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mmI ±. REVIEW OF TASK OBJECTIVE AND ESSENTIAL TASK ELEMENTS

OBJECTIVE

i The proposed two-phased effort is intended to result in an analytical

procedure which is capable of predicting the response associated with a

ii fender/vessel interaction. As part of Phase I efforts, performance algorithms

--- would be determined relating energy and load/deflection characteristics for

I--various generic types of fendering systems. These systems are typically

rubber, pneumatic, foam-filled, etc. and have been investigated herein. The

resulting algorithms would be used to characterize a particular generic type

fender which would be represented in the response vessel/fender interaction

procedure developed in Phase II.

The response analysis to be developed would be capable of estimating the

following.

a. The maximum energy absorbed by a generic type fender represented in
the response problem.

b. The maximum reaction load input to the pier and vessel hull during
response.

c. The maximum local deflections occurring in the fender and hull during
response.

d. The relative amounts of energy stored in fender, local hull, hull
mode motions and hydrodynamic dissipation during response, thus
defining the energy storage requirements for the fender system.

The benefits of fender/vessel response capability would include:

a. The ability to simply explore a specific vessel/fender response
subject to design constraints such as maximum permissible reaction
loads and deflections or fender system energy absorption requirements.

b. The ability to plug in and out alternative fender performance charac-
teristics via algorithms and explore overall vessel/fender response.

c. The capability of optimizing a specific vessel/fender response for
a given set of problem constraints.
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11 -ESSENTIAL TASK ELEMENTS - PHASE I

-IiTask 1 - Acquire, review and assess the performance characteristics of currently

llm used fendering systems in the available literature in order to estab-

lish a data base of energy absorption and load deflection data.

Task 2 - Determine algorithms which quantify fender system performance for generic

fenders. Identify and rank energy absorption mechanisms for these fender
I III

systems.

" J Task 3- Based on the literature search performed, identify an approach leading

to the development of a rigorous analytical technique for predicting

1 )vessel/fender interaction. This technique will be fully developed in

Phase II work.

ESSENTIAL TASK ELEMENTS - PHSE II

Task I- Formulate the generalized equations of motion for the vessel/fender

dynamic interaction problem based on the approach identified in

Phase I work. This approach will consider fender performance

algorithms, local vessel stiffness, dock mass and stiffness, vessel

and berthing characteristics.

Task 2 - Characterize vessel local hull or appendage stiffness.

Task 3 - Characterize dock stiffness and mass characteristics.

i Task 4 - Characterize hydrodynamic mass and damping for vessels considered.

Task 5 - Computer code methodology.l iIii
Task 6 - Validate results against existing experimental data.

"-I Task 7- Validate results against proposed test program.

II 2
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II. DATA BASE ACQUISITION RELATIVE TO FENDER-RELATE) INFORMATION

A data base of fender performance data and related information has been

established during the initial efforts of this project. Some 110 reports,

papers and manufacturers' catalogs have been accumulated and are included

as a bibliography with brief abstracts in Appendix A.

The sources of information relative to fender performance data have been

designated by single asterisks (*). Similarly, those sources relative to the

vessel/fender response problem have been designated with a double asterisk(*).

A search of the available literature listed in Appendix A resulted in the

following observations relative to fender performance data.

* The most significant source of energy and load deflection data is con-
tained within the catalogs of individual marine fender manufacturers.

0 Fender performance data listed within individual papers or reports
[ generally reflect data extracted from mhnufacturers' catalogs.-I.

* The most common generic type of fender for which performance data
is available is rubber.

* A minimum, and in some cases negligible, amount of performance data
is available for wood, gravity, torsion, hydropneumatic, hydraulic
and spring fendering systems.

0 The second and third most common fendering.systems for which performance
data is available is pneumatic bag and foam-filled fenders. There
appears to be two primary manufacturers of pneumatic fenders, Sumitomo
and Yakohama, and two primary manufacturers of foam-filled fenders,
Seward and Samson.

* Much of the performance data for large size fenders, especially pneumatic
bag types, is extrapolated and not the result of full-scale testing due
to the magnitude of the loads required in compression.

3
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III. GENERIC TYPE FENDERS INVESTIGATED

The result of extensive literature search relative to ships fendering

systems concluded that fendering systems generally fall into two categories:

one considered commonly available, the other highly specialized. Common

"type fenders are readily obtainable from many marine fender manufacturers

who have performed extensive full-scale fender tests relative to energy

absorption and load deflection data. These systems are widely used for com-

mercial and naval applications. Other systems considered highly specialized

have been determined to have little performance data available and have limited

or questionable practical field application. By far the most common fender

m* system, for which extensive performance data was available, was rubber fenders

followed by pneumatic and foam-filled fender types. Specialized torsional,

"hydropneumatic, gravity and hydraulic fenders haa little available performance

data and relatively limited practical field application. The small quantity of

data results available for specialized fender types was concluded so specific

and unique to the system investigated that generalized fender performance relation-

ships could not be readily determined. Generalized relationships require per-

- - formance data for variations of fender system parameters. Thus, the performance

data derived from a particular specialized fender test could not be generalized

I_ to describe the generic family-type action.

For the commonly available systems consisting of rubber, pneumatic and

. foam-filled systems, sufficient data was available for variations of system

j= parameters, including basic geometric dimensions, materials, pressures, etc.

in addition to full-scale test and extrapolated load and energy deflection

I -j performance data. Because of the availability of required information, rubber

pneumatic bag and foam-filled fenders were selected for detailed investigation.

45m- == ------ I



• I'
Included in this investigation were the following specific type fender systems:

I * Rubber

- Hollow cylinder - transverse loading

- Hollow cylinder - axial loading

- Trapezoidal - transverse loading

- Solid cylinder - shear loading

- Hollow cubic - transverse loading

- Hollow cubic - shear loading

- Rotary donut - transverse loading

* Pneumatic

- Floating bag - transverse loading
- Air block fenders transverse loading

- Air block cushions - transverse loading

* Foam filled

- Floating bag - transverse loading

Table I indicates the various manufacturers of the fender systems investigated

in this task.
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IV. DERIVED FENDER PERFORMANCE RELATIO1NSHIPS

APPROACH

"Figure 1 illustrates typical energy and load/deflection performance data

for a rubber fender system. In this case the data reflects the performance of

a set of hollow cylindrical fenders under transverse loading. This data is

"typical of data obtained from various manufacturers and test reports. As can

be seen, the energy and load relationships vary as functions of geometric and

material properties between various manufacturers.

In order to characterize a particular type fender system, it is necessary

to determine a relationship between the fender type variables capable of con-

densing or collapsing the particular performance relationships shown in Figure 1

into more generalized ones which represent a family of curves. An equation for

this generalized relationship can then be determined as a function of the vari-

ables established. The generalized relationships are based on the performance

data acquired from numerous sources and are the basis for characterizing the

generalized performance of the fender type.

The resulting generalized relaticnships derived will have an associated

degree of dispersion in the relationship which reflects the choice of variables

selected to collapsed performance curves and the accuracy of the test or extrapo-

lated performance data in addition to the effects from manufacturers' material

differences. The more accurate the choice of collapsing and nondimensionalizing

variables and the more accurate the available test or extrapolated data, the less

dispersion will be evident in the relationships determined.

The collapsing variable identification process is illustrated typically

in Figure 2 which correlates the energy-absorbing capacity of rubber cylindrical

fenders at the rated 50 percent deflection to the volume of material tested.

7
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Figure 1: TYPICAL PERFORMANCE DATA

Load/Deflection /Energy Absorption

Cylindrical Hanging Fenders 5" to 24" O.D.
"Load applied perpendicular to bore. Test length: 1 ft.

S24" OD Approximate load

Load vs. Deflection 21" OD V. deflection
240

15" 0...18" 00I24 Lbs./ Lbs.I
-15" OD 18", OD 0.D..D. ft. igth. ft. igth.

12" OD (In.) (in.) @50% @67%
._ _.•_ E-`200 10" OD

S, 0 5 21/2 3,500 25,000

" 7 31/2 4.400 44,000
-JJ

Z:160 8" OD 8 4 5,800 50,000

B 10 5 7,000 66,000
-- 7OD 12 6 8,000 75,000
Qjl120 5" OD 15 71/2 10.000 85,000

. 18 9 12,000 101,000
-o 121 101/2 14.000 106,000
M24 12 16,"00 110,000
0
-- 40

*0

0 2 4 6 8 10 12 14 16 18
Deflection in Inches

56

Energy vs. Deflection 24" O0 Approximate energy
Eng vvs. deflection

4848 
Ft. Mbs.I Ft. lbs./

-O"" O.D. L.D. ft. Igth. ft. Igth.
S21 0 (in.) (in.) @ 50% @67%
40 5 21/2 365 1 1,700

0 18" OD 7 31/2 650 3.000

S328 4 970 3,800

15" OD 10 5 1,460 5,200/ 12 6 2,000 5,800

-24 15 7½/ 3,125 11,800
,. 12 OD,. 18 9 4,500 15.200

16 O-OD - -- 21 10 6,125 22.800

8 D 24 12 8,000 24,000
`" ~8" OD

1 8 7"OD OD

C

0 2 4 6 8 10 12 14 16 18
Deflection in inches
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I Intuitively, it is reasoned that a quantifiable relationship between energy

1 capacity and volume exists but is not evident, since energy storage per

linit volume may be significantly affected by manufacturers' brand materials

and by the variable ratio of cylinder inner and outer diameters and any other

pertinent factors. However, the high degree of linearity illustrated by the

resulting relationship from four manufacturers' data sources based on some 70

cylinder sizes indicates that this relationship is well defined, highly linear

and has very little associated dispersion, regardless of the material differences

I'I and variation of diameter ratio generally existing. This identifies energy

Ii storage per unit volume as a strong collapsing relationship for this fender

type. (This relationship has prevailed for most types of rubber fenders

I jinvestigated.) The above correlation and signif icant condensation of particular

energy performance curves which occurs based on this relationship substantiates

I the choice of the volumetric relationship as a sig-nificant relationship for

i rubber fender types. A relative independence of the effects of geometry and

material differences is implied by this relationship for fenders presently

II available from fender manufacturers. Figures 3 and 4 illustrate the typical

in a more well-defined relationship.

