## THE SHOCK AND VIBRATION DIGEST A PUBLICATION OF THE SHOCK AND VIBRATION INFORMATION CENTER NAVAL RESEARCH LABORATORY WASHINGTON, D.C. OSZI SI YOU OFFICE OF THE UNDER SECRETARY OF DEFENSE FOR RESEARCH AND ENGINEERING 83 08 24 037 A publication of THE SHOCK AND VIBRATION INFORMATION CENTER Code 5804, Naval Research Laboratory Washington, D.C. 20375 (202) 767-2220 > Dr. J. Gordan Showalter Acting Director Rudolph H. Volin Jessica P. Hileman Elizabeth A. McLaughlin Mary K. Gobbett ### THE SHOCK AND VIBRATION DIGEST Volume 15, No. 6 June 1983 ### STAFF SHOCK AND VIBRATION INFORMATION CENTER EDITORIAL ADVISOR: Henry C. Pusey VIBRATION INSTITUTE TECHNICAL EDITOR: Roi Ronald L. Eshleman EDITOR: Judith Nagle-Eshleman RESEARCH EDITOR: Milda Z. Tamulionis PRODUCTION: Deborah K. Howard Gwen Wassilak BOARD OF EDITORS R. Belsheim R.L. Bort J.D.C. Crisp D.J. Johns B.N. Leis K.E. McKee C.T. Morrow W.D. Pilkey E. Sevin J.G. Showalter R.A. Skop R.H. Volin H.E. von Gierke The Shock and Vibration Digest is a monthly publication of the Shock and Vibration Information Center. The goal of the Digest is to provide efficient transfer of sound, shock, and vibration technology among researchers and practicing engineers. Subjective and objective analyses of the literature are provided along with news and editorial material. News items and articles to be considered for publication should be submitted to: Dr. R.L. Eshleman Vibration Institute Suite 206, 101 West 55th Street Clarendon Hills, Illinois 60514 (312) 654-2254 Copies of articles abstracted are not available from the Shock and Vibration Information Center (except for those generated by SVIC). Inquiries should be directed to library resources, authors, or the original publishers. This periodical is for sale on subscription at an annual rate of \$140.00. For foreign subscribers, there is an additional 25 percent charge for overseas delivery on both regular subscriptions and back issues. Subscriptions are accepted for the calendar year, beginning with the January issue. Back issues are available - Volumes 9 through 14 - for \$20.00. Orders may be forwarded at any time to SVIC, Code 5804, Naval Research Laboratory, Washington, D.C. 20375, Issuance of this periodical is approved in accordance with the Department of the Navy Publications and Printing Regulations, NAVEXOS P-35, ## **SVIC NOTES** A great deal of concern has been expressed, and much has been published in the media, about a shortage of engineers and its effect on our future technical capabilities. A number of issues must be explored to overcome this shortage, and two of these issues are how to attract and retain engineers, and where will the new engineers come from? Mr. William Gregory\* very capably discussed the first issue in his editorial in the April 4, 1983 edition of *Aviation Week and Space Technology*. I urge you to read it. The question of the source of new engineers is also very important. If we are to maintain our technical leadership, more engineers must be trained, but we cannot do this in the near future because a shortage of faculty in our engineering schools limits the number of engineers that can be trained. Engineering schools are limited in faculty because of tight budgets, attractive industrial salaries and working conditions and a decline in graduate school enrollments. The decline in the graduate school enrollments means fewer people will be available for teaching the graduate level and the undergraduate level engineering courses. In fact, the present shortage in engineering faculty is directly attributable to the decline in graduate school enrollments that occurred since the late 1960's or early 1970's. Another consequence of the decline in graduate school enrollments is less research will be performed, and this will reduce our future ability to maintain our technical leadership. If we are serious about maintaining our future technical leadership, we must find ways to overcome the shortage of engineers. The lack of capacity in our engineering schools is only one reason why we have a shortage of engineers; many other reasons for this shortage exist. If we are to overcome this shortage, we must find and correct all of the causes. \*Gregory, W.H., "Incentives and Engineers," Aviation Week and Space Technology, 118 (14), p 9 (Apr 4, 1983) ## **EDITORS RATTLE SPACE** #### SOME THOUGHTS ON TESTING Review of another new textbook on mechanical vibrations revealed the usual lack of balance between mathematical and experimental technologies. Ten pages out of three hundred and fifty were devoted to testing. The material devoted to experimental work was not detailed enough to provide a good understanding of the art and science of mechanical vibration testing. Some of the transducers described were obsolete. This lack of attention and interest in testing also prevails in many academic institutions and some professional societies. I have tried to analyze why this apparent lack of balance exists. Perhaps the elegance of mathematics motivates those who manipulate equations and crunch numbers to be prolific writers. Perhaps the fact that test engineers who see their work become reality have no need for the further satisfaction of writing about it. Perhaps their careers and pay raises do not depend on publications. Whatever the reason, the lack of writing about test technologies inhibits the technology transfer vitally needed to maintain cost effective product development. On the positive side, there is a limited amount of technology transfer on testing. Manufacturers of test equipment write about their products and what they can do. Often they are short sighted and the articles become commercial or are perceived to be commercial by the purists in the non-testing world. However, in many cases this is the only place the neophyte can find the technology to do his or her job. Short courses, developed to teach testing techniques, have become very poular. Many times they bridge the gap between the experienced and inexperienced engineer. A few professional societies do publish articles on test techniques and practice. Much of the lack of attention to testing begins with the rivalry that exists between those who test and those who crunch numbers. I believe this attitude is initiated in the universities through a lack of balance in training and is perpetuated in industry by organization of staff. Fortunate are the few who have the opportunity to see how well their calculations work in reality. I believe that engineers properly trained in both testing and computation would have a better appreciation for the total product development process — even though they might be specialists in one of the areas. More training in the universities on the fundamentals of testing and test equipment would provide engineers motivated to develop and write about test techniques. R.L.E. #### **NONLINEAR VIBRATIONS OF PLATES -- A REVIEW** #### M. Sathyamoorthy\* Abstract. The survey of literature presented in this paper on nonlinear vibrations of plates is limited to papers published from 1979 to 1982. Geometric, material, and combinations of these nonlinearities are treated; complicating effects of anisotropy, attached masses, cutouts, elastic foundation, nonclassical boundary conditions, stiffeners, thermal stresses, variable thickness, transverse shear deformation, and rotatory inertia are also surveyed. Nonlinear problems concerning plates of various geometries have received considerable attention in the literature in recent years. An excellent monograph by Leissa [1] deals mostly with linear vibrations of plates but also includes some references on large amplitude vibrations. This monograph provides a wealth of information on linear dynamic problems and introduces the reader to geometric type nonlinearities. In 1973, Sathyamoorthy and Pandalai [2, 3] presented a review of existing literature in the area of large amplitude vibrations of plates and shells. The first part of the paper [2] contains a survey of vibrations of disks, membranes, and rings. Also included is information on simple nonlinear systems to introduce the reader to nonlinear dynamic problems. Nonlinear vibrations of plates and shells are surveyed in the second part [3]. These review papers, however, are mainly confined to cases with geometric-type nonlinearities. A recent survey paper [4] contains discussions of both the importance and various types of nonlinearities encountered in practical situations. Governing equations applicable to beams with both geometric and material-type nonlinearities are presented. Such equations, although complex to derive, can be obtained for plates. In a recent book Chia [5] has presented a complete collection of references in geometrically nonlinear static and dynamic plate problems. Bert [6-10] and Leissa [11-15] have written excellent survey papers concerning several areas pertaining to plates; a num- ber of references [8-10, 12, 14] are of particular interest to researchers in nonlinear areas. Leissa [14] has reviewed large deflection vibrations of plates of various shapes and has discussed the effects of shear deformation and rotatory inertia on nonlinear dynamic behavior. He also pointed out the need to have numerical results for nonlinear dynamic probiems in the form of amplitude-frequency curves rather than amplitude-period curves. A recent survey paper by Bert [10] summarizes activities during the period 1979-1981, particularly in experimental research. He included research activities in geometric and material-type nonlinear areas, including the effects of thickness shear flexibility and laminations. Reddy [16, 17] has recently discussed the application of finite element methods to linear and nonlinear plate problems. Nayfeh [18] has considered certain types of geometrically nonlinear beam and plate problems. The most comprehensive work in the nonlinear analysis of plates [5], the book by Chia, is confined to geometrically nonlinear problems; references are reported up to 1978. The present survey paper, therefore, is intended to review most of the papers published from 1979 to 1982. Attention is given to geometric and material nonlinearities as well as combinations of the two, Effects of attached masses, anisotropy, cutouts, elastic foundation, flutter, thickness shear flexibility, nonclassical boundary conditions, stiffeners, thermal stresses, variable rigidity, viscoelasticity, and wave propagation have been treated. Topics on dynamic stability, experimental work, laminated plates, and refined plate theories are also presented. Particular reference is made to the contributions by Reddy [16, 17] in the finite element nonlinear analysis of plates. #### THIN PLATES The most widely used nonlinear equations for thin plates are those originally presented by von Kármán. <sup>\*</sup>Associate Professor, Department of Mechanical and Industrial Engineering, Clarkson College of Technology, Potsdam, NY 13676 These equations have been modified to include various effects and have been extensively used. Such a set of equations for a thin anisotropic single layered skew plate in an oblique coordinate system is $$A_{22}F_{,\zeta\zeta\zeta\zeta} - 2A_{26}F_{,\zeta\zeta\zeta\eta} + (2A_{12} + A_{66})F_{,\zeta\zeta\eta\eta}$$ $$- 2A_{16}F_{,\zeta\eta\eta\eta\eta} + A_{11}F_{,\eta\eta\eta\eta\eta} = w_{,\zeta\eta} - w_{,\zeta\zeta}w_{,\eta\eta}$$ $$c[\rho hw_{,tt} - q(\zeta,\eta)] + h^{3}/12 L(w) = h(F_{,\eta\eta}w_{,\zeta\zeta})$$ $$+ F_{,\zeta\zeta}w_{,\eta\eta} - 2F_{,\zeta\eta}w_{,\zeta\eta})$$ (2) where $$L(w) = a_{11} w_{,\zeta\zeta\zeta\zeta} + a_{22} w_{,\eta\eta\eta\eta} + 2(a_{12} + 2a_{66})$$ $$w_{,\zeta\zeta\eta\eta} + 4a_{16} w_{,\zeta\zeta\zeta\eta} + 4a_{26} w_{,\zeta\eta\eta\eta}$$ and $a_{ij}$ are the elastic stiffnesses. They can be expressed in terms of the major and minor elastic moduli ( $E_L$ , $E_T$ ), the Poisson's ratios ( $\nu_{LT}$ , $\nu_{TL}$ ), the shear modulus $G_{LT}$ , and the skew angle $\theta$ . L and T represent the longitudinal and lateral in-plane directions respectively of the principal elastic axes. In the case of isotropic plates, equations (1) and (2) readily reduce to the well-known von Kármán equations in the x-y coordinate system as given below. $$D\nabla^{4}w - q(x,y) + \rho hw_{,tt} = h(F_{,yy}w_{,xx} + F_{,xx}w_{,yy} - 2F_{,xy}w_{,xy})$$ (3) $$\nabla^4 F = E(w^2_{XV} - w_{XX} w_{VV})$$ (4) Equations (1-4) have been widely used for nonlinear studies of plates. The equations are in terms of lateral displacement w and stress function F and therefore correspond to the stress function approach (SFA). Another common approach in solving nonlinear problems is the displacement equations approach (DEA). In this approach, three nonlinear equations are written in terms of median surface displacements of the plate u°, v°, and w. For a single-layered anisotropic skew plate such equations in oblique coordinates become $$a_{11}(\epsilon_{\zeta}^{\circ})_{,\zeta} + a_{12}(\epsilon_{\eta}^{\circ})_{,\zeta} + a_{16}(\epsilon_{\zeta\eta}^{\circ})_{,\zeta} + a_{16}(\epsilon_{\zeta}^{\circ})_{,\eta}$$ $$+ a_{26}(\epsilon_{\eta}^{\circ})_{,\eta} + a_{66}(\epsilon_{\zeta\eta}^{\circ})_{,\eta} = 0$$ (5) $$a_{12}(\epsilon_{\hat{\zeta}}^{\circ})_{\eta} + a_{22}(\epsilon_{\hat{\eta}}^{\circ})_{\eta} + a_{26}(\epsilon_{\hat{\zeta}\eta}^{\circ})_{\eta} + a_{16}(\epsilon_{\hat{\zeta}}^{\circ})_{,\xi} + a_{26}(\epsilon_{\hat{\eta}}^{\circ})_{,\xi} + a_{66}(\epsilon_{\hat{\zeta}\eta}^{\circ})_{,\xi} = 0$$ $$c[q(\xi,\eta) - \rho hw_{,tt}] + h[w_{,\xi\xi}(a_{11}\epsilon_{\xi}^{\circ} + a_{12}\epsilon_{\eta}^{\circ} + a_{16}\epsilon_{\xi\eta}^{\circ}) + w_{,\eta\eta}(a_{12}\epsilon_{\xi}^{\circ} + a_{22}\epsilon_{\eta}^{\circ} + a_{26}\epsilon_{\xi\eta}^{\circ}) + 2w_{,\xi\eta}(a_{16}\epsilon_{\xi}^{\circ} + a_{26}\epsilon_{\eta}^{\circ}) + a_{66}\epsilon_{\xi\eta}^{\circ})] = h^{3}/12 L(w)$$ (7) where $\epsilon_{\zeta}^{\circ}$ , $\epsilon_{\eta}^{\circ}$ and $\epsilon_{\zeta\eta}^{\circ}$ are the median surface strains given by $$\epsilon_{\zeta}^{\circ} = cu_{,\zeta}^{\circ} + sv_{,\zeta}^{\circ} + 1/2 (w_{,\zeta})^{2}$$ $$\epsilon_{\eta}^{\circ} = v_{,\eta}^{\circ} + 1/2 (w_{,\eta})^{2}$$ $$\epsilon_{\zeta\eta}^{\circ} = cu_{,\eta}^{\circ} + sv_{,\eta}^{\circ} + v_{,\zeta}^{\circ} + w_{,\zeta}w_{,\eta}$$ (8) In deriving equations (1), (2) and (5), (6), (7) the effects of in-plane inertias have been ignored. Equations (5), (6), and (7) can be easily specialized for isotropic plates in the orthogonal x-y coordinate system. In most of the references that follow, either equations (1) and (2) or equations (5), (6), and (7) have been used to investigate various effects on nonlinear static and dynamic behavior of plates. Several interesting nonlinear problems concerned with thin plates have been considered [19-88]. Large amplitude vibrations of square and circular plates carrying concentrated masses have been studied [19, 20, 32], as have effects of large amplitude on free flexural vibrations of thin, single-layered anisotropic and orthotropic skew plates [21, 22, 60]. Datta [23], Alwar and Reddy [25], Reddy [24, 154, 188], and Huang [80] studied the effects of cutouts on large amplitude vibration behavior. An analog simulation has been used [23] as has the finite element method [24, 154, 188]. Dynamic stability problems [26-29, 95, 107, 161]; plates resting on elastic foundations [30, 31]; flutter of plates [33, 123, 159, 160]; application of the method of conformal transformation to large amplitude vibration problems [34]; application of the modified Berger approximation [35]; plates subjected to in-plane, pulse, and random excitations [36, 37, 41, 47-50]; vibrations of triangular [38, 39] and elliptical plates [42, 56, 57, 61, 63, 75, 76]; dynamic analysis of plates with nonclassical boundary conditions [32, 78, 81, 191]; higher order nonlinear plate theories [69-71, 131]; stiffened plates [72], thermal effects on nonlinear static and dynamic behavior of plates of various geometries [73-76]; plates of variable flexural rigidity [77-81, 188]; and influences of geometric nonlinearity on wave propagation and stability of plates and spinning disks [82-88] have been discussed. Although many publications deal with geometric-type nonlinearity, few papers have appeared on material-type nonlinearity [89-93] or combinations of the two types. The scarcity of literature in this area is perhaps due to the very complex nature of the problems, particularly when nonlinearities are combined. Papers dealing with nonlinear systems, structures, and nonlinear differential equations have been published [94-121]. #### MODERATELY THICK PLATES The von Kármán nonlinear plate theory can be generalized to include the effects of transverse shear deformation and rotatory inertia for moderately thick plates. Recent investigations by the author have been mainly concerned with this class of problems on plates of various shapes [128-145]. Governing equations applicable for a moderately thick anisotropic single-layered skew plate are given below [143]. $$b_{22}F_{,\zeta\zeta\zeta\zeta}^{-} - 2b_{26}F_{,\zeta\zeta\zeta\eta}^{-} + (2b_{12} + b_{66})F_{,\zeta\zeta\eta\eta}^{-}$$ $$- 2b_{16}F_{,\zeta\eta\eta\eta}^{-} + b_{11}F_{,\eta\eta\eta\eta}^{-} = w^{2}_{,\zeta\eta}^{-} - w_{,\zeta\zeta}^{-}w_{,\eta\eta}^{-}$$ $$L(J_{1} + J_{2}) + M(w) = 0$$ (10) where, $$J_1 = q(\xi, \eta) - h\rho w_{tt}$$ $$J_2 = h(F_{\eta\eta} w_{t} \xi \xi + F_{t} \xi \xi w_{\eta\eta} - 2F_{t} \xi \eta^{N_t} \xi \eta)$$ L and M are differential operators. These operators and all the required coefficients in equations (9) and (10) can be found [143]. By tracing constants, it is possible to specialize equations (9) and (10) to include or exclude the effects of transverse shear deformation and rotatory inertia. Equations (9) and (10) are in terms of stress function if and normal displacement w and therefore correspond to the stress function approach. Similar equations can be derived in terms of median surface displacements u°, v°, and w. Such equations are used in the displacement equations approach and can be readily found in the literature [130, 132, 133, 140]. As was pointed out earlier, much of the recent analytical research on the effects of thickness shear flexibility and rotatory inertia have been done by Sathyamoorthy [128-145], Reddy [151-153], and others [122-127]. Sathyamoorthy [128-145] and Chia [125, 133, 141-144] investigated these effects on geometrically nonlinear plates of various planforms. Others [151-153] have used the finite element method to solve some of these nonlinear problems. Certain recent investigations of Sathyamoorthy and Prasad [134, 135, 145] were concerned with the influences of modal interaction on the nonlinear static and dynamic behavior of moderately thick plates. Very little information is available on the effects of higher modes on the fundamental nonlinear frequencies of plates. Chia [5] has investigated this problem for thin plates. In the case of moderately thick plates, these effects are important, particularly for anisotropic plates [134, 135, 145]. The effect of coupling is found to increase the frequency ratios for any given amplitude and is significant at moderately large amplitudes. #### OTHER PLATES AND EXPERIMENTS Nonlinear studies concerned with composite, laminated, and sandwich plates have been reported [40, 46, 64, 65, 123, 131, 147-156, 187]. Amplitudefrequency relationships have been obtained analytically for sandwich plates [147], and composite and laminated plates have been considered [148-155]. Reddy [149-154] has used the finite element method to study the effects of plate aspect ratio, lamination. and thickness shear flexibility in composite and laminated plates. Attention in these cases, however, was limited to studies of fundamental frequency and mode shape. Experimental investigations have been reported [47, 68, 156-162]. Sector plates, I-shaped plates, composite panels, flutter, and dynamic stability aspects were considered in these experimental investigations. #### FINITE ELEMENT METHOD The finite element method has long been used to solve linear plate problems. Thus, the literature in this area has grown enormously. However, only in recent years has this method been applied to various nonlinear static and dynamic problems. Two recent survey papers [16, 17] summarize activities in the linear and nonlinear areas since 1967. One paper [16] contains a review of research in finite element modeling of structural vibrations of beams, plates, and shells. Approximately ten percent of the references were on nonlinear problems. Another review of the literature on linear and nonlinear bending and vibration of lavered, anisotropic composite plates. and shells using the finite element method has been published [17]. Various references [24, 27, 45, 51, 55, 74, 81, 89-91, 93, 105, 149-154, 163-194] are on plates of various shapes, loadings, and boundary conditions. The effects of cutouts [24, 154], anisotropy [24, 152-153], laminations [91, 149-155], dynamic stability [27], thermal stresses [74], nonclassical boundary conditions [81, 191], variable thickness [81, 188], and material and combinations of nonlinearities [89-91, 93] were investigated. #### REMARKS The effects of geometric nonlinearity on plates of various geometries indicate a hardening type of nonlinearity; i.e., frequency increases with amplitude. When different types of nonlinearities are considered, solutions to the corresponding problems are approximate in many cases. The bulk of the literature currently available is concerned mainly with the fundamental mode. Recent activities in this area have focused on applications of the finite element method and considerations of complicating effects on nonlinear static and dynamic behavior of plates. On the basis of references reviewed in this paper, the following comments can be made. as has been pointed out by Leissa [14], numerical results for nonlinear dynamic problems would be more useful if they were presented in terms of frequency ratios rather than period ratios. - Nonlinear materials find wide application. The study of plates made of nonlinear materials deserves attention. - Very little information can be found in the literature about the effects of higher modes on the nonlinear fundamental frequencies of plates of various geometries and boundary conditions. - The number of references dealing with experimental investigations is low. This area needs renewed attention. - There has been a lot of discussion on the Berger approximation to plates with different types of in-plane boundary conditions [54]. Although this has alerted the user about possible grave inaccuracies in some cases, the approximation itself cannot be ignored as not being useful at all. The advantages of this approximation will be obvious when applied with care to such complex problems as thick plates. #### **ACKNOWLEDGMENT** The author is indebted to Professor C.W. Bert of the University of Oklahoma for his many valuable comments and to Mrs. Linda Newtown for carefully typing this paper. #### REFERENCES AND BIBLIOGRAPHY - Leissa, A.W., <u>Vibration of Plates</u>, NASA SP-160, U.S. Government Printing Office, Washington, D.C. (1969). - Sathyamoorthy, M. and Pandalai, K.A.V., "Large Amplitude Vibrations of Certain Deformable Bodies; Part I: Discs, Membranes and Rings," J. Aeronaut, Soc. India, <u>24</u>, pp 409-414 (1972). - Sathyamoorthy, M. and Pandalai, K.A.V., "Large Amplitude Vibrations of Certain Deformable Bodies; Part II: Plates and Shells," J. Aeronaut. Soc. India, <u>25</u>, pp 1-10 (1973). - Sathyamoorthy, M., "Nonlinear Analysis of Beams, Part I: A Survey of Recent Advances," Shock Vib. Dig., 14 (8), pp 19-35 (1982). - Chia, C.Y., <u>Nonlinear Analysis of Plates</u>, Mc-Graw Hill, NY (1980). - Bert, C.W., "Analysis of Plates," <u>Structural Design and Analysis, Part I</u>, edited by C.C. Chamis, Academic Press, pp 149-206 (1974). - Bert, C.W., "Dynamics of Composite and Sandwich Panels - Part I," Shock Vib. Dig., 8 (10), pp 37-48 (1976). - 8. Bert, C.W., "Dynamics of Composite and Sandwich Panels Part II," Shock Vib. Dig., 8 (11), pp 15-24 (1976). - Bert C.W., "Recent Research in Composite and Sandwich Plate Dynamics," Shock Vib. Dig., 11 (10), pp 13-23 (1979). - Bert, C.W., "Research on Dynamics of Composite and Sandwich Plates," Shock Vib. Dig., 14 (10), pp 17-34 (1982). - Leissa, A.W., "Recent Research in Plate Vibrations: Classical Theory," Shock Vib. Dig., 9 (10), pp 13-24 (1977). - Leissa, A.W., "Recent Research in Plate Vibrations, 1973-1976: Complicating Effects," Shock Vib. Dig., 10 (12), pp 21-35 (1978). - Leissa, A.W., "Plate Vibration Research, 1976-1980: Classical Theory," Shock Vib. Dig., 13 (9), pp 11-22 (1981). - Leissa, A.W., "Plate Vibration Research, 1976-1980: Complicating Effects," Shock Vib. Dig., 13 (10), pp 19-36 (1981). - Leissa, A.W., "Advances in Vibration, Buckling and Postbuckling Studies on Composite Plates," Composite Structures, edited by I.H. Marshall, Applied Science Publ., London, pp 312-334 (1981). - Reddy, J.N., "Finite Element Modeling of Structural Vibrations: A Review of Recent Advances," Shock Vib. Dig., <u>11</u> (1), pp 25-39 (1979). - 17. Reddy, J.N., "Finite-Element Modeling of Layered, Anisotropic Composite Plates and - Shells: A Review of Recent Research," Shock Vib. Dig., 13 (12), pp 3-12 (1981). - Nayfeh, A.H. and Mook, D.T., <u>Nonlinear Oscillations</u>, John Wiley and Sons, NY (1979). - Banerjee, B., "Large Amplitude Vibrations of a Clamped Orthotropic Square Plate Carrying a Concentrated Mass," J. Sound Vib., <u>82</u> (3), pp 329-334 (1982). - Huang, C.L. and Walter, H.S., "Nonlinear Oscillations of a Clamped Circular Plate with a Concentric Rigid Mass," Developments Mech., 11, Proc. 17th Midwestern Mech. Conf., Univ. Michigan, Ann Arbor, pp 151-152 (1981). - 21. Chia, C.Y. and Sathyamoorthy, M., "Nonlinear Vibration of Anisotropic Skew Plates," Fibre Sci. Tech., 13, pp 81-95 (1980). - Prathap, G. and Varadan, T.K., "Nonlinear Flexural Vibration of Anisotropic Skew Plates," J. Sound Vib., <u>63</u>, pp 315-323 (1979). - Datta, P.K., "An Analogue Simulation of the Nonlinear Vibration of a Plate with a Central Opening Subjected to Tension Loading," J. Mech. Engrg. Sci., 23, pp 103-106 (1981). - Reddy, J.N., "Nonlinear Vibration of Rectangular Composite Plates with Rectangular Cutouts," SECTAM XI, Huntsville, AL (1982). - Alwar, R.S. and Reddy, B.S., "Large Deflection Static and Dynamic Analysis of Isotropic and Orthotropic Annular Plates," Intl. J. Nonlin. Mech., 14, pp 347-359 (1979). - Birman, V., "Note on the Stability of Vibrations of Rectangular Plates with Initial Imperfections," Israel J. Tech., <u>17</u>, pp 354-359 (1979). - Ostakhowicz, W., "Application of the Method of Stiff Finite Elements to a Nonlinear Problem of Dynamic Stability," Proc. Intl. Conf. Nonlin. Oscill., Prague, Czechoslovakia, 2, pp 1005-1009 (1979). - 28. Ostiguy, G.L. and Evan-Iwanowski, R.M., "Influence of the Aspect Ratio on the Dy- - namic Stability and Nonlinear Response of Rectangular Plates," J. Mech. Des., Trans. ASME, 104, pp 417-425 (1982). - 29. Zajaczkowski, J., "An Approximate Method of Analysis of Parametric Vibration," J. Sound Vib., 79, pp 581-588 (1981). - Massalas, C. and Kafousias, N., "Nonlinear Vibrations of a Shallow Cylindrical Panel on a Nonlinear Elastic Foundation," J. Sound Vib., 66, pp 507-512 (1979). - 31. Nath, Y., "Large Amplitude Response of Circular Plates on Elastic Foundations," Intl. J. Nonlin. Mech., 17 (4), pp 285-296 (1982). - Mori, K. and Saito, H., "Large Amplitude Vibrations of Elastically Supported Circular Plate with a Concentrated Mass," Tech. Rep. Tohoku Univ., <u>44</u> (2), pp 547-562 (1979). - Rao, K.S. and Rao, G.V., "Large Amplitude Supersonic Flutter of Panels with Ends Elastically Restrained against Rotation," Computers Struc., 11 (3), pp 197-201 (1980). - 34. Banerjee, B. and Datta, S., "Large Amplitude Vibrations of Thin Elastic Plates by the Method of Conformal Transformation," Intl. J. Mech. Sci., 21 (11), pp 689-696 (1979). - 35. Banerjee, B., "Large Amplitude Vibrations of Thin Elastic Plates: A New Approach," Private Commun. (1983). - Biswas, P., "Nonlinear Vibrations of Orthotropic Rectangular Plates under In-Plane Forces," J. Aeronaut. Soc. India, 33, pp 103-105 (1981). - 37. Chaudhuri, S.K., "Nonlinear Dynamic Response of a Clamped Orthotropic Circular Plate to Pulse Excitations," Private Commun. (1983). - 38. Chaudhuri, S.K., "Large Amplitude Free Vibrations of Simply Supported Equilateral Triangular Plate Using Tri-Linear Co-ordinates," Mech. Res. Commun., 8 (6), pp 355-360 (1981). - 39. Chaudhur, S.K., "Large Amplitude Free Vibrations of a Right Angled Isosceles Triangular - Plate of Simply Supported Edges," J. Sound Vib., <u>84</u> (1), pp 81-85 (1982). - Chia, C.Y. and Sathyamoorthy, M., "Large Amplitude Vibrations of Composite Plates," Proc. Seventh Canadian Congr. Appl. Mech., Sherbrooke, pp 383-384 (1979). - Coleby, J.R. and Mazumdar, J., "Non-linear Vibrations of Elastic Plates Subjected to Transient Pressure Loading," J. Sound Vib., <u>80</u> (2), pp 193-201 (1982). - 42. Coleby, J.R. and Mazumdar, J., "Comments on Nonlinear Vibrations of Efficial Plates," J. Sound Vib., 75, pp 577-578 (1981). - Dugdale, D.S., "Non-linear Vibration of a Centrally Clamped Rotating Disc," Intl. J. Engrg. Sci., 17 (6), pp 745-756 (1979). - 44. Kennedy, J.C., "Moderately Large Amplitude Plate Vibration Modes," J. Mech. Des., Trans. ASME, 102, pp 405-411 (1980). - Lau, S.L. and Cheung, Y.K., "Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems," J. Appl. Mech., Trans. ASME, 48, pp 959-964 (1981). - Mei, C. and Wentz, K.R., "Large Amplitude Random Response of Angle-ply Laminated Composite Plates," AIAA J., <u>20</u>, pp 1450-1458 (1982). - Mei, C. and Wentz, K.R., "Analytical and Experimental Nonlinear Response of Rectangular Panels to Acoustic Excitation," 23rd Struc., Struc. Dynam. Matls. Conf., New Orleans, LA, pp 514-520 (1982). - 48. Mei, C., "Response of Nonlinear Aircraft Structural Panels to High Intensity Noise," Emerging Technologies in Aerospace Structures, Design, Structural Dynamics and Materials, edited by J.R. Vinson, ASME, pp 245-272 (1980). - 49. Nath, Y. and Alwar, R.S., "Nonlinear Dynamic Analysis of Orthotropic Circular Plates," Intl. J. Solids Struc., 16 (5), pp 433-443 (1980). - Nath, Y., "Nonlinear Dynamic Response of Rectangular Plates Subjected to Transient Loads," J. Sound Vib., 63, pp 179-188 (1979). - Ni, C.M., "A Quadrilateral Finite Difference Plate Element for Nonlinear Transient Analysis of Panels," Computers Struc., 15 (1), pp 1-10 (1982). - Nimmer, R.P. and Boehman, L., "Transient, Nonlinear Response Analysis of Soft Bodied Impact on Flat Plates Including Interactive Load Determination," AIAA/ASME/ASCE/ AHS 22nd Struc., Struc. Dynam. Matls. Conf., Atlanta, GA (1981). - Niyogi, A.K. and Meyers, B.L., "A Perturbation Solution of Nonlinear Vibration of Rectangular Orthotropic Plates," Intl. J. Nonlin. Mech., 16, pp 401-408 (1981). - 54. Prathap, G., "On the Berger Approximation: A Critical Re-Examination," J. Sound Vib., <u>66</u>, pp 149-154 (1979). - Reddy, J.N., Huang, C.L., and Singh, I.R., "Large Deflections and Large Amplitude Vibrations of Axi-Symmetric Circular Plates," Intl. J. Numer. Methods Engrg., 17, pp 527-541 (1981). - Sathyamoorthy, M. and Chia, C.Y., "Large Amplitude Vibration of Orthotropic Elliptical Plates," Acta Mech., 37, pp 247-258 (1980). - Sathyamoorthy, M., "Nonlinear Vibration of Elliptical Plates," J. Sound Vib., <u>70</u> (3), pp 458-460 (1980). - Sathyamoorthy, M., "Nonlinear Vibration of Rectangular Plates," J. Appl. Mech., Trans. ASME, 46, pp 215-217 (1979). - Sathyamoorthy, M., "Nonlinear Analysis of Plates -- A Comparison," Proc. AIAA/ASME/ ASCE/AHS 22nd Struc., Struc. Dynam. Matls. Conf., Atlanta, GA, p 42 (1981). - Sathyamoorthy, M., "Large Amplitude Vibration of Skew Orthotropic Plates," J. Appl. Mech., Trans. ASME, <u>47</u>, pp 675-677 (1980). - 61. Sathyamoorthy, M., "Reply to Comments on Nonlinear Vibration of Elliptical Plates," J. Sound Vib., 75, pp 578-580 (1981). - 62. Sathyamoorthy, M., "Nonlinear Vibration of Orthotropic Circular Plates -- A Comparison," Fibre Sci. Tech., 16, pp 111-119 (1982). - 63. Sathyamoorthy, M., "Nonlinear Dynamic Analysis of Orthotropic Elliptical Plates," ASME Vib. Noise Conf., Dearborn, MI (1983). - Sathyamoorthy, M., "A New Approach to Nonlinear Dynamic Analysis of Composite Plates," <u>Composite Structures</u>, edited by I.H. Marshall, Applied Science Publ., London (1983). - Sathyamoorthy, M., "Nonlinear Analysis of Composite Circular Plates," AIAA/ASME/ ASCE/AHS 24th Struc., Struc. Dynam, Matls. Conf., Lake Tahoe, NV (1983). - Simmonds, J.G., "Exact Equations for the Large Inextensional Motion of Elastic Plates," J. Appl. Mech., Trans. ASME, 48 (1), pp 109-112 (1981). - Yamaki, N., Otomo, K., and Chiba, M., "Non-Linear Vibrations of a Clamped Circular Plate with Initial Deflection and Initial Edge Displacement, Part I -- Theory," J. Sound Vib., 79 (1), pp 23-42 (1981). - Yamaki, N., Otomo, K., and Chiba, M., "Nonlinear Vibrations of a Clamped Circular Plate with Initial Deflection and Initial Edge Displacement, Part II - Experiment," J. Sound Vib., 79 (1), pp 43-59 (1981). - Sugimoto, N., "Nonlinear Theory of Flexural Motions of Thin Elastic Plate -- Part 1: Higher Order Theory," J. Appl. Mech., Trans. ASME, 48 (2), pp 377-382 (1981). - Sugimoto, N., "Nonlinear Theory for Flexural Motions of Thin Elastic Plate -- Part 2: Boundary-Layer Theory Near the Edge," J. Appl. Mech., Trans. ASME, <u>48</u> (2), pp 383-390 (1981). - Sugimoto, N., "Nonlinear Theory for Flexural Motions of Thin Elastic Plate -- Part 3: Numerical Evaluation of Boundary Layer Solutions," J. Appl. Mech., Trans. ASME, 49 (2), pp 409-416 (1982). - Varadan, T.K. and Pandalai, K.A.V., "Large Amplitude Flexural Vibrations of Eccentrically Stiffened Plates," J. Sound Vib., <u>67</u>, pp 329-340 (1979). - Jones, R., Mazumdar, J., and Cheung, Y.K., "Vibration and Buckling of Plates at Elevated Temperatures," Intl. J. Solids Struc., 16 (1), pp 61-70 (1980). - Shore, C.P., "Application of the Reduced Basis Method to Nonlinear Transient Thermal Analysis," Symp. Advances Trends Struc. Solid Mech., NASA, Arlington, VA (1982). - Sathyamoorthy, M., "Thermal Effects on Vibration of Elliptical Plates," ASCE/EMD Specialty Conf., Purdue Univ. (1983). - 76. Sathyamoorthy, M., "Influence of Temperature Change and Large Amplitude on the Flexural Vibrations of Elliptical Plates," J. Thermal Stresses (to appear). - Banerjee, M.M. and Das, J.N., "A Note on the Nonlinear Vibrations of Rectangular Plates with Parabolically Varying Thickness," J. Indian Inst. Sci., 61 (2), pp 51-56 (1979). - Banerjee, M.M., Sarker, P.K., and Kapoor, P., "On the Non-linear Vibration of Circular Plates of Variable Thickness Elastically Restrained Along the Edges," J. Sound Vib., 74, pp 589 596 (1981). - Chaudhuri, S.K., "Large Amplitude Vibrations of Clamped Circular Plate of Variable Thickness," Private Commun. (1983). - Huang, C.L. and Aurora, P.R., "Nonlinear Oscillations of Elastic Orthotropic Annular Plates of Variable Thickness," J. Sound Vib., 62, pp 443-453 (1979). - 81. Kanaka Raju, K. and Venkateswara Rao, G., "Nonlinear Vibrations of Tapered Circular - Plates Elastically Restrained Against Rotation at the Edges," Nucl. Engrg. Des., <u>51</u> (3), pp 417-421 (1979). - Ginsberg, J.H., "A New Viewpoint for the Twodimensional Nonlinear Acoustic Wave Radiating from a Harmonically Vibrating Flat Plate," J. Sound Vib., 63, pp 151-54 (1979). - Kluwick, A., "On the Nonlinear Distortion of Waves Generated by Flat Plates under Harmonic Excitations," J. Sound Vib., <u>73</u>, pp 601-604 (1980). - 84. Nayfeh, A.H., "Nonlinear Propagation of Waves Induced by General Vibrations of Plates," J. Sound Vib., 79 (3), pp 429-437 (1981). - Nowinski, J.L., "Stability of Nonlinear Thermoelastic Waves in Membrane-like Spinning Disks," J. Thermal Stresses, 4 (1), pp 1-12 (1981). - Nowinski, J.L., "On the Stability of Waves in Thin Orthotropic Spinning Disk," J. Appl. Mech., Trans. ASME, 49, pp 570-572 (1982). - Nowinski, J.L., "Propagation and Stability of Nonlinear Waves in Spinning Anisotropic Membrane-like Disks," Intl. J. Nonlin, Mech., 16, pp 427-437 (1981). - Sheniavskii, L.A., "Influence of Geometric Nonlinearity on the Waves Propagating through a Thin, Free Plate," J. Appl. Math. Mech., 43 (6), pp 1178-1184 (1979). - Argyris, J.H., Doltsinis, J.S.T., and William, K.J., "New Developments in the Inelastic Analysis of Quasistatic and Dynamic Problems," Intl. J. Numer. Methods Engrg., 14, pp 1813-1850 (1979). - Dinis, L.M.S., Martins, R.A.F., and Owen, D.R.J., "Material and Geometrically Nonlinear Analysis of Thin Plates and Arbitrary Shells," Proc. Intl. Conf. Numer. Methods Nonlin. Problems, Swansea, pp 425-442 (1980). - 91. Griffin, O.H. and Kamat, M.P., et al, "Three Dimensional Inelastic Finite Element Analysis - of Laminated Composites," NASA CR-163712 (1980). - Idczak, W., Rymarz, C., and Spychala, A., "Large Deflection of a Rigid-Viscoplastic Impulsively Loaded Circular Plate," J. Tech. Physics, <u>21</u> (4), pp 473-487 (1980). - Morjaria, M. and Mukherjee, S., "Finite Element Analysis of Time-Dependent Inelastic Deformation in the Presence of Transient Thermal Stresses," Intl. J. Numer. Methods Engrg., 17, pp 909-921 (1981). - 94. Ansari, K.A., "A Modal Approach to the Solution of Nonlinear Vibration Problems," Soc. Engrg. Sci. Mtg., Rolla (1982). - 95. Barr, A.D.S., "Some Developments in Parametric Stability and Nonlinear Vibration," Intl. Conf. Struc. Dynam., Southampton, pp 545-567 (1980). - Bathe, K.J. and Gracewski, S., "On Nonlinear Dynamic Analysis Using Substructuring and Mode Superposition," Computers Struc., 13, pp 699-707 (1981). - Buchholdt, H.A. and Moossavinejad, S., "Nonlinear Dynamic Response Analysis Using Conjugate Gradients," Engrg. Struc., 4, pp 44-52 (1982). - Christopher, P.A.T., "A Modified Stroboscopic Method for Nonlinear Vibration Equations," J. Sound Vib., 66 (1), pp 91-98 (1979). - Cui, E.J. and Dowell, E.H., "Nonlinear Oscillation Models in Bluff Body Aeroelasticity," ASME Winter Ann. Mtg., Washington, D.C. (1981). - 100. Dungar, R., "Imposed Force Summation Method for Nonlinear Dynamic Analysis," Intl. J. Earthquake Engrg. Struc. Dynam., 10, pp 165-170 (1982). - 101. Felippa, C.A. and Park, K.C., "Direct Time Integration Methods in Nonlinear Structural Dynamics," Comp. Methods Appl. Mech. Engrg., 17/18, pp 277-313 (1979). - Gellert, M., "A Direct Integration Method for Analysis of a Certain Class of Non-Linear Dynamic Problems," Ing.