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SIGNIFICANCE AND EXPLANATION

We present an analysis of a one-dimensional model of single-junction
semiconductor devices (pn-junctions and certain resistors) when an external
voltage is applied to the contacts. The model has the form of a system of six
highly nonlinear first order ordinary differential equations subject to
boundary conditions at the contacts of the device. The system is singularly
perturbed (the derivatives of some components are multiplied by a small
constant, the so called singular perturbation parameter). The dependent
variables are the electrostatic potential, the hole and electron densities and
the hole and electron current densities. A region of fast variation in the
electrostatic potential and in the carrier distributions occurs due to the
sinqular perturbation character of the problem. This region is in the
interior of the device (internal layer) and represents the junction between
differently doped areas. We derive formal asymptotic expansions of solutions
as the singular perturbation parameter tends to zero and we prove that such an
expansion 'represents' a solution. We also investigate the dependence of the

total current on the externally applied voltage (voltage-current
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ABSTRACT

~ut

In this paper we present an analysis of the fundamental one-dimensional
semiconductor equations describing potential, carrier, and current density
distributions in single-junction semiconductor devices when an external
voltage is applied to the contacts. We reformulate the model equations by
appropriate scaling as a singularly perturbed two point boundary value problem
for a system of nonlinear ordinary differential equations. The right-hand
side of the system has a jump discontinuity with respect to the independent
variable (space-coordinate) representing the junction between differently
doped sides of the device. The solution components are assumed to be
continuous across this junction. -
[\

We give an existence proof for the reduced problem (the singular
perturbation parameter is set to zero). The discontinuity of the right-hand
side of the system produces a discontinuity in the reduced potential and
reduced carrier distributions. This creates an internal layer in the
corresponding solution components of the singularly perturbed problem. The
current distributions have no internal layer. We also derive the (internal)
layer equations and give an existence proof. No boundary layers occur.

We show that formal expansions actually represent (asymptotically)
solutions of the singularly perturbed problem if the applied voltage is
sufficiently small, and we investigate the dependence of the total current on
the applied voltage. Numerical computations are reported.

AMS (MOS) Subject Classifications: 34C11, 34D15, 34E15

Key Words: semiconductor devices, singularly perturbed ordinary differential
equations, asymptotic expansions, internal layers.
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AN ASYMPTOTIC ANALYSIS OF SINGLE-JUNCTION

| SR

SEMICONDUCTOR DEVICES
. , . b,
Peter A. Markowich , C. A. Ringhofer , -
enw aw K
E. Langer and S. Selberherr -;:
1. Introduction Lj
N
=

In this paper we present an analysis of a class of systems of ordinary differential

o) equations, subject to boundary conditions, modelling pn-junction devices. The physical
situation is as follows. A semiconductor (for example Silicon) is doped with

acceptor atoms (negative ions) in the left side, with donor atoms (positive ions) in the

E_' right hand side and a bias U = U, = Up is applied to the contacts:

}R

=

T

.-

E anode contact | F - side n - side || cathode contact
L-: '

& U, : Applied U : Applied

L} anode potential + > Cathode potential
-2 0 2 L z

vy

The device is assumed to have characteristic length 28(™ 5 x 10-3cm) and the junction is

at z = 7% €@ (-2,8) (the term junction refers to the boundary of the n and p regions as
well as to the whole device). The device is forward biased for U > 0 and reverse biased

for U < 0. The physics of pn-junction is explained in Sze (1969), Ashcrof+ and

(1976) and R. A. Smith (1978).

M

* .:-%

Institut fuer Angewandte und Numerische Mathematik, Technische Universitdt Wien, A=-1040 o

WIEN, AUSTRIA. N

'-,,' " Ry

FP Mathematics Research Center, University of Wisconsin-Madison, Madison, WI 53705, ~i

o, EX 2] \.:‘

P. Institut fuer Allgemeine Elektrotechnik, Technische Universitidt Wien, A-1040 WIEN, 'fﬁ

S AUSTRIA. oo

- o]

E! Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is

. hased upon work supported by the Natinnal Science Foundation under Grant No. MC§-7927062, !~

.. Hod. 2. 3
& The second author was also supported by the Austrian 'Forschungsfd8rderungsfond'. R




-'r-'

L& It
S
e latals

W AW EVL,TTT e

R

The equations describing the electrostatic potential, the carrier densities and the

current densities within the device (in the static, one-dimensional case) are:

(a) "

(b) n'

(1.1) (¢) p*
(a) J°

n

(e) J
P

= g (n-p-(N;(z) - N;(z))) Poisson's equation

-2 ny' + ;ﬁ— Jn electron current relation

D
n n
v 1
- B V' - —2J hole current relation
Dp qu P

- qR(n,p,Jn,Jp) continuity equation for electrons

qR(n,p,Jn,Jp) continuity equation for holes

for z € [-2,2) ("'" denotes differentiation with respect to z) subject to the boundary

conditions

(a)

(b)
(1.2)

(c)

(d)

(See Van Rooshroeck (1950).)
The dependent variables

L4

‘,l

n
i
vi-L) UTtn p(-1) + UA (anode)

+ U (cathode)

. n(1)
v(e) = utn B :

i

n(it)plte) = ni

+ -
n($L) - p(L) = ND(tl) - NA(tl) .
{with units) in (1.1), (1.2) are

: electrostatic potential (V)

electrostatic field (ch-1)

.

: electron density (cm—z)

hole density (cm-3)

: electron current density (A/cmz)

: hole current density (A/cmz) .

- +
All parameters in (1.1), (1.2) (except NA(z), ND(z)) and the temperature T are assumed
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tn be constant. Table 1 gives the physical meaning and approximate numerical values of

}

N
.

these parameters at T ~ 300K (room temperature) for silicon.

.

Table 1: Parameters for Silicon at T & 300K

'
aflit.ta

Parameter Physical Meaning Numerical Value . :
Y elementary charge 10719 . :
c permittivity constant 10" "2as /vem -
v ] electron mobility 103em? Vs 4;

Ty
T
S
L]

L

u hole mobility 103em? s

s

o

- D, electron diffusion constant 25 cmz/s S
ey
D, hole diffusion constant 25 cm?/s
ng intrinsic number 10"0cm™3 o
D D . [
P S - =
U, = = thermal voltage 0.025v ]
T ] ¥
n P K
.-'A'ﬂ
N; is the density of electrically active acceptor atoms and N; is the density of
- -
electrically active donor atoms and -
+ - -3 -]
(1.3) Cc(z) = ND(z) - N_(2) {em 7) L
A ey

is called doping (or impurity) profile. For the pn-junction C(z) is negative for
z e [=%,2) (p-side) and positive for z € (2,2] (n=-side) and is assumed to have a jump- : .]
discontinuity at z = Z (abrupt junction). We also investigate the less important and

much simpler case C(z) > 0 in [(-L,8) (but still with a jump-discontinuity at z = 2).

These devices are called n'n- or nn"-junctions (depending on whether

Clzy) > Clz,) or C(z,) < C(z,) for all z, e [-¢,Xx], z, e (X,2]).
The analysis of p+p and pp+ junctions (c{z) < 0 on [-%,2]) is analngous to the R
analysis of n*n and nn* junctions. Only n and p, J, and Jp have to be e

interchanged and § has tn be substituted hy =y,

r. The scalar function R € C( [0,-')2 x R?') in (1.1)(e) is called recombination term, it ._‘
,L is the rate at which clectron-hole carrier pairs are generated (R < 0) or recombine -
- ]
¥

s -

g
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(vanish) (R > 0), R(n,p,0,0) = 0 for n, p such that p = ni holds (equilibrium

condition).

The Shockley-Read-Hall (SRH) recombination term

np = n2
3 -3 -1
(cm "8 )
tp(n+ni) + tn(p+n1)

(1.4) R = R (n,p) =

describing thermal recombination, where tn,tp(~ 10-69) are the electron and hole
lifetimes, is widely used. Different ways of modelling R (which are necessary for very
large |U|) are given in Langer, Selberherr and Mader (1981) and Schiitz, Selberherr and
PBtzl (1982).

The bhoundary conditions (1.2)(c) express that the contacts z = if are in thermal
equilibrium and (1.2)(d) represents vanishing space charge at the contacts.

We only admit solutions of (1.1), (1.2) which fulfill

1
(1.5)(a) v,n,p,an,ap ec ([-2,L])
(1.5)(b) vie clit-2,20, v e c'iz,an
(1.6) n>0,p>» 0 on [=£,2) .

(1.5) comes from the jump-discontinuity of C(z) (V" cannot be continuous if n, p are
continuous), the equation (1.1)(a) has to be fulfilled for the right hand limit and for
the left hand limit of V" at 2z = 2Z. (1.6) has to hold on physical grounds since n, p
are densitites.

In this paper we scale (1.1), (1.2) such that we obtain a singular pottuibation
problem. The perturbation parameter (called A in the sequel) is egqual to 2 where

2
A = (———'-—JL—--) is the minimal Debeye length.

We present an asymptotic analysis of (1.1), (1.2) (for A small, which corresponds to

large dopina |C|). The discontinuity of C(z) at 2z = 2 produces an (internal) layer in

1

the fast components V¥,¥',n,p. J Jp are the slow components (uniformly C as

nl

A+ 04),

-f=
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We derive the reduced problem (A = 0), the layer equations and give existence
theorems for both. The reduced problem has the form of a two-point boundary value problem
with interface conditions at the discontinuity. Using these results we prove an existence
result for the full problem (1.1), (1.2) (for sufficiently large doping |[C|, that means
A small) assuming that the recombination rate R = 0 (corresponding to infinite electron
and hole lifetime) and that |U| is small. We show that (for A sufficiently small)
there is a solution of (1.1), (1.2) whose fast components are close to the sum of the
(corresponding) ‘reduced' solution components and the layer terms and whose slow components
are close to the corresponding ‘reduced' solution components. No layers at the contacts
occur since the ‘reduced' solution fulfills the ‘reduced' boundary conditions.

We also investigate the dependence of the total current J = Jn + Jp on the applied
voltage U (J 1is a constant because of (1.1)(d),(e):). It turns out that J is
asymptotically (as A + 0+) a linear function of U if C(z) >0 on [-2,2] (n*n ana
nn+ junctions are resistors) and J is asymptotically an exponential function of U if
C changes sign at 2.