II~ Once a satisfactory set of condensing or collapsing variables has been

formulated and determined to result in a minimum of dispersion for the generic

II relationship when plotted, a polynomial regression analysis is performed to
i itdetermine the polynomial equation of order (n) which best describes the energy!

deflection or load/deflection generalized relationship for the fender type.

I! II 10
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Figure 3: NON-EFFECTIVE PERFORMANCE CONDENSATION
- 14
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Figure 4: EFFECTIVE PERFORMANCE CONDENSATION 00'

TYPE. RUBBER CYLINDRICAL

LOADING: TRANSVERSE

I PLOT: LOAD / DEFLECTION
(per foot length of fender)
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The equations which result are considered characteristic of the performance

relationships which exist for the fender type based on available manufacturers'

data.

POLYNOMIAL PERFORMANCE EQUATIONS - GENERAL

1. The polynomial equations derived from regression analysis of manufacturers'

data for energy and load/deflection are of the following form:

E X i y (i)

I..

where:

[ E - Fender energy absorption

c = Characteristic fender volume

/ IP = Fender reaction load

y = Characteristic fender area

X,Y = Nondimensionalized deflection-- L
I (L) = characteristic dimension of fender type

n = Order of polynomial equation used in regression analysis

Polynomial coefficients

I "Tables 2 and 3 located at the end of this section, summarize the polynomial

* coefficients determined for energy absorption and load deflection described in

detail in the following pages.

1 "13
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IFigure 5: CYLINDRICAL FENDER INSTALLATION
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CYLINDRICAL FENDERS -TRANSVERSE LOADING

This type fender is by far the most commonly available from various fender

manufacturers as indicated in Table 1. The variables determined most effec-

I tive in condensing the test energy absorption performance data were cylinder

volume for energy absorption, and cylinder inside diameter for nondimensionalizing

deflection. Figure 6 indicates the generic energy absorption relationship

* which resulted from the data sources considered. In this case, the length of

cylinder considered is on a per foot basis. The relationship between variables

wohich best fits the trend indicated in Figure 7 for energy absorption is:

E - OL 10.09X - 5.07X 2 + 914X 3  10 3o (2)

where:

L E -Energy absorption Cf t-lb)

D 0- Outside diameter of the cylindrical fender (ft)

Di=Inside diame~ter of the cylindrical fender (ft)

L -Length of fender (ft) (plotted in Figure 6 per foot length)

X =AID nondimensional

A -Deflection under load (ft)

= 'rr (D 2 _-D 2 )(t2

The above equation is representative in the range of X < 1.5.

I 16



The load/deflection relationship indicated in Figure 7 can be characterized

by the following equation.

IP - DoL {105.76X - 254.88X2 + 163.95X3 } o3 (3)

where:

P - Reaction load (lb)

D = Cylinder outside diameter (ft)
X -I/Di nondimensional

D . Cylinder inside diameter '(ft)

A - Deflection under load (ft)

L = Length of fender (ft) (plotted in Figure 7 per foot length)

The above equation is representative in the range of X < 1.5.

17



S10 Figure 6: GENERIC PERFORMANCE PLOT
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I- Figure 7: GENERIC PERFORMANCE PLOT 00

- I 90
1 I TYPE- RUBBER CYLINDRICAL

LOADING: TRANSVERSE
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AXIAL LOADED CYLINDRICAL FENDERS
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Figure 8: AXIAL LOADED FENDER INSTALLATION

Axial Loaded Fenders
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AXIAL LOADED CYLINDRICAL FENDERS

Ii Next to transversely loaded cylinders, the axial loaded fender was the

most common type for which performance data was available. These fender

systems are annular columns which comprass and deflect as buckling columns

with added energy capability resulting from its "hoop" effect. Being

circular, they have equal shear resistance for all directions of transverse

I'|loading.

Figure 9 indicates the generic relationship for energy absorption

determined for this type fender system. The energy-volume relationship

"* I determined for transversely loaded cylinders was equally effective for

axial fender types. In this case, the nondimensionalizing characteristic

- I dimension for deflection was the length of the cylinder. The resulting

algorithm for energy absorption derived from Figure 9 was determined to-be:

E = 8H {5.95X + 51.13X2 + 20.79X 3 103 (4)

The corresponding load/deflection algorithm illustrated in Figure 10 is:

I P = SH {140.69X + 6.4X2 - 15.65X3 } 103 (5)

.I where:

P, E, D0 , Di, 8, A are previously defined.

X = A/H

H - Height of fender (ft)

The applicability of the above equations is X < 0.6.

I22
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Figure 9: GENERIC PERFORMANCE PLOT

TYPE: RUBBER CYLINDRICAL FENDERS

LOADING: AXIAL COMPRESSION

PLOT: ENERGY ABSORPTION 0
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. .. Figure 10:" GENERIC PERFORMANCE PLOT

* 90- TYPE: RUBBER CYLINDRICAL FENDERS

Iii $LOADING: AXIAL COMPRESSION

I-PLOT: LOAD / DEFLECTION A/
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Figure ii: CUBIC SHEAR LOADED FENDER INSTALLATION
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HOLLOW CUBIC RUBBER FENDERS - SHEAR LOADED

ii JShear fenders have the ability to stretch in four shear directions in

addition to withstanding large compression loads and limited tension loads.

IjThis feature allows for wale movement away from, into or tangential to docks

as vessels berth. In compression, the fender can be used alone or in tandem,

bolted between a wall and whale. Tension and compression loading allow the

shear fender to support the wale. This is illustrated in the previous figure

(Figure 11). Although this type fender system is simple and effective, it is

not commonly available from fender manufacturers as indicated in Table 1.

The data used to determine the appropriate performance algorithms has

been selected from a single source but reflects the eight different size

fenders available. These fenders are characterized by a cylindrical bore

running lengthwise in the direction of shear loading.

I Figure 12 indicates the characteristic energy absorption curve deter-

mined by correlating the fender energy volume and the normalized deflection

relationship. In this case the characteristic length was the height of the

II shear fender normal to the direction of shear. The representative equation

for energy absorption was determined to be:

8E = H {2.63X - 5.39X2 + 10.62X3 _ 3.44X4 .103 (6)

The corresponding load/deflection relationship illustrated in Figure 13 is:

1 8 {21.6X - 21.9X2 + 19.76X3 _ 5.06X4  103 (7)II
where:

P - Reaction load (lb)

Wb2 7r (ft 2

b W, ~Bd (t

'3 28



Wb - Width of fender base (ft)

.Bd - Bore diameter (ft)

"RH - Height of shear fender (ft)

X - A/H (nondimensional)

I E - Energy absorption (ft-lb)

-i The above equations are representative for X < 1.9.
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Figure 12: GENERIC PERFORMANCE PLOT

TYPE: HOLLOW RUBBER CUBIC

-LOADING: SHEAR
PLOT: ENERGY / DEFLECTION
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Figure 13: GENERIC PERFORMANCE PLOT
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Figure 14: HOLLOW CUBIC COMPRESSION FENDER INSTALLATION
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HOLLOW1 CUBIC RUBBER FENDERS - TRANSVERSELY LOADED

' I This fendering system generally offers larger energy absorption and

larger reaction loads compared to similar sized cylindrical fenders although

it does not exhibit the typical buckling phenomenon. Their use is generally

between wood walers and concrete piers or draped as indicated in Figure 14.

The parameters determined significant in collapsing the energy and

reaction load relationships were determined to be fender volume and fender

height in the loaded direction. Fender deflections were normalized by the

characteristic fender height.

Figure 15 indicates the resulting generic relationship f or energy

absorption. This curve can be defined by the following equation.

i- - I2 3} 13
E = HWbL {21.1X - 74.X + 208.8X 10- (8)

The corresponding load/deflection relationship illustrated in Figure 16 is:

P HL {178.7X - 702.8X2 + 1600.9X3 13 o (9)

where:

E = Energy absorption (ft-lb)

P - Reaction load (Ib)

H - Height of cubic in direction of loading (ft)

Wb = Base width of cubic (ft)

L - Length of fender (ft)

X - A/H (nondimensional), X < 0.65

34
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Figure 15: GENERIC PERFORMANCE PLOT

;80- TYPE: HOLLOW RUBBER CUBIC 0"80" .LOADING: 
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Figure 16: GENERIC PERFORMANCE PLOT

.•el TYPE: HOLLOW RUBBER CUBIC
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CD PLOT: LOAD/DEFLECTION
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TRAPEZOIDAL RUBBER FENDERS -TRANSVERSELY LOADED
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Ii Figure 17: TRAPEZOIDAL FENDER INSTALLATION

. .. ......

a lng oun~ew high Wing TyeTrapezoidal fenders. 10 ft.
York, N.Y.

38



TRAPEZOIDAL RUBBER FENDERS - TRANSVERSELY LOADED

Trapezoidal rubber fenders employ two mechanisms in the absorption of

energy, these are: direct compression and buckling. They are generally

mounted directly to open-faced structures,or they can be used in combination

with timbering.

