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FOREWORD 

This report is a review of the fundamental procedures developed for 
solving practical USAF problems by means of Computational Fluid Dynamic 
techniques. It represents the efforts of the Computational Aerodynamics 
Group over a several year period, directed by Dr. Wilbur L. Hankey under 
project 2307N603. 
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SECTION I 

HISTORICAL BACKGROUND 

First, a historical review (Reference 1) of aerodynamic theory shall be 

accomplished in order to obtain an overall perspective. In 1768 

D'Alembert, an experimentalist for the King's Navy, used the potential 

equation of fluid mechanics and showed that, contrary to experimental 

evi dence, zero force was predi cted on an arbitrary body immersed ina 

moving fluid. He stated, ~this theory gives absolutely zero resistance: 

a singular paradox I leave mathematicians to explain." The "D'Alembert 

paradox" lasted over a century until 1906 when Joukowski introduced the 

concept of circulation (artifically representing viscous effects) to 

produce lift. The Wright Brothers flew three years before the Joukowski 

discovery and obviously used lift. Prandtl's boundary layer concept was 

employed by Blasius in 1908 to analytically predict friction drag. 

Charles Lindbergh first crossed the Atlantic in 1927 and Chuck Yeager 

flew the Bell X-l supersonically in 1947 which clearly demonstrates the 

rapid development of aviation during that period. 

However, the first large-scale aerodynamic calculation was Kopal's 

(Reference 2) solution for supersonic flow over cones in 1947. The 308 

computed cases required three years for a five-girl team to accomplish 

using mechanical adding machines. In 1964 Blattner (Reference 3) 

developed a stable algorithm to solve generalized boundary layers on an 

electronic computer. Two years prior to this, John Glenn orbited the 

earth achieving a major breakthrough in our aviation history. In 1971, 

MacCormack (Reference 4) published the first significant numerical 

solution of the compressible Navier-Stokes equations. 

By contrasting the flight achievements with theoretical aerodynamic 

development two major points can be made. 

1) With aerodynamic theory dramatically lagging, how were the 

flight achievements possible? The answer is by means of the wind tunnel. 

Excellent wind tunnel facilities provided the necessary data for the 

past advancements in aviation. 

1 
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2) 'Since the Navier-Stokes equations have been around since 1827 

why are we only now able to solve them? The answer is that the solution 

of the Navier-Stokes equations required the invention of a large-scale 

computer. The computer on 1y became II of age" duri ng the past decade. 

Prior to this time only limited analytic calculus solutions of 

approximate equations could be obtained. Today, a "brute force" method 

;s used to numerically solve the Navier-Stokes equations (Reference 5). 

The method of Computational Fluid Dynamics (CFD) ;s based on the fact 

that a tool ;s now available that can perform arithmetic very rapidly. 

The CRAY-l computer (Reference 6) can perform over 100 million 

additions in one second. Previous aerodynamicists had no such tool and 

their technology developed along other routes. Today, we di screti ze 
partial differential equations into finite. difference algebraic 

relationships where arithmetic can be used. Since the large-scale 

computer is very good at this, the approach is successful. 

We are presently developing methods to exploit the computer 

capabilities. This new field is called "Computational Aerodynamics." 

2 
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SECTION I I 

GOVERNING EQUATIONS IN AERODYNAMICS 

Various levels of sophistication can be employed to attack a problem 
in aerodynamics. The approach one takes depends upon the accuracy required, 
time and funds available, etc. An attempt has been made to catalog the 

prediction methods to help standardize the nomenclature. Figure 1 lists 
the methods and restrictions while Figure 2 graphically shows the limits 

of the methods. 

In this section the governing equations of fluid mechanics (Navier
Stokes equations) will be derived. Prior to this derivation however, 
some vector analysis (Reference 7) relationships must be reviewed. 

1. VECTOR ANALYSIS 

The following definitions will be required. 
coordinates are given. 

Vector 

Elemental Area 

Dot Product 

Divergence of Vector 

Curl of Vector 

Dyadic 

'{dA=u dAx + vdAy+wd Az 

'V.V= au + dr + aw 
- ox +ay + oz 

i i ~ 

'VxV = E... l. ..£.. - ax ay az 
u v w 

0" , , 
" 12 13 , 0" p= 21 22 '23 

'31 '32 0"33 

3 

Examp 1 es in Cartes ian 
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Dot Product of Dyadic 

Divergence of Dyadic 

Sub~tantial Derivative 

Green I s Theorem 

'. 

Y'P-=l(UIOjt v'21+ W'31) 

+1 ( u '12 + VCT22:+w-r 32 ) 

+ !(u'13 + v '23 + WCT33) 

aa-, a, a, 
V'.p= i(.-!l+ ~ + .2l.) 

= - ax (J,y a-z 

+.(a
412 + dcr22 + a '32 ) 

1 d.x dy . a z 

(
d'13 + a'23 + acr33 ) 

+k- --
- ~x ay az 

DV av . aV V2 
-=-=--=+(V'V')V= -=- +V'--Vx(V'xV) D.t at - - at 2 - -

2. DERIVATION OF NAVIER-STOKES EQUATIONS 

The governing equations of fluid mechanics (References 8 and 9) are 
derived from statements of the conservation of mass, momentum and energy 
for an arbitrary control volume. 

4 
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3, CONTI NUITY 

Statement of the Conservation of Mass 

Net Outflow of Mass 
Through Surface 

But Green1s Theorem states 

" 

Decrease of Mass 
in r:ontrol Volume 

if:/:>pV·dA= fff (V,pV)dV - - . 

Hence, after substitution 

ffJ[* +V'P'Y]dV=O 

Since the control volume (V) is completely arbitrary, the integrand of 

the integral must vanish, 

ap 
~+V"pV=O at -

4. MOMENTUM EQUATION 

Continuity Equation 

Statement of the Conservation of Momentum 
-3 'J .r' \ 

'Sum of External 
Forces 

F = 

F = 

= 

Where P = 
-

5 

Ra te of Change 
of Momentum 

DV 
fffp D~ dltf 

sum of stresses x Area in unit 
vector directions 

11> P'dA -
stress dyadic 
or stress tensor 
or stress matrix 
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A dyadic is treated as a "double vectqr" and is manipulated as such. It 
is symmetric and composed of three normal stresses and six shear stresses. 

Green's theorem is now used as follows: 

F = 

Hence, 

<!p p. d A = Iff C::;· P) d ¥ =-- - =' 

ffJ fp91:.- V'PJd¥ =0 ~ Of = 

Similarly, the integrand must vanish. 
OV 

Momentum Equation 

P -= =V·p 
-Ot = 

5. ENERGY EQUATION 

Statement of the Conservation of Energy 

Rate of Heat Rate of Ra te of Change 
Added + Work Done = in Internal Energy 

dO + dW dE 
dT CiT = dT' 

c:fP i' dA + f·y = IfJP~d¥ Ot 

+ = fJJp g~ d¥ 

v2 
where e= CvT +'2 and i = kVT 

Green's Theorem 

IJf V . (f . '!. +~] d +f = Iff p g~ d +f 

6 
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Similarly, the integrand must vanish. 

p De = V. [p . V + oJ 
Dt ':' - !: 

6. DIVERGENCE FORM OF EQUATIONS 

or 

Add the product of lei times continuity to the energy equation 

e (OP +V. pV) +p De = e op +pPe +eV'pV+pV.Ve 
ot - Dt ot ot --

= oPe + V . p Ve = V, r p . V + a] ot - u; - ± 

aOt<(,ae) + V· [pye-E' V -1] = 0 

Similarly, adding -the product of y.. times continuity to the momentum 

equation produces the divergence form of the momentum equation. 

l.(pV) + V.[p V V- pJ= 0 
at - - - = 

Note that the conservation of mass, momentum and energy can now be written 

in identical form using the divergence vector in Cartesian coordinates 

(References 10 and 11). 

where 

p 

pu 

U = pV 

pw 

pe 

a11 +oE + aF +oG =0 
ot ax Oy oz 

E= 

<;u 

<;u2_ 0" 
II 

<;Uy- 0"12 

<)uW-T'13 

<;ue-uOjI- YT'12- WT'13- kTx 

7 

, etc. 
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The three equations, (2 scalar, 1 vector), contain -four unknowns, i.e. 
(Y, p, p, T). The equation of state is needed to close the system. For 
the present case, an ideal gas is assumed. 

p = pR T; equation of state. 

This is the fourth required relationship. Values for the transport and 
thermodynamic properties (~, k, Cv, R) are also required as input. These 
equations with appropriate boundary conditions are capable of representing 
nearly any aerodynamic problem in the aviation field. 

8 
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2 

NAVIER - STOKES 

1 
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-1 
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Figure 2. Limits of Aerodynamic Theory 
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SECTION I I.I 

SURV~Y OF AERODYNAMIC PREDICTION METHODS 

In this section lower forms or approximations of the Navier-Stokes 

equations will be derived. 

1 . Level II I. Navi er-Stokes (References 12 through 20) 

where 

oU+oE+oF+OG=O 
ot Ox oy oz 

a. Level III.A Parabo1ized Navier-Stokes (References 21 and 22) 

oU = O· !li. = _ 0 F _ o·G 
o.t .. Ox ay o-z 

E= 
puv 

puw 

pue 

Viscous terms only in F and G 

b. Level III.B Two-D Boundary Layer (References 3 and 23) 

·~=o, dG=O 
ot ' 0 z 

p= - P fLUy 
= fLUy - P 

11 
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or 

2. LEVEL II 

(pu )x + (p v )y = 0 

(pu2 + P) x + (p UV - J.L u. y \ = 0 

Py=O 

(puH)x + (pVH-UT- kTy)y= 0 

a. Level II.A. Inviscid (Euler) (Referebce 24) 

}J-=O i k= 0 

~=-p! 

dV at =0 

V'p '!.. = 0 

V'(p~y+p~)=O 

V·(pVH)=O 

where H = e + ~ 

By combining the last equation with the first, one finds that H = constant. 
Hence one differential equation reduces to an algebraic equation thereby 

reducing the computer time to solve the system. 

Alternate forms of the momentum and energy equations are often used. 

12 
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b. Level II.B. Inviscid, Irrotational (Full Potential) (Reference 8) 

One of the greatest simplification arises when the vorticity in 

the flow field is zero, ~ = O. This implies that the viscosity vanishes 
(which was already assumed) and no shocks exist. In practice this means 

that M < 1.5 (for which a 7% total pressure drop occurs), and Pp2 (M = 
n 1 n 

1.5) < 2.46 or only weak shocks are permitted. When this occurs a velocity 

potential can be introduced. 

Automatically this insures that the vorticity vanish . 

. ~= 'Ix 'J.. = 'lx'l¢ = 0 

since the Curl of the Gradient vanishes identically. The governing equations 

becomes as follows: 
'l'p'lcp=O 
"( 2 2 2/ '1 ( '1 ¢ ) + '1 {p 0 ) = 0 

and 0 2 = 0 2 - 7-1 (VA.)2 a 2 't' 

By eliminating p these equations produce the full potential equation. 