The singular perturbation approach to pn-junction modelling was suggested by many
authors. Vasilev'a and Butuzow (1978), Vasilev'a and Stelmakh (1977) and D. Smith (1980)
investigated a much simplified model (they assume that the current densities are known
instead of the applied voltage, that Z = 0 and that C(z) is odd) and prove an existence
theorem using the asymptotic expangions. The authors of this paper analyzed (1.1), (1.2)
(1982) under the (pretty unrealistic) assumption that the junction 2 is in the middle of
the device and that the doping profile C is odd. This allows to reduce the internal
layer probhlem to a boundary layer problem. The advantages of the singular perturbation
approach for the numerical solution of (1.1), (1.2) is also explained in the latter paper.

The generalization of the presented theory to multilayer structures like bulk-barrier
diodes (see Langer, Selberherr and Mader (1981)) or thyristors (see Sze (1969)) is

straightforward.
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This paper is organized as follows. In Section 2 we perform the scaling and

reformulation of (1.1), (1.2) as a singular perturbation problem, in Section 3 we derive
the expansions, prove existence theorems for the reduced problem and the internal layer
problem and in Section 4 we give the existence proof for R £ 0 the full singularly

- perturbed problem in the case A and |U| small. Numerical results for large U are
‘- demonstrated in Section 5.
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m We scale the dependent variables as follows d .
:‘: (2.1) ". - {;": "' = _":'l Py = _‘g
“. T (o] (o] [
L LJ J I‘
(2.2) 3 =~ 3 =B
"s pac Ps Dqc )
: n P ),
N g
b © - .
b where C = max |c(z)| and the independent variable Do
. ze[-1,1) L
- z :
EI (2.3) X = T —d
) Then (1.1) reads l_;
2. 3
(a) A 0‘ n, - P, D(x) 3
(b) n' =n¥'+J .
8 s's n, j
' = - - ’.\._w
(e} pp = -p¥, J"s I,q
(2.4) - _ T
2 _ _ D_qC P _aC 3
(@ 3¢ = —l-: R(Cns, Cp,. “l 3 . —-Er J ) B
s DC s 3
n -3
- - 1
2 _ _ DgC D g -
(e) J° --5—:11(&1!,(:9,"%‘3“.-'9?‘ < 4
ps D C s 8
P 1
for =1 < x< 1 ("'" denotes now differentiation with respect to x). We have set }
(2.5) px) = 2L (o)) < 1
c
and 2 li
A eu, -
(2.6) -2 == . ]
3 L qC s
-
The boundary conditions (2.2) are K
3
2,2 u . 4
(a) ¥_(=1) = an(-LAy 4+ A =
s p_(=1) U |
S T
-9
("a(”) Uc o
(b) ¥ (1) =2&n + —= R
-] YZXZ U'!‘ . ‘;
(2.8) "
(e} n (+D)p (£1) = y4? R
s 8 j
(4) ns(_ti) - ps(t‘l) = D(t1) 1
-
-7 -_4
»
.
©
© 3
i
- ©
‘ 1
" 1
i < . o A aAlen ;1 alalar ana v amo - --}
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where
(2.9)

holds.

We now assume that the recombination term R

is such that

s

_ anE D qC a
(2.10) R(CnS,CpS, -+ n —2—1 Jp ) = csin_,p_.J_ ,Jp L YA)
s s s
holds, where s e c([O,-)2 x R2 x (0,w)) is independent of c.
Dropping the index s the problem now reads
(a) A%y" = n=p-D(x) )
" = (s
(b) n ny Jn
(2.11) (c) p' = -p¥*' - Jp $ -1 < x €1
(q) J; = Sn(n,p,Jn,Jp,YM
T = o
(e) b Sp(n,p,Jn,JD,YX)}
12 lz
with Sn = 5_ s, Sp = S— S subject to the boundary conditions
n P 2,2 U
A A
a) w-1) = wm(X2-)+ .2
@) w1 = ()
u
() w1y = an(2y .+ S
YA T
(2.12)
(e) ntehplet; = y'A?
(d) n{z1) - p(11) = D(x1) .
If Dn = Dp = D holds we have
(2.13) S, = Sp .
Under this assumption and T = Tp = T we get for the SRH term with B8 =

(2.14)

1 noeyad
S =8 =__n2_Li-——

n P n+p+2Y Az

Generally, the equilibrium condition implies that Sn(n,p,0,0,YX) = Sp(n,p,0,0,YA) =0

holds for n, p such that

np =

Y

4,4

A

K
L
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The discontinuity of D occurs at

(2.15) x -2

and the conditions on the solution of (2.11), (2.12) are

(2.16) (a) ¥.npod 3 e =111

(2.16) (b) %' ec ((-1,X]), y* e c ((X,1])
(2.17) n»0, p>»>0 on [-1,1]

(see (1.5), (1.6)).

The boundary values for n, p and ¢ can be computed from (2.12)(c),(d);

(2.18) atn) = 2 (ot + /on? + arr®, pony - 2 (-o(1) + lo? + awyhY)
(2.19)  nt=1) = 3 (be=1) + /o-1? + &"x®), pe-1) = L (-1 + o-1? + o24)

2

2.2
2y A

-p(-1) + /o(-12 + 4Y4X4

(2.20) Vv(-1) = &n +

S

-o(1) + /p(1)? + ayfrd] Ve

+ =
X U,

(2.21) $(1) = &n

For A small the problem (2.11), (2.18), (2.19), (2.20), (2.21) constitutes a singularly
perturbed two-point boundary value problem.

A small means that C 1is large (assuming that £ is constant). 1In practical cases
c»> 1017 such that Az < 0.4 x 10-6 holde. For the following analysis we assume for the
sake of simplicity that D(x) is independent of A (it would suffice to assume that D
is analytic in 1), that means that the doping {C(z)|' increases 'as a whole' as

A + 0+. Actually, the asymptotic analysis presented in the next sections requires that

min  |D(z))
ze(-2,2] 2
(2.22) poy TD(Z)] >> A
ze(-2,2)
n
2.2 i
and gince Yy A = v Y that
ze (-2, ]
(2.23) << c
n, zeTft,lll (z)1
- P

T v—-zvv—vaﬁ_v‘

‘ v
PV

— g

-
Ada

b z‘ el .

4
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- holds.
The two cases we deal with now are

a D(x) <0 for x & [-1,X]) D(x) > 0 for x € (X,1] and
: ()

- ID(x}} > DA for x e [-1,1)

' which corresponds to the pn-junction and

(B) D(x) >D_ >0 for x € [-1,1]

corresponding to an an’t or n'n junction. In both cases (A) and (B) we assume that

D(X+), D(X-) (we use the notation of f£(Xt = lim £(x) 1in the sequel) exist and
w* X2

D(X+) ¥ D(X-) and that D is sufficiently smooth everywhere else.
The analysis of the scaled problem is complicated by the logarithmic blow-up of the

houndary data of § as given by (2.20), (2.21) in the case (A).

The potential difference of the contacts is given by

U . ()
(2.24) P(=1) = p(1) = %_ + 2

T UT

where the build-in-voltage U __ (A) (i.e. the voltage due to doping) is given by

bi

4,4 4.4
U, ) tn{ L) + 0ty AY), DUt-1) <0 (1)
b, D(-1) + /o(-1)2+41‘x‘-i ) o(1)|p(-1)]

(2.25) = ¢n

1]
T pe1) + /e 2eayhrd J

ln(gi:ll

KR )+ otyhrdy, o1 > 0 (m

Uy, (A) is bounded as A + 0+ in the case (B). Since (2.11) depends only on ¥', ¥" (and

i
not on V) we can therefore remove the singularity in the boundary conditions by

1
substituting ¥ by ¢ - &n >3 The equations (2.11) remain unchanged and the new

YA
boundary conditions for the case (B) are:

U
(2.26) =1 = tni3 -1 + /oe=nearrty) « 2

T

u
(2.27) v = talx o) + SoenZeaty + B

T

wi0~-
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3. Expansions

In this Section we apply the standard approach for singularly perturbed boundary value
problems to the semiconductor problem. We assume that the solution has a formal
asymptotic expansion in A, each term in the series being the sum of a uniformly smooth
function and layer terms.

A problem that nccurs is the blow up of the boundary values of % in the case (A),
which implies that 'reduced' boundary conditions (A=0) cannot be defined formally for
¥ For the derivation of the expansions we set in the case (A)

(3.1)(a) (a) w(=1) =9, (b) %(1) = 0*
and assume that V¥_, 0+ are independent of )\ (this will be justified later). In the

case (B) 'reduced’ boundary conditions for ¢ can be obtained from (2.26), (2.27) and we

set:
Ya Ye
(3.1) (c) ¥ = &n D(-1) + —, (d) ¢ = an DY) ¢+ —
- v s U
T T
We make the following ‘'ansatz’:
(3.2)(a) $ix,A) ~ $(x) + $lg) + ‘5‘(1) + ;r(.) 4 oeeves
(3.2)(b) n(x,A) ~ nlx) + n(o) + Ry(D) & A () + eooes
(3.2)(c) p(x,l) ~ [-)(x) + ;(q) + ;‘(f) + [?r(.) 4+ oeovee
(3.2)(d) T A ~T (x) +3 (0) ¢+ 5 (1) + 3 () + essee
n n n ﬂ‘ ﬂr
3.2) J A) ~J .3 +F (v T +
( (e) p(x, ) p(x) p(u) p‘( pr(0) (XXX X}

where the dots stand for a power series in ) (starting with the O0()l)-term) whose

coefficients are of the same form as the given 0(1) terms. The fast variables are

(3.3) (a) o -x_;’ﬂ
(3.3) (b) 1 =%’- } xe [-1,1]
(3.3) (c) ¢= Lx'

J

=11~

_a

P
_a

-
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The functions marked with '=' denote the reduced solution (of order zerc), '"' denotes
the internal layer terms (at x = X) (of order zero), '~' denotes the layer terms (of
order zero) decaying from the left boundary x = -1 (with index £) and the layer terms
(of order zero) decaying from the right boundary x = +1 (with index r) resp. The

boundary condition

(3.4) (a) ¥(4=) = n(m) = plaw) = J (%) = J () = 0
(3.4) (b) ¥y (=) = n (=) = p (=) =T (=) =T (=) =0
(3.4) (c) ?r(- @) = ;..-" ) = Sr(- w) = EH(- ) = 39(- ®) =0

hold, since the internal layer terms are regarded as functions on R, the left layer terms
are regarded as functions on (0,»), ¢the right layer terms as functions on (-~ =,0].