I Figure 18 indicates the generic load/deflection curve which is

characterized by the region of buckling generally occurring at approximately

30 percent deflection.

Figure 19 illustrates the generic energy/deflection curve for this type

fender. For this case the characteristic height of the fender in the direction

of loading was determined to be the significant condensing parameter for energy

absorption and load/deflection.

The following equations are representative of tradezoidal fender -

performance:

IE - HLWb {0.57X + 36.55X2 - 56.55X3 + 40.37X4 10 3 (10)

The corresponding load/deflection relationship is:

P - HL {105.82X - 207.06X2  48.24X3 + 423.72X4 103 (11)

where:

P - Reaction load (lb)

SWb - Fender base width (ft)

H = Fender height in direction of load (ft)

L - Fender length (ft)

E - Energy absorption (lb-ft)

K X - A/H (nondimensional, X < 0.53)

39
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- 2 F igure 18: GENERIC' PE RFORMANCE. PLOT ,

31
11i30

29 TYPE: TRAPEZOIDAL RUBBER
I1 CLOSED BASE
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Figure 19: GENERIC PERFORMANCE PLOT
1 II lII

TYPE: TRAPEZOIDAL RUBBER - CLOSED BASE

l LOADING: TRANSVERSE COMPRESSION

PLOT: ENERGY/ DEFLECTION
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SOLID CYLINDRICAL SHEAR FENDERS

SI In shear fender installations, as in Figure 20, wooden fendering is fitted

over by means of supports on metal plates. The fenders are then mounted on

brackets secured to the quay. When the wood fendering is compressed, the shear

fenders are loaded into shear. Since the shear modulus of rubber is only a

third of its modulus of elasticity, reaction forces are kept low for this type

configuration.

Figure 21 indicates the generic energy absorption relationship which

-characterizes this type fender. In the figure fender energy absorption

curves have been condensed by the volume of the fender. The deflection

under load has been nondimensionalized by the fender height normal to the

loading.

The energy equation which characterizes this relationship is:

E = $H {O.54X + 8.79X2 1 103 (12)

The corresponding load/deflection relationship illustrated in Figure 22 is:

P 1 {22.77X + 1.14X - 1.43X3 ) 10 3  (13)

* iwhere:

P - Reaction load (lb)

X -A/H X < 1.0

D 0 Diameter of cylinder (f t)

, I 0 D t

I-H - Height of fender (ft)

A = Fender deflection under load

E - Energy absorption (ft-lb)

*• I 44



Figure 21: GENERIC PERFORMANCE PLOT

TYPE: 'SOLID RUBBER CYLINDER

LOADING: SHEAR

12 PLOT: ENERGY ABSORPTION
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Ij Figure 22: GENERIC PERFORMANCE PLOT

(I iTYPE: SOLID RUBBER CYLINDER
U LOADING: SHEAR
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ROTARY DONUT FENDERS -TRANSVERSE COMPRESSION
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Figure 23: ROTARY DONUT FENDER INSTALLATION
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ROTARY DONUT FENDERS - TRANSVERSE COMPRESSION

Rotary fenders consist of hollow section rubber wheels which are mounted

on a control axis that allows them to rotate freely when ships horizontal shear

forces are applied. This type fender is available in multiple-wheeled configu-

rations in a variety of wheel size diameters. The hollow wheeled section

essentially absorbs its energy in material compression and exhibits signifi-,

cant absorption compared to the reaction loads developed.

S!!Figures 24 and 25 illustrate the energy absorption and reaction load

deflection curves derived for single-, double- and triple-wheeled fender

configurations. In these figures the energy absorption relationships have

been modified by characteristic dimensions of fender inner and outer diameters,

the number of donuts per axial and the width of the donut base. For the

reaction load relationship: the number of donuts, outer diameter and base

width were significant. For both relationships deflection was normalized by

the characteristic depth of the donut tire.

The generic relationships derived for energy absorption and load/deflection

and indicated in Figures 24 and 25 are:

• m e, 31X2 2 . 5 3 1 3
E N$ {5.51X - 21.31X + 28-05X3 10 (14)

The corresponding load deflection curve determined was:

-- 322 63 18.64 13
P NDWb {-0.45X + 67.32X - 189.6X + 188.46X 1 (15)

where:

N Number of donuts per axial

...... ,b(o-i)
D I 9
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I= D - Outer donut diameter (ft)
0

. - Wb - Base width of donut (ft)

.D = Inner donut diameter (ft)

Ii E = Energy absorption (lb-ft)

P - Reaction load (ib)

X X < 0.68Do-Di
[ 0 2.

II 2
Fender deflection (ft)

* 5
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Figure 24: GENERIC PERFORMANCE PLOT

Li.!, TYPE: ROTARY DONUT

IjLOADING: TRANSVERSE" COMPRESSION
. PLOT: ENERGY ABSORPTION
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Figure 25: GENERIC PERFORMANCE PLOT

TYPE: ROTARY DONUT

LOADING: TRANSVERSE COMPRESSION

I% PLOT: LOAD / DEFLECTION
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PNEUMATIC RUBBER FENDERS FLOATING TYPE
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Figure 26: PNEUMATIC FLOATING FENDER
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PNEUMATIC RUBBER FENDERS -FLOATING TYPE

Floating pneumatic fenders utilize the compressive elasticity of air

to support loads. For this reason performance deterioration due to fatigue

1
is absent. For realistic oblique ship loading, pneumatic type fenders do not

I suffer significant loss of energy absorbing capacity as do solid rubber fenders.

S* For rough weather mooring, this type fendering system exhibits much less damage

i -I due to the fact that maximum reaction forces under combined shear and compres-

- sion increase slowly and sustain large allowable deflections. Under excessive

loads these fenders do not result in excessive reaction loads as do solid or

bottomed out rubber fenders.

Figures 27 and 28 indicate the results for 32 different size pneumatic

fenders investigated. These fenders ranged in pressures from 4.3 to 11.4 psi

-l internally. Figure 27 illustrates the characteristic energy absorbing relation-

ship resulting from condensing the plot of energy absorption by the relationship

I1/1.4 2
p LD . the pressure, length and diameter characteristic of the fender.

This quantity is plotted against the deflection normalized by the diameter of

the cylinder bag.

-- oThe following relationship was determined representative of energy absorp-

tion for pneumatic fenders.

E 8D {0.82X - 2.54X2 + 17.94X 3 10 (16)

The corresponding load/deflection relationship illustrated in Figure 28 is:

{iP - 5 .19X + 39.95X - 77.02X3 + 149.09X4  0 (17)

where:

- p /1 .4 LD

55



p - Internal pressure (psf)

L = Length of fender (ft)
D 0 - Fender diameter (ft)

X =- A/Do, X < 0.55

A - Fender deflection (ft)

E - Energy absorption (lb-ft)

P = Reaction load (ib)

n56
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I Figure 27: GENERIC PERFORMANCE PLOT

TYPE: RUBBER PNEUMATIC - FLOATING BAG

LOADING: TRANSVERSE COMPRESSION

PLOT: ENERGY ABSORPTION

3.0 _ YOKOHAMA
0 DUNLOP

2.5

i2.0

F 0
z

z 1.5
0
z

1.0

00

0 0.1 0.2 0 .3 0.4 0 .5 0.6

A~ /D (NON-DIMENSIONAL)
57



S.Figure 28: GENERIC PERFORMANCE PLOT

TYPE: RUBBER PNEUMATIC-FLOATING TYPE

. .- LOADING: TRANSVERSE COMPRESSION 0'I PLOT: LOAD / DEFLECTION
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RUBBER PNEUMATIC -AIR BLOCK FENDER
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Figure 29: PNEUMATIC AIR BLOCK FENDER INSTALLATION
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S~1

1 RUBBER PNEUMATIC - AIR BLOCK FENDER

*, Ij Air block fenders are pneumatic, axially loaded fenders which can be

bolted to docks and applicable when floating bag types cannot be used.

They offer all the performance advantages that pneumatic bag types generally

exhibit.

The characteristic performance curves illustrated in Figures 30 and 31

were determined by nondimensionalizing the energy absorption and load/deflection

curves by P, H, and D, the characteristic pressure, height and diameter of the

block fender. The energy absorption and load/defelction relationships were then

"- plotted against nondimensional deflection A/H, the percentage fender height.

The resulting relationships are based on the investigations of 13 fender sizes

i at 14.2 psi. Since this type fender was available in only one pressure size,

S.1 the pressure variable was considered similar to the relationship determined

SI for floating bag types.

The following relationship is representative of the energy absorption of

air block fenders illustrated in Figure 30:

E SD {2.58X + 9.73X2 _ 13.40X3 + 40.09X4} 103 (18)

The corresponding load/deflection relationship illustrated in Figure 31 is

represented by:

* P - B {43.96X - 8.77X - 62.48X3 + 256.23X4 10 3 (19)

where:

E - Energy absorption

P - Reaction load

* 61
* I
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S- p1 /1. 4 HD°

H - Fender height

D - Fender diameter

. .p - Internal pressure

X - A/H (nondimensional) X < 0.6

A - Fender deflection

The above relationships are valid for any set of consistent units.
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Figure 30: GENERIC PERFORMANCE PLOT

TYPE: RUBBER PNEUMATIC -AIR BLOCK.FENDERS

LOADING: AXIAL COMPRESSION

PLOT: ENERGY ABSORPTION
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Figure 31: GENERIC PERFORMANCE PLOT

'1 TYPE: RUBBER PNEUMATIC - AIR BLOCK FENDERS

LOADING: 'AXIAL COMPRESSION

PLOT: LOAD / DEFLECTION
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RUBBER PNEUMATIC -AIR BLOCK CUSHIONS
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"RUBBER PNEUMATIC - AIR BLOCK CUSHIONS

This systeui is similar to the air block fenders except that it is

"rectangular in shape. It is mounted on a steel backing plate which can

be bolted to docks or semisubmersible drill rig legs. Although this fendering

system appeared to have a significant number of merits typically associated

with pneumatic systems, they were only available from one fendering manu-

facturer.