Expanding this equation in Cartesian coordinates 

where U=¢x 

V=¢y 

W=¢z 

13 



AR~AL-TR-82-3031 

3. LEVEL I. LINEARIZED EQUATION (REFERENCES 8 AND 25) 

Level I is further restricted by simplifying the non-linear partial 
differential potential equation to make it linear for which analytic 

methods of solution have been developed~ 

Assume small perturbations (Reference 8) 

U=Uoo I- U'(x,y,z) 

V= VI (x,y, z) 

W= w' (x,y,z) 

or "'= XUCIIQ + q,' 
Hence (1- M2 ) ",' +,4.' +,4.' = 0 

QIO xx 't' yy 't' ZZ 

14 
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TABLE 1. REQUIRED NUMBER OF BOUNDARY CONDITIONS 

Level III. Navier-·Stokes 

Level III.A. 

Initial Condo B.C. 

Variables 
u 

v 

w 
P 

T 

t x 
1 2 

1 2 

1 2 

1 1 

1 2 

Parabolized Navier-Stokes 

Initial Condo 

Variables 

u 

v 

w 

P 

T 

x 

1 

1 

1 

1 

1 

y 

2 

2 

2 

1 

2 

.Y z 
2 2 

2 2 

2 2 
1 1 

2 2 

TOTAL 27 + 5 = 32 

z 

2 

2 

2 

1 

2 

TOTAL 18 + 5 : 23 

LEVEL III.B. Two-Dimensional Boundary Layer 

Variables 

u 

v· 

P 

T 

x 

1 

0 

1 

1 

1 5 

Y 

2 

1 

1 

2 TOTAL 6 + 3 : 9 
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TABLE 1. REQUIRED NUMBER OF BOUNDARY CONDITIONS (Continued) 

Level n.A. I'nviscid (Euler) 

Variables 

u 

v 
w 

p 

x y 

1 1 

1 1 

1 1 

1 1 

TOTAL = 12 

'Level II.B. Inviscid, Irrotational (Full Potential) 

Variables 

TOTAL = 6 

Level I. Linearized Equation 

Va ri a b 1 es 

TOTAL = 6 

16 

z 

1 

1 

1 

1 
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TABLE 2. SUMMARY OF BOUNDARY CONDITIONS 

Level Titl e 

III Navier-Stokes 

A. Par. N.S. 
B. Boundary Layer 

II Inviscid 

A. Euler 
B. Potential 

I Linear 

No. Terms 

77 

15 
9 

3 

No. B. C. 

30 

12 
6 

6 

TABLE 3. DIAGRAM OF AERODYNAMIC PREDICTION LEVELS 

Level 

III. 

II. 

I. 

N.S. 

Inviscid 
(Euler) 

P.N.S. 

17 

Full 
Potential 

B.L. 

" 

Restriction 

None 

3
2 
-= 0 
3/ 
v « 
U 

jl = 0 
weak shocks 

u = voo + u~ 

I~OC 
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SECTION IV 

ANALYTIC SOLUTION OF BOUNDARY LAYERS 

One of the first branches of fluid mechanics to exploit numerical 
methods was the boundary layer field. Most of the important features of 

CFD can be demonstrated by examining boundary layer solution techniques. 

Consider a steady, incompressible, 2-D boundary layer flow (Reference 
26) . 

wHh boundary condi trons 

U (x,o) =0 

v{x,o)=O u{o,y}= Uc:oO 
u (x,oo) = e u{x} 

For simplicity, consider Blasius flow in which Ue = U . 
co 

A transformation ,is used to real ign the coordinates to obtain better 
numerical accuracy and to simplify the boundary conditions (Reference 27). 

Let 

e=x 

.." =JU<::IO r y '( 2vx 

18 
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Using the chain rule 

The transformed equations become as follows: 

V"1 + F= -2~ ~ 

F -VF. =-2~FF. 
"1"1 "1 ~ 

The right-hand sides of these equations are zero for the situation where 

F = F(n). This type of flow is called "similar" in that all velocity 
profiles at different stations can be collapsed onto one similar curve. 

The governing equation then becomes an ordinary differential equation 

which was first solved by Blasius (1908) using an infinite series (Refer
ence 26). 

Let V = -f. Hence the governing equation for Blasius flow becomes: 

with boundary conditions 

f"+ ff"= 0 

f(O)=O 

f'(O)=O 

f'(oo)=1 

A series solution is obtained as follows: 

Assume f :: 
1]2 7]3 1]4 

00+°1 "1+°2- + 03 - + 04- + ... 
21 3! 4! 

The solution obtained by substitution of this series into the governing 

equation and applying inner boundary condition is: 

1 9 
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And 
fl'l (0)=0.46960= 02 

is obtained from the outer boundary condition. 

The friction coefficient at the wall is 

c= r. = 2}J. (~) = 2.v17y F' (0)= f"(O) 
f 1 2 U2 oy 0 Uoo "'7 v'l Re 

2p Uoo P Qa 2 

C = 0.66411 
or f ../R8 

20 
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SECTION V 

NUMERICAL SOLUTION OF BOUNDARY LAYERS 

With the advent of the digital computer, numerical techniques 

(Reference 3) were developed because they removed all the limitations 

required to obtain analytic solutions. 

The same transformed boundary layer equations and boundary conditions 

are used for either the analytic or numerical approach. 

V,.,=-F j V(O)=O 

F,.,,., -V F,., =0; F(O)=O and F(co)= I 

The velocity profile is discretized into a series of points at equal 

intervals in n, i.e. 6n = constant (Figure 3). By using Taylor series, 
relationships between neighboring points can be obtained (References 28, 

29 and 30). 
Ll 2 Ll 3 Ll4 

F = F + F' Ll + F II -.3 + Fill -1 + FIV ~ ... 
n+1 n n'" n 2! n 3! n 4! + 

Similarly 

~ 

By substracting these two relations, one can obtain Fn. 

F F. Ll 2 F' = n+l- n-I_ F'" -l + ... 
n 2.Ll,., 6 

By adding the two relations one obtains Fn. 

21 
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If we truncate the original Taylor series after the'6n 2 terms we obtain 
an algebraic finite difference rel·ationship for both the first and se~ond 

derivatives. Since the governing boundary layer equations have only 

second derivatives; this !'second order" method is sufficient for our 
purposes. 

Using these finite difference relations the governing equation becomes: 

where Vn is obtained by numerical integration. 

!1 
V= - J Fd"7 

o 

Using the trapezoidal rule 

or Simpson's Rule 

Vn= -[Fl + 4F2 + 2F3 + ... 2Fn- 2 + 4Fn- 1 + Fnl ~." 

Therefore, at each point in the field the governing equation can be ex

pressed only in terms of information available at adjacent points. 

22 
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The equations for each point developed a regular pattern. 

-c3 F2 + b3 F3 - °3 F4 

-c4F3+b4F4-04F5 

2 3 4 5 . 

UNKNOWNS 

=0 

=0 

=0 

-c F +b F -0 (1)=0 
.. N-I N-2 N-I N-I N-I FN= I 

N-2 N-I N 

Written in Matrix form, this is called a tri-diagonal matrix. 

where 

A= [~ 
We have N linear algebraic equations with constant coefficients (for each 
iteration cycle) which contain N unknown values of F, To solve this system, 

we might consider using the standard Cramer~s Rule. 

F. -= IA-BI 
n 0 

23 
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This eomputation requires (N+l)l multiplications. An estimate of the 

required computer time can be made for the CRAY-l which accomplishes 
80 million multiplications per second. 

N (N+l)! CRAY Time 

3 24 3 x 10-7 sec 
10 39,916.,800 0.5 sec 

18 1.2xlO'7 47 years !! ! 

The surprls1ng escalation of computer time with the number of grid 
points shows the impracticality of using Cramer's Rule. Fortunately a 
simple algorithm exists for solving tri-diagonal matrices (which is a form 

of Gaussian elimination) and is commonly known as the Thomas Algorithm 

(Refet"'ence 3). 

Thomas Algorithm 

-an Fn +1 + bn Fn -en Fn- I = dn where 0n>O 

bn> 0 

cn>O 

. bn~ on +cn 

Assume the existence of a linear relationship 

Hence 

Substituting this relationship into the original tri-diagonal and solving 

for Fn produces the following: 

24 
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which confirms the original assumption of a linear relationship, 

F = e F +1 + f . n n n n 

Therefore 

The solving procedure is then 

Starting at the surface where 

We see tha t el = 0 and fl = 0 

At the next point 

and 

quite simple. n>1 

Fl = 0 then Fl = e 1 F2 + f, = 0 

(since F2 is arbitrary in genera 1 ) . 

°3 
e =~---3 b

3
- c

3
e

2 

d3 +C3 f2 
f =~-;;.....,;;;:;...... 

3 b
3

- c3 
e

2 
etc. 

25 
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This sweep procedure is continued until eN_l and fN_l are obtained. At 
this point, we sweep back down and evaluate F , using the fact that F = 1. n N 

FN_1: eN_I FN+fN_ 1= eN_1+fN_ 1 

and using previously evaluated en and f n· 

.etc. 

Continue until all Fn are found. 

This procedure is efficient and accurate in that round off errors 
are seldom encountered. Only three multiplications and two divisions are 
required at each point. Hence, the computer time is proportional to only 
kN, which far surpasses the efficiency of Cramer's rule. 

F = I 
N 

"1 jo-A_"1..:..-_____ ... Fn + I 

~--------------~ Fn 
1-------...... Fn_ 1 

F 

Figure 3. Oiscretized Velocity Profile 

26 
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1 . SUMMARY OF NUMERICAL PROCEDURE FOR BOUNDARY LAYER CALCULATIONS 

By observing the numerical procedure and strategy employed in the 
. solution of boundary layers, we may learn some lessons that will be useful . ' 

in solving the Navier-Stokes equations. The following are some important 

steps in the process: 

1. Formulate the governing partial di fferential equations. Insure 

that 

Number of Unknowns = Number of Equations 

Number of B.C. = Order of Highest Derivative 

2. Trans,formGoverning Equations. This simplifies boundary condi

tions and achieves better numerical accuracy. 

3. Convert to Finite Differences 

4. Employ Proven Solving Scheme compatible with computer. 

5. Satisfy Stability Constraint 

6. Keep it Simple Stupid (KISS) 

Maintain lowest order of derivatives in system of equations. 

Avoid elegance and sophistication. 

Make the computer do the work. Minimize your work off the 
computer. (This is frequently opposite to the strategy in analytic efforts.) 

7. Integrate numerically, not analytically. Use graphics to minimize 
print-out and achieve data compression. 

27 
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SECTION VI 

TRUNCATION ERROR ANALYSIS 

Let's return to the formulation of the boundary layer analysis but 
i ncl ude hi gher order terms (References 31, 32, 33 and 34) 

/I , 

F-VF=-on Fn-I+bn Fn-cn Fn+l-dn :: O 

~T]2 

where a , b , c retain the same previous definitions but n n n 

IV .-I" 4 4 dn= (F - 2Vr ) ~T] = cp D.T] 
12 12 

This term is representative of the truncation error in approximating the 

differential equation by finite differences. 

An estimate of the error in wall friction can be obtained by integrating 
the governing equation. 

since V/=-F 
. 