-Arch., 48, pp 403-415 (1979). - 103. Geradin, M., "Nonlinear Structural Dynamics Via Newton and Quasi-Newton Methods," Nucl. Engrg. Des., <u>58</u>, pp 339-348 (1980). - 104. Geschwindner, L.F., "Nonlinear Dynamic Analysis by Modal Superposition," ASCE J. Struc. Div., 107 (12), pp 2325-2336 (1981). - 105. Ghabrial, M.A.E. and Wellford, L.C., "An Averaged Lagrangian-Finite Element Technique for the Solution of Nonlinear Vibration Problems," Symp. Advances Trends Struc. Solid Mech., NASA, Arlington, VA (1982). - 106. Graney, L. and Richardson, A.A., "The Numerical Solution of Nonlinear Partial Differential Equations by the Method of Lines," J. Computat. Appl. Math., 7, pp 229-236 (1981). - Hayashi, C., "Nonlinear Vibrations for Structural Stability Determination," in <u>Trends in Solid Mechanics</u>, 1979/65th Volume of W.T. Koiter, Delft, The Netherlands (1979). - 108. Holmes, P.J. (Editor), New Approaches to Nonlinear Problems in Dynamics, SIAM, Philadelphia, PA (1980). - 109. Hsu, L., "Analysis of Nonlinear Vibrations by the Normal Form Approach," Proc. Seventh Canadian Congr. Appl. Mech., Sherbrooke, pp 385-386 (1979). - 110. Housner, J.M. and Belvin, W.K., "On the Analytical Modeling of the Nonlinear Vibrations of Pretensioned Space Structures," Symp. Advances Trends Struc, Solid Mech., NASA, Arlington, VA (1982). - Mojaddidy, Z., Mook, D.T., and Nayfeh, A.H., "Nonlinear Detuning of Resonant Structural Vibrations," Proc. Seventh Canadian Congr. Appl. Mech., Sherbrooke, pp. 389-390 (1979). - 112. Ni, C.M., "A General Purpose Analytical Technique for Nonlinear Dynamic Regions of - Integrated Structures," SAE Paper No. 811304 (1981). - 113. Padovan, J., "Nonlinear Vibrations of General Structures," J. Sound Vib., 72, pp 427-441 (1980). - 114. Rothe, F., "Solutions for Systems of Nonlinear Elliptic Equations with Nonlinear Boundary Conditions," Math. Methods Appl. Sci., 1, pp 545-553 (1979). - 115. Shah, V.N. and Hartmann, A.J., "Nonlinear Dynamic Analysis of a Structure Subjected to Multiple Support Motions," ASME Paper No. 80-C2/PVP-52 (1980). - 116. Shayan, T., Mook, D.T., and Nayfeh, A.H., "Nonlinear Interaction of Transverse and Axial Loads in Structures," Proc. Eighth Canadian Congr. Appl. Mech., Moncton, pp 459-460 (1981). - 117. Singh, P.N., Shouman, A.R., and Ali, S.M.J., "A New Technique of Partially Integrating Some Nonlinear Vibration Equations," J. Sound Vib., 85, pp 141-142 (1982). - 118. Strang, G. and Matthies, H., "Numerical Computations in Nonlinear Mechanics," ASME Paper No. 79-PVP-103 (1979). - 119. Van Kirk, J.S., Bogard, W.T., and Wood, L.R., "Method for Minimization of Solution Costs for Transient Dynamic Analysis of Nonlinear Periodic Structures," ASME Paper 82-PVP-19 (1982). - Wang, P.H., "Solution Procedures for Nonlinear Structural Dynamic Analysis," J. Chinese Inst. Engr., 3, pp 61-68 (1980). - 121. Yanev, B.S. and McNiven, H.D., "Nonlinear Structural Response to Earthquakes Investigated by System Identification," Proc. Seventh Canadian Congr. Appl. Mech., Sherbrooke, pp 405-406 (1979). - 122. Celep, Z., "Shear and Rotatory Inertia Effects on the Large Amplitude Vibration of the Initially Imperfect Plates," J. Appl. Mech., Trans. ASME, <u>47</u>, pp 662-666 (1980). - 123. Chatterjee, S.N. and Kulkarni, S.V., "Effects of Environment, Damping, and Shear Deformations on Flutter of Laminated Composite Panels," Intl. J. Solids Struc., 15, pp 479-491 (1979). - 124. Chen, L.W. and Doong, J.L., "Large Amplitude Vibration of an Initially Stressed Thick Plate," J. Sound Vib. (1983). - 125. Chia, C.Y. and Sathyamoorthy, M., "Non-Linear Vibration of Circular Plates with Transverse Shear and Rotatory Inertia," J. Sound Vib., 78, pp 131-137 (1981). - 126. Huang, C.C., "Large Amplitude, Shear and Rotatory Inertia on Vibration of Heterogeneous Anisotropic Plates," Private Commun. (1982). - 127. Kanaka Raju, K. and Hinton, E., "Nonlinear Vibrations of Thick Plates Using Mindlin Plate Elements," Intl. J. Numer. Methods Engrg., 15, pp 249-257 (1980). - 128. Sathyamoorthy, M., "Transverse Shear and Rotatory Inertia Effects on Large Amplitude Vibration of Elliptical Plates," Proc. Eighth Canadian Congr. Appl. Mech., Moncton, pp 367-368 (1981). - 129. Sathyamoorthy, M., "Transverse Shear and Rotatory Inertia Effects on Nonlinear Vibration of Orthotropic Circular Plates," Computers Struc., 14, pp 129-134 (1981). こうじゅうしゅ 医性性 関 かっかん 自動物 あるめる 神経 神経 かったからの 経行 かないけんない しゅうりゅうしゅう - 130. Sathyamoorthy, M., "Effects of Large Amplitude, Transverse Shear and Rotatory Inertia on Vibration of Orthotropic Elliptical Plates," Intl. J. Nonlin, Mech., 16, pp 327-335 (1981). - 131. Sathyamoorthy, M., "An Improved Nonlinear Shear Deformation Theory for Laminated Plates," AIAA/ASME/ASCE/AHS 23rd Struc., Struc. Dynam. Matls. Conf., New Orleans, LA, p 5 (1982). - Sathyamoorthy, M., "Effects of Large Amplitude, Shear and Rotatory Inertia on Vibration of Rectangular Plates," J. Sound Vib., <u>63</u>, pp 161-167 (1979). - 133. Sathyamoorthy, M. and Chia, C.Y., "Nonlinear Vibration of Orthotropic Circular Plates Including Transverse Shear and Rotatory Inertia," <u>Modern Developments in Composite Materials and Structures</u>, edited by J.R. Vinson, ASME, pp 357-372 (1979). - 134. Sathyamoorthy, M. and Prasad, M.E., "Nonlinear Vibration of Elliptical Plates by a Multiple Mode Approach," Developments in Mechanics, 11, Proc. 17th Midwestern Mech. Conf., Ann Arbor, MI, pp 153-154 (1981). - 135. Sathyamoorthy, M. and Prasad, M.E., "Multiple Mode Analysis of Large Amplitude Vibration of Circular Plates," Joint ASME/ASCE Mech. Conf., Boulder, CO, Paper No. 6 (1981). - 136. Sathyamoorthy, M., "Large Amplitude Elliptical Plate Vibration with Transverse Shear and Rotatory Inertia Effects," J. Mech. Des., 104, pp 426-431 (1982). - Sathyamoorthy, M., "Nonlinear Vibration of Orthotropic Elliptical Plates with Attention to Shear and Rotatory Inertia," Fibre Sci. Tech., 15, pp 79-86 (1981). - 138. Sathyamoorthy, M., "A Study of Nonlinear Vibration of Skew Plates with Attention to Shear and Rotatory Inertia," Fibre Sci. Tech., 15, pp 271-282 (1981). - 139. Sathyamoorthy, M., "Large Amplitude Vibration of Moderately Thick Circular Plates," Developments Theoret. Appl. Mech., 11, pp 151-164 (1982). - 140. Sathyamoorthy, M., "Large Amplitude Vibration of Circular Plates Including Transverse Shear and Rotatory Inertia," Intl. J. Solids Struc., 17, pp 443-449 (1981). - Sathyamoorthy, M. and Chia, C.Y., "Nonlinear Flexural Vibration of Moderately Thick Orthotropic Circular Plates," Ing.-Arch., <u>52</u>, pp 237-244 (1982). - 142. Sathyamoorthy, M. and Chia, C.Y., "Nonlinear Vibration of Anisotropic Rectangular Plates Including Shear and Rotatory Inertia," Fibre Sci. Tech., 13, pp 337-361 (1980). - 143. Sathyamoorthy, M. and Chia, C.Y., "Effects of Transverse Shear and Rotatory Inertia on Large Amplitude Vibration of Anisotropic Skew Plates, I - Theory," J. Appl. Mech., Trans. ASME, 47, pp 128-132 (1980). - 144. Sathyamoorthy, M. and Chia, C.Y., "Effects of Transverse Shear and Rotatory Inertia on Large Amplitude Vibration of Anisotropic Skew Plates, II - Numerical Results," J. Appl. Mech., Trans. ASME, 47, pp 133-138 (1980). - 145. Sathyamoorthy, M. and Prasad, M.E., Multiple-Mode Nonlinear Analysis of Circular Plates," ASCE J. Engrg. Mech. Div. (1983). - 146. Celep, Z., "Vibrations of Initially Imperfect Circular Plates Including the Shear and Rotatory Inertia Effects," J. Sound Vib., <u>85</u> (4), pp 513-523 (1982). - 147. Karmakar, B.M., "Amplitude-Frequency Characteristics of Large Amplitude Vibrations of Sandwich Plates," J. Appl. Mech., Trans. ASME, 46, pp 230-231 (1979). - 148. Kunukkasseril, V.X. and Venkatesan, S., "Axisymmetric Nonlinear Oscillations of Isotropic Layered Circular Plates," J. Sound Vib., <u>64</u>, pp 295-302 (1979). - 149. Reddy, J.N., "Nonlinear Vibration of Layered Composite Plates Using a Penalty Plate Bending Element," AIAA/ASME/ASCE/AHS 22nd Struc., Struc. Dynam. Matls. Conf., Atlanta, GA, p 44 (1981). - Reddy, J.N. and Chao, W.C., "Large Deflection and Large Amplitude Free Vibrations of Laminated Composite - Material Plates," Computers Struc., 13, pp 341-347 (1981). - 151. Reddy, J.N., "Nonlinear Vibration of Layered Composite Plates Including Transverse Shear and Rotatory Inertia," 8th ASME Vib. Conf., ASME Paper No. 81-DET-144 (1981). - 152. Reddy, J.N. and Chao, W.C., "Nonlinear Oscillations of Laminated Anisotropic Rectangular Plates," J. Appl. Mech., Trans. ASME, <u>49</u>, pp 396-402 (1982). - 153. Reddy, J.N. and Chao, W.C., "Nonlinear Oscillations of Laminated Anisotropic Thick Rectangular Plates," Adv. Aerospace Struc. Matls., ASME AD-01, pp 115-119 (1981). - 154. Reddy, J.N., "Large Amplitude Flexural Vibration of Layered Composite Plates with Cutouts," J. Sound Vib., 83, pp 1-10 (1982). - 155. Wentz, K.R., Paul, D.B., and Mei, C., "Large Deflection Random Response of Symmetric Laminated Composite Plates," Shock Vib. Bull., U.S. Naval Res. Lab., Proc. 52, Pt. 5, pp 99-111 (1982). - 156. Banks, W.M., "Experimental Study of the Nonlinear Behavior of Composite Panels," Adv. Composite Matls., pp 372-386 (1980). - Maruyama, K. and Ichinomiya, O., "Experimental Investigation of Free Vibrations of Clamped Sector Plates," J. Sound Vib., 74, pp 565-573 (1981). - 158. Maruyama, K. and Ichinomiya, O., "Experimental Determination of Transverse Vibration Modes of Thin I-Shaped Plates," Exptl. Mech., pp 271-275 (1979). - 159. McIntosh, S.C., Reed, R.E., and Rodden, W.P., "An Experimental and Theoretical Study of Nonlinear Flutter," AIAA/ASME/ASCE/AHS 21st Struc., Struc. Dynam. Matls. Conf., Seattle, WA, pp 1019-1029 (1980). - McIntosh, S.C., Reed, R.E., and Rodden, W.P., "Experimental and Theoretical Study of Nonlinear Flutter," J. Aircraft, 18, pp 1057-1063 (1981). - 161. Ostiguy, G.L. and Evan-Iwanowski, R.M., "Experimental Investigation of the Dynamic Stability of Rectangular Plates," Proc. Seventh Canadian Congr. Appl. Mech., Sherbrooke, pp 433-434 (1979). - 162. Wentz, K.R. and Mei, C., "Experimental Nonlinear Response of Panels Subjected to High Intensity Noise," AIAA/ASME/ASCE/AHS 22nd Struc., Struc. Dynam. Matls. Conf., Atlanta, GA (1981). - 163. Akay, H.U., "Dynamic Large Deflection Analysis of Plates Using Mixed Finite Elements," Computers Struc., 11, pp 1-11 (1980). - 164. Argyris, J.H., Doltsinis, J., Knudson, W.C., Vaz, L.E., and William, K.J., "Numerical Solution of Transient Nonlinear Problems," Computer Methods Appl. Mech. Engrg., <u>17/18</u>, pp 341-409 (1979). - 165. Bathe, K.J., "Finite Element Formulation, Modeling and Solution of Nonlinear Dynamic Problems, Numerical Methods for Partial Differential Equations," editor S.V. Parter, Academic Press (1979). - 166. Bathe, K.J. (Editor), "Nonlinear Finite Element Analysis and ADINA, Computers Struc., 13 (collection of papers) (1981). - 167. Batoz, J.L. and Dhatt, G., "Incremental Displacement Algorithms for Nonlinear Problems," Intl. J. Numer. Methods Engrg., 14, pp 1262-1267 (1979). - Bergan, P.G., "Solution Algorithms for Nonlinear Structural Problems," Computers Struc., 12, pp 497-509 (1980). - 169. Brockman, R.A., "MAGNA A Finite Element System for Three-Dimensional Nonlinear Static and Dynamic Structural Analysis," Computers Struc., 13, pp 415-523 (1981). - 170. Cheung, Y.K. and Lau, S.L., "Incremental Time-Space Finite Strip Method for Nonlinear Structural Vibrations," Proc. Eighth Canadian Congr. Appl. Mech., Moncton, pp 457-458 (1981). - 171. Hughes, T.J.R., Pister, K.S., and Taylor, R.L., "Implicit-Explicity Finite Elements in Nonlinear Transient Analysis," Computers Methods Appl. Mech. Engrg., <u>17/18</u>, pp 159-182 (1979). - 172. Karamanlidis, D. and Atluri, S.N., "A Novel Family of Isoparametric Mixed-Hybrid Brick-Type Elements for Three-Dimensional Large Deflection Dynamic Analysis," Symp. Advances Trends Struc. Solid Mech., NASA, Arlington, VA (1982). - 174. McComb, H.G. and Noor, A.K., "Research in Nonlinear Structural and Solid Mechanics," NASA CP 2147 (1980). - 175. Mei, C., Narayanaswami, R., and Rao, G.V., "Large Amplitude Free Flexural Vibrations of Thin Plates of Arbitrary Shape," Computers Struc., 10, pp 675-681 (1979). - 176. Nagy, D.A. and Koenig, M., "Geometrically Nonlinear Finite Element Behaviour Using Buckling Mode Superposition," Computer Methods Appl. Mech. Engrg., 19, pp 447-484 (1979). - Nagy, D.A., "Modal Representation of Geometrically Nonlinear Behavior by the Finite Element Method," Computers Struc., <u>10</u>, pp 683-688 (1979). - 178. Noor, A.K., "Survey of Computer Programs for Solution of Nonlinear Structural and Solid Mechanics Problems," Computers Struc., 13, pp 425-465 (1981). - 179. Noor, A.K., "Global-Local Finite Element Method for Nonlinear Dynamic Analysis of Structures," 2nd Intl. Conf. Computational Methods Nonlin. Mech., Univ. Texas, Austin (1979). - 180. Noor, A.K. and Peters, J.M., "Nonlinear Analysis via Global-Local Mixed Finite Element Approach," Intl. J. Numer. Methods Engrg., 15, pp 1363-1380 (1980). - Noor, A.K., "Recent Advances in Reduction Methods for Nonlinear Problems," Computers Struc., 13, pp 31-44 (1981). - 182. Noor, A.K. and McComb, Jr., H.G. (editors), "Computational Methods in Nonlinear Structural and Solid Mechanics," Computers Struc., 13 (1981). - 183. Noor, A.K., Petus, J.M., and Andersen, C.M., "Two-Stage Rayleigh-Ritz Technique for Non- - linear Analysis of Structures," Proc. 2nd Intl. Symp. Innovative Numer. Anal. Appl. Engrg. Sci., Montreal (1980). - 184. Noor, A.K. and Peters, J.M., "Reduced Basis Technique for Nonlinear Analysis of Structures," AIAA J., 18, pp 455-462 (1980). - 185. Oden, J.T. and Becker, E.B., "Computational Methods in Nonlinear Mechanics," Computers Struc., 11, p 150 (1980). - Oden, J.T., "Computational Methods in Nonlinear Mechanics," Intl. J. Numer. Methods Engrg., 16 (1980). - 187. Patel, H.P. and Kennedy, R.H., "Nonlinear Finite Element Analysis for Composite Structures of Axisymmetric Geometry and Loading," Computers Struc., 15, pp 79-84 (1982). - 188. Reddy, J.N. and Huang, C.L., "Large Amplitude Free Vibration of Annular Plates of Varying Thickness," J. Sound Vib., 79 (3), pp 387-396 (1981). - 189. Sander, G., Geradin, M., Nyssen, C., and Hogge, M., "Accuracy Versus Computational Efficiency in Nonlinear Dynamics," Computer Methods Appl. Mech. Engrg., <u>17/18</u>, pp 315-340 (1979). - 190. Tuomala, M.T.E. and Mikkola, M.J., "Transient Dynamic Large Deflection Analysis of Elastic Viscoplastic Plates by the Finite Element Method," Inlt. J. Mech. Sci., <u>22</u>, pp 151-166 (1980). - 191. Venkateswara Rao, G. and Kanaka Raju, K., "Large Amplitude Axisymmetric Vibrations of Orthotropic Circular Plates Elastically Restrained Against Rotation," J. Sound Vib., 69, pp 175-180 (1980). - 192. Wellford, L.C., Dib, G.M., and Mindle, W., "Free and Steady State Vibration of Nonlinear Structures Using a Finite Element Nonlinear Eigenvalue Technique," Intl. J. Earthquake Engrg. Struc. Dynam., 8, pp 97-115 (1980). - 193. Reddy, J.N., "Survey of Recent Research in the Analysis of Composite Plates," Composites Tech. Rev., 4 (3), pp 101-104 (1982). - 194. Brown, K.W. and Krahula, J.L., "Linear-Non-linear Interface for Finite Element Impact Analysis," J. Engrg. Power, Trans. ASME, 104, pp 23-27 (1982). # LITERATURE REVIEW: survey and analysis of the Shock and Vibration literature The monthly Literature Review, a subjective critique and summary of the literature, consists of two to four review articles each month, 3,000 to 4,000 words in length. The purpose of this section is to present a "digest" of literature over a period of three years. Planned by the Technical Editor, this section provides the DIGEST reader with up-to-date insights into current technology in more than 150 topic areas. Review articles include technical information from articles, reports, and unpublished proceedings. Each article also contains a minor tutorial of the technical area under discussion, a survey and evaluation of the new literature, and recommendations. Review articles are written by experts in the shock and vibration field. This issue of the DIGEST contains articles about mechanical signature analysis; and static and dynamic behavior of mechanical components associated with electrical transmission lines. Dr. M.S. Hundal of the University of Vermont, Burlington, Vermont has written a review of literature in the field of mechanical signature analysis from 1980 through 1982. Mechanical signature analysis encompasses the analysis of dynamic signals from machines and processes for the purposes of testing, monitoring, diagnostics, and system identification and modification. Mr. P.G.S. Trainor and Drs. N. Popplewell, A.H. Shah, and R.B. Pinkney of the University of Manitoba, Winnipeg, Canada have written an article describing the behavior of transmission towers, insulator strings, conductors, and foundations as determined from theoretical analyses, model testing, and full-scale tests. Line vibration is also briefly reviewed. #### MECHANICAL SIGNATURE ANALYSIS #### M.S. Hundal\* Abstract. Mechanial signature analysis encompasses the analysis of dynamic signals from machines and processes for the purposes of testing, monitoring, diagnostics, and system identification and modification. Literature in this field from 1980 through 1982 is reviewed in this paper. A previous article [1] presented a review of literature on mechanical signature analysis (MSA) up to and including 1979; the fundamentals of machinery vibration and early developments in MSA were included. The present paper discusses literature on the subject that appeared in the years 1980-82. The surveillance of operating machinery by monitoring and analysis of vibration signals is becoming an accepted practice in industry. Vibrations generated in bearings, shafts, gears, and other machine parts are used to detect wear and degradation and to predict failure. Increasingly sophisticated instruments and signal analysis techniques have been developed over the last several years. Although machinery monitoring and diagnostics are the most important applications of mechanical signature analysis today, it is regarded as a much broader field. Braun [58] has divided MSA into five categories: process monitoring, environmental testing, noise and vibration abatement through identification of sources and effect of material properties, system identification via modal analysis and system modification by structural changes, and diagnostics. The last category includes maintenance as well as quality control by identifying product defects. For the purpose of review in this paper the literature is classified as follows: monitoring and diagnostics: papers of a general nature that describe instrumentation and practical applications - analytical techniques: development of new methods and extension and adaptations of methods from other fields - experimental studies: papers that describe work primarily of an experimental nature #### MONITORING AND DIAGNOSTICS Papers that describe general aspects of machinery vibration monitoring include case histories and user experiences. They form a good introduction to the subject, and several are of a tutorial nature. Taylor [21] has presented case histories involving imbalance, looseness, bent shaft, misalignment, cavitation, and rubbing. He stresses the use of both time- and frequency-domain signals in fault detection. A tutorial on the use of real-time analyzers has been given [22]. The establishment of a machine condition monitoring program, including periodic measurement, continuous monitoring, and predictive analysis has been presented [25]. Hasselfeld [29] has described a case history of an induction motor that exhibited axial vibration, Libby and Lundgaard [30] have discussed a program for an aircraft carrier machine condition analysis and evaluation of repair work quality. Application of incipient failure detection techniques to monitor centrifugal pumps has been discussed by Bloch [8]. Monitoring methods for turbomachines as aids in maintenance and redesign have been considered by Sohre [3] and Nelson [9]. The role of polar diagrams in interpreting rotating machine condition has been stressed by Bently [27] and Halloran [28]. The advantages stated are the capability to identify close-spaced resonances and shaft bow mode shapes and to distinguish structural, aerodynamic, and self-balancing resonances. A tutorial on selection and use of a spectrum analyzer to diagnose problems in pump operation has been given [35]. Correlation of machinery faults to sum <sup>\*</sup>Professor of Mechanical Engineering, The University of Vermont, Burlington, Vermont 05405 and difference frequencies has been discussed by Eshleman [39]. Faults related to such frequencies include misalignment, rolling bearing and gear defects, oilwhirl, rubbing, and imbalance. The applications of sum and difference frequencies and time signal and spectrum analysis to the identification of gear defects such as number of defective teeth on each gear, number of gears with defective teeth, and location of defective teeth have been described [40]. The necessity of using operating, maintenance, and thermodynamic data in addition to spectrum analysis in preventive maintenance has been discussed [45]. Taylor [46] has presented a tutorial on the use of vibration analysis in a maintenance program that includes monitoring of rotating equipment, spare parts evaluation, and testing of pipes and vessels. The activities of the National Bureau of Standards in the area of monitoring of machines and components via vibration measurement have been discussed [47]. Results of a study to rank the causes of generic problems leading to failure of a rotor/bearing/lubricating system have been reported [48]. A protective system based on frequency signals for such high risk systems as nuclear reactors has been described [18]. Bosmans [49] has given the requirements for proper operation of rotating machinery. He included parameters to be measured, instrumentation required, classification of malfunctions, and corrective actions required. Baur [50] has presented an overview of causes of failure of rotating machinery and monitoring and diagnostic methods to assure reliable operation. Unger [51] has discussed various vibroacoustic machine diagnostic analysis techniques and their applications. Jackson [52] has presented guidelines for achieving a high degree of reliability in rotating machines. McLain [54] has offered guidelines for a monitoring program in paper mills having slow-speed, high-load bearings. The history of a monitoring program at a fossil-fuel power plant has been given [56]. Sensor selection and location, spectrum analysis methods, computational equipment, and display devices were discussed. King and Goodman [57] have described testing and diagnostic equipment for reciprocating engines and gas turbines. Inoue and King [67] have presented an application of MSA to hydraulic systems. They considered the case vibrations of a vane pump containing a known defect. A program for surveillance in remote locations and small plants with capability to detect rolling bearing failure has been described [68]. Eshleman [69] has presented various techniques for machinery vibration evaluation: time and frequency domain analyses, trend analysis, orbital motion, transient analyses, interference and Lund diagrams, and critical speed and stability maps. Bently [70] has described transducers, analysis, and display instrumentation that are commercially available. The application of MSA to the detection of structural damage has been demonstrated by West [71]. He used frequency response function data and modal analysis of a space shuttle orbiter body flap that had been subjected to environmental testing. Specific damaged areas were identified that were missed by the conventional methods of visual, X-ray, and ultrasonic inspections. Proceedings of a series of workshop sessions [72] on nondestructive evaluation of turbines and generators included discussions on vibration signature analysis. Schwerdlin and Eshleman [75] described aspects of rotating machine vibration caused by coupling defects. They discussed transducers, analysis equipment, and effects of unbalance and misalignment. The use of computers with other analytic equipment is becoming more common. The development and use of a spectrum analyzer -- a computer system for signature analysis -- in the chemical industry has been described [23]. Halloran and Mruk [33] described the use of a computer-based system for remote and automatic evaluation of rotating machinery. A microprocessor-based multiple sensor system to monitor engine condition has been described [4]. Picty and Magette [5] have presented a minicomputer-based system that implements an anomaly recognition methodology for rotating systems. Criteria have been presented [10] for the design of a digital analysis system; computational accuracy and the effect of components on system performance were discussed. A general purpose modular digital signal processing system has also been described [15] that operates on signals up to 4 kHz and is capable of scaling, integration, and computation of statistical parameters. と、プログランでは無いできる。これは、影響を含むないのではない。と思いないできない。 #### **ANALYTICAL TECHNIQUES** By far the greatest advances in MSA in the last three years have been in analytical techniques. Techniques for other fields, notably communications theory, have been applied and extended. Prominent analytical methods mentioned in the literature include random decrement technique, data-dependent systems, dynamic data systems, cepstrum analysis, and adaptive noise cancellation. The use of data-dependent systems for diagnostic monitoring of tool holder vibration during turning operation has been discussed [12]. The method consists of fitting successively higher-order differential equations to data by the least squares method until a close fit is obtained. A technique called dynamic data systems, which uses statistical quality control theory, has been presented [14] and used to define normal and defective operations of an electric motor. The technique fits a difference equation in the form of an ARMA model to sampled operating data. Radhakrishnan and Wu [38] have used the same technique to monitor the drilling of a composite material. Hole quality was found to be a function of the frequency generated by the laminated fiber. Another application of MSA to the drilling operation [61] involved investigating time, frequency, and amplitude domain techniques and considering drill life, sound, and drift forces produced during drilling. Although frequency analysis of vibration signals was once the backbone of machine diagnosis, more attention has recently been focused on time-domain methods. The almost-periodic data from mechanisms has been analyzed by an extension of time-domain averaging [17]. The signal is rearranged by using points one period apart that are decomposed into a repetitive and a residual component; the repetitive component is again decomposed into a truly periodic and a random component. An approach for the classification of rotating machinery faults [19] considers data from stationary time series with mean value time functions; the probability of misclassification is computed. The interpretation of processes in rotating systems from vibration signals has been discussed as an inverse dynamics problem [20]. Analogies with other vibrating systems, the equations and solutions of which are known, were utilized. Daly and Smith [36] have showed methods for estimating harmonic input magnitudes and dynamic transmissibility from system output only. This is possible when amplitudes of input components remain constant even if their time scale changes with speed. Examples of gear-induced vibration in gear drives were given. The adaptive noise cancellation method to improve signal to noise ratio when a synchronizing signal is not available has been described [37, 63]. It is a non-coherent technique in which use is made of an auxiliary or reference input derived from one or more sensors located at points in the noise field where the signal is weak. This input is adaptively filtered and subtracted from a primary input containing both signal and noise. Cepstrum analysis is finding increasing use in MSA. A cepstrum is a spectrum of a logarithmic amplitude spectrum and can be used to detect periodic phenomena; e.g., harmonics, side bands, and effects of echoes. A discussion of the method and applications to signals containing echoes, speech analysis, and machine diagnostics are available [53]. Randall [41] has shown the advantages of cepstrum analysis in the identification of gear defects; advantages are better diagnostics and repeatability. Another paper [60] presents applications of synchronous signal averaging and cepstrum analysis to monitoring and diagnosing gearbox faults. The technique is discussed [65] and applied to extracting the properties of an acoustic transmission path and source characteristics. The limitations of the present methods when dispersive effects are present are pointed out. The random decrement technique of MSA evolved in the aerospace industry and is widely used to calculate modal damping and to detect mechanical failure; the technique has been generalized to a time-domain modal testing technique. One of the chief advantages of this method over frequency-domain methods is that modal parameters can be identified without knowledge of force inputs. The mathematical basis of the random decrement technique has been established [£6] and applied to the case of an offshore platform, Ibrahim [24] has shown that nonwhite stationary narrow-band random inputs yield modal parameters as accurately as those obtained by narrow-band white noise input when the random decrement technique is used. The use of discriminants to describe oscillatory data - e.g., shape and crost factors -- is not new. Cempel [32, 44] has extended this concept and presented an analytical formulation of properties of five discriminants to define vibration and noise data. Two of the discriminants are dimensionless and provide information on amplitude and frequency. The other three are dimensional and describe amplitude, spectral spread, and time fluctuations. The last discriminant is shown to detect instability of a rotating machine. Braun [31] has discussed various aspects of monitoring roller bearing vibrations including mechanisms of signal generation, signal modification by structural paths, instrumentation, and signal processing methods. A technique for model characterization and failure detection in vibrating structures has been presented [55]. Recursive on-line algorithms with stochastic models are used for noise sources. Stochastic estimation theory is used for failure detection; a nonlinear identification algorithm is used to estimate modal parameters. The absence of a significant peak at the fundamental rotational frequency as an indication of bearing race defect has been discussed [59]. Two causes are considered: an average and shift effect that causes a migration of the fundamental impact frequency and an intermodulation effect that translates the defect-related information. Mitchell [62] has presented alternate methods for computing the frequency response function that yield better estimates at resonance and reduce or eliminate biasing contamination. An application of MSA to determining imbalance in flexible rotors has been given [64]. Relationships between imbalance distribution and vibration modes are shown, analytical results are used to calculate the imbalance location from journal vibration. The determination of deviations in structural parameters from their nominal values by introducing a discrete function model of the system has been presented [6]. Two extensions of the shock spectrum technique for use in pulse signature analysis have been given [7]. One permits the detection of small perturbations on a large pulse shape; the other is the development of a slot transform that is shown to have advantages in the determination of magnitude transfer functions. An analytical method for predicting the vibration spectrum of ball bearings having misaligned and off-size rolling elements has been described [11]. #### **EXPERIMENTAL STUDIES** As might be expected, few works of a purely experimental nature are reported in the current literature; most involve some modeling and analysis. Papers in which the primary emphasis is on experimental methods and results are discussed below. Gandhi and Sharma [2] studied signatures of a sleeve bearing under boundary lubrication conditions during an investigation of response to friction and wear. Taylor [13] has presented methods of identifying defects in rolling bearings using signals below 2 kHz. Defects included are those in raceways, cage, rolling elements, excessive clearances, looseness, and lack of lubrication. Identification of combinations of defects is also discussed. A method using strain gauges to determine defects in rolling bearings [16] measures local stresses in stationary and rotating portions of bearings. The use of acoustic signatures to inspect railroad wheels and the effects on wheel vibrations of geometrical variations, wear, and stress has been discussed [34]. A novel idea of using an encoder-generated synchronizing signal of high accuracy (0.1°) to analyze rotating machinery vibration signals has been presented [42]. The method utilizes signals taken in short time windows from several locations on a machine. Ray [43] has discussed the problem of identifying rolling bearing defects under adverse conditions of low/high speeds, difficulty of access, and presence of other high-level vibration sources. Igarashi and Hamada [73] have studied the vibration and sound characteristics of rolling bearings with one introduced defect on the inner and on the outer race. They considered peak vibration pulses and FFT of the signals. A new method of detecting gear surface failure considers frequency fluctuation of gear sound [74]. Results of tests in which pitting and scoring defects were introduced were studied. Burn-in tests were run on electronic equipment to detect mortality-type defects prior to qualification and reliability tests. Burt and Condouris [26] have described the results of a study to evaluate the effectiveness of tests using swept-sine and random vibrations. They claimed superiority of this method over that of conventional burn-in testing at fixed nonresonant frequencies. #### CONCLUSION Mechanical signature analysis is an established technique for machine monitoring and diagnostics. Instrumentation and complete systems are now commercially available for this purpose. Significant advances in analytical techniques have appeared in the literature in the last three years. A book by Mitchell [76] details the practical aspects of machine monitoring including instrumentation, maintenance, and several case histories. An important new work by Bendat and Piersol [77] describes engineering applications of correlation and spectral analysis and should be read by anyone interested in signature analysis. Avenues for further work in this field are many and potentially fruitful. Areas for future research and development are the following: - applications in production process monitoring and quality control - system identification applications in noise and vibration abatement - use of signature analysis in combination with finite element modeling and experimental modal identification - improved techniques for detection of weak signals in presence of noise - development of discriminants to better identify the threshold of failure - development of systems that employ combination of methods -- e.g., time and frequency domain analyses -- to identify greater variety of problems #### REFERENCES - Volin, R.H., "Techniques and Applications of Mechanical Signature Analysis," Shock Vib. Dig., 11 (9), pp 17-33 (Sept 1979). - 2. Gandhi, O.P. and Sharma, J.P., "Signature Response for Friction and Wear," ASLE Trans., 22 (4), pp 365-368 (Oct 1979). - Sohre, J.S., "Improve Turbomachinery Reliability by Taking Corrective Procedures," Power, 124 (1), pp 67-69 (Jan 1980). - Reason, J., "On-Line Diagnostics Cut Engine Maintenance," Power, 124 (1), pp 27-30 (Jan 1980). - Piety, K.R. and Magette, T.E., "Statistical Techniques for Automating the Detection of Anamolous Performance in Rotating Machinery," CAM-I Intl. Spring Seminar, New Orleans, LA, Apr 9, 1979, CONF-790435-2. - Korabljev, S.S. and Fedotkin, E.I., "Identification and Diagnostics of Rotary Machines," Theory Machines Mech., Proc. 5th World Congr., Vol. II, July 8-13, 1979, Montreal, Canada, pp 1218-1221, ASME (1979). - Houghton, J.R., "Shock Spectrum Ratios Applied to the Comparison of Pulse Signatures," Mech. Des., Trans. ASME, 102 (1), pp 64-76 (Jan 1980). - 8. Bloch, H.P., "Predict Pump Problems with IFD," Hydrocarbon Processing, <u>60</u> (1), pp 87-94 (Jan 1980). - Nelson, W.E., "Maintenance Techniques for Turbomachinery," Hydrocarbon Processing, <u>60</u> (1), pp 71-78 (Jan 1980). - Xistris, G.D. and Boast, G.K., "On a Digital Approach to the Analysis of Mechanical System Response Signals," Theory Machines Mech., Proc. 5th World Cong., Vol. II, July 8-13, 1979, Montreal, Canada, pp 1222-1225, ASME (1979). - Meyer, L.D., Ahlgren, F.F., and Weichbrodt, B., "An Analytic Model for Ball Bearing Vibrations to Predict Vibration Response to Distributed Defects," J. Mech. Des., Trans. ASME, 102 (2), pp 205-210 (Apr 1980). - Pandit, S.M., Suzuki, H., and Kahng, C.H., "Application of Data Dependent Systems to Diagnostic Vibration Analysis," J. Mech. Des., Trans. ASME, 102 (2), pp 233-241 (Apr 1980). - Taylor, J.I., "Identification of Bearing Defects by Spectral Analysis," J. Mech. Des., Trans. ASME, 102 (2), pp 119-204 (Apr 1980). - Wu, S.M., Tobin, T.H., and Chow, M.C., "Signature Analysis for Mechanical Systems via Dynamic Data System (DDS) Monitoring Technique," J. Mech. Des., Trans. ASME, 102 (2), pp 217-221 (Apr 1980). これのことがある。 一般などのないない 一般ないのない 一般ない ないない 一般ない ないない ないない ないない かんしゅう しゅうしゅう しゅうしゅう - Xistris, G.D., Boast, G.K., and Sankar, T.S., "Time Domain Analysis of Machinery Vibration Signature Using Digital Techniques," J. Mech. Des., Trans. ASME, <u>102</u> (2), pp 211-216 (Apr 1980). - Berndt, W. and Kolitsch, J., "A New Method for the Determination of Ball Bearing Damage," VDI Z., 122 (12), pp 487-490 (June 1980). - Braun, S. and Seth, B., "Analysis of Repetitive Mechanism Signatures," J. Sound Vib., <u>70</u> (4), pp 513-526 (June 22, 1980). - Meyer, G., "Development and Analysis of Protection Systems Based on the Frequency Signals," VDI Z., 122 (11), p 43 (June 1980). - Gersch, W., Brotherton, T., and Braun, S., "Nearest Neighbor Time Series Analysis Classification of Faults in Rotating Machinery," Reliability, Stress Analysis and Failure Prevention Methods in Mechanical Design, Intl. Conf., Aug 18-21, 1980, San Francisco, CA, W.D. Milestone, ed., ASME, pp 51-58 (1980). - 20. Morton, P.G. and Johnson, J.H., 'The Use and Interpretation of Vibration Measurements,' Tribology Intl., 13 (5), pp 225-230 (Oct 1980). - Taylor, J.I., "Evaluation of Machinery Condition by Spectral Analysis," Proc. Machinery Vibration Monitoring Anal. Seminar, Vib. Inst., New Orleans, L/2, pp 1-15 (Apr 8-10, 1980). - Frarey, J.L., "Concepts and Use of the Real Time Analyzer," Proc. Machinery Vibration Monitoring Anal. Seminar, New Orleans, LA, pp 127-137 (Apr 8-10, 1980). - Erskine, J.B., Phipps, M.A., and Hensman, N., "Signature Analysis of Rotating Machinery in the Chemical Industry," Proc. Machinery Vibration Monitoring Anal. Seminar, New Orleans, LA, pp 35-41 (Apr 8-10, 1980). - Ibrahim, S.R., "Limitations on Random Input Forces in Randomdec Computation for Modal Identification," Shock Vib. Bull., U.S. Naval Res. Lab., Proc. No. 50, Pt. 3, pp 99-112 (Sept 1980). - Mitchell, J.S., "A Review of Machinery Condition Monitoring," Proc. Machinery Vibration Monitoring Anal. Seminar, New Orleans, LA, pp 151-156 (Apr 8-10, 1980). - Burt, J.W. and Condouris, M.A., "Improving Vibration Techniques for Detecting Workmanship Defects in Electronic Equipment," Shock Vib. Bull., U.S. Naval Res. Lab., Proc. No. 50, Pt. 2, pp 173-189 (Sept 1980). - Bently, D.E., "Polar Plotting Applications for Rotating Machinery," Proc. Machinery Vibrations IV Seminar, Vib. Inst., Cherry Hill, NJ (Nov 11-13, 1980). - Halloran, J.D., "Rotating Machinery Vibration Analysis Using Polar Diagrams," Proc. Machinery Vibration Monitoring Anal. Seminar, Vib. Inst., New Orleans, LA, pp 55-71 (Apr 8-10, 1980). - Hasselfeld, D.E., "Induction Motor Bearing Support Resonance -- A Case History," Proc. Machinery Vibration Monitoring Anal. Seminar, Vib. Inst., New Orleans, LA, pp 93-97 (Apr 8-10, 1980). - Libby, M. and Lundgaard, B., "Vibration Analysis Applied to Aircraft Carrier Machinery Fault Diagnosis," Proc. Machinery Vibration Monitoring Anal. Seminar, New Orleans, LA, pp 85-91 (Apr 8-10, 1980). - 31. Braun, S.G., "The Signature Analysis of Sonic Bearing Vibrations," IEEE Trans., Sonics Ultrasonics, SU-27 (6), pp 317-328 (Nov 1980). - 32. Cempel, C., "Diagnostically Oriented Measures of Vibroacoustical Processes," J. Sound Vib., 73 (4), pp 547-561 (Dec 22, 1980). - 33. Halloran, J.D. and Mruk, G.K., "Microprocessors and Remote Machinery Evaluation," Hydrocarbon Processing, <u>60</u> (1), pp 105-107 (Jan 1981). - 34. Dousis, D. and Finch, R.D., "Operational Parameters in Acoustic Signature Inspection of Railroad Wheels," Rept. No. DOT-TSC-FRA-80-9, FRA/ORD-80/21 (Apr 1980). - Goldman, S., "Solving Pump Problems Using Vibration Spectrum Analysis," Proc. Machinery Vibration Monitoring Anal. Seminar, New Orleans, LA, pp 27-33 (Apr 7-9, 1981). - Daly, K.J. and Smith, J.D., "Estimation of Excitation and Transmissibility from Output Measurements, with Application to Gear Drives," J. Sound Vib., <u>75</u> (1), pp 37-50 (Mar 8, 1981). - Chaturvedi, G.K. and Thomas, D.W., "Adaptive Noise Cancelling and Condition Monitoring," J. Sound Vib., <u>76</u> (3), pp 391-405 (July 8, 1981). - Radhakrishnan, T. and Wu, S.M., "On-Line Hole Quality Evaluation for Drilling Composite Material Using Dynamic Data," J. Engr. Indus., Trans. ASME, 103 (1), pp 119-125 (Feb 1981). - Eshleman, R.L., "The Role of Sum and Difference Frequencies in Rotating Machinery Fault Diagnosis," Vibration Rotating Machinery, Proc. 2nd Intl. Conf., Churchill College, Cambridge, UK, pp 145-149 (Sept 1-4, 1980). - Taylor, J.I., "Fault Diagnosis of Gears Using Spectrum Analysis," Vibration Rotating Machinery, Proc. 2nd Intl. Conf., Churchill College, Cambridge, UK, pp 163-168 (Sept 1-4, 1980). - Randall, R.B., "Advances in the Application of Cepstrum Analysis to Gearbox Diagnosis," Vibration Rotating Machinery, Proc. 2nd Intl. Conf., Churchill College, Cambridge, UK, pp 169-174 (Sept 1-4, 1980). - Hauser, G., "A New Analysis Procedure for Noise and Vibration Diagnosis of Rotating Machinery," Vibration Rotating Machinery, Proc. 2nd Intl. Conf., Churchill College, Cambridge, UK, pp 381-387 (Sept 1-4, 1980). - 43. Ray, A.G., "Monitoring Rolling Contact Bearings under Adverse Conditions," Vibration Rotating Machinery, Proc. 2nd Intl. Conf., Churchill Collage, Cambridge, UK, pp 187-194 (Sept 1-4, 1980). - 44. Cempel, C., "Amplitude and Spectral Discriminants of Vibroacoustical Processes for Diag- - nostic Purposes," Strojnicky Casopis, <u>32</u>, pp 171-179 (1981). - Muller, G., "Analyzing Turbomachinery Problems: Sometimes a Signature is Not Enough," InTech, 28 (10), pp 53-56 (Oct 1981). - 46. Taylor, J.I., "v pration Monitoring and Analysis," Plant Engineering, 35 (21), pp 127-130 (Oct 15, 1981). - 47. Mordfin, L., Payne, B.F., and Edelman, S., "Enhanced Reliability and Reproducibility of Measurements of Machinery Vibrations," NBS Final Rept. (Sept 1980) PB81-220410. - 48. Rippel, H.C., "Failure-Cause Analysis: Turbine Bearing Systems. Phase I. Development of Data Collection Plan," Franklin Res. Ctr., Philadelphia, PA (Apr 1981). - 49. Bosmans, R.F., "Detection and Early Diagnosis of Potential Failures of Rotating Machinery," ASME Paper No. 81-JPGC-Pwr-28 (1981). - 50. Baur, P.S., "Monitor Your Turbine/Generator to Assure Operational Integrity," Power, <u>25</u> (5), pp 39-46 (May 1981). - Unger, E., "Methoden, Ergebnisse und Probleme der Vibroakustischen Maschinendiagnose," Maschinenbautechnik, <u>30</u> (9), pp 403-407 (1981). - 52. Jackson, C., "Guidelines for Improving Rotating Equipment Reliability," Hydrocarbon Processing, 60 (9), pp 223-228 (Sept 1981). - 53. Randall, R.B. and Hee, J., "Cepstrum Analysis," Bruel & Kjaer Tech, Rev. No. 3 (1981). - 54. McLain, D.A., "New Instrumentation Techniques Accurately Predict Bearing Life," Energy Processing Canada, pp 25-30 (Nov/Dec 1981). - Azevedo, S.G., Candy, J.V., and Lager, D.L., "On-Line Failure Detection of Vibrating Structures," ASME Conf. Mech. Vib. Noise, Hartford, CT (Sept 20, 1981), Lawrence Livermore Natl. Lab. Rept. No. CONF-810918-1, UCRL-86099. - 56. Pekrul, P.J. and Pennise, S., "Vibration Signature Analysis and Acoustic-Emission Monitoring - at Brayton Point. Final report," Rept. No. EPRI-CS-1938 (July 1981), DE81904232. - 57. King, J.O. and Goodman, N., "Preventive Maintenance Keeps Compressor Engines at Peak Efficiency," Oil Gas J., 80 (15), pp 111-114 (Apr 12, 1982). - 58. Braun, S., "Mechanical Signature Analysis (MSA) at the 8th Vibration Conference," J. Mech. Des., Trans. ASME, 104 (2), pp 257-258 (Apr 1982). - Osuagwu, C.C. and Thomas, D.W., "Effect of Inter-Modulation and Quasi-Periodic Instability in the Diagnosis of Rolling Element Incipient Defect," J. Mech. Des., Trans. ASME, <u>104</u> (2), pp 296-302 (Apr 1982). - Randall, R.B., "A New Method of Modeling Gear Faults," J. Mech. Des., Trans. ASME, <u>104</u> (2), pp 259-267 (Apr 1982). - Braun, S., Lenz, E., and Wu, C.L., "Signature Analysis Applied to Drilling," J. Mech. Des., Trans. ASME, 104 (2), pp 268-276 (Apr 1982). - Mitchell, L.D., "Improved Methods for Fast Fourier Transform Calculation of the Frequency Response Function," J. Mech. Des., Trans. ASME, 104 (2), pp 277-279 (Apr 1982). - Chaturvedi, G.K. and Thomas, D.W., "Bearing Fault Detection Using Adaptive Noise Cancelling," J. Mech. Des., Trans. ASME, <u>104</u> (2), pp 280-289 (Apr 1982). - 64. Shiohata, K., Fujisawa, F., and Sato, K., "Method of Determining Locations of Unbalances in Rotating Machines," J. Mech. Des., Trans. ASME, 104 (2), pp 290-295 (Apr 1982). - Lyon, R.H. and Ordubadi, A., "Use of Cepstra in Acoustical Signal Analysis," J. Mech. Des., Trans. ASME, <u>104</u> (2), pp 303-306 (Apr 1982). - 66. Vandiver, J.K., Dunwoody, A.B., Campbell, R.B., and Cook, M.F., "A Mathematical Basis for the Random Decrement Vibration Signature Analysis Technique," J. Mech. Des., Trans. ASME, 104 (2), pp 307-313 (Apr 1982). 