
where the motion of the target is different from moment to
moment. In some cases of this type, the guidance law can be
synthesized using the theory of differential games. [1, 2, 3]

The theory of differential games is one on the study of
missile and target control via the principle of extreme values.
The problem of interception involves the control of both the
missile and the target. These have a common performance index,
but each places a different requirement on this index. Effective
interception requires that the missile control have a minimum
index, while escape capability dictates a maximum index for
target control. The problem at hand is to consider a problem
of interception in the three-dimensional space on the basis of
the theory of differential games, to assume the dynamical
factors of the missile and the target as a first-order inertial
loop, and then to synthesize the optimum guidance law for the
missile. [3]
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I. The Problem

Consider the following vectorial equations of motion for

the missile and the target:

[*d(‘)=vd(t)v f.(t):v—(t)
iv.u):a.(:). Ou( 1 )=0n( 1) (1)
o )=o) -Lale) ()= ou()--Lanl)

In the above equation, v, r and a denote the velocity, position

and acceleration vectors, respectively, of the missile or the

[52]

target. u is a control strategy, and is also a vector. The /8

!

subscrip's d and m denote missile and target, respectively.

The geometrical relations among the vectors are as shown in

o ,“

Figure 1.

vi

Figure 1. Geometry for intercept.

Based on Eg. (1) we can write the state equation for the

interccpt system as

% 1)=Fuxe( 1 ) +Gaia( 1)y 5u(t)=Fuxa(1)+Gou( 1) (2)

In the above equation,

K1) =0r( 1) va( 8 )vaa £ ))y 200 8)=0ral t )y un( 1), 00( 1 )7y
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"*v denotes transposition. xd(t) and xm(t) are 9-dimensional,

so that the coefficient matrices are of order 9 x 9, written

0 1 0 { 0 1 0
4 ’

0 —1/1,,., IL 0 0 —1/1.7,,
Gi=(0 0 1/t)sm Gu=(0 0 1/% )4 -

simply as

F,=

L

In the above equations, when not otherwise stated, 0 and 1
denote, respectively, a 3 x 3 "zero" matrix and a unit matrix,

and t, and T, are, respectively, the delay time of the missile

1
and that of the target. We can write T, = grl. In general,
£ > 1. Here, we take £ = 1 and T, = T = T. The case for

£ # 1 will be discussed elsewhere. In fact, the worst condition
that one can have in interception is the instantaneous control

of the target, which has a larger inertia, i.e., & > 1. Hence,

by taking £ = 1, we have placed a stricter condition on inter-
ception, which is appropriate [Appendix III]. Futhermore, we
do not take into consideration restrictions of Uy and U and
take the performance index to be a general function of second

degree [1]:

I =%(["-") ' [r‘_."))]., +%J:: (e (ua ) ~ ca' (um - wa) Jd (3)

In the above, b is the weighting factor of the terminal state,
while tf may be either given or not.

To obtain control of the feedback type, let ud(t) and um(t)
satisfy

J =min max
o o (4)

Our main purpose here is to find a control strategy ud(t) of

the missile such that the miss-distance at the terminal time

tf is a minimum. Obviously, the problem described by Egs. (2},

(3) and (4) is one of extreme-value control of the linear index

of second degree. We apply the method given in Ref. [1] to this

roblem.
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i II. Solution of the Problem /86 #
|

First, we define a set of vectors in terms of the relative
state variables:

(5)
20126 )27 1) E(1)26n 1)xl1) 1

In the above, ¢d(tf, t) and ¢m(tf, t) are, respectively, the
basis matrix of Fd and Fm, from which we define another vector:

4

iy D 1)) (6) 5
Z(1)2 AGA1)=%a( 1)) = ACs(tn 1 Ixs( 1) —alten t)5a 4
1

In the above equation, A = /b. Hence, Eq. (5) can be written as

1=giz e+ [ (]| w

u...“z l]dt (7) ]

2
' " Cm

Differentiation of Eq. (6) yields

2C)=Bal t Yuel 1 )=Bul 1 dunl 1) (8)

In the above, Bd(t) = A¢d(tf, t) Gd; Bm(t) = A¢m(tf, t)Gm. The
terminal condition is

r1 0 0N
S;i="0 0 0, (9)
L0004

2(1)=A(x,(1)=%,(t)I= A(Ax) 5 SOXLAX)’ = (Ar, Az, Aa)

From Eg. (9), we can verify that the terminal requirement |
on the performance index is

1 . A
2 WZ DI = ——(Ar-Ar),= -ZIA'T? (10)

Now we can construct the Hamiltonian of the problem on the basis :

of Egs. (7) and (8): |
H(Z. baytime Ay t)=L+X(2(t )N

AR L (11) %

-, ,;“'j; o 2 il u-j{ c;l-i-k'(B;( t Jud( ) =Bt dua(t ) .=
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The solution of the problem should satisfy the following

necessary condition:

H(Z, A, t )=min maxH

ug Ve

or satisfy the accompanying equation

Hence, 2 = a constant vector, and
) (A’
7z
1@Q=ﬂy?ZUQ=SJ®)=AOJ
9z, L
0 font
H~‘= 0! [-[n‘_g 0

The problem now becomes one of solving the boundary

problem of two points as described by Egs. (8), (9) and (13).

From the above conditions, we obtain

(1) =—cBi(t )N ( 1)y ud(1)==caBL(t)A(1)

which is the optimal solution of the problem. From

and (8), 14 becomes

Ce=Gu=Gy Fi=F.=F, B, 1)=B(t)=B(1)

“(hv 1 )=¢u(1" H )= ¢(1h 1 )

Hence, we write Eq. (14) as

(1 )=—=cB ()0t} a(t)=—c B’ (1)2(1)

From this we know that to obtain the optimal feedback guidance

law we must first find A(t). Assume that

A(t)=S(t)z (1)
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Egs.

(12)

(13)

(14)

|

(15)
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and substitute Eg. (15) into Eg. (8), taking Eg. (13) 1into

consideration. We obtain

(16a)
2(1)==(ca—ca) BCLIB (1)A(H)
Integration gives
t
Z(1)= Z(f,)—(c"—c..)[]!’ BC)B (1)Sdt)Z (1) (165)
=(J +(ca—ca) B)Z (1,)=P2(¢,)
where
B= (" B()B (1)Sa (17)
(17a)
P=(I+(ce—ca)Blowr I is a 9 x 9 unit matrix
From Egs. (13}, (16) and (17) it is not difficult to obtain
(18)
S(‘)-’-S(‘y)P-'
Now, we calculate B(t), B and ¢(tf, t) separately, and find P.
As long as P is not singular, the problem will have a solution.
The basis matrix ¢(tf, t) can be expressed as [Appendix I}
t
Y6 l)=exp[j-: Fdf]==e” (19)
In this equation, T = tf - t. Expand eFT as 1 + FT + 7§7-F2T24-...,
and define two simple functions
ty—t T et (19a)
kL '1 = E21l-—e
Making use of the parameters k and E, Eq. (19) can be written,
after some rearrangement and combination, as
( 1 T ™kr-EF)
¢, 1)= L 0 1 «F (20)
0 0 (l-E) (3]
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The parameter "k" introduced here is the stiffness of the control
system. In the discussions given below in Section III, we will
talk about it in detail. It can be seen from Eg. (20) that the
structure of the system is reflected by the basis matrix which

is related not only to the time, but also to the control stiff-
ness and inertia of the system. We will use the basis matrix to
compute B and P below. Substituting Eg. (20) into Egq. (8) yields