CI) A2CI) AZCI) 
F'(O)=£( 1- F) FdT]+ 1f 1 cpdT]= 8 j + Ii £ cpdT] 

BUT 

CI)CI) 
/ cpdT]=/(F

1V
- 2VF"I)d"7 

o 0 ,.., ~o CI) CI) 
=[F"'-yr"-2FF'] + 2/(F,)2 dT] 

o 0 

28 
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Hence ~F/(O)= ~7J2 (.7)~+.06 ~7J2 
F' (0) 12 (.4696) 

A simple relationshfp for the error in wall shear stress has been 

obtained by including the next term in the Taylor series. 

1. RICHARDSON'S EXTRAPOLATION 

Numerical experiments can be conducted in place of evaluating the 
function foo ~dn for more complex problems. Recognizing that the 

o 
truncation error term, for second order methods, will be proportional to 

2 
~n , a technique can be developed which can extrapolate the results to 
zero error. 

Write two experssions for the error for two different step size 

calculations 

~'- F'(exact)= k ~7J~ 
, I 2 

F: - F (exact) = k~." 2 -'2 

By dividing these two equations, k (which in general, is difficult 

to evaluate analytically) can be eliminated, The exact value then can be 
predicted. 

This is known as Richardson's extrapolation and is a practical method for 

error estimation. 

29 
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Below is a tabulation for Blasius boundary layer calculations of the 
error term in wall friction for different ~n step size. 

TABLE 4 

TABLE OF ERRORS FOR BLASIUS BOUNDARY LAYER CALCULATIONS 

~F!(o)12 
F' (0) 
Richardson's 

~n F' (0) Error % F' (0) ~n 2 Extrapolation Error 

0 .46960 0 --- ---

.1 .46966 ~ .00006 --- .146 .46959 - . 0001 

.2 .46988 .00028 --- .179 

.25 .47004 .00044 .09% .180 .46947 -.00001 

.5 .47140 .00180 .38 .184 .46959 -.00013 
1.0 .47718 .00758 1 .6 .194 .46957 -.00001 

2.0 .50 .0304 6.5 .194 .330476 -.1391 

5.0 1.39 .92 200 .94 
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SECTION VII 

STABILITY ANALYSIS 

. The major issue in choosing a finite difference algorithm is its 

stability characteristics. Of the many, many ways to represent a partial 

differential equation by finite differences only a few are stable. (Many 

come forth but few are chosen). The best way to appreciate this is to 

consider the roots of a very high degree polynomial of order n. To insist 

that no positive real root exists when n equals several thousand is a 

severe restriction. This is equivalent to demanding that no positive real 
eigenvalues be permitted in the large solution matrix representing the 

entire computational grid. 

Since many points exist then this is obviously a very severe constraint. 

Therefore, most of us should use only proven algorithms and not invent 
new ones. 

1 . MODEL EQUATIONS 

To study stability, we shall use linear model equations to demonstrate 
the key features (Reference 35, 36 and 37) . 

The boundary layer equation has terms that represent advection 

(convection) and diffusion of the following form: 

Ut+UUx +VU y= vU yy 

These two processes can be represented by two simple model equations. 

Advection Ut + cU
x 

= 0 Simple wave equation. 

Diffusion: U = vU 
t xx Heat equation. 

By examining the stability of these two equations, the major 
limitations can be assessed. This greatly reduces the amount of labor 
involved. 

31 
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2. VON NEUMANN' STABILITY ANALYSIS 

Let us first consider two possible finite difference represe.ntation 

of the simpl e wave equation (Reference 31). 

1. Forward Time - Central Space (FTCS) Differencing Scheme 

t ±ttln 

t:nAt-++=t=+ 
x= jAx--. 

2. Backward Time - Central Space (BTCS) 

t, 
t = n ~t -+--+-+--f.-

Defi ni ng (J = 

Hence 

FTCS: 

BTCS: 

x=jAx~ 

ct:.t = Courant Number 
t:.x 
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Von Neumann (1944) devised a method for analyzing the stability of finite 

difference relationships. A Fourier series expansion of the solution is 

performed and the decay or amplification of each mode is examined to 

determine the stability characteristics. 

Let 

An 
where U (t) is the amplitude function at time-level n and a. is the wave 

number. ( i =..;:n 
Hence: FTCS: Un+leiax= Un[_~eia(x+~X) +eiax+~ eia(x-~x)] 

2 2 

"n+ I 
and Gain = G= ~= I+£: (e-ia~x_eia~x) 

Un 2 

or G= I-iasin (a~x)=AMPLlFICATION FACTOR 

For stability, IGI< 1, since the solution must remain bounded. 

G G= I + CT
2

sin
2
aAx < 1 

The stability criteria indicates that cr = 0 is required, which is im
possible to achieve. 

I 

Therefore FTCS = unconditionally unstable. 

Likewise, 

BTCS An I'\n+ I [ CT ia~x -ia~x J U=U I+-(e -e ) 
2 

"n+1 1 
G= ~n =[I+iCT sina~xJ-

U 

or 

GG= 2 2 < 1 
I+CT sin aLlx 

33 



AR~AL-TR-82-303l 

For stability cr = any value. Therefore BTCS is unconditionally stable. 

3. SUMMARY Simple wave equation 

FTCS: any cr or any step size is unstable. 

BTCS: any cr or any step size is stable. 

4. EIGENVALUE INTERPRETATION OF GAIN 

Let 'Un = Ae"t 

"n+f A A(t+6.t) 
Hence U = e 

Therefore G = un
+ f = eALlt = 1+ ALlt ... 

A(1 
U 

G<I means ALlt<O 

Since Dot> 0 this means 

A < 0 or no positive, real eigenvalue in time is permitted. 

5. OIFFUSION EQUATION 

Similarly for the Diffusion Equation 

U
t 
= v U Let d = VDot

2 
= Diffusion Number 

xx Dox 

FTCS 

Un, +_1 Un, n n n 
J J v(Uj + 1 - 2~j + Uj -I) 

----- = Dot Dox 2 

34 
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Hence the Von Newmann. Stability analysis produces 

Since 

Likewise 

BTCS: 

G= 1- 2d (1- cosa~x) 

SincelGI< I 

12dl( I-cosa~x)- II < I; But (1- cosa~x)= 2 Maxvalue 

Therefore d< ~ , Conditionally Stable. 

G= [1+2d (1- cosa~x)rl 

IG I < I v >'0. 

~t > 0. Always true 

~x2 > 0. 

d> 0. Unconditionally Stable 
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SECTION VI II 

NUMERICAL ALGORITHMS 

In this section some of the classical differencing schemes will be 
examined. A few will be selected which are representative of the methods 
in use today. Hopefully, an understanding will be developed from studying 

these few cases which will enable the reader to interpret other methods 
with ease. 

The cases to be investigated are ( Reference 31 ) : 

1 . Leapfrog Expl i cit 

2. MacCormack Explicit 

3. Fully Impl icit 

4. Crank-Nicholson Implicit 

Roache (~FD) lists several other methods which should be reviewed. 

1 . EXPLICIT METHODS 

An explicit method is one in which all of the values on the right.hand 

side of the difference equation needed to calculate the advance time level 
n+l . n+l values of U are known. Methods whereln U also appears on the right· 

hand side are called implicit and generally require a matrix inversion to 
calculate a new time level. 

2. MIDPOINT LEAPFROG METHOD 

The leapfrog method is a single step, second order accurate explicit 
method (Reference 36). Since the method is central in time, three time 
levels are involved. The term "leapfrog" is derived from the fact that 

the new values are calculated at each other time level, skipping the time 
1 evel in between. 
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Consider the wave equation: 

n+1 n-I 
Uj -Uj 

2~t 

Recombining 

CTCS 

n n 
U1+ 1- U1_ 1 

+ c 2Llt = 0 

where (7' = cLlt Courant number (ReL38) 
Ax 

The stability may be assessed using the Von Neumann method. 

n "n iax 
Let U = U (t) e , then 

"u n + 1_ "u n-I "n (ia~x -ia~x 
-: -(7'U e -e ) 

" n + f "n - I, " n " n " n - 1 orU =U -i(2C7sina~x)U == aU + U 

.. t 

Since this is a multi ·time level method, an identity relation must be 

. added to determine the amplification factor, i.e. 

Hence I\n+1 
U 

"n 
U 

=G 
I a I 

"n-I where G = I 0 
U 

For the previous one-level method, G was simply a number, and the 

stability criterion was IGI::. 1. 

For the present case where G is a matrix G - AI = 0 
- -
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then, A < 1 is the stability criterion. Another frequently used state
ment ;s that the "spectral radius" of G must be less than unity. 

Hence 

G-At= a-A 
== = 

2' 
or A -a)'-I=O 

I ~ 

=0 
(O-A) 

A= ~(a±';a2+4) 
rnsertinJ a into the equation, Roache shows that A = 1 for cr < 1. This 
indicates:that the leapfrog scheme is marginally-conditionally stable. 

3. MACCORMACK EXPLICIT METHOD (REFERENCE 4) 

An extremely popular method for solving compressible flows has been 
the method of MacCormack (1971) .. It is a two step method which alternately 
uses forward and backward differences (References 39, 40). Although each 
step is first order, the result after the two-step'cycle is second order 
accurate in both time and space. 

Consider the model equation: Ut + C Ux = 0 

Forward 
Predictor (FTFS) 
Step 

Backward 
Corrector (FTBS) 
St'ep 

n+l n n n 
U. 2 - U. + c U. 1 - U· = 0 1 1 1- 1 

Llt LlX 

, 1 1 

U~+I- Uj
n + c U ~+2 - U~~2 

~ t LlX 

n n 
+cUi+I-U j =0 

2LlX 

n+1 n n 
where U. 2: U. (1+0")-0" U. +1 

1 1 I 
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Performing a stability analysis 

I\n+1 I\n I\n+1 ~ . A ] 
2U =U +U 2 l(l-cr)+cre IOuX 

I\n+ 21 1\ n io~x 
andU =U (I+cr-cre ) 

1 I\n+-
eliminating U 2 

",n+1 

G - U 1 1 ( - 'IQ AX)( iQ~X --=-+- I-cr+cre u I+cr-cre ) ",n 2 2 
U 

or G= 1- cr 2 (I-coso~x)- icrsinox 

Stability Condition 

This condition is satisfied provided (J < 1, Therefore, MacCormack's 

method is conditionally stable. 

4. FULLY IMPLICIT (REFERENCE 31) 

The methods previously described are explicit, in that only known 

values at previous time levels are needed to advance the calculation to 
the new time level (n+l). We will now discuss impl icit methods, which 

use new values in the spatial derivatives, thereby requiring the 

simultaneous solution of equations at (n+l) in order to advance the 

calculations. 

Write the model equation 

in finite difference form 

using FTCS but evaluating the advection term at the new time level (n+l). 
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This if the fully lmplicit method. 

n+1 n a- n+1 n+1 
U. =U. --2 {U'+I- U, I) 

I I I 1-

Using the Von Neumann stability analysis 

"n+f I\n 
U (J+ia-sinaAx)= U 

. 1 
Hence G= -I +-. .......:..·--A

Ia's,"a~x 

Since any value of cr will achieve the stability condition, the fully 

implicit method is unconditionally stable. 

5. CRANK NICOLSON H1PLICIT (REFERENCE 41 AND 42) 

A modification of the above implicit method is to use FTCS but 
evaluate the advection term at the average between the (n) and (n+l) 
terms. 