我們 我我們不好不完全 经存货的的过去式和过去分词 - 67. Inoue, R. and King, R.K., "Hydraulic System Acoustical Diagnostics," Oklahoma State Univ. Rept. (Dec 1980), AD-A108 698. - 68. Dodd, V.R. and East, J.R., "Vibration Surveillance Now Covers Minor Equipment," Oil Gas J., 80 (2), pp 63-70, 75 (Jan 11, 1982). - Eshleman, R.L., "Machinery Vibration Evaluation Techniques," Shock Vib. Bull., U.S. Naval Res. Lab., Proc. 52, Pt. 1, pp 67-79 (May 1982). - Bently, D.E., "Shaft Vibration Measurement Analysis Techniques," Shock Vib. Bull., U.S. Naval Res. Lab., Proc. 52, Pt. 1, pp 81-93 (May 1982). - West, W.M., "Single Point Random Modal Test Technology Application to Failure Detection," Shock Vib. Bull., U.S. Naval Res. Lab., Proc. 52, Pt. 4, pp 25-31 (May 1982). - Richman, R.H. and Rettig, T., "Nondestructive Evaluation of Turbines and Generators: 1980 Conference and Workshop," Aptech Engrg. Serv., Inc., Palo Alto, CA, Rept. No. EPRI-WS-80-133, CONF-8010213 (July 1981). - Igarashi, T. and Hamada, H., "Studies on the Vibration and Sound of Defective Rolling Bearings," Bull. JSME, <u>25</u> (204), pp 994-1001 (June 1982). - Umezawa, K., Handa, K., Kawarada, H., and Kamei, H., "On a Prognosis of Gear Surface Failure Using Sound of Gears," Bull. JSME, <u>25</u> (203), pp 834-841 (May 1982). - 75. Schwerdlin, H. and Eshleman, R.L., "Measuring Vibrations for Coupling Evaluation," Plant Engrg., 36, pp 111-114 (June 10, 1982). - Mitchell, J.S., <u>Machinery Analysis and Monitoring</u>, PennWell Books, Tulsa, OK (1981). - 77. Bendat, J.S. and Piersol, A.G., Engineering Applications of Correlation and Spectral Analysis, John Wiley, NY (1980). ## STATIC AND DYNAMIC BEHAVIOR OF MECHANICAL COMPONENTS ASSOCIATED WITH ELECTRICAL TRANSMISSION LINES P.G.S. Trainor\*, N. Popplewell\*\*, A.H. Shah\*\*\*, and R.B. Pinkney\*\*\*\* Abstract. This article describes the behavior of transmission towers, insulator strings, conductors, and foundations as determined from theoretical analyses, model testing, and full-scale tests. Line vibration is also briefly reviewed. An overhead transmission line is an interactive system consisting of cables, insulator strings, towers, and foundations. The forces acting on each component, therefore, depend not only upon climatic loads but also upon the configuration and mechanical properties of the system as a whole. Transmission towers, for example, must be designed for static and dynamic conductor loads that can act in different combinations of the vertical, transverse, and longitudinal (i.e., along-the-line) directions. Recommendations for representative load combinations are given in codes and tower design guides [1-8]. Such recommendations are based mainly on the performance of conventional lines that use self-supporting towers. Line loads, however, are increasing rapidly in magnitude due to the need for larger conductors and conductor bundles in high-density power corridors. Consequently, heavier-duty supporting structures are needed that are both economical and aesthetically acceptable. The cross-rope suspension structure [9, 10] is one example of a new design. This tower is similar to a guyed portal structure, but the crossarm is made of flexible wire ropes; this difference complicates the determination of critical design loads. Indeed, the design of any heavy duty support structure, whether it is novel [11-14] or even an enlarged conventional tower, is not completely covered in present codes. In cases in which codes are not applicable, an appropriate mix of theory with both model and full-scale experimental tests is needed to determine static and dynamic behaviors and the ultimate loads associated with potential failure mechanisms. Analysis is relatively cheap, but a thorough understanding of the physical behavior is required before valid assumptions can be made. Full-scale testing, on the other hand, is difficult, time consuming, and costly. Consequently, model testing is often preferred because tests can be repeated and controlled comparatively easily, and key parameters can be varied more simply. Dynamic modeling of a transmission line system has been discussed in detail [15] with particular reference to the simulation of a broken wire condition. A convenient length reduction $\lambda_L$ of the conductor span is about 1/30th, but conductor mass is deficient by a factor of $\lambda_L$ for the easiest simulation by a uniform metal wire. This problem has been overcome by using either chain links or beaded chains or by attaching additional lumped masses. It should be noted, however, that beaded chains were recently discarded [16] because their likely vibro-impact actions produced artificially high damping. A more general problem with small-scale models is that meaningful destructive tests or tests beyond the elastic limit are seldom possible, even in static cases, because behavior of both materials and joints must be the same. The important climatic forces acting on a transmission line system are wind and ice. The nature of wind fluctuations has been well researched; local records of maximum wind speeds are often available at airports or weather stations. Ice buildup on conductors, on the other hand, is much more difficult to estimate because appropriate records are rare. Large buildups can occur rapidly due to freezing rain or slowly over days or even weeks due to in-cloud icing at moderate altitudes [17]. In the latter situation, the rate of accretion increases substantially with greater wind speed; there is also the possibility of very high ice <sup>\*</sup>Research Engineer in Civil Engineering, \*\*Professor of Mechanical Engineering, \*\*\*Professor of Civil Engineering, \*\*\*\* Associate Professor of Civil Engineering, all at University of Manitoba, Winnipeg, Canada loads occurring simultaneously with fairly high wind speeds [18]. The behavior of components and the determination of component loadings is examined in six sections in this paper: - longitudinal loads - cascade prevention - line vibration and its effects on other components - static analysis and testing - dynamic analysis and testing - foundation behavior Static and dynamic longitudinal loads arise from unbalanced tensions in conductors. Determination of the magnitude of such loads is very important because inadequate longitudinal tower strength can lead to sequential failures of successive towers; this phenomenon is known as a cascade. Line vibrations are treated briefly because they can be detrimental to insulators and towers. Although static analyses are becoming increasingly refined, a detailed dynamic study is sometimes required, particularly for the wind loading of novel or very large structures. Furthermore, foundations must be designed for high overturning moments and horizontal forces that are applied cyclically. #### LONGITUDINAL LOADS There is no longitudinal force on a tower under balanced loading because conductor tensions are equal on both sides of a suspension insulator clamp. A tension imbalance, however, results in a swing of the insulator strings and a longitudinal force component on the tower. Examples of conditions that create static longitudinal loads on a tower include unevenly distributed ice on conductors, differential temperature effects, changes in line direction and, in the extreme, a broken wire condition. Furthermore, before a static residual load is established, a broken wire creates a considerable transient or dynamic impact load, as does sudden ice shedding from one conductor span. A separate dynamic analysis is required in these two cases. The calculation of static longitudinal loads is complicated by the following: interactions over several adjacent spans, nonlinearities caused by insulator swings and changes in conductor sags, and the deflections of such flexible structures as poles or guyed towers. It is possible, however, to calculate the distribution of static imbalance over a section of line by using an iterative approach [19-21]. Example computations of residual static loads from a broken wire have been given for several different types of structure. It has been shown that the restraint offered by the overhead ground wire has the beneficial effect of considerably reducing the groundline bending moment for flexible structures. Accurate evaluation of longitudinal dynamic loads is difficult. Empirical charts for estimating the peak transient load due to a broken conductor were provided by Govers [22] from model and full-scale tests. He showed that the ratio of peak-to-initial conductor tension increased as a function of the span-to-insulator length and the span-to-conductor sag ratios. More recent full-scale tests [23], however, showed that two peaks occur in the dynamic load following a conductor breakage. The first peak is caused by the transfer of strain energy released by the horizontal recoil of the conductor. The second is due to the transfer of gravitational energy released as the conductor in the intact span falls to its new sag position. It was concluded after a study of the test data [23] that the two effects cannot be entirely uncoupled. Furthermore, it was demonstrated that the peak impact loads on the crossarm of a tower could be determined with less than 30% error by using a semi-theoretical formula based on total available energy. Similar accuracy was achieved by [16] on a 1/30th scale simulation. One purpose of this study was to investigate the effect of the dynamic response of the tower on the ground-line bending moment. Towers were modeled as arbitrary pole structures the fundamental longitudinal frequencies of which could be adjusted by the removal or addition of mass and stiffness. It was found experimentally that the peak ground-line moment varied from about 70% to 150% of the bending moment calculated by assuming a static transfer of the peak crossarm load. Response spectra were developed to relate the structural amplification to the fundamental natural frequency of the tower. These charts are potentially useful for designing structures against a complete collapse although correlation of model and full-scale tests is still required. Results [16, 22, 23] show that crossarm impact loads can be from 2.5 to approximately 5 times higher than static residual loads. Thus, because the probability of impact loads is generally low, it is possibly cheaper to repair collapsed or damaged towers than to design every structure to withstand dynamic impacts. Precautions must be taken, however, to assure that an initial failure does not expand into a major cascade of tower collapses. #### CASCADE PREVENTION A cascade is a progressive failure that propagates from one span to the next. Several very long cascades have occurred, most notably in Denmark (50 km of a 150-kV line) [24] and in Wisconsin (125 km of a 345-kV line) [25]. Towers have usually failed as a result of inadequate longitudinal strength, although vertical and transverse ascades have also occurred. In general, failure of any along-line component leads to a release of the gravitational and strain energy of the conductor; the result is an impact load at the attachment points of the conductor, followed by a residual static load if the tower survives. As discussed previously, the severest impact is caused by a broken wire or phase. Although this impact can initiate a failure of several adjacent towers, three factors can alleviate impact loads as the failure propagates. They are: - energy dissipation at a previous tower - a graduated release of energy in the conductor span; the structural deflection and insulator swing at the previous tower will transfer some of the energy of the conductor along the line before the collapse of the previous tower releases the remaining energy - frictional drag of conductors along the ground The relative importance of these factors is unclear; research is necessary to establish the efficiency of a flexible guyed tower as opposed to a fairly rigid self-supporting design. Three methods of containing failures have been identified by White [26]: placement of strong towers intermittently along the line - use of structural fuses to limit longitudinal forces on towers - extra longitudinal and torsional strength at every suspension tower The third method is the most common design procedure according to White, However, specification of the longitudinal strength required to prevent a cascade is somewhat arbitrary. Most utilities specify the residual static tension that arises from a broken wire under normal tension conditions (i.e., no climatic loading). The success of this practice, which assumes that any dynamic effect dies after the failure of only a few towers, is undoubtedly helped by the overstrength of some towers due to statistical variation and by the slippage of conductors through suspension clamps. Sliding clamps are a good example of a structural fuse -- the second method above -- but regular clamps are unreliable and regular steel-reinforced aluminum (acsr) conductors are easily chafed. Special clamps with a controlled-limit sliding load have been used extensively in France, however, along with strong aluminum alloy conductors [27, 28]. An assessment of the most economical anti-cascade method is not possible without determining the likely repair costs in the life time of the line. Peyrot and Naik [29] have set out a cost-benefit framework that can be used qualitatively to weigh the alternatives; it is based on the relative probabilities of failure. It was suggested that such analyses highlight the benefits of using anti-cascade towers; they are unpopular at present because of a higher initial cost. The decision to use anti-cascade towers at 5-km intervals on 735-kV lines in Quebec followed cascades triggered by heavy icing [30]. The suspension towers, already loaded within a few percent of capacity, were incapable of withstanding the extra longitudinal load from a failure of highly tensioned conductors. Any condition that generally reduces the reserve longitudinal strength of suspension towers or increases conductor tension renders a line more susceptible to a cascade, and anti-cascade towers are recommended when such conditions can occur. Employment of intermittent anti-cascade towers gives greater flexibility in designing sections of line between strong towers. The relative strengths of line components (suspension towers, angle towers, insulators, conductors, and foundations) can be adjusted so that failure at the climatic limit load produces the least dynamic effect [31]. Such an approach, which has been used by Hydro Quebec, allows a better estimation of repair costs, a more meaningful cost-benefit analysis, and a generally more economical design. ## LINE VIBRATION AND ITS EFFECT ON OTHER COMPONENTS The subject of line vibration has received much attention worldwide and is itself suitable for a review article. Only a brief introduction and a listing of previous review articles is given below. Stress is placed on the ways in which line vibrations can affect the design of components other than the conductors themselves. Several articles that review line vibration have appeared [32-36]. The general field -- including galloping, aeolian vibration, and sub-span oscillation has been summarized [32]. Beards [33] concentrated on the control of aeolian vibration; others [34, 35] focused on conductor galloping. Johns [36] reviewed wind loading of general structures and included references on the vibration of conductors and the wind excitation of transmission towers. Several other review articles relate to aeolian vibration. Fleishmann and Sallet [37, 38] covered the unsteady flow phenomena related to vortex shedding. A comprehensive paper by Tsui [39] summarizes modern advances in nonlinear mechanics and fluid dynamics as they are applied to aeolian vibrations. A practical method for calculating the peak response of a conductor was included. Galloping motions are low-frequency, vertical, or horizontal oscillations. They correspond to mode shapes having from 1 to 4 loops per conductor span and natural frequencies from 0.1 to 0.8 Hz. The term conductor galloping generally refers to the self-excitation of these modes to very large amplitudes; self-excitation is usually initiated by an icing storm. Aeolian vibrations, conversely, are high-frequency vertical oscillations with mode shapes of 50 to 250 loops per span. They are caused by vortex shedding and have a frequency range of about 10 to 50 Hz. The upper frequency limit depends upon air turbulence and conductor tension and can be greater for long spans over water or very flat terrain. The third major type of vibration, sub-span oscillation, is a wake-induced phenomenon affecting the opposite pairs of a multi-conductor bundle. Single of double vibration loops occur in the spacer sub-spans at frequencies of about 1 to 3 Hz. Both aeolian vibrations and galloping have an indirect influence on tower dimensions. Phase-to-phase clearances are determined by galloping amplitudes [40]. In addition, conductor tensions are usually set at a limit of 20% of ultimate tensile strength (UTS) to control the aeolian response. This limit determines the magnitude of sag, which, in turn, dictates tower height [41]. Thus, successful efforts to construct more economical and more compact transmission lines depend somewhat on improving the control of line vibrations [42, 43]. Most gailoping does not cause tower damage. Measurements during galloping on a line with self-supporting lattice towers [44] have shown that the insulator tension fluctuates from about 60% to about 160% of the tension under no-wind conditions. Such loads can be considered as being transferred statically to the towers because the fundamental frequency of a lattice tower ranges from about 1.5 Hz to 4 Hz; i.e., substantially above the range of conductor galloping frequencies. Qualitative investigations by White [45], however, have shown that certain structural arrangements can nevertheless convert galloping motions into destructive forces that cause tower collapse. A running-angle suspension insulator assembly connected to any type of tower and a dead-end insulator assembly connected to a very flexible tower are examples of hazardous arrangements. The potential for any new type of insulator assembly to be affected adversely by galloping requires investigation by model or full-scale tests [9]. ○日のの資金を含めてきるとは、自身であることできますがあるがあるが、2章 からなるには、1章 で Aeolian vibrations can also occasionally lead to structural damage. For example, they have caused the crossarms of towers on several lines in Saskatchewan to suffer severe fatigue damage, According to Mitchell [46], individual crossarm members were observed to vibrate violently although the conductors were fitted with Stockbridge dampers and the bending amplitude of the conductors appeared to be within acceptable limits. In this case the problem was resolved only by the addition of bracing, which raised the resonant frequencies of individual crossarm members above the frequency range for aeolian vibration. #### STATIC ANALYSIS AND TESTING Computers are now readily available as an aid to the design of transmission lines [47]. Linear finite element programs are commonly used to compute member stresses in self-supporting lattice towers. Such programs can be modified to accommodate guyed towers by taking advantage of the observation that only the guy wires behave nonlinearly [48, 49]. Although beam elements provide the best representation of a lattice tower, space truss elements are more commonly employed because less computer storage is required. However, no rotational stiffness occurs at any of the nodes if all the members are idealized as truss elements: instabilities occur particularly at the interior nodes of planar truss panels. Although these nodes can be stabilized by adding a small lateral spring or stiffness coefficient, the procedure can lead to inaccuracies, especially in dynamic analyses. The process is also tedious, so that many specialized transmission tower programs automatically stabilize the stiffness matrix [50, 51]. Furthermore, the most sophisticated programs consider the post-buckling behavior of individual members and sometimes feature automatic member sizing by means of an iterative analysis. Several authors have advocated computer-oriented methods for optimizing the weight of latticed transmission towers. The substructuring technique permits an economical reanalysis after corrective design changes [52]. Trial changes in shape allow a semimanual optimization of weight. Crossbracing can be optimized by means of dynamic programming [53]. These latter methods can be extended, in principle, to alter the shape of a tower automatically to give minimum overall weight [54]. Limit or collapse load analysis also has the potential for optimizing overall weight [55, 56]. A small weight saving can be made overall for a fixed tower shape, as compared to an elastic design optimization, although the members most important in resisting collapse, such as the main legs, might be increased in size. Most lattice-tower members are presently sized on the basis of allowable stress. Drawbacks, however, are that high factors of safety are applied unrealistically to the dead-load forces; such factors are applied essentially against first yield and not collapse. An ultimate strength design [31, 57] is more reliable because the underlying strategy is to weigh the statistical variations in component strengths against the statistical variations in the ultimate loads. Consequently, the probability of failure is acceptably small during the life of a line. In general, the relative reliability of components can and should be different; the failure of a cheap component such as an insulator should not be allowed to damage an expensive component like a tower. Furthermore, only conductors have to be designed for a serviceability condition. This is because a tension of greater than about 75% of UTS will lead to large and permanent sag increases. At present a rigorous ultimate design method is difficult to implement on a transmission line. Problems arise because the shapes of the probability density functions for different ultimate loads and ultimate component strengths are rarely known accurately. An alternate method of determining reliability is the safety index approach, which has been explained in a recent article [58]. Ultimate design methods in general [59], and the safety index method in particular, are especially useful for checking the ability of towers and foundations to withstand the extra loads from reconductoring. Any new tower design is usually checked by full-scale static load tests. A comparison between predicted and actual performance of towers tested at the national testing station in England highlighted numerous examples of under a sign [60]. In particular, it was found that not enough attention had been given to the eccentricity and end restraint of angle members in compression. It appears that the major difficulty in improving tower design is not a lack of analytical tools but rather a lack of understanding of the nonlinearities caused by joints and compression members. #### DYNAMIC ANALYSIS AND TESTING Dynamic loads on transmission lines can be transient, harmonic, or randomly fluctuating. The principal transient and harmonic loads have been discussed above in the sections on longitudinal loading and line vibration, respectively. The peak dynamic response of a transmission line to fluctuating transverse wind loads, on the other hand, can be obtained from a probabilistic analysis. Several authors have presented methods for calculating the peak support reactions of a conductor [61-63]. These methods have been extended [64, 65] to include the direct effect of wind on towers, so that the peak groundline bending moment could be evaluated. Furthermore, it can be inferred [65] that the fluctuating wind pressures on both conductors and towers are transferred essentially statically to the ground lines of self-supporting towers carrying typical lines. Consequently, the largest errors in corresponding response calculations likely arise from an inaccurate evaluation of wind pressures. This difficulty occurs because drag coefficients vary significantly with velocity at Reynolds numbers typical of design wind speeds. Although resonance terms of the conductor and tower can be included in the calculation of gust factors, they are usually so small that an accurate knowledge of the structural dynamic properties is not required. Conversely, such special structures as extremely tall, self-supporting towers can exhibit a significant resonant response to the fluctuating load of wind [66]. This phenomenon occurs because such towers have especially low fundamental natural frequencies; they are much closer to the central band of the fluctuating spectrum of the wind typically 0.08 to 0.24 Hz [67]. In general, therefore, a dynamic study of such structures should include model tests [68] or a finite element analysis [69] so that the response of higher modes is properly included. Even so, the results are liable to be inaccurate for the following reasons. - the mean square resonant displacement will be approximately proportional to the inverse of the structural damping ratio, which cannot be estimated reliably without full-scale tests. - the variation in the spectrum of the wind at different elevations of a tall tower and the cross correlation between wind pressures cannot be accurately known without measurements at a particular locale. A rare comparison of the responses of a tower as measured during a storm and as computed from corresponding wind records has been given [70]. The three lowest frequency modes of a space truss model were excited in the computations by the input of wind records measured at 14 different elevations. Displacements differed significantly even though experimentally measured values of structural damping were available. It was conjectured that this difference was due to inaccuracies in the assumed drag coefficients. Further correlations between measurement and calculation are obviously required. Very little corroborating data are available in the open literature concerning the structural damping of towers. A bolted tower has the potential in theory to dissipate energy through joint slippage, but, in practice, slippage need not occur before structural damage. Data from free vibration tests on latticed towers [23, 70-73] suggest that measured damping ratios vary from about 0.3% to 7% of critical. It appears that the damping ratios for the fundamental transverse and longitudinal bending modes of an isolated latticed tower can be as low as 0.3% regardless of whether the tower has bolted or riveted connections. However, the restraint of conductors, particularly overhead wires, can double or triple the measured damping ratio for the fundamental longitudinal mode although the transverse mode may be affected much less. Full-scale dynamic tests on modified 500-kV towers strung with 1200-kV eight-conductor bundles have been reported [71-73]. A pretest, finite element frame analysis predicted three tower modes between 2 and 3 Hz. The first and third modes largely involved coupled longitudinal bending/torsional motions; the second mode was the fundamental transverse bending mode. All three modes were confirmed by twang tests -- that is, sudden release from an initial displacement -- but the measured natural frequencies were approximately 10% lower than predicted. This difference was attributed to the analytically neglected mass of the insulator strings and conductors. The eight-conductor bundle itself was excited similarly in subsequent tests. A significant interaction occurred unexpectedly between the conductor bundle and the crossarm of the tower. It had been anticipated that the insulator string would isolate these two components, but the transmissibility was particularly high around the resonant frequencies of the tower. This and the detection of a resonance in the V-string insulator at 1.5 Hz show that a better understanding of insulator strings is needed, Composite long-rod insulators are expected to become increasingly popular because they are light-weight and have a core with high tensile and compressive strengths and resistant to cyclic loads [74]. Initial problems with manufacturing defects and electrochemical attack [75-77] are being overcome, so that such insulators are likely to be used in structural arrangements [13]. However, recent tests have shown that, even when such insulators are used in conventional tensile arrangements, high transient bending stresses can occur in the long-rod core from conductor impacts. Such stresses should be considered in design [78]. #### FOUNDATION BEHAVIOR The foundations of a transmission tower must be designed for the normal foundation requirements of limited settlement and adequate bearing capacity. Additional and crucial requirements are to provide resistance to significant overturning moments and horizontal shear forces. An analysis of foundation strength is complex because typical tower foundations act within the top 10 meters of soil where there is usually a high variation in the shear strength of soil. The groundwater table also fluctuates within this zone, so that the static uplift capacity of a foundation can show a seasonal variation of 5 to 1 [79]. Such variations can be predicted, however, by assuming different water pressures and by using the soil mechanics principle of effective stress. A state-of-the-art review of methods for predicting the lateral resistance of single piles has recently been presented [80]. Various predictions were compared with results from full-scale tests on large diameter piles (piers) of the type used to support pole-like towers. The authors suggested that a semi-empirical computer analysis could provide good forecasts of both the nonlinear load-deflection curve and the ultimate strength. The method cannot be accurate, however, without in situ measurement of the lateral compression modulus of the soil. The ultimate capacity of anchor plates, used typically for guyed towers, has been examined by a study committee of CIGRE [81]. Strength formulas were developed from full-scale tests; three kinematic patterns of failure could occur depending upon soil depth, soil type, and size of the anchor plate. The type of failure can be predicted only by determining which formula gives the lowest capacity although results agree with experiments to within 15%. Static analysis and testing of foundations can be insufficient by themselves because a tower can overturn after a cyclic degradation of the foundation. Non-belled pile foundations seem to be particularly susceptible to this phenomenon. For example, several four-pile foundations are reported to have failed as a result of clean ejection of piles on the uplift side [82]. Based on meteorological information, the failure load was only about 35% of the static uplift resistance, Full-scale dynamic tests [67] showed that a foundation can withstand a high transient load without damage. Long-term fluctuating loads, however, could cause a gradual uplift of foundations even though the peak load was significantly below the ultimate static resistance. Tests [83] on model foundations showed that tension-compression cycles are much more damaging than tension-tension cycles. A parametric study of soil-structure interactions for tower structures on elastic foundations has been reported [84]. It was shown theoretically that the relative stiffnesses of the tower body and the foundation can affect the mode shapes and natural frequencies of the tower. In practice, a foundation is generally much stiffer than a transmission tower, so that foundations on soils as different as rock and a noncohesive sand have given similar dynamic responses [66]. Therefore, it appears that, unless the foundation undergoes some kind of degradation such as liquefaction during an earthquake, the common assumption of a rigid tower base is probably justified. #### **CONCLUSIONS** Static longitudinal loads can be calculated iteratively by taking into account the interactions among towers, insulators, and conductors. Peak dynamic loads can be estimated to within 30% for conventional lines. There is a controversy, however, over the longitudinal strength needed for suspension towers and the optimum strategy for preventing cascades. Line vibrations can damage insulator strings or tower crossarms and can even cause collapse of a tower. Static tower designs are being refined through computer analyses and ultimate design methods, but the behavior of joints and compression members has not yet been researched adequately. A dynamic analysis will be required for tall or heavy-duty towers although some uncertainty exists regarding structural damping. Furthermore, recent testing suggests that the insulator string does not isolate the conductor and tower; thus, their interactions cannot be ignored. The resistance of foundations to overturning moments can be determined by static analysis and full-scale tests. Fluctuating wind loads, however, can cause a progressive foundation failure. #### **ACKNOWLEDGEMENT** The authors gratefully acknowledge the financial support of the Manitoba HVDC Research Centre and the Faculty of Engineering of The University of Manitoba. They appreciate particularly the encouragement given by J.A. Winterbourne, Executive Director of the Manitoba HVDC Research Centre, and C. Wong of Manitoba Hydro. Thanks are also extended to the staff of the Engineering Library, in particular to Pat Routledge the Reference Librarian and Yong-Ja Cho the Head Librarian. #### REFERENCES - Arena, J.R., Chairman, <u>Guide for Design of Steel Transmission Towers</u>, ASCE Manual <u>52</u>, New York, NY (1971). - ASCE Committee on Analysis and Design of Structures, "The Electrical Transmission Line and Tower Design Guide," Report of the Task Committee on Tower Design, ASCE J. Struc. Div., 93 (4), pp 245-282 (Aug 1967). - IEEE Transmission and Distribution Committee, "Loading and Strength of Transmission Line Systems," Report of the Subgroup on Loadings and Strength of Transmission Line Systems. In 6 Parts. Papers A77-228-0, A77-229-8, A77-230-6, A77-231-4, A77-232-2, A77-233-0, IEEE PES Winter Meeting, New York, NY (Feb 1977). - ANSI C2, <u>National Electrical Safety Code</u>, IEEE, New York, NY (1977). - Arena, J.R., "How Safe are Your Towers?" ASCE J. Struc. Div., 96 (1), pp 1-16 (Jan 1970). - Kravitz, R.A., "Transmission Line Tower Analysis and Design in Review," IEEE Trans. PAS, 101 (11), pp 4350-4357 (Nov 1982). - Wilhoite, G.M., "Wind Recommendations for Transmission Towers," ASCE J. Struc. Div., 98 (2), pp 447-463 (Feb 1972). - ASCE Committee on Analysis and Design of Structures, "Loadings for Electrical Transmission Structures," Report of the Committee on Electrical Transmission Structures, ASCE J. Struc. Div., 108 (5), pp 1088-1105 (May 1982). - Souchereau, N., Sabourin, G., Cayer, P., and Tsui, Y.