[ 1 T <*(k—E) roo (r(k—E)
B(t)=A] 0 1 =E } 0 = 4 E ] (21)
L 0 0 (1-F) " 1/7'..3 11/1(1—5),._3
Then, we can obtain the integral B [Appendix 11}:
[ (/DAKSE) £ 1y Bt (22)
B=(" BCOB(1)Sdi=| —(/DAKHE) o0 oJ' =LB,, 0 ° |
(1’/2)A‘(K,+E,)§ ' ) B, P (11
In the above equation, /8E
K,zk’+3k’+3k +3/2; K:=k!-2k; K;=k’+ 1
E=(E-2r—-1)y E,=E% E,=(E-k—-1)*
B, =((</3)A(K, =~ E )y Biy=(—(*/2)A(K,;+E ) gy
B\ y=((v/2)A*(K,+ E{)) gy
From B, we can define the controllability matrix of the two
components in the interception
ty
Wl(’h ‘)=CIB=C‘ ¢ B(‘)B'(‘)Sﬂﬂ (22a)
(22b)

Wt t )=c.B=c.f': BC1)B (1)Sdt

Therefore, for ¢ = 1, the difference between the controllability

matrices lies only in cd and c.- In other words, one of the

necessary conditions for a successful interception is 3~ ©
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We only have to substitute Eq. (22) into Eg. (17a) to obtain

the inverse of P. Let c = cd - cm. Then,
0 0
N SR ? (23)
P'= L veh ~cB, (1+cB)) 0
\’—CBI, 0 (I*CB”) Y
Finally, substitute Egs. (21) and (16) into Eg. (15), taking
account of Egs. (18), (16) and (6), andc we obtaln the optinal
guidance law:
w(t)=—cB (t)N(t)=—ecB ()SP'Z(1) Y
(k= E) Ar=TAv+7 (k= E)\ (24)
1/ A+ (ca~ca)(/3)0 )
In this eguation, [-] = [(k> + 3k% + 3k + 3/2) + (E - 2k - 1)?].
If we take k3 out of {-] and keep in mind that T = 1k, then it
will be easy to see that when k » «», Eg. (27) becomes
__ed(ty= t )QAr+ (4= )0
u:( ¢ )_— 1/”A!+(C‘—‘Cm)(fy— 4 )l/s (25)
This is the very result given in Ref. [1] for a mass point in
three~-dimensional space. We can simplify Egq. (25) one step
further. When A2 + », i.e., the miss-distance is zero, we can
obtain, under the condition of a single passage,
u‘(,)=,,___§_.p’a (25a)
(1 —ca/cd

In the above equation, V and ¢ are, respectively, the velocity
of approach and the angular velocity of the line of sight.
3/11 - cm/cd] is the effective navigation ratio, and Egq. (25a)
is the familiar proportional guidance law.

Thus far, we have derived the optimal guidance law,

Eg. (24), and shown that when the control stiffness becomes

infinitely large, Eq. (24) degenerates to that for a mass point.
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11I. Discussions

A, Proportional Guidance Law [1]

From the above, we know that Eg. (25) is cbtained when
k - =, Furthermore, under ideal conditions, AZ .

|or - 0, and Eq. (25) degenerates to a proportioconal guidance

¢!
law:

a0 == e[ T

1l —cam ¢l

(26)

Note that Egq. (26) describes a three-dimensional situation. It /

S

can be shown that for very small angles, the angle formed by r
the line of sight can be represented by the approximate relation |
g 3 i%Th Differentiation and substitution into Eqg. (26) yields
Eq. ?25a). The range for N = 3/[1 - cm/cd] +s 3-6. In other
words, when cm = 0, N = 3, and when cd = 2cm, N = 6. This shows r
that the value of 34 should be taken such that < < cg < 2cm

The physical interpretation of this is that the mobility of the
missile should be higher than that of the target, but not more
than twice as high. Excessively high mobility presents difficul-

ties to missile design, and is not rational.

Hence we know that the proportional guidance law is an

optimal guidance law under given conditions. Some factors have

! been taken into consideration in deriving Egs. (25) and (24),
which can therefore be considered as modificaticns of Eg. (25a)

in a certain sense.

B. Suboptimal Guidance Law

The suboptimal guidance law is obtained from the optimal
guidance law through certain approximations and simplifications
under given conditions. It is more convenient to realize in

practical situations. It has been mentioned above that, when
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the control stiffness is taken into consideration in the propor-
tiona! guidance law, the stiffness is considered as being finite
during the entire process of guidance, and the time constant of
system is taken to be relatively stable, then an approximate
guidance law can be obtained from Eg. (27) after elimination of

the terms 1/k2, 1/k3, etc. We call this the "suboptimal"

1

guidance law. In this case, in the denominator of Eg. (24), ’j

(-] = k3[l + 7/k]. Considering that A2 > w, l.e., [z{f > 0, we 4

obtain 1
u(t)=Ci(k,T)Ci(k.T)NC(k, T) (A, (27)

In the above equation

i o = (k=F) ki {
Gk T)= /301 —cn ) Ch = 7T s
S —(k=IDk
Cyek.T)= /301 —en ) (k=TT e
- rp 4
(. =(k—E)R Y g
C&(k'T)_L 1',/‘3(1_,‘."“(.4)(12—. T) e ’

Actually, in the process of missile guidance, k does not
vary linearly with t. This is mainly because, in the entire
air space, 1 is closely related to height H and Mach number M.
However, no matter how 1 varies, k 1s not equal to 0. Never-
theless, as k is always very small in the last stage of guidance,
Eg. (27) is not "suboptimal" throughout the entire process of

guidance.

C. On the Introduction of k

We introduced the parameter k into Eqg. (24) in Section 1II,
and called it the control stiffness. k has a definite physical
meaning, and reflects the response characteristics and control-

lability of the system.

In a control system, an increase in control stiffness

produces the same effect as a decrease in inertia, both resulting
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in an increase of the natural freguencies of the system. 1In
other words, with the increase in k, the bandwidth of the ,
system increases. It can thus be seen that k 1s a fairly

important parameter of the system. Besides being related to

the system time constant Ts’ the amplification coefficient K
and damping is' it obviously 1s a function of the parameters

H and M in the entire air space involved in the interception.