The data represented in Figures 33 and 34 are for only two fender

lengths at the same internal pressure. In these figures the energy and

load curves have been normalized by the characteristic pressure, length

and base width dimensions, while the deflection has been normalized by

the cushion height ii, the direction of loading.

[ The derived relationship which best fits the condensed data for energy

was determined to be:

E = BH -0.12X + 7.46X -_1271X 3+ 1477X (20)

The corresponding load deflection relationship is:

P -- 8---m2'X 1-X2 4O3 4 (3
,P = B 19.22X - 4.16X + 5.10X + 29.55X (21)

where:

E = Energy absorption

P - Reaction load

B pl1/1.4 WL
b

p Internal pressure

W b Base width of cushion

67
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L - Cushion length

H - Cushion height in direction of load

X = A/H, X < 0.6

-- A - Fender deflection

! The above relationships are valid for any set of consistent units.
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i, ,Figure 33: GENERIC PERFORMANCE PLOT

TYPE: PNEUMATIC RUBBER - AIR BLOCK CUSHIONS

. .,LOADING: TRANSVERSE

"2.0 PLOT: ENERGY ABSORPTION
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S9 Figure 34: GENERIC PERFORMANCE PLOT

TYPE: PNEUMATIC RUBBER - AIR BLOCK CUSHIONS

LOADING: TRANSVERSE
8 PLOT: LOAD / DEFLECTION
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I Figure 35: FOAM-FILLED- FENDER
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"FOAM-FILLED RUBBER FENDERS

This system resembles the pneumatic bag type fenders except internally

- they are completely filled with resilient, closed-cell foam. They typically

have greater energy absorption and less reaction force than pneumatic fenders

of equal size. They are generally lighter than pneumatic fenders of equal

capacity and cannot explode or sink if punctured.

•I Figures 36 and 37 indicate the results of investigating two primary

sources of performance data for this type fender system. For these curves

the parameters found to condense the performance relationship were fender

length and diameter.

The energy absorption relationship found characteristic of Figure 36 was

I. determined to be:

"E D {0.27X - 1.03X + 6.43X - 4.69X 4 10 (22)
"L I

The corresponding load deflection relationship illustrated in Figure 37 is:
3 4If 3

* i P = 6 {1.77X + 6.25X2 - 13.81X3 + 16.32X 4 103 (23)

where:

E= Energy absorption (ft-lb)

P - Reaction load (lb)

D = Fender diameter (ft)

L = Fender length (ft)

X -x A/D (nondimensional)

A - Fender deflection (ft)
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"If Figure 36: GENERIC PERFORMANCE PLOT

0.8- TYPE: FOAM FILLED FENDER
. LOADING: TRANSVERSE

PLOT: ENERGY ABSORPTION
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I Figure '37:,.. GENERIC PERFORMANCE PLOT

13.5TYPE: FOAM FILLED RUBBER FENDERS
LOADING: TRANSVERSE

PLOT: LOAD / DEFLECTION
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SUMMARY TABLES FOR GENERIC FENDER ALGORITHMS
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V. RANKING OF FENDER SYSTEM MECHANISMS

Commonly available fenders from manufacturers of fender systems operate

on the basis of one or more mechanisms which determine the way An which the
fender stores energy and deflects under loading. These mechanisms are commonly:

a. Axial compression

b. Transverse compression

c. Transverse shear

d. Pneumatic bag compression

e. Foam-filled bag compression

These different mechanisms result in considerable differences in the basic

performance characteristics of the individual fender types. The ranking of

energy-absorbing mechanisms takes on a significantly different importance

depending on the measure of merit or goal which is established for the ranking

process. Since a designer is concerned with many variables such as fender

energy absorption, reaction load, deflection, relative system costs, system

durability, etc., the ranking of fender mechanisms will vary in accordance

with his selected criteria. For purposes of this discussion, only two measures

of merit are considered: energy absorption capability and reaction load as a

function of deflection. These measures of merit are generally diametrically

opposed.From a design point of view, one would like maximum energy absorption

with minimum reaction load generation for a given deflection. In ranking the

candidate mechanisms, the first approach considers which mechanisms absorbed

the most energy for a given deflection with reaction load not a factor. The

second viewpoint considers which mechanisms resulted in the least reaction

load for a given deflection not considering energy absorption.
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II VI I. PRELIMINARY FORMULATION OF THE FENDER/VESSEL
INTERACTION RESPONSE PROBLEM

The references included in Appendix A relative to the ship/fender

response problem have been designated by (**). These references approach

the dynamic response problem in various ways and to various depths. Of the

references cited in Appendix A, the "Dynamic Response of the Ship and the

Berthing Fender System after Impact," (37) included as Appendix B for

ready reference, was considered the most appropriate for further development.

The response problem formulation appears generalized enough to be

adapted to include the generic fender algorithms preliminarily developed

in Phase I work and hull, dock and berthing characterizations.

The essential task steps envisioned for Phase II efforts would include:

* Formulate the generalized equations of motion for the vessel/fender
dynamic interaction problem based on the approach identified in
Phase I work. This approach will consider fender performance
algorithms, local vessel stiffness, dock mass and stiffness, vessel
and berthing characteristics.

* Characterize vessel local hull or appendage stiffness.

• Characterize dock stiffness and mass characteristics.

* Characterize hydrodynamic mass and damping for vessels considered.

* Computer code methodology.

* Validate results against existing experimental data.

• Validate results against proposed test program.

It is envisioned that the first two task elements above would be based on

Phase I results, references (37, (32) and (33), the basic methodology for

the dynamic problem and studies related to local hull stiffnesses. Task 3

will be approached through a representative dock characterization for the
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ship selected initially as part of the response problem. The hydrodynamic

mass and damping characteristics for this vessel would be investigated using

references (37), (20) and (75) in addition to other relevant sources of mass

n and damping information.

1 It is assumed that computer coding of the dynamic equations of motion

and their bolution will require the significant Phase II effort. An initial

validation effort will include correlation between program results and any

known test results for which comparisons can be made. These will consider

the results in references (8), (62), (21), (26) and (3) but not be limited

to those references.

Actual test programs to be developed as part of task 7 would consider

validation of fender algorithms for large size generic fenders via static

_I or model testing since most data issued by manufacturers is based on extrapolation

I j of small scale test data. This would be further developed as part of Phase II

efforts. In addition, test programs could include validation of response

I program results through small scale model testing. This also would be

developed further into Phase II efforts.
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DYNAMIC RESPONSE OF THE SHIP AND THE BERTHINGI, FENDER SYSTEM AFTER IMPACT

By Sadao KOMAtsu* and Abdel Hamid SALMAYN"

where AfM=virtual .mass of the ship,

ABSTRACT 19 =virtual moment of inertia about theC) vertical axis through the ship's cen.
This paper describes a mothod analysis for ter of gravity.

evaluating the portion of ship kinetic energy and V@ =velocity of translation,
impact force transmitted to a berthing structure 'a =angular velocity.
provided with fenders which have linear or non-
linear spring constants. In the analysis, present. (2) The Effective Energy for Fender System

ed herein,4 the dynamic responses of the ship, IDsg
fender and -berthing structure, after impact, are During berthing the kinetic energy of the ship
considered, and derived equations for the selec. may be dissipated in several ways, among which
tion of different parameters needed for the solu. are the foilowing:
tions of the dynamic equation• are included. i) Elastic deformation of the structure and

These are comprised of the virtual mass of the fender.
ship, in both translational and rotational motion, ii) Swinging of the ship due to yawing mo-
in addition to the time interval required for the tion.
solutions of the motion equations by numerical iii) Heeling of the ship due to rolling motion.
integration methods. iv) Elastic deformation of the ship's hull.

-v) Piling of the water trapped between the
1. INTRODUCTION ship's hull and the face of the berthing

structure. (This occurs in the case of a
Since the size of ships, particularly tankers, long closed structure.)

has increased in recent years, the design of off- Designers who are involved with marine struc.
shore berthing structures has become more -m- tures design are interested in the portion of
portant. One of the prime difficulties facing de. energy indicated by i) which is called the effec.
signers is the evaluation of the portion of .thip tive energy (E&). The problem of determining
kinetic energy and the impact force transmnirted the effective energy has been treated analytically
to each of the fenders and the berthing struco by several investigators. Michalosl),i) treated the
ture, especially structures provided with rubber. problem as one which had a single.degree.of-
like fenders, freedom dynamic motion, and considered the

theory of elastic impact in his analysis. The
(I ) The Kinetic Energy of the Berthing Ship judgement of others,'),, including the authors,
When a ship is approaching the berth with is that the ship's dynamic impact on the struc-

both translational and rotational motion, its kine. ture can be considered as a plastic impact, where,
tic energy is given by the following equation; upon impact, both the ship and the fender sys-

S1 1 tem move together as one combined mass. Vasco
S...... Costal) has derived a dynamic equation for esti-

mating the effective energy in which only the
Professor of Civil Engineering, Osaka Uni- portion of the energy dissipated by the yawing
versity. motion of the ship was considered. The rolling
Doctorate Course Student, Civil Engineer. motion and the influence of the fender system
ing Department, Osaka Univeasity (Eng. dynamic response were ignored. Hayashi and
Suez Canal Research Center, Egypt). Shirai#) have dealt with the problem as one which
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112 S. KomAiSU and A. H. SALMAN

has three-degrees.of.freedom dynamic motion; still a problem, especially in the case of fenders
swaying, yawing, and rolling motion. The equa. with non.linear spring constants, and rubber.like
tions are valid i) for structures which are pro. fenders, which are in this class, are being used
vided with linear spring constants, such as steel extensively due to their large energy.absorbing
spring.like fenders. ii) for only one case of ap- characteristics.
proaching mode of berthing, in which the vector The authors have presented a method of analy.
of the approaching velocity is perpendicular. to sis based on the dynamic behavior of the system,

Sthe arm connecting the ship's center gravity with after collision, to evaluate the impact load and
the point of contact, the portion of the ship's kinetic energy trans-

Besides, the dynamic response of the fender mitted to the berthing structure and fenders
system -was ignored. The empirical equation for which includes fenders that have both linear and
determining the effective energy (&.) is also used non-linear spring constants. Also, to evaluate
for design purposes and is of the form the portion of the energy dissipated in the swing.