-T., "Validation of a Chainette Tower for a 735 kV Line," Proc. CIGRE 27th Session, 1 (22-04) (1978). - Peyrot, A.H., Lee, J.W., Jensen, H.G., and Osteraas, J.D., "Application of Cable Elements Concept to a Transmission Line with Cross Rope Suspension Structures," IEEE Trans., PAS, 100 (7), pp 3254-3262 (July 1981). - Zobel, E.S., Rohlfs, A.F., and Flugum, R.W., "Narrower Transmission Corridors Made Possible with New Compacted Conductor Support Systems for EHV and UHV Lines," Proc. CIGRE 28th Session, <u>1</u> (22-06) (1980). - Cauzillo, B.A., Nicolini, P., Paoli, P., and Carpena, A., "Mechanical Design Criteria and Construction of New UHV Lines," Proc. CIGRE 27th Session, (22-12) (1978). - Abilgaard, E.H., Bauer, E.A., and de Lussanet de la Sabloniere, K.L., "Composite Longrod Insulators and Their Influence on the Design of Overhead Lines," Proc. CIGRE 26th Session, (22-03) (1976). - Carpena, A., Cauzillo, B.A., and Nicoiini, P., "Modern Technical and Constructional Solutions for the New Italian Power Lines," Proc. CIGRE 26th Session, (22-13) (1976). - Paris, L., "Contribution to the Study of Reduced Scale Models in the Field of High-Voltage Transmission Lines," Proc. CIGRE 18th Session, 2 (222) (1960). - Mozer, J.D., Wood, W.A., and Hribar, J.A., "Broken Wire Tests on a Model Transmission Line System," IEEE Trans. PAS, <u>100</u> (3), pp 938-947 (Mar 1981). - Johnsen, R.R., Schjetne, K., Ervik, M., and Olaussen, E., "Estimation of Iceloads on Overhead Lines," Proc. CIGRE 26th Session, <u>1</u> (22-07) (1976). - Fecko, S., Kruzik, J., Popolansky, F., Reiss, L., and Ziaran, J., "Investigation of Combined Stress by Icing and Wind in Czechoslovakia," Proc. CIGRE 26th Session, <u>1</u> (22-02) (1976). - Campbell, D.B., "Unbalanced Tensions in Transmission Lines," ASCE J. Struc. Div., <u>96</u> (10), pp 2189-2207 (Oct 1970). - Mozer, J.D., Pohlman, J.C., and Fleming, J.F., "Longitudinal Load Analysis of Transmission Line Systems," IEEE Trans. PAS, <u>96</u> (5), pp 1657-65 (Sept/Oct 1977). - Peyrot, A.H. and Goulois, A.M., "Analysis of Flexible Transmission Lines," ASCE J. Struc. Div., 104 (5), pp 763-779 (May 1978). - Govers, A., "On the Impact of Uni-Directional Forces on High-Voltage Towers Following Conductor-Breakage," Proc. CIGRE 23rd Session, <u>1</u> (22-03) (1970). - Peyrot, A.H., Kluge, R.O., and Lee, J.W., "Longitudinal Loads from Broken Conductors and Broken Insulators and Their Effect on Transmission Lines," IEEE Trans. PAS, <u>99</u> (1), pp 222-234 (Jan/Feb 1980). - Frandsen, A.G. and Juul, P.H., "Cascade of Tower Collapses. Design Criteria," Proc. CIGRE 26th Session, 1 (22-10) (Oct 1976). - 25. Zobel, E.S., Comments in Group 22 Discussion Re: Cascade Type Failures, Proc. CIGRE 26th Session, 1, pp 22-23 (1976). - 26. White, H.B., "Failure Containment for Overhead Line Design," Proc. CIGRE 27th Session, <u>1</u> (22-13) (1978). - Moreau, M., Rigoet, P., and Dalle, B., "Designing of Overhead Lines in View of Avoiding Cascades Use of Controlled Sliding Suspension Clamps," Proc. CIGRE 27th Session, 1 (22-08) (1978). - Quey, F.T. and Rols, R., "The Possibilities and Advantages Offered by A-GS/L Aluminium Alloy in the Construction of Overhead Lines," Proc. CIGRE 26th Session, 1 (22-14) (1976). - Peyrot, A.H. and Naik, T.R., "Risk of Wind Damage to Transmission Line Systems," Proc. Natl. Struc. Engrg. Conf., ASCE Struc. Div. Specialty Conf: Methods of Struc. Analysis, Univ. of Wisconsin, Madison, 1, pp 54-71 (Aug 1976). - Lecomte, D. and Meyere, P., "Evolution of the Design for the 735 kV Transmission Lines of Hydro-Quebec," Proc. CIGRE 28th Session, 1 (22-08) (1980). - 31. Ghannoum, E., "A Rational Approach to Structural Design of Transmission Line," IEEE Trans. PAS, 100 (7), pp 3506-3512 (July 1981). - 32. Ramamurti, V., Sathikh, S., and Chari, R.T., "Transmission Line Vibrations," Shock Vib. Dig., 10 (111), pp 27-31 (Nov 1978). - Beards, C.F., "Damping Overhead Transmission Line Vibration," Shock Vib. Dig., 10 (8), pp 3-8 (Aug 1978). - Dubey, R.N. and Sahay, C., "Vibration of Overhead Transmission Lines III," Shock Vib. Dig., 12 (12), pp 11-14 (Dec 1980). - 35. Dubey, R.N., "Vibration of Overhead Transmission Lines," Shock Vib. Dig., 10 (4), pp 3-6 (Apr 1978). - Johns, D.J., "Wind Excited Behavior of Structures III," Shock Vib. Dig., <u>14</u> (7), pp 23-38 (July 1982). - Fleishmann, S.T. and Sallet, D.W., "Vortex Shedding from Cylinders and the Resulting Unsteady Forces and Flow Phenomena - Part I," Shock Vib. Dig., 13 (11), pp 9-22 (Nov 1981). - Fleishmann, S.T. and Sallet, D.W., "Vortex Shedding from Cylinders and the Resulting Unsteady Forces and Flow Phenomena - Part II," Shock Vib. Dig., 13 (12), pp 15-24 (Dec 1981). - 39. Tsui, Y.T., "Recent Advances in Engineering Science as Applied to Aeolian Vibration: an Alternative Approach," Electr. Power Syst. Res. (Switzerla 4), 5 (1), pp 73-85 (Mar 1982). - Rawlins, C.B., "Analysis of Conductor Galloping Field Observations - Single Conductors," IEEE Trans. PAS, 100 (8), pp 3744-3753 (Aug 1981). - Havard, D.G. and Nigol, O., "Research on Overhead Conductor Vibration," Ont. Hydro Res. Rev., (3), pp 39-45 (June 1981). - 42. Cassan, J.G., "Ontario Hydro's Overhead-Transmission Research Program," Ont. Hydro Res. Quart., 26 (2), pp 1-6 (1974). - Havard, D.G., Paulson, A.S., and Pohlman, J.C., "The Economic Benefits of Controls for Conductor Galloping," Proc. CIGRE 29th Session, 1 (22-02) (1982). - Anjo, K., Yamasaki, S., Matsubayashi, Y., Nakayama, Y., Otsuki, A., and Fujimura, T., "An Experimental Study of Bundle Conductor Galloping on the Kasatori-Yama Test Line for Bulk Power Transmission," Proc. CIGRE 25th Session, 1 (22-04) (1974). - White, H.B., "Some Destructive Mechanisms Activated by Galloping Conductors," IEEF Power Engrg. Soc. Winter Mtg., New York, NY (A79-106-6) (Feb 1979). - Mitchell, J., "Steel Tower Vibration Problems," Canadian Electrical Assoc. Fall Mtg., Calgary, Alberta (Oct 1976). - 47. Beck, C.F., "Computer's Role in Transmission Line Design," ASCE J. Struc. Div., <u>97</u> (1), pp 63-79 (Jan 1971). - 48. King, I.P., "A Computer Program for Analysis of Guyed Transmission Towers," Computers Struc., 2 (5/6), pp 933-942 (Dec 1972). - Fang, S.J., Rossow, E.C., and Roy, S., "Design and Analysis of Guyed Transmission Towers by Computer," IEEE/PES Proc. 7th Conf. Expo. Transmission Distribution, Atlanta, GA, pp 512-518 (Apr 1979). - Lo, D.L.C., Morcos, A., and Goel, S.K., "Use of Computers in Transmission Tower Design," ASCE J. Struc. Div., 101 (7), pp 1443-1453 (July 1975). - Rossow, E.C., Lo, D.L.C., and Chu, S.-L., "Efficient Design-Analysis of Physically Non-linear Trusses," ASCE J. Struc. Div., <u>101</u> (4), pp 839-853 (Apr 1975). - Noor, A.K. and Lowder, H.E., "Approximate Reanalysis Techniques with Substructuring," ASCE J. Struc. Div., 101 (8), pp 1687-1698 (Aug 1975). - 53. Sheppard, D.J. and Palmer, A.C., "Optimal Design of Transmission Towers by Dynamic Programming," Computers Struc., 2 (4), pp 455-468 (Sept 1972). - Raj, P.P. and Durrant, S.O., "Optimum Structural Design by Dynamic Programming," ASCE J. Struc. Div., <u>102</u> (8), pp 1575-1589 (Aug 1976). - Lee, J.W. and Jensen, H.G., "Transmission Tower Limit Analysis and Design by Linear Programming," IEEE Trans. PAS, <u>100</u> (4), pp 1999-2007 (Apr 1981). - 56 LaPay, W.S. and Goble, G.G., "Optimum Design of Trusses for Ultimate Loads," ASCE J. Struc. Div., 97 (1), pp 157-174 (Jan 1971). これいついつい 可能的 こうさんのう 自動の アンクタタ 神経 マンクスの 難じていっしょう 一種のないなななな 難しがたいなら - Wood, A.B., "Transmission Line Design -- The Ultimate Load Concept," Proc. CIGRE 29th Session, <u>1</u> (22-01) (1982). - 58. DiGioia, A.M., Pohlman, J.C., and Ralston, P., "A New Method for Determining the Structural Reliability of Transmission Lines," Proc. CIGRE 29th Session, 1 (22-08) (1982). - 59. Krishnasamy, S.G., Ford, G.L., and Orde, C.I., "Predicting the Structural Performance of - Transmission Lines Uprated by Reconductoring," IEEE Trans. PAS, 100 (5), pp 2271-2277 (May 1981). - Short, J. and Morse, J., "The Variation between Predicted and Actual Performance of Transmission Towers under Test Conditions," 2nd Intl. Conf. Progress Cables Overhead Lines for 220 kV and Above, IEE Conf., Publn. No. 176, London, pp 125-130 (Sept 1979). - Manuzio, C. and Paris, L., "Statistical Determination of Wind Loading Effects on Overhead Line Conductors," Proc. CIGRE 20th Session, 2 (231) (1964). - Castanheta, M.N., "Dynamic Behaviour of Overhead Power Lines Subject to the Action of the Wind," Proc. CIGRE 23rd Session, 1 (22-08) (1970). - Armitt, J., Cojan, M., Manuzio, C., and Nicolini, P., "Calculation of Wind Loadings on Components of Overhead Lines," IEE Proc., 122 (11), pp 1247-1252 (Nov 1975). - Davenport, A.G., "Gust Response Factors for Transmission Line Loading," Proc. 5th Intl. Conf. Wind Engrg., Fort Collins, CO, Pergamon Press, 2, pp 899-909 (July 1979). - Goodwin, E.J., Davenport, A.G., Davidson, H.L., DiGioia, A.M., and Power, B.A., "Probability-Based Wind Loadings for the Design of Transmission Line Structures," IEEE Trans. PAS, 100 (6), pp 2705-2713 (June 1981). - Cauzillo, B.A. and Rendina, R., "Dynamic Transfer of Wind Fluctuating Loads from the Conductors to the Foundations of Overhead Lines," CIGRE Symposium S22-81, Stockholm (111-09) (1981). - 67. Cauzillo, B.A. and Rendina, R., "Dynamic Behaviour of Overhead Line Foundations," Proc. CIGRE 28th Session, (22-07) (1980). - Yamaguchi, F., Shiraki, K., and Uchida, K., "Vibration Experiments of Transmission Towers (Part 2)," Mitsubishi Heavy Industries, Ltd., Tech. Rev., 6 (1) (1969) (In Japanese). - 69. Rangaswami, R., Jayaraman, G., Santhakumar, A.R., and Jayasekaran, T., "Dynamic Loads on Transmission Line Towers," 6th Symposium Earthquake Engrg., Univ. Roorkee, India, 1, pp 455-460 (Oct 1978). - Chiu, A.N.L. and Taoka, G.T., "Tower Response to Actual and Simulated Wind Forces," ASCE J. Struc. Div., 99 (9), pp 1911-1919 (Sept 1973). - Kempner, L., Stroud, R.C., and Smith, S., "Transmission Line Dynamic/Static Structural Testing," ASCE J. Struc. Div., 107 (10), pp 1895-1906 (Oct 1981). - Kempner, L., Smith, S., and Stroud, R.C., "UHV Moro Mechanical Test Line, Structural Dynamic Tests, (Nov 27 Dec 2, 1978)," Rept. No. ME-80-4 Moro 1200 kV Project, Bonneville Power Admin., Portland, OR (Apr 1980). - Kempner, L., Smith, S., and Stroud, R.C., "Structural-Dynamic Characterization of an Experimental 1200-Kilovolt Electrical Transmission Line System," Shock Vib. Bull., U.S. Naval Res. Lab., Proc. 50, Pt. 3 (Sept 1980). - Karady, G., Vinet, R., and Souchereau, N., "New Test Methods for Synthetic Insulators," Proc. CIGRE 26th Session, 1 (22-15) (1976). - Weihe, H., Macey, R.E., and Reynders, J.P., "Field Experience and Testing of New Insulator Types in South Africa," Proc. CIGRE 28th Session, 1 (22-03) (1980). - Cojan, M., Perret, J., Malaguti, C., Nicolini, P., Looms, J.S.T., and Stannett, A.W., "Polymeric Transmission Insulators: Their Application in France, Italy and the UK," Proc. CIGRE 28th Session, <u>1</u> (22-10) (1980). - Bauer, E., Muller, K.H., Karner, H., and Verma, P., "Service Experience with the German Composite Long Rod Insulator with Silicone Rubber Sheds Since 1967," Proc. CIGRE 28th Session, 1 (22-11) (1980). - Bauer, E., Brandt, E., Brand, R., Klein, H., Mocks, L., and Schlotz, H., "Dynamic Processes during Load Transposition in Multiple Sets - with Long Rod-Type Insulators," Proc. CIGRE 29th Session, 1 (22-03) (1982). - 79. Vanner, M.J., "Foundations and the Effect of the Change in Ground Conditions over the Seasons," 2nd Intl. Conf. Progr. Cables Overhead Lines for 220 kV and above, IEE Conf. Publn. 176, London, pp 112-117 (Sept 1979). - DiGioia, A.M., Davidson, H.L., and Donovan, T.D., "Design of Laterally Loaded Drilled Piers," IEEE Trans. PAS 102 (1), pp 186-194 (Jan 1983). - 81. Martin, D. and Cochard, A., "Design of Anchor Plates," Paper presented by Study Committee 22, Proc. CIGRE 27th Session, 1 (22-10) (1978). - 82. Wood, A.B., Comments in Group 22 Discussion Re: Pile Failure as a Result of Fluctuating Loads, Proc. CIGRE 28th Session, 1, p 31 (1980). - 83. Cochard, A., "Behaviour of Tower Foundations under Variable Loads," 2nd Intl. Conf. Progr. Cables Overhead Lines for 220 kV and above. IEE Conf. Publn. 176, London, pp 107-111 (Sept 1979). - Warburton, G.B., "Soil-Structure Interaction for Tower Structures," Intl. J. Earthquake Engrg. Struc. Dynam., <u>6</u> (6), pp 535-556 (Nov/Dec 1978). ## **BOOK REVIEWS** ## MODERN AUTOMOTIVE STRUCTURAL ANALYSIS M. Kamal and J.A. Wolf, Jr., eds. Van Nostrand Reinhold Co., New York, NY 1982, 450 pp, \$34.50 The book consists of 12 chapters written by several individuals employed by the General Motors Corporation. Chapter titles are: The Automobile and Its Structure - A Historical Review: Establishing Automobile Structural Design Criteria; Introduction to Matrix Structural Analysis; Finite Element Modeling of Automotive Structures; Automobile Structural System Models for Vibration; Solution Methods for Vehicle Structural Models; Design Analysis for Stiffness and Deflection; Design Analysis for Stress and Fatigue; Collision Simulation; Plastic Deformation Analysis; Structural Acoustic Analysis Using Finite Element Methods; Optimization in Structural Design. According to the authors, the purposes of the book are to describe analytical methods and to discuss their basis in structural mechanics. Methods developed since 1970 are used to analyze trial designs and predict their performance. The book contains a great deal of descriptive material, many photographs and illustrations, an extensive bibliography, and comparisons of theory and experiment. It succeeds in describing the variety of problems that must be addressed in analyses and in suggesting methods of attack. The variety and sophistication of these methods are sufficiently great that previous exposure at approximately the master's degree level is necessary because space does not allow a thorough discussion of all methods. On the whole the book is interesting, readable, and a good contemporary survey. R.R. Cook Department of Engineering Mechanics University of Wisconsin Madison, WI 53706 ## STRESS, VIBRATION AND NOISE ANALYSIS IN VEHICLES H.G. Gibbs and T.H. Richards, eds. Applied Science Publishers Ltd., London 1975 This edition is a collection of 23 papers from the annual conference of the Stress Analysis Group of The Institute of Physics ir the United Kingdom. The authors represent a blend of industrial and academic organizations. About half of the authors (eleven) are from universities; the others represent industrial and governmental organizations. All of the papers emphasize specific applications of analysis and experimental methods rather than the development of theory. The book contains a collection of case studies that emphasize the state of the art of vehicle design technology up to 1975. A wide range of practical problems encountered in transportation vehicles is presented. The book should therefore be of interest to the generalist desiring a broad look at technical approaches to realistic problems as well as to the specialist focusing on a few papers relating directly to his technical expertise. Many of the papers illustrate computer methods. Eight papers are direct applications of finite element modeling techniques. Eight papers report primarily experimental studies. Four papers deal directly with spectral analysis techniques, and one author applies photoelasticity to the study of stresses and deflections in diesel engines. Ground-based transportation vehicles were studied with the exception of an airframe structure. Automotive, rapid-transit, trucks, earthmoving vehicles, buses, light vans, and very heavy transport vehicles (trucks) are represented. The papers generally are well written, technically sound and detailed, and well edited and arranged. Print is typeset, and photographs and illustrations are good. The overall print quality is equal to that in a good textbook. C.C. Smith Department of Mechanical Engineering 242 H. Clyde Building Brigham Young University Provo, UT 84602 quire solid theoretical foundations will want to supplement the book with an older text on underwater acoustics. M.C. Junger Cambridge Acoustical Associates, Inc. 54 Rindge Ave. Cambridge, MA 02140 ### SOUND PROPAGATION IN THE SEA R.J. Urick Peninsula Publishers, Los Altos, CA 1982, 225 pp One way to convey the scope and nature of a new textbook in a well established field is to compare the newcomer with familiar books, I compared Professor Urick's recent addition to the literature on sound propagation in the ocean with such standard textbooks as C.B. Officer's Introduction to the Theory of Sound Transmission with Application to the Ocean and I. Tolstoy and C.S. Clay's Ocean Acoustics. Urick's book is oriented toward the practical needs of sonar engineering, oceanography, and related fields. A chapter on recent mathematical models developed by the sonar community to describe propagation loss, ambient noise, and active sonar reverberation is a unique convenience not usually available in textbooks. Up-to-date experimental data are presented in accessible form in numerous tables and graphs. This rather bookish reviewer particularly enjoyed the occasional description of tests used to acquire data. Also useful are the two chapters on spatial and temporal coherence. On the negative side, this reviewer was repeatedly frustrated by the author's practice of stating important analytical results without deriving them from basic principles. For example, the eikonal equation, which can be concisely derived, is merely stated -- and misleadingly so in terms of the Laplace operator instead of the squares of the first spatial derivatives. In summary, this book is highly recommended to workers in the area of underwater sound, but students or workers new to this field who wish to ac- ### PHYSICS VADE MECUM H.L. Anderson, ed. American Institute of Physics, New York, NY 1981, 330 pp, \$25.00 The American Institute of Physics (AIP) issued this handbook to celebrate 50 years of journal publishing by AIP. The intent was to assemble a compendium that would be useful to the wide range of subjects that a physicist might encounter. Each chapter is approximately 10 pages in length and contains useful information, formulas, numerical data, definitions, and references. A detailed index is also included. The first section is general in nature and contains constants, SI units and prefixes, conversion factors, and basic mathematical and physics formulas. Section 2, entitled Acoustics, describes wave propagation in fluids, macrosonics, atmospheric acoustics, underwater sound, and acoustic transmission in solids. There are also sections on room acoustics, physiological and psychological acoustics, speech, music, and acoustic measurements and instruments. Several useful tables are presented on velocity and attenuation of sound in various media. The book also contains information on other areas of physics such as atomic spectroscopy, cryogenics, fluid dynamics, nuclear physics, optics, and solid state physics. The information presented about each area is brief but provides an excellent starting point for the user and readily available information for the physicist. For the acoustician, the book will provide important basic information. For information beyond the basics the reader will be required to use such established texts as Beranek's Noise and Vibration <u>Control</u>, Morse and Ingard's <u>Theoretical Acoustics</u>, or Harris' <u>Handbook of Noise Control</u>. V.R. Miller 5331 Pathview Drive Huber Heights, OH 45424 ## **SHORT COURSES** ### JULY ### IMPACT DYNAMICS Dates: July 11-15, 1983 Place: Los Angeles, California Objective: It is the principal aim of this course to provide those new to the area of impact dynamics with an introduction to the behavior of structures and materials subjected to impact or short-duration impulsive loading. The course aims to bring together the varied aspects of material behavior under intense impulsive loading from the linear elastic through the hydrodynamic deformation regimes. In general, the course addresses problems where loading and response times are in the submillisecond regime and a wave description of the resulting phenomena is appropriate. The emphasis throughout is on a thorough coverage of fundamentals and their application to practical problems. Contact: Short Course Program Office, UCLA Extension, P.O. Box 24901, Los Angeles, CA 90024 - (213) 825-1295 or 825-3344. ### PRINCIPLES OF MICROCOMPUTERS AND MI-CROPROCESSORS Dates: July 18-22, 1983 Place: Ann Arbor, Michigan Objective: Today these small computers are commonly used in many research, engineering, manufacturing, communications, and business applications. This course acquaints scientists, engineers, and managers with the relevant characteristics and application techniques of these computers. Contact: Engineering Summer Conferences, 200 Chrysler Center, North Campus, The University of Michigan, Ann Arbor, MI 48109 - (313) 764-8490. ### **DYNAMIC BALANCING** Dates: July 20-21, 1983 August 17-18, 1983 September 21-22, 1983 October 19-20, 1983 November 16-17, 1983 Place: Columbus, Ohio Objective: Balancing experts will contribute a series of lectures on field balancing and balancing machines. Subjects include: field balancing methods; single, two and multi-plane balancing techniques; balancing tolerances and correction methods. The latest in-place balancing techniques will be demonstrated and used in the workshops. Balancing machines equipped with microprocessor instrumentation will also be demonstrated in the workshop sessions. Each student will be involved in hands-on problem-solving using the various balancing techniques. Contact: R.E. Ellis, IRD Mechanalysis, Inc., 6150 Huntley Road, Columbus, OH 43229 - (614) 885-5376. ## FINITE ELEMENTS IN MECHANICAL DESIGN: DYNAMIC AND NONLINEAR ANALYSIS Dates: July 25-29, 1983 Place: Ann Arbor, Michigan Objective: Covers vibration, material nonlinearities and geometric nonlinearities. Includes normal modes, transient response, and Euler buckling of column and plate structures. Attendees use personal computers to develop models of several problems using MSC/NASTRAN in laboratory sessions. Contact: Engineering Summer Conferences, 200 Chrysler Center, North Campus, The University of Michigan, Ann Arbor, MI 48109 - (313) 764-8490. ### **AUGUST** ## DESIGN AND ANALYSIS OF ENGINEERING EXPERIMENTS Dates: August 1-12, 1983 Place: Ann Arbor, Michigan Objective: Recent developments in the field of testing, methods for designing experiments, interpre- tation of test data, and procedures for better utilization of existing data. Design of experiments with small numbers of test pieces and runs with high dispersion are emphasized. Obtaining maximum information from limited data is stressed. Contact: Engineering Summer Conferences, 200 Chrysler Center, North Campus, The University of Michigan, Ann Arbor, MI 48109 - (313) 764-8490. ### SIMULATION USING GPSS Dates: August 8-12, 1983 Place: Ann Arbor, Michigan Objective: This course is designed for persons working in management science, operations research or analysis, facilities planning, or manufacturing system design. Simulation concepts are illustrated with GPSS applications, using case studies. Computer workshops provide participants with hands-on experience in building and using GPSS models. Contact: Engineering Summer Conferences, 200 Chrysler Center, North Campus, The University of Michigan, Ann Arbor, MI 48109 - (313) 764-8490. ### MACHINERY VIBRATION ANALYSIS Dates: August 16-19, 1983 Place: New Orleans, Louisiana Dates: November 15-18, 1983 Place: Chicago, Illinois Objective: In this four-day course on practical machinery vibration analysis, savings in production losses and equipment costs through vibration analysis and correction will be stressed. Techniques will be reviewed along with examples and case histories to illustrate their use. Demonstrations of measurement and analysis equipment will be conducted during the course. The course will include lectures on test equipment selection and use, vibration measurement and analysis including the latest information on spectral analysis, balancing, alignment, isolation, and damping. Plant predictive maintenance programs, monitoring equipment and programs, and equipment evaluation are topics included. Specific components and equipment covered in the lectures include gears, bearings (fluid film and antifriction), shafts, couplings, motors, turbines, engines, pumps, compressors, fluid drives, gearboxes, and slow-speed paper rolls. Contact: Dr. Ronald L. Eshleman, Vibration Institute, 101 W. 55th St., Suite 206, Clarendon Hills, IL 60514 - (312) 654-2254. ## VIBRATION AND SHOCK SURVIVABILITY, TESTING, MEASUREMENT, ANALYSIS, AND CALIBRATION Dates: August 22-26, 1983 Place: Santa Barbara, California Dates: October 17-21, 1983 Place: England Dates: October 24-28, 1983 Place: Boulder, Colorado Dates: November 21-25, 1983 Place: Ottawa, Ontario Dates: November 28 - December 3, 1983 Place: Cincinnati, Ohio Dates: December 5-9, 1983 Place: Santa Barbara, California Objective: Topics to be covered are resonance and fragility phenomena, and environmental vibration and shock measurement and analysis; also vibration and shock environmental testing to prove survivability. This course will concentrate upon equipments and techniques, rather than upon mathematics and theory. Contact: Wayne Tustin, 22 East Los Olivos Street, Santa Barbara, CA 93105 - (805) 682-7171. ### DYNAMICS AND CONTROL OF LARGE FLEX-IBLE STRUCTURES Dates: August 22-26, 1983 Place: Los Angeles, California Objective: The theme of the course is the need to integrate the understanding of physical system dynamics with the methods of modern control theory to accomplish the practical control of the class of large, flexible structures of current interest. Attention focuses initially on the idealization of spacecraft structures and the formulation of their equations of motion. Dynamics and control theory are then developed in integrated teams, with emphasis gradually shifting to the applications of modern control theory. The limitations of conventional optimal estimation and control theory for such applications are illustrated, and various techniques for reducing the sensitivity of conventional methods to modeling errors are presented. Contact: Short Course Program Office, UCLA Extension, P.O. Box 24901, Los Angeles, CA 90024 - (213) 825-1295 or 825-3344. ### **SEPTEMBER** ### STRUCTURAL DYNAMICS: COMPUTER-ORIENT-ED APPROACH WITH APPLICATIONS Dates: September 26-30, 1983 Place: Los Angeles, California Objective: The course emphasizes discrete methods, numerical methods, and structural modeling for computer-oriented solution of various structural dynamic problems. Some recent developments in the structural dynamic analysis of parametrically excited systems, rotating systems, and systems in which fluid-structure dynamic interactions occur are also considered. Contact: Short Course Program Office, UCLA Extension, P.O. Bos 24901, Los Angeles, CA 90024 - (213) 825-1295 or 825-3344. ### **OCTOBER** ## UNDERWATER ACOUSTICS AND SIGNAL PROCESSING Dates: October 3-7, 1983 Place: State College, Pennsylvania Objective: This course is designed to provide a broad, comprehensive introduction to important topics in underwater acoustics and signal processing. The primary goal is to give participants a practical understanding of fundamental concepts, along with an appreciation of current research and development activities. Included among the topics offered in this course are: an introduction to acoustics and sonar concepts, transducers and arrays, and turbulent and cavitation noise; an extensive overview of sound propagation modeling and measurement techniques; a physical description of the environment factors affecting deep and shallow water acoustics; a practical guide to sonar electronics; and a tutorial review of analog and digital signal processing techniques and active echo location developments. Contact: Alan D. Stuart, Course Chairman, Applied Research Laboratory, The Pennsylvania State University, P.O. Box 30, State College, PA 16801 - (814) 865-7505. ## NEWS BRIEFS: news on current and Future Shock and Vibration activities and events ### SAE AEROSPACE CONGRESS AND EXPOSITION Week of 3 October, 1983 Long, Beach California Papers on "Dynamic Analysis and Testing" will be presented at two sessions during the 1983 SAE Aerospace Congress and Exposition, week of 3 October, 1983, at the Long Beach Convention Center, Long Beach, California. These two sessions are being organized by the SAE Technical Committee G-5 on Aerospace Shock and Vibration. The G-5 Committee has organized shock and vibration sessions at each SAE national aeronautic or aerospace meeting since 1957. The G-5 Committee was formed on December 8, 1955 with Dr. C.T. Molloy as Chairman, and the Committee selected and published as its first task a document on the design of vibration isolation systems for aircraft, missiles, and spacecraft. This document presented state of the art methodology utilizing mechanical impedance analyses. The G-5 membership was selected from experienced practitioners in the field of shock and vibration control all over the United States. Committee meetings were held monthly in the Los Angeles area for many years. Presently, the meetings are held monthly at the Aerospace Corporation in El Segundo, California. Committee business is discussed at these meetings followed by a technical presentation on current dynamic advances by a Committee member or an invited speaker. The 265th meeting is scheduled for April 26, 1983. Guests are always welcome at these meetings. New members are welcome to join the G-5 committee and may do so by contacting the present Chairman of the G-5 Committee, Dr. Sheldon Rubin, at the Aerospace Corporation - (213) 648-6408. Preliminary information on the G-5 technical sessions may be obtained from Roy W. Mustain, Rockwell Space Transportation Systems Group, Mail Sta. AB97, 12214 Lakewood Blvd., Downey, CA 90241. The final program for the 1982 SAE Aerospace Congress and Exposition may be obtained by writing to: SAE, 400 Commonwealth Dr., Warrendale, PA 15096. ## **ABSTRACT CATEGORIES** ### **MECHANICAL SYSTEMS** Rotating Machines Reciprocating Machines Power Transmission Systems Metal Working and Forming Isolation and Absorption Electromechanical Systems Optical Systems Materials Handling Equipment Tires and Wheels Blades Bearings Belts Gears Clutches Couplings Fasteners Linkages Valves Seals Cams Vibration Excitation Thermal Excitation ### **MECHANICAL PROPERTIES** Damping Fatigue Elasticity and Plasticity ### STRUCTURAL SYSTEMS Bridges Buildings Towers Foundations Underground Structures Harbors and Dams Roads and Tracks Construction Equipment Pressure Vessels Pressure Vessels Power Plants Off-shore Structures ### STRUCTURAL COMPONENTS Strings and Ropes Cables Bars and Rods Beams Cylinders Columns Frames and Arches Membranes, Films, and Webs Panels Plates Shells Rings Pipes and Tubes Ducts **Building Components** ### **EXPERIMENTATION** Measurement and Analysis Dynamic Tests Scaling and Modeling Diagnostics Palancing Monitoring ### **VEHICLE SYSTEMS** **Ground Vehicles** Ships Aircraft Missiles and Spacecraft ### **ANALYSIS AND DESIGN** Analogs and Analog Computation Analytical Methods Modeling Techniques Nonlinear Analysis Numerical Methods Statistical Methods Parameter Identification Mobility/Impedance Methods Optimization Techniques Design Techniques Computer Programs ### **BIOLOGICAL SYSTEMS** Human Animal ### **ELECTRIC COMPONENTS** Controls (Switches, Circuit Breakers) Motors Generators Transformers Relays Electronic Components ### **GENERAL TOPICS** Conference Proceedings Tutorials and Reviews Criteria, Standards, and Specifications Bibliographies Useful Applications ### **MECHANICAL COMPONENTS** Absorbers and Isolators Springs ### DYNAMIC ENVIRONMENT Acoustic Excitation Shock Excitation # ABSTRACTS FROM THE CURRENT LITERATURE Copies of publications abstracted are not available from SVIC or the Vibration Institute, except those generated by either organization. Government Reports (AD-, PB-, or N-numbers) can be obtained from NTIS, Springfield, Virginia 22151; Dissertations (DA-) from University Microfilms, 313 N. Fir St., Ann Arbor, Michigan 48106; U.S. Patents from the Commissioner of Patents, Washington, DC 20231; Chinese publications (CSTA-) in Chinese or English translation from International Information Service Ltd., P.O. Box 24683, ABD Post Office, Hong Kong. In all cases the appropriate code number should be cited. All other inquiries should be directed to libraries. The address of only the first author is listed in the citation. The list of periodicals scanned is published in issues 1, 6, and 12. ### **ABSTRACT CONTENTS** | MECHANICAL SYSTEMS 48 | MECHANICAL COMPONENTS. 62 | MECHANICAL PROPERTIES 79 | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------| | Rotating Machines 48 Power Transmission Systems 49 Metal Working and | Absorbers and Isolators 62 Blades 63 Bearings | Damping | | Forming 49 Materials Handling | Fasteners65 | EXPERIMENTATION 79 | | Equipment 50 | STRUCTURAL COMPONENTS. 66 | Measurement and Analysis . 79 Dynamic Tests 80 | | STRUCTURAL SYSTEMS50 | Cables | Diagnostics | | Bridges .50 Buildings .51 Towers .53 Foundations .53 Harbors and Dams .54 Roads and Tracks .54 | Columns .68 Frames and Arches .68 Panels .68 Plates .69 Shells .69 | ANALYSIS AND DESIGN 83 | | Power Plants55 Off-shore Structures55 | Pipes and Tubes | Analytical Methods 83 Modeling Techniques 86 Numerical Methods 86 Parameter Identification 87 Design Techniques 87 | | VEHICLE SYSTEMS55 | ELECTRIC COMPONENTS72 | Computer Programs87 | | Ships | Motors | | | Missiles and Spacecraft 60 | | GENERAL TOPICS87 | | | DYNAMIC ENVIRONMENT73 | Criteria, Standards, and | | BIOLOGICAL SYSTEMS61 | Acoustic Excitation73 Shock Excitation76 | Specifications87 Bibliographies87 | | Human 61 | Vibration Excitation 77 | Useful Applications 87 | ### **MECHANICAL SYSTEMS** ### **ROTATING MACHINES** (Also see Nos. 1255, 1275) ### 83-1090 ## Noise Reduction in Centrifugal Fans by the Use of Lambda/4 Resonators W. Neise and G.H. Koopmann European Space Agency, Paris, France, Rept. No. ESA-TT-723, DFVLR-FB-81-09, 64 pp (Mar 1982) (Engl. trans. of "Geraeuschminderung bei Radialventilatoren durch lambda/4-Resonatoren," Rept. DfvIr-FB-81-09 DfvIr, Goettingen, West Germany, Mar 1981, 52 pp) N82-33173 Key Words: Fans, Noise reduction, Blade passing frequency Aerodynamic blade passage noise reduction, using a resonator at the cutoff of a centrifugal fan, is described. While preserving the original cutoff geometry, the perforated mouth of the resonator forms the new cutoff. The resonator can be tuned to various frequencies, e.g., the blade passing frequency, via a movable end plug, enabling tone intensity to be reduced by up to 29 dB. ### 83-1091 ### Utilizing Numerical Techniques in Turbofan Inlet Acoustic Suppressor Design K.J. Baumeister NASA Lewis Res. Ctr., Cleveland, OH, Rept. No. E-1427, NASA-TM-82994, 23 pp (1982) N83-10885 Key Words: Fans, Turbofans, Noise reduction Numerical theories in conjunction with previously published analytical results are used to augment current analytical theories in the acoustic design of a turbofan inlet nacelle. In particular, a finite element-integral theory is used to study the effect of the inlet lip radius on the far field radiation pattern and to determine the optimum impedance in an actual engine environment. ### 83-1092 ### Effects of Flue Gas Contamination on the Acoustical Performance of Tuned Discharge Silencers for Induced Draft Fans T.D. Thunder and J.E. Shahan Transco, Inc., Hinsdale, IL, ASME Paper No. 82-WA/ NCA-6 Key Words: Fan noise, Noise reduction Recently sophisticated tuned-dissipative silencers have been designed for reducing induced draft fan noise emitted from the tops of power plant stacks. These designs incorporate tuned cavities located out of the flow of flue gas and are intended to preclude, to the maximum extent feasible, the adverse effects of contaminants. This paper takes an analytical look at the probable effect of fly ash contamination of the absorptive materials located in the cavities of such tuned silencers. Measurements of the changes in the normal acoustical impedance of clean and contaminated absorptive materials provide the basis of this investigation. ### 83-1093 ### Finite Element-Integral Simulation of Static and Flight Fan Noise Radiation from the JT15D Turbofan Engine K.J. Baumeister and S.J. Horowitz NASA, Cleveland, OH, ASME Paper No. 82-WA/ NCA-7 Key Words: Turbofan engines, Fan noise, Noise prediction, Finite element technique An iterative finite element-integral technique is used to predict the sound field radiated from the JT15D turbofan inlet. For some single mode JT15D data, the theory and experiment are in good agreement for the far field radiation pattern as well as suppressor attenuation. Also, the computer program is used to simulate flight effects that cannot be performed on a ground static test stand. ### 83-1094 ### Unbalance Response Analysis of a Complete Turbomachine N. Klompas Gas Turbine Div., General Electric Co., Schenectady, NY 12345, J. Engrg. Power, Trans. ASME, <u>105</u> (1), pp 184-191 (Jan 1983) 6 figs, 2 tables, 6 refs Key Words: Turbomachinery, Unbalanced mass response A new method is derived to calculate unbalance response of a complete turbomachine, including mount asymmetry, disk flexibility, and fluid-film bearing anisotropy by utilizing conventionally obtained stiffness coefficients for the rotor and stator. ### 83-1095 ## Strut or Guide Vane Secondary Flows and Their Effect on Turbomachinery Noise B. Lakshminarayana, D.E. Thompson, and R. Trunzo Pennsylvania State Univ., University Park, PA, J. Aircraft, <u>20</u> (2), pp 178-186 (Feb 1983) 12 figs, 1 table, 18 refs Key Words: Rotors, Turbomachinery, Noise measurement, Aerodynamic loads Results of an investigation in which the turbomachinery rotor sound spectra were correlated with aerodynamic measurements of upstream strut secondary flow are reported. The aerodynamic measurements, carried out in an aeroacoustic turbomachinery facility, include mean-velocity and turbulence-intensity profiles across the wake and the secondary flow regions at the strut exit or rotor inlet. The presence of an afterbody downstream of the blade and tooth edges of flow separation was necessary for aerodynamic excitation of the blade and generation of noise. ### **POWER TRANSMISSION SYSTEMS** ### 83-1097 ## Computer Controlled Four Square Dynamometer for Transient and Cycle Testing of Continuously Variable Transmissions H. Vahabzadeh Ph.D. Thesis, Univ. of Wisconsin-Madison, 231 pp (1982) DA8224071 Key Words: Power transmission systems, Transmission systems, Dynamic tests Continuously variable transmissions (CVT) have been considered for optimum engine operation using a hybrid power-plant that incorporates an energy storage device or an advanced powertrain system. These have been recently demonstrated to offer a potential for significantly improved fuel economy and performance under most driving conditions. One of the principal difficulties in the development of such transmissions is the absence of efficient and appropriate test facilities for this purpose. This dissertation is aimed at a solution of this problem. ### **METAL WORKING AND FORMING** (Also see Nos. 1245, 1252, 1253) ### 83-1096 ## Vortex Shedding: The Source of Noise and Vibration in Idling Circular Saws M.C. Leu and C.D. Mote, Jr. Cornell Univ., Ithaca, NY, ASME Paper No. 82-WA/ NCA-2 Key Words: Saws, Circular saws, Noise generation, Vibration generation, Vortex shedding Vortices separating from the edges of cutting teeth are shown to be the dominant source of pressure fluctuation and hence noise in circular saws. Measurement of pressure on the surfaces of the blade and teeth show: strong periodicity of the pressure on the tooth lateral surfaces, a 180 degree phase difference between the pressure variation on both tooth lateral surfaces, and pressure variations dominantly occurring on the tooth rather than the blade surface. ### 83-1098 ## Dynamic Problems of Heavy Duty Machine Tools are Soluble (Grosswerkzeugmaschinen Dynamikprobleme sind lösbar) K. Teipel Industrie Anzeiger, <u>104</u> (104), pp 74, 76-77 (1982) 7 figs, 3 refs (In German) Key Words: Machine tools, Design techniques Measures for achieving high dynamic performance of heavy duty boring machines are described. They are the minimization of mass-stiffness ratio, maximization of joint damping, decoupling of vibration direction, and dividing the resonances. ### MATERIALS HANDLING EQUIPMENT (Also see No. 1174) 83-1099 ## Crane Cabin Vibration Damping (Schwingungsdämpfung für Krankabinen) Industrie Anzeiger, <u>104</u> (99), p 22 (1982) (In German) Key Words: Crane cabins, Vibration damping A crane cabin suspension system is described which consists of three vertically suspended hydraulic cylinders, attached on both sides of connecting heads which, together with a membrane pressure reservoir, comprise a hydropneumatic spring element. To reduce the oscillation of the cabin during startup and braking these supporting cylinders are mounted far outside of the cabin. The natural frequency of the system in the vertical direction is about 0.9 Hz. The damping properties of the supporting cylinders are obtained by means of the adjustable throttle inside the connecting line to the pressure reservoir and can be individually optimized on location. The measurement results show that this type of cabin suspension provides high damping especially at high vibration excitation. ### STRUCTURAL SYSTEMS ### 83-1100 ## **Vertical Seismic Behaviour of Suspension Bridges** A.M. Abdel-Ghaffar and L.I. Rubin Civil Engrg. Dept., Princeton Univ., Princeton, NJ 08544, Intl. J. Earthquake Engrg. Struc. Dynam., 11 (1), pp 1-19 (Jan/Feb 1983) 14 figs, 4 tables, 13 refs Key Words: Bridges, Suspension bridges, Seismic response, Frequency domain The vertical response of suspension bridges to multi-support seismic excitations is investigated. A frequency-domain random-vibration approach is utilized to take into account not only the differences in ground motion inputs, but also the correlation among the various input motions. ### 83-1101 ### Wind-Induced Response of Golden Gate Bridge H. Tanaka and A.G. Davenport Univ. of Ottawa, Ottawa, Ontario, Canada, ASCE J. Engrg. Mech., 109 (1), pp 296-312 (Feb 1983) 18 figs, 2 tables, 11 refs Key Words: Bridges, Suspension bridges, Spectrum analysis, Wind-induced excitation Full-scale observation data of wind-induced behavior of the Golden Gate Bridge from a 1962 study was extensively re-examined by spectral analysis. The experimental investigation on the same bridge was also conducted using proposed taut strip bridge model with the simulation of natural wind turbulence at laboratory scale. ### 83-1102 ### Nonlinear Free Vibrations of Suspension Bridges: Theory A.M. Abdel-Ghaffar and L.I. Rubin Princeton Univ., Princeton, NJ 08544, ASCE J. Engrg. Mech., 109 (1), pp 313-329 (Feb 1983) 5 figs, 6 refs Key Words: Bridges, Suspension bridges, Torsional vibration, Vertical vibration A general theory and analysis of the nonlinear free coupled vertical-torsional vibrations of suspension bridges with horizontal decks are presented. Approximate solutions are developed by using the method of multiple scales via a perturbation technique. The amplitude-frequency relationships for any single set of coupled vertical-torsional modes are presented for three cases. ### 83-1103 ## Nonlinear Free Vibrations of Suspension Bridges: Application A.M. Abdel-Ghaffar and L.I. Rubin Princeton Univ., Princeton, NJ 08544, ASCE J. Engrg. Mech., 109 (1), pp 330-345 (Feb 1983) 15 figs, 6 tables, 2 refs Key Words: Bridges, Suspension bridges, Torsional vibration, Vertical vibration The basic characteristics of the nonlinear free flexural-torsional vibrations of two suspension bridges are examined. The amplitude-frequency relationships of the first six modes (symmetric and antisymmetric) of both vertical and torsional vibrations for each bridge are presented. The case when one of the linear natural frequencies of vertical vibration is Figural to, or approximately equal to, another linear natural frequency of torsional vibration, is considered. Ph.D. Thesis, The Univ. of Western Ontario, Canada (1982) Key Words: Buildings, Wind-induced excitation, Measure- Wind tunnel testing is the only confident method of pre- dicting the response of buildings to natural wind currently available. Modeling techniques are well developed, but rely ### 83-1104 ## Lateral Earthquake Response of Suspension Bridges A.M.Abdel-Ghaffar and L.I. Rubin Dept. of Civil Engrg., Princeton Univ., Princeton, NJ, ASCE J. Struc. Engrg., 109 (3), pp 664-675 (Mar 1983) 9 figs, 2 tables, 9 refs Key Words: Bridges, Suspension bridges, Seismic response, Frequency domain method The lateral response of suspension bridges to multiple-suspent seismic excitations is investigated. A frequency-domain random-vibration approach is utilized to take into account not only the differences in ground motion inputs, but also the correlation among the various input motions. in most instances on representation of the turbulent boundary layer in a wind tunnel, and complete modeling of all the structural parameters such as shape, mass, damping and stiffness. The resulting dynamic responses of the aeroelastic models can directly be scaled to full scale values. Aeroelastic models, however, are expensive, require much time before availability of results, and are specific to the structural parameters modeled. The subject of this study is to directly measure the total dynamic modal forces, using a high frequency, balance-model system with a flat frequency response. The foam models are mounted on a sensitive, but rigid five-component balance which is described in detail. This balance is believed to represent the state of the art for ### BUILDINGS (Also see Nos. 1156, 1157, 1158, 1206, 1271) ### 83-1105 ## The Acoustic Performance of Building Facades in Hot Climates: Part 1 -- Courtyards R.N.S. Hammad and B.M. Gibbs Dept. of Bldg. Engrg., The Univ. of Liverpool, P.O. Box 147, Liverpool L69 3BX, UK, Appl. Acoust., 16 (2), pp 121-137 (Mar 1983) 17 figs, 1 table, 15 refs Key Words: Buildings, Acoustic properties The acoustic performance of perforated screens of unusual geometry was investigated by means of model work and computer simulation resulting from diffraction theory in which the barrier produces an amplitude gradient (thnadner) or a phase gradient (splitter). The results indicate that the protection obtained is similar to that of a solid thin barrier of equal height for a wide range of frequencies when the receiver is near the barrier. ### 83-1106 The Base Balance Measurement Technique and Applications to Dynamic Wind Loading to Structures T. Tschanz ### 83-1107 the intended load ranges. ment techniques ## Inelastic Earthquake Response of Steel Structures A.M. Kabe and D. Rea The Aerospace Corp., El Segundo, CA, ASCE J. Struc. Engrg., 109 (3), pp 705-719 (Mar 1983) 17 figs, 14 refs Key Words: Buildings, Framed structures, Steel, Shakers, Computer programs Results from experiments in which small three story steel frame structures were subjected to simulated earthquake motions by means of a shaking table are described. The results of the experiments were used to evaluate the accuracy of a computer program by comparing computed time histories and hysteresis loops with those obtained experimentally. ### 83-1108 ### **Active Control of Tall Buildings** M. Abdel-Rohman and H.H. Leipholz Faculty of Engrg. and Petroleum, Kuwait Univ., P.O. Box 5969, Kuwait, ASCE J. Struc. Engrg., 109 (3), pp 628-645 (Mar 1983) 19 figs, 1 table, 23 refs Key Words: Buildings, Wind-induced excitation, Active control, Tendons The active control of a tall building, using tendons, is offered as an alternative control mechanism to that using an active tuned mass damper. The paper shows systematically, with a numerical example, how to design the optimal control forces for both active tendons and active tuned mass dampers in order to introduce active damping to a tall building, even under nonlinear structural behavior, and the paper provides a comparison between two schemes of control. ### 83-1109 Seismic Design for Buildings and Building Codes. 