For the model equation this scheme, developed by Crank-Nicholson 

(1947), is the following 

n+1 n n+1 n+ 1 n n 
Uj - Uj (U j -+-1 - Uj _ l ) (Ui+ f - Ui - f ) 

~t, + c 4~x + c 4A~ = 0 

40 



AFWAL-TR-82-3031 

The amplification factor is 

"n+1 1- iO"'sinaLlx 

G = ~ = -._2--:-~_ 
On 1+ iO"'sinaLlx 

2 

For which GG = 1 which is marginally stable. 

41 



· SECTION IX 

SHOCK WAVE STRUCTURE 

Consider a traveling shock wave in a long tube (Reference 8). In 

most aerodynamic calculations a shock wave is treated as a disconti'nuity 
and Rankine-Hugoniot rel~tions are used. However, a sh~ck wave in nature 

has a continuous structure which establishes a rapid transition from one 
state to another. To analyze this situation we shall utilize the unsteady 

NaviBr-Stokes equations in one spatial dimension. 

p 

wtrere V= pu 

pe 

pu 

E= pu2_ 0' 
II 

pue-uO'"II- kTx 

u 2 p 
and e=CvT+2" = H- P 

'l,:'-P+ A ux + 2f.L ux= - P + 4)J. Ux 
3 

2 . 
since A=-3~ and ~ = ~ (T) 

The energy equation can be simplified for the case in which Pr = ~ = 3/4 

In reality Prandtl number for air is 0.72, making this approximation 

quite reasonable. Using this condition the energy equation becomes 

P 4 
pue- UO'II- kTx=pu(e+ p)- 3~ uu x- kTx 

=puH- ~}O Hx - kTx (I~) 
First an analytic solution shall be obtained and then the numerical 

procedure discussed. 
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1. ANALYTIC SOLUTION (REFERENCE 43) 

First transform to eliminate the variation of ~(T) effects. 

Let de-=~ dx 
4~ 

P 
4JL 

Hence 3 pu 

p,e t 

pu 

+ pu2~p-u! =0 

pu H-He ! 

For steady state this equation may be immediately integrated. 

pu= C, 

pu2 +P'-u =c C =c u+P-u 
. ~ I 2' ~ 

,au H-He=C,C3 = C,H-rt 

The last equation can be integrated again. 

C 
H = C + C e lc; 

3 4 

Since for no heat addition H (~ + 00) must be bounded we conclude that 

C4 =- 0, and hence H = C3 = constant = Hl . We wi 11 fi nd it useful to 

express Hl in terms of the acoustic speed. 

y+f 2 
H- 0 - H 

,- 2 ( y- I ) *-

thus 

Therefore p can be eliminated from the momentum equation. 

2 0 2 
P u + P = C ( u + - ) = C C + u~ 

, )"u I 2 Ia 
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. 2 2 ( ) th' t' b . t t' d It' 2. t Slnce a = a u lS equa lon can now e ln egra e. nser lng a ln 0 

the momentum equation and regroup}ng produces the following: 

2 uu ~ 
(1- J:!...)( ~- a) = - .L ----.:! 

u, u, yu C, 

By Integrating once more the distribution of u through a shock wave is 

obtained. 
r+, 13 P, u, dx 

U u -a (I-a)-
(I--)(- -a) = C e 2)" 4fJ-u, u, 5 , 

, The final integration constant Cs is determined by arbitrarily setting 

x = 0 at some reference point. One possibility is to select x = 0 at 
u = a* since it must always occur in the interval of the shock. 

Hence 

Note that the Rankine-Hugoniot condition is recovered in the asymptotic 

1 imit. 

x-- CO; (JL) = , u, , 

x - +OQ (JB-) = a = a *
2 

, 2 u2 
I 

44 
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2. SUMMARY OF FIVE BOUNDARY CONDITIONS 

c, =p,u l 

fJ u2 p. 
C = I I + J = (I +a) Y+ I 
2 PI u, 21" 

C = H = y.+, a2 
3 '2(y-/) *' 

C4 = 0 or H2 = H J ? Hx = 0 atCO 

I-Fa c = a i U (O) = a*; u (O) = a* 
5 {..;a-a)a 

3. Numerical Solutions Returning to the Governing Equation 

we wish to conduct a numerical integration. 

However in order to reduce the amount of programming we shall make 
use of some of the analytic results. Let pU = Cl and H = C3 and hence 

only the momentum equation requires numerical integration. 

{pU)t + {pu 2- O"II)X = 0 

U [Pt + (pu)J + pt; + puu x - (O'I/)x = 0 
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Where 2 4 
G=u+ L -·- fL u - G(u) y.u 3 C

1 
x 

To solve the above equation for u(x) we shall use MacCormack1s two-step 
difference scheme. 

Forward 
Predictor 

Backward 
Corrector 

Care must be exercised in evaluating the derivatives in G. 

2 n n 
o n u - u 

G~ = u ~ + (-L) _ (41-'-) (i i-I) i 
I I QUi 3Ci ~x 

I . I 
2 n+- n+-

n+.i_ n+.l (OJ) (41-'-)( ui+1 2 -Uj 2). 
G. 2 - u. 2 + - - - I 

I I au, 3C j ~x 

4. FIVE BOUNDARY CONDITIONS 

Y+t 2 
2 and 3.H 1= C3 = H2 = 2(,-1) a .. 

4. U I (- xl ) = U I 

5.u(O)=a Arbitrary Origin Reference 
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SECTION X 

ARTIFICIAL VISCOSITY 

Before obtaining a numerical solution one should examine the length 

scales appearing in the Navier-Stokes equations. To accomplish this we 

shall examine the dimensionless independent variables. They are of the 

following form: 

L We first see a time scale of U. This term is defined as a characteristic 

time (tch ) which equals the time required for a particle to traverse the 

computational domain (L). A characteristic time (tch ) is a good measure 

of the time for transient phenomenon to occur. Generally the inviscid 

field requires about 3 tch to attain steady state based upon both shock 
tunnel and numerical experience. 

In space we have a scale length of L which is derived from the boundary 

conditions imposed at the edge of the computational domain. The other 

length scale is v which is proportional to the mean free path. Ul 

~= 1.6211= mean free path ~ 10- 6 ft at sea level 
a 

Since in practical problems these two-scale lengths are orders of magnitude 

apart it is apparent that numerical difficulties should be anticipated. 

A derived intermediate scale ari~ing in solving these problems 

results from a combination of the previous two scales. 

;';:;;-L 
8=.; LA =fi = Boundary Layer Thickness 

u,L 
II. 
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In engineering practice we attempt to honor both Land 8 but disregard A 

as being unimportant. 

Assume 

.1x« 1 
L 

~x<1 
8 

LX,.: »1 
A 

The equations and numerical solving technique are unaware of our 
intentions and regard the small scale lengths as introducing mathematical 

"stiffness" into the problem. Numerical instabilities occur if calcu

lations are attempted with this disparity existing. In computing shock 

waves, for example, oscillations occur (Gibbs phenomena) since the shock 

thickness is far less than the step size used in engineering practice. 

To eliminate this problem an aritifice is required. Since we cannot make 

~X<A and solve any practical problem, let's mUltiply A by a factor (s) to 

make it as large as ~x. 

Let ~x=/3~ 
,..,. 

Therefore /3A= 1.6/31-'- = ~x 
ap 

Let ~~ = s~ which is artificial viscosity added to the equation to 

remove the mathematical difficulty (References 45, 46 and 47). 

This procedure obviously changes the physics of the problem. however, 

and we must exercise care that the additional viscosity effects are no 

greater then the truncation error in the finite difference scheme. If 

this objective can be obtained we have a practical solution to the numerical 

difficulty. Several forms of artificial viscosity shall now be discussed. 
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1, NORMAL STRESS DAMPING (REFERENCE 2) 

In the normal stresses two viscosity terms appear, 

<7'11 = - P+ A 'Y' y..+ 2/-1. ux 

where A= - ~ /-I. 

Rewrite this term A= + ~ {3J.L 

u 

where{3~ I~X = Cell Reynoldls Number 

" 

This scheme has been used successfully by McRae in treating the shock 

wave for a cone at angle-of-attack 

The shear terms, e.g. '12 = ~ (uy + vx)' are unaltered in this approach. 

Since A is only of any consequence in the normal stresses, it improves the 
shock capturing capability without affecting the shear terms. 

2. VON NEUMANN RICHTMYER DAMPING 

The first to use artificial viscosity merely added a term to the Euler 
equation in place of the non-existent Navier-Stokes stress terms, e.g. 

2 I 
pu + P-/-I. ux 

where fJ-1 = pD.X21 ~~ I 

This term is similar to a turbulent Reynolds stress an? is of second order 

accuracy. It also possesses the correct sign to add dissipation to the 

system. 
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3. MACCORMACK'S PRESSURE DAMPING (REFERENCE 4) 

MacCormack rationalized that boundary layers possess zero normal 
pressure gradient and therefore an artificial viscosity term proportional 
to :2~ will only affect shock waves. His additional damping term is 

n 
as fo 11 ows : 

4. UPWIND DIFFERENCING (REFERENCE 31) 

Some differencing schemes possess truncation error terms that behave 

like artificial viscosity. The upwind differencing method has this feature. 

Consider the following model equation: 

Construct a difference scheme that is central in time. central space, for 
the diffusion term but upwind for the convective term. 

n+\ n-\ 
Uj - Uj 

2LSt 

II II ; u < 0 

~1eteologists used this method and derived the title "upwind" for the 

direction bias for the one-sided differences. 

Let's examine the truncation error based upon the analysis of Hirt. 

n± I n 6t2 . 
Let u j = Uj ±.6.t Ut + 2'" Utt + ... fortlme 

n n 6x2 
ui ± 1= u j ±.6.x ux +"2 ~x + ... for space 
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Insert these relationships into the difference equation. 

H U + UU U + U ~x U ; +Upwind 
ence t x =v x x - 2 xx - Downwind 

It is clear than an effective viscosity, v , e 

Wh = [I + I U I ~ x ] ere ve v 2v 

is inadvertently added to the governing differential equation by the finite 

difference process. 

In order to obtain an accurate solution it is clear that IU~~X < 2. 
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SECTION XI 

COORDINATE TRANSFORMATION PROCEDURE 

Very soon in the study of Computational Aerodynamics one encounters 
configurations which cannot be described by a Cartesian Coordinate system. 

Ana1tic orthogonal coordinate systems exist for a few classic cases, i.e., 
cylindrical, elliptical, parabolic, spherical, conical, paraboloid, prolate 
spheroid, oblate spheroid, etc. However, even these cases are certainly 

limited in application. A more general approach is required to analyze 
aircraft components. For example, consider an airfoil of arbitrary shape 
(Reference 48). 

Two possible grid systems m~y be considered: (1) Use a Cartesian 
grid and establish an interpolation scheme near the surface to describe 
the boundary condition (Figure 4) or (2) Generate a body-oriented 
coordinate system and transform the governing equations (Figure 5). The 
former approach retains the original simple form of the governing equations 
but over complicates the boundary conditions. In addition. thin viscous 

layers require clustering of grid points near the surface resulting in 
further difficulties. The later technique maintains simple boundary con

ditions but adds more terms to the ~overning equations. Clustering of 
points near the surface is readily achieved with a body-oriented system, 

however, the task of grid generation is an added burden. 