=CE, ...... (2) ing and rolling of the ship after impact.I where Be represents the approaching ship's kine-
tic energy and C is the reduction or dispersion 2. DYNAMIC RESPONSE OF THE SHIP
factor. Pages") suggests the following equation AND THE BERTHING STRUCTURE
for determining for C; AFTER THE FIRST IMPACT

C=11/(1+16a) ...... (3)
where a=d/l. L represents the ship's total length (1) General Mode of Berthinig

and d represents the distance between the ship's When the ship is approaching the berth under
center of gravity and the point of contact, mneas- its own power, it is angled in to make the first
ured parallel to the berthing face. Other design- contact with the fender system at a point near
ers have selected a value of C which varies from its bow or stern. This point of contact is always
0.2 to 1.0 depending on several factors, such as located in a horizontal plane higher than that
the mode of berthing operation, local hull de. passing through the ship's center of gravity.
formation, structure type, etc.2.S),-,?),) During this mode of berthing, the ship will

From published information it became clear undergb dynarmic motion which has three-degree.
!shat the portion of the energy transmitted sepa. of-freedom, namely; swaying, yawing, and roll.
rately to the berthing structure and fender is ing. The other motions, heaving, pitching and

--

Mir. I Behaviour of ship after contact.
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JIDynamic Response of the Ship and the Berthing Fender Sstem After Inspac 113

surging are of little consequence in energy dis. Mjj,.Px-Kz.X 5-px.,_ (
-i i ]sipation and may be neglected. .M...Pr-Kr.Ya-,uy..... (6)

(2) Equations of Motion In the previous equations the value of P is evalu-
In the following analysis it is assumed that no ated from the given load-deflection relation (P-I .sliding contact is made along the fendei's surface. D) of the fender in question, The load is con-

Consider the motion of the ship, as a *free dody sidered to be applied in small increments atsoci.
under the action of the load Pacting at the point ated with the time interval. This P-D relation"uof contact C, we have; is determined from statical analysis or tests. At

--At any time , after the ship came in contact any time 1, the deflection D will be calculated
A nwith the fender system s Fig. 1, its center of from the displacement of the point of contact Cwiththefener ystm, Fg. , is cnte of and the deflection of the structure, which will

gravity will sway in the direction of the acting e fl

load, to the position G. Then the ship will swing equal to;

about its vertical axis passing through C, an Dx=Xc-Xt " d
angle 0 due to the yawing motion and finally it D). = Y- Ys a
will roll about its horizontal longitudinal axis an ...... (7)
angle #. Denote the coordinates of the final In considering the second impact, the velocity
positions of G and C, with respect to the axes of the point of the first contact at separation,
X and Y, by (Xe, Ye) and (Xv, Y¢) respectively, magnitude and direction is needed, which will
The X and Y axes are taken parallel and nor. equal to;
mal to the surface of berthing respectively.
From the figure, the relation connecting the V 4 'Xc+'. . .

fender system motion at C with the motion of at=tan-3 (X•c2'Ic1)j
G is; At time of contact a4=a, the angle that the ap-

keX=jtv+(r1+H0)cos(T+a) proaching velocity makes with Y-axis. a is con-
-Vc=P-(rI+H s) )I ...... (4) sidered positive when the velocity vector of V.

at G points towards the point of contact C.the second order terms in the above equation, If the value of the spring constant of the shipIs, 01 are neglected, hull at point of contact is available, the elastic

Consider the dynamic equilibrium of G, the deformation of the ship's hull can be evaluated.
following equations of motion will hold; Let Kx, SA. and pA define the spring constant,

deflection, and the damping coefficient of thehull at point of contact respectively, then theMsX.=-Px-Rw"x equation of deflection of the ship's hull, in P-

WMse-Pr-Rwr direction, will be;

ii) YAWING "SA(P-KA.SA./J.SA)....... (9)
& s-I=Pr.r.sin(T+a) ..... (5) In this case P will be function of (Xc, Yc, X,. Ys,

-Px.r.cos(r+*)-NZ S).. The initial conditions of motion, at time of
Siii) ROLLING contact, are;

I.. .•=(Pr.cos 41-Px -sin O)H X 9= Y@=8=0=XV= Yo
-- • - W H,.- N•=X,= }8=SA=O.O

!C=.kCX= V, sin a ...... (10)
Px, Pr and Rw, Rywr are the components of the
!ender reaction and the water resistance, after kPe=kc=V cosa

:he ship came in contact with the fender system, 1#Xs=s=S5 0.0
"espectively. N1 and Ns denote the water resis. The solution of dynamic equations is carried out
a:nce to yawing a&-. rolling motions respectively, by numerical integration methods with the help
Hlowever, as the time of contact is very small, of the digital computer.
mater resistance, is safely allowed. Water resis.
i nce is effective in the time between the first (3) Energy Equations
.nd the second impact, this will be discussed in The developed previous equations are valid as
letails in next paper. long as the ship being in contact with the fender.

As for the berthing structure response, the During this timt, the following energy equations
'ollowing eq. will hold; are valid;
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I. Part of the ship's kinetic energy trans. ii) Ship (+fender)
mitted to; k.,=-P/Mi

i) Fcnder Vj=iP.dDs in which P=K.r(Y,-Y,) and Y,.Y, are the dis.
I placements of the structure and the poin. of

) Scontact respectively in Y.direction Fig. 1.
ii) Structure V K1.dS. If, at the time of contact, the following condi.

[ I' tions exist;

iii) Ship's Hull V-- K.dS,, Y,=Y5 =0.0 4=0.0 3',=V1 ...... ei0t

=effective energy E, and assuming p=0.0, the analytical solution of

II. Work done by the ship in rotational these eq. (13) is given by;
motions; Ys=A 3 sin pil+Ai sin pit

i) Swinging W,= P.r.dO,4  Ye=AiBssinpzt+A3Bssin

i HThe equations of energy become:m ii) Heeling W,,=ý','.do., ,V. =S ý'I,, Y,,dY. = .KYI?
Ill. Part of energy induced in the system

vibration;

i) Ship a,%.=tM,(X',+Ye')................... -...... (16)

. =12K,[Ai(Ba-1) sin pit

2 2 +As(Bs-1) sin pi)ll
i) tuu-- M1 In the case of a very rigid berth, which offers
i-) Sru -- a large resistance, the deflection Y, will be very

.......... . .......(1) small and, consequently, its ability for energy
absorption will be very poor, and can, therefore,

The above equations should satisfy the con- be neglected. In this case all the portion of
servation of energy during berthing i.e. energy consumed in the swaying motion of the

-I--- E+E + (2 ship should be absorbed by the fenders.il ,E,=-FMjV,'=Z,+Es,.+E, ...... (12)

Notations
T (4) Broadside Berthing ji.i=polar moment of inertia about

If the motion of the ship during the berthing the longitudinal axis (1-1)
operation is mainly governed by tugboats, as is passing through the C.G.
always the case with the large ships, the ship s..i=polar moment of inertia about
can make contact with the berthing structure the vertical axis (2-2) pass-
entirely broadside. In this casc the ship will ing through the C.G.
undergo dynamic motion which has two.degree Mi=the effective mass of the
of.freedom; swaying and rolling, and terms con- structure.
taining OP in equations (5) and (11) with vanish. M,=the virtual mass of the ship

If the energy dissipated by rolling motion is while swaying.
neglected for safety, then the fender system P=the ship acting load.
will be designed to absorb all of the kinetic H, Ri=the vertical distances between
energy of the ship, which is the case when C= the C.G. and the point of con.
1.0 in equation (2). This mode of berthing is tact and the reta.center re-
considered ideal as the ship impact load will be spectively.

. uniformly distributed on the structurell). r=the distance from the C.G. to
If we assume that the berthing structure is the point of contact.

provided with a fender which has a linear spring w=the ship's displacement
constant K7 the equations of motion will be; weight. • ..... (17)

i) Structure T-the angle that the velocity
I (vector makes with the arm-__ __- J1,. • ..... (13) r at time of the first contact.
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Dynam.ic espsc of Me• ship and the BerthsIg ý'der System Aficr impaci i

X ,K ,=structure stiffness in X and than one approaching under its own power.
Y direction. 2) Berthing conditions

pa, ps structure damping coefficients In the case where the berth is exposed to wind,
in X and Y direction. waves, currents, etc., it is more difficult to con-

X-, Xi=the displacement of the struc, trot the ship velocity than in a sheltered berth
ture in X and Y direction. and the velocity may become large. However,

As: Vo/p,(B-EBs) for extremely high wind velocities in the order

AI i -A,_-_V.(B-,-Bs) of _00 to 120 mph that occur during short peri.
p.,==(a+b)12TI(a+b)2+bcs, it is advisable to require ships to temporari-.IjBz=b/(pz'-a) ly anchor away from the berth in order to avoid
Bs=b1(ps1-a) being damaged").
, l(Kj+Ks)IMz 3) Ship size

e sc K,/Ml Larger ships are always berthed with great
SIc=K;¢/Ms care and with the assistance of tugboats. It is

generally assumed that the larger the ship, the

3. SELECTION OF THE PARAMETERS smaller will be the velocity with which the ship

FOR SOLUTIONS OF THE DYNAMIC will contact the fender systems).
II • iEQUATIONS 14.