Hence, we can express k as kK = fkl(TS, KS, {St) or k = sz(H, M, t).

In other words, k is not a simple function of t. Therefore, 1t

is not reasonable to .egard : as a constant in Eq. (24), and ]
determine k as a linear function c¢f t. In fact, except in a ]
very few cases, 1 depends on H and M to a great extent. Thus 1

we have a problem: Even though taking k as a linear function of
t simplifies the form of the guidance law, there is a definite
deviation from the actual situation. Would it be possible to
remedy this inadequacy? The answer is positive, theoretically.
The simplest method would be to regard t as being a linear
function of t within different height ranges, with t increasing

in value with the height. A finite number of linear 1 - t

relations can thus be synthesized for the different height ranges,

which can be used to modify the value of k. Such a modification
of the value of k is expected to make up for the loss resulting

| from taking 1 as a constant.

The introduction of k and the use of k, E and T in place /9G

of the time factors tf and t has given the resulting form

clarity, simplicity and definite physical meaning, and facili-
tated the derivation and analysis. At the same time, it has
imparted a new meaning to synthesis in the application and further

study of guidance laws.

In Eg. (24) the feedback gain of the guidance law is a
function of the parameters T, k and E. This shows that the gain
is not just a function of time, but is directly related to the
system control process time and the system control st.ffness.

Moreover, because T, k and E are simple functions »f
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t (T = tf - t; k=T/v; E=1 - e_T/T), they can be easily
obtained in the order t - : » T - k » E, no matter what form

1 takes.

Furthermore, in studying guidance laws, the object is
usually to increase the guidance accuracy and realize real-time
control, so as to minimize control energy and terminal miss-
distance. This, of course, requires a very accurate description
of the system so that the guidance law synthesized will meet the
practical demands. The fact is, however, that synthesis would be
impossible without the introduction of some necessary simplifica-
tions of the system. For instance, if the dynamics of the
missile are described by means of a linear system of higher than
the third order, synthesis becomes very difficult. How to over-
come this difficulty is a problem yet to be solved. One attempt
could be to carry out a certain synthesis on k, based on the
physical meaning of k and taking into consideration the various
factors affecting k, and then use this k to improve the results
obtained under the assumption of a first-order system. (Note
that when complex characteristics are taken into consideration,
the synthesis of k will be very difficult.) One could thus make
up for the inadeguacies that result from over-simplified
assumptions, and at the same time avoid complications associated
with the use of a high-order system. The introduction of k
further improves the problem of divergence in the terminal stage
of interception. How to synthesize the parame.er k requires

further study.

In summary, the introduction of the parameter k not only
has resulted in a simplification in the form of the result, but
has also given us insight into the methodological aspect of the
problem.
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D. About the Controllability Matrices Wd(tf, t) and Wm(tf, t)

The controllabilities of the missile and the target in the
intercept system are determined by Egs. (22a) and (22b). The
fact that these are simplified controllability matrices can be

seen from the following transformation:
caB=ciAexp FTIGG exp(F/ T} =co AU I(T (L )IUY =cdi Al 5 (28)

In the above,
WI=(G,FG, -, F"'G)y
o T - T%m! ‘I
(TCn- T T = [ e
T*/n! e T atm

Obviously, W is the controllability matrix of F and G, and
therefore W is also a type of controllability matrix. Bearing
in mind that Bd(t) = Bm(t) = B(t), we know that the relative

controllability of W, and Wm is dependent on c. and n only.

d d

wd > Wm would mean Cq > St which means that the controllability
of the missile is higher than that of the target. Note, however,
that 4 > “m does not refer simply to the control energy, but to

the controllability matrix formed from ¢ and B. Therefore,

, C
improvement of controllability involves iot gnly the selection of
C4 and S’ but also taking proper account of the constraints on
the changes in the state of the system. From the standpoint of
energy consideration, both sides of the intercept system try to
achieve their goals, viz. interception or escape, with minimum
energy consumption. Hence, the weighting factors l/cd and l/dm
are required to be large. On the other hand, the requirement
of higher controllability of missile over target, for example,
demands that Wd > Wm, thus insuring the interception of the target
by the missile. However, this does not mean that one must have

W, >» wm. In fact, an excessively large W, results in an

d a
excessively high control power and controllability reserve, which

is not necessarily advantageous for a given system index J, noting
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that we are interested in satisfying the condition of J at the
lowest cost. Hence, it is not desirable to increase the value
of Wy at will, which explains why in proportional navigation

the effective navigation ratio is generally not greater than 6.

IV. Conclusion /91

In the present paper, we have synthesized the optimal
guidance law for a missile by applying the theory of differential
games to three-dimensional space, and by considering the dynamic
responses of the missile and the target as first-order inertial
characteristics. We have also introduced into the result the
concept of control stiffness. The system control stiffness k
is regarded as a parameter in the feedback gain. The gain is
thus not only a function of k, but also related to system char-
acteristics. This makes it possible for us to establish a
definite relationship among the gain and the other parameters

of the system such as TS, K és, and even H and M, by a careful

SI
study of k. This relationship can be used to improve the effect
of the guidance law. Therefore, the concept of k represents a
new concept in synthesis, and has simplified and clarified the

results, thus facilitating the derivation and analysis.

When k »~ 0, the denominator of Eq. (24) does not contain
(tf - t), and the problem of divergence in the last stage of
interception becomes less severe [2].

Finally, we have briefly discussed the problem of degeneration
of Eg. (24), and also given the suboptimal guidance law for the
case of finite stiffness. Methods fo: synthesizing k need further

studying.

We would like to thank Comrades Sung Chien and Wang Yen-tsu

for proofreading this paper and for their valuable suggestions.
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Appendix
I. Basls Matrix ¢(t t)

fl

From matrix theories, we know that when the coefficient
matrix 1s a constant matrix,

é(f,, ‘)=en' T=1- t

Al
Making use of the expansion eFT =1+ FT + é%Fsz + ..., and
taking into account Eg. (19a), we obtain
LTk, A2
e":{ 0 1 F” ]
0 0 FIS Jll.

In the above,

Fum Toe (T )4y Fum 7= b (T )y Famm T

! T T
1 Vi
+ Zf(—?‘)_"“

After rearrangement and combination, we obtain Eg. (20).

II. Finding the integral B =

te
—./‘ B(t)B'(t)s_dt
t f

Using Egs. (9) and (21), and performing some simple integrations,

C t t t t

i.e.,f fpat, f frat, f fg2at, f £y 25t andf fxeat, it will be

t t t t t
fairly easy to obtain B framk au &

“(k-E)

P B,"
B“"'jﬂ:[ tE(k — E) oo} ¢1=[B,,‘0;0}

La-B)e-E) B, one A
I1I. The Case of ¢ # 1

o
Let ¢ # 1, then T, =1 + At.