We assume that S, Sp e C‘([O,-)2 x Rz x [0,YX°]) and that X < xo. Inserting into
(2.11), comparing O0(1)~terms and evaluating away from x = t1, X gives the reduced
problem (or order zero):

T

{a) 0 = n-p=D(x)
-l = - —l =
(b) n' = n 4T
-1< x< 1 .,

(3.5 P=-py'-J
) (¢) p PV b

(d) J; = Sn(n,p,Jn,Jp,O)

(e} 3" = -5 (n,p,J ,J_,0)
P p P
We have to expect that ;, ;, ; are discontinuous at x = X, therefore (3.5) has to hold

for the right hand and left hand limits at x = X. Evaluation close to X+ gives

the right (zeroth order) (internal) layer problem

PO 3

(a) ¢ = n-p
2 - _ 2

(b) n = (n+n(X+))¥

(3.6) (¢c) p = ~(p+tp(X+))I¥ > 0<og <=

2

(dy a3 =0
n

) 3 =0
P J
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The right (boundary) layer problem is obtained from (3.8) by substituting ;(-1), ;(-1) by
n(1), p(1).
Inserting into (2.19), (3.1)(a) and comparing O0(1)-coefficients of A gives the

matching conditions at x = =1

- - D(~1) , D(=1) > 0
(a) n(=1) + nz(O) =

0 , D(=1) <O
- . "0 , D(=1) > 0

(3.9) (b) p(-1) + p (0) = {
-D(-1) , D(=1) < 0

() V(=1 + §,(0) = y_

{(2.18), (3.1)(b) gives the matching conditions at x = 1

-13-
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1 ),
»a (*e' denotes differentaition with respect to the corresponding fast variable in the ‘
——
L; . sequel) and evaluation close to X- gives the left (zeroth order) (internal) layer problem ’ il
g (a) %=np } ]
(b) n = (n*+n(X=-))¥ )
. X
- ! .o 2 -3
{ (3.7) (c) p = ~(ptp(X=))¥ -®<g<€0 . ¥
= 2
. (@ g =0 .
: 2 — e
s (e) Jp =0 } ]
3 o
L‘ -~
: Similarly we obtain the left (boundary) layer problem ) ;
- PO w s
o (a) v,' = n,"p, :-:',
:‘ . . .:\::1
;‘A ~ - ~ - - -~ N
[‘ (b) ny (n’-rn( 1))1!2 N
.. b
(3.8) (¢c) Py " -(p‘*p(-ﬂ)vl 0 T<Co™ ,
) .
p ~
. (d) J =0
My
L]
(e) J_ =0
Py /

——

- . . " .
[T PA_L.A.A.._‘._.H IR0
i



(a) n(1) + xTr(o) = p(1)

(3.10) (b) p(1) + p_(0) =0

(c) W(1) + 1}(0) v, -
The continuity conditions (2.16) give the interface conditions
(a) R(X=) + n(0-) = A(X+) + n(0+)
(b) P(X=) + p(0-) = p(X+) + p(0+)
() W(X=) + Y(0=) = W(X+) + ¥(0+)
(3.11) 2 2
(@) $(0-) = Y(0+)
(e) Jn(x-) + Jn(O-) - Jn(X+) + Jn(0+)

(£) T (X=) + 3 (0-) = 3 _(X+) + J_(04) .
p P P p

From (3.7)(d),(e), (3.8)(d),(e) and from the analogous equations for the right Jn, J =

P
layer terms we immediately conclude that
(3.12) 3 53 ao,Sn :J so,.?n =7 =0
P L Py r P,

since (3.4) has to hold. No zeroth order layers occur in Jn, Jp. The current densities

are the slow components.

The problem (3.8), (3.9) has been dealt with in Markowich, Ringhofer, et al (1982) and

it has been shown that

~

(3.13) *z=n‘=p"=0

holds. The same analysis goes throught for the right boundary layer terms and

(3.14) Wr H n Ep = 0

follows. No zeroth order boundary layers occur, since the reduced boundary conditions
for n, p ((2.18), (2.19) with A = 0) can be fulfilled by the reduced solution due to
(3.5)(a).

By including more terms in the expansion (3.2) it turns out that higher order boundary

layer terms occur. Similarly, higher order internal layers occur in the slow component

3Sn 35n 353 EEE
Jn(Jp) if 3 °F 3;— (5;L or - ] are not constant zero.
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Integrating (3.6)(Db),(c), (3.7)(b),(c) gives

. axe e"9-1) , 650
(3.15) n(og) = -
ax=1e¥ -1 , gco

. pixe)a M9y , 650

(3.16) plo) = R
pix-1e ¥ , gco .

Inserting (3.15), (3.16) into (3.19)(a),(b) gives

(3.17) nix-1e¥%") o Tixe)e ¥

(3.18) Pix-1e"¥07) L Tixere~WOY)

rrom (3.11)(c), (3.5)(a) we get the interface conditions for the reduced problem

(a) nix+)@¥VXT)TWXH) | Tivy

(3.19)

(b)  (n(X=) = D(x-))e¥X"1"HX) _ x4 - Dixe)

and from (3.11)(e),(f) and (3.12)

(¢c) Jn(xﬁ) = Jn(x-)

(3,19) _ _
(d) J (X+) = T (x=) .
| J P

The boundary conditions follow from (3.9), (3.10) and (3.13), (3.14)

_ 0 , D(=1) <0
(&) n(=1) =

(3.20) D(-1) , D(=1) >0
(b) $(=1) = §_
(a) n(1) = (1)
{3,21) (b) ;(‘) - V+ .

Fliminating E from (3.5)(b),(c) using (3.5)(a) gives the reduced equations
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(a) ' =

(;-D)En-n.r +m' | -1 ¢x <x

(b) n' = —P >
(3.22) 2n = D angd
(c) 3;‘ = sn(E,E,Sn,Ep,O) X <x €1

(d) J* = -s_(n,p,J_,J_,0)
P p P n’ pl

J

assuming that D € c'((-1,x}) n c'([X,1)). P is given by (3.5)(a):

(3.22) (e} p = n=D(x) .

(a) ¥ =nix-)e¥ - pix-re Y- p(x-), ~mca<o

(3.23) L v - -y
(b) ¥ = n(X+)e’ - p(X+)e " ~ D(X+), 0 < g < ®»

-

subject to the boundary conditions

(c) V(- ») =0

(3.23) .
(d) ¥(w) =0

and the interface conditions

(e) W(0+) - $(0-) = W(X=) - WX+)

(3.23) H 2
(£)  $(0+) = yp(0~-) .

Because of (2,17) we require that the solutions ;, ; of the reduced problem are
nonnegative, that means:
(3.24) n(x) » max(0,D(x)), x € {=1,1]
has to hold. Under this assumption we prove a simple consequence of the interface
conditions (3.19).
Lemma 3.1. Assume that (3.24) holds (at least at X=-, X+). Then

D(X-) < 0, D(X+) > 0 ==>

(3.25) _ - _ _
(P(X=) < Y(X+) and n(X+) > D(X+), n(X-) > 0)

holds.

-16-
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Proof: Assume first that W(X=~) = $(X+). Then (3.19)(a) implies that n(X+) = n(X-) and -
(3.19)(b) implies D(X-) = D(X+). This is a contradiction to the assumption that D has a [ ] 1
jump discontinuity at x = X. Therefore W(X-) # P(X+). We compute n(X+) from (3.19) ;}J
WX~)=PX+) -
- + )= -
(3.26) n(xe) = DEDIcDUe . ]
1_eNMPPWHH .*
- .J
(3.25) follows immediately from (3.26). :
o 3
We now give existence theorems for the reduced problem and start with the simple case i ?
(8). ‘1
4
Theorem 3.1. Assume that D(x) > D, > ¢ om [-1,1], D€ c'tr-1,x1), o ecltrx,11) ana i
that
(3.27) 8,(P(x),0,3,0,0) =5 (D(x),0,3,0,0) 20 for all xe [-1,1]
and all J eRrR .

Then the reduced problem (3.22), (3.19), (3.20), (3.21) has the solution

D(x)

(a) ni(x)

-1 €x<X

w
[~}

(b) plx)

X <x €1

1]
o

J
(c) p(x)

U 1 ds
U f

(@) I (x) 5y

(3.28) x  ds
UA U_ ‘=1 D{(s)
== + #n D(x) - T —T——-%;- s =1 € x <X
T T !-1 D(s)
ds
u_ J+1 p(s)
U 1 ds
L T

(=4

(e) Wix) =

ac'nc

+ &n D(x) - , X < x €1

Proof: Assgume (3.28)(a),ib),(c). Then (3.27), (3.19)(c) imply that 3n 2 const on

[-1,1]. Fror (3.22)(a) we conclude that

-17-
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— v T TCIwT e =, wTTwy v -

D{x) _35 (x _d»
(=17~ °n /21 Dlay ’

‘v_*-ln 1< x<Xx

Vix) =

RMx) .5 (x ds_
v, + tn 2 Jnf‘n(.),x<x<1

holds. Now (3.22) and all boundary conditjons are fulfilled. 3; has to be calculated

from (3.19)(a). ((3.19)(b) is automatically fulfilled.) (3.28)(e) follows then by using

(3.1)(c), (a).
u)

For a recombination rate R which depends only on n, p, (3.27) is a direct
consequence of the equilibrium condition. Therefore Theorem 3.1 holds for the SRH-
recombination term.

Assuming the validity of the asymptotic expansions (3.2) (which will be proven later)
the theorem implies that the device is depleted of holes (away from the junction) and that
the electron current Jn is asymptotically proportional to the applied voltage U.
Actually (3.28)(d3) is a scaled version of Ohm's law (]:' B%ET is the (scaled) resistance
of the device). n+n and nn+ junctions are resistors.

Now we turn to the case (A). For simplicity we take the SRH-recombination term.