The dynamic equations of motion presented in ,.0
section 2 contain the following parameters; Zi H

for the ship, Va, Ms, I,.., I1-,. Hi,
"for the structure. M,. K. s
for the fender, (P.D) 80 i ,, : , • • toot

and in practical design, the ship's displacement Ship displacement weightweight (IV) is, generally, the only value given

with the information for the marine structure to Fig. 2 Berthing velocity normal to dock
be constructed. vs. Ship displacement %-eight (after

This section includes equations, tables, and Lee).

graphs to help in selecting or computing the T. Lee presented the curves shown in Fig. 2
unknown parameters for solutions of the dynam. from which the berthing velocity may be select-1ic equations. ed for design. Under various conditions of berth.

(1) Approach Velocity, V& ing, Vasco Costas" recommended Table 1 as a

From eq. (1) the impact energy is proportion. guide for the selection of velocity.

al to the square of the approach velocity. Thus, Before proceeding to the selection of other
the energy level will increase considerably if the parameters, some relations concerning the ship

velocity is only slightly increased. In the selec. characteristics will be discussed. For example,
tion of this velocity for design, many factors a tanker of length L, draft d and beam breadth

n I should be considered, such as: B, Fig. 1, will have the following empirical re-I•-• • 'lations:
1) Method of docking
A ship approaching the berth under the con. W=caPLBd

trol of tugboats usually berths with less velocity c,=0.75 to 0.80-0.78

Table I Approach velocity of berthing ships
_____________________ ft/sec)

i•E' iI" Ap Ic Dail,,men, ot the ship

Wind and swell Approach 
e

conditions, pt 3,000 ton Up to t,0.0on Over 30,0 ton

Strong wind and swell Dicult 2.5 2.0 1.5
Strong wind and swell Iavourable 2.0 1.5 1.0
Moderate wind and swell Moderate 1.5 1.0 0.8
Protected Difficult 1.0 0.3 0.6
Protected Favourable 0.3 0.6 0.4

II (after V. Costa)

* B-6

-... .. . . . *-



lit S. Koxasu and A. H. SA1Jw

Did=total depth/draft=l.33' 5  a ----- "
L/D=23.75
L/d= 18.25M=d-o.52=o:0,3, ...... (18) ' .. ,.•" ,

-'-=kwdiu, of gatioo about vertical.
axis through G=0.2L$)

k.= radius of gyration about longi. @
tudinal axis through GWnB

,,'I0.37 to 0.47,0.42 Fig. 5 Values of added mass coefficient C,ii •"i •"i •"N) jfor horizontal motion in deep water.
(2) Derivation of Added Mam Equations for

Berthing in Shallow Water for typical tankers, Fig. 4 31), are considered in

1) Added mass in horizontal motion, MA the analysis hereafter.

It is well known that when a ship moves from With the help of the curves of Fig. 5 and these

deep to shallow water, as in the case when berth. sections, the distribution of the added mass along

ing, the added virtual mass is increased due to the ship length may be obtained (step 6 in Table

the presence of restricting boundaries. Koch") 2, and curve a Fig. 7). Considering the Koch

investigated the effects of shallow water on add- results for rectangular sections, and the proce.

ed virtual weight for both vertical and horizontal dure above, the added mass of actual hull shape

vibration. The measurements were made for a sections, where the ratio of water depth T to

block having a half-beam b and a draft d. The draft d is 2.0, can be evaluated (steps 7 to 10,

results of the experiments are shown in Fig. 3. Table 2). The results are shown by curve 6 of

To apply the Koch results on hull shape sections, Fig. 7).

it is suggested that the added weight to any However, the water depth considered by Koch

section of the ship, calculated for deep water for was deeper than that required for berthinig. The

this particular section shape, should be increased experimental results obtined by Marwood and
by the ratio of the added weights in shallow and Johnson, Fig. 6 are of considerable help in this

deep water for a rectangular section of the cor- field1 s). This is bearing on the fact that the

rect beam.draft ratio and depth of water, percentage increase in C, in shallow water,
* Furthermore, on the basis that many modern where T/d=2.0, than that in deep water for the

"•kers have very similar hull shapes, sections ship mid.sections (4-7), computed on the basis

* ~V.34 ,

e.1' I

C. T 4 41.
WI

I!d,,!! . ......

iiiiiii .."; C.,. * P""" '

Fig. 3 Effect of shallow water on added mass
in horizontal vibration, Curves of Ci j "
for rectangular section (after Koch). " I.,

IWAI "- L_\ L

Fig. 6 Effect of shallow water on added mass

Fig. 4 Actual sections of ship (after Kumai), '-(hlarwood & Johnson).
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Table 2 Evaluation of added mass in shallow water

Setio o. -0 1 ,h V1 , , ,23 4 1 I T 1 T 9 ,_ 9 1
1 4-1/ZbeamonW.L. 0.0 12.0 11.5 23.0 26.0 27.5 27.5 27.5 27.5 27.5 26.5 24.5 19.o 10.0 0.0

2 A-bxd Ud-20) 0.0 441 3618.5 493 546 577.5 577.5 577. 577. 577. 556. 514.5 39 210 0.0

3 S-Actual area 0.0 Ill 250.3 239.5 441.5 558.5 574.4 S74.4 S73.9 573. 536 S73.33 365.5 195 0.0

4 ,-Area. coeff. S/A 1.0 0.2S2 0.644 0.703 o.89 0.%7 0.995 o.09 0.994 0.9.4 0.963 0. 0.916 0.929 1.0

s 2/ld 0.0 1.143 1.762 2.19D 2.476 2.619 2.619 2.619 2.619 2.619 2.S24 2.333 1.810 0.952 0.0

6 CS, $Dep 0.0 0.49 0.42 0.42 0.405 0.44 0.46 0.46 0.46 0.46 0.44 0.42 0.415 0.41 0.0
Fig. 

I7Cg (Deep water) 0.0 o.4s 0 15 0.46 0.46S 0.46S 0.465 0.465 0.465 0.465 0.465 0.46 0.45 0.44 0.0

5 dlb 0.0 1.75 1.135 0.913 0.W6 0.764 0.764 0.764 0.764 0.764 0.79 0.857 1.105 2.10 0.0

CMo (Shallow W.)
9 T/d-2.0 *-1 0.0 0.411 0.501 0.510 0.512 0.516 0.516 o.516 0.516 0.516 0.513 0.511 o.M 0.48 0.0

s Fi ag. 3

10 ICY.* 0.0 0.537 0.468 0.466 0.446 0.4811 0.510 0.510 0.510 0.510 0.485 0.467 0.463 0.4"7 0.0

CM_ otr M Ihlo I. III I II I

~1 MfrsalwW 0.0 0.886 0.772 0.769J 0.736 0.80 0.840 0.140 0.540o 0.840 0.80 0.77J .6 .3 .

of the Koch results, showed a close agreement W=I p ...(9
with Marwood and Johnston's experimental re- 2

6, the derived values of the added mass coeffi. M,=m '. (20)

cients in step 10 are re.calculated for a water and the virtual moment of inertia Is-., in yawing
depth and draft ratio of 1.2 (step 11, Table 2 and motion will be"'."
curve c, Fig. 7). h..=M~k1 ...... (21)

By integrating along the length and substitut.
ing for d=B12.61 from Table 2, the following 2) Checking the derived formula

equation, for the added mass in horizontal vibra. Taking into account both model and prototype

tion. was derived; experiments, Vasco CostasO presented the follow.
ing equation for estimating the virtual mass of

l I. • ' a berthing ship;

. .. M,=M+m,=m(,+2d1B) ...... (22)
• I 1 I"- t ........ -...

Shu Tien Lil) also presented the following equa-

S. .. +/ •' ., , , •M=,JIM/(6z) ...... (23)V ti~n; M&=m(I+urB/(l6D)) (3
-, -. ,,.4 I-- The virtual mass for different tankers, using

. -- - , .- -- 4- the three equations, was calculated, Table 3. It
C' .- I' ,""'.'"' can be seen that the derived equations yield re.

__ sults which are about 5A% more than the Shu
T'ien Li equation and about 5% less than theVasco Costa equation.

&A ,3) Added mass of inertia in rolling motion
The added mass moment of inertia coefficients

Fig, I Distribution of added mass along depend upon the sectional shapes and the ratio
length. of beam to draft; the same parameters which

Ii B-8
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Table 3
L -.

D/W I hI. .

Tankers to 17. M 111 tol~ tof to)0 00 330 140 1o7~o . .2• 7.9 2S 5o°' 3900 24® 70 9.0

20 X700 7 22.4 9.5 48O00 39000 47750 99.9
300O0 40000 o 60 25.8 10.3 72000 59620 682M0 95.0

0OD 66037 11.4 114000D 103000 105700 92.5
35 ODD 113 O 260 3X.1 14.0 196000 173000 180o0D 92.0

100000 133000 285 141.2 S4.6, 223000 206700 213000 9i.0

iiVasC Costa Formula average: 95%
11 Shu T'ien Li Formula

1illThe New Formula

To apply the results shown in Fig. 9 to the
case of a fully loaded ship, the following correc.
tions are necessary; a) first, since we are inter.