1970 - November, 1982 (Citations from the NTIS Data Base) NTIS, Springfield, VA, 201 pp (Nov 1982) PB83-853655 Key Words: Buildings, Seismic design, Standards and codes, Bibliographies This bibliography contains 154 citations concerning seismic design criteria and building codes for various types of non-nuclear structures, principally buildings, and their foundations. The design criteria for seismic protection are discussed both in general and with respect to specific types of structures. Cases of actual damage as assment for earthquake resistant and non-resistant structures are included. Applications to new building construction, particularly in the eastern metropolitan area, are discussed. ### 83-1110 Simple Nonlinear Modelling of Earthquake Response in Torsionally Coupled R/C Structures - A Preliminary Study M. Saiidi College of Engrg., Univ. of Nevada at Reno, Rept. No. COLLEGE OF ENGINEERING-60, NSF/CEE-82035, 82 pp (July 1982) PB83-112821 Key Words: Buildings, Reinforced concrete, Seismic response Results are presented of a study to determine the seismic response of a torsionally coupled building based on multi-degree-of-freedom (MDOF) and single-degree-of-freedom (SDOF) nonlinear models and to develop a simple SDOF nonlinear model to calculate displacement history of structures with eccentric centers of mass and stiffness. #### 83.1111 ## An Automated Design Study of the Economics of Earthquake Resistant Structures F. Naeim Ph.D. Thesis, Univ. of Southern California (1982) Key Words: Earthquake resistant structures, Seismic design, Computer-aided techniques, Buildings, Steel, Reinforced concrete This dissertation presents an automated design approach to the study of the economics of earthquake resistant design. Two automated strength design programs which are developed as part of this research, and a data base of uniform risk relative pseudo velocity response spectra for regions of shallow seismicities, prepared in the University of Southern California (1980), have been utilized in this study. The automated design programs are capable of efficiently producing final designs for steel and reinforced concrete buildings, starting with any arbitrary preliminary design. The programs may be used to design two or three dimensional ductile moment frames, braced frames, shear wall systems, shear wall-frames, and framed tubes. The design of steel structures conforms to the AISC (1978) specification for plastic design, and reinforced concrete design meets the requirements of ACI 318-77 Code. #### 83-1112 ### System Identification Methods for Damage Evaluation of Existing Structures S. Toussi Ph.D. Thesis, Purdue Univ., 171 pp (1982) DA8300968 Key Words: Buildings, Multistory buildings, Natural frequencies, Hysteretic damping, System identification techniques, Earthquake damage The objective of this study is to develop a practical approach for damage assessment of existing structures using structural response data as measured. Although the main emphasis is on the safety evaluation of structures following the occurrence of an earthquake, there is no restriction regarding the use of the approach for structures which have experienced other kinds of loads. In this dissertation, several methods are developed for the identification of inter-story hysteresis behavior of high-rise buildings and the detection of changes in their main natural frequency. Then apparent and meaningful features of the identified hysteresis behaviors are found. Finally, a suitable and practical damage indicator is obtained from and correlated to the extracted features. Because there exist uncertainties in results from using system identification techniques, the third part of this study is devoted to the search for techniques with which such uncertainties can be dealt. ### **TOWERS** ### 83-1113 Time Series Analysis of Cooling Tower Wind Loading D.A. Reed and R.H. Scanlan National Bureau of Standards, Washington, DC 20234, ASCE J. Struc. Engrg., 109 (2), pp 538-554 (Feb 1983) 6 figs, 5 tables, 31 refs Key Words: Towers, Cooling towers, Wind-induced excitation, Time domain method This paper considers full-scale wind velocity and wind pressure time series data collected on two conling towers. ARI-MA time series models are shown to describe these data adequately. Transfer function models in the time domain relating input wind velocity to output wind pressure-difference at these circumferential tower locations are presented and discussed. ### **FOUNDATIONS** ### 83-1114 とのことには、日本のことのなかない。これではないのできませんできます。 ## Effect of Random Loading on Modulus and Damping of Sands H.A.A. Al-Sanad Ph.D. Thesis, Univ. of Maryland, 271 pp (1982) DA8301376 Key Words: Sand, Random excitation, Shear modulus, Damping The two primary dynamic soil properties, namely shear modulus and damping, of three types of dry sand were evaluated in a resonant column device using random vibrations in addition to the conventional sinusoidal vibrations. The difficulty of analyzing random response is overcome by the use of a new method called random decrement technique. A comprehensive testing program covering a wide range of variables was carried out. The damping and modulus were calculated for both the sinusoidal and random vibrations over a wide range of strains. ### 83-1115 ### Rocking of Stender Rigid Bodies Allowed to Uplift I.N. Psycharis and P.C. Jennings Div. of Engrg. and Appl. Science, California Inst. of Tech., Pasadena, CA, Intl. J. Earthquake Engrg. Struc. Dynam., 11 (1), pp 57-76 (Jan/Feb 1983) 12 figs. 25 refs Key Words: Foundations, Seismic excitation, Rocking, Earthquake response, Winkler foundations, Two degree of freedom systems Strong shaking of structures during large earthquakes may result in some cases in partial separation of the base of the structure from the foundation. A simplified problem of this type, the dynamic response of a rocking rigid block allowed to uplift, is examined here. Two foundation models are considered: the Winkler foundation and the much simpler two-spring foundation. It is shown that an equivalence between these two models can be established, so that one can work with the much simpler two-spring foundation. Simple solutions of the equations of motion are developed and simplified methods of analysis are proposed. ### 83-1116 ### Dynamic Compaction of Saturated Granular Media D. Kolymbas Institut f. Bodenmechanik und Felsmechanik, Univ. of Karlsruhe, W. Germany, Mech. Res. Comm., 9 (6), pp 351-358 (Nov/Dec 1982) 2 figs, 6 refs Key Words: Granular materials, Dynamic response, Cyclic loading, Compacting The effort to compact a saturated granular body having a water-permeable part of its boundary is counteracted by two actions: the volumetric stiffness of the grain skeleton and the viscosity of the porewater. Experiments with dry sand show that the resistance to compaction exerted by the volumetric stiffness can be largely overcome by the application of cyclic loading. ### 83-1117 ## A Probabilistic Approach to Seismic Soil-Structure Interaction Analysis Jen-Hwa Chen Ph.D. Thesis, Univ. of California, Berkeley, 161 pp (1982) DA8300453 Key Words: Interaction: soil-structure, Seismic analysis, Random vibration, Probability theory Earthquake motions are so uncertain that their spectral contents are best treated as random events for design purposes. The objective of the investigation reported herein was to develop a probabilistic method of seismic soil-structure interaction analysis which properly accounts for the uncertainty in the spectral contents. Two existing methods of soil-structure interaction analysis were examined. Their ability to consider the uncertainty in spectral contents were found to be qualitative at best. 83-1118 ## Non-Linear Seismic Response Analysis of Soil-Structure Interaction Systems K. Toki and F. Miura Disaster Prevention Research Institute, Kyoto Univ., Uji, Kyoto 611, Japan, Intl. J. Earthquake Engrg. Struc. Dynam., <u>11</u> (1), pp 77-89 (Jan/Feb 1983) 12 figs, 4 tables, 24 refs Key Words: Interaction: soil-structure, Seismic response, Nuclear reactors, Nuclear power plants, Nonlinear response This paper presents an effective analysis procedure for the dynamic soil-structure interaction problem considering not only the sliding and separation phenomena but also the nonlinear behavior of soil by the finite element method. The load transfer method is adopted to carry out dynamic nonlinear response analysis. The method is applied to the response analysis of a nuclear reactor building resting on the ground surface. The effects of nonlinear behavior of soil on the sefety against sliding of the structure are examined. ### HARBORS AND DAMS ### 83-1119 ### Finite Element Analysis of Reservoir Vibration J. Humar and M. Roufaiel Dept. of Civil Engrg., Carleton Univ., Ottawa, Ontario, Canada, ASCE J. Engrg. Mech., 109 (1), pp 215-230 (Feb 1983) 10 figs, 9 refs Key Words: Dams, Seismic design, Finite element technique, Harmonic excitation The finite element method of analysis is applied to the calculation of hydrodynamic pressures in a reservoir impounded by a gravity dam and subjected to a harmonic ground motion. A radiation condition which adequately models the energy loss over a wide range of excitation fre- quency is developed. Finite element solutions are obtained for several reservoir vibration problems. #### 83-1120 ## Dynamic Analysis of Arch Dams Including Hydrodynamic Effects J.F. Hall and A.K. Chopra California Inst. of Tech., Pasadena, CA, ASCE J. Engrg. Mech., 109 (1), pp 149-167 (Feb 1983) 8 figs, 2 tables, 9 refs Key Words: Dams, Earthquake response, Hydrodynamic response A procedure is developed to analyze, under the assumption of linear behavior, the earthquake response of arch dams including hydrodynamic effects. The dam and fluid domain are treated as substructures and modeled with finite elements. ### 83-1121 ## Seismic Stability of the Revelstoke Earthfill Dam K.S. Khilnani, P.M. Byrne, and K.K. Yeung British Columbia Hydro and Power Authority. Revel- British Columbia Hydro and Power Authority, Revelstoke Project, Revelstoke, B.C., Canada, Canadian Geotech, J., 19 (1), pp 63-75 (Feb 1982) 18 figs, 2 tables, 11 refs Key Words: Dams, Seismic response The foundation soil beneath the earthfill section of the proposed Revelstoke dam comprises, in part, a deep silt-clay layer that contains pockets of loose to compact saturated sends. Removal of this material beneath the core of the dam was required for seepage and erosion control. Analyses were performed to determine if considerations of earthquake stability would also require removal of this material beneath the shells. ### **ROADS AND TRACKS** ### 83-1122 Investigation of the Vibrations of Rails (Schwingungsuntersuchungen an Eisenbahnschienen) W. Scholl Institut f. Technische Akustik, TU Berlin, Acustica. 52 (1), pp 10-15 (Dec 1982) 8 figs, 4 refs (In German) Key Words: Railroad tracks, Wave propagation, Sound waves, Vibration analysis A two-dimensional theoretical model was used to describe the wave propagation along rails. It consists of three infinitely long layers representing head, web, and foot of the rail. Using the equations of elastic continua, the propagating modes of such a model were calculated. ### **POWER PLANTS** (Also see No. 1118) ### 83-1123 ### In-Plane Free-Field Response of Actual Sites J.P. Wolf and P. Obernhuber Electrowatt Engrg. Services Ltd., 8022 Zurich, Switzerland, Intl. J. Earthquake Engrg. Struc. Dynam., 11 (1), pp 121-134 (Jan/Feb 1983) 20 figs, 2 tables, 9 refs Key Words: Nuclear power plants, Seismic response, Harmonic response, Transient response To study the characteristic features of the in-plane free-field response, two actual sites of nuclear power plants, a soft and a rock site, are analyzed, by varying the location of the control point and the nature of the wave pattern. Harmonic and transient seismic excitations are examined. ### **OFF-SHORE STRUCTURES** ### 83-1124 とうでは、「一般のないなかない。」では、「ないないない」というできます。 「 ## Analytical Correlation of a Dynamic Brace Buckling Experiment Y. Ghanaat and R.W. Clough ISEC, Inc., San Francisco, CA 94111, Intl. J. Earthquake Engrg. Struc. Dynam., 11 (1), pp 111-120 (Jan/Feb 1983) 13 figs, 7 refs Key Words: Off-shore structures, Drilling platforms, Braces, Dynamic buckling A dynamic response analysis procedure for an x-breced tubular steel offshore platform frame is described, including details of the mathematical model adopted to represent the dynamic buckling behavior of the brace member. Results obtained with this mathematical technique are compared with experimental data. ### 83-1125 ## Model Study of Effects of Damage on the Vibration Properties of Steel Offshore Platforms F. Shahriyar Ph.D. Thesis, Univ. of California, Berkeley, 208 pp (1982) DA8300648 Key Words: Off-shore structures, Drilling platforms, Failure detection, Natural frequencies, Mode shapes Changes in the vibration frequencies and mode shapes of fixed offshore platforms can be used to detect damage. The vibratory properties of a 1/50th scale, three dimensional model possessing the key features of a typical, eight legged, k-braced steel offshore platform were studied considering both damaged and undamaged conditions. In this study, for the first time, quantitative information on mode shapes were utilized leading to improved damage detection capabilities. The scaling considerations, the model and the experimental method are described. The experimental results are complemented with analytical results showing excellent correlation. ### **VEHICLE SYSTEMS** ### SHIPS ### 83-1126 ### Analytical Prediction of Pressures and Forces on a Ship Hull Due to Cavitating Propellers P. Kaplan, J. Bentson, and M. Benatar Hydromechanics, Inc., Plainview, NY, Rept. No. 82-47, 81 pp (Sept 1982) (Presented at the Symposium on Naval Hydrodynamics (14th), Aug 23-27, 1982, Ann Arbor, MI) AD A 121 238 Key Words: Ship hulls, Ship vibration, Cavitation An existing technique for determining free space pressures generated by a cavitating propeller operating in a ship wake かん かいかいい ひゃったったん これがのからのにしか かかかけない にいっかっち 手間 かっさいかける 華 にっかいこう 神 華 てっさいさい に続くこ かんのかん is used as the basic input for determining the pressure distribution on various ship sections. The procedure "revolves establishing a boundary value problem on the ship section and the free surface, with appropriate conformal mapping operations that allow conversion of the problem to a more simplified boundary. ### 83-1127 ### Beam Models for Ship Hull Vibration Analysis J.J. Jensen Dept. of Ocean Engrg., The Technical Univ. of Denmark, DK - 2800 Lyngby, Denmark, Shock Vib. Dig., 15 (2), pp 23-27 (Feb 1983) 27 refs Key Words: Ship hulls, Ship vibration, Beams, Timoshenko theory, Reviews Beam models used for hull vibration analysis are reviewed. The main conclusion drawn is that the Timoshenko beam theory, with a proper definition of the shear coefficient, can accurately predict the lowest vertical hull vibration modes and corresponding natural frequencies. For coupled horizontal-torsional vibrations a realistic modeling of major discontinuities in the hull beam is necessary in order to achieve reliable results. ### 83-1128 Procedures for Conducting Shock Tests on Navy Class HI (High Impact) Shock Machines for Lightweight and Mediumweight Equipments E.W. Clements Naval Res. Lab., Washington, DC, Rept. No. NRL-8631, 19 pp (Sept 30, 1982) AD-A121 051 Key Words: Shipboard equipment response, Shock tests Combet worthiness of Navy shipboard systems and equipment is in large part due to tests conducted on the Navy Class HI (High Impact) Shock Machines for Lightweight and Mediumweight Equipments. These machines are often referred to by the abbreviated names of Lightweight Shock Machine (LWSM) and Mediumweight Shock Machine (MWSM). The validity of tests performed on these machines depends on their being operated properly. This report provides a comprehensive assembly of the rules to be followed and the guides to be observed to achieve consistent, valid tests of Navy equipment by use of the LWSM and MWSM. ### **AIRCRAFT** (Also see Nos. 1152, 1153, 1154, 1155, 1164, 1177, 1190) ### 83-1129 Noise Control for Aircraft. 1975 - November, 1982 (Citations from the International Information Service for the Physics and Engineering Communities Data Base) NTIS, Springfield, VA, 258 pp (Nov 1982) PB83-854414 Key Words: Aircraft noise, Noise reduction, Bibliographies This bibliography contains 255 citations concerning the techniques for studying and predicting aircraft noise. Noise control techniques, including landing trajectories, noise impact and other sources of noise pollution are discussed. Community response to aircraft noise is considered. #### 83-1130 ## Aerodynamic Estimation Techniques for Aerostats and Airships S.P. Jones and J.D. DeLaurier TCOM Corp., Columbia, MD, J. Aircraft, <u>20</u> (2), pp 120-126 (Feb 1983) 5 figs, 2 tables, 22 refs Kay Words: Aircraft, Aerodynamic loads A semiernpirical steady-state model of a finned axisymmetric body is developed and used to compute hull-fin mutual interference factors and cross-flow drag coefficients from wind tunnel data on five aerostats and airships. The results are in general agreement with expectations from theory and provide a basis for predicting aerodynamic coefficients. ### 83-1131 Aircraft Gas Turbine Engines: Noise Reduction and Vibration Control. 1973 - December, 1982 (Citations from Information Services in Mechanical Engineering Data Base) NTIS, Springfield, VA, 185 pp (Dec 1982) PB83-85421 Key Words: Aircraft engines, Gas turbine engines, Noise reduction, Vibration control, Bibliographies This bibliography contains 235 citations concerning the design of aircraft gas turbine engines with respect to noise reduction and vibration control. The aerodynamics of inlet design is considered for several types of engine applications including turbofan, turboprop, and vertical takeoff and land aircraft. ### 83-1132 ## A New Measurement Method for Separating Airborne and Structureborne Aircraft Interior Noise M.C. McGary and W.H. Mayes NASA Langley Res. Ctr., Noise Effects Branch, Hampton, VA 23665, Noise Control Engrg., 20 (1), pp 21-30 (Jan/Feb 1983) 21 figs, 23 refs Key Words: Aircraft noise, Noise measurement, Measurement techniques, Interior noise A new measurement method is presented for separating airborne and structureborne noise in propeller driven aircraft. The theory of the measurement method and the results of two experiments designed to validate the theory are presented. The method is based on the two-microphone cross spectral acoustic intensity measurement method and the theory of sound radiation of plate and thin shell structures. ### 83-1133 ## Theoretical and Experimental Evaluation of Transmission Loss of Cylinders Y.S. Wang, M.J. Crocker, and P.K. Raju Purdue Univ., West Lafayette, IN, AIAA J., <u>21</u> (2), pp 186-192 (Feb 1983) 15 figs, 15 refs Key Words: Aircraft noise, Interior noise, Shells, Cylindrical shells, Statistical energy analysis, Two microphone technique, Fast Fourier transform A light aircraft fuselage was idealized by a cylindrical shell. Its sound transmission loss was evaluated theoretically by using statistical energy analysis (SEA). The parameters used in SEA were obtained theoretically from the wavenumber diagrams using a computer. ### 83-1134 ## High Bypass Ratio Engine Noise Component Separation by Coherence Technique B.N. Shivashankara The Boeing Commercial Airplane Co., Seattle, WA, J. Aircraft, 20 (3), pp 236-242 (Mar 1983) 12 figs, 9 refs Key Words: Aircraft engines, Engine noise, Noise component separation, Signal processing techniques Aft fan, core, and jet noise components of a large high bypass ratio engine were separated by the use of a signal enhancement technique. This technique uses simultaneous signals from three or more microphones that are assumed to have a common correlated part and uncorrelated extraneous noise at each location. This paper includes a description of the technique, its validation by controlled model-scale experiments and examples of results from the full-scale engine test. ### 83-1135 ## Minimum Angular Vibration Design of Airborne Electro-Optical Packages P.W. Whaley Univ. of Nebraska, Lincoln, NB, AIAA J., <u>21</u> (2), pp 277-282 (Feb 1983) 3 figs, 3 tables, 9 refs Key Words: Torsional vibration, Airborne equipment response, Vibration control, Pontryagin's principle Low-level angular vibration disturbances to airborne electrooptical packages can sometimes severely degrade the accuracy of such systems. This paper is an investigation into the possibility of minimizing the angular vibration response of selected points on an optical bench by redistributing the mass. The governing equations are presented in a form suitable for application of the Pontryagin maximum principle with the beam cross-sectional area playing the role of the control function. Angular vibration reduction at the ends of a pinned beam of an order of magnitude are demonstrated. ### 83-1136 Development and Flight Test of an Active Flutter Suppression System for the F-4F with Stores. Part 1. Design of the Active Flutter Suppression System H. Honlinger, D. Mussman, R. Manser, and L.J. Huttsell Air Force Wright Aeronautical Labs., Wright-Patterson AFB, OH, Rept. No. AFWAL-TR-82-3040-PT-1, 91 pp (Sept 1982) AD-A121 485 Key Words: Flutter, Active flutter control, Wing stores, Aircraft wings Extensive research programs have been conducted to investigate the application of active controls for the suppression of wing/store flutter. A flutter suppression system was developed and flight tested on an F-4F aircraft. The control law was designed using optimal control theory to minimize the control surface motion and to provide the required stability margins. #### 83-1137 ## Flight Test Results of an Active Flutter Suppression System J.E. Edwards NASA Langley Res. Ctr., Hampton, VA, J. Aircraft, 20 (3), pp 267-274 (Mar 1983) 15 figs, 1 table, 10 refs Key Words: Active flutter control, Damping Flight flutter test results of the first aeroelastic research wing of NASA's Drones for Aerodynamic and Structural Testing Program are presented. The implementation of the flutter suppression system and the flight test operation are described. The conduct of the flutter testing and the near-real-time damping estimation algorithm are also described in detail. ### 83-1138 ## Active Flutter Suppression Using Optical Output Feedback Digital Controllers Information and Control Systems, Inc., Hampton, VA, Rept. No. NASA-CR-165939, 79 pp (May 1982) N82-32375 Key Words: Flutter, Active flutter control, Digital techniques, Aircraft wings A method for synthesixing digital active flutter suppression controllers using the concept of optimal output feedback is presented. A convergent algorithm is employed to determine constrained control law parameters that minimize an infinite time discrete quadratic performance index. Low order compensator dynamics are included in the control law and the compensator parameters are computed along with the output feedback gain as part of the optimization process. ### 83-1139 ## Crashworthy Airframe Design Concepts: Fabrication and Testing J.D. Cronkhite and V.L. Berry Textron Bell Helicopter, Fort Worth, TX, Rept. No. NASA-CR-3603, 206 pp (Sept 1982) N82-33735 Key Words: Aircraft, Crashworthiness, Floors, Energy absorption, Computer programs Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. ### 83-1140 ### Dynamic Stability of a Buoyant Quad-Rotor Aircraft B.L. Nagabhushan Goodyear Aerospace Corp., Akron, OH, J. Aircraft, <u>20</u> (3), pp 243-249 (Mar 1983) 13 figs, 4 tables, <u>21</u> refs Key Words: Aircraft, Vertical takeoff aircraft, Helicopters, Dynamic stability Stability characteristics of a buoyant quad-rotor aircraft in hover and forward flight are examined by considering linear, state-variable, and nonlinear flight simulation models of such a vehicle configuration. Inherent stability characteristics of the vehicle are analyzed and compared with those of a conventional helicopter and an airship in free flight. ### 83-1141 ## Holographic Interferometry Technique for Rotary Wing Aerodynamics and Noise J.K. Kittleson and Yung H. Yu NASA Ames Res. Ctr., Moffett Field, CA, 15 pp (Nov 3, 1982) AD-A121 347 Key Words: Helicopters, Propeller noise, Aerodynamic noise, Holographic techniques, Interferometers The concepts of holography and holographic interferometry, as applied to the visualization and measurement of the three- dimensional flow field near a rotor tip, are previewed, and initial experimental results of investigations of local shock structures and tip vortices behind the blade are presented. An additional method to visualize the flow in a three-dimensional manner is demonstrated, and finally, a method to quantitatively measure the three-dimensional flow, which will provide the necessary information to help improve helicopter performance and reduce noise, is introduced. developed. A method for parameterizing the model structure to represent a particular rotorcraft is defined. The generic modeling methodology, the development of the propulsion system and the rotor/fuselage models, and the formulation of the resulting coupled rotor/propulsion system model are described. ### 83-1142 ## The Influence of Helicopter Operating Conditions on Rotor Noise Characteristics and Measurement Repeatability M.R.P. Law and J. Williams Royal Aircraft Establishment, Farnborough, UK, Rept. No. RAE-TR-82030, DRIC-BR-84664, 63 pp (Apr 1982) AD-A121 426 Key Words: Helicopter noise, Noise generation, Noise measurement Extensive measurements of noise characteristics and associated flight-path data have been made on several helicopters in various operational modes, with repeated flight trajectories over longitudinal and lateral arrays of ground-based microphones under quiet airfield conditions. This analysis presents some experimental results from Lynx aircraft with standard rotor configurations, being concerned primarily with the influence of different operating procedures on both main-rotor and tail-rotor noise characteristics and on measurement repeatability during level-flight, oblique landing-approach, and oblique takeoff. ### 83-1143 ## Development of a Rotorcraft. Propulsion Dynamics Interface Analysis, Volume 1 R. Hull Systems Control, Inc. (VT), Palo Alto, CA, Rept. No. NASA-CR-166380, 147 pp (Aug 1982) N82-32368 Key Words: Helicopters, Rotors, Propulsion systems, Coupled response The details of the modeling process and its implementation approach are presented. A generic methodology and model structure for performing coupled propulsion/rotor response analysis that is applicable to a variety of rotocraft types was ### 83-1144 ### Development of a Rotorcraft. Propulsion Dynamics Interface Analysis, Volume 2 R. Hull Systems Control Inc. (VT), Palo Alto, CA, Rept. No. NASA-CR-166381, 56 pp (Aug 1982) N82-32369 Key Words: Helicopters, Rotors, Propulsion systems, Coupled response A study was conducted to establish a coupled rotor/propulsion analysis that would be applicable to a wide range of rotorcraft systems. Documentation of the computer models developed is presented. ### 83-1145 ## Rotorcraft Blade Mode Damping Identification from Random Responses Using a Recursive Maximum Likelihood Algorithm J.A. Molusis Ashford, CT, Rept. No. NASA-CR-3600, 49 pp (Sept 1982) N82-33373 Key Words: Helicopters, Propeller blades, Damping coefficients, Modal analysis, System identification techniques An on line technique is presented for the identification of rotor blade modal damping and frequency from rotorcraft random response test data. The identification technique is based upon a recursive maximum likelihood (RML) algorithm, which is demonstrated to have excellent convergence characteristics in the presence of random measurement noise and random excitation. The RML technique requires virtually no user interaction, provides accurate confidence bands on the parameter estimates, and can be used for continuous monitoring of modal damping during wind tunnel or flight testing. Results are presented from simulation random response data which quantify the identified parameter convergence behavior for various levels of random excitation. ### 83-1146 ## Further Advances in Helicopter Vibration Control G.T.S. Done The City University, Northampton Square, London EC1V OHB, UK, Shock Vib. Dig., 15 (2), pp 17-22 (Feb 1983) 2 figs, 52 refs Key Words: Helicopter vibration, Vibration control, Reviews This article describes advances that have been made since 1979 in the control of helicopter vibration and reviews the associated literature. Vibration isolation, absorbers, direct rotor control, structural design and modification, and vibration studies are considered. ### 83-1147 ## Design of Helicopter Rotor Blades for Optimum Dynamic Characteristics D.A. Peters, T.Ko, A.E. Korn, and M.P. Rossow Dept. of Mech. Engrg., Washington Univ., St. Louis, MO, Rept. No. SASR-1, NASA-CR-169352, 33 pp (Sept 15, 1982) N82-33374 Key Words: Helicopters, Propeller blades, Mass coefficients, Stiffness coefficients, Design techniques The possibilities and the limitations of tailoring blade mass and stiffness distributions to give an optimum blade design in terms of weight, inertia, and dynamic characteristics are investigated. Changes in mass or stiffness distribution used to place rotor frequencies at desired locations are determined. Theoretical limits to the amount of frequency shift are established. Realistic constraints on blade properties besed on weight, mass moment of inertia size, strength, and stability are formulated. ### MISSILES AND SPACECRAFT (Also see Nos. 1161, 1270) ### 83-1148 ## Dynamic Wind Tunnel Tests of the Simulated Shuttle External Cable Trays K.J. Orlik-Rückemann and J.G. LaBerge National Aeronautical Establishment, National Res. Council of Canada, Ontario, Canada, J. Spacecraft Rockets, <u>20</u> (1), pp 5-10 (Jan/Feb 1983) 20 figs, 8 refs Key Words: Space shuttles, Cable trays, Wind tunnel test-ing Oscillatory pitching and plunging experiments were performed on models of the cable trays employed on the external tank of the Space Shuttle. The models were mounted transversally to the flow to simulate the significant local cross flows that can be expected as a result of the effects of the bow shock around the nose of the solid rocket booster and the associated flow separation. Several cross sections of the trays were investigated and the surface of the external tank was simulated by a ground plane. The oscillatory experiments were supplemented by some flow visualization studies. ### 83-1149 ## Vibrational Analysis in Aerodynamics. 1970 - November, 1982 (Citations from the NTIS Data Base) NTIS, Springfield, VA, 238 pp (Nov 1982) PB83-854984 Key Words: Spacecraft, Helicopters, Aircraft, Flutter, Bibliographies This bibliography contains 185 citations concerning excitation and analysis techniques for flight flutter tests. Although fixed-wing aircraft, space flight vehicles, VTOL and V/STOL vehicles are included, helicopter generated vibration analysis is emphasized in this bibliography. Among the veriations of flutter included are unsteady airloads, fluidelastic vibration, rotor blade in forward flight, turbomachine blades, composite wings, response of re-entry vehicles, tail vibration, hingeless helicopter rotors and hinge-type, propeller whirl and SST related vibration. 以及是各种的人,但是可以是否是一种的人的人,但是是一种的人的人的,但是是一种的人的人的人,但是是一种的人的人们们的人们们是一种的人们们们们的人们们们们们们们们们们们们们们们们们们们们们们们们们们们们们 ### 83-1150 ## Vibrational Analysis in Aerodynamics. 1972 - November, 1982 (Citations from the International Aerospace Abstracts Data Base) NTIS, Springfield, VA, 158 pp (Nov 1982) PB83-854976 Key Words: Spacecraft, Helicopters, Aircraft, Flutter, Bibliographies This bibliography contains 144 citations concerned with design and performance relative to aerodynamic vibration. Among the topics discussed are torsion blade flutter; vibration generated by rudders, rotor blades, panels, air foils; vortex sheddings; load control; and helicopter gust response flutter. Aircraft vibrational analyses by means of analog com- puter simulation, auto-flight control systems, and structural dynamics of aircraft are included with consideration for flight vehicle vibration control and reduction. ### 83-1151 ## Design of a Hydrodynamic Support System for the Saturn V Launch Vehicle: A Case Problem R.A. Hirsch AAI Corp., Cockeysville, MD, ASME Paper No. 82-WA/DE-29 Key Words: Launchers, Spacecraft, Dynamic tests A hydrodynamic support system to be used in ground dynamic testing of the Saturn V launch vehicle was designed in 1965. A design review team uncovered a serious flaw in the support system concept. This paper presents the details of the analysis and describes how the system was subsequently modified. ### **BIOLOGICAL SYSTEMS** ### HUMAN ### 83-1152 ### USAF Bioenvironmental Noise Data Handbook. Volume 157, KC-10A In-Flight Crew Noise H.K. Hille Air Force Aerospace Medical Res. Lab., Wright-Patterson AFB, OH, Rept. No. AMRL-TR-75-50-VOL-157, 18 pp (Sept 1982) AD-A120 507 Key Words: Aircraft noise, Interior noise, Human response The KC-10A is a standard USAF tanker-transport aircraft with high-speed, high altitude refueling and long range transport capability. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this helicopter during normal flight operations. ### 83-1153 ### USAF Bioenvironmental Noise Data Handbook. Volume 150, C-140 In-Flight Crew Noise H.K. Hille Air Force Aerospace Medical Res. Lab., Wright-Patterson AFB, OH, Rept. No. AMRL-TR-75-50-VOL-150, 18 pp (Sept 1982) AD-A120 508 Key Words: Aircraft noise, Interior noise, Human response The C-140 is a USAF transport aircraft used for operational support. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this aircraft during normal flight operations. Data are reported for seven locations in a wide variety of physical and psychoacoustic measures. ### 83-1154 ### USAF Bioenvironmental Noise Data Handbook. Volume 152. C-12A In-Flight Crew Noise H.K. Hille Air Force Aerospace Medical Res. Lab., Wright-Patterson AFB, OH, Rept. No. AMRL-TR-75-50-VOL-152, 18 pp (Sept 1982) AD-A120 509 Key Words: Aircraft noise, Noise reduction, Human response The C-12A is a military version of the Beechcraft Super King Air 200. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this aircraft during normal flight operations. ### 83-1155 ### USAF Bioenvironmental Noise Data Handbook, Volume 155, CH-3 In-Flight Crew Noise H.K. Hille Air Force Aerospace Medical Res. Lab., Wright-Patterson AFB, OH, Rept. No. AMRL-TR-75-50-VOL-155, 18 pp (Sept 1982) AD-A120 791 Key Words: Helicopter noise, Interior noise, Human response The CH-3 is a USAF tactical combat transport helicopter. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this helicopter during normal flight operations. ### **MECHANICAL COMPONENTS** ### **ABSORBERS AND ISOLATORS** (Also see Nos. 1156, 1235) ### 83-1156 ### Probabilistic Optimum Base Isolation of Structures M.C. Constantinou and I.G. Tadjbakhsh Rensselaer Polytechnic Inst., Troy, NY, ASCE J. Struc. Engrg., 109 (3), pp 676-688 (Mar 1983) 5 figs, 4 tables, 14 refs Key Words: Buildings, Base isolation, Earthquake resistant structures The problem of the optimal base isolation system of multistory shear type buildings has been considered in a probabilistic sense. For white noise ground accelerations the response of the structure relative to the base was minimized subject to constraints on the maximum displacements of the base. ### 83-1157 ### A Study of Energy Absorbing Assismic Base Isolation Systems S.B. Hodder Ph.D. Thesis, Univ. of California, Berkeley, 154 pp (1982) DA8300532 Key Words: Seismic isolation, Base isolation, Seismic design The use of base isolation as an assismic design strategy can be a very effective means of providing structural protection during strong earthquakes. In this approach, significant energy absorbing capacity must be provided at the base of the structure in order to limit the relative displacement demands on the isolation system. The recently proposed combination lead/rubber bearing system, which incorporates this energy absorbing capacity directly into the isolation bearings, is the subject of this research. #### 83.1158 ### A Friction Damped Base Isolation System with Fail-Safe Characteristics J.M. Kelly and K.E. Beucke Univ. of California, Berkeley, CA, Intl. J. Earthquake Engrg. Struc. Dynam., <u>11</u> (1), pp 33-56 (Jan/Feb 1983) 16 figs, 2 tables, 13 refs Key Words: Base isolation, Elastomeric bearings, Hysteretic damping, Buildings, Seismic response, Experimental test data An experimental study of a Coulomb friction damped assismic base isolation system with fail-safe characteristics is described. The base isolation system utilized commercially made natural rubber bearings and a skid system which comes into operation at preset-levels of relative horizontal displacement between the structure and the foundation. The fail-safe skid provides hijsteretic damping and prevents failure of the isolation system in the event of displacements larger than those assumed in the original design. ### 83-1159 ### Use of Absorbers in Reducing Footbridge Vibrations R.T. Jones and A.J. Pretlove Structures Dept., RAE Farnborough, UK, Proc., Dynam. Vib. Isolation and Absorption Conf., Sept 8, 1982, Univ. of Southampton, UK, pp 7-20, 13 figs, 2 tables, 9 refs Key Words: Dynamic absorbers, Suspension bridges Extensive work is reported in developing tuned vibration absorbers for modern footbridges. The problem of low frequency footbridges was not solved by altering the mass and stiffness properties of the bridge. The problem is, in fact, a classic one in vibration control for which the provision of additional damping is the solution. Several different methods of adding to the damping of bridge vibrations were considered, and on the grounds of effectiveness, low cost and ease of maintenance the dynamic vibration absorber was chosen for further research, design and development. ### 83-1160 ## Reduction of Cantilever Vibration by a Cantilever Absorber N.G. Stephen, J.B. Hunt, and D.P. Gao Dept. of Mech. Engrg., Univ. of Southampton, UK, Proc., Dynam. Vib. Isolation and Absorption Conf., Sept 8, 1982, Univ. of Southampton, UK, pp 71-79, 9 figs, 1 ref Key Words: Absrobers (equipment), Beams The purpose of this paper is to describe work in progress on a novel design of vibration absorber, specifically intended for the suppression of lateral vibration of beams. The design considered here is intended to overcome the single frequency limitation of the conventional absorber and consists of an auxiliary beam attached to the free end of a cantilever beam which is assumed to be part hollow. ### 83-1161 ## Study of the Evolution of Structural Acoustic Design Guides, Volume 2 B.L. Clarkson, R.J. Pope, and M.F. Ranky Southampton Univ., UK, Rept. No. ISVR-TR-3-2-V-L-2, ESA-CR(P)-1609-V-2, 83 pp (June 1981) N82-32784 Key Words: Mo: ntings, Equipment mounts, Spacecraft equipment respons: The vibration levels at equipment mounting points on satellite platforms, including the case of several simulated boxes on a platform connected to a central unstiffened cylinder were studied. ### 83-1162 ## Shock Transmission Properties of Selected Packaging Materials (Untersuchung zum Stossubertragungsverhalten ausgewählter Verpackungen) W, Fiedler and H,-J, Hage VEB Kombinat Robotron-Messelektronik "Otto Schön" Dresden, German Dem. Rep., Feingerätetechnik, 31 (11), pp 483-484 (Nov 1982) 4 figs, 1 table, 2 refs (In German) Key Words: Shock response spectra, Packaging materials Shock transmission properties of elastic cushions are determined by means of shock spectrum analysis. The dependence of these shock transmission properties on cushion material, cushion configuration and excitation acceleration is given. ### **BLADES** ### 83-1163 ## The Dynamic Flexural Response of Propeller Blades S.Z. Djordjevic Dept. of Aerospace Engrg., Pennsylvunia State Univ., University Park, PA, Rept. No. NASA-CR-169318, 226 pp (Nov 1982) N82-32313 Key Words: Blades, Propeller blades, Flexural response The determination of the torsional constants of three blade models having NACA four-digit symmetrical airfoil cross sections is presented. Values were obtained for these models analytically and experimentally. Results were also obtained for three other models having rectangular, elliptical, and parabolic cross sections. Complete model analyses were performed for five blade models. ### 83-1164 ## Aeroelastic Stability of Rotor Blades Using Finite Element Analysis I. Chopra and N. Sivaneri Joint Inst. of Aeronautics and Acoustics, Stanford Univ., Stanford, CA, Rept. No. NASA-CR-166389, 119 pp (Aug 1982) N82-32342 Key Words: Helicopters, Blades, Propeller blades, Flutter, Finite element technique The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. ### 83-1165 ### Three-Dimensional Aerodynamic Characteristics of Oscillating Supersonic and Transonic Annular Cascades M. Namba and A. Ishikawa Dept. of Aeronautical Engrg., Kyushu Univ., Fukuoka, Japan, J. Engrg. Power, Trans. ASME, <u>105</u> (1), pp 138-146 (Jan 1983) 11 figs, 6 refs • Key Words: Blades, Cascades, Aerodynamic loads, Flutter A lifting surface theory is developed for unsteady threedimensional flow in rotating subsonic, transonic and supersonic annular cascades with fluctuating blade loadings. Application of a finite radial eigenfunction series approximation not only affords a clear insight into the three-dimensional structures of acoustic fields but also provides mathematical expressions advantageous to numerical work. The theory is applied to oscillating blades. Numerical examples are presented to demonstrate three-dimensional effects on aerodynamic characteristics. ### 83-1166 ### Response Sensitivity of Typical Aircraft Jet Engine Fan Blade-Like Structures to Bird Impacts D.P. Bauer and R.S. Bertke Aircraft Engine Business Group, General Electric Co., Cincinnati, OH, Rept. No. AFWAL-TR-82-2045, 49 pp (May 1982) AD-A119 974 Key Words: Blades, Fan blades, Aircraft, Bird strikes The response sensitivity of jet engine fan blade-like structures to the details of impact loading were studied. In particular, impacts of birds and ice on jet engines are difficult to model analytically. This report provides guidance in determining the spatial and temporal loading parameters that must be most accurately modeled in a coupled load-response analysis. ### **BEARINGS** ### 83-1167 ## Effect of Bearing Bushing Elasticity on the Stability of Plain Bearings (Stabilitätseigenschaften von Gleitlagern bei Berücksichtigung der Lagerschalenelastizität) M. Qiande, D.-C. Han, and J. Glienicke Beijing Institute of Technology at the Inst. of Machine Construction Science of the Univ. of Karlsruhe, Karlsruhe, Fed. Rep. Germany, Konstruktion, 35 (2), pp 45-52 (Feb 1983) 12 figs, 9 refs (In German) Key Words: Bearings, Plain bearings, Bushings, Elastic properties The authors investigate the effect of bearing bushing elasticity on the static and dynamic characteristics, as well as stability of plain bearings, at high journal velocities and high static loads. ### 83-1168 ### Dynamic Characteristics of Tilting Pad Gas Journal Bearing Supported by Rotary Spring H. Izumi Mech. Engrg. Res. Lab., Hitachi Ltd., 502, Kandatsu-Machi, Tsuchiura-shi, Ibaraki 300, Japan, Bull. JSME, 26 (211), pp 125-131 (Jan 1983) 12 figs, 3 refs Key Words: Bearings, Tilting pad bearings, Gas bearings, Elastic foundations Experimental and theoretical research has been conducted to explain the dynamic characteristics of a tilting pad gas journal bearing supported by a rotary spring. Experimental results on the effects of the moment of inertia of the pad and the bearing clearance are compared with theoretical calculations by the frequency response method to confirm that the theory is effective to predict the dynamic characteristics of this kind of bearing. ### 83-1169 Influence of Gas Inertia Forces Generated Within the Stabilizing Restrictor on Dynamic Characteristics of Externally Pressurized Thrust Gas Bearings (2nd Report, Case of Turbulent Flow at the Capillary Restriction) Y. Haruyama, T. Kazamaki, H. Mori, and K. Nakagawa Toyama Univ., 1-1, Nakagawa-Sonomachi, Takaoka, Japan, Bull. JSME, <u>26</u> (211), pp 117-124 (Jan 1983) 9 figs, 4 refs Key Words: Bearings, Gas bearings, Stiffness coefficients, Demping coefficients, Inertial forces The influence of the gas inertia forces generated within the stabilizing restrictor in capillary form in the case of a laminar flow was previously reported. In this paper the inertia effect generated within the capillary restricted part in the case of a turbulent flow is investigated. ### **GEARS** (Also see No. 1248) ### 83-1170 The Design of Quiet and Nonvibrating Involute Special Gears (Auslegung evolventischer Sonderverzahnungen fur schwingungs- und gerauscharmen Lauf) M. Weck Laboratorium f. Werkzeugmaschinen und Betriebslehre RWTH, Aachen, Fed. Rep. Germany, Industrie Anzeiger, 105 (13), pp 32-37 (1983), 12 figs, 5 refs (In German) Key Words: Gears, Design techniques A procedure for the design of quiet, nonvibrating gears is described. It is shown that for any load conditions gear geometry has a considerable effect on the intensity of vibration and noise. Also, limiting quantities of the profile overlap are described, showing that they are independent of the size of the gear. ### 83-1171 ## The Electro-Magnetic Graduation Harmonic Analysis Measuring Technique Tsao Lin Hsiang, et al Chinese J. of Sci. Instrument, <u>3</u> (2), pp 177-184 (1982) CSTA No. 681-82.29 Key Words: Gears, Harmonic analysis, Measurement techniques The harmonic analysis measuring technique based on technology of the electro-magnetic graduation is given. Utilizing this technique, the dynamic errors of cylindrical external gears, worm and wheel pairs or gear trains can be measured. The dynamic errors of cylindrical internal gears or bevel gears can also be measured by attachment of a reference gear bracket. ### 83-1172 Study on Bending Fatigue Strength of Helical Gears (3rd Report, Mechanism of Bending Fatigue Breakage) S. Oda and T. Koide Tottori Univ., 4-101 Minami, Koyama-cho, Tottori, Japan, Bull. JSME, <u>26</u> (211), pp 146-153 (Jan 1983) 21 figs, 7 refs Key Words: Gears, Gear teeth, Helical gears, Fatigue life, Crack propagation The relationship between stress distribution on root fillet and crack initiation and propagation in helical gears, thin rim gear teeth and cantilever plates were examined and the mechanism of bending fatigue breakage of helical gears was investigated. It was found that a crack of helical gear teeth occurs at the position of maximum root stress on the tensile fillet and the directions of crack propagation differ in each normal section. Existing testing methods of bending strength, for helical gear teeth were compared on the basis of the experimental results. ### 83-1173 Study on Bending Fatigue Strength of Bevel Gears (2nd Report, Bending Fatigue Strength of Straight Bevel Gears of Gleason Type) S. Oda, T. Koide, and K. Higuchi Tottori Univ., 4-101 Minami, Koyama-cho, Tottori, Japan, Bull. JSME, <u>26</u> (211), pp 140-145 (Jan 1983) 15 figs, 9 refs Key Words: Gears, Bevel gears, Fatigue life, Fatigue tests Bending fatigue strength and bending fatigue breakage of straight bevel gears of the Gleason type were investigated in bending fatigue tests (Wöhler method) using a bevel gear pulsator of the hydraulic type. The bending fatigue limit loads were also determined. Existing equations of the bending strength for straight bevel gears were compared on the basis of the experimental results. ### **FASTENERS** ### 83-1174 Conveyor System Bolt Failure Analysis S.H. McCutcheon and R.E. Waaser E.I. DuPont de Nemours & Co., Aiken, SC, ASME Paper No. 82-WA/DE-30 Key Words: Bolts, Failure analysis, Fatigue life, Conveyors, Nuclear reactors An analysis of a broken bolt, discovered during a routine preoperational inspection on a conveyor system which was to have been used for transporting irradiated nuclear fuel assemblies to a storage basin, revealed that the bolt, as well as other components of the system, was susceptible to fatigue failure. The steps necessary for a complete evaluation of equipment used beyond the design life are illustrated in the analysis of this failure. 83-1175 ## The Crack-Free Life Prediction for Structural Joints under Constant Amplitude Loads Xue Jing Chuan and Yang Yu Gong J. of Chem. Indus. and Engrg., 2, p 65 (1982) CSTA No. 624-82.69 Key Words: Joints (junctions), Rivets, Fatigue life This paper briefly describes a method of detailed designing and predicting the fatigue life for structural joints under constant amplitude loads by means of the stress severity factor concept. 83-1176 ### Vibratory Stress Relief of Mild Steel Weldments S. Shankar Ph.D. Thesis, Oregon Graduate Center, 130 pp (1982) DA8300030 Key Words: Welded joints, Resonant frequencies The influence of resonant and sub-resonant frequency vibration on the longitudinal residual stresses in A-36 mild steel weldments has been studied. Residual stress analysis was carried out using sectioning, x-ray and blind-hole-drilling techniques. The hole-drilling method was modified to take into account the effect of local plastic yielding due to stress concentration and the machining stresses, with a resultant accuracy comparable to that obtained by the sectioning method. 83-1177 ## Fatigue Sensitivity of Composite Structure for Fighter Aircraft L.L. Jeans, G.C. Grimes, and H.P. Kan Northrop Corp., Hawthorne, CA, J. Aircraft, 20 (2), pp 102-110 (Feb 1983) 12 figs, 2 tables, 9 refs Key Words: Joints (junctions), Aircraft wings, Aircraft, Composite structures, Fatigue life A spectrum sensitivity study was conducted on chordwise splices in a fighter aircraft composite wing. Composite-to-metal bolted and bonded joints were used to experimentally determine their fatigue sensitivity to spectrum loading and environmental content. ### STRUCTURAL COMPONENTS ### **CABLES** 83-1178 ### Free Vibration of Parabolic Cables A.S. Veletsos and G.R. Darbre Rice Univ., Houston, TX 77251, ASCE J. Struc. Engrg., 109 (2), pp 503-519 (Feb 1983) 8 figs, 7 refs Key Words: Cables, Natural frequencies, Mode shapes Salient features of the free vibration of simply supported, inclined parabolic cables are examined, and simple approximate expressions are presented with the aid of which the complete spectrum of natural frequencies can be determined readily. Closed-form expressions for several infinite series involving integrals of the natural modes of the cable are given which are of value in analyses of dynamic response. ### **BARS AND RODS** 83-1179 ### Wave Propagation in a Straight Elastic Rod Subjected to Initial Finite Extension and Twist G. Eason Dept. of Mathematics, University of Strathclyde, Glasgow, UK, Arch. Mech., <u>33</u> (4), pp 541-563 (1981) 3 figs, 7 refs Key Words: Rods, Wave propagation The propagation of waves in a straight elastic rod subjected to an initial finite extension and twist is considered. The basic equations due to Green and Laws are assumed. It is found that effects arising from the initial twist may be important; in particular, they give a linking between certain of the modes. Some numerical results are presented in graphical form. graphical fashion as a function of the governing geometric and mechanical parameter. ### **BEAMS** (Also see No. 1127) ### 83-1180 ### The Design of Beams on Winkler-Pasternak Foundations for Minimum Dynamic Response and Maximum Eigenfrequency S. Adali National Res. Inst. for Mathematical Sciences, CSIR, P.O. Box 395, Pretoria, Rep. of South Africa, Theoretique et Appliquee, <u>1</u> (6), pp 975-993 (1982) 9 figs, 3 tables, 33 refs Key Words: Beams, Winkler foundations, Pasternak foundations, Natural frequencies, Optimum design The profile of a beam of rectangular cross section supported by a Winkler-Pasternak foundation is determined which will minimize the dynamic response of the beam or maximize its fundamental eigenfrequency. The dynamic response is defined either as the maximum dynamic deflection or the maximum dynamic normal stress when the beam is subject to a periodic dynamic load. To obtain the optimal designs, the methods of mathematical programming are employed, the area function being approximated by constant or linear splines on specified partitions. ### 83-1181 ### Vibrations of Double-Span Uniform Beams Subject to an Axial Force P.A.A. Laura, G.S. Sarmiento, and A.N. Bergmann Inst. of Appl. Mechanics, 8111 Puerto Belgrano Naval Base, Argentina, Appl. Acoust., <u>16</u> (2), pp 95-104 (Mar 1983) 7 figs, 2 refs Key Words: Beams, Flexural vibration, Natural frequencies, Axial force This study deals with the determination of natural frequencies of transverse vibrations of simply supported, clamped, and clamped-simply supported beams with an intermediate support subject to an axial force. Results are presented in ### 83-1182 ## Attitude and Vibration Control of a Large Flexible Space-Based Antenna S.M. Joshi and G.L. Goglia Dept. of Mech. Engrg. and Mechanics, Old Dominion Univ., Norfolk, VA, Rept. No. NASA-CR-169419, 33 pp (Sept 1982) N82-33422 Key Words: Spacecraft antennas, Vibration control The problem of control systems synthesis is considered for controlling the rigid body attitude and elastic motion of a large deployable space based antenna. Two methods for control systems synthesis are considered. The first method utilizes the stability and robustness properties of the controller consisting of torque actuators and collocated attitude and rate sensors. The second method is based on the linear quadratic Gaussian control theory. ### 83-1183 ## Attitude and Vibration Control of a Large Flexible' Space-Based Antenna S.M. Joshi Old Dominion Univ., Norfolk, VA, Rept. No. NASA-CR-165979, 32 pp (Aug 1982) N83-10110 Key Words: Antennas, Spacecraft antennas, Vibration con- Control systems synthesis is considered for controlling the rigid body attitude and elastic motion of a large deployable space-based antenna. Two methods for control systems synthesis are considered. The first method utilizes the stability and robustness properties of the controller consisting of torque actuators and collocated attitude and rate sensors. The second method is based on the linear-quadratic-Gaussian control theory. ### 83-1184 ## Geometrically Nonlinear Mode Approximations for Impulsively Loaded Homogeneous Viscous Beams and Frames P.D. Griffin and J.B. Martin Dept. of Civil Engrg., Univ. of Cape Town, South Africa, Intl. J. Mech. Sci., <u>25</u> (1), pp 15-26 (1983) 6 figs, 23 refs Key Words: Beams, Frames, Viacous medium, Impulse response, Mode shapes Homogeneous viscous relations are used to model rigidvisco plastic materials under impulsive loading conditions, and offer computational advantages because of their homogeneity and the absence of a rigid phase. This paper extends earlier work on the analysis of geometrically linear problems to the practically more realistic case of structures undergoing large displacements. The well established instantaneous mode approximation technique is used, together with the implementation of a new algorithm for the determination of the instantaneous mode shape. Dept. of Mech. Engrg., Tohoku Univ., Sendai 980, Japan, Intl. J. Earthquake Engrg. Struc. Dynam., 11 (1), pp 21-31 (Jan/Feb 1983) 8 figs. 10 refs Key Words: Flexural vibration, Transient response, Columns Elastic half-space, Seismic response An analysis is presented of the transient flexural vibrations of an elastic column supported by an elastic half-space under the condition that an arbitrarily shaped free-field lateral acceleration and displacement are given as inputs. Applying Laplace transformations with respect to time and numerical inverse Laplace transformations, the time histories of the column acceleration at the interface and free end, and the column and half-space displacement distributions are obtained. ### FRAMES AND ARCHES (Also see Nos. 1184, 1274) ### 83-1185 ## Static, Dynamic and Stability Analysis of Structures Composed of Tapered Beams D.L. Karabalis and D.E. Beskos Dept. of Civil and Mineral Engrg., Univ. of Minnesota, Minneapolis, MN 55455, Computers Struc., <u>16</u> (6), pp 731-748 (1983) 21 figs, 49 refs Key Words: Beams, Variable cross section, Finite element technique A new numerical method is proposed for the static, dynamic and stability analysis of linear elastic plane structures consisting of beams with constant width and variable depth. It is a finite element method based on an exact flexural and axial stiffness matrix and approximate consistent mass and geometric stiffness matrices for a linearly tapered beam element with constant width. Use of this method provides the exact solution of the static problem with just one element per member of a structure with linearly tapered beams and excellent approximate solutions of the dynamic and stability problems with very few elements per member of the structure in a computationally very efficient way. ### 83-1187 ### Dynamics of Frames with Axial Constraints W. Weaver, Jr. and M. Eisenberger Dept. of Civil Engrg., Stanford Univ., Stanford, CA 94305, ASCE J. Struc. Engrg., 109 (3), pp 773-784 (Mar 1983) 8 figs, 1 table, 13 refs Key Words: Framed structures, Joints (junctions), Dynamic analysis The number of degrees of freedom for the dynamic analysis of plane and space frames may be considerably reduced by introducing axial constraints. Determination of the rank and basis of the constraint matrix by Gauss-Jordan elimination with pivoting leads to automatic selection of the best set of dependent and independent joint translations. A transformation of the equations of motion to generalized coordinates produces a reduced set of equations that may be solved for the dynamic response of the independent joint translations. ### **COLUMNS** ### 83-1186 Transient Flexural Vibrations of an Elastic Column Supported by an Elastic Half-Space H, Wada ### **PANELS** ### 83-1188 Flutter of Orthotropic Panels in Supersonic Flow Using Affine Transformations G.A. Oyibo Rensselaer Polytechnic Inst., Troy, NY, AIAA J., 21 (2), pp 283-289 (Feb 1983) 8 figs, 24 refs Key Words: Panels, Rectangular panels, Flutter Affine transformations are used in analyzing the flutter problem of rectangular simply supported orthotropic panels subjected to supersonic flow over one surface. With the help of certain defined characteristic and bounded quantities a comprehensive solution, which has the isotropic panels solution as a subset, is found to this problem. The physics of this aeroelastic problem is thus clearly exposed by showing how the aerodynamic and the elastic forces interact to produce the panel flutter phenomenon. ### 83-1189 ## Vibrations of Axially Loaded Stiffened Cylindrical Panels with Elastic Restraints J. Singer, O. Rand, and A. Rosen Technion - Israel Inst. of Tech., Haifa, Rept. No. TAE-439, 54 pp (July 1981) N82-33730 Key Words: Panels, Elastic properties, Computer programs The vibrations and buckling of preloaded stiffened cylindrical panels with different boundary conditions, including elastic restraints are analyzed. The analysis uses linear, smeared stiffener, Flugge type theory. A computer program VIPAL was developed and its details are presented. ### 83-1190 ## Sonic Fatigue of Advanced Composite Panels in Thermal Environments M.J. Jacobson Northrop Corp., Hawthorne, CA, J. Aircraft, <u>20</u> (3), pp 282-288 (Mar 1983) 9 figs, 4 tables, 12 refs Key Words: Panels, Composite structures, Aircraft, Acoustic fatigue Combined analytic and experimental activities were performed to evaluate an advanced structural design concept for advanced composite fuselege panels suitable for V/STOL aircraft. An existing sonic fatigue analysis procedure was evaluated and both flat and slightly curved multibay crossstiffened panels with graphite-epoxy skins were designed, analyzed, fabricated, and tested. ### **PLATES** #### 83.1191 ## Hamilton's Law Applied to the Non-Stationary Elastodynamics of Plates C.D. Bailey Dept. of Aeronautical and Astronautical Engrg., The Ohio State Univ., Columbus, OH 43210, Mech. Res. Comm., 9 (6), pp 381-389 (Nov/Dec 1982) 4 figs, 21 refs Key Words: Plates, Elastodynamic response Hamilton's law of varying action is applied to obtain direct analytical solutions to the non-stationary, non-conservative and conservative motion of plates with prescribed initial conditions. By direct analytical solution is meant analytical solutions generated directly from the law of varying action without any use or reference to the theory of differential or integral equations. Calculated results are compared to experimental results for two separate sets of initial conditions. ### 83.1192 ## A Finite Element Procedure for Studying the Acoustic Radiation of a Vibrating Plate S.H. Sung GM Labs., Warren, MI, ASME Paper No. 82-WA/ NCA-3 Key Words: Plates, Vibrating structures, Elastic waves, Sound propagation, Finite element technique A finite element procedure has been developed for studying the acoustic radiation associated with a vibrating plate. With this procedure, the detailed distribution of acoustic pressure and intensity at a vibrating surface can be calculated. The finite element procedure of this paper is verified by computing the acoustic radiation efficiency for a baffled plate vibrating at its resonances. ### SHELLS (Also see No. 1133) ### 83-1193 Transient Response of an Inhomogeneous Elastic Hollow Cylinder to an Impulsive Line SH-Source K, Watanabe Dept. of Mech. Engrg., Technical Coilege, Yamagata Univ., Yonezawa, Yamagata 992, Japan, Bull. JSME, 26 (211), pp 30-34 (Jan 1983) 5 figs, 13 refs Key Words: Shells, Cylindrical shells, Transient response This paper considers the two-dimensional wave propagation in an inhomogeneous elastic hollow cylinder, An impulsive line SH-source is placed in the hollow cylinder. An exact solution is obtained in closed form with an application of the ray expansion technique. ### 83-1194 ### Free Vibrations of Layered Spheres M.J. Frye, A.H. Shah, and H.D. McNiven Plan Examination Dept., City of Winnipeg, Manitoba, Canada, Acustica, <u>52</u> (1), pp 1-9 (Dec 1982) 3 figs, 6 tables, 9 refs Key Words: Shells, Spherical shells, Layered materials, Finite element technique, Natural frequencies A finite element method is employed to study the natural frequencies of vibration of elastic layered transversely isotropic spheres. A six-mode shell theory which includes the effects of transverse shear, transverse normal stress and strain, and rotatory inertie is included. The numerical results of two example problems are presented and discussed. ### 83-1195 ## A Nonlinear Analysis of Liquid Sloshing in Rigid Containers T.C. Su, Y.K. Lou, J.E. Flipse, and T.J. Bridges Dept. of Civil Engrg., Texas A&M Univ., College Station, TX, Rept. No. COE-240, DOT-RSPA-DMA-50-82/1, 646 pp (Oct 1981) PB83-133199 Key Words: Tanks (containers), Fluid-filled containers, Sloshing Liquid sloshing in a moving container constitutes a broad class of problems of great practical importance with regard to the safety of transportation systems, such as tank trucks on highways, liquid tank cars on railroads, and liquid cargo in oceangoing vessels. Two nonlinear theories are developed in which the effects of large tank motions on liquid sloshing are properly accounted for. One theory is applicable for the near resonance oscillations while the other is valid when the tank is oscillating at a frequency away from resonance. ### **PIPES AND TUBES** ### 83-1196 Stochastic Analysis of Response of Structures and Multiply Supported Secondary Systems to Multidirectional Ground Motion W. Smeby Ph.D. Thesis, Univ. of California, Berkeley, 115 pp (1982) DA8300659 Key Words: Multidegree of freedom systems, Piping systems, Seismic response spectra, Stochastic processes A mode superposition procedure is developed for the response of linear multi-degree-of-freedom structures subjected to multidirectional ground motions. The ground motion is modeled as a transient, stationary Gaussian vector process, having components that are assumed to be uncorrelated along a set of orthogonal principal axes. The analysis takes into account the correlation between modal responses of the structure, which is shown to be significant for closely spaced modal frequencies, and the correlation between the ground motion along the structure axes. ### 83-1197 Stochastic Analysis of Structures and Piping Systems Subjected to Stationary Multiple Support Excitations Meng-Chi Lee and J. Penzien URS/John A. Blume & Associates, Engineers, San Francisco, CA, Intl. J. Earthquake Engrg. Struc. Dynam., 11 (1), pp 91-110 (Jan/Feb 1983) 3 figs, 10 tables, 29 refs Key Words: Structural response, Piping systems, Stochastic processes, Seismic response A stochastic method has been developed for seismic analysis of structures and piping systems subjected to multiple support excitations. In either the time or the frequency domain, mean and extreme values of structural and piping system response can be found, including the effects of cross-correlations of modal response and cross-correlations of multiple support excitations. Stationary white noise and stationary filtered white noise ground excitations are used. A computer program has been developed to carry out the stochastic seismic analysis. ### 83-1198 Analysis of Cracked Piping Systems Subjected to Thermal Stress, Residual Stress and Dynamic Loading S.R. Sharma Ph.D. Thesis, Univ. of California, Berkeley, 138 pp (1982) DA8300400 Key Words: Piping systems, Dynamic response, Cracked media, Failure analysis, Nuclear power plants This study is divided into two major parts: analysis of the cracked pipe behavior under normal service loads such as the pressure, thermal and weld residual stress loadings; and evaluation of structural integrity of the cracked piping system subjected to a dynamic loading. ### 83-1199 Ground Strain Estimation for Seismic Risk Analysis M. Shinozuka, H. Kameda, and T. Koike 610 Mudd Bldg., Columbia Univ., New York, NY 10027, ASCE J. Engrg. Mech., 109 (1), pp 175-191 (Feb 1983) 8 figs, 2 tables, 20 refs Key Words: Pipelines, Seismic response, Underground structures Under the assumption that strong motion earthquakes result primarily from surface weves in a layered medium resting on a semi-infinite rock formation, a method is developed to derive the expression for the Rayleigh wave that produces acceleration at the ground surface with a specified power spectral density. The Rayleigh wave characteristics are then used to obtain a corresponding free-field normal ground strain at any depth in the medium. ### **DUCTS** ### 83-1200 Acoustics in Variable Area Duct: Finite Element and Finite Difference Comparisons to Experiment K.J. Baumeister, W. Eversman, R.J. Astley, and J.W. White NASA Lewis Res. Ctr., Cleveland, OH, AIAA J., <u>21</u> (2), pp 193-199 (Feb 1983) 9 figs, 3 tables, 19 refs Key Words: Ducts, Variable cross section, Sound propagation, Finite element technique, Finite difference technique Plane wave sound propagation without flow in a rectangular duct with a converging-diverging area variation is studied experimentally and theoretically. The area variation was of sufficient magnitude to produce large reflections and induce modal scattering. The rms pressure and phase angle on both the flat and curved surface were measured and tabulated. ### 83-1201 ### Eigensolutions for Liners in Uniform Mean Flow W. Koch and W. Mohring DFVLR/AVA Inst. for Theoretical Fluid Mechanics, Gottingen, W. Germany, AIAA J., 21 (2), pp 200-213 (Feb 1983) 11 figs, 33 refs Key Words: Ducts, Acoustic linings, Sound attenuation The problem of sound attenuation in a rectangular acoustically lined duct containing uniform mean flow is investigated analytically by means of the generalized Wiener-Hopf technique. For lined sections of finite axial extent uniqueness of the solution is enforced by imposing edge conditions at the liner interfaces. Several possible edge conditions are considered, including the Kutta condition. The corresponding solutions differ by eigensolutions and it is demonstrated that solution methods, like the mode matching and singularity method, imply differing edge conditions. ### 83-1202 ## The Tight-Coupled Monopole Active Attenuator in a Duct Kh. Eghtesadi, W.K.W. Hong, and H.G. Leventhall Dept. of Electrical Engrg., Abadan Inst. of Tech., Abadan, Iran, Noise Control Engrg., 20 (1), pp 16-20 (Jan/Feb 1983) 11 figs, 22 refs Key Words: Ducts, Noise reduction, Active control, Sound attenuation Methods of active attenuation of noise, that is, the cancelling of noise from a source by the addition of further noise, include both absorptive and non-absorptive systems. The theory of one-dimensional active attenuation for ductborne noise is reviewed and an overview of a monopole system used to realize attenuation is given. ## Engineering Applications of Plane Wave Duct Acoustics L. Pande Ph.D. Thesis, Purdue Univ., 169 pp (1982) DA8300948 Key Words: Ducts, Sound waves, Wave propagation, Fan noise The work in this thesis elucidates the physical and mathematical concepts involved in understanding the propagation and measurement of acoustic waves in a duct in the plane wave mode and its engineering applications. A discussion of the two-microphone technique using random stationary sound to measure in-duct properties is given. Source characteristics are studied and a method of source identification is given. ### 83-1204 ## Acoustical Properties of Porous Material and Dissipative Silencers with Several Gas Media S. Shimode Mech. Engrg. Res. Lab., Hitachi, Ltd., Tsuchiura, Ibaraki, Japan, Acustica, <u>52</u> (2), pp 98-105 (Jan 1983) 12 figs, 4 tables, 13 refs Key Words: Ducts, Acoustic linings, Porous materials, Sound attenuation In this paper measurements are made of the normal incident absorption coefficients of typical acoustical materials and of the sound attenuation of lined-ducts in several media. With use of the relation between the specific flow resistance and viscosity of gas media and Beranek's method, good agreement is found at room temperature between calculated and measured absorption coefficients of glasswool boards in freon and helium gases as well as in air. ## **BUILDING COMPONENTS** ## 83-1205 The Effect of Sound Bridge Eccentricity on the Sound Propagation in Double Walls G. Rosenhouse and F.P. Mechel Fraunhofer-Institut f. Bauphysik, D-7000 Stuttgart, Bundesrepublik Deutschland, Acustica, <u>52</u> (1), pp 16-23 (Dec 1982) 10 figs, 4 tables, 5 refs Key Words: Walls, Sound waves, Wave propagation Analysis of plane acoustic wave propagation in one dimensional elements of a two dimensional system is used in order to outline the flanking through sound bridges. The effect of eccentricity which is characterized by additional moments was examined. Numerical results give the particle velocity distribution within the double wall skins. ### 83-1206 ## Seismic Design Charts for Coupled Shear Walls K Basu Brown & Root (UK) Ltd., Southwell House, 1B Amity Grove, Raynes Park, London, UK, ASCE J. Struc. Engrg., 109 (2), pp 335-352 (Feb 1983) 19 figs, 1 table, 3 refs Key Words: Walls, Buildings, Multistory buildings, Seismic design Charts are presented for the seismic design of uniform fixedbase coupled shear wall buildings by the response spectrum method using the first two modes. The building is treated as a continuum and its actual mode shapes are utilized for evaluating the various modal responses; namely, the top deflection, the shear force and moments in the walls, and the shear force in the connecting medium. The distributions of the moments and shears along the height are also presented. ## **ELECTRIC COMPONENTS** ### **MOTORS** ### 83-1207 Synthesis of Time-Optimal Control of a Linear Motor Kaunas Politechnical Inst., Kaunas, Lithuanian SSR, Vibrotechnika, <u>3</u> (33), pp 131-138 (1981) 6 figs, 3 refs (In Russian) Key Words: Linear induction motors A problem of this synthesis of time-optimal control with fixed current feedback of a linear motor is solved by means of maximum principle. Equations to control switching surface in three-dimensional phase space and a system of nonlinear equations for determination of switching points are presented. The acoustic environment in large enclosures with a small opening exposed to aerodynamic flow are quantified. Theoretical/empirical techniques are developed for predicting the oscillatory frequencies, acoustic pressure level, spatial distribution of the acoustic pressures in the cavity, and the degree of alleviation achievable with suppressors. Experimental tests in a semifree jet facility are performed on scale models of large enclosures. ### 83-1208 # Investigation of Dynamic Regimes of Discrete Electromagnetic Converter of Energy on the Electronic Digital Computer V. Šležas and A. Šukelis Kaunas Politechnical Institute, Kajnas, Lithuanian SSR, Vibrotechnika, <u>1</u> (39), pp 139-145 (1981) 7 figs, 2 tables, 1 ref Key Words: Energy conversion, Electromagnetic properties, Digital techniques The work of a discrete electromagnetic converter in startstop and oscillation conditions is analyzed. Differential equations of the armature movement are solved by the method of Runge-Kutta by means of an electronic digital computer. ### 83-1210 ## Sound Source Radiation in Two-Dimensional Shear, Flow S.M. Candel Office National d'Etudes et de Recherches Aerospatiales, Chatillon, France, AIAA J., <u>21</u> (2), pp 221-227 (Feb 1983) 7 figs, 20 refs Key Words: Sound waves, Wave propagation A fundamental problem encountered in the analysis of aerodynamic noise is that of acoustic source radiation in nonhomogeneous flow. Exact numerical solutions have been obtained recently for source radiation near a plane interface and a shear discontinuity by directly synthesizing the wavefield from its spatial Fourier transform. This method is applied here to stratified flow configurations and the structure of the radiated field is obtained for several shear layer velocity profiles of practical interest. ## DYNAMIC ENVIRONMENT ## **ACOUSTIC EXCITATION** ## 83-1209 ## Acoustic Environment in Large Enclosures with a Small Opening Exposed to Flow L. Shaw, H. Bartel, and J. McAvoy Flight Dynamics Lab., Wright-Patterson Air Force Base, OH, J. Aircraft, 20 (3), pp 250-256 (Mar 1983) 13 figs, 13 refs Key Words: Enclosures, Fluid-induced excitation, Sound generation ## 83-1211 ## The Data Processing and Spectral Analysis of Propeller Noise Zhu Wu Hua and Zhu Shi Ti J. of Shanghai Chiao Tung Univ., <u>2</u>, pp 17-32 (1982) CSTA No. 623,8-82,44 Key Words: Propeller noise, Spectrum analysis, Data processing Noise measurements were made for a model propeller in a cavitation tunnel as well as for a full scale propeller in the sea. The data so obtained were processed with a signal processor type 7T08 in the forms of power spectrum and correlations in order to analyze the high frequency continuous spectrum and the low frequency discrete spectral lines for the cavitating and noncavitating propeller. ## Effect of Excitation on Coaxial Jet Noise H.Y. Lu Boeing Commercial Airplane Co., Seattle, WA, AIAA J., 21 (2), pp 214-220 (Feb 1983) 14 figs, 8 refs Key Words: Jet noise, Noise generation Coaxial model jets, including those of high bypass ratio engine exhaust hot gas conditions, were excited internally by tone and broadband noise. Acoustic excitation in the secondary (outer) duct was found to be most effective in jet noise amplification due to the sensitivity of the outer shear layer. Jet noise amplification at the subharmonic of the excitation frequency occurred in a number of cases. An acoustic elliptic mirror was used to observe the noise sources along the jet. It revealed local noise source characteristics in different shear layer regions and noise source location changes from unexcited to excited jets. ### 83-1213 Noise Reduction of a Small Fast Two-Stroke Engine by the Modification of Engine Exit Slot (Auslass-Schlitzmodifikation an Einem Kleinen Schnellaufenden Zweitaktmotor mit dem Ziel der Geräuschminderung) N. Kania Institut f. Kolbenmaschinen, Universitat Hannover, Hannover, Fed. Rep. Germany, Appl. Acoust., <u>16</u> (2), pp 79-93 (Mar 1983) 7 figs, 5 refs (In German) Key Words: Engine noise, Noise reduction, Silencers With small port-controlled two-stroke engines the dominating source of noise is the exhaust noise. As a result of the sudden opening of large advance-outlet cross-sections, the expanding gases produce an outlet pulse in the exhaust silencer. This outlet pulse is characterized by high amplitudes of the pressure fluctuations and very steep gradients. The influence of advancing the opening point (extension of the expansion period) and increasing the advance-outlet port width is shown by means of the pressure fluctuations measured in the exhaust silencer and their frequency analyses. ### 83-1214 Coherence Coefficient Measuring System and Its Application to Some Acoustic Measurements T. Yanagisawa and H. Takayama Faculty of Engrg., Shinshu Univ., 500 Wakasato, Nagano, Japan, Appl. Acoust., <u>16</u> (2), pp 105-119 (Mar 1983) 11 figs, 7 refs Key Words: Acoustic measurement, Coherence function technique A measuring system based on the definition of coherence coefficient and some examples applying the system to acoustic measurement are discussed in this paper. It is shown that the measured values agree well with the theoretical ones. ### 83-1215 ## A Comparison of Parabolic Wave Theories for Linearly Elastic Solids S.C. Wales and J.J. McCoy The Catholic Univ. of America, Washington, DC 20064, Wave Motion, <u>5</u> (2), pp 99-113 (Apr 1983) 2 figs, 16 refs Key Words: Wave propagation, Elastic waves, Sound waves The Schrodinger equation describes a theory for propagating scalar waves which is frequently termed a parabolic theory. This theory has been demonstrated to provide a paraxial, or narrow-angled, approximation to the theory of acoustic wave propagation, described by the Helmholtz equation, by a variety of seemingly different procedures. In this paper three parabolic theories of elastodynamics are considered and applied in turn to a computational experiment that can be solved in the perturbation limit using the exact equations of elastodynamics. ### 83-1216 ## Application of the BIE Method to Sound Radiation Problems Using an Isoparametric Element A.F. Seybert, B. Soenarko, F.J. Rizzo, and D.J. Shippy Univ. of Kentucky, Lexington, KY, ASME Paper No. 82-WA/NCA-1 Key Words: Sound waves, Wave propagation, Spheres This paper discusses the application of the Boundary Integral Equation method (BIE) for the numerical solution of radiation problems governed by Helmholtz's equation. Introduced is an isoperametric element formulation in which both the surface geometry and the acoustic variables on the surface of the radiating body are represented by quadratic shape functions within the local coordinate system. The BIE method is used to obtain numerical solutions to two well-known radiation problems for which analytical solutions are well known: the pulsating and the oscillating spheres. For both problems the exact and numerical solutions are compared on the surface of the sphere and in the far field. 