Theorem 3.2, Assume that D(x) < 0 on ([-1,X], D(x) >0 on ([X,1], |D(x)]| > DA on

(=1,1 and thet Dec'(3-1,x1), pecltix). et s, B be given by (2.14) (sRH).

Moreover assume that

v_-v

(3.29) e + <p, p sufficiently small
holds. Then the reduced problem (3.22), (3.19), (3.20), (3.21) has a locally unique

solution (4in C‘([-1.K) u (X.‘l)4) which fulfills (3.24) and
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(3.30)

Of course ;(x)

(3.30)

D(x)

D(=1) + #(x), -1 €< X

v -tn
(a) ¥(x) =

v*+lngJ‘-’1‘-)L+-0(x),x<x<1

- v.-¥,
$(x) = O(e ) on [=1,1])
-y,
- Ofe ) 20 . =1 €x <X
{b) n(x) =
-y,
D{x) + O(e ) , X< xg1
- v,
(c) Jn(x) = O(e ) , =1 €x €1
vy,

(Q) Ep(x)-o(e' ) , 1<x<1 .

is then given by

-y,
- -D(x) + Ofe ) , -1 €x<X
(e) p(x) =
.-y,
Ofe ) »0 , X<x<¢1

Proof: We introduce ; as a new dependent variable (instead of ;) and obtain from

(3.22)(a)

(3.31)

20D' -~ (J 43 )D ~ 2nD'
n_p

(a) ¢ = — , X<x <1
D(2n-D)
_ 2mD' - D(J 43 )
(b) ¢ = ————- P ) 1 €x <X .
D(2n-D)

Boundary conditions for ¢ are

(3.32)

1) = B0 =0

and the interface conditions (3.19)(a),(b) transform to

(a)
(3.33)

(b)

+ D(=1)D(1)  $(X=)=¢(X+) =

D=0 (X" (X+) - n(x=) =0

DD MX=)-Q(X+) =~ - - _
G © (R(X=) = D(X=)) - (R(X+) = D(X+)) =0 .
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{
V.-, - a3 o
We set w = e and z, = (00,1'\0,.1n J , where 4
- o -0 1
H -1,1 -
00 0 on (-1,1] ’
«
_ 0 , -1 <¢x <X
(3.34) no(x) =
D(x), X < x €1 .
- _ -
I (x) 23 (x) 50 on [-1,1) )
0 Py i
and write the problem (3.31), (3.22)(b) - (d), (3.20)(a), (3.21)(a), (3.32), (3.33), :
- 1
(3.19)(c),(d) in operator form F(w,z) = 0 where F : [0,®) x (Cx([-‘l,1] )4 -
4 8 i . . . L. -
(Cx([-‘l,‘l]) x R ). Cx([-1,1]) is the space of functions of which are i-times )
. - 4
continuously differentiable on [-1,X) and on (X,1] and lim f(J)(x) exists for 1
x+Xt
i () y
0 € j € i. The space is equipped with the norm If), . = Z sup 1 ot . o
X, i R .
j=0 xe(-1,1]
- x#X - 4
Obviously F(O,zo) = 0. !"‘:
o
We investigate the equation Dzl'-‘(O,;o )y = (£,a) (where DZF(O,;O) denotes the '
Fréchet derivative of F with respect to z at (0,;0)) for y = (yq,¥5,¥3,¥4) and K
obtain o
[ 2D 1 11 ‘:‘:
e S
D
_'j
Dl B
0 D 0 ! L
(3.35) (a) y' = y+E, X<&& -‘_'_:{
1
0 - 0 o]
s .
1 L
0 --= 0
- 8 ° p -t
2D' 1 1
0 - —— - - - - 7l
2 -1 - .
D' -
0 D 1 0 !‘
A
(3.35) (b) y*' = y + f, =1 €& x ¢ & iy
1 d
0 - 0 0 .
8 L.
1 .
0 - 0 0 -
A ] :
-20- S
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where f € (Cx(['1.1]))‘. The boundary and interface conditions are
(c) y,(-1) = a,, yz(-1) = a
(a) y‘(1) =a,, yz(l) = a,
(3.35) (e) ys(x+) - ys(x-) = a
(£) y4(x+) - y4(X-) = a
(g) yz(x-) = a,
(h) y2(x+) =q
with a e R, i=1,...,8.
Because of the Fredholm alternative DzF(O,;o) is one-to-one and onto iff it is one-
to-one. Therefore we only have to show that the homogeous problem (3.35) (a=0, £30) has
the unique solution y = 0.

From (3.35)(a) we get

(3.36) y5-1 kx<x<1

Therefore
Dl 1] .

¥ = wm oyl B m e (- - B e - -

Ya B Y2 g "D Y2 Yy (Bpm vy~ v,)
and

1
n o U o - =

(3.37)(a) ¥a (&n D)'y4 8 Ya 0, X <x <1

holds. The boundary conditions are
[ p— =
(3.37)(b) y4(1) y4(x+) 0 .
Since B > 0 the maximum principle implies that v, = 0 on [X,1] and therefore

YJ H y2 = y’ 0 on (X,1].

-21=
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(3.35)(b) gives

. '= -1 <
(3.38) Y3 Y, € x <X

Again we get a second order problem

" L] - -1— = & -
(3.39)(a) Y3 + (&n D) ya RE t, -1 € x <X
(3.39)(b) y;(-1) = ys(x-) =0

and the maximum principle yields y, & 0 on [-1,X]. v, 2y, Ty, = 0 on [=-1,X]
follows immediately.
Therefore DzF(O,;O) is an isomorphism and since sz(w,Zo) is uniformly Lipschitz

continuous the impiicit function theorem assures that there is a locally unique solution

z = ;(w) of F(w,;) =0 for we [O,w0 sufficiently small. Since
F(w,z,) = 0(w)
we get 1z(w) - ;0'X 1 ° of(w) . To show that this solution z(w) Ffulfills (3.24) we
r

compute the first order term ;1 of the expansion

w«® i-—

z(w) ~ 2 wooz,
; i
i=0

as a solution of the equation

DzF(O,zo)z1 = -DWF(O,zo) .

z, solves (3.35)(a),(b) with f = 0, fulfills the interface conditions (setting

= - = =
\01,n1,Jn1,Jp1))

N |
H
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D(X-)

;1(,(,) - =1L L,

D(X+)

J (X+) =T (X=) = 0
ny n

3 (X+4) -3 (x-) =0
p p

and the boundary conditions

W'(-1) = 0'(1) =0

n,(“) = n,(l) =0 .

n,. En . Ep fulfill (3.36) and (3.38) and therefore 3; fulfills (3.37)(a) on (X,1]
1 1 1

subject to the boundary conditions

1 p(=1)p(1)

8 bxey <0 -

J' (1) m 0, T (X+) =
Py Py

The maximum principle implies that 3; = - % ;1 is negative on {X,1), such that
1

E' >0 on [X,1) holds.

Similarly we obtain ;1 >0 on (-1,X]. Since the zeros x = +1, - 1 of ;‘ are

simple zeros, we obtain (3.24). -
-,
The biggest restriction of the Theorem 3.2 is the required smallness of e « We
obtain from (3.1)(a) and (2.24) U (M)
u_ + bi
LR U U,
(3.40) e t . e T T .

Therefore (3.29) holds if there is a constant K > 0 sufficiently large (but independent

of A) such that
1o, (X))
(3.41) g— < bé - K
T T

holds. The applied voltage U has to be sufficiently smaller than the absolute value of

the built=in voltage {low-injection condition).

-23=-

a

e ha . mt s e L

b Ao 0

ki ki

In Lot .
ke asaaa sy




Numerical calculations (given in Section 5) demonstrate that (3.41) is not necessary
for the existence of a reduced solution.
From (3.30)(c)(d) we get the reduced voltage-current characteristic

U

4.4 ¢
- = . A T 4. 4
(3.42) 1T |+ ap| 0 (———-l—--——-D“”D(_m e (L+a(ya"n) .

In the case (A) (pn-junction) the total current density depends exponentially on the
applied voltage (see also Sze (1969)). (3.42) should be compared to the corresponding
result (3.28)(c),(d) for the case (B).

s which do not

Theorem 3.2 can easily be generalized to more general functions S, b

depend on J, Jp. (3.30) holds without change for Sn = Sp z 0.
Now we turn to the internal layer problem (3.23). We prove

Theorem 3.3: Case A: Set D(X+) > 0, D(X-) < 0., Then, if the reduced problem (3.22),

(3.19), (3.20), (3.21) has a solution fulfilling (3.24), the internal layer problem (3.23)

has a unique piecewise monotone solution ¢ which fulfills:

s @@((1=8) n(x-) + p(x-) o + °s'/ Vx+) - Y(x-))
for o ¢ -Eg/ ¥(X4) - Y(x-)

0 < Y(o) < ¢
(a)

0 < =¥(0) < Cg exp( (=148)/ n(X+) + p(xX+) o + ns./ Yx+) - pix-))
for o > B/ ¥(x+) - y(x-)

(b)

for every § > 0 where C6 > 0, D6 > 0, 25 > 0 depend on § but not on E(x:) if
V(X+) - V(X=) is sufficiently large.

Case B: Let D fulfill the agssumptions of Theorem 3.1 and let the reduced solution be
given by (3.28). Then the internal layer problem (3.23) has a unique piecewise monotone

solution ¢ which fulfills

-24-
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tl (a) I;(a)l < c6 exp((~1-8)/D(X-) @), 0 <O
\ (3.44)
= (b) I|vla)| ¢ Cs exp((=1+8)/D(X+) o)}, 0> 0

for & > 0, where (:6 only depends on §.

Piecewise monotone means monotone on (- #,0) and on (0,®),
Proof: For any piecewise monotone solution ¢ of (3.23)

(3.45) (a) sgn Y(0+) = -ggn $(0~-), (b) YO+) ¥ 0, ¥WO0-) # 0

Ty - -
o A L,

has to hold. This follows from the monotonicity and from (3.23)(c),{(d),(f) since

;(04_-) = ;(0-) = 0 would imply ¥ = 0 (because nixs) - S(X:) = D(X$) holds) which

.Y' [

!

k“ contradicts (3.23)(e) because of (3.25) and (3.28). $(0+) = 0 (or (0-) = 0)

:‘ contradicts (3.23)(e), too.