Omitting second-order
infinitesimal quantities, we obtain

0
*.(t)=F.x.(r)+G.u-(:)+[ 0

} (am( t)=—na(t))
AT/

Ad
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Obviously, the first two terms in A4 are the state equations of

Eq. (2), and the last term is the difference arising from : # 1.
t

Consider the linear relation am(t) = ;um(t) at t < 1. Here, the

difference term is [0, 0, 1/1)'Au(t) where su(t) = é% Xt - T)Um(t).
T

In other words, ¢ # 1 is equivalent to ¢ = 1 with an increment

sdu(t) of the target strategy. Therefore, the worst possible
condition for interception will be where T, = 0, i.e., am(t) =
um(t). Hence, omitting 4u(t) and letting ¢ = 1 places a more

stringent condition on interception strategy.
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DEFORMATION WORK DENSITY FRACTURE CRITERION
FOR COMPOSITE MATERIALS

Hstieh K'e-hsing and Chou Chin

(Aircraft Structural Mechanics Research Institute)

ABSTRACT

A method for predicting the fracture strenagth of
composite laminates with notches is an important research
topic and very useful for engineering application.

An experimental research on C/EP and G/EP composite
laminate specimens with a single notch, a centric circu-
lar hole or a sharp tipped crack was accomplished. It
is proved that the results of J-integral analysis for
isotropic materials [1] are applicable to determining
the characteristic of length d of the fracturing zone
in composite materials after taklng their anisotropy into
account.

Based on the finite element analysis 2] of notched
composite laminates and experimental observation {31, a
new fracture criterion for composite laminates under a
uniaxial tensile load is proposed as follows

oy(do' 0 )Ey(do. 0 )=GO,€F

N
O
[o8}

This criterion is called the deformation work density fractgre

criterion for composite laminates as the deformation work
den51ty within a distance d from the notch is taken as a
main parameter.

In order to verify this model the tests for C/EP

(0;/ 45" /0;/+45° /90" )sand woven glass fiber/epoxy (0°/90°) com-

posite laminates with a centric hole or a crack of diff-
erent sizes have been completed. The fracture strength
can be predicted by using this criterion and the charac-
teristic length d_ obtained from equation (11). Tables

3 and 4 show goodoagreement between the analytical results
and the experimental data.

Received in December 1981.
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I. FOREWORD

Although the stress fracture criteria "point stress criteria”
and "“average stress criteria" 4  proposed by Whitney and Nuismer
in 1974 have been used in numerous engineering applications, the
results of extensive tests [5 . performed on these criteria show
that the characteristic lengths chosen by the above said authors
do not possess adequate generality. The distribution of the maxi-
mum major elastic stress oy(x,O) around the notch in a sample under
a uniaxial tensile load is usually regarded as the basis for estab-
lishing the stress criteria. However, the uniaxial tensile stress-
strain relation of the multi-axial composite laminates that are
widely used in engineering does not retain its linearity up to the
point of fracture. Moreover, finite element analysis [2]! and exper-
iments [3] that take into account the gradual extension of damage
due to the load have shown that a damage zone exists at the crack
tip. In this zone, the strain gradient has very high values near
the point of fracture. The stress is relaxed and a very complicated
stress-strain relation holds. Such conditions have not been re-
flected in the stress fracture criteria. In addition, it has been
proposed in [4] that the characteristic lengths do and a, are con-
stants of the material, independent of sample geometry and the dis-
tribution of stress. Yet, extensive tests have shown that the
characteristic lengths as determined from the stress criteria are
actually not constants of the material. 1In this paper, we do not
consider the microscopic mechanism of fracture, but establish an
engineering estimation method based on macroscopic phenomenoloay.
We seek to formulate stress criteria and a method for determining
the characteristic lengths on the basis of an analysis of the stress
deformation field in the notch region, thereby providing a method
for predicting the fracture strength.

I1. DETERMINATION OF THE CHARACTERISTIC LENGTH d0 OF THE
FRACTURING ZONE

On the basis of the definition and properties of the J-integral,

for the notched sample shown in Figure 1 that is under a uniaxial
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tensile load, the J-integral has the simplest form if the loop of
integration is allowed to close on itself via the inner surface
of the notch [6]:

n/2
J-jr udy=f_l/zw(e)r’cos9d6 (1)

~
w
S

|

For a given sample, ¢ = constant. Let 8=0, w(8)=w, and the

above equation simplifies to

J = Apw, (2)
where
=/2
A=2L ?(8)do (3)
w(h)
¢(9)=~—;T—u39 (4)
=9 _
“= 14 (5)
o, and €, are, respectively, the stress and strain at the tip © = 0,

X = 0 of the notch. p is the radius of curvature of the notch and

n is the index of strain hardening.

Assume that the distribution of the deformation work density
along the x-axis in the vicinity of the notch in a multi-axial com-
posite laminated slab is the same as that for an isotropic slab, as
shown below [1]:

o,(x,o)e,(x,0)=0.€,( (6) P

P
P +bx

In the above equation, b is a T
constant. Please refer to [4]
for its significance and numer-

ical values.

Both experiments and cal-
culations indicate that the r—"“ ‘““j
initiation of the fracture of -

composite laminates cannot be : 1
determined from the fact that I ‘ ri

;o and io have reached their cri-

tical values ¢, and ©_.. Rather, Figure 1. The notched

F F .
it should be determined from the specimen.
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condition that the deformation work density o,(d,, 0)e, (d,, 0) at a

definite distance x = d0 from the tip of the notch has reached 1its

critical value. Quantities °p and €p are the fracture stress and

fracture strain, respectively, of a smooth sample under a load

along the y direction. Substituting = for o,(ds, 0)e,(d,, 0),

F'F
in equation (6), we have
P
“““-“(W) (7)
0,8, = é(p +bd,)osE, (8)

From egquations (2) and (5), one can obtain

J(p)=A(P +bd,) l"’:’"— (9)

when o » 0, this gives the value J(0) of the J~integral at the

initiation of the fracture of the notched sample:

= /_ﬁkﬁﬁu)
7 (0) = dbdy (10)
from which one obtains the characteristic length

= 1tn
do“ Abo,e, J(O) (ll)

In eqguation (11), n, Cp and tp can be obtained from uniaxial ten-
sion tests performed on the smooth sample. The value for b is
taken to be the theoretical value 8 given in [1.. Only A and J(0)

remain as unknowns.

1. Determination of A. The value of A can be determined from

the results of experimental J-integral analysis [6] performed on a
sample with a single notch. We choose a composite slab made of
two materials. Material I: C/EP (03/+45/0;/+45°/90°), (18 layers),
approximately 2.1 mm thick. Material II: orthogonally woven glass
fiber/epoxy (0°/90°), approximately 3 mm thick. The measured para-
meters of the materials along the x and y axes are listed in Table 1.