83-1217 ## The Performance of Jet Noise Suppression Devices for Industrial Applications M.D. Dahl and O.H. McDaniel Pennsylvania State Univ., University Park, PA, ASME Paper No. 82-WA/NCA-5 Key Words: Noise reduction Commercially available jet noise suppression devices were tested to determine their noise reducing characteristics compared to an open pipe. Both exhaust silencers and ejector nozzles were measured for sound power level and mass flow rate. In addition, the pressure pattern developed on a flat plate by the ejector nozzles was measured. In light of jet noise theory, it is shown that these devices reduce turbulent noise levels by restricting the flow and creating interactions between smaller jets. ### 83-1218 ## Noise Level Prediction Using a Small Computer C.J. Hurst and P.J. Nemergut Virginia Polytechnic Inst. and State Univ., Blacksburg, VA, ASME Paper No. 82-WA/NCA-8 Key Words: Noise prediction, Computer-aided techniques A common problem in noise control work is the prediction of sound pressure levels in large areas where many noise sources are present. Computational approaches in this problem involve the input of large amounts of data and extensive calculations, Described in this paper is a basic program which makes use of a desktop-sized computer and its associated digitizing tablet to allow the rapid modeling of such spaces. 83-1219 ## Radiation Characteristics of a Slender Box-Type Structure M. Mezache and G.H. Koopmann Univ. of Houston, Houston, TX, ASME Paper No. 82-WA/NCA-9 Key Words: Sound waves, Box type structures, Elastic waves, Finite element technique, SAP (computer program), Computer programs The acoustic radiation characteristics of a stender boxlike structure is investigated. Use is made of a finite element package, SAP-IV, to determine the natural frequencies and mode shapes of the box. The radiated acoustic power for each mode is calculated using a computer program, PSI-I. These modes are then evaluated according to their radiation efficiency. #### 83-1220 ## Computer-Aided Analysis of Exhaust Mufflers P.T. Thawani and R.A. Noreen Nelson Industries, Inc., Stoughton, WI, ASME Paper No. 82-WA/NCA-10 Key Words: Noise reduction, Mufflers, Computer-aided techniques In this work, an approach has been developed for the computer-aided analysis of various configurations of realistic mufflers. The two-by-two transfer matrices can be derived for several fully and partially perforated muffler components. A comprehensive computer program based on the transfer matrix formulation was written to predict the transmission loss characteristics of muffler systems. ### 83.1221 ## Analysis of a Noise-Generating Random Repeated Impact Process L.A. Wood Ph.D. Thesis, Univ. of New South Wales, Australia, (1982) Key Words: Impact noise, Random excitation, Machinery noise A random repeated impact process which is an idealized representation of random impact phenomena in machinery has been analyzed with the aim of estimating the noise levels generated by the process. The process was physically modeled by a ball bouncing on a randomly vibrating surface. The relevance of the random repeated impact process to the estimation of noise levels generated by rolling contact situations, especially the railway wheel/rail system, is discussed. Distributions Characterizing the Acoustic Impulse Response of Spherical Targets (Distributions caractérisant la réponse acoustique impulsionnelle des cibles sphériques rigides) M. Auphan Laboratoires d'Electronique et de Physique Appliquée, F-94450 Limeil-Brévannes, Acustica, <u>52</u> (2), pp 68-85 (Jan 1983) 7 tables, 7 refs (In French) Key Words: Acoustic response, Acoustic scattering, Spheres Emphasis is placed on the advantage of the scattering impulse response of a spherical target compared to the transfer function expressed in the frequency domain. The mathematical difficulty of finding an expression in the time domain lies in the summation of a series of which the Fourier transform does not converge. Thus the series is replaced by another one by use of the poisson's summation formula. ### 83-1223 ## Barrier Insertion Loss Versus Fresnel Number and Secondary Parameters Zhangwei Hu and Raymond L.M. Wong Univ. of Toronto, Inst. for Aerospace Studies, 4925 Dufferin St., Downsview, Ontario, Canada M3H 5T6, Noise Control Engrg., 20 (1), pp 31-36 (Jan/Feb 1983) 9 figs, 11 refs Key Words: Noise barriers, Noise reduction The purpose of this article is to provide a quick, but accurate, estimation of sound reduction by a semi-infinite barrier for a wide range of source/observer geometries. In addition to Fresnel number N (in a range down to 0.05), it brings out the influence of three secondary parameters; although often neglected, these can be significant. The insertion loss for a pure tone point source is computed via the exact solution. ### 83-1224 ## Supersonic Jet Noise Generated by Large Scale Instabilities J.M. Seiner, D.K. McLaughlin, and C.H. Liu NASA Langley Res. Ctr., Hampton, VA, Rept. No. L-15307, NASA-TP-2072, 45 pp (Sept 1982) N82-34189 Key Words: Jet noise The role of large scale wavelike structures as the major mechanism for supersonic jet noise emission is examined. With the use of aerodynamic and acoustic data for low Reynolds number, supersonic jets at and below 70 thousand comparisons are made with flow fluctuation and acoustic measurements in high Reynolds number, supersonic jets. These comparisons show that a similar physical mechanism governs the generation of sound emitted in the principal noise direction. ## SHOCK EXCITATION ## 83-1225 ## Periodic Response of a Sliding Oscillator System to Harmonic Excitation B. Westermo and F. Udwadia Dept. of Civil Engrg., San Diego State Univ., San Diego, CA, Intl. J. Earthquake Engrg. Struc. Dynam., 11 (1), pp 135-146 (Jan/Feb 1983) 8 figs, 6 refs Key Words: Oscillators, Harmonic excitation, Periodic response, Seismic response This paper deals with the periodic response of an oscillating system which is supported on a frictional interface. The base excitation is assumed harmonic and the frictional force is assumed to be of the Coulomb type. Though each segment of the motion of such a system is described by linear equations, its complete response is highly nonlinear and varied. The most fundamental periodic solutions are derived analytically and numerically. ## 83-1226 ## Computation of Inelastic Response Spectra J.M. Nau North Carolina State Univ., P.O. Box 5993, Raleigh, NC 27650, ASCE J. Engrg. Mech., 109 (1), pp 279-288 (Feb 1983) 2 figs, 2 tables, 9 refs Key Words: Response spectra, Seismic response, Hysteretic damping A method for the computation of response spectra for elastoplastic and bilinear hysteretic systems subjected to strong-motion earthquake records is described and compared to Newmark's method. The technique provides the exact solution to the governing equations of motion assuming that the ground acceleration varies linearly between successive points. A fractional time stepping scheme is incorporated to detect yielding and unloading accurately. #### 83-1227 ## Shock Spectrum Calculation from Acceleration Time Histories H.A. Gaberson Civil Engrg. Lab., Naval Construction Battalion Ctr., Port Hueneme, CA 93043, Rept. No. TN-1590, 66 pp (Sept 1980) ADA097162 Key Words: Shock response spectra, Seismic response, Equipment response, Computer-aided techniques The report mainly discusses, compares, and derives one new and improved and two popular shock spectrum computation methods. The new one is a single recursive equation method that approximates the acceleration as a straight line between the digitized values. The new method is easily derived without recourse to Z transform theory and, thus, should contribute to improved understanding of the computations. A new source of low frequency error common to all of the calculation methods was found, and empirical testing of the coefficients was used to establish digitizing rules to avoid the error. ## 83-1228 ## Stability of Forced Shock Oscillations of a System with Two Degrees of Freedom K. Bauer Vibrotechnika, <u>3</u> (33), pp 103-107 (1981) 1 fig, 3 refs (In Russian) Key Words: Impact pairs, Two degree of freedom systems, Shock response The paper considers a shock system with two degrees of freedom. The system consists of a spring-supported body (the working one) harmonically excited by another body. The exciting body moves either together with the working body or separately, acted upon by gravity. The impact of bodies is considered as completely non-elastical. The conditions of stability of oscillations with one impact in each period are obtained. ## **VIBRATION EXCITATION** ### 83-1229 ## Response of Equipment in Structures Subjected to Transient Excitation A.G. Hernried Ph.D. Thesis, Univ. of California, Berkeley, 107 pp (1982) DA8300529 Key Words: Equipment-structure interaction, Equipment response, Transient excitation, Modal analysis, Perturbation theory The response of light equipment in structures subjected to transient excitation is explored. Various discrete equipment-structure models are considered. Among these are the two-degree-of-freedom secondary system, the multi-degree-of-freedom secondary system, the three-degree-of-freedom tertiary system, and the multi-degree-of-freedom tertiary system. Analytical results for equipment response are developed when the structure is subjected to either short duration ground shock, impact, or earthquake excitation. #### 83-1230 ## Dynamic Analysis of Light Equipment in Structurez: Modal Properties of the Combined System J.L. Sackman, A. Der Kiureghian, and B. Nour-Omid Dept. of Civil Engrg., Univ. of California, Berkeley, CA 94720, ASCE J. Engrg. Mech., 109 (1), pp 73-89 (Feb 1983) 4 figs, 4 tables, 7 refs Key Words: Equipment-structure interaction, Equipment response, Natural frequencies, Mode shapes, Model damping, Perturbation theory Perturbation methods are employed to determine the dynamic properties of a combined system composed of a multi-degree-of-freedom structure to which is attached a light, less single-degree-of-freedom equipment item. Closed-form expressions are derived for the natural frequencies, mode shapes, model dampings, and other model properties of the combined system in terms of the dynamic properties of the structure alone, and the equipment alone. The effect of tuning and equipment-structure interaction are included in this analysis. ### 83-1231 ## Dynamic Analysis of Light Equipment in Structures: Response to Stochastic Input A. Der Kiureghian, J.L. Sackman, and B. Nour-Omid Dept. of Civil Engrg., Univ. of California, Berkeley, CA 94720, ASCE J. Engrg. Mech., 109 (1), pp 90-110 (Feb 1983) 6 figs. 13 refs Key Words: Equipment-structure interaction, Stochastic processes, Modal analysis, Mode superposition method A mode-superposition method for the evaluation of the dynamic response of light equipment in structures subjected to stochastic excitations is developed. Previously obtained results for modal properties of the combined equipment-structure system in terms of the modal properties of the two subsystems are used. Both power spectral density and response spectrum descriptions of the input are considered. Results include the effects of tuning, equipment-structure interaction, and correlation between modal responses. #### 83-1232 ## Self-Excited Wave Oscillations in a Water Table W. Calarese and W.L. Hankey Air Force Wright Aeronautical Labs., Wright-Patterson Air Force Base, OH, AIAA J., 21 (3), pp 372-378 (Mar 1983) 11 figs, 10 refs Key Words: Self-excited vibrations, Water table testing An experimental investigation has been performed on self-excited wave oscillations on cavity, spike-tipped, and inlet models in a water table. Buzzing was generated by positioning the models at a small angle of attack with respect to the freestream flow. The hydraulic analogy was used to compare the results obtained in water to results obtained in a gas. High-speed and real-time photography were used in the experiment. The frequencies of oscillations in water and air were consistent with the hydraulic analogy. Numerical solutions of the phenomenon were also obtained. ## 83-1233 # Vibrational Analysis in Fiuids, 1970 - November, 1982 (Citations from the Engineering Index Data Base) NTIS, Springfield, VA, 150 pp (Nov 1982) PB83-853747 Key Words: Vibration analysis, Fluids, Bibliographies This bibliography contains 152 citations concerning vibrational fatigue, stress, and mechanical responses of fluids through a range of applications. The report discusses general areas of shapes and mechanisms working within and/or in conjunction with fluids. The general information is experimental in nature and could transfer to numerous fields. Specific data and procedures include applications in mechanical engineering, hydrodynamics, hydraulics, and nuclear reactor technology. #### 83.1234 ## **Random Vibration of One-Dimensional Structures** S. Crandall and A. Kulvets Massachusetts Inst. of Tech., Cambridge, MA, Vibrotechnika, 3 (33), pp 51-63 (1981) 10 figs, 8 refs (In Russian) Key Words: Single degree of freedom systems, Random excitation. The vibration of one-dimensional uniform structures under wide-band random point forces is considered. The mean-square displacement, velocity, acceleration, and bending moment response depend on the number and location of exciting forces and on the joint statistical properties of the random force or kinematic excitation processes. When all forces have identical spectra the mean-square response depends on the cross-correlations between processes. ## 83-1235 ## Construction Investigation and Application of Electromagnetic Vibrators J. Gudonis, V. Paškevičius, B. Stulpinas, and A. Šukelis Kaunas Politechnical Institute, Kaunas, Lithuanian SSR, Vibrotechnika, <u>1</u> (39), pp 119-131 (1981) 7 figs, 28 refs Key Words: Vibrators (machinery), Electromagnetic shakers, Active vibration control, Active damping, Vibration tests A survey of various designs of small-size electromagnetic vibrators with radial laminated magnetic circuits and electromagnetic vibrators with different degrees of freedom are presented. Active vibration damping systems, stabilization of stress in metal and vibrotesting systems were built on the basis of these vibrators. Vibrational Analysis in Aerodynamics. 1970 - December, 1982 (Citations from the Engineering Index Data Base) NTIS, Springfield, VA, 145 pp (Dec 1932) PB83-855478 Key Words: Vibration analysis, Bibliographies This bibliography contains 140 citations concerning aerodynamic aircraft and spacecraft generated vibration. Structural design flutter in air cushion vehicles; helicopter blade flutter; steady lift wing flutter; bending-torsion flutter at supersonic, subsonic and transonic speeds; wake induced wing flutter; stalled and unstalled flutter, and panel flutter are among the conditions discussed relative to such analysis techniques as finite element analysis. Ground vibration test results, space vehicle automated design, and calculation of critical flutter speeds for fixed wing aircraft are included with respect to vibrational suppression performance. ## **MECHANICAL PROPERTIES** ## DAMPING 83-1237 Recent Research on Dynamic Mechanical Properties of Fiber Reinforced Composite Materials and Structures R.F. Gibson Univ. of Idaho, Moscow, ID 83843, Shock Vib. Dig., 15 (2), pp 3-15 (Feb 1983) 124 refs Key Words: Internal damping, Dynamic stiffness, Composite materials, Fiber composites, Reviews This article reviews recent analytical and experimental efforts to characterize the internal damping and dynamic stiffness of fiber-reinforced composite materials and structures under vibratory loading. The implications of these findings and directions of continued research are discussed. 83-1238 **Vitreous Enamel Damping Material Development** B. Kumar Univ. of Dayton Res. Institute, 300 College Park, Dayton, OH 45469, Rept. No. AFWAL-TR-82-4162, 100 pp (Nov 1982) 49 figs, 20 tables, 13 refs Key Words: Material damping This report describes the results of several experimental investigations pertaining to the effects of composition, viscosity, microstructure, and constraining layer on the damping properties of vitreous enamels. New vitreous enamels such as mixed alkali silicate, lead silicate, and two phase fluoride composition are characterized. ## **FATIGUE** (Also see Nos. 1172, 1173, 1190) 83-1239 Fatigue Life Calculation Using Mean Slope of Sequential Wöhler Curves (Lebensdauerberechnung bei Schwingbelastung auf der Grundlage des mittleren Steigungsverlaufs der Folgewöhlerkurven) G. Schott Technische Universitat Dresden, German Dem. Rep., Maschinenbautechnik, 32 (1), pp 29-34 (Jan 1983) 12 figs, 2 tables, 5 refs (In German) Key Words: Fatigue life Sequential Wöhler curves are obtained from two-stage tests. Fatigue life of specific material and a test sample is demonstrated. The calculation method presented is based on mean slope of sequential Wohler curves. This assures that the real fatigue behavior of the test sample is included in the fatigue life calculation. ## **EXPERIMENTATION** ## **MEASUREMENT AND ANALYSIS** 83-1240 Experimental Modal Analysis, Structural Modifications and FEM Analysis on a Desktop Computer K.A. Ramsey Structural Measurement Systems, San Jose, CA, S/V, Sound Vib., <u>17</u> (2), pp 19-27 (Feb 1983) 13 figs, 2 tables, 5 refs Key Words: Modal tests, Modal analysis, Structural modification techniques, Finite element techniques, Computeraided techniques This article discusses two popular parts of modern day structural dynamics technology: the experimental portion which is referred to as experimental modal analysis or modal testing, and the analytical portion, which is referred to as finite element analysis or finite element modeling. It discusses how experimental and analytical methods are used to solve noise and vibration problems and the importance of using modal parameters to link testing and analysis. Finally, it shows how structural modification techniques are used as a complement to both methods and how all of the tools may be combined on an inexpensive desktop computer. #### 83-1241 ## Feynman Diagram Analysis of Transducer Impulse Response A.H. Banah, A. Korpel, and R.F. Vogel Dept. of Electrical and Computer Engrg., The Univ. of Iowa, Iowa City, IA 52242, J. Acoust. Soc. Amer., 73 (2), pp 677-687 (Feb 1983) 14 figs, 4 tables, 24 refs Key Words: Transducers, Piezoelectric transducers Transducer impulse response is analyzed by introducing two novel elements. The usual equivalent circuit of the transducer is replaced by a simple reentrant transmission line configuration and a Feynman diagram method is applied which involves tracing the exciting signal through all possible pathways to the time and place of observation. The theory is applied under various conditions of electrical and acoustical loading, and results are compared with computer simulations and physical experiments. ## 83-1242 ### Measuring Shock and Vibration Mech. Engrg., pp 30-36 (Feb 1983) 6 figs, 2 tables, 1 ref Key Words: Accelerometers, Piezoelectric transducers, Piezoresistive gages, Vibration measurement, Measurement techniques, Shock Response, Measuring instruments Mode of operation, range, sensitivity and calibration of piezoelectric accelerometers and piezoresistive strain gage accelerometers is reviewed. In most cases involving shock and vibration testing the piezoelectric accelerometer has been used. Recently, for some applications where long duration shock motions must be measured, piezoresistive strain gage accelerometers have been developed. They have not only higher gage factors than the earlier wire-resistive gages, but also higher sensitivity and higher operating frequency range. こことの一日を持いたけることではい ## **DYNAMIC TESTS** #### 83-1243 Minimization of Torsional Vibrations of Dynamic Transmission Test Stands (Minimierung der Drehschwingungen von dynamischen Getriebeprüfständen) I. Schmid, G. Fietz, and H.-J. von Thun Automobiltech. Z., <u>85</u> (1), pp 25-30 (Jan 1983) 12 figs, 1 table, 4 refs (In German) Key Words: Test facilities, Torsional vibration, Vibration control The necessity of simulating in the laboratory the operating conditions of real vehicle operation taxes the dynamics of test stands. Damping of the complex test plant control must be kept to a minimum to ensure high dynamics. A further reduction of damping may be caused by coupling the control circuits of multi-variable control systems, thus provoking the risk of torsional vibration in the test stands. Investigations carried out with an analog computer as well as vibration analysis on test stands revealed causalities and gave concrete hints on how to counteract vibrations while maintaining dynamic control characteristics. ## 83-1244 ### Test Tailoring in the 80's C.E. Wright and P. Bouclin Naval Weapons Ctr., China Lake, CA, J. Environ. Sci., 26 (1), pp 13-18 (Jan/Feb 1983) 10 figs, 4 refs Key Words: Dynamic tests, Testing techniques, Standards and ordes Determining test levels for climatic and dynamic simulation is a complex business. In the absence of other data, one must turn to military standards. However, it must be understood that military standards are only guidelines. To use them without tailoring will generally result in an improper test. If data is available, or becomes available, it should be merged with the guidelines of the military standards to develop the most realistic test possible. ## DIAGNOSTICS (Also see No. 1171) ### 83-1245 Continuous Determination of Machine Tool Breakage and Wear Limits (Processbegleitendes Erkennen von Werkzeugbruch und Verschleisswertgrensen) W. König and W. Kluft Industrie Anzeiger, <u>104</u> (96), pp 33-35 (1982) 5 figs, 4 refs (In German) Key Words: Diagnostic techniques, Machine tools Systems for the determination of wear limits and breakage of machine tools are presented. The messages "tool breakage" and "end of service lives" may be utilized by means of the CNC program for an automatic replacement of machine tools. Due to the extremely quick detection of breakage, as well as quick stopping, the damage to the blank, the tool, and the machine is avoided. Piezoelectric dynamometer rings, mounted at suitable locations between the tool turner (Revolver M2T) and machine slide (Maschinenschlitten M2T) are used as force sensors. ## 83-1246 Machinery Vibration Measurement and Monitoring (Schwingungs-Measung und -Überwachung an Maschinen) G. Peters Industrie Anzeiger, 105 (1/2), pp 32-33 (1983) 2 figs, 1 table, 5 refs (In German) Key Words: Diagnostic techniques, Machinery vibration The basics of machinery vibration monitoring and diagnosis is described. The authors discuss the quantities and parameters for evaluating measured vibration data, measurement locations, what types of measurements are suitable for particular machinery and vibration isolation. ### 83-1247 Electrically Excitable Purely Mechanical Resonances in Piezoelectric and Ferroelectric Materials - Geometrical Considerations P.J. Chen. Sandia National Labs., Albuquerque, NM 87185, Wave Motion, $\underline{5}$ (2), pp 177-183 (Apr 1983) 5 tables, 7 refs Key Words: Resonant response, Piezoelectricity Mechanical displacements of electrically excited specimens of piezoelectric and ferroelectric materials are determined using a displacement laser interferometer system. It is found that purely mechanical resonances can exist in these specimens independent of any detectable electrical disturbance, including virgin and depoled specimens of ferroelectric ceramics. For specimens of the ceramic PZT8 it is shown that the number of purely mechanical resonances increases with decreasing specimen thicknesses, but there seems to be no other correlation between the resonances and the geometries of the specimens. #### 83-1248 Case History of a Compressor Drive Train Dynamically Induced Gear Failure J.M. Steele and N.F. Rieger Stress Technology, Inc., Rochester, NY, ASME Paper No. 82-WA/DE-27 Key Words: Gears, Gear teeth, Failure analysis A helical gear set, part of a methanol compressor drive train, has experienced tooth failures. The gear teeth had shown visible signs of wear after only 72 hours of service and had to be replaced after 6 months. The acoustic noise from the gearbox was excessive. An analytical model of the torsional drive system was developed. ### 83-1249 Investigation of a Steam Turbine Rotor-Bearing System Displaying Ukrommon Response Characteristics N.S. Nathoo Shell Development Co., Houston, TX, ASME Paper No. 82-WA/DE-16 Key Words: Diagnostic techniques, Rotors, Stean: turbines This paper presents a theoretical-experimental approach that was used to investigate and rectify abnormal vibration 一門のないない。 一切のからなり response characteristics of a steam turbine-fan system. Extensive experiments were conducted to establish the nature of the vibration excursions and to determine their probable causes. #### 83-1250 Bibliographic Study on the Possibility of Controls by Acoustic Emission During Welding (Etude Bibliographique sur les Possibilites de Controle en Cours de Soudage Par Emission Acoustique) M. Nogues Centre Technique des Industries Mecaniques, Senlis, France, Rept. No. CETIM-15-Y-121-X, 40 pp (Dec 1981) N82-32766 (In French) Key Words: Diagnostic techniques, Acoustic emission, Failure detection, Welded joints, Reviews A literature review shows that most welding faults are detectable by acoustic tests, in which both the rate and the amplitude of the signal are altered by cracks and other defects. ## **BALANCING** ## 83-1251 # Determination of Resilient Inertial Characteristics and Unbalance of Flexible Rotors by Using Electric Tensiometer L. Vaingortin and V. Roizman Vibrotechnika, 3 (33), pp 65-71 (1981) 3 refs (In Russian) Key Words: Rotors, Flexible rotors, Balancing techniques, Parameter identification technique The article deals with parameter identification of a flexible rotor system, based on tensio-resister indication arranged in some sections of shaft-length. By converting these indications in relative strain, curvature, tensions, section angle etc., some known and some new methods of balancing are obtained and flexible inertial rotor characteristics are determined. ## **MONITORING** #### 83-1252 ## Tool Monitoring Systems in the Field (Werkzeugsüberwachungssysteme in der Praxis) G. Lechler Industrie Anzeiger, <u>104</u> (96). pp 39-41 (1982) 3 figs (In German) Key Words: Machine tools, Monitoring techniques, Wear, Failure detection A system for monitoring the breakage and wear of machine tools is described. It is based on the fact that upon the breakage of the tool the feeding energy increases sharply within fractions of a second. Special additional calculations enable to determine the wear of the tool. Both systems, for breakage and for wear, use the same sensor, the force measurement bearing, which is also briefly described in the article. ### 83-1253 ## Tool Monitoring During Drilling and Milling (Werkzeuguberwachung beim Bohren und Frasen) W. König and K. Christoffel Industrie Anzeiger, <u>104</u> (96), pp 36-38 (1982) 6 figs (In German) Key Words: Monitoring techniques, Machine tools, Drills, Milling (machinery) Two systems for tool monitoring — one for drilling, the other for insilling operations — are described. The unit for monitoring drilling operations detects tool breakage and wear by evaluating the static and dynamic feeding force components. The unit for monitoring milling operations, on the other hand, uses the passive force as the process characteristic and from its duration detects the onset of breakage of the tool. Within miliseconds, both systems issue a feed-stop-order to the machine, which prevents further damage of the blank, tool or machine. ### 83-1254 ## Development of a Universal Monitoring Instrumentation (Entwicklung eines universellen Überwachungsgerätes) M. Weck, L. Kühne, M. Pascher, and D. Vorsteher Industrie Anzeiger, <u>104</u> (96), pp 42-44 (1982) 5 figs, 3 refs (In German) Key Words Atanitoring techniques, Machine tools Three areas of a universal monitoring unit are discussed. They are: test conditions, calculability of data, and capability of correlating the calculated measurement results and predictions with each other and any further data. Based on these requirements a concept and a setup is developed and described. Using a milling machine as an example, a simple monitoring unit is presented and the necessary steps required in processing the data are explained. An important advantage of the system is that it is easily adaptable to other applications. #### 83-1255 ## Acoustic-Emission Monitoring of Steam Turbines. Final Report L.J. Graham, R.L. Randall, and C. Hong Energy Systems Group, Atomics Intl. Div., Canoga Park, CA, Rept. No. EPRI-CS-2367, 115 pp (Apr 1982) DE82904663 Key Words: Monitoring techniques, Acoustic emission, Turbines, Steam turbines The objective of this project was to develop a method for the on-line detection of crack growth in steam turbine rotors based on acoustic emission (AE) monitoring. This required a considerable extension of conventional techniques because of the high levels of background noise and the inaccessibility of the rotor for optimum transducer placement. A systematic study involving a number of tasks was performed to evaluate the potential for the detection and correct identification of crack growth AE signals during various turbine operating conditions. ## **ANALYSIS AND DESIGN** ## **ANALYTICAL METHODS** ### 83-1256 Application of Dynamic Substructuring Methods (Application des Methodes de Sous-Structuration Dynamique) #### Y Quisset Centre Technique des Industries Mecaniques, Senlis, France, Rept. No. CETIM-11-E-301, 58 pp (Feb 1982) N82-33047 (In French) Key Words: Substructuring methods, Computer programs A method of substructuring, which is precise in that it introduces no additional error, is presented. Computer programming of the method with the code, CASTOR-SD, is explained. ## 83-1257 ## Researching Frequency Stability Problems Using Stochastic Signal Processing Theory Ning De Chang, et al Acta Electronica Sinica, <u>10</u> (4), pp 1-11 (1982) CSTA No. 621.382-82.54 Key Words: Frequency analysis, Stochastic processes An approach to frequency stability analysis using signal processing models (or systems) based on the stochastic signal processing theory is proposed, and the following are derived: unit impulse responses, transfer functions, autocorrelations of the unit impulse responses, power or energy transfer functions of systems and subsystems; autocovariances and power spectral density of the stochastic signals at all points in the systems; formulas of evaluating N sampling variances for several main stochastic signals with the power law spectral type; and the theoretical, engineering and relative error formulas for the Allan variance. ### 83-1258 Inclusion of the Coherent Mass and Geometrical Stiffness in CASTOR-SD (Implantation de la Masse Coherente et de la Raideur Geometrique dans CASTOR-SD) L. Vuquoc Centre Technique des Industries Mecaniques, Senlis, France, Rept. No. CETIM-11-A-201, 150 pp (Aug 1981) N82-33046 (In French) Key Words: Modal analysis, Computer programs, Structural members, Stiffness effects The possibilities of a modal analysis, based on a coherent discretization of the potential energy and of the kinetic energy of a structure, are presented. Determination of the critical factors of a one-parameter load with reference to Euler bifurcation is considered. These techniques are available through the computer code, CASTOR-SD. #### 83-1259 ## Design with Several Eigenvalue Constraints by Finite Elements and Linear Programming P. Pedersen Dept. of Solid Mechanics, The Technical Univ. of Denmark, Lyngby, Denmark, J. Struc. Mech., 10 (3), pp 243-271 (1982-83) 6 figs, 11 refs Key Words: Eigenvalue problems, Finite element technique, Numerical analysis A finite element discretization, combined with a powerful numerical eigenvalue procedure, has proved to be a unified approach to eigenvalue analysis of elastic solids. Treating the sensitivity analysis as an integrated part of this approach, gradients of the eigenvalues are obtained without any new eigenvalue analysis. This forms the necessary information for an optimal redesign which is formulated as a linear programming problem. ### 83-1260 ## Design Sensitivity Analysis in Structural Mechanics, III, Effects of Shape Variation B. Rousselet and E.J. Haug Departement de Mathematiques, Universite de Nice, 06034 Nice Cedex, France, J. Struc. Mech., 10 (3), pp 273-310 (1982-83) 17 refs Key Words: Geometric effects, Eigenvalue problems The dependence of static response and eigenvalues on the shape of plates and plane elastic solids is characterized. Shape of elastic bodies is taken as the design variable. The material derivative idea of continuum mechanics is used to obtain expressions for directional derivatives of displacement fields and eigenvalues with respect to a transformation function that defines a shape variation. The result is used to obtain explicit and computable expressions for variations of integral functionals that arise in structural optimization problems. ## 83-1261 A Numerical Method for the Solution of Static and Dynamic Three-Dimensional Elasticity Problems P.S. Theocaris, N. Karayanopoulos, and G. Tsamasphyros Dept. of Theoretical and Appl. Mech., The National Technical Univ. of Athens, 5, Heroes of Polytechnion Ave., Zographou, Athens 624, Greece, Computers Struc., 16 (6), pp 777-784 (1983) 7 figs, 28 refs Key Words: Three dimensional problems, Dynamic structural analysis Kupradze's functional equation, reduced to a regular Fredholm integral equation of the first kind, is solved by applying a new numerical method, based on numerical integration, whose collocation points are chosen in self-similar surfaces. An application of the method to a particular problem of elasticity demonstrates a sufficient accuracy and stability of the method. It is shown that the proposed method is faster, simpler and more easily programmable than the existing classical methods. いいのかは、一人のなかののないない。 