E Only two possible cases remain:

F' (1) ;(0+) > 0, ;(0-) <0

. (11) $(0-) <0, Y0+) >0 .

In the case (I) ; has to be monotonically increasing on (- »,0) and on (0,®), in the

case (II) ¢ is decreasing on both intervals. 1In the case (1) we derive from Fife (1973,

Lemma 2.1) that every piecewise monotone solution of (3.23)(a),(b),(c),(d) fulfills

, 0>0

(3.46)(a) o = [YO4) _a1

o) Y26(t")

where

G(T) = [ (n(x+)e® - p(x+)e™® - D(X+))ds

(3.46)(b)
= nix+)(e=1) + p(X+)(e '-1) - D(X+)1

holds ((2.23)(a) fulfills all assumptions of Lemma 2.1 in Fife (1973) because of (3.24))

and
- (3.47)(a) o= ¥ AL 4co
- - ¥0-) VZF(D
" with
«28=

S, T
i
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(3.47)(b) F(1) = fo' (p(x-1e® - n(x-)e”® + D(X-))ds
= p(X-)(e™=1) + n(X-) + D(X=)t
(also (2.3)(b) fulfills the necessary assumptions after setting ~¢ = §, A = -0).

Differentiation of (3.46)(a), (3.47)(a) gives
(3.48) Y(0+) = -7 2G(y(0+)), $(o-) = -y 2F(-9(0~))

(3.23)(e), (£) gives the eguation for ;(0+)
(3.49) G(P(0+)) = F(W(X=) = P(X+) = P(0+))

which can be solved (uniquely) by using (3.46)(b), (3.47)(b) giving

P0s) D(X=) (P(X+)=P(X=) )+ (n(X~)=n(X+))+(p(X=)=p(X+))

(3.50)(a) D(X=)=D(X+)

(3.23)(e) implies

(0 = UK BOX$)BK=) )+ (n(X=)on (X+) )+ (B(X=)=p(X+))

(3.50(b) D(X+)=-D(X=)

In the case (II) we proceed analogously and obtain the same formulas for ¥0+), W0-).
Therefore, a unique piecewise monotone solution of (3.23) exists iff WO0+), W0-) as
given by (3.50), have appropriate sign (and are not zero).

In the case (B) (3.50), (3.28) give

. D(x-)an XX o hix-) - p(x+)
(a) $(0+) = D{X-)
D(X+)=D(X-)
(3.51)
. p(x+)tn 2E L bix-)-pix+)
(b) Wwl(0-) = D(X=) .
D(X+)=D(X-)
. D(X+) .
Setting y = 67;:7 > 0 we define
(a) $(0+) = £, (y) = i’-‘l-;-?’;i’-
(3.52)

(b)  $(0-) = £ (y) = mﬁﬂ

Obviously fny - (y=1) ¢ 0 holds for y > 0, y # 1. Also yfny ~ (y=-1) > 0 for y > 0,

y 72 1 holds and we find that sgn f1(y) = =59n fz(y), f1(y) # 0, fz(y) #0 for y >0,
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y ¥ 1. We derive from (3.52)

(a) w(0+) > 0, $(0=) < 0 4iff D(X+) < D(X~)
(3.53) - -
(b) ¢(0+) < 0, $(0=) > 0 4iff D(X+) > D(X=) .

In the case (A) we express nixz), F(x:) in terms of iKXt) using the interface condition

(3.19)(a), (b) (as in (3.26)) getting

- - - - LTt S - _
(n(X=)=n(X+)}) + (p(X=)=p(X+)}) = = — (D(X=) ¢+ D(X+))., We set z = YX~-) = YX+)
e SIEITe 3 I
and obtain
- h,(z) - hz(z)
(3.54) MM T TS S SR )
where
(3.55)(a) h1(z) = D(x+)gz(z) + D(X-)g,(z)
(3.55)(b) hy(z) = D(X-)gy(z) + D(X+)gy(z)
with
(3.56)(a) gq(z) = &% - 1 -z(e®+1)
(3.56)(b) gylz) = ef =1

We restrict to 2z < 0 sgince z > 0 cannot occur because of Lemma 3.1 gy ¢ 0 for z <0
and a simple computation shows that g,(z) > 0 for z < 0. Since D(X+) > 0, D(X-) < 0
we obtain h,(z} > 0 and hy(z) < 0 for z < 0. Therefore
(3.57) (a) $(0+) <0, (b) WO-) >0
follows in the case (A).

Now the existence theorem is settled in hoth cases, the decay statements (3.43),
(3.44) still have to be shown.

In the case (B) the equation (3.23)(b) reads

v=g(¥ := pixsre? - 1

g'(0) = D(X+) holds and (3.44)(b) follows from rife (1973, Temma 2.1). (3.44)(a) is

derived in the same way.

In the case (A) we have to kecep in mind that E(x+) ~ E(x-) can be large (sce Theorem
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3.2), which implies that ¢(0+), ¥(0-) are large. Therefore we need estimates which are
uniform for large W(X+) - W(X-).
The proof follows the lines of the proof of Lemma 2.1 in Fife (1973). We set ¢ = -y

-

in (2.23)(b), call the (new) right hand side of (%) and compute V£'(0) =
/n_(x+)+;(X*). It is easy to show that

(3.58) f(s) > (V£'(0) - 6)23, 0<s < §

holds for & > 0 sufficiently small. Since f 1is increasing we get

) - 8)%6°
2

(3.59) F(T) = [ £(s)ds > + £(8)(1-8)
for Y » 8. Thurefore
(3.60) WET - & [HO0 2 <o/ w0
Y2F (1)

holds for I;(O*)I sufficiently large, where 06 > 0 is independent of a(0+). From Fife
(1973, Lemma 2.1) we obtain
(3.61) I;(o)l <$ exp(-(1-6)v’f'(_0)d + D6/ l@(onl)
for o> fQZE:; / l;(0+)l. (3.43)(b) follows from (3.50(a). The proof of (3.43)(a) is

V€' (0)
analogous.

- - -

Similar estimates holds for the derivatives of ¥. n, p have to be computed using
(3.15), (3.16). In the case (B) ; £ 0 hnlds (since p Z 0).

If the interface condition (3.23)(f) is changed to ;(0+) - ;(0—) = 0(A) then the
layer solution a changes at most by O(\/ E(X+) - ;(X-)) (in the max-norm). This
follows by applying the implicit function theorem to the perturbed equation (3.49). This
will he needed for the existence proof in Section 4.

The width of the internal layer at x = X can be computed from Theorem 3.3.

In the case (B) we ohtain
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(3.62)

A
/D(X+)

(a) a,(\) =of

(b) a_(A) = o(—2

/D(X-)

| 2n(

| n(

A
(X+)

W

A

v/D(X~)

Y o,

A+ 0+

A+ 04+

T TR TR e
. ‘

where d+(l)(d_(l)) denotes the width of that part of the layer which is right (left) of

-y . .
N . .
='a ‘a4 'ssan’s

S

For the case (A) we obtain

A (/ Vxrr-%ix-) + | tn(—=2 "))
7 n(X+)+p(x+) Y n(x+)+p(x+) ]

3.63) -
( '

- (b) a_(A) = o(———“——-—— (7 wix+)-pix-) + un(—i———-)n) . :
- /n(x-)+p(x-) 7 n(x-)+p(x-) )
L 4

ta) a,) = o

If the low injection condition (3.41) holds Theorem 3.2 gives a (physically relevant) ]

1]
Y TN

F‘ solution of the reduced problem and (3.30}, (3.63) give .‘1
TRANEY) |
(a) 4,2 = o2 N& v By v jn —2—y)) 1
/D(x+) T T D(X+)
(3.64) o]
v, (X
(b) a_(x) =of A |3—-+ b‘*, | + Itn ——"—-|)) . "i
YID(x-)] T T /Tp(x=1] S
1
These asymptotics are uniform as U + - =, 1
¥
g
]
: 1
9
' ]
4
& | l‘
d

: 1
L- R
4
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=: _sxistence of Solutions ,;
: In this section we prove the existence of solutions of the singularly perturbed - 41
®
1 problem (2.11), (2.12) using the asymptotic expansions (3.2). 4
) At first we derive an a priori estimate on the number of carrier pairs valid for the ;1
- L
. cases (A) and (B). K
Theorem 4.1. Every solution of (2.11), (2.12) which satisfies (2.16), (2.17) and for ;4
. which J_, Jp do not change sign in [-1,1] fulfills
, (4.1) U >0 (== Jn> 0, Jp> 0 Jnso, Jpzo on [-1,1] ]
(4.2) U=0¢e=> 2 J =0 ..
n P -
P ]
(4.3) U<COo ¢==>J <0, Jp <0 $o0, Jp $0 on (-1,1) : ﬁ
3
_ ol 1] o
U U, " Y
(4.4) Y‘X‘e T n(x)p(x) e Y‘A‘e T , x € [=1,1] . :
.
The proof is completely analogous to the proof of Theorem 4.1 in Markowich, Ringhofer, .'1
Selberherr and Langer (1982) and requires only the equilibrium condition on the scaled .
recombination rates sr‘ ' sp' For U = 0 the current densities Jn' Jp vanish and the
4 B
device is in thermal equilibrium. The np-product is constant Y‘l throughout the 4
device. . 1
L
The estimate (4.4), the equilibrium condition and the continuity of S, sp imply .
. u .
) that Sn. Sp are small along a solution when i‘"‘l is small. In particular, for the SRH~ d
T p
{ recombination rate (given by (2.14)) .1
2.2 A ]
L v .
A T .
x . = < L2 - .
. 4.5) Isnl Ispl 28 (e ) :
b . K
- holds along every solution of (2.11), (2.12). Therefore it is intriguing to set o
L :
E‘i (4.6) s, 25,30 |}
: for sufficiently small #’J‘.
r !
We now give existence proofs for (2.11), (2.12) in this case.
s For the simple case (B) we show :
& '
k
=30~
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Theorem 4.2. Assume that D fulfills the assumptions of Theorem 3.1 and that (4.6)

holds. Then, if 0 <A < Xo and l-g-l € p for p sufficiently small but independent of
T

A holds, the problem (2.11), (2.18), (2.19), (2.26), (2.27) has a solution which fulfills

(2.16), (2.17) and

(4.7) vixA) = 9ix) + (5D « o
(4.8) a(x,A) = p(x) + a5%) + on)
(4.9) pix,A) = o()x) (> 0)
(4.10) J (x,A) = 3 _(x) + O(A)

n n
(4.11) JP(X,X) = 0(A)

uniformly on (~1,1] where ;, -5“ are given by (3.28)(e), (4), ; is as in Theorea 3.3,
case B and ;l fulfills (3.15).