All factors considered, the body-oriented system is a clear winner. 
This method shall now be discussed. 

1 . BODY-ORIENTED COORDINATES 

Consider an arbitrary body-oriented coordinate system (Reference 13) 

e-=((x,y) 

"'1= "'1 (x,y) 

where "'1= a descri bes the body surface. 
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The governing equation, Ex + Fy = 0, must be transformed into the 
new coordinates. To accomplish this, the chain rule of differentiation 

is used. 

a a a 
ax =e-x a~ +7]x a7] 

a a a 
ay = e-y a~ + 7]y a7] 

The Jacobian of the transformation is 

The transformed governing equation becomes (~/~ + ~yF~) + (llx En + 

lly Fn) = O. 

It is now apparent that the actual functional form (~, ll) of the 

transformation is not required because 

T1x) appear in the governing equation. 
of a numerical transformation in which 

only the derivative metrics (~ . x 
This feature facilitates the use" 
the metrics are computed by finite 

diffferences. One addition operation is required, however, in order to 

maintain a simple procedure. 

Then 

and 

Let's generate the metrics by means of the inverse transformation. 

x=x (e-, 7]) 
y=y(e-,7]) 

~x:: JY,.,.,;7]x:: Jy~ 

~ = - J x ." = J x~ 
'-y '7 ' "'y "" 
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Using the inverse transformation metrics an alternate form for the 
transformed governing equation becomes 

J ( yEt" - X Ft") + J ( - y ~ E + X t" F ) = 0 
"., ",. "., '" ,,,.,, "., 

Dividing by J and manipulating the derivatives produces 

o 0 

- E (y. /- y ) - F (- x /+ x ) = 0 
)Y.ry~!"., )/".,~~"., 

1\ 

F=xF-y E e e 

The transformed equation is now identical in form to the untrans
formed equation, however, additional terms have been added to the flux 
vectors. The main reason for using the inverse transformation is to 
facilitate the use of numerical derivatives. 

Recoil that 

~ :~ 
X ax y= canst. 
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The transformed coordinate lines located in physical space readily 

permit the numerical evaluation of Xs but not sx' since lines of constant 

n have been identified. 

Ax 
x~= A~ 

7]= const. 

y = Ay 
7] A7] ~= const. 

Hence, the inverse transformation metrics are numerically evaluated 

from the predetermined grid and inserted into the governing equations. 

The only restriction on the transformation is that it be one-to-one 

(single-valued) and the Jacobian, not vanish in the computational domain. 
The transformation need not be orthogonal and it is not necessary to 

evaluate the functional form of the transformation (since only the metrics 

are required). Also, one need not transform the velocity components which 
further simplifies the procedure. 

Another advantage of this transformation concept is that equal step 

sizes can be employed in the transformed space which permits the use of 

simple finite difference operators in the numerical procedure. This is 

not possible in the interpolation method originally considered as a candi

da te. 

2. CLUSTERING OF GRID POINTS 

The use of a tr~nsformation permits the contraction of grid points 
in regions of high gradients. Consider a function E(x) which has large 

values for the higher derivatives. 

The gradient E expressed by finite difference is x 

E. + I E. I " 2 1 - 1- uX E- -E x 2Ax xxx 6 
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where L 
.6.x =

N 

N = number of grid points in domain L. 

I f E L (~) nn' th th' . E b ( _ Exxx 6X 
2

) = en e maXlmum error ln x ecomes --6-- max = 
L 

n(n-1) (n-2) 
_ 6N2 

The percentage error is shown below for various n and for N = 5. 
% Error in Ex (N=5) 

n 

2 

4 

6 

11 

16 

% Error 

0 
0 

-4% 
-13.3% 

-60% 
-140% 

Large errors result for high gradients, therefore, one might conclude 

that more than five grid points are required to reduce the error to an 
acceptable level. However, another approach would be to stretch the grid 
in order to achieve smaller gradients in the transformed plane thereby 

reducing the size of the truncation error term. 

Choosing a stretching factor of the form 
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now produces a maximum error in E as follows: x 

=n (!l-1)(!:!.-2) 
m m 

where N= ~ 
~ 

The percentage error for m = 4 and N = 5 is now within reasonable limits. 

n Transformed % Error 

1 -0.87% 

2 -0.5% 

4 0 

6 +0.17% 

8 0 

11 -0.87% 

16 -4% 

3 . SUM~1ARY 

To expedite the numerical solution of flow fields over arbitrary 

configurations the equations are transformed into a body-oriented coor

dinate system. This transformation is accomplished numerically and points 

are clustered in regions of high gradients to minimize truncation errors. 

In addition, equal step size is used in the transformed plane to simplify 

the finite difference operators. Only the independent variables are 

transformed while the dependent variable velocity components remain 

oriented to the original (Cartesian) system. (It is not necessary to 

transform the velocity components unless one desires to eliminate terms 

through an order of magni tude ana 1 ys is) .. 

Also, the transformation need not be orthogonal. The resulting 

transformation addsa few additional terms to the governing equations but 

greatly improves the accuracy of the method by optimum grid positioning. 
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The burden of the method is therefore placed upon the Grid Generation 

procedure which will be discussed next. 

r - ........... 
"-',..... -

Figure 4. Cartesian Coordinates with Interpolation on Boundary 

Figure 5. Transformed Body-Oriented Coordinates 
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SECTION XII 

PARABOLIZED NAVIER-STOKES 

The complete Navier-Stokes equations offer the potential to solve 

any problem in fluid dynamics. However, the procedure is the most costly 

of any prediction method. There is a more efficient solving procedure 

entitled Parabolized Navier-Stokes (PNS) that can be used under some con
ditions (Reference 22). These conditions occur for supersonic flow with 

no streamwise separation (although transverse or cross-flow separation is 

perm iss i b 1 e ) . 

Under this physical situation the elliptic terms in the x-direction 
(U ) can be neglected. No downstream information affects this portion xx 
of the flow. For this situation, a great mathematical simplification 

arises and permits the use of PNS. 

We shall now explore the development of this method. 

Begin with the complete steady Navier-Stokes equations. 

where 
pu 

2 
pu -0'11 

E= puv-'12 

puw-'13 

pue- uOjI-v'12- w'13- ix 
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All the elliptic terms in the x-direction are contained in the E 

vector. 

'II =- P+ >..(~+ Vy +wz } +2fJ-@ 

"2 = fJ- ( uy + c;» 
'13= fJ-{ uz+ ~) 

ix= K@ 

By neglecting these first derivative terms in x, we obtain the PNS 

equations. However, in practice, all viscous terms are dropped in the E 

vector to simplify the solving procedure. This additional simplification 

does not greatly limit the method much more than the original assumption 

of neglecting only the U terms. xx 

, Hence 
pu 

pu2 +p 

E= puv : Inviscid 
puw 
puH 

With this formulation it is possible to march in space (x-direction) 

in a manner similar to marching in time that was previously utilized with 

the time-dependent Navier-Stokes method. PNS, however, requires up to 

two order of magnitude less computer time to solve, thereby justifying 

the approximation. 
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We shall now demonstrate the method by investigating the flow over 

a body of revolution traveling at supersonic speeds. The axi-symmetric 

PNS equations for adiabatic flow follow: 

where 

v 

F= UV-T 

o 
.... 
H= 0 

v~cr 
22 

-0". 
a8/r 

1": =-P+A'V·V+2u.v 22 -'- r 

T =-P+A'V·V+2 /L 'i... a8 . - ,- r 

By using MacCormack's method and marching in x, a new value of the 

E vector at the next station (x + 6X) is obtained. Resolution bf the E 

vector is required in order to obtain the primitive variables needed in 
-

the F and H vectors. 

This operation requires further discussion. 

Let 
u A 

E = pu 2 + P - B 2 
puv 

2 
C 
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Therefore v = Puv = .f. 
pu . A 

The three remaining relationships with three unknowns 

A=pu 

B=pu2+ P 

a;= r: + 12' u
2 

p,U,P 

can be combined to produce a quadratic equation in any of the variables. 

The variable selected for resolution is Mach number, M, a combination of 
all three. 

The positive root is supersonic while the negative sign produces a 
subsonic root. A predicament in this solving scheme arises in that a 

criteria is necessary to select the correct root. However, a more serious 
limitation is encountered in that the subsonic root is unstable. 

Recall that the original assumption for PNS was supersonic, unsepa

rated flow; therefore only the positive sign on the radical is selected. 

M2= ,82-2.8+,8~~4.8 
2 

. 0.4 (9.8 -,8 ) 

2 
where 4.8 <,8 < 9.8 
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Care must be exercised in selecting the first grid point in the 

boundary layer to insure that it remains supersonic. (Note: Alternate 

procedure have been developed to extend the method by setting ~~ = 0 in 

the boundary layer for M < 1 and eliminating the quadratic root). 

Once the Mach number is ascertained the primitive variables can be 

determined. 

u = _-=B~/..;....;A~_ 

(1+ I/YM
2

) 

These values are then updated and the marching procedure continued 

until the final station is attained. 
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SECTION XI I I 

AIR PROPERTIES 

Since we will be working with air, a review of its properties is 

appropriate. In particular, we will require numerical values for the 

thermodynamic properties and transport properties. 

1 . THERMODYNAMIC PROPERTIES 

Air is a gas mixture composed of about SO% nitrogen and 20% oxygen. 

Traces of argon, CO2 and H20 vapor do not appreciably affect the thermo

dynamic properties. A gas mixture can be treated as a pure gas provided 

the properties are evaluated in accordance with the species molecular 

weight. Shown below is a table of the individual properties of the air 

components. 
TABLE 5 

INDIVIDUAL PROPERTIES OF AIR COMPONENTS 

Molecular R. Gas Constant 
Weight Concentration 1 

Element M. C. ft 2/sec2. oR y. 
1 1 1 

N2 28.02 .7809 1774 1.404 

O2 32.00 .2095 1552 1 .401 

Ar 39.94 , .0093 1244 1. 66 

Using these values, the air properties can be determined as follows: 

L M.C.R. 
- f f f 
R=-~~..;. 

L M.C. 
I I 
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For air, the required thermodynamic properties are the following: 

Air, M = 28.966, R = 1716 ft 2/sec2oR, '( = 1.40 

where e= CvT, h= CpT, and p = pRT 

and Cv = ..a., C p= .rB. 
a-I 1-1 

since Cp/Cv = y and C p = R + Cv. 

These therodynamic properties are the needed values to be used in 
solving the Navier-Stokes equations in the region where air behaves as a 
perfect gas. An appreciation for the limits of a perfect gas is required. 

2. REAL GAS EFFECTS 

As the temperature of a gas is lowered, the phase will change from 
gas to liquid. Further decrease will solidify the liquid. The temperature 

values depend upon the pressure level. As the temperature of a diatomic 
gas is increased above standard sea level conditions, vibrational degrees 
of freedom arise decreasing y and accordingly increasing Cv and Cpo 
Since the molecular weight does not change, R remains constant. This 

domain is entitled thermally perfect, calorically imperfect. As temper
ature is further increased, dissociation of the diatomic gas into a 
monatomic gas occurs. Higher temperatures cause ionization. All these 

later features produce departures from the perfect gas law. The following 
is a list of typical temperatures for which the changes occur. 