Figure 2 shows the uniaxial tension stress-strain curves for
material I along 0° (y direction), 90° (x direction) and in the direct-
ions at 10°, 20°, 30°, 45° and 60° with respect to the y-axis. Scc
Figure 1 and Table 2 for the shape and dimensions of the specimen

with a single notch.
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TABLE 1. The relevant parameters of materials of the

- /95
specimens
-~ Ey : E, an _ : Oy
DGR iy o n
R (L(d ‘tom?) (hgf mm?) (L. mm?) Ckpf mm?) '
Q@:) #8] 6750 1 3080 1692 5 | 0.396 | 6063 0 0161 ¢ &7
3\, wel \ 2300 2100 ¢ie 006 3039 0.0193  © st
3 .
Key: (1) Type of material; (2) - material I; (3) Material II
,’/ 4
/T
N
o ,/
- r’ /
i
_:,__. /9\/ T
3 ay £
Tz :
S :
3 [}
Figure 2. The uniaxial ten- Figure 3. The () - - curves
sion :~-¢ curves in different of specimen no. 5 (material 1)
directions for material 1
In the tests, strain gauges were attached to the specimens
along a circular arc at the root of the notch. The distribution
of strain, € (9) - & curves, was measured (see Figure 3). After the

anisotropy of the materials was taken into account, the distribution
of deformation work density, the uw(®) - % curves (Figure 4) and the
¢(8) - 4 curves (Figure 5) were obtained. Finally, numerical inte-
gration on the (%) - 9 curves was performed, and the value of A was
obtained from equation (3). The results of the measurements show

that the value of A is very s+table for various specimens. The averaqge

value of A for material I is 0.975, and * t for material 11 is 0.93.
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o (8) (% 10~kgl/mm?)
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e

Figure 4. The 4(2)-9 curves Figure 5. The :(7)=-° curves
of specimen No. 5 (material I) of specimen No. 5 (material I)

TABLE 2. The geometry of the notched specimens

U),, " o= o ‘;)dw . @ (3)'* bR F [Yeomroz )@ 0w

g:rmmy P (mm)
(‘) b 5 40 i0 20
I 6 40 20 40
) 3 ‘ o 30 V ”77”5 o 10
(7) sl ‘ 8 ‘ 30 10 | 20

9 J w0 i 10 20
10 ' 0 20 0

l--types of material; 2--specimen no.; 3--depth of notch; 4--
radius of curvature of notch; 5--width of notch; 6--material I;
7--material I1I

If the values of A given in this paper are used in the design stage
of a composite slab made of many multi-axial lavers, the resultinc
error in the calculated value of fracture strength will be very

small.

2. Determination of J(0). The value of J(0) was determined

by means of calculations performed on specimens with a centric

crack. The formula used is [ 7]
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o Je*P U, (12)
TO= 5 pws* g Zze)

In the eguation U,=~de3, 1s the plastic part of the deformation

work, P is the load, B 1s the thickness of the specimen, c¢ is the

half-length of the crack and W is the width of the specimen. The

) .

geometric correction factors are taken to be the same as those for
the isotropic materials

e 2¢ 2e V' ) eas (20 (13)
Y=1 +o.1zs<—”.—>—o.zss ( : ) +1.525 < fro >

PV

f—.

The value of J(0) determined from various different crack
lengths is fairly stable. The average value of J(0) for material
I is 3.8573 kgf/mm and from equation (1l1), do = 1.50 mm. The ‘
average value of J(0) for material II is 3.6491 kgf/mm angd do = )

1.21 mm.

III. FRACTURE CRITERION

The conditions for initiation of fracture of a composite lam-
inated slab are different from those for the fracture of the entire
specimen. Near the point of fracture, the strain gradient in the
damage zone becomes very large, the stress is relaxed, the effects /97
of nonuniformity become more pronounced, and the stress-strain rela-
tion deviates from that for a smooth specimen. Actual measurements
show that the strain at the tip of the notch can reach a value that
is 1.5-3 times that of €p- On the basis of the stress deformation
field analysis performed on this region, one can assume that the
composite slab fractures when the deformation work density at a
definite distance dO from the crack tip reaches a certain critical
value, i.e.,

vy(dgs 0)e,(dy 0)=aae; (14)
In the equation, a 1s a correction factor used to reflect the change
in the stress-strain relation at do before the occurrence of frac-
ture.

In the following, we analyze the composite slabs with a centric

hole or centric crack by means of equation (14).
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1. The case of a centric crack. Take the oricin of coor i.-

nates to be at the center of the crack and let the loal! bv a7 1.

in the vy direction. The distribution of strain - alcn: <he x

y
2

direction is, for an anisotropic slab, approximately aivern Lot
following equation found in 4

a,x -
0,(1‘ 0)= ‘/‘x’x'_“! —x>c i

Most composite slabs made of fiber-reinforced resin-twoe Comp st
materials have uniaxial tensile stress-strain curves for a dlree-
ion along a main axis of the materials that can be rearranced an:
formed into folded lines. In general, these car be written as two
straight lines

o =E,; e e (l16a)

o =F,f+hE, (€ —F) € > (16b)

In the equations, Ey is the corresponding effective elastic modulus,
h is the ratio of the slope of the second straight section to that
of the first section and ¢ is the strain corresponding to the point

of deflection. From equation (16b) one can obtain

1 [o4 -0
109 ¢y 17
e=, [ 0-G-mi (17)
Equation (14) becomes for a specimen with a centric crack,
0,(C+d°,0)£}(C—*-dc,0)=a(7,fﬁ (18)

Substituting equations (17) and (15) into the above eguation and

rearranging, one obtains

! ,

(1— k) o
RE(1—ED 2 by 12 (19)

=ao;€E,

In the above equation, Solve for Jg from equation (19).

g_ffi__
1= ¢ +d°°
The least absolute value of the real root is the desired fracture

strength.

2. The case of a centric hole. Take the origin of coorliinates

to be at the center of the circular hole, and let the load be
applied in the y direction. The stress distribution near the "hole

in an orthogonal aninotropic composite slab is approximately aiven

by the following expression given in [47.

e, 0= % (B +3(7) ~nn {s(2) ~5(7) )
' SR

(20)

——

x




In the ejuation, K., is the stress concentration coefficient for arn
! T

infinitely wide orthogonal anisotropic slab and is determined fronm
l\'-1+/z Er 5 |4 Ex (21)
! Y AV B ") G,
Substituting eguations (20) and (17) 1into equation (14) and rearrang-
ing, we obtain
Fro 1=

=0} -

£ 50 h—biFo,z—.ao,e, (22)

In the eguation,

F= (2 +E+3t- (A7 - 3)(8—TiD) (23)
e - R
R +
2 do
Solve for - from ecuation (22). The least absoclute value of the

real root is the desired Iracture strength.