Proof. The right hand sides of (4.7) = (4.11) are the sum of the reduced golutions as
given in Theorem 3.1, the layer terms as of Theorem 3.3 (; £ 0 holds since ; £0) and
remainder terms. We denote these remainders by t", 'n' tp, "’n' EJP. Inserting into
{2.11) (with sn H Sp £ 0), using (3.23) and (3.6), (3.7) gives

2_. - - - 2=
(a) A l* 'n ‘p ATy"
(b) !"‘ - WW)'ln + (n#n)l; + "’n + 'n'é + 01(1,1)
2 B! = -(§H)'E_ -E. -EE + A
(4.12)(e) M (¥+9) o Jp p!. 4, (x,2)
(4) l‘.', =0
n
(e) !5 =0
P
where the functions 0’. 02 satisfy
(4.13) !:‘ 14, (s,2)1a8 = 0(X), & = 1,2 .

Inserting into the boundary conditions (2.18), (2.19), (2.26), (2.27) shows that the
boundary values for !0. ln’ zp at x = 1 are O(}).

We define the operators:
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(a) (Hg)x) = [X exp(¥x)+¥(otx)) - Ws) - ¥(o(s))g(s)ds
(4.13)
(b) (H g)(x) = JZ, expl=¥(x)-¥(a(x)) + Ws) + ¥lo(s)))g(s)ds

where 0J(x) = Eii and rewrite (4.12) (b), (c) as integral equations

E_ = exp(W(x)+¥(o(x))-¥(=1)=¥(a(=1))E_(-1) +

(Hn(;+n)E')(x) + (HnE J(x) + (HnEnE')(x)

(4.14) (a) L I L4
+ (H_8,)(x)
E = exp(-¥(x)-¥(a(x)) + E(o(-mzp(-n -
(4.14) (b)
- (HE - (HE E") + (H .
(HoEy J(x) = (A E EL(X) + (H_¢,)(x)

P

From (4.12)(c), (d) we get

(4.15)(a) E, s const. on [-1,1]
n

(4.15)(b) E; = const. on [-1,1]
1%

since E E, e c([-1,1]).
Jn' Jp ’

Because of (4.13) and since |E (-1)] = 0(a), |Ep(-1)l = 0(A) we obtain from (4.14)
= g 0
(a) En Hn(M")Ew + EJan1 + Hnl-:nE" + 0(A)
(4.16)
(b) E =~E_H ' +HEE', + 0()A) .
P Jp pp V¥

Partial integration and (3.23) give

—_ . ' - -— _ —
(4.17) (Hn(n*n)Ev)(x) (n+n)Ev (HI\JT\EV)(X) + x;n,XEV

where Gn : C({-1,1]1) + C([-1,1]) 1is uniformly bounded (in ). The continuity of

¥
; + n at x = X was used for the derivation of (4.17).

From (4.12)(b) we derive, after partial integration

" = - Tt - - [} (]
(4.18) HnEnEw E:nnw "nnE‘bEW ”nEJnEW HnEnE¢EW+ XF']'XEWEW+ 0(A)

-32—

L PR S W U S A UL U WL U U S e . Bevoodileciediooecadassiosdmsacclivon P

TN

L i» 1
« s !y
P

L.

ke dond kok ok

0

P




where F_, @ c({-1,1]) + c((-1,1]) 4is uniformly bounded. Another partial integration
’

gives
e L d=2 Wk V2
(4.19) H nEJE, = 3 NE, - e [Z4 te n)'E (s)ds + 0A) .
Combining (4.16) - (4.19) gives
{4.20)(a) E, = (n+m)E, - H I E, + ‘an"n' + “n,x"o"&"n"an’

and proceeding analogously for !P

. = - H 1+ JEL,
(4.20)(b) B, m R 4 AL L (ELE ‘p"ap)

where An A Ap A are nonlinear operators from (c([-‘l,ﬂ))4 into C([-1,1]) which
4 .

fulfill

[ ] ‘ []

'Aq,x(lv"v"q'saq)'[-1,11 c,(0(x) + Izvl[_1'1](x+xlz*l[_1'1]
(4.21)(a)
ML LY O "aq'l-1,11 PIES "B e
[]
'DAq,x(!o'!w"q"aq" DA I K P
+ |Bq|[_1'1] + lEJ |[-1'1]
q
(4.21)(Db) + |Eq|[_1'1llla|[_1'1] + lqu[_1'1]lzvl[_1'1]
R B e, P A e, )

where C,, C, are independent of )\, "D" denotes the Fréchet derivative and q = n,p.

The constants Jn' Jp can be determined from the boundary conditions for E , E at

np

x = +1;

(B 3 () - “n,x“w"i'”n'gan’("
(4.22)(a) In F (H_ DM

n
]

Ap'x(zv,:w,zn,san)(l)

(4.22) (D) 3 = CIOIEY )

We remark that (H 1)(1), (Hp1)(1) are bounded away from zero uniformly in A.

We regard EW' L !p’ Ean, Eap as dwelling the space Ay = c'([-1,1]) n

2 2, ca
cx([-1,1]) which is equipped with the norm lflx - Ifl[_1'1] + A0f '[-1,x)U(x,1]' (4.21)
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implies that the mappings defined by the right hand sides of (4.20) are contractions in

spheres of radius 0(A) (centered at 0) and therefore (4.20)(a), (b) can be resolved

with respect to E . Ep resp.:
- _ - (H_1)(x)
E = (ntn)E, ~HJE, + (HJE )(1)
(4.23) (a) n 1] nn ¢ nny (Hn1)(1)
+ ]
“n,x(Ew'Ew’
4.23)(b E = (E_,E} .
{ )(b) b Qp.x v *)

fulfill the estimates (4.21) when 1E |

P [-111]'
are substituted by the radius of the sphere in which the

The operators @

LY E V1,10

1E IEJ

3 '(-1,11' '[-1,11
n o

contraction mapping theorem is applied.

Inserting (4.23) into (4.12)(a) gives

2 — A _ (H 1) (x) _

A Ev - (n+n)Ev = (H“JHEW)(1) TE:TTTTT - (HHJBEW)(X)
4,24 + E,E") - E,,E!
(4-29) T Ay EY T B By By

=A%, 1 <x <X and X < x €1

subject to 0(A) boundary conditions for EW at x = til.

Since n+n is positive and continuous on [~1,1] the boundary value problem

-

(4.25) Mym - (endy = £, y(=1) = y_, y(1) =y,

has a unique solution y € A, for all y_, y,eR, fe Cx([-1,1]) which fulfills

. + + .
(4.26) Iyl < const(1£1 _, 4 ly_ I + 1y, D
Since all estimates so far are uniform for |%—| € p and since

T

.27 J

(4.27) lHanEwl[_1'1] € const plel[_1’1]

holds with const independent of X and p e [-po,pol (see (3.28)(4)) the contraction

mapping theorem with p sufficiently small assures the existence of a locally unique EV

with

(4.28) =0(x) .

Bl -1,
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The existence statement of Theorem 4.2 follows immediately. The positivity of p = Ep
follows by investigating the higher order terms of the expansions similar to the proof of

Theorem 3.2.

This proof does not carry over to the case A since then H, Hp are not uniformly

bounded (in A) anymore. At first we rewrite (2.11) (with Sn H Sp £ 0) as a second
order problem,
From (2.11)(4d), (e) we get
(4.29) Jn £ const, Jp Z const on [=1,1)]
(2.11)(b),(c) give
(a) n=amePXITHI 5 ¥ oo W),

(4.30)

(b) p= p(1)e"(”-“x) - Jpe-"(x) f’; e“s)ds

n’ Jp have to be determined from the boundary conditions for n, p at x = -1

J
S 1
u U
(4.31)1a) g sXXe T-e T
1 -
n I-, e 0(8)ds

(4.31 () Y X[e” -e")

(4.30), (4.31) immediately give n > 0, p > 0.

and obtain by inserting (4.30),

Nig

Without loss of generality we set Uy = ~U, =

(4.31) into (2.11)(a)

xe-v(s)ds

2 2.2 U y v
{4.32) A" = 2Y" A% (sinh(y + ) + sinh(z—) (e -
ZUT 2UT 1119 ‘I(S)ds

-y f:ev(s)ds
—?~—iI;T——)) - D(x)
[’1e ds

t e
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for x e [-1,X) Y (X,1] subject to the boundary conditions (2.20), (2.21) and the

interface conditions (2.16).

At first we derive an asymptotic representation of the voltage current characteristic.

Lemma 4.1, Let §_ = Sp 2 0 hold and assume that U fulfills the low injection condition

n

(3.41), that D fulfills the assumptions of Theorem 3.2 (Case (A)) and

(4.33)(a) VoL = W+ WD+ e
where the reduced solution ; fulfills (3.30)(a) and ¢ 1is given by Theorem 3.3. Then
(3.31) implies
- v
4.4 T U
(4.33)(p) g =XALe =L oenl +a, 0 v a0+ viae T
f_1ID(s)Ids
U
o u
4.4 T U,
(4.33)(c) g o=XAle t 1y ogeit s a o s o syt T
P fx D(s)ds
Proof. We obtain
o os—=x
v -Y(==)
- 1 =¥(s,A) _ (x D{(s) x D(s) A T0(18(XN)])ds
e [ e o = [1 o 9t Dy by e
4 8=X
-Y(==) V-V
x D(s) A - "+ 1 D(1)
+ f_1 (-1 (e 1)ds + e Ix 57;7 ds
v_-v, -p(%)
- 1 D(1) A
+ e fx oo ‘e 1)ds
o 8=X
{ 2l -Y(—==)
1 1
‘e ’[xg—(‘s—;e » oclenras .