Solidifies 

Liquefies 

Dissociates 

These temperature values are well beyond the normal limits encountered 
in low-speed flight. 
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However, at hypersonic speeds this is not the case. This can be 

demonstrated by computing the total temperature for Mach number 10. 

In a wind tunnel a typical value of To is 2100 oR. Therefore, 

Hence, liquefication can be encountered in hypersonic wind tunnels and 

indeed must be guarded against to avoid erroneous data. 

At Mach 10 flight speed, T~ = 400 0 R produces a To = 8400 oR, which 

clearly dissociates O
2

, 

To further assist in acqulrlng an appreciation for the various regions 

for which real gas effects are encountered (Reference 49) a map of the 

fl i ght corri dor is presented (Fi gure 7). Note tha t duri ng reentry both 

O2 and N2 dissociation gre encountered. In this range the thermodynamic 

properties are not constant and hence must be replaced by functional 

relationships. 

use 
p=p(h,p) in place of p = P/RT 

e=e(h,p) in place of e= CvT 

T=T(h,p) in place of T= h/Cp 

In the governing equations, hand p are computed and interpolation 

tables used to obtain p, e and T. In addition. the q term must include 

the heat of dissociation to account for recombination heating on the 

surface. The net result, however, is that perfect gas heating is nearly 

equal to real gas heating due to the fact that Lewis number is near unity 

implying that the heat transfer by diffusion is almost the same as by 

conduction. Real gas effects merely redistribute the modes of heat transfer 

without changing the total amount. 
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3. TRANSPORT PROPERTIES 

Three transport properties exist which account for the transport of 
mass, momentum and energy throughout the gas. The relationship fof these 

three modes of transport are as follows: 

aC. 
Mass:m.=pO~ i D=diffusion coefficient(Fickls law) 

I (In 

Momentum: T'= fL- ~~ ; fL = viscosity (Stokes law) 

Energy: i = k ¥n; k= conductivity (Fourier law) 

To solve problems in fluid mechanics numerical values of these three 

transport properties are required. However, in practice one value is 

prescribed (~) while the combinations of others is given (k and D). 

C~rtain combinations of these coefficients occur naturally in the 
governing equations and have been given labels. For example. 

Q(dissipation):2Y....: fLV~L = fLCP(V2) 
Q(conduction) kT IL kT IL k CpT 

fLCp - 2 2 (V2) 
where ~=k= Prandtl Number; M ="'-1 CpT =Macn Number 

Also ~(diffusion) : mj ~h = pD~hCi/L:: pDCp (Ci~h) 
Q(conduction) kTIL kT/L k I( CpT 

where DC 
(Lewis Number)= L = ~ e k 
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Hence, three transport properties may be entrered into the governing 
equations as follows: 

_ _ 8 T 3/2 Ib sec 
J.L-(2.27 x 10 ) T+198.6°R ft2 Sutherland's Law 

J.LCp 
Pr = -k- = .72 

pDCp 
Le= -k- = 1.4 
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SECTION XIV 

BOUNDARY CONDITIONS 

The importance of the boundary conditions in solving partial differential 

equation can hardly be overstated (Reference 50). This is apparent if yo~ 

note that the only difference in formulation between any two vastly different 

flow problems is the location and value of the boundary conditions since 

the same Navier-Stokes equations govern the interior regions for all fluid 

flow problems, 

In this section, various boundary conditions will be explored. First, 

the type of boundary conditions will be classified (References 51, 52 and 

53 ). 

a) Dirichlet, in which the value of the function is specified; u=a. 

b) Neumann, in which the normal gradient of the function is specified. 
U = b 
Y 

c) Mixed (Robbins), which is a combination of the above two types. 

U + bU = c 
Y 

The behavior of the solution depends upon the type of boundary con

ditions applied. 

Next we cons i der the 1 oca ti on of the boundary cond i ti ons. i. e .. ei ther 

on a body surface boundary or at a far field boundary sufficiently removed 

from the body under investigation. The former is normally well defined 

geometrically while the later possesses some arbitrary features which must 

be defined by the computational aerodynamicist. The body and far field 

boundary conditions will now be discussed separately. 

1 . SURFACE BOUNDARY CONDITIONS 

On the surface the velocity and temperature must be prescribed. For 

a viscous fluid, a no slip condition is appropriate with no flow through 

the surface. (Although small amounts of bleed or suction can be considered 

readily). 
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Normally, on the surface either a prescribed wall temperature or 

prescribed temperature gradient is used. 

T(7]=O)=Tw 

or ~~ (7]=0)=0 Adiabatic 

More complex relationships are possible through consideration of the 

heat transfer process. 

Frequently the wall temperature will not be known so that an estimate 

must be made. Consider the heat energy balance within a small surface 

element. 

~cond 

The net heat into the element is obtained through consideration of 

convection, conduction and radiation. This net heat input will increase 
the thermal energy of the element. (Note, under some circumstances. 

additional forms of heat energy must also be considered, i.e., ablation, 

evaporation, sublimation, change of phase, etc.) 
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Heat Balance 

(tconv - ~ cond - ~rad)dA = Cm T dm 
or . . . 4 4 . 
h(Taw-Tw)- Km (Tw-Ti)-ECT(Tw -Tr )= Pm~bCm Tw 

b 

All forms of heat exchange conceptually can be grouped into the 

following form: 

h (Ta-Tw)=PmbCm Tw 
or 

Tw h _ I 
Ta-tw = P bC = T m m 

where T is the time constant for the element to attain equilibrium 

temperature. 

For convection dominated problems 

PmbCm 
r= VC and Ta=Taw 

P p 

For a thin skin steel model in a supersonic tunnel, T is about a 

minute. Therefore, adiabatic wall temperature will be attained in a 

continuous flow tunnel. However, for an impulse tunnel with running 

times in the millisecond range, room temperature is the appropriate value 

for the wa 11 . 

For flight application above M=3 the radiation energy exchange becomes 

important and a "radiation equilibrium temperature" is attained. 

q =q' ast-o 
tconv trad 

h (Taw-tw )=ECT Tw 4 

or Tw= Taw 
I +EO'"Tw3/h 

For this case Tw is less than Taw. 
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Estimates, similar to these, are generally acceptable for the deter

mination of the wall temperature boundary conditi~ns to be used in solving 

the Navier-Stokes equations. Fortunately, the pressure coefficient, skin 

friction and heat transfer coefficients are not extremely sensitive to the 

value of the wall temperature. Listed below are the dimensionless re
lationships for a laminar boundary layer under zero pressure gradient for 

different wall temperature (Reference 54). 

Tw/Taw Cf /..J2Re 2St/~2Re a* - tr e 
1.0 .46960 .46960 2.591 

0.8 " " 2.073 

0.5 " " 1 .555 

0.4 1/ " 1 .036 

0.2 " 1/ 0.518 

0 " " 0 

One additional point must be addressed concerning surface boundary 

conditions. Although no wall boundary conditions on either p or pare 

required for solving 'the differential equations, values for both are 

needed on the surface for the numerical central difference scheme. 

To accomplish this, one of the governing equations evaluated at the 
wall may be utilized. The normal momentum equation is selected for this 

purpose. The resulting condition is called a "compatibility relationship" 

and should not be called a boundary condition (although frequently mis

labeled in the literature). 

o 

p (Vt + ~+VVY)'Y:O +( pY-'x )y:O:O 

or Py: 'x 
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However, since P » , and t
y

» tx a simple compatibility condition 
results, accuarate to order Re- l • for the determination of wall pressure. 

Density is then obtained from the equation of state. 

This completes the description of surface boundary conditions. 

2. FAR FIELD BOUNDARY CONDITIONS 

As stated previously, the specification of the far field boundary 

conditions depends upon whether the flow is 

section is intended to provide some insight 

outer boundary conditions for the different 

subsonic or supersonic. 
into the description of 

flow classes (Reference 

This 
the 
55) . 

To establish this insight, let us first consider the boundary condi

tions for the simple wave equation: 

au+cau=o at ax 
The general solution of this equation is u = u(x-ct) 

In the wave diagram for this flow, signals are propagated at speed c 
dx and therefore boundary condition information is also propagated at dt = c. 

t 

Ut+cUx=O 

O~ ____ ...... 

o x L 
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It is clear that in this case, only one boundary condition on x can 

be applied and must be applied at the upstream end to properly pose the 

problem, i.e., u(o, t); Initial conditions are also required; u (x,o). 

It is also clear that if c < 0 the waves propagate in the opposite 

direction. 

t 

o x L 

Again in this case, qnly one boundary condition in x is required but 

must be applied at the downstream end, i.e., u (L, t). 

Next consider a two equation system, 

Ut + cUx= 0 

For this system, it is obvious that the boundary condition on u be 

placed at x=O, while the boundary condition on v should be placed at 

x = L. A set of initial conditions must also be provided for both u and 
v. In this form u and v are called the characteristic variables and 

propagated at speed c and -a respectively. 

If we could find the charac~eristic variables for the fluid dynamic 

equations, this would provide necessary information to help describe the 

boundary conditions. 

76 



" 

AFt~AL-TR-82-3031 

To accomplish this, let's consider the one-dimensional Euler equations. 

For most problems the viscous effects are minor near the outer boundary 

and therefore, the inviscid equations are appropriate. 

pe t puH 
x 

0 2 u2 
where H=e+ Pip = - +-y-/ 2 

These equations can be rearranged into the following form: 

D7r + u =0 
-- x Ot 

Ou + 02
71'. =0 

Ot x 

o (7T-R)=O 
Of 

where 7T = lin p 
y 

R= In p 

The equations are exact but non-linear. To obtain the characteristic 

variables we must assume small perturbations and linearize the set. Again. 

near the far field boundary this assumption does not lead to a serious 

res tri cti on. 

Now let 

r= U -7Tol 

s=7T-R (entropy) 
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Therefore, the inverse relationship are the following: 

<1-- r 
7T=-

2°1 

R=- S +7T 

<f+r 
u=_ 

2 

In the new variables, the three linearized equations become 

~t + ( U 1 + a 1 ) ~ X = 0 

rt+(ul- °1)rx=O 

S t + ( u I) Sx = 0 

The characteristic variables are then q. rand s which propagate 

at speeds ul + al , ul - al and ul respectively. 

It is also apparent that q and s will always have positive propagation 

speed, (u l > 0 conventionally defined in freestream direction) and therefore 

must be prescribed at the upstream boundary. 

The variable r possesses either positive or negative propagation 

speed depending upon whether the flow is supersonic or subsonic. respectively. 

Therefore, r is prescribed at the upstream boundary if ~ > 1 and at a 
the downstream boundary if ~ < 1. 

These three boundary conditions are appropriate for one-dimensional 

unsteady flow and no additional ones are needed or permitted. The numerical 

system generally needs additional information on the boundaries due to the 

manner in which the finite difference operators are constructed. In this 

case "compatibility conditions" are used to resolve this predicament and 

should not be confused with va·lid. boundary conditions. The "compatibility 

conditions" add no new information but merely redescribe the available 

information, e.g., insuring that the governing equations are satisfied at 

the boundary. For the one-dimensional Euler equations, we w·ill merely 
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reuse the characteristic equations at the boundary to resolve the undefined 

variables. Below is a summary of the appropriate boundary conditions for 

either supersonic or subsonic flow. 