IVv. EXPERIMENTAL VERIFICATION OF THE FRACTURE CRITERION

In order to test the applicability of the present iracture
criterion, we prrformed some experiments on specimens prepared fror
material I and material II that contained centric cracks or cent. .c
holes. The cracks were produced by means of ultrasonic waves, while
the centric holes were prepared by means of an ordinary drilling
machine. Tables 3 and 4 gives the experimental values and the caizul-
ated values,as well as related parameters. The value of » was exper-
imentally determined. For the centric crack specimens, it is 0.5
for both kinds of materials. For the centric hole specimens, 1 =
0.8 for material I and 2 = 1 for material II. The results seem to
depend on the sensitivity of the material to the process of drilling.
For the same material, the same value of do is used for both the
centric crack specimens and the centric hole specimens. It is appar-
ent that there is a good agreement between the test results and the

calculated values.
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TABLE 3.

of centric

Comparison between computational and test results
crack specimens

Tunms awtuwmm»ykua'mm>‘§rﬁmﬁ & e mat okt mad

- _-i~ - Vﬂﬁsa 94 21 ¥ 8 27 30.64
a-2 4012 2.16 60 22 &1 . 23.54
a 3 19 32 2 14 16 5 22 54 20 95
L.jlii‘r 64 0 2,08 238 23 10 82
L-2 64 175 2 035 31 43 9 "« 9.49

t L-3 64.175 2075 8 10 1T 15 99
L-4 €4 15 2975 ! 1€ 10 R 12.57
L-5 @0 2 067 11 98 13 €39 1328
L-86 32 025 2973 8 10 1% 75 15 32
L-17 16 625 | 2 08 ‘U 19 o 16 62

TABLE 4.
0of centric

Comparison between computational and
hole specimens

test resulu:

/ # %2 3

f.““l

7,&&1

;;:qﬁg :_?n!;('.mm» ;atlgrmm)-s.'z.;;gg) Zp k¢! mm?) c.(kg{ mm?)
d-1 3.5 21 D] 32 60 3¢ 16
é-2 ] 20 2 3C 95 30 79
d-3 42 20 116 o7 AT 2T %
| N ey 40 Y 2173
K-2 » 20N L] 20 8 19.25
[ - 2 120 17.38 ' 17.19
K i ) - 15 64 15.20
[N Loor K 1102 . 12 47
K § e N 3 o) 2w 19 47
| K-7 LY S 2430 1076 14.98
| K-8 64 "2 NGH 230 1279 i 10 85

l--type of material;

4--thickness of
1--0

experimental’

2--specimen no.;
specimen; 5--lenath
8--material 1;

3J--width of specimen;
of crack; 6--

9--material II calculated

V. CONCLUSION AND DISCUSSION

A method for predicting the fracture strength of notched fiber

composite laminated slabs is a research topic that has received

much attention in recent years and has a great significance in

engineering applications.
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In this paper, the results of J-integral analysis 1 for the
stress deformation field in the notch region of an isotropic slab
are applied to fiber-reinforced resinous composite laminated slabs
whose anisotropy has been taken into account. From this the char-
acteristic length do of the fracturing zone is obtained. Wwe believe
this is a more reasonable approach for obtaining do.

Based on the finite element analysis of C/EP composite laminates
2. and experimental observations, we have proposed a new fracture
criterion that takes as a main parameter the deformation work den-

sity within a distance 4, from the tip of the crack.

0
Tests on C/EP and G/EP composite laminates have shown that the
method presented in this paper meets engineering requirements. We
have been able to successfully predict the fracture strength of
centric crack specimens and centric hole specimens made from the

same materials, using the value of d Our method is apparently

0"
more reasonable than the "point stress criterion” and the "average

stress criterion” used abroad.

Even though we have taken the anisotropy of the materials into
account when we applied the results of J-integral analysis for iso-
tropic slabs to composite laminated slabs, the method is neverthe-
less an approximation. However, our experimental values agree satis-
factorily with the calculated values, and the method is very conven-
ient to use because it eliminates the need for a complex microscopic

analysis of the notch region.

The use of the J-integral method for fracture analysis on com-
posite laminated slabs has been found elsewhere in the literature.

For example, see [8].

Part of the experimental work involved in this study was com-
pleted by Comrades Chung Yu and Chiao K'un-fang. This paper was
reviewed by Ts'ai Ch'i~kung, a committee member of the Academic
Committee of Academia Sinica, and Associate Professor Yang Ping-hsien

of Peiching Institute of Aeronautics. We would like to thank them
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for their encouragement.
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NUMERICAL CALCULATION OF LOCAL CONVECTIVE HEAT TRANSFER

COEFFICIENTS OVER AIR-COOQOLED VANE SURFACES

Ling Chun-hsiao and Chin Te-nien

(Ch'inghua University)

ABSTRACT

An iterative method for solving two-dimensional
compressible boundary layer equations and steady state
equations of heat conduction simultaneously is presented
and also a FORTRAN program for calculation of the local
convective heat transfer coefficients over air-cooled
vane surface by means of this method is provided [1]. The
approximate integral method is used for solving bound-
ary layer equations and the finite element method is
applied to calculating the steady temperature field of
the blade.

The input of the program consists of geometry of the
blade, pressure or velocity distribution of gas flow
external to the boundary layer, entrance flow conditions,
internal cooling conditions, nodal numbers and coordi-
nates of the elements. The output includes all princi-
pal boundary layer parameters, such as heat transfer
coefficients and temperature distribution on the surface
and temperature distribution inside the blade. A numer-
ical example has been calculated and the results are
favorable compared with the theoretical and experimental
data given by other authors.

I. INTRODUCTION /101

At present, the various methods for determining the heat trans-
fer coefficients over vane surfaces can be divided into three groups,
viz, empirical formulae [2], experimental determination [37 and numer-
ical methods [1], [4], [57. The numerical methods consist of solv-
ing the boundary layer equations numerically and determining the
distribution of the heat transfer coefficients over the vane sur-

faces. During the past 10 years or so, there has been a lot of work
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done abroad in this area and many programs for calculation have
been published. (At present, not much has been done in this area
in our country). To solve the boundary layer equations, it is
required to use as boundary conditions the temperature distribution
or enthalpy distribution over the vane surfaces. As these distri-
butions are not known beforehand, some authors simply assume a con-

stant wall temperature. (The surface temperature is usually taken

to be that of the total temperature of the oncoming stream, as in
[11). Others have made corrections on the constant wall temperature
assumption on the basis of empirical data. 1In this paper, we present
an iterative method for solving simultaneocusly the boundary layer
equations and the steady state equations of heat conduction which
have a common boundary. This not only overcomes the difficulty
associated with the indetermination of the wall temperature, but

also enables one to simultaneously obtain the temperature distribu-

tion over the vane surfaces.

II. BASIC CONCEPT OF THE ITERATIVE METHOD

The temperature over the vane surfaces is usually unknown.
Actually, it is not a constant, but a function of the heat transfer
between the inner and outer boundary layers as well as the heat
conduction of the vane and other factors. Hence, it is necessary
to solve the inner and outer boundary layer equations and the heat
conduction equations simultaneously in order to simultaneously
determine the heat transfer coefficients of the inner and outer
surfaces as well as the temperature distribution inside the vane.
To simplify matters, we assume that the cooling condition inside
the vane is known and use this as a boundary condition for solving
the outer boundary layer equations and the vane heat conduction
equations simultaneously.