Using the estimates (3.43) and the layer widths given by (3.64) we derive
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[* Ul g 4 gcracar] + ota_(A)

v, -
111 L LT -1 D(-1)

e ds =

lul
v

+otyxe T+ o(a, (a0

Therefore
g - u
v_ 2y 2u U
g e e Toe T £l -1
n v_ - v_ -
e [11 e w(s'x)ds e 111 e w(s’“ds(‘l + 0(Y4X4))
U
o, U

U
R MORICR ) (14 00180] + a0 +a(n+ v aeD
/x , ID(s)lds

follows. The proof for the asymptotic representation of Jp is analogous.

If D_ = Dp holds (which implies that Jn’ Jp have the same scaling factors) and if

a solution of (4.32) subject to the boundary conditions ¥(~1,%) = ¢ , ¥1,}) = 0+ exists

for which 8(A) + 0 as A + 0+, then the total voltage current characteristic of the pn-

function is given by

CIC

4.4 1 1 T

+J EYA + e

. - : - N+ ol .
P [Z,Iptsrias [ pls)as

[}
[

(4.33)(4) J

The same asymptotic form of J can be found in Sze (1969) {(and other standard books on

semiconductor physics), however the derivation used there heavily relies on physical

arguments.

We now prove an existence Theorem for the case (A) under a slightly sharper assumption

on

——‘ then that used in Theorem 4..°

Theorem 4.3. Let D fulfill the assumption of Theorem 3.2 and D € C ([ 1,1]). Assune

holds for some p > 0 sufficiently small but independent ~f A. Then there is a solution

that

| tn YAI

$i{x,A) of (4.32) subject to (2,20), (2.21), (2,16) and ¢ fulfills
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(4.34) Vo = o0+ vESE) o 0 v a o+ (9
for some Y > 0 where ; is the reduced solution as given by Theorem 3,2 (with
Sn = Sp £ C0) and ¢ is the layer solution given by Theorem 3.3,

Proof. We define

0 D(1) + /o2 + ayiad

Vv, = an
zyzkz

2.2
0 tn 2y A .

D(-1) + do(-1)% + ay2®

Ie
L}

D(1) - D(=1)
sinh vg sinh ¥_

2.2
Since 2y )\ = holds, the problem (4.32), (2.20), (2.21) with U =0

can be rewritten as

2 sinh ¢
(4.35)(a) ATyy = p(1) ——— - D(x), X < x €1
sinh 0+
2 sinh ¥
(4.35)(b) A" = p(=-1) =———— - D(x), -1 € x < X
() , 0
sinh w_
(4.35)(c) (A = ¢ N = ¥
. c Wo v = W+: Wo( ] = V_
(4.35)(d) voec (-1,1) .

0 0
We now regard W+, ¥_  as parameters independent of A (as in Section 3).

Then the reduced solution EO has the asymptotic form given by Theorem 3.2. -

-2¢ .;1

. Di{x) . o, 0 D(x) -

_ area sxnh(u(1) sinh W+) = W+ + £n (1) + O0(e Je X < x €1 J

(4.36) by lx) = ) 7;
‘ area sinh(D(X) inh WU) = WO - &n D{x) + 0¢( ‘ZW_) -1 € x < X >J

S -1y s b - D(-1) ¢ ’ ]

|

L

and the internal layer solution WO is as in Theorem 3.3 bhut subject to the changed 1
\

.
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3 2 - -
interface condition ¢(0+) =~ $(0=) = A(P' (X=)¢'(X+)).

In order to investigate stability we subgtitute u, = in (4.32), (2.,20), (2.21)

& | o

with U = 0 and obtain the problem

0
sinh Y. u
(4.37)(a) qus-m—-—?—o-’—D(x) 1 Ex <X, X<x €1
¥ sinny W
+ '+ '+
0
v_
(4.37)(b) uo(-l) =5 “o(” =1
v,
(4.37)(c) u, e cil=1,11) .

0 = 0 .0 2
We denote (4.37) by Fo(uo,x,(o*,w’_), where E‘o(-,k,t‘,,v_) t Ay ocx([-‘l,‘l]) x R and

investigate the equation

- -~ 0 .0

(4.38) Ly oV 2 Dupo(“o*“o'x"u"-)" = (£f,a,B)

- Y - ¥
where u, = —=, u = —, (4.38) is equivalent to

0 0 0 0

"4 v+
2 sinh(;()*"o)
(4.39)(a) ATve - D(1) v=f(x), =1 €x <X, X<x €1
sinh 04,

(4.39)(b) v(-1) = a, v(1) = 8
(4.39) (c) vec'(-1,1 .

- -~ . 1
We remark that 00 + wo(i) ec ([-1,1]).
The maximum principle immediately implies uniqueness of the solution of (4.39) and the

Fredholns alternative gives existence. To get a bound for the inverse of (4.39)

we construct the barrier functinn:

E(X'X)z )

(4.40) v, (x,A) =K + exp(-
b =¥

where the constants K > 0, B > 0 will be determined thereafter.
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We compute T
2 M
(4.41) Ly %) ) = (-5 28 (ZBLH) 4 Jexp(- 2(—"1)"—) - 'y
Vo Av YD) 3 (y jf )
cosh(; *; )
0 -
D(1) ___LO_ (x + exp(- M_)) , ;
sinh v+ A (0

2
E 1 g1~
K + exP(_ . *X) ) K + exP( 2( OX)O ])
A\(W 0) X(O*-W_)

We denote the first component of (L 0vb)(x) by (L; ;v )J{x) and get

(1) B % Wy,-¥ A
(L v, ) (x) € =~ e , x @ |X « — X 4 ————
2,0 ) ’ -
’ v,V 2/8 2/8
and
3
28 2B(x-x)° x=x)2 " age’
o0 (oo o~ Vexe- 35 57)) <55 . xel-n1
-0 220l 24l -4

where (f)* denotes the positive part of the function f.
Now we use the estimates for ¢ given in Theorem 3.3 for fixed 0 < § <

we estimate

-

‘,0
- A D({x)e , x C-[X,1]
cosh{(y +y )
D(1) —————JLTfL->
sinh ¢ "
+
-‘b
ID(x)|e , X C=[-1,X] .
Since wo is monotonically increasing on (-1,X) and on (X,1] this yields

=40~
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N PP r——— w: - ——

L
y
0 4
( . f)) A4, S
p(x) exply . X @ )X + ’ )
% 2/8 ? |
3 d
2
(n age’ _ <
(LX.O(X) < 0.0 | 4 >
Nt 28 = o
1 f)) V-4 i
1D(x)|exp{~¥, (- , x~C |=1,X - ,
x=X :l
(note that ¢ = T). We now choose B8 :
/6 = L min(z (-8)/ axnapxe)  (1=8)/ ;(x-)@x-)) »
=gom Pyt f) 2 1
2 2E, 20, 3 b
such that
( Me-¥) (12
D(x) , xé@€ |X + —, 1
2V8
: :
(1 age’ -1 .
(Lx'ovb)(x) < o 0 Ke 4
ot = -
0_.0|
2 04-- - .
ID(x)| ,» xé€ |=1,X - -
2’5 '_~J
g
holds and
, o
2 :
y ¢+ ABe :
0 .0
L Ml )
K =~ . o
e min |D(x)] L
xe[~1,1]
Then
.1 K
2 -
1 fe ]
(Lf\';vb)(x) < -min(1, S55) o x€ =0 .
vy ]
.
3
- 4
C
~41- . 1
L&
i
1
| 1

e e . .
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holds. The maximum principle implies the estimate .
-1 0 .
w o ) < const. (¥.-¥)) . .
‘ cx([-hﬂ)m «([(-1,1]) 1
(4.39)(a) gives ij
(4.42) iy ,  Sconst. (¥o-¥)) . -3
’ .
Cx([ 1,1])<R Ay o
- -4
The Fréchet-derivative D,Fg is locally Lipschitz continuous:
L
0,0 0 .0 g
IDF (w,,A,%.,¥)~DF (w ,A¢b,v)I] < T
1 AL e Y- .
a0 uo2 A 90, (1-9,1) e 1
wtl
(4.43) o ) d
o
const. 0+Iw‘-w2la g
X -
o . Wty

for w,, w, in a sphere centered at uoﬂx0 = 00 9 with radius cogst. -
v, v, »
s -
Now we rewrite (4.32) as ]
i 0 .L o
sxnh(v+u+ 30 ) H(wou)
2., _pln vy D(1) . y + .
(4.44) ATu" = + sinh{(z=7—) ——ro .-

0 . 0 0 20 . 0
W+ sinh 1’+ ¢+ T sin h |p+ l
w4
D -
- (;’ , x e [=1,X)0(x,1] f1
v, B
where H(Y) denotes the integral operator on the right hand side of (4.32). We denote .
(4.44) subject to the boundary conditions u(-1) = -—;, u(t) = 2 (with ¢ = V(_) + g, {‘1
0 _u 0 0 * * -3
: : = -
v, = 0* - ’2-) by FU(u,A,w+,¢_) = 0, The Fréchet derivative LA,U <
- - 0 .0 8
D F (¥o*¥yrAe¥ s ¥ ) is given by :
_ = e u S
, D(‘I)s.mh(w0 00*' 2UT) '..'J
(4.45) (L, v)(x) = (A"v" = - L
AU , 0 -

sinh $
* -
N
sinh A N
2, _ . .
0(1) ———= (0 K(Y +y W) (x), v(=1), v(1)) . ]
. 0 u (VIR
sinh 'P,,

-
3
R
-
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where

- 0
ID“H(0°+0°)ICX((_1'”) .cx([_1'”) € const. sinh ¥, .

Therefore, if

(4.46) 11 < —f=, 0 suff. emall
T -
+ -

holds, L;1U fulfills the estimate (4.42). Moreover DyFy is locally Lipschitz
’

continuous and fulfills (4.43),
Since l;bv - (;0-*0”[-1 1 € const |U| a simple perturbation argument shows that
[

also D F (ho!,x,vg.vf)" fulfills the stability estimate (4.42) and that Du!-‘u is locally

+
Lipschitz continuous around ;ﬂ’ ((4.43) holds) if U is restricted by (4.46).