3. SUMMARY ONE-DIMENSIONAL FLOW 

Far Field Boundary Conditions 

Subsonic 

Supersonic 

x=O 
I 

~~~I 

r- r - I 

5=51 

The following figures show the 

x = L 2 
[~ +(u+a)q ] = 0 

t +x 2 

r= r 
2 

x., = L 
'" 

[~t+(U +a)~xJ2=0 

[rt+(u-a)rx] =0 
2 

[5 t+(U)5X] =0 
2 

implementation of these boundary 

conditions for the Navier-Stokes equations for Moo = 0.5 uniform flow 

s ta te. 

Initially a square wave is inserted into the middle of the flow field 

and Figures 8 and 9 show the propagation of the characteristic variables 

(q, r,s) at different time levels. These are the correct boundary con

ditions in this case and no reflections ,at the boundary occur. In Figure 10 

a case is displayed for the inappropriate boundary conditions (but commonly 

employed) of p , U ,P given upstream and p " U , P downstream. Note in 
00 00 00 x x x 
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this case that waves continue to reflect from the boundaries resulting in 

large errors. 

4. BRANCH CUT BOUNDARY CONDITIONS 

Frequently within the computational domain a branch cut is inserted 
which joins the inner and outer boundaries dividing the flow field into 

separate sections. For example, for symmetrical configurations a branch 

cut is located on the plane of symmetry which permits one to solve only 

one-half of the problem, thereby saving one-half of the computer resources. 

Along these branch cuts boundary conditions must be applied. Two types 

occur, i.e., symmetric and periodic. 

5. SY~1METRY PLANE 

For this situation, no flow is permitted through the plane and all 

gradients normal to the plane must vanish 

v=O and aU =0 
an 

6. PERIODIC CONDITIONS 

For the case of an arbitrary artificial boundary located in the field, 

for example, encountered in a cascade of turbine blades, all properties 

must be continued across the cut. Due to the periodic nature of this 

situation the following boundary condition is appr9priate 

Where stations 1 and N in the transformed plane are geometrically 

coincident stations in the physical plane representing the multivalued 
features of the configuration. 

7. CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS 

Non-linear partial differential equations can be classified according 

to the type of subsidiary condition that must be imposed to give a well-posed 

problem. Consider a non-linear, second order quasi-linear partial differential 

equation. 
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2 2 2' a u, a U 0 U "'" ( ) A 2 + 28 IT + C 2= '*' u, uX,UY,x,Y 
ax x y oy 

where A,S,C = functions of x, y only 

Also assumed valid in the x,y plane are the total derivative definitions, 

a a· 
dux=a; (ux)dx+ oy (ux)dy 

dUY=a~ (uy)dx+ :y (uy)dy 

This constitutes three equations for the determination of u U and u xx xy yy 

A 

Determinant= D::. dx 

o 

28 

dy 

dx 

C 

o 
dy 

Two families of characteristics (real or complex conjugates) curves exist 

on which 0=0. This relation is known as the equation of characteristics. 

Three classes of equations have been identified dependent upon the con

dition of the radical (Reference 5 

1. Elliptic 82 - AC < 0 

The characteristics are complex conjugates 

2. 
2 ' 

Parabolic B - AC = 0 

Only one real family of characteristics exist. 
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3. Hyperbolic 82 - AC > 0 

Characteristic are real 

Examples of the three classes are as follows: 

1. Laplace Equation for two-dimensional flo~v. 

A=I 

8=0 8~AC=-I< 0 Elliptical 

dy 
C= I dx = ± i 

2. Heat conduction in thermodynamics 

2 
aT a T --a-=O at 2 ax 

A=O 

8=0 8
2
-AC=0 Parabolic 

ax 
C= -a at =0 

3. Vibrating string in mechanics. 

2 2 a Y 2 a y 
- -a - =0 
at2 ax2 

A=I 
2 2 

8=0 8 -AC=a > 0 Hyperbolic 

C=-a 2, dx = + a 
dt -
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The description of the outer boundary conditions for flow fields is quite 

different depending upon the classification of the type of partial 

differential equations. 
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SECTION XV 

GRID GENERATION PROCEDURE 

An automated procedure is needed to generate a body-oriented 

coordinate system for arbitrary geometries. Three types shall be dis

cussed, i.e., algebraic, elliptic and hyperbolic; which are typical of 

the types presently in use. This is an area, however, where improvements 

are required in order to upgrade the overall efficiency of computational 

aerodynamics. 

1 . ALGEBRAIC METHOD 

The homotropy method of R. Smith (Reference 55) is an example of an 

algebraic method. In this approach, geometric-constructs are used to 

define a grid without resort to differential equations. First, define 
the body contour with grid points located at constant increments of arc 

length (Figure 11). Label this curve n=O. Next, construct an outer 

boundary with the same number of grid points as on the body and also at 

constant increments of arc length. Label this curve n=N. These two 

curves need not be of equal arc length but they must possess the same 

number of grid points. Now connect the first point of the n=O curve 

with a straight line to the first point of the n=N curve. Next, 

sequentially connect all the points between the two curves with straight 

lines. Label these straight lines t;, = 0,1,2 ... M in numerical sequence. 

Now divide all t;, lines into N steps of similar proportion. Any proportion 

is feasible although a systematic regular variation produces the best 

results. (This maintains better behavior of the higher derivatives of 

the metrics). Now connect these points to form the family of '1 = constant 

curves. From this constructed network a one-to-one relationship of 

x(t;"n) and y(t;"n) can be determined for which the metrics can be computed 

numerically. An example of this grid is shown in Figure 12. 
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2. ELLIPTIC METHOD 

The pioneering method of J. Thompson (Reference 57) in the use of a 
general transformation procedure was responsible for early successes in 
the field. This procedure (Reference 46) also involves establishing an 

inner body contour (n=N). On these contours a grouping of (x,y) points 

is selected to define a closed contour; C, (x,y) on the inner and 
C2(x,y) on the outer contour (Figure 13) 

A simple mapping is desired to determine the interior points with 
constraints that a minimum or maximum not occur in the interior (to 
maintain sing1e-va1uedness) and also that coordinate lines of the same 
family not intersect. The elliptic Laplace equation contains these 
desired features. 

2 'V 7]=0="" +." "xx "yy 

This equation with boundary conditions on Cl and C2 completely 

define the problem. 

A second family is also generated by the Laplacian with periodic 

boundary conditions at an arbitrary branch cut. 

2 
'V ~=O 

To solve these equations we resort to the inverse transformation 
and exchange dependent and independent variables. It will be seen that 

numerical solution in the transformed plane is more convenient. 

The chain rule states that 

a a a 
ax = ~x a~ +""'x a..,., 

a a L 
ay=~ya~+""'ya..,., 
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where 

-I 
~ =- J x y 'T'J 

-I .." = J x y ~ 

Applying the inverse transformation to the Laplacian equation pro
duces the following: 

and 

where 

2 2 
J 'i1 ~=(y y ~-y y +x x ~-x~x ) 

.." ..,,"e """"7] ..".." c.. "e""7] 

a = x2 + y2 
.." 7] 

/3= x~ x.." +y~ y.." 

2 2 
y= x~ +y~ 
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Combining these relationships produces the transformed Laplacian for x 

and y. 

222 
-J (xe'V !;+x'T'J'V 'T'J)=0=axe,-2/3x~'T'J +'1x'T'J7'] 

222 
-J (Y!.'V ~ + Y7'] 'V 'T'J) =0= ay!, -2/3y,'T'J +'1 Y7']7'] 

'. 

ThBse two sets of coup'led elliptic partial differential equations require 
numerical solution. Two methods have been used, i.e. SOR (successive-over
relation) and ADI (alternating direction implicit method). 

3. SOR SOLVER 

The method of successive-over-relaxation (SOR) was developed by Young 
(1954). It is an iteration method to r~lax the equation from some initial 
guess by driving the error residuals to zero at each point. The term 

"over-relaxing" implies applying a larger correction than the standard 
relaxation calculation produces in order to accelerate convergence. 

To demonstrate the procedure consfder the original Laplace equation. 

In finite differences it becomes 

c;j +1 ,j - 2!j,j +ej-I,j --------+ 
e· .+ 1-2 , .. +e· '-1' 

1 ,J , ,J I,j = 0 

.6. X 
2 

If ~x = ~y for simplicity, then at any iteration cycle the residual 

becomes 

r .. =[e·+ 1 ·+c;·_1 .+c;. '+I+e· '-1-4c;. ,J IJ I ,J I,J I,j I,j I,] 
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These residuals are calculated at each point in the field. Corrections 

are then applied in a systematic fashion for the next iteration. Various 

methods have been developed to improve convergence. SOR uses the following: 

n+1 n w r~ . 
~ .. =~. '+-4 I,) 

I, J I,) 

where n = iteration level 

IS w S 2= relaxation factor 

The method is continued until the residuals are driven to sufficiently 

small valves. 

4. ADI SOLVER 

The alternating direction implicit method (ADI) was introduced by 

Peaceman and Rachford (1955) (Reference 31). The method sp1 its the equations 

into two one-dimensional parts and uses the efficient tridiagonal solver 

in ~ach direction alternatively (References 58 and 59). First. sweep in 

one direction while holding the derivatives constant in the other and 

then reverse the procedure to complete the cycle. 

Step 1 

Step 2 

2 
~n+1/2_ ~n+1/2 ~n+1/2 = _ A 2 ('u n 
"+1' 2". +" I' uX 2 ) I ,J I,) 1- ,j ay 

2 
n+1 n+1 n+1 2 a ~ n+1/2 

~. '+1- 2~, . +~" 1 = -~y (-2) 
I, J I, J I,) -:- ax 

Again, the alternative sweeps are continued until convergence is achieved. 

5. HYPERBOLIC METHOD 

In external aerodynamics, the location of the outer boundary need 

not be specified; it only need be far removed from the inner boundary. 

Hyperbolic methods (Reference 5) may be used in this case as developed 

by J. Steger (1980). We seek a grid composed of constant ~ and ~ lines 

given initial data along n = 0 on the body contour. A set of partial 
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differential equations are sought to generate a smoothly varying mesh 

such that grid lines of the same family do not intersect or coalese. 

These equations may be o~tained from two conditions, i.e. an orthogonality 

condition and a geometric co~straint .. 

Cramer's Rule 

(Cauchy-Riemann) 
Orthogonality Condition 

= Area Constraint 

may be used to solve for x and y -
n n 

Ye 
0 

0 

-JYe J Xe 
x = :: 

." x2 + 2 xe Ye e Ye- -Ye xe 

These equations are hyperbolic and can be marched in the n direction. 

The advantages of the method is that it is fast. orthogonal, auto

mated and clustering can be controlled by varying J. It ~an only be used. 

however, when the outer boundary need not be specified (Figure 14). 
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Fi gure 11. Surface for Spi ke-nosed Body 

e-=o 

Figure 12. Flow Field r1esh for Spike-nosed Body 
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Figure 13. 

~ 