The general form of the two-dimensional compressible boundary
layer equations is [4]
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Figure 1. Sketch map for the fundamentals of the
iterative method

As shown in Figure 1, (x, y)e4P and AS, and are orthogonal
coordinates. u and v are the x and y components of velocity respect-
ively. 9o, h, u, ¢, k and cp are respectively the local mass density,
static enthalpy, dynamic viscosity coefficient, turbulent viscosity,
heat conduction coefficient of the gas and specific heat under con-
stant pressure. PO,TO and M_ are the total pressure, total tempera-
ture and Mach number of the oncoming stream, respectively.

s, ter t—", fw? denote, respectively, the pulsation of the tur-
bulent flow, the outer edge of the boundary layer, average value and

value at the wall surface.

The boundary conditions for equations (2-1) to (2-3) are

u(x, 0)=0 (2-4)
v(x, =0 (2-5)
}l'iit‘lmu(xv y)=“c(x) (2_6)

h(x, 0)=h(x)orT(x, 0)=T.(x)
(2-7)

However, hw(x) or Tw(x) in equation (2-7) are not known beforehand,
but can only be found from the simultaneous solution of the bound-
ary layer equations and the heat conduction equations for the region
B.
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Assume that the material properties of the vane are constant;
L then the two-dimensional steady st~te heat conduction equaticns are

(please refer to Figure 1):

' %}7;-+'3:—7,‘=0 (x, ¥eb) (2-8) J
- ‘;: =0, (T =T (x, ¥e') (2-9) 4
4
22l e (T-T) (x, v
on

(2-10) 1

In the above, x and y are rectangular coordinates, T is the 4
temperature, A is the thermal conductivity of the material of the
vane and ag, Tg and oL TC are, respectively, the heat transfer
coefficient and the temperature of the gas flow on the outer surface

of the blade and in the cooling passage, respectively. !

ag and Tg are also unknown, but can be found from the simul-
taneous solution of the heat conduction equations and the boundary
layer eguations (2-1) to (2-3). Hence, we can assume a random value
for Tw(x) (usually assumed to be TO) and use this in the boundary
condition given in equation (2-7) to solve for the heat transfer
coefficients ag(x) and Tg(x) on the surfaces of the blade back and
blade basin from their respective boundary layer equations. These

are then used in the boundary condition given in equation (2-9) to

solve eguation (2-8) for the temperature field inside the blade.

Now the new temperature distributions Tw(x) on the surfaces of the
blade back and blade basin are used in the boundary condition given
by equation (2-7) to again solve the boundary layer equations for the
blade back and blade basin. This process is repeated until two
successive heat transfer coefficients thus obtained have the required

degree of accuracy.

III. SOLUTION OF THE BOUNDARY LAYER EQUATIONS 103

Basically, the computer program given in [1! was used to solve

the boundary layer equations in this study, except that we corrected
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some mistakes in the original program and made some modifications.

; Two examples calculated by means of the canonical methods given in
| .6, (7. and [8] have results that agree completely with those in
Sl

Iv. CALCULATION OF THE TEMPERATURE FIELD OF THE VANE

To determine the temperature distribution over the surface of
the vane, it is necessary to calculate the steady state temperature
field of the blade which is the same as solving the two-dimensional
heat conduction equation, equation (2-8), that satisfies the bound-
ary condition of the third type, equation (2-9). As the solution
region G has a fairly complex shape, we make use of the finite ele-
ment analysis [9], [10]. Finding the solution to equation (2-8)
that satisfies equation (2-9) by the variational principle is equi-
valent to solving for the extreme values of the following general

equation:
1 =ff3[(55) +(5 ) Jasars J (Fam-s7)as (4-1)
G

In the above, o = Qg or Qc’ f = ugTq or “cTc‘ Ir. order to

\ obtain a better fit for the boundary of the curve, we use 8-node

1 isoparametric elements with curved sides. The 8-nodes of the element
| e are, in order, (xi,yi), i=1,2,...... ;8. The temperature at any
point can be expressed in terms of an interpolated value of the form
function Ni (£,n) as follows:

3
T(x, »)= Y N(E, VT, (4-2)

i=1
In the above, T, is the temperature of the ith node. It can
be deduced that the necessary condition for obtaining the minimum
value of the general function I(T) is
8
S_,‘ (h::+0."f)T:]—ZP:=0 (4-3)
= [ 4

3,

1

in which
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( h;,={fx(% .f’;’:z+f:f’§z -?})dxdy (4-4)
9:i=jl alN.N.ds (4-5)
‘ Pi‘J’ fodS (1-6)

Thus, we arrive at a set of linear algebraic equations that
[ contain n unknowns Ti(i=l,2, ..... ,n), and whose coefficient matrix
possesses the properties of symmetry, orthogonality and being band-
shaped. 1In our program, we adopt the trigonometric method of Gauss-
Doolitte for finding the solution. Eguations (4-4), (4-5) and
: (4-6) are calculated by means of Gaussian integrals. 3 x 3 Gaussian
points are used for the integral in equation (4-4). This is the
best approach for solving two-dimensional problems [10]. To achieve
uniformity over the entire program, we use three Gaussian points for
both equation (4-5) and equation (4-6). When doing numerical inte-
gration, the approximate values of o and f corresponding to the
Gaussian points are found by a three-point parabolic interpolation.

(1 denotes the boundary of the element e).

During the stage of prnogram test run, we tested the part of the
program that solves for the temperature field, using as computational
examples a flat slab and cylindrical walls with boundary conditions
of the third type. The results show that the calculated values
obtained from the ;art of the program using the finite elements agree
completely with the (.rresponding analytical solutions, with maximum
error not exceeding 0.35%. This shows that this part of the program

is completely reliable.

Next, based on the fundamental concepts presented in Section ITI,
we wrote an iterative program for solving the boundary layer equa-
tions and the heat conduction equations simultaneously. We did some
actual computations using as an example the blade shape and related
data given in 3). The calculated results and a comparison with
other data are shown in Figures 2 and 3 (curve 5 of Figure 3 is taken
from [31).
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Figure 2. Comparison of the calculated temperature
distribution over air-cooled vane surface with the results
measured by A. B. Turner [3].

l1--the calculated results in this paper; 2--the experimental results

given in [3].
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Pigure 3. Comparison of the calculated heat transfer
coefficients over air-cooled vane surface with the

other data.
l--the calculated r-sults in this paper; 2--the calculated results
according to [1] (assume T, (x)=constant); 3--the experimental
results given in [3]; 4—-tge calculated reasults according to
turbulent flat plate law, Nu =0.0292Re 0+8prl!/3; 5--the results
according to the theory of Spalding and Patankar.