We now insert utu = !gj into F, in order to compute the ‘local error'. We obtain

+
sinh(P i+ =)
. Az ZUT
ru(um,x,v ,0 ) = (= v + -- V(u) - [—(—,- o +
v* v+ v+ sinh ¥,

-1 -x
v( ) iK-—-ﬂ
D(;) sinh(—) —HM J%)-]' —-—.o—-—' —_6—)
v, Usr” sinh v v, v, v,

with ¢ = -’%5. Ohviously
Pi%l sinh(;ﬁ-) —(M - % (3 e‘»" f: e-*-'ds + 3 e‘V"' [f e“'ds)

n P
. T sinh 0 W+

~

where Jn' 39 are given by (4.31)(a), (b) when ¢ is substituted by -VO.

We rewrite
- sinh(——) A

- - — A - 20
Jev-vf:ewds,“v-v!»_c‘ew_ :ew.
P P sinh ¥
+
Since ¢ 1is positive on [-1,X) and negative on [X,1] and monotonically decreasing on

(=1,X) and on (X,1] we get

. B P

AR A R EA T - T i - At 4 ¥ hC N |
St T ERRARE A 4 T A Aa s use an v -y —~ - - v e ——— -

S

ke st

Aca o A

- ]
b

.‘.-4




<
.
L
.
.
L
r
1
L
A

4

P

Ie;#; f: e-*-wdal € const

= oy

x e [-1,1]

‘=

le-;-;' ff1 ew*dsl € const

Lemma (4.1) with O(A) = 0 gives

. e L D(V)ainh(z- _ .
QJL!. Sinh(—u") _HM - o(LX le T - 1|) - T e'i"*
0 2u 0 . 0
W_,, T sinh W,, 'y sinn v+
if the low injection condition holds.
We calculate, using D(1) 0~ D(-Uo H
>. 2 sinh ¢+ 2 sinh §_
s
- . sinh(¥r+ o) sinh(z>- N
- : v i ST
.- V(o) = [D(1) = D(1) 5 e = D(x)]
", sinh v+ sinh V,,,
s
¢ -~ g -2 U
AT YV
N e T e T
= V(o) - [D(1) =————— - p(1) o - Dix)]
. 2 sinh *.,, 2 sinh #+
- ( 0 0, u u
: % v o2 W Up -y a0V 4
t - {D(x) £ o e v £ o © + 0(Yy X'e )ew
2 sinh 0+ 2D(x)sinh w+
(4.47) - <
e 5 -0 u_
D(-1)2e T ; e -. 4.4 UT ;«
{ o © - D(x) o + 0(y A'e Te
2D(x)sinh ¢ 2 sinh y_
U
4.4 UT —‘
oy Me eV i ny L, xe 1
u_ o
I
+ 0(y Ae e W—D(x)] , x € [-1,X) .
.
Using Theorem 3.2 gives
R
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0 U

eh - 4.4 UT ) .

D(x) = n(X+) + (D(x) = D(X+)) + 0(y A (1 + e 7))

2 ginh 0* sl

e (X,1) ::'

0, U_ ? x . o

5 V.t g_ .'*.

Dil) e " ;(x+) + 0(Y4X4(1 + e T)) -

2D(x)sinh ¥ J 5

N

*

yg«r u u_ h -0

p-ne T - a4 Up 2
- Nx-) +O(YA (1 re ) )

2D(x)sinh §_
? x e [-1,X) -
0 u -
3 D(x) - - 4.4 G;
- o’p(x-) + (D(X=) - D(x)) + O(y A (V1 + e 7)) '
2 sinh ¢~ / -
.,‘.
::-: Since ¢ solves the layer-equations (3.23)(a},(b) we get for (4.47) ——
u_ u.
( v 4.4 Ur. v 4.4 Up -y .-
(D(x)-D(X+)(e"=1) + O{y A (1 + e "})e  + 0{y A (1 + e "))e 7, x € (X,1) i’
(4.48) "
u_ -7
\ -v 4.4 Up ¥ ]
(D(x)=-D(X=))(e "=1) + O0(Y A (1 + e "))e R
u -~
U - -
L + O(Y4X4(1 +e T,)e V, x € [-1,X) .}
¥ is negative on (X,1] and positive on (-1,X) and since D e C;( (~1,1]) we obtain E :
- _\\.
|(D(x)-D(x+))(ev-1)| € const. d+(X), x e (X,1] d;
l(D(x)-D(X-))(e-“-HI € const. 4_(d), x C (-1,X) . !4
Also, (3.50)(a), (b) imply -
]
L
*
-45= o
I
P
; ]
X ]
' 1
]
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2
-
';‘EEE) -$(0+) D{X=)
e <e < const. exP(D(X+)-D(x-) (V*"L))
-l
~|D{x-) P
€ const. exp(-Lgi{:ll—~ g‘)(Y‘X‘)D‘x+)-D(x-). x e (X,1] ‘1

D(X+)=-D(X=) UT

and analogously

=2 - _D(x+)
A < eW(O-) -D(X+) g_)(Y4x4)D(X*)-D(X-)' x=C [-1,X)

< const. exp(D(x+)_D(x_) n
T

-]

Therefore the expansion (4.48) is bounded by const (d_(A) + 4 _(}) + exp(al%'l)(Y‘l’)Y) 7
T
where a > 0, vy > 0 holds,

These estimates and ; e Ci([-1,1]) for D e C;([-1,1]) imply that

u K
Ma‘l
e L +a e AT
(4.49) IFU(u+u,A,w+,v_)lc (1-1,11) € const )
X 1]
+ .
holds. R

The stability estimate (4.46) (which holds for LX1U if U fulfills (4.46)),
[

Lipschitz continuity of DuFU and (4.49) make it possible to apply the version of the

o SN RN

implicit function theorem given by Spijker (1972), which implies that FU(u,A,ta,iE) =0

e
L e

*
has a solution u which is unique in a sphere in A, with radius for

X
(i

sufficiently small x centered at u+u and the estimate

8

* 4.4
fu-u IA < const.(d+(l) +d_(A) + (YA

X

holds for Is—l [ 26 where p is sufficiently small but independent of A.

T W,
o

Y TPV RTINS ¥

We remark that the size reduction on I%_l comes from the interpretation of (4.32) as
T

perturbation of the equilibrium problem (U=0) which was heavily used for the stabhility
proof. The numerical results demonstrated in the next Section indicate that existence and k

I
T >

. . . s et 1Y
validity of the asymptotic expansions hold under much weaker restrictions on |G—
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5. Numericil Experiments

We demonstrate numerical results for two pn-junctions in the high injection case, that
is U2 Ubi(l). The existence Theorem 3.2 for the reduced problem does not hold if the low
injection condition (3.41) is neglected. Both functions we investigate have characteristic
length 28 = 5 x 10-3cn, the doping profile of the first pn-junction (called junction I

in the sequel) is

«0.5 x 1017cm3 s, =L €2z« %
(5.1) c(z) =
10" e’ , §< 2 ¢t

and for the gsecond junction (called junction II in the sequel)

—1015cm3 e =2 €2 < %

(5.2) c(z) =

1017cm3 ’ % <z <L .

- 7
Accurately speaking, both devices are pn+ junctions. In both cases C = 101 cms. This

and the numerical values for the parameters from Table 1 gives for both devices using the

formulae (2.6), (2.9):

(5.3) 2 =04 x10% , y¥=0.25 .
For junction I we obtain
min|C(2)|

z 1
(5.4) max|Cc(z)] 2

z
and for junction II

min{C{(z){
2 -2

(5.5) maxlC(z)] = 10 .

z

For both cases the singular perturbation approach seems applicable because (2.22), (2.23)
'holds' (the order of magnitude of Xz and min|{C(2)|/max|C(z)| as given by (5.3) and

z z
(5.4), (5.5) resp. are clearly different and n, o= 1010 while C = 1017).
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The built-in-voltage (calculated using (2.25)) for junction I is

(5.6) Ubi = =0.79v

and for junction II

.

(5.7) Ubl = -0,69V .

All calculations described in the sequel were performed on the CDC~Cyber 74 computer of the

Technical University of Vienna with the boundary-and-interface-problem solver PASVA4

®!

A
q
o
T
T
4
ol

written by M. lLentini and V., Pereyra. The SRH-recombination term was used. Figures 1-3
show the reduced solutions of a typical high injection case for junction I with ~—

1
U = 1.39V, The majority carrier densities (n on the n-side, which is the interval (;,1]

PPNy R e

1
and p on the p~side which is the interval [(-1,7)) are larger than the doping |[Dj
(except at the boundaries x = :1).
The reduced solutions for a high-injection case (U = 0.99V) for junction II are

shown in Pigures 4-6.

.
°
Y W P

Since in both cases the applied voltages are significantly larger than the absolute
value of the built~in-voltage, the existence Theorem 3.2 for the reduced problem cannot be
applied. However the presented numerical results give a strong indication for the

existence of reduced solutions even in the high injection case.

A -
PP N PUCAL DAL PR RLIArY

Figure 7-9 and 10-12 show the solutions of the singularly perturbed (full) problem
with U = 'Ub1| for junction I and II respectively. The internal layer in the components © ]
Vv, n, p is clearly visible. The solutions of the corresponding reduced problems (whose
existence is also not covered by Theorem 3.2) were alsc computed and they agreed up to .j
graphical accuracy with the full solutions away from the layer (see Figure 13, which shows ;

the reduced solutions n, p for function I). In fact, the reduced solutions were used as

starting guesses for the numerical method to compute the full solutions and convergence was

achieved in a few steps.

This indicates that the asymptotic expansions are valid for a much larger range of

U values than given in Theorem 4.2.
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device. The solution components are assumed to be continuous across this
junction.

We give an existence proof for the reduced problem (the singular pertur-

bation parameter is set to zero).

The discontinuity of the right-hand side
of the system produces a discontinuity in the reduced potential and reduced
carrier distributions. This creates an internal layer in the corresponding
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solution components of the singularly perturbed problem. The current distri-
butions have no internal layer. We also derive the (internal) layer equations
and give an existence proof. No boundary layers occur.

We show that fosmal expansions actually represent (asymptotically)
solutions of the singularly perturbed problem if the applied voltage is
sufficiently small, and we investigate the - -pendence of the total current on

the applied voltage.

Numerical computations are reported.
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