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MODELS OF ACCESSION AND RETENTION 

INTRODUCTION 

In this paper, we outline two simple models that integrate 

accession and first-term retention policies.  The first model describes 

the relation between optimal accession and first-term reenlistment bonus 

policies when marginal recruiting costs are constant.  It is appropriate 

for the analyst who is concerned with the bonus policy for a single, 

relatively small rating or for the analyst dealing with a group whose 

supply is demand determined. Using this model, we find that optimal 

reenlistment bonus levels will be the highest in ratings which have high 

first-term attrition, high training costs, and which would have low 

reenlistment rates in the absence of bonuses. We also find that optimal 

bonus levels rise as military wages fall relative to civilian wages. 

The second model is similar to the first, but takes account of the 

fact that marginal recruiting costs rise as more recruits are obtained. 

Because of this, we find that a larger Navy implies higher optimal 

reenlistment bonus levels even in the long run. 
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MODEL I:  CONSTANT RECRUITING COSTS 

In this model, the Navy seeks to minimize the costs of meeting 

fixed LOS-5 requirements.  Cost = yX +  RMX6, where y is tne cost of 

"growing" an individual eligible for reenlistment, X is the number of 

eligibles, R=R(M) is the reenlistment rate, M is the value of a unit 

level bonus multiple, and 6, the discount factor, is equal to e~  . 

In this simple model, all eligibles follow a path which includes 

formal A-school training immediately after initial recruit training. 

Wages after A-school are assumed to equal to the value of the individual 

marginal product, y,   the net cost to the Navy of growing an eligible, 
Ql+e2  03 

is thus equal to — 1- — .  Q^ is the (constant) cost of recruiting 
1     2 

an individual, 02 is the cost of initial recruit training for an 

individual, and 0o is the cost of class A-school training; P^ is the 

probability that a recruit will survive from enlistment to be eligible 

for reenlistment at LOS-4, and Po is the probability that an individual 

starting A-school will survive to be eligible for reenlistment.  Because 

of attrition during initial recruit training, it is worth more to the 

Navy to reduce the cost of recruiting by $l/recruit than it is to reduce 

A-school costs by $l/trainee. 

The Navy's objective in this model is to minimize costs subject to 

the constraint that LOS-5 requirements (F) are met. 



Objective Function:  C = yX +  RMX6 

Constraint: F = R(M)X 

The Lagrangian is :  L = yX  + RMX6 + \[F-RX].  Letting EJJ signify -^r we 

obtain the following first order conditions: 

(1)   fr= °= V1*6***5 - ^MX • 

(2)  |^ = 0 = Y + RM6 - XR, and 

(3)  |^ = 0 = F - RX . 

From  (1)   and   (2)   above  we  obtain  the  equality: 

(4)       Y " R^/BJJ 

Differentiating, we find that d\ = (26R - 6R2/RMM)dM.  Thus, if EL« < 0, 

dM 
-j—  > 0.   So long as the impact of bonuses on the reenlistment rate 

declines as bonus levels rise, a higher cost per eligible will be 

associated with a higher optimal bonus level. 

At CNA we have estimated R(M) using the logistic functional form: 

R    <x+8(RMC*+M*) 
-j—— = e .  RMC* is the annualized value of regular military 

compensation less civilian pay over four years and M* is the annualized 



value of the unit bonus multiple over a presumed four year 
4 

M t    -rt 
reenlistment.  — = M* where v =   e   . RM is in this case equal to 

0 
ßR(l-R)/v.     This  allows  us   to  use   (4)   to  solve  explicitly  for  the 

optimal  value of  the  reenlistment  bonus : 

2 R6 yß      JL a+ß(RMC*-Htf*) 
R = fR(l-R)°r   U6=   «"* 

Thus, 

(5)       M - 7j  [lny-lnu-lnö+lnß-a-ßRMC*]. 
P 

Differentiating (5), we find that dM = — — dy.   In this case if ß, the 

bonus response, is positive so too is the relation between y and M. 

v 
ß 

2 
Further, —=■ ■ - -z y      < 0; while increases in the cost/eligible mean 

dy2 

higher optimal bonus levels, the effect diminishes as the cost/eligible 

rises. 

-r—,  on the other hand, is equal to —- .  With ß > 0, an 
da ß 

increase in the reenlistment rate due to factors other than pay or 

bonuses is associated with a fall in the optimal bonus multiple. 

Increases in military pay relative to civilian pay will also lower the 

optimal bonus level:  dM = -udRMC*. 

The effect of an increase in ß (a measure of the responsiveness of 

reenlistments to a change in the bonus multiple) on the optimal bonus 



level is indeterminate.  —^—(lny + lnu + lnö - lnß + 1 + a)dß = dM. 

ß 
We cannot predict whether rating groups which are the most responsive to 

bonuses will have the highest bonus multiples. 

MODEL II:  INCREASING MARGINAL RECRUITING COSTS 

This model differs from the first in that, consistent with the 

findings of previous research, we incorporate increasing marginal 

recruiting costs. We let Q(X) be the cost of recruiting — recruits, 

where P is the (constant) probability of a recruit surviving to become 

eligible for reenlistment. Qyr  > 0 and Q™ > 0. 

The problem is now to minimize costs where Cost = Q(X) + yX  + 

RMX6.  The variables R, M, X, and 5 are defined as before, but y is now 

equal to the training costs incurred in producing an individual eligible 

for reenlistments. 

The constraint, F = RX, is unchanged from the first model.  Setting 

up the Lagrangian and taking the first partials we have: 

L = Q(X) + yX + RMX6 + \[F-RX]  with 

CD  H- 0 = M^XS + RX6 - XRMX , 

(2)  |t = 0 = Qv + Y + ßM6 - \R , and 
ÖX       X 



(3)  H - 0 - F - RX. 

From (1) and (2) we obtain the equality 

(4,  9x+T -M R *M 

If we adopt the logistic formulation for R(M), so that 

R = ,  -[<rt-ß(RMC*4M»)I ■ *M = u R(1_R) '  To§ether wlth <4>' this 1+e 
yields 

(Qx+Y)ß   R 
6u      1-R ' 

Taking the natural log of this expression, we have 

(5)  ln(QY+y) + lnß - ln(6 u) = a +  ßRMC* + £ M. 
A U 

Differentiating this equilibrium condition with respect to M, and 

keeping in mind that Qx ■ QX(X) = Qx ( , .) , we obtain the following 

_1  r   f        5M5F 1  _ _ß dM 
(Q +Y) L^XX^    2   J"  v  dF ' 

Substituting •*- R( 1-R) for — and simplifying, we find: 

(^ v _   fn     -1   ,   F(l-R)   >  dM 
^        ßR(Qx+y)   '"   ^XX       +R(Qx+Y)JdF 



Y, u, R, (1-R), and F are all greater than 0. With a positive and 

increasing marginal recruiting cost (Q^ > 0 and Q^ > 0) we conclude 

dM 
that —- > 0.  A move toward a larger force will tend to increase the 

dF 

optimal bonus multiple.  This result is not seen in the first model, 

where marginal recruiting costs are assumed to be constant. 

The second model is essentially an aggregate and simplified version 

of the model used in the Navy Comprehensive Compensation and Supply 

Study (NACCS).  The empirical relationships between optimal bonus levels 

and other variables (including recruiting costs, attrition, training 

costs, and requirements) found in the NACCS Study are consistent with 

the theoretical relationships established in this paper. 