It can be seen from Figure 2 that there is a fairly good agree-
ment between the temperature distribution over the blade surface
obtained from our iterative calculation and the experimental results

given in [3]. Not only do the two curves have the same trend of

variations, but also the maximum discrepancy does not exceed 4%.




it ~an ke seen from Figure 3 that the hcat transfer coefficici+s ‘
the vane sarfaces calculated by means of our 1terative mothold
1:o0 close to the results of calculation based on the turbulent flat f

1

1w 1n one region, while in another region, 1t agrees bectter i

a.t' v experimental results given in 3. In the first 40% chord 1

rezion of the blade basin, our results show a great deal of “
.~ orment over those calculated frem the assumption of constant 1
w1, terperature given in "1, In addition, the value of the heat !
transter cocfficient of the front nodal point as calculated by means

oY the program given in |1 always comes out to be zero. This is /105

i4

v

aki1nusly not acceptable. In our program, we used the heat transfer
formula for cylindrical diffracted flow (Nu=1.14Re,Pr'* | where @
denotes the diameter of the head section of the blade) to calculate
the heat transfer coefficient of the front nodal point. The results
thus obtained agree very well with those obtained experimentally.
Furthermore, no mention was made in .1 of the effect of the degree
of turbulence of the main stream on the development of the boundary
layer. We performed calculations using the experimental data pro-
vided by "3 for different degrees of turbulence. Our results show

1. is applicable for cases with a high

[

that the program presented in
degree of main stream turbulence. One should keep this in mind when
using this program. The example given in this paper was calculated

and compared on the basis of the data given in Figures 10 and 11 of

.3 for a 5.9% main stream turbulence. See [11. for a detailed

account of the computed example and the program.
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A BRIEFING ON THE CONFERENCE ON NEW

TECHNOLOGIES IN CHEMICAL ANALYSIS A107

The Chinese Society of Reronauclcs and Astronautice sponsored
a conferance on new technologles 1n chemical aralvsis that toor place
in Shenyang from June 1-5, 1982. The mectinag was mlanned and ore-
pared by the Physical and Chemical Properties Testing Team ¢? *he
Committee on Materials. 58 mapers were received in all, 34 -° which
were elther delivered as special towpic reports or read in cne of <he

large or small meeting rooms. The subjects included chemical aral-
ion-selecting electrodes and three-component nolymers.

Throuch this information exchance, the achievements made in

recent years 1n new chemical analvsis techniagues have been reviewed,

and the attendant scientists obtained a better understandina of the

develooment of chemical analvsis technigues at home and ahkrcad and
its importance in the entire dormailn of scientific technoleocy ans in

the development of the economy of the neonlc.

Besides the exchanne of academic information, the conference also
included small-scale panel discussions on the subiject of future
development of chemical analvsis. It was pointed out that this
development should be such as to improve speed, reduce the redguired
sample quantity and reduce pollution of the environment. Future con-
ferences should as much as possible be specialized, freauent and wi<h
variety. Short training courses should be cffered wher necessary to
enhance the understanding and application ¢f certain new technizues.
Tae scientists who attended the meetinag gained a lot from the
absorbingly interesting discussicns and the enthusiasm shown. The
team conducting the meeting discussed and aareed that thoe next cen-
ference should be held in 1984.
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CHINESE SOCIETY OF AERONAUTICS AND ASTRONAUTICS HOLDS INAUGURAL !
MEETING FOR COMMITTEE ON FLIGHT MECHANICS AND FLIGHT TESTS 107

The Chinese Society of Aeronautics and Astronautics held an
inaugural meeting for its Commit-ee on Flight Mechanics and Flight

Tests in Kuangchou from Augqust 13-17, 1982. 140 professors, spec-

e i

ialists and engineers came as representatives of 48 scientific
research, design, production and instruction departments. There were
11 committee members present at the meeting.

An academic information exchange meeting was held alongside the !

inaugural meeting. 80 papers were received in all. Two of the papers

were read during the general meeting, while the rest were discussed
in one of three groups, viz., flight quality research on aircraft
carrying automatons, flight gquality research on aircraft flying

under the conditions of atmospheric turbulence, large angle of attack,
large side-glide angle or asymmetrical power and the fabrication, use
and data manipulation of test instruments for flight tests. The
papers related theory to practice, and were in accordance with the
standards set for the flight quality of our military aircraft. Some
of the papers given by some younger members of certain research or
design institutes were received with enthusiasm. Chang Tsu-yen's
"Computation and Analysis of Different Choices of Automaton for a
High-Altitude High-Speed Attack Aircraft", Po Chao-kuey's "A Calcul-
ation of the Dynamic Response of a Big Transport to Atmospheric
Turbulence" and Chiang Hsing-wei's "Breakdown Tests on Machines
Working under Normal Conditions--An Application of the Inverse
Spectrum” were among those with richer contents and definite practical
values. Everybody felt this was a good sign.

During the meeting, the first meeting of the committee was also
held. Discussions were held and corresponding decisions were made
regarding the special study group formed under the committee and the
academic activities to be engaged in during the next year.
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CHINESE SOCIETY OF AERONAUTICS AND ASTRONAUTICS, CHINESF SOCIETY 108
OF MECHANICS AND CHINESE SOCIETY OF SPACE NAVIGATION JOINTLY HELD
THE SECOND NATIONAL CONFERENCE ON COMPOSITE MATERIALS

The second National Conference on Composite Materials held
jointly by the Chinese Society of Aeronautics and Astronautics, the
Chinese Society of Mechanics and the Chinese Society of Space Naviga-
tion took place in Harbin from August 18-22, 1982. 265 representatives
from 97 departments of the various scienc research institutes, fac-
tories and colleges all over the nation attended. The Chinese Society
Association, the National Defense Science and Industry Committee and
the National Science Committee put much emphasis on this meeting and
sent their representatives to attend and sneak at the meeting.

230 papers were received. These were either circulated or read
during one of the sessions. Based on the contents of these papers,
four special topic groups were formed: resin-based composite materials
and industrial arts, hull and optimizing design, fracture fatigue pro-
perties and metal-based composite materials. Through this exchance
of information, a better idea was obtained of the rapnid development
of advanced composite materials in our country during the past two
years. The papers received were superior to those received for the
first National Conference on Composite Materials. However, these
works were still in the stage of theoretical study and scientific
experimentation. Much remains to be done in the area of practical
application. To achieve this, the representatives pointed out that
theoretical research and scientific experimentation should be com-
bined with practical applications without putting too much emphasis
on either of these. The following were deemed important: stabil-
ity of material properties, composite industrial arts, substrate
design, structural analysis and design, connection design and mater-
ials industrial arts, effects on and protection of the environment,
guality control and non-destructive testing techniques, machine pro-
cessing and cost reduction, etc.
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Some special topic discussions were also held during the

conference. Arrangements were made for the attendant representa-

tives to visit the "dolphin" helicopter.
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