かいいいかいはいい ころかをいいないのであると ないいかかいい #### 83-1262 ## Dynamic Response Analysis of Structures with Large Degrees of Freedom by Step-by-Step Transfer Matrix Method H. Yamakawa and T. Ohnishi Waseda Univ., 3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan, Bull. JSME, <u>26</u> (211), pp 109-116 (Jan 1983) 13 figs, 3 refs Key Words: Dynamic structural analysis, Transfer matrix method A new method of dynamic response analysis, termed "stepby-step transfer matrix method," is presented which can be applied to general dynamic problems. This method requires only small degrees of freedom, nearly equal to those of elements for dynamic response analysis of structures even though the structures have large degrees of freedom. ## 83-1263 ## Calculation of Power Spectra from Response Spectra D.D. Pfaffinger Swiss Fed. Inst. of Tech., Zurich, Switzerland, ASCE J. Engrg. Mech., <u>109</u> (1), pp 357-372 (Feb 1983) 8 figs, 2 tables, 16 refs Key Words: Power spectral density, Response spectra A method is presented to determine the power spectral density functions from given smooth response spectra. It is assumed that the underlying excitations constitute a stationary Gaussian random process. The relationship between the response spectrum and the power spectral density function is established by the probability distribution of the extreme values. The power spectral density function is discretized by parameters and piecewise polynomials and the free parameters are determined iteratively by a least square fit. #### 83-1264 ## Stationary and Transient Response Envelopes S. Krenk, H.O. Madsen, and P.H. Madsen Riso National Lab., Roskilde, Denmark, ASCE J. Engrg. Mech., 109 (1), pp 263-278 (Feb 1983) 6 figs, 2 tables, 16 refs ### Key Words: Transient response An envelope is introduced by using the Hilbert transform to define a complex conjugate to the excitation and response processes of a linear structure. Time-limited stationary excitation is treated in detail, and the complex correlation function is shown to follow from its stationary equivalent by use of a suitable differential operator. Simple expressions are derived for the case of rational spectral density, and a parametric study of the influence of the frequency content is carried out. ## 83-1265 ## Fission of Solitons in a Symmetric Triangular Channel with Variable Cross Section Xi-Chang Zhong and M.C. Shen Univ. of Wisconsin-Madison, Madison, WI 53706, Wave Motion, <u>5</u> (2), pp 167-176 (Apr 1983) 4 figs, 11 refs ### Key Words: Wave propagation, Wave forces The disintegration of a soliton in a symmetric triangular channel when it propagates from one uniform cross section of the channel into another through a transition region is studied. A criterion under which a soliton is split into n solitons is given. Numerical results for n = 3 are presented to confirm the analytical predictions. ### 83-1266 ## The Phase Configuration of the Waves Around an Accelerating Disturbance in a Rotating Stratified Fluid T.J. Woodhead Dept. of the Mechanics of Fluids, Univ. of Manchester, UK, Wave Motion, <u>5</u> (2), pp 157-165 (Apr 1983) 6 figs, 7 refs Key Words: Wave propagation, Fluids Ray theory is extended to consider the case of an accelerating disturbance which is producing waves in a rotating stratified fluid. Starting from the equations of motion, dispersion relations are derived for surface gravity waves, capillary waves, Rossby waves and internal-inertial waves. The wave system is studied in each case for the problem of a body starting impulsively from rest and for a body starting from rest and moving with constant acceleration. #### 83-1267 # A Study of Resonant Interactions Between Internal and Surface Waves Based on a Two-Layer Fluid Model Yan-Chow Ma Fluid Mechanics Dept., TWR Space and Tech. Group, Redondo Beach, CA 90278, Wave Motion, <u>5</u> (2), pp 145-155 (Apr 1983) 3 figs, 13 refs ### Key Words: Wave propagation, Resonant response Equations describing resonant interactions between long internal waves and short surface waves are discussed. The stability of a short surface wavetrain subject to small perturbation from the long internal waves is studied. The stability of a homogeneous random surface wave spectrum and the energy transfer from surface to internal waves are examined. ## 83-1268 ## Scattering of a Pulsed Rayleigh Wave by a Spherical Cavity in an Elastic Half Space A. Boström and G. Kristensson Inst. of Theoretical Physics, Chalmers Univ. of Tech., S-412 96 Goteborg, Sweden, Wave Motion, <u>5</u> (2), pp 137-143 (Apr 1983) 8 figs, 9 refs Key Words: Time-dependent excitation, Wave diffraction, Cavity-containing media The time-dependent scattering by a spherical cavity in an elastic half space is considered. The incoming wave is a pulsed Rayleigh wave. The stationary part of the problem is solved by the T-matrix method, and an integration in frequency is performed with a modified gaussian weight function. The displacement components at some points on the surface of the half space are computed and shown in a number of plots. ## 83-1269 ## Scattering of Scalar Waves from a Rough Interface Using a Single Integral Equation J.A. DeSanto Dept. of Mathematics and Computer Science, Univ. of Denver, Denver, CO 80208, Wave Motion, <u>5</u> (2), pp 125-135 (Apr 1983) 22 refs Key Words: Boundary value problems, Wave diffraction Using Green's function methods the problem of scattering from a rough interface separating two semi-infinite homogenous media is considered. A single coordinate-space integral equation of the first kind for the generalized reflection coefficient R is derived. A second integral equation of the first kind is derived for the generalized transmission coefficient T. The two equations are new results. ## **MODELING TECHNIQUES** ### 83-1270 ## The Dynamics and Control of Large Flexible Space Structures - V P.M. Bainum, A.S.S.R. Reddy, C.M. Diarra, and V.K. Kumar Dept. of Mech. Engrg., Howard Univ., Washington, DC, Rept. No. NASA-CR-169360, 83 pp (Aug 1982) N82-33423 Key Words: Mathematical models, Spacecraft A general survey of the progress made in the areas of mathematical modeling of the system dynamics, structural analysis, development of control algorithms, and simulation of environmental disturbances is presented. The use of graph theory techniques is employed to examine the effects of inherent damping associated with LSST systems on the number and locations of the required control actuators. ## **NUMERICAL METHODS** #### 83-1271 ## Numerical Techniques for Dynamic Stochastic Structural Analysis M.R. Button Ph.D. Thesis, Univ. of California, Berkeley, 180 pp (1982) DA8300394 Key Words: Numerical analysis, Dynamic structural analysis, Stochastic processes, Buildings, Seismic response Although the theory for dynamic structural analysis, using a stochastic description of the input excitation, has been around for a number of years now, it has not gained wide acceptance among the profession. In the first part of this work, dealing with earthquake ground motion as input, this theory is applied in a new manner designed to aid in the teaching of this material, allowing students to follow the major steps in a typical computer analysis for the case of uni-directional ground shaking. A new method is then presented for the analysis of three-dimensional structures subjected to multi-component earthquake motions. The second part of the work deals with the oncoming wind as the excitation. A brief description of the atmospheric boundary layer is presented, and the theory for structural along wind response is described. 以为人人的人,也是一个人的人,是一个人的人,是一个人的人,也是一个人的人,也是一个人的人,也是一个人的人的人。 ## PARAMETER IDENTIFICATION (Also see No. 1112) ### 83-1272 ## Further Investigations of the Dynamic Data System Modeling Strategy by Simulations C. Kunpanitchakit Ph.D. Thesis, The Univ. of Wisconsin-Madison, 314 pp (1982) DA8224054 Key Words: Dynamic Data System technique, System identification techniques A sequential modeling approach and an emphasis on discrete-continuous relationships are the key features of the Dynamic Data System (DDS) methodology. Further investigations of the DDS modeling strategy in the applications to system identification cover five related topics. ## Identification of Linear Mechanical Oscillator Systems in Condition of Incomplete Observation S. Korabliov and N. Krylov Vibrotechnika, <u>4</u> (38), pp 33-43 (1981) 1 fig, 3 refs (In Russian) Key Words: System identification techniques An identification method for the vibrational condition vector of linear mechanical oscillator system is presented. The parameters of the observing device are set up to be insensitive to variations of mechanical system parameters. The method is very accurate and simple for use with digital computers. ## **DESIGN TECHNIQUES** (See Nos. 1111, 1157, 1170) ## **COMPUTER PROGRAMS** (Also see No. 1256) ## 83-1274 I. DELIGHT.STRUCT: A Computer-Aided Design Environment for Structural Engineering. II. Optimal Design of Seismic-Resistant Planar Steel Frames R.J. Balling Ph.D. Thesis, Univ. of California, Berkeley, CA 226 pp (1982) DA8300425 Key Words: Frames, Steel, Earthquake resistant structures, Computer programs The first report describes an expandable software system for optimization-based, interactive computer-aided design of structures. This system can be used for the design of statically and/or dynamically loaded structures which exhibit linear or nonlinear response. The second report presents a method for the seismic-resistant design of planar, rectangular braced or unbraced steel frames. An important feature of the method is that nonlinear step-by-step integration is used as the analysis technique within the design process itself. ## 83-1275 Engine Dynamic Analysis with General Nonlinear Finite Element Codes, Part 2: Bearing Element Imple- ## mentation Overall Numerical Characteristics and Benchmaking J. Padovan, M. Adams, J. Fertis, I. Zeid, and P. Lam Akron Univ., OH, Rept. No. NASA-CR-167944, 229 pp (Oct 1982) N82-33390 Key Words: Computer programs, Finite element techniques, Rotors, Turbine engines Finite element codes are used in modeling rotor-bearingstator structure common to the turbine industry. Engine dynamic simulation is used by developing strategies which enable the use of available finite element codes. ## **GENERAL TOPICS** ## CRITERIA, STANDARDS, AND SPECIFICATIONS (See No. 1244) ## BIBLIOGRAPHIES (See Nos. 1109, 1129, 1131, 1149, 1150, 1233) ## **USEFUL APPLICATIONS** ### 83-1276 Synchronization of Centrifugal Vibrators in a Two-Mass Shock Vibratory Machine K. Bauer Vibrotechnika, <u>3</u> (33), pp 109-116 (1981) 2 figs, 10 refs (In Russian) Key Words: Vibrators (machinery) The synchronization of centrifugal vibrators in a vibratory machine under impact loading is investigated. The load is considered as a solid body which completely nonelastically impacts with the working part of the machine. The equations for calculation of synchronous-synphase regime and the conditions of its stability are obtained. A numerical example is given. がなるのないであっていいないとからなるなのなど ## The Rational Model Choice of Large-Gabarit Vibro-Machine Container V. Povidaylo and I. Zanevsky Lvov Politechnical Inst., Lvov Ukr. SSR, Vibrotechnika, 3 (33), pp 23-29 (1981) 2 figs, 7 refs (In Russian) Key Words: Vibrators (machinery) The unwanted vibrations of a large-gabarit vibro-machine container is investigated theoretically. The container is simulated by a thin-walled open cross-section beam applying basic distortional hypothesis and analyzed using power evaluation method. ### 83-1278 Magnetic Recording Using Vibrating Magnetic Heads P. Varanauskas and V. Nenorta Kaunas Politechnical Institute, Kaunas, Lithuanian SSR, Vibrotechnika, $\underline{1}$ (39), pp 11-13 (1981) 4 figs, 4 refs (In Russian) Key Words: Vibratory techniques The quality of magnetic recordings using magnetic heads were tested experimentally. The results are presented by graphs and oscillograms. # **AUTHOR INDEX** | | 0 | 1055 | |--------------------------------|------------------------------|--------------------------| | Abdel-Ghaffar, A.M 1100, 1102, | Cronkhite, J.D | Hong, C | | | Dahl, M.D 1217 | Hong, W.K.W | | Abdel-Rohman, M 1108 | Darbre, G.R | Honlinger, H 1136 | | Adali, S | Davenport, A.G 1101 | Horowitz, S.J | | Adams, M 1275 | DeLaurier, J.D 1130 | Hsiang, Tsao Lin | | Al-Sanad, H.A.A 1114 | Der Kiureghian, A 1230, 1231 | Hu, Zhangwei 1223 | | Astley, R.J 1200 | DeSanto, J.A 1269 | Hua, Zhu Wu 1211 | | Auphan, M | Diarra, C.M | Hull, R1143, 1144 | | | Djordjevic, S.Z | Humar, J | | Bailey, C.D | | | | Bainum, P.M 1270 | Done, G.T.S | Hunt, J.B | | Balling, R.J | Eason, G | Hurst, C.J | | Banah, A.H 1241 | Edwards, J.E | Huttsell, L.J | | Bartel, H | Eghtesadi, Kh 1202 | Ishikawa, A 1165 | | Basu, A.K 1206 | Eisenberger, M 1187 | Izumi, H | | Bauer, D.P | Eversman, W 1200 | Jacobson, M.J 1190 | | Bauer, K | Fertis, J 1275 | Jeans, L.L | | Baumeister, K.J 1091 | Fiedler, W | Jennings, P.C 1115 | | Baumeister, K.J 1093, 1200 | Fietz, G 1243 | Jensen, J.J | | Benatar, M 1126 | Flipse, J.E 1195 | Jones, R.T | | Bentson, J | Frye, M.J 1194 | Jones, S.P | | Bergmann, A.N 1181 | Gaberson, H.A 1227 | Joshi, S.M 1182, 1183 | | Berry, V.L | Gao, D.P | Kabe, A.M | | Bertke, R.S | Ghanaat, Y | Kameda, H | | Beskos, D.E | Gibbs, B.M | Kan, H.P | | Beucke, K.E | Gibson, R.F | Kania, N | | Boström, A 1268 | Glienicke, J | Kaplan, P | | Bouclin, P | Goglia, G.L | Karabalis, D.L | | | Gong, Yang Yu | Karayanopoulos, N 1261 | | Bridges, T.J | | | | Button, M.R 1271 | Graham, L.J | Kazamaki, T | | Byrne, P.M | Griffin, P.D | Kelly, J.M | | Calarese, W | Grimes, G.C | Khilnani, K.S | | Candel, S.M 1210 | Gudonis, J | Kiaušinis, S 1207 | | Chang, Ning De 1257 | Hage, HJ | Kittleson, J.K 1141 | | Chen, Jen-Hwa 1117 | Hall, J.F | Klompas, N 1094 | | Chen, P.J 1247 | Hammad, R.N.S 1105 | Kluft, W 1245 | | Chopra, A.K 1120 | Han, DC 1167 | Ko, T | | Chopra, I 1164 | Hankey, W.L 1232 | Koch, W 1201 | | Christoffel, K | Haruyama, Y | Koide, T | | Chuan, Xue Jing 1175 | Haug, E.J 1260 | Koike, T | | Clarkson, B.L | Hernried, A.G 1229 | Kolymbas, D 1116 | | Clements, E.W 1128 | Higuchi, K | König, W | | Clough, R.W | Hille, H.K 1152, 1153, 1154, | Koopmann, G.H 1090, 1219 | | Constantinou, M.C 1156 | | Korabliov, S 1273 | | Crandall, S | Hirsch, R.A | Korn, A.E | | Crocker, M.J | Hodder, S.B | Korpel A 1241 | | CIOCKEI, III,J, | 1100001, 3.0 | 1. orpor, m 1241 | | Krenk, S | Nogues, M | Shahan, J.E 1092 | |-------------------------|----------------------------|-----------------------| | Kristensson, G 1268 | Noreen, R.A 1220 | Shahrivar, F | | Krylov, N 1273 | Nour-Omid, B 1230, 1231 | Shankar, S | | Kühne, L 1254 | Obernhuber, P 1123 | Sharma, S.R 1198 | | Kulvets, A | Oda, S | Shaw, L 1209 | | Kumar, B | Ohnishi, T | Shen, M.C 1265 | | Kumar, V.K | Orlik-Rückemann, K.J 1148 | Shimode, S | | Kunpanitchakit, C 1272 | Ousset, Y | Shinozuka, M | | | Oyibo, G.A | | | LaBerge, J.G | | Shippy, D.J | | Lakshminarayana, B 1095 | Padovan, J | Shivashankara, B.N | | Lam, P | Pande, L | Singer, J | | Laura, P.A.A | Pascher, M | Sivaneri, N | | Law, M.R.P | Paškevičius, V 1235 | Sležas, V | | Lechler, G 1252 | Pedersen, P 1259 | Smeby, W | | Lee, Meng-Chi 1197 | Penzien, J 1197 | Soenarko, B | | Leipholz, H.H 1108 | Peters, D.A 1147 | Steele, J.M 1248 | | Leu, M.C 1096 | Peters, G 1246 | Stephen, N.G 1160 | | Leventhall, H.G 1202 | Pfaffinger, D.D | Stulpinas, B 1235 | | Liu, C.H 1224 | Pope, R.J 1161 | Su, T.C | | Lou, Y.K 1195 | Povidaylo, V 1277 | Šukelis, A 1208, 1235 | | Lu, H.Y 1212 | Pretlove, A.J | Sung, S.H | | Ma, Yan-Chow 1267 | Psycharis, I.N | Tadjbakhsh, I.G 1156 | | Madsen, H.O 1264 | Qiande, M | Takayama, H | | Madsen, P.H 1264 | Raju, P.K | Tanaka, H | | Manser, R | Ramsey, K.A 1240 | Teipel, K | | Martin, J.B | Rand, O | Thawani, P.T 1220 | | Mayes, W.H | Randall, R.L 1255 | | | | | Theocaris, P.S | | McAvoy, J | Ranky, M.F | Thompson, D.E 1095 | | McCoy, J.J | Rea, D | Thunder, T.D | | McCutcheon, S.H | Reddy, A.S.S.R 1270 | Ti, Zhu Shi | | McDaniel, O.H | Reed, D.A | Toki, K | | McGary, M.C | Rieger, N.F 1248 | Toussi, S | | McLaughlin, D.K 1224 | Rizzo, F.J 1216 | Trunzo, R | | McNiven, H.D 1194 | Roizman, V | Tsamasphyros, G 1261 | | Mechel, F.P 1205 | Rosen, A 1189 | Tschanz, T 1106 | | Mezache, M 1219 | Rosenhouse, G 1205 | Udvadia, F 1225 | | Miura, F | Rossow, M.P | Vahabzadeh, H | | Mohring, W 1201 | Roufaiel, M 1119 | Vaingortin, L | | Molusis, J.A | Rousselet, B 1260 | Varanaciskas, P | | Mori, H | Rubin, L.I1100, 1102, 1103 | Veletsos, A.S | | Mote, C.D., Jr 1096 | | Vogel, R.F 1241 | | Mussman, D | Sackman, J.L | von Thun, HJ | | Naeim, F | Saiidi, M | Vorsteher, D 1254 | | Nagabhushan, B.L | Sarmiento, G.S 1181 | Vuquoc, L | | Nakagawa, K 1169 | Scanlan, R.H 1113 | Waaser, R.E | | Namba, M 1165 | Schmid, I 1243 | Wada, H | | Nathoo, N.S 1249 | Scholl, W 1122 | Wales, S.C 1215 | | Nau, J.M 1226 | Schott, G 1239 | Wang, Y.S | | Neise, W 1090 | Seiner, J.M 1224 | Watanabe, K | | Nemergut, P.J 1218 | Seybert, A.F 1216 | Weaver, W., Jr 1187 | | Nenorta, V 1278 | Shah, A.H | Weck, M 1170, 1254 | | | | | | 1997年 19 | Westermo, B 1225 | Wood, L.A 1221 | Yu, Yung H 1141 | |-------------------------|--------------------|----------------------| | Whaley, P.W 1135 | Woodhead, T.J | Zanevsky, I 1277 | | White, J.W | Wright, C.E 1244 | Zeid, I 1275 | | Williams, J | Yamakawa, H 1262 | Zhong, Xi-Chang 1265 | | Wolf, J.P | Yanagisawa, T 1214 | | | Wong, Raymond, L.M 1223 | Yeung, K.K | | いいかく 逆にして地域のから無人はないのないを開発するのである。からないのではなったのではなっては、「なっている」となって、「最からしている」を行っ ## PERIODICALS SCANNED ACTA MECHANICA (Acta Mech.) Springer-Verlag New York, Inc. 175 Fifth Ave. New York, NY 10010 ACTA MECHANICA SOLIDA SINICA (Acta Mech. Solida Sinica, Chinese Soc. Theo. Appl. Mech.) Chinese Society of Theoretical and Applied Mechanics Guozi Shudian P.O. Box 399 Beijing, China ACUSTICA (Acustica) S, Hirzel Verlag, Postfach 347 D-700 Stuttgart 1 W, Germany AERONAUTICAL JOURNAL (Aeronaut. J.) Royal Aeronautical Society 4 Hamilton Place London W1V 0BQ, UK AERONAUTICAL QUARTERLY (Aeronaut, Quart.) Royal Aeronautical Society 4 Hamilton Place Royal Aeronautical Society 4 Hamilton Place London W1V OBQ, UK AIAA JOURNAL (AIAA J.) American Institute of Aeronautics and Astronautics 1290 Avenue of the Americas New York, NY 10104 AMERICAN SOCIETY OF CIVIL ENGINEERS, PROCEEDINGS ASCE United Engineering Center United Engineering Center 345 E, 47th St, New York, NY 10017 JOURNAL OF ENGINEERING MECHANICS DIVISION (ASCE J. Engrg. Mech. Div.) JOURNAL OF STRUCTURAL DIVISION (ASCE J. Struc. Div.) AMERICAN SOCIETY OF LUBRICATING ENGINEERS, TRANSACTIONS (ASLE, Trans.) Academic Press 111 Fifth Ave. New York, NY 10019 AMERICAN SOCIETY OF MECHANICAL ENGINEERS, TRANSACTIONS ASME United Engineering Center 345 E. 47th St. New York, NY 10017 JOURNAL OF APPLIED MECHANICS (J. App. Mech., Trans. ASME) JOURNAL OF DYNAMIC SYSTEMS, MEASURE-MENT AND CONTROL (J. Dynam. Syst., Meas. Control, Trans. ASME) JOURNAL OF ENERGY RESOURCES TECHNOLOGY (J. Energy Resources Tech., Trans. ASME) JOURNAL OF ENGINEERING FOR INDUSTRY (J. Engrg. Indus., Trans. ASME) JOURNAL OF ENGINEERING FOR POWER (J. Engrg. Power, Trans. ASME) JOURNAL OF LUBRICATION TECHNOLOGY (J. Lubric, Tech., Trans. ASME) JOURNAL OF MECHANICAL DESIGN (J. Mech. Des., Trans. ASME) JOURNAL OF PRESSURE VESSEL TECHNOLOGY (J. Pressure Vessel Tech., Trans. ASME) JOURNAL OF VIBRATION, STRESS, AND RELI-ABILITY IN DESIGN (J. Vib. Stress Rel. Des., Trans. ASME) APPLIED ACOUSTICS (Appl. Acoust.) Applied Science Publishers, Ltd. Ripple Road, Barking Essex. UK ARCHIVES OF ACOUSTICS (Arch, Acoust.) Ars Polona-Ruch 00-068 Warszawa Krakowskie Przedmiescie 7 Poland ARCHIVES OF MECHANICS (ARCHIWUM MECHANIKI STOSOWANEJ) (Arch, Mech.) Export and Import Enterprise Ruch UL, Wronia 23, Warsaw, Poland ASTRONAUTICS AND AERONAUTICS (Astronaut, Aeronaut.) AIAA EDP 1290 Avenue of the Americas New York, NY 10019 AUTOMOBILTECHNISCHE ZEITSCHRIFT (Automobiltech. Z.) Franckh'sche Verlagshandlung Abteilung Technik 7000 Stuttgart 1 Pfizemtrasse 5-7 W. Germany AUI OMOTIVE ENGINEER (SAE) (Au o. Engr. (SAE)) Society of Automotive Engineers, Inc. 400 Commonwealth Dr. Warrendale, PA 15096 BALL BEARING JOURNAL (English Edition) (Ball Bearing J.) SKF (U.K.) Ltd. Luton, Bedfordshire LU3 1JF, UK BROWN BOVERI REVIEW (Brown Boveri Rev.) Brown Boveri and Co., Ltd. CH-5401, Baden, Switzerland BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES, SERIES DES SCIENCES TECHNIQUES (Bull. Acad. Polon. Sci., Ser. Sci. Tech.) Am Polona-Ruch Ars Polona-Ruch 00-068 Warszawa Krakowskie Przedmiescie 7 Poland BULLETIN OF JAPAN SOCIETY OF MECHANICAL ENGINEERS (Bull JSME) Japan Society of Mechanical Engineers Sanahin Hokusel Bidg. H-9 Yoyogi 2-chome Shibuya-ku Tokyo 151, Japan BULLETIN OF SEISMOLOGICAL SOCIETY OF AMERICA (Bull, Seismol, Soc. Amer.) Bruce A. Bolt Box 826 Berkeley, CA 94705 CIVIL ENGINEERING (NEW YORK) (Civ. Engrg. (N.Y.)) ASCE United Engineering Center 345 E, 47th St. New York, NY 10017 COMPUTERS AND STRUCTURES (Computers Struc.) Pergamon Press Inc. Maxwell House, Fairview Park Elmsford, NY 10523 DESIGN ENGINEERING (Des. Engrg.) Morgan-Grampian Publishing Co. Berkshir: Common Pittsfield, MA 02101 DESIGN NEWS (Des. News) Cahners Publishing Co., Inc. 221 Columbus Ave. Boston, MA 02116 DIESEL AND GAS TURBINE PROGRESS (Diesel Gas Turbine Prog.) Diesel Engines, Inc. P.O. Box 7406 Milwaukee, WI 53213 ENGINEERING STRUCTURES (Engrg. Struc.) IPC Science and Technology Press Ltd. Westbury House P.O. Box 63, Bury Street Guildford, Surrey GU2 5BH, UK EXPERIMENTAL MECHANICS (Exptl. Mech.) Society for Experimental Stress Analysis 21 Bridge Sq., P.O. Box 277 Westport, CT 06880 FEINWERKTECHNIK U. MESSTECHNIK (Feinwerk u. Messtechnik) Carl Hanser Verlag Postfach 860420 D-8000 München 86 Fed. Rep. Germany FORSCHUNG IM INGENIEURWESEN (Forsch. Ingenieurwesen) Verein Deutscher Ingenieur, GmbH Poetfach 1139 Graf-Recke Str. 84 4 Düsseldorf 1 W. Germany GUMMI ASBEST KUNSTSTOFFE (Gummi Asbest Kunstst.) A.W. Gentner Verlag GmbH & Co. KG Forststrasse 131, 7000 Stuttgart 1 Stuttgart, Germany HEATING/PIPING/AIR CONDITIONING (Heating/Piping/Air Cond.) Circulation Dept. 614 Superior Ave. West Cleveland, OH 44113 HYDRAULICS AND PNEUMATICS (Hydraul, Pneumat.) Penton/IPC, Inc. 614 Superior Ave. West Cleveland, OH 44113 HYDROCARBON PROCESSING (Hydrocarbon Processing) Gulf Publishing Co. Box. 2608 Houston, TX 77001 IBM JOURNAL OF RESEARCH AND DEVELOPMENT (IBM J. Res. Dev.) International Business Machines Corp. Armonk, NY 10504 Armonk, NY 10504 INDUSTRIAL LUBRICATION AND TRIBOLOGY (Indus. Lubric, Trib.) Peterson Publishing Co. Ltd. Peterson House, Northbank, Berryhill Industrial Estate, Droitwich, Worcs WR9 9BL. England INGENIEUR-ARCHIV (Ing. Arch.) Springer-Verlag New York, Inc. 175 Fifth Ave. New York, NY 10010 INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, PROCEEDINGS (IEEE, Proc.) IEEE United Engineering Center 345 E. 47th St. New York, NY 10017 INSTITUTE OF MARINE ENGINEERS, TRANSACTIONS (TM) (Inst. Marine Engr., Trans. (TM)) Institute of Marine Engineers 76 Mark Lane London ECSR 7JN, UK INSTITUTE OF MEASUREMENT AND CONTROL, TRANSACTIONS (Inst. Meas. Control, Trans.) Institute of Measurement and Control 20 Peel St. London W8 7PD, UK INSTITUTION OF ENGINEERS, AUSTRALIA, MECHANI-CAL ENGINEERING, TRANSACTIONS (Instn. Engr., Australia, Mech. Engrg., Trans.) Institution of Engineers, Australia 11 National Circuit Barton, A.C.T. 2600 Australia INSTITUTION OF MECHANICAL ENGINEERS, (LON-DON), PROCEEDINGS (IMechE, Proc.) Institution of Mechanical Engineers 1 Birdcage Walk, Westminster, London SW1. UK INSTRUMENT SOCIETY OF AMERICA, TRANSACTIONS (ISA, Trans.) Instrument Society of America 400 Stanwix St. Pittsburgh, PA 15222 **INSTRUMENTATION TECHNOLOGY** (Instrum. Tech.) Instrument Society of America 67 Alexander Dr. P.O. Box 12277 Research Triangle Park, NC 27709 INTERNATIONAL JOURNAL OF CONTROL (Intl. J. Control) Taylor and Francis Ltd. 10-14 Macklin St. London WC2B 5NF, UK INTERNATIONAL JOURNAL OF EARTHQUAKE ENGI-NEERING AND STRUCTURAL DYNAMICS (Intl. J. Earthquake Engrg. Struc. Dynam.) John Wiley and Sons Ltd. **Baffins Lane** Chichester, Sussex PO19 1UD, England INTERNATIONAL JOURNAL OF ENGINEERING SCI-ENCES (Intl. J. Engrg. Sci.) Pergamon Press Inc. Maxwell House, Fairview Park Elmsford, NY 10523 INTERNATIONAL JOURNAL OF FATIGUE (Intl. J. Fatigue) IPC Science and Technology Press Ltd, P.O. Box 63, Westbury House, Bury Street Guildford, Surrey GU2 5BH, England INTERNATIONAL JOURNAL OF MACHINE TOOL DESIGN AND RESEARCH (Intl. J. Mach. Tool Des. Res.) Pergamon Press Inc. Maxwell House, Fairview Park Elmsford, NY 10523 INTERNATIONAL JOURNAL OF MECHANICAL SCI-ENCES (Intl. J. Mech. Sci.) Pergamon Press, Inc. Maxwell House, Fairview Park Elmsford, NY 10523 INTERNATIONAL JOURNAL OF NONLINEAR MECHAN- (Intl. J. Nonlin, Mech.) Pergamon Press Inc. Maxwell House, Fairview Park Elmsford, NY 10523 INTERNATIONAL JOURNAL FOR NUMERICAL METH-**ODS IN ENGINEERING** (Intl. J. Numer, Methods Engrg.) John Wiley and Sons Ltd. Baffins Lane Chichester, Sumex PO19 1UD, England INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS (Intl. J. Numer, Anal, Methods Geomech.) John Wiley and Sons Ltd. **Baffins Lane** Chichester, Sussex PO19 1UD, England INTERNATIONAL JOURNAL OF SOLIDS AND STRUC-TURES (Intl. J. Solids Struc.) Pergamon Press Inc. Maxwell House, Fairview Park Elmsford, NY 10523 INTERNATIONAL JOURNAL OF VEHICLE DESIGN (Intl. J. Vehicle Des.) Inderscience Enterprises Ltd. La Motte Chambers. St. Helier, Jersey, Channel Islands, U.K. ISRAEL JOURNAL OF TECHNOLOGY (Israel J. Tech.) Weizmann Science Press of Israel Box 801 Jerusalem, Israel JOURNAL OF THE ACOUSTICAL SOCIETY OF AMER-ICA (J. Acoust. Soc. Amer.) American Institute of Physics 335 E. 45th St. New York, NY 10010 JOURNAL OF AIRCRAFT (J. Aircraft) American Institute of Aeronautics and Astronautics) 1290 Avenue of the Americas New York, NY 10104 JOURNAL OF THE AMERICAN HELICOPTER SOCIECT (J. Amer. Helicopter Soc.) American Helicopter Society, Inc. 30 E. 42nd St. New York, NY 10017 JOURNAL OF ENGINEERING MATHEMATICS (J. Engrg. Math.) Academic Press 198 Ash St. Reading, MA 01867 JOURNAL OF ENVIRONMENTAL SCIENCES (J. Environ, Sci.) Institute of Environmental Sciences 940 F. Northwest Highway Mt. Prospect, IL 60056 **JOURNAL OF FLUID MECHANICS** (J. Fluid Mech.) Cambridge University Press 32 E. 57th St. New York, NY 10022 JOURNAL OF THE FRANKLIN INSTITUTE (J. Franklin Inst.) Pergamon Press Inc. Maxwell House, Fairview Park Elmsford, NY 10523 JOURNAL OF THE INSTITUTE OF ENGINEERS. AUSTRALIA (J. Inst. Engr., Australia) Science House, 157 Gloucter Sydney, Australia 2000 JOURNAL DE MECANIQUE (J. de Mécanique) Gauthier-Villars C.D.R. - Centrale des Revues B.P. No. 119, 93104 Montreuii Cedex-France JOURNAL OF MECHANICAL ENGINEERING SCIENCE (J. Mech. Engrg. Sci.) Institut in of Mechanical Engineers 1 Birdca Walk, Westminster London SW1 H9, UK JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (J. Mech. Phys. Solids) Pergamon Press Inc. Maxwell House, Fairview Park Elmsford, NY 10523 JOURNAL OF PETROLEUM TECHNOLOGY (J. Pet. Tech.) Society of Petroleum Engineers 6200 N. Central Expressway Dallas, TX 75206 JOURNAL OF PHYSICS: E SCIENTIFIC INSTRUMENTS (J. Phys.: E Sci. Instrum.) American Institute of Physics 335 E. 45th St. New York, NY 10017 JOURNAL OF SLIP RESEARCH (J. Ship Res.) Society of Naval Architects and Marine Engineers One World Trade Center Suite 1369 New York, NY 10048 JOURNAL OF SOUND AND VIBRATION (J. Sound Vib.) Academic Press Inc. 111 Fifth Ave. New York, NY 10003 JOURNAL OF SPACECRAFT AND ROCKETS (J. Spacecraft Rockets) American Institute of Aeronautics and Astronautics 1290 Avenue of the Americas New York, NY 10104 JOURNAL OF TECHNICAL PHYSICS (J. Tech, Phys.) Ars Polona-Ruch 00-068 Warszawa Krakowskie Przedmiescie 7 Poland JOURNAL OF TESTING AND EVALUATION (ASTM) (J. Test Eval. (ASTM)) American Society for Testing and Materials 1916 Race St. Philadelphia, PA 19103 KONSTRUKTION (Konstruktion) Springer-Verlag 3133 Connecticut Ave., N.W., Suite 712 Washington, DC 20008 LUBRICATION ENGINEERING (Lubric, Engrs.) American Society of Lubrication Engineers 838 Busse Highway Park Ridge, IL 60068 MACHINE DESIGN (Mach, Des.) Penton/IPC, Inc. Penton Plaza, 1111 Chester Ave. Cleveland, OH 44114 MASCHINENBAUTECHNIK (Maschinenbautechnik) VEB Verlag Technik Oranienburger Str. 13/14 1020 Berlin, E. Germany MECCANICA (Meccanica) Pergamon Press Inc. Maxwell House, Fairview Park Elmsford, NY 10523 MECHANICAL ENGINEERING (Mech. Engrg.) American Society of Mechanical Engineers United Engineering Center 345 E. 47th St. New York, NY 10017 MECHANICS RESEARCH AND COMMUNICATIONS (Mech, Res. Comm.) Pergamon Press Inc. Maxwell House, Fairview Park Elmsford, NY 10523 MECHANISM AND MACHINE THEORY (Mech, Mach, Theory) Pergamon Press Inc. Maxwell House, Fairview Park Elmsford, NY 10523 MEMOIRES OF THE FACULTY OF ENGINEERING, KYOTO UNIVERSITY (Mem. Fac. Engre., Kyoto Univ.) Kyoto University Kyoto, Japan MEMOIRES OF THE FACULTY OF ENGINEERING, KYUSHU UNIVERSITY (Mem., Fac., Engrg., Kyushu Univ.) Kyushu University Kyushu, Japan MEMOIRES OF THE FACULTY OF ENGINEERING, NAGOYA UNIVERSITY (Mem. Fac, Engrg., Nagoya Univ.) Nagoya University Nagoya, Japan MTZ MOTORTECHNISCHE ZEITSCHRIFT (MTZ Motoriech, Z.) Franckh behe Verlagshandlung Pfizerstrage 5-7 7000 Stuttgart 1 W, Germany NAVAL ENGINEERS JOURNAL (Naval Engr. J.) American Society of Naval Engineers, Inc. Suite 507, Continental Building 1012 14th St., N.W. Washington, DC 20005 NOISE CONTROL ENGINEERING (Noise Control Engrg.) P.O. Box 3206, Artington Branch Poughkeepsie, NY 12603 NORTHEAST COAST INSTITUTION OF ENGINEERS AND SHIPBUILDERS, TRANSACTIONS (NE Coast Instn., Engr., Shipbidr., Trans.) Bolbec Hall Newcastle upon Tyne 1, UK 最大のないのかのは、 一日の日本の日本の NUCLEAR ENGINEERING AND DESIGN (Nucl. Engrg. Des.) North-Holland Publishing Co. P.O. Box 3489 Amsterdan, The Netherlands OIL AND GAS JOURNAL (Oil Gas J.) PennWell Publishing Co. 1421 S. Sheridan Rd. P.O. Box 1260 Tulsa, OK 74101 PACKAGE ENGINEERING (Package Engrg.) 270 St. Paul St. Denver, CO 80206 PAPER TECHNOLOGY AND INDUSTRY (Paper Tech. Indus.) 3, Plough Place, Fetter Lane London EC4A 1AL, UK PLANT ENGINEERING (Plant Engrg.) Technical Publishing Company 1301 S. Grove Ave. Barrington, IL 60010 POWER (Power) P.O. Box 430 Hightstown, NJ 08520 POWER TRANSMISSION DESIGN (Power Transm. Des.) 614 Superior Ave., West Cleveland, OH 44113 QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS (Quart, J. Mech, Appl. Math.) Wm. Dawson & Sons, Ltd. Cannon House Folkestone. Kent. UK REVUE ROUMAINE DES SCIENCES TECHNIQUES, SERIE DE MECANIQUE APPLIQUEE (Rev. Roumaine Sci. Tech., Mecanique Appl.) Editions De L'Academie De La Republique Socialiste de Roumaine 3 Bis Str., Gutenberg, Bucharest, Romania REVIEW OF SCIENTIFIC INSTRUMENTS (Rev. Scientific Instrum.) American Institute of Physics 335 E. 45th St. New York, NY 10017 SAE TECHNICAL LITERATURE ABSTRACTS (SAE Tech. Lit. Abstracts) Society of Automotive Engineers 400 Commonwealth Dr. Warrendale, PA 15086 THE SHOCK AND VIBRATION DIGEST (Shock Vib. Dig.) Shock and Vibration Information Center Naval Research Laboratory, Code 5804 Washington, DC 20375 SIAM JOURNAL ON APPLIED MATHEMATICS (SIAM J. Appl. Math.) Society for Industrial and Applied Mathematics 1405 Architects Building 117 S. 17th St. Philadelphia, PA 19103 SIAM JOURNAL ON NUMERICAL ANALYSIS (SIAM J. Numer. Anal.) Society for Industrial and Applied Mathematics 1405 Architects Building 117 S. 17th St. Philadelphia, PA 19103 SIEMENS RESEARCH AND DEVELOPMENT REPORTS (Siemens Res. Dev. Repts.) Springer-Verlag New York Inc. 175 Fifth Ave., New York, NY 10010 STROJNÍCKY ČASOPIS (Strojňicky Časopis) Redakcia Strojnickeho Časopisu ČSAV a SAV Ústav Mechaniky Strojov SAV Bratislava-Patrónka, Dúbravská cesta, ČSSR Czechoslovakia THE STRUCTURAL ENGINEER (Struc, Engr.) The institution of Structural Engineers 11 Upper Belgrave St. London SWIX 8BH S/V, SOUND AND VIBRATION (S/V, Sound Vib.) Acoustic Publications, Inc. 27101 E. Oviat Rd. P.O. Box 40416 Bay Village, OH 44140 TECHNISCHES MESSEN - TM (Techn, Messen-TM) R. Oldenbourg Verlag GinbH Rosenheimer Strasse 145 8000 München 80, W. Germany TEST (Test) Mattingley Publishing Co., Inc. 61 Monmouth Rd. Oakhurst, NJ 07755 TRIBOLOGY INTERNATIONAL (Tribology Intl.) IPC Science and Technology Press Ltd. P.O. Box 63, Westbury House, Bury Street Guildford, Surrey GU2 5BH, England VDI FORSCHUNGSHEFT (VDI Forsch.) Verein Deutscher Ingenieur GmbH Postfach 1139, Graf-Recke Str. 84 4 Düsseldorf 1, Germany VDI ZEITSCHRIFT (VDI Z.) Verein Deutscher Ingenieur GmbH Postfach 1139, Graf-Recke Str. 84 4 Düsseldorf 1, Germany VEHICLE SYSTEM DYNAMICS (Vehicle Syst, Dynam.) Swets & Zeitlinger B.V. Publishing Department 347 B, Heereweg, 2161 CA LISSE The Netherlands VIBROTECHNIKA (Vibrotechnika) Kauno Polytechnikos Institutas 2 Donelaičio g-ve 17 233000 Kaunas Lithuanian SSR WAVE MOTION (Wave Motion) North-Holland Publishing Co. Journal Division Molenwerf 1, P.O. Box 211 1000 AE Amsterdam The Netherlands WEAR (Wear) Elsevier Sequoia S.A. P.O. Box 851 1001 Lausanne 1, Switzerland ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK (Z. angew. Math. Mech.) Akademie Verlag GmbH Liepziger Str. 3-4 108 Berlin, Germany ZEITSCHRIFT FUR FLUGWISSENSCHAFTEN (Z. Flugwiss.) DFVLR D-3300 Braunschweig Flughafen, Postfach 3267 W. Germany ## SECONDARY PUBLICATIONS SCANNED DISSERTATION ABSTRACTS INTERNATIONAL (DA) University Microfilms International University Microfilms International 300 N. Zeeb Rd. Ann Arbor, MI 48106 GOVERNMENT REPORTS ANNOUNCEMENTS & INDEX (GRA) National Technical Information Service U.S. Department of Commerce 5285 Port Royal Rd. Springfield, VA 22161 ## **PROCEEDINGS SCANNED** INSTITUTE OF ENVIRONMENTAL SCIENCES, ANNUAL PROCEEDINGS (Inst. Environ, Sci., Proc.) Institute of Environmental Sciences 940 E. Northwest Highway Mt. Prospect, IL 60056 INTERNATIONAL CONFERENCE, VIBRATIONS IN ROTATING MACHINERY (Intl. Conf., Vib. Rotating Mach.) The Institution of Mechanical Engineers 1 Birdcage Walk, Westminster London SW1H 9JJ, UK INTER-NOISE PROCEEDINGS, INTERNATIONAL CONFERENCE ON NOISE CONTROL ENGINEERING (Inter-Noise) Noise Control Foundation P.O. Box 3469 Arlington Branch Poughkeepsie, NY 12603 MACHINERY VIBRATION MONITORING AND ANALY-SIS MEETING, PROCEEDINGS (Mach, Vib. Monit, Anal., Proc.) The Vibration Institute 101 W. 55th St., Suite 206 Clarendon Hills, IL 60514 NOISE CONTROL PROCEEDINGS, NATIONAL CON-FERENCE ON NOISE CONTROL ENGINEERING (Noise Cont.) Noise Control Foundation Noise Control Foundation P.O. Box 3469 Arlington Branch Poughkeepsie, NY 12603 THE SHOCK AND VIBRATION BULLETIN, UNITED STATES NAVAL RESEARCH LABORATORIES, ANNUAL PROCEEDINGS (Shock Vib. Bull., U.S. Naval Res. Lab., Proc.) Shock and Vibration Information Center Naval Research Lab., Code 5804 Washington, DC 20375 TURBOMACHINERY SYMPOSIUM (Turbomach, Symp.) Gas Turbine Labs, Texas A&M University College Station, TX 77843 ## **CALENDAR** ### **JULY 1983** 11-13 13th Intersociety Conference on Environmental Systems [SAE] San Francisco, CA (SAE Hqs.) ## **AUGUST 1983** - 8-11 Computer Engineering Conference and Exhibit [ASME] Chicago, IL (ASME Hqs.) - 8-11 West Coast International Meeting [SAE] Vancouver, B.C. (SAE Hgs.) ## **SEPTEMBER 1983** - 11-13 Petroleum Workshop and Conference [ASME] Tulsa, OK (ASME Hqs.) - 11-14 Design Engineering Technical Conference [ASME] Dearborn, MI (ASME Hqs.) - 12-15 International Off-Highway Meeting & Exposition [SAE] Milwaukee, WI (SAE Hqs.) - 14-16 International Symposium on Structural Crashworthiness [University of Liverpool] Liverpool, UK (Prof. Norman Jones, Dept. of Mech. Engrg., The Univ. of Liverpool, P.O. Box 147, Liverpool L69 3BX, England) - 25-29 Power Generation Conference [ASME] Indianapolis, IN (ASME Hgs.) - 28-30 Rotating Machinery Vibration Symposium [Vibration Institute] Worcester, MA (Dr. Ronald L. Eshleman, Director, The Vibration Institute, 101 W. 55th St., Suite 206, Clarendon Hills, IL 60514 (312) 654-2254) ## OCTOBER 1983 - 3-7 Advances in Dynamic Analysis and Testing [SAE Technical Committee G-5] SAE Aerospace Congress and Exposition, Long Beach, CA (Roy W. Mustain, Rockwell Space Transportation and Systems Group, Mail Sta. AB97, 12214 Lakewood Blvd., Downey, CA 90241) - 3-7 SAE Aerospace Congress and Exposition [SAE] Long Beach, CA (SAE Hqs.) - 17-19 Stapp Car Crash Conference [SAE] San Diego, CA (SAE Hqs.) - 17-20 Lubrication Conference [ASME] Hartford, CT (ASME Hqs.) - 18-20 54th Shock and Vibration Symposium [Shock and Vibration Information Center, Washington, DC] Pasadena, CA (Mr. Henry C. Pusey, Director, SVIC, Naval Research Lab., Code 5804, Washington, DC 20375) - 31-Nov 4 John C. Sowdon Vibration Control Seminar [Applied Research Lab., Pennsylvania State Univ.] University Park, PA ((Mary Ann Solic, 410 Keller Conference Center, University Park, PA 16802 (814) 865-4591) ## **NOVEMBER 1983** - 6-10 Truck Meeting and Exposition [SAE] Cleveland, OH (SAE Hgs.) - 7-11 Acoustical Society of America, Fall Meeting [ASA] San Diego, CA (ASA Hqs.) - 13-18 American Society of Mechanical Engineers, Winter Annual Meeting [ASME] Boston, MA (ASME Hgs.) ## **MARCH 1984** 20-23 Balancing of Rotating Machinery Symposium [Vibration Institute] Philadelphia, Pennsylvania (Dr. Ronald L. Eshleman, Director, The Vibration Institute, 101 W. 55th St., Suite 206, Clarendon Hills, IL 60514 - (312) 654-2254) ## **APRIL 1984** - 9-12 Design Engineering Conference and Show [ASME] Chicago, IL (ASMe Hqs.) - 9-13 2nd International Conference on Recent Advances in Structural Dynamics [Institute of Sound and Vibration Research] Southampton, England (Dr. Maurice Petyt, Institute of Sound and Vibration Research, The University of Southampton, S09 5NH, England (0703) 559122, ext. 2297) ## **MAY 1984** 7-11 Acoustical Society of America, Spring Meet ag [ASA] Norfolk, VA (ASA Has.) ## CALENDAR ACRONYM DEFINITIONS AND ADDRESSES OF SOCIETY HEADQUARTERS AHS: American Helicopter Society 1325 18 St. N.W. Washington, D.C. 20036 IFToMM: International Federation for Theory of Machines and Mechanisms U.S. Council for TMM c/o Univ. Mass., Dept. ME Amherst, MA 01002 AIAA: American Institute of Aeronautics and Astronautics 1290 Sixth Ave. New York, NY 10019 INCE: Institute of Noise Control Engineering P.O. Box 3206, Arlington Branch Poughkeepsie, NY 12603 ASA: Acoustical Society of America 335 E. 45th St. New York, NY 10017 ISA: Instrument Society of America 400 Stanwix St. Pittsburgh, PA 15222 ASCE: American Society of Civil Engineers 345 E. 45th St. New York, NY 10017 SAE: Society of Automotive Engineers 400 Commonwealth Drive Warrendale, PA 15096 ASME: American Society of Mechanical Engineers 345 E. 45th St. New York, NY 10017 SEE: Society of Environmental Engineers SG9 9PL, England Owles Hall, Buntingford, Hertz. ASTM: American Society for Testing and Materials 1916 Race St. Philadelphia, PA 19103 SESA: Society for Experimental Stress Analysis 21 Bridge Sq. Westport, CT 06880 ICF: International Congress on Fracture Tohoku University Sendai, Japan SNAME: Society of Naval Architects and Marine Engineers 74 Trinity Pl. New York, NY 10006 IEEE: Institute of Electrical and Electronics Engineers 345 E. 47th St. New York, NY 10017 SPE: Society of Petroleum Engineers 6200 N. Central Expressway Dallas, TX 75206 940 E. Northwest Highway IES: IMechE: 940 E. Northwest Highw Mt. Prospect, IL 60056 Institution of Mechanical Engineers Institute of Environmental Sciences 1 Birdcage Walk, Westminster, London SW1, UK SVIC: Shock and Vibration Information Center Naval Research Lab., Code 5804 Washington, D.C. 20375 ## **PUBLICATION POLICY** Unsolicited articles are accepted for publication in the Shock and Vibration Digest. Feature articles should be tutorials and/or reviews of areas of interest to shock and vibration engineers. Literature review articles should provide a subjective critique/summary of papers, patents, proceedings, and reports of a pertinent topic in the shock and vibration field. A literature review should stress important recent technology. Only pertinent literature should be cited. Illustrations are encouraged. Detailed mathematical derivations are discouraged; rather, simple formulas representing results should be used. When complex formulas cannot be avoided, a functional form should be used so that readers will understand the interaction between parameters and variables. Manuscripts must be typed (double-spaced) and figures attached. It is strongly recommended that line figures be rendered in ink or heavy pencil and neatly labeled. Photographs must be unscreened glossy black and white prints. The format for references shown in DIGEST articles is to be followed. Manuscripts must begin with a brief abstract, or summary. Only material referred to in the text should be included in the list of References at the end of the article. References should be cited in text by consecutive numbers in brackets, as in the example below. Unfortunately, such information is often unreliable, particularly statistical data pertinent to a reliability assessment, as has been previously noted [1]. Critical and certain related excitations were first applied to the problem of assessing system reliability almost a decade ago [2]. Since then, the variations that have been developed and the practical applications that have been explored [3-7] indicate that... The format and style for the list of References at the end of the article are as follows: - each citation number as it appears in text (not in alphabetical order) - last name of author/editor followed by initials or first name - titles of articles within quotations, titles of books underlined - abbreviated title of journal in which article was published (see Periodicals Scanned list in January, June, and December issues) - volume, number or issue, and pages for journals; publisher for books - year of publication in parentheses A sample reference list is given below. - Platzer, M.F., 'Transonic Blade Flutter A Survey," Shock Vib. Dig., 7 (7), pp 97-106 (July 1975). - Bisplinghoff, R.L., Ashley, H., and Halfman, R.L., <u>Aeroelasticity</u>, Addision-Wesley (1955). - Jones, W.P., (Ed.), "Manual on Aeroelasticity," Part II, Aerodynamic Aspects, Advisory Group Aeronaut, Res. Devel. (1962). - Lin, C.C., Reissner, E., and Tsien, H., "On Two-Dimensional Nonsteady Motion of a Slender Body in a Compressible Fluid," J. Math. Phys., 27 (3), pp 220-231 (1948). - 5. Landahl, M., <u>Unsteady Transonic Flow,</u> Pergamon Press (1961). - Miles, J.W., "The Compressible Flow Past an Oscillating Airfoil in a Wind Tunnel," J. Aeronaut. Sci., <u>23</u> (7), pp 671-678 (1956). - Lane, F., "Supersonic Flow Past an Oscillating Cascade with Supersonic Leading Edge Locus," J. Aeronaut, Sci., <u>24</u> (1), pp 65-66 (1957). Articles for the DIGEST will be reviewed for technical content and edited for style and format. Before an article is submitted, the topic area should be cleared with the editors of the DIGEST. Literature review topics are assigned on a first come basis. Topics should be narrow and well-defined. Articles should be 1500 to 2500 words in length. For additional information on topics and editorial policies, please contact: Milda Z. Tamulionis Research Editor Vibration Institute 101 W. 55th Street, Suite 206 Clarendon Hills, Illinois 60514 ### DEPARTMENT OF THE NAVY NAVAL RESEARCH LABORATORY, CODE 5804 SHOCK AND VIBRATION INFORMATION CENTER Washington, D.C. 20375 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300 POSTAGE AND FEES PAID DEPARTMENT OF THE NAVY DOD-316 THIRD CLASS MAIL Gential contents: ## THE SHOCK AND VIBRATION DIGEST Volume 15, No. 6 June 1983 ### **EDITORIAL** - 1 SVIC Notes - 2 Editors Rattle Space ### ARTICLES AND REVIEWS - Feature Article NONLINEAR VIBRATIONS OF PLATES A REVIEW M. Sathyamoorthy - 17 Literature Review - - MECHANICAL SIGNATURE ANALYSIS, And M.S. Hundal - 27 STATIC AND DYNAMIC BEHAVIOR OF MECHANICAL COMPONENTS ASSOCIATED WITH ELECTRICAL TRANSMISSION LINES P.G.S. Trainor, N. Popplewell, A.H. Shah, and R.B. Pinkney 39 Book Reviews ## **CURRENT NEWS** - 42 Short Courses - 45 News Briefs ## ABSTRACTS FROM THE CURRENT LITERATURE - 46 Abstract Categories - 47 Abstract Contents 48 Abstracts: 83-1090 to 83-1278 - 89 Author Index - 92 Periodicals Scanned CALENDAR