~.~:~:~::::+:::::~::::~;:::~::::~:::::~::::~::::~::::~:::::~::::~::::~::;:~.O 
~. 0 x, y SPECIFIED ;mu 

~L 
c 

Sketch of Physical and Computational Plane 
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GRID DETAIL NEAR BODY 

Y 

GRID DETAIL NEAR LfAOlNG EDGE 

Y 

Figure 14. Viscous Grid Generated about Highly Cambered Airfoil 
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SECTION XV 

FLUID DYNAMIC STABILITY 

In a previous section we analyzed the stability of the numerical 

method. Criteria were established to insure that a stable algorithm was 

utilized in solving the fluid dynamic equations. The physical flows 

however can also exhibit an instability due to natural causes. It is the 

purpose of this section to identify the situation under which real 

instabilities can exist in order to help discern the difference from an 

unphysical numerical ,instability. 

To demonstrate the procedure a common fluid dynamic instability will 

be investigated entitled the "Rayleigh Instability" (References 26 and 60). 

Examine the incompressible, inviscid (Euler) equations. 

Ux+Vy=O 

Ut+UU +VU = - P /p x y x 

Vt +UVx +VVy=- )/p 

These last two equations may be combined to eliminate pressure by 
introducing vorticity. 

where 

1 . PARALLEL FLOW 

D~=O 

Dt 
NOTE: w 'f 0 
Rota ti ona 1 flow is cons i dered here. 

w::.\lxV=(V -U)k - -- x y-

Assume that the flow can be represented as a disturbance from a 

steady-state parallel shear flow as follows: 

U= O(y) +U/(X~y,t) 

V=O+V/(x,y,t) 
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Hence 
w= Vx - Uy~ (V'x - U'y)- Oy == w'- Uy 

The governing equa ti ons become 

'V ' , ·~=u x+Vy=O 

Ow - - , 1ft' = wt + Uw~ - Uyy V +(H.O.T. )=0 

The boundary conditions are that U'" and VA vanish at ± 00 

The governing equations are linear and possess the following solution: 

where 

Therefore 

1\ 

u'= U(y) eia(x-ct) 

V'=4» (y)eia (x - ct) 

U,cp and c are complex 

a = real (wave number) 

" iaU+cpy=O 

WI = (i acp - uy)e ia (x-ct) 

(O-CHiaOy+a2<b)+Uyy cp=O 

Eliminating U produces the Rayleigh Equation. 

with boundary condition 

cp (± CO) =0 
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Given U and a these boundary conditions can only be achieved for specific 

values of C = Cr + ~Cl. This eigenvalue equation was first studied by 

Rayleigh in 1880. He derived a simple criterion for the condition under

which the flow was unstable, i.e. Cl > 0 

2. CONDITION FOR INSTABILITY 

Multiply the Rayleigh- equation by the conjugate of ¢ (denoted by 
¢*) and integrate over the entire domain. 

co -II 

f [rpll rp*- a 2 cpcf/"- _U CPCP*]dY:O 
-CO U-C 

r1anipulating the terms to obtain the real and imaginary parts produce the 
fo 11 owing. 

Since the first term vanishes due to boundary conditions 

and the second and third terms are real, only the last term contains any 
imaginary part. 

Hence 
. CO 0" <p cp * 
I Cj f _ 2 2 dy: Q 

-co (U-Cr) +C. 
I 

This relationship can be satisfied in two ways, i.e. either a = 0 or 

U" = 0 somewhere. The later is the essential condition for an instabili'ty. 
This implies that the velocity profile exhibits an inflection point. This 

deduction is entitled Rayleigh's Second Theorem. 
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By inserting a value for "IT ::: U(y) into the Rayleigh equation, eigen

values for C ::: C(~) can be determined. This was accomplished by Verma, 

Hankey and Scherr (Reference 61) for the series of separated boundary 

layer profiles obtained from the Lower Branch solution of the Falkner-Skan 
equations. A plot of these results indicate that all the velocity profiles 

with inflection points are unstable (as indicated by Rayleigh's second 

theorem), however, only for a small range of frequency ~8::: ~~ In 

addition, large values of Ci are evident indicating a severe instability 
will occur. 
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SECTION XVII 

TURBULENCE MODELS 

Although turbulence is a se)f-excited oscillation and predictable 
using the Navier-Stokes equations, the scale of the smallest eddy would 

require extremely small grid sizes, thereby rendering the computation 

impractical. As a consequence, turbulence is treated as a fluid property 
and empirically added to the equations. In this section we will develop 
this concept. 

Beginning with the two-dimensional, unsteady, incompressible Navier
Stokes equations we shall derive the Reynolds-averaged equations (Reference 
26) : 

Ut+E +F =0 x y 

0 u 

U= u . E= 2 , 
U -OJ'lp 

v uv-,Ip 

v 

j F:: uv-,Ip 

2 
v -a'22lp 

These variables are considered to be fluctuating in time about a 
well defined mean. 

where 

and 

u= U (x,y) +u' (x,y,t) 

v = v (x, y ) + V I (x ,y ,t) 

p=p(x,y) + p'(x,Y,t) 

I t+P 
iJ = -1 udt p t 

Hp 
~. u'dt=O 
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where the period over which the average is accomplished is 1arge compared 

to the period for the lowest frequency component of concern. 

~« f mi n (- 10 Hz for example) 

Integrating and determining the mean produces the following: 

The linear terms (u, v, p, T .• , 0 .. ), merely produce the mean values. 
1 J 11 

The non-linear terms produce additional terms. 

I t+P 2 I t+P -2 - I ,2 -2 ~ 
P~ u dt=p~ (u +2uu +u )dt=u + u 

similarly 

I f t+P 2 -2--:2 P t 'I dt='I +'1 

I t+P -
p f u 'Idt = uv + u' 'I I 

Therefore 
o 
-11= u 

v 

u 

,..2 ~ -
E=' u + u -Ijllip i F= 

--- I I -
U'I+U v-Tip 

'I 

-- I I -
U'I+U 'I -Ijlp 
-2 ~ -
'I + II - 1j221p 

The additional terms all appear next to one of the stress terms. These 

new terms are entitled "apparent stresses" or Reynolds stresses, It is 

therefore convenient to redefine these stresses for turbulent flow to 

make the equations identical in form to the laminar equations, 

101 



'. 

AFHAl- TR-82-303l 

By analogy with the description of viscous stresses created by the 

molecular viscosity, we can define a turbulent (or eddy) viscosity as 
fo 11 ows : 

.." ---p~v ==E I2(uy+vx) 

12 - -
- p u == ~ II (- 213 V· Yo. + 2 u x) 

_p-;2==~ (-2/3V·v +2v:y) 
22 -

It can be shown that E is always positive defined in this manner to 
prevent violation of the second law of thermodynamics. Since insufficient 

empirical information is available to evaluate these different eddy 

viscosity coefficients they are equated to each other. The largest term 

of engineering importance is E'2 Uy and requires the greatest attention. 
The remaining terms generally contribute little and need not be evaluated 

accurately. 

Therefore 

The magnitude of the apparent stresses overwhelms the molecular 

viscosity terms (except on the surface) since 6 8 
~,.,. 100 to 1000 for 10 < Re < 10 

Therefore, the Reynolds-averaged equations are obtained simply by 

replacing ~ by E in all stress terms. 

For compressible flow we include the density fluctuations and the 

energy equation, i.e., p=p+pl 

However, it can be shown that the p~ variation produces little change 

in the equations up to M=5. This is due in part to the fact that the U~ 

disturbance is still subsonic up to M" 5. In the energy equation the 

thermal conductivity is replaced by the turbulent conductivity. 

K=K t 
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which is evaluated by means of the eddy viscosity, &, and t~rbulent 

Prandtl number. 

P- = }LK
CP 

= 0.72 
rlam 

P. _ECp,.... 
r turb- Kt = 1.0 

Therefore, the compressible, turbulent Reynolds-averaged equations are 

identical to the compressible laminar Navier-Stokes equations with new 

values for the transport properties. 

1 . EVALUATION OF EDDY VISCOSITY 

Thus, there is no difference between calculating laminar or turbulent 
flow except for the calculation of s. In this section, we will examine 

simple turbulence models (Reference 62). Although complex relationships 

involving a system of partial differential equations with 27 unknown 

coefficient have been derived to evaluate the Reynolds-stresses, they have 

not produced as originally advertised. The present method in vogue today 
i 

is to use simple algebraic models and adjust the constants for the special 
cases under consideration. Hopefully, a pattern I'Iill evolve as more 

experimental data and numerical comparisons are produced. 

2. BOUSSINESQ MODEL 

By forming a dimensionless turbulent, Reynold's number for turbulent 

boundary layers a correlation was determined. 

3. CLAUSER LAW OF THE WAKE 

It was later found that using the incompressible displacement thick
* ness, 8 i , for the length scale, the outer 80% wake-like region of com-

pressible turbulent boundary layers could be correlated. 
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where K2= (60r l =',0'68 

*. fa:> U and 8i = ( ,- - ) dy 
o Ue 

4, VON-KARMAN LAW OF THE WALL 

In the inner 20% g diminishes from the above value due to the 
presence of the wa 11 , 

Experiments indicated a logarithmic velocity variation near the 

wall from which the eddy viscosity could be deduced, 

21 du I E'=p(K,y) dY whereK,=OA 

The shear stress is nearly constant in the vicinity of the wall for 

zero longitudinal pressure gradient (flat plate), 

~I = :~I =0 
o 0 

, du 
Therefor-e r = r w = E' dy 

or T~ = (K y d u ) 2 == U -'If. 
2 

p I dy 

Integrating this expression reaffirms the logarithmic velocity 

profile variation, 

U, yu* 
-=-In- +c u* K, 11 I 

Experiments show that C=5 for smooth flat plates. 
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5. VMl DrHEST DAMPING FACTOR 

Refined measurements near the wall identified the existence of a 

laminar sublayer. Van Driest developed an expression to join the laminar 

region to the law of the wall region. 

The following damping factor, D, was inserted into the length scale. 

-yU* 
VA 

O=I-e 

where A=26 

The inner value for the eddy viscosity becomes the following: 

E. =p(K YO)2jdul 
Inner I dy 

6. CEBECI-SMITH MODEL 

A combination of the above relations is called the Cebesci-Smith 

~1odel. A two-layer turbulence model is used for the inner and outer 

eddy viscosity. Both are programmed and computed separately, however, 

the lesser value of the two is used in each region. 

7. BALDWIN-LOMAX MODEL 

Since the two-layer model is somewhat awkward in joining two separate 
functions, a unified method is preferred. In addition, relating the 

turbulence to vorticity is regarded as fundamental by some investigators. 

The Baldwin-Lomax model accomplishes these features. 

8. FAR WAKE MODEL 

2 
E=p (0 I) I w I 

where 1= .088 tan h ( .. ~ll8) 

For far wakes the form of the law of the wake is used. however. the 

coefficient increases by a factor of 4. 
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. *' 
Ewake= .064pUe oi 

Empirical correlations ar~ used to join E in the various regions 

of the flowfield. 
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SECTI ON XVII I 

SU~1~1ARY 

" 

Included herein is an introduction to Computational Aerodynamics 

in which the major topics are addressed. The purpose of this report 

is to provide a foundation for those just entering the field. It is 

intended that additional sections be added in the future as further 

developments evolve in the subject area. 
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