. ,il?) ested in the moment of inertia (J,-1) about the
center of gravity of the ship where v,/d=0.31,

-____-_;_;____ eq. (18), the effect of shallow water on the cen-

Fig. 8 Distribution of added virtual weight I -
along length in torsional vibration T

(after Kumai). .

effect Cir. Also, these coefficients depend on the 0.4 .......
location of the center of rotation. Model experi. I
ments were carried out by Kumai on prismatic CV I = 1. V
models having sections corresponding to those of
a tanker',). Applying the experimental results I L
on the actual sections of a tanker ship, Fig. 4, - .J.
Kumai obtained the distribution of the added -UU I
mass moment of inertia along a typical tanker -- ri I '
hull in the loadeS condition, Fig. 8. By integrat.-_ I
ing along the length, Kumni derived the follow. I
ing expression; 0 i •

nJe=0.00531(I+0.365ddjr)B'L (ton-ml) Fig. 9 Effect of shallow water on added
...... (24) mass moment of inertia in rolling

For a fully loaded tanker (d=dor). the above ex- (after Matsuura & Kawakami).
pression becomes;

J-•=0.00725B'L (ton.m') I

...... (25) I L
Eq. (24) represents the added mass moment of 0.3
inertia in deep water, but, as was discussed pre. C7  I I I /l
viously, berthing always takes place in shallow -.-. L - I I -

waters. Therefore, the effect of shallow water I
on the inertial moment has to be considered. 1,

01 t I~ LMatsuura and Kawakamil'O performed numeri.
cal computations, applying the finite element ""-

method, on the effect of the restricted water on 0 I

i the inertial coefficients, Cr. Rectangular sections V I IV ,.

having a ratio of half.beam to draft of 1.0 and Fig. 10 Variation of Cr with 'respect to
two locations of center of rotation, Vld=-0.0 and center of rotation for bidacl.0 (after
1.5, were investigated, Fig. 9. Matsuura & Kawakami).

R-9
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ter of rotation becomes Important. This is ob. eq. (24). Hence, for deduction, the C7 values of
tained by companiag the inertial coefficienti, Cr, ship sections in shallow water (values included
at point as where T/d-l.2, Fig. 9, with point as in Fig. 8) can be multiplied by the ratio 0.064/0.06,
in Fig. 10. That is, which denotes the Cr value in shallow water as

Cr.*1 Cr•S=O.l210.1=I.2 compared to deep water for sections 4 to 7. This
SFrom which the value of Cr at ij.di0.31 and will lead, finally, to multiplying eq. (25) with the

T/d=1.2, namely Cr., will approximately be above ratio for obtaining the added mass moment

equal to of inertia, as follows, in shallow water;

(1h=0.00774B'L (ton.ml) ...... (28)
Crv=.2(0056)0.07 ..... 26) The polar moment of inertia, Is, about a longi-

b) The second correction is obtained from the the par singetor ou t a to
consideration of three dimensional motion. The
correction factors from 2 to 3 dimensional mc- I,=m(kr)i

tion can be obtained from Fig. 11). If L/d= and substituting from eq. (18) results
18.25, eq. (18). the correction factor correspond. J.=0.78pLBd(0.42B)3
ing to pure rolling, (n=O), is equal to 0.96. Letting d=B/2.62 from Table 2, step 5, p=1.3
Multiplying eq. (26) by this value yields; .ton/ml

Cro=0.067(0.96)=0.064 ...... (27) l,=0.0541BIL (ton.mS)

I ; I• -I4, I(J,)f(O.00774B4L)/(O.OS41B'L)=0.143
J - ...... (29)

This ratio is in close agreement with the ratio
S. .of 0.15 given by Prof. Hayashi). The virtuil
.- 4 Jmoment of inertia I1-i becomes

r Fig. 11 Taylor correction factor from 2 to 1J-f=1.43m(zk)1=0.202Bim (ton'ml)

SL 3 dimensional motion. or J1 .•.i,+J,=.0Ol8B'L (ton.mi) J
c) The third correction is obtained from the -. . ..... (30)

fect of actual ship hull sections. A comparison 4) H1 or (-W, which denotes the vertical dis.
was made with sections 4 to 7, Fig. 8, having tance between the ship's center of gravity, G,
Cr in deep water equal to 0.06, and the rectan- and its metacentre, M, Fig. 1, can be calculated

gular.shaped sections where Cr in shallow water from the following equationW;
was derived, eq. (27). From Table 2 the area B=LIC1+CM-(dlD)C9 ...... (31)

coefficient (a) of these sections is equal to 0.996 where Ci and Cs are constants having the fol.
or about 1.0, giving a very slight effect due to
the round edges of these particular sections. lowing values for oil tankers (where K-/D=0.52);

The other sections have already been considered Ci=12.5 (U.shape)-13.2 (V.shape)

by the use of the equation derived by Kumai, C:=5.7

+ 45M
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5) Effective mass, M1, of the structure
-or determining the value of M1 that should be 4. SOLUTIONS OF THE DYNAMIC

subistituted in the motion equations. the authors EQUATIONS BY NUMERICAL IN-
investigated some existing berths in Kobe harbor. TEGRATION

One is an oil berth belonging to the Mitsubishi
Shoji Co. which consists of four dolphins of dif- The differential equations of motion of the ship
ferent sizes and a platform, Fig. 12. located back and the berthing structure are in the form of:
from the berth line The berth is provided with Stuur =m PX .)V-type rubber lenders. The berth was designed Stuur X.fXPX X)X)
to accomodate tankers varying in size (8 000 Ship1
20 000 and 47 000 DWT) under the control of i) roll O=G(0. P(X8, XC), it)tugboats. ii) yaw 0= Gi(, P(Xs, X.). 6)

a) The 47 000 DWT berths aga-nst two dol- iii) sway le= Gs(Xv. 1. J, P(Xs. Xe),J
phins which have-an effective weight equal to

cap+effective piles weight (CX) ...(3
=2(160+180)=680 tans. (enA3)e x in section 2.)

b) The 20000DWT should use two dolphins
which have an effective weight equal to In eq. (33) the first differential terms represent

210022rdeter 0 th eon. tthe damping effect which is generally neglected.2II+10)O theoions. eSolutions of eq. (33) are quite difficult to be car.
c) The 800 t DWT should berth against two sed out analytically, especially In the case where

dolphins which have an effective weight equal to fenders (such as rubber) that have non-linear
2(60+80)=290 tons. spring constants are used.

The displacement weights of the above ships A numerical solution implies the determination
are approximately (1.3hW) or 61000. 26 000 and of the displtcement and velocity of a system a.s10 400 tons, respectively. The virtuah masses a o mc e

(Mg)wil be qua to104 00,48 00 ad ~ velocities are 6btained in a step-by-step Integra-
tons, respectively, Table I and the ratio MI tion procedure, starting with given initial condi-

will be equal to 680/104 000=0.007, 440/48 ODD tions. There are many different methods of
0.009, and 2 8025000=0.0n1. numerical integration from which two methods,

MI/M=0.0 ..... 32) the Nlewmark Pi method'O and the Runge-Kutta-
MGill method"), will be explained.

Thus for the first design approximation, we canassume that Mv will be as much as w IA of the (1) Time Interval Effect on the Two Numeri-
virtual mass, Mi. of the approaching ship. If, cal Integration Methods
at the end of the calculations, the difference be- Tests have been conducted to study the effect
tween the derived value of Al3 and the assumed of the time interval on the accuracy of the two
value is great, the calculations can be repeated methods. In these tests, fenders with linear
using the derived value for MI. spring constants were used. for which the exact

6) Structure and fender resistance solution of the equation of motion is obtained
As discussed previously for the design of marine by using eq. (15). Through the comparison of

structbres, the function of the structure should results which are included in Table 4 and Fig.
be known in advance in addition to the ship dis. 13, the following conclusions could be made:
placement weight. In the selection of the resis. 1) The error involved in fender absorbed ener-
tance (.s) of the structure, the structure func. gy. 1'p. is relatively small compared to the
tions, whether rigid or flexible. should be con- energy Vs absorbed by the structure.
aidered. If the berth carries heavy l*ads (heavy, 2) The percentage of error involved in the VsSdelicate equipment carried on the deck, cranes, values is nearly twice that of the structure
power station, etc.), there is no choice; deflection maximum deflection, X1, i.e. iVn tialco1%.
must be limited. Tle construction should be 3) For the same time interval the error in-

It rigid and provided with elasticfenders to absorb curred using the RungeyKutta-Gill method
the ship's kinetic energy. On the other hand, is greater than that Involved in the New-
if deflection is allowed, the berth can be flexible, mark P method. The difference also in.

IA
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interval variation, the berthing data, and the
error involved in the maximum deflection of the
berthing structure was developed.

The curves shown in Fig. 15 were plotted from
Fig. 14 for an error equal to 2% of the struc-

-- - -- TA..__. ture maximum deflection. This gives 2% error

-.,. . . in the structure maximum reaction (KsX,) and
nearly 4A; in the structure's stored energy. In

... " , , , this figure the x.axis represents the berthing
I 8•" " 94 30 3 data, which is the factor N, and the y.axis re-
; _A -I . - 3 presents the time interval 41. The factor N is

"M ._ W 3S a function of the ship's virtual mass, the struc-
ture's effective mass, the structure and fender
spring constants, and the ship's approachingI. Ivelocity according to the following equation;N=(AaIMAjXIO0) (cm) ...... (34)

-.- Iwhere As is obtained from eq. (17).
i- ,..-' From Fig. 15 the relation between JV and the

time interval i1 for an error of 2A; in iXi is
- --_. _ __.-.---.--.----------. _given by:

AIM t in. i) The Newmark P method (0=1/4)
Fig. 13 Convergence of error with respect(sec). (3)

to time interval. 41= 3. 73,•II! •I I I 1=O.OO01SN'-.O.OO29N' .

(2) Selection of a Suitable Time Interval +o.018N-o.0313 (sec) . (36)
Through many investigations carried out by N :3.73

the authors, Fig.e4, a formula linking the time ii) The Runge-*utta.Gill method

a-NW8 ' Method1
K~ lN TM, V I

_II i9i- 6-Y. /- b-. h.. Ku l
1 241K 30 0. 0 * 21 tI+--- -- nI+I " M, I •++ +

4 
.

0,5 is I A'

- L_ soo 0.91 41747

•I I I I I 10j 60 1, 1 ,+ ;"7 in 4.5 t 1 '. I 4.7S41
20 a ii W".

10 _ WE 2.2#u~
-. _ - - i

00 i lieI 0__-.

,i. ,..5 0.40, o.., 0.00S 0.M
&... . T in• see* &T in we*

Fig. 14 Effect of time interval on the berth structure max deflection for different cases
"of berthing.
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newnuk DNI mom

- anae.Ea4&, M,.ed .. . 5. APPLICATION

(1) A Caue of General Berthing and Fenders
f &T~wo JW- WNa o Non41naear Spring Constant

7- - a) Data Given;
------. A tanker ship of displacement weight W

. -•=40 000 ton
011 * ýr-~ Approaching velocity V,=15 Cm/aec

III II0' •, l61 Ship characteristics are;
,--W4&NIg*-j* Length=200 .m Bread:h=25.8m

- --' - -,. Draft=10.81m

Berthing data;S~r=80m H--3.0in 7"=50" a=200
., - - - Assuming, for the first trial, the fender system

data as;
"s=15ton/cm Fender=2 pieces of type I,

S ' " Fig. 17.
1I .". " .. b) By applying the formulas included in sec.

Fig. 15 4T, vs. N for 2% error in berth tion 3, the following data was computed;
structure max deflection. . Ms=70.69 ton.sect/cm

i l=0.0018 (sec) .. ..... (37) 0
N=g3.73 • . !

41=0.000066N'-0.00137Ns
l II. +0.oo0sN-0.0178 (sec) ...... (38)

N 3.73....
(3) Application to the Non-linear Spring Con. ,..:

start Fenders

Both rubber and retractable fenders possess -- -..
non.linear relations between the load and the C .1 .A A
displacement. To apply the preceding equations
for selecting the time interval for structures
provided with these type of fenders, the load is
considered to be applied in small increments as- C.1.1 &4.a4
sociated with the time interval. The procedure A

for calculation is as follows:.. , . .

1) The spring constant (Ks) of the fender corre-
sjponding to zero displacement is taken from
the given load-displacement relationship. .....

2) The factor N can be calculated and. con-
sequectly, the time interval from eqs. (35),
(36) or eqs. (37), (38):

3) Substituiing in the equations of motion,
-•ie displacement of the fender at the end
of the interval can be obtained.

-- 4) The spring constant corresponding to this
displacementcan "be" calculated as indicated .
in step 1).

- 5) Repeating steps 2), 3). and 4) until the al- Fig. 26 Flow chart for design procedure by* I i . lowable fender displacement is reached, using newmark "s' method.

B.44
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Table 5

r X.K Fender Effectivec,& *MCaeMdI etigT energy soNo _ _ m ton/cm Fig. 17 awl- se e-

I General berthing : I0 3 is Type _41.7_ _2.6 0.1112 +0._1 X1 * X 10- 2 l -

-•2 No-rolling 0 is 42.09 $3.44 \

I0 T e 6.25 X.70 52.5

Feeer of linear

s ang coflant Kr,,O0ton/m V.60 $7.7 Tables 3 and 4
. .C refer. 4)

The fender stiffness used In these cases is chosen by trials to give Ie"C.0 at max. xway•
. MaI30tonostc2/cm. V.o.l0cm/sec

.Xrthe combiund stiffness of the fender system"-K.Kj/(X,+Kj)

M=0".7ton-secf/cm " 1 ' ' "H"'
AH=M=2.27m 2

_-2=54 x 106 ton.secS.cm-

J,-a=1l3xI0?ton-secl-crn% +.2 sjI~#
c) For numerical integration, Newmark • substituting 'for 6 aid • their values,

method with P=2/4 was used. Besides, equations 0.nlIzx0-' and 0.151x 0-'sec1- re-
(35) and (36) were applied for selecting the time spectIvely, we obtain;" - : .. .
interval. Calculations were carried out by the ectively, weotim-
digital computer, the flow of computations is , ( i
shown by the block diagram Fig. 16. Results is Structureincluded in Table 5. •

(2) Besides, for comparing the presentediiii ii..-:

L method with other investigators methods, two -2I x 0.7 x (-4.659)3/100=0.077
other examples were tried, Table 5. (ton.n)

- " -+E, =37.26+0.077=-37.3 (ton.nr)
6. COMMENTS ON THE RESULTS TS.... =I .Total energy at Vo=:O.O~willl'*b";"

S+.E 1 +E,=79.09 (tonlr) : .. (39)
(1) Verification of the Developed Method of

But the ship's approaching energy is;

7o verify the assumptions presented in estab- E,-=1x70. 69x11 /,00=79.520 (ton-m)
lishing the dynamic equations included in section• ; ; - ., " . .. ,-. .. ' .. :..... (40)
2, conservation of energy before and after colli.
sion is checked from the deduced results. Eq. (39)-Eq. (40) which satisfied the conserva.

- -o the in c n .. tion of kinetic energy before and collision.
1) Consenrotion of tekntcee
From Table 5 we have at V.=0.09*0• .. _: 2) Counseraion of the moment of momentum
Q Part of the ship's kinetic energy transmit. i) At time when the ship made the first con.

ted to:. ... tact, the moment of momentum is given

Fender system=Effective energy by;
F.t=41.79 (ton/m) MMi=M,.V,.rsln'. "

I-ii) Part of energy induced by the system vi- .sm7O.6ixI5x8O00' 076611C00S_- .-.- • ! ~ ~~bration.:-". .. : ""...
Ship .... .' "." m649.8x01t (ton.s-,.nm). •

(41)

I1-T 7 - .30 Ii) At time when th4 81ip starte'd to rebound,
II;.. .. " "the moment of momentum' "equal to;

1312+ 4111 -I-- """ . M 0h•+44+Ms .

at W'0.0 this eq. yields to; -=26.,OxIO'+LIsxIo'

IB
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I +527.80X10
=662.05x10s (ton.sec.m) 7. COMPARING THE METHOD WITH

...... (42) OTHER INVESTIGATORS METHOD

Eq. (41)=Eq. (42) which satisfied the moment i) Case 2. Table 5, in which H=O.O, is Simi.
of momentum principles. Jar to the case treated by Vasco Costa, i.e. sway.

ing and yawing motions are only considered.(2) Checking of Time Interval Selection Proce- From the table we have; at Vc=0.69•0.Ocm/sec.
:: : •dure--(Vat-l Vsy+ Vfr)--(l8.40-13.42-120•2•)i"-The accuracy of the deduced results, as seen -42 .0 + . ......(4)

in the previous paragraph, verified, on one hand, =42.09 (ton/r) (43)
the right procedure of developing the equations Substituting with the given data in the equation
of motion, and on the other hand, it supported given by Vasco Costa, we obtain;
the author's recommendations for the evaluation E'W I1 MV kt2+rleosi4
of the time interval AT presented in section 4. ,sV,
Fig. 18 shows the variation of AT through the =42.15 (ton/i) .(44)
numerical integration process acoording to the
variation of the fender's stiffness shown by Fig. ii) Case 3 is similar to the case treated b v
_ _17. Any is-coice of the time interval will lead Hayashi & Shirai, i.e. fender of linear spring
to large errors, and sometime, leads to unreason. constant and T, Fig. 1. equals to 90%

_ able results as included in Table 4. From i) and ii), if we considered some errordue to numerical integration, the author's meth.32=0o 4•. -d will be in agreement with the two special

i- -- - - cases treated in references 4) and 5).

-I-20s 8. SUMMARY AND CONCLUSIONS

-F PD - The foregoing study describes an analyticalL 3i treatment of the ship berthing problem, based
Z aon the dynamic response of the ship and the

-o -/ ,4 - fennder system during berthing.
0J __ The presented analysis covers almost the main

z factors involving in berthing operations. These
---- - -are comprised of;

i) The approaching mode of the ship with
_ 90 U 0 W - n o I reference to the face of the berth, de.

Fig. 17 The load and energy vs. deflection ii) The location of the point of contact on
for V600H rubber fender (Tokyo the ship's hull, denoted by r and H.
Rubber Dock Fenders). iii) The structure stiffness and the fender

stiffness, whether the latter of a linear or
-I non.linear spring constant, beside to the

hull stiffness at the point of contact, ifCO • available.
* - iv) The mechanical behaviour of the fender

-.. -system with respect to the variation of
ethe acting load direction. This Is very

important in case of rubber.like fenders,
- - -, as their energy absorbing capacity is a

-OW function of the load direction.
*..) Consideration of shallow water effect in

0A .swaying, yawing and rolling._. S.0 _-For solving the developed equations of motions,Fig. 29 Variation of time interval AT vs. recommendations and formulas for estimation
time of berthing, and selection of the different parameters, partti

cularly the time Interval, are presented.
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