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Contributions to the Theory of the Properties of
Hydrogenated Amorphous Silicon

BACKGROUND

Knowledge of the electronic structure of crystalline
and amorphous semiconductors has been of great assistance in
the development of electronic devices. Such knowledge is
derived from first principles calculations, the results of which
can be tested against experiments and subsequently used in
interpreting measurements or in guiding technological applica-
ﬁ tions. :

The problem of improving the efficiency of solar cells by
using samples of hydrogenated amorphous silicon (a-Si:H) has
received a lot of attention recently. Considerable progress
has been made in this area by performing both experimental
and theoretical studies of the role of hydrogen in qmorphous
silicon. Very recently a breakthrough was reported in the
manufacturing of thin films of a-Si:H which produced solar cells
with an efficiency greater than 10%. This achievement suggests
that the a-Si solar cell technology now presents a realistic
alternative to the crystalline silicon technology.

In 1975 Spear and LeComber2 succeeded in substitutional-
ly doping amorphous Si (a-Si), produced by decomposition of
silane, through the incorporation of phosphorous and boron
impurities. This work became the starting point of the current
intensive investigation of the electronic properties of a-Si.
Paul et al.,” who also presented similar doping results in
a-Si produced by sputtering in an Ar+H plasma, suggested that
the origin of the doping effects as 11 as other good elec-
tronic properties of this material '” is the passivatgon of
dangling bonds by hydrogen. It has been shown recently  that
the density of states (DOS) in the middle of the gap gan bg
reduced through hydrogenation to values as low as 5x10 “cm l
eV. However, the amount of hydrogen in these Si-H "alloys" was
found to be as much as 100 times larger than the maximum number
of dangling bonds. Therefore, hydrogen, in addition to satu-
rating the dangling bonds, also resides elsewhere and perhaps
introduces other changes in the electronic structure of a-Si.
Hydrogenation not only eliminates the dangling bond states from
the energy gap ug also widens the gap as demonstrated by
several workers using different experimental techniques.

Manuscript approved April 29, 1983,




Away from the gap, photoemission measurements 10 revealed
hydrogen associated states well within th yalence band. In the
conduction band, photoconductivity data suggest the forma-
tion of Si-H antibonding states.

There have been several theoretical models and calcula-
tions in order to gain an understanding of thfge experiments.
We mention the work of Allan and Joannopoulos and coworkers
who have studied Si-H molecules using the P the-lattice tech-
nique; the calculations of Ching et al. using an ortho-
gonalized linear-combination of atomic orbitals method based on
a continuous-ranﬁpm-network, and the model defect method of
Divincenzo et al.

1. A.W. Catalano et al., IEEE Photovoltaic Specialists Con-
ference, San Diego, Sept. 1982; and to be published.

2. ?igisipear and P.G. LeComber, Solid State Colmun. 17, 1193

3. W. Paul, A.J. Lewis, G.A.N. Connell, and T.D. Moustakas,
Solid State Commun. 20, 969 (1976).

4. T.D. Moustakas, J. Electron. Mater. 8, 391 (1979).

5. H. Fritzsche, Sol. Energy Mater. 3, 447 (1980).

6. T. Tiedje, T.D. Moustakas, and J.M. Cebulka, Phys. Rev. B23,
5634 (1981).

7. E.C. Freeman and W. Paul, Phys. Rev. B20, 716 (1979).

8. G.D. Cody, C.R. Wronski, B. Abeles, R.B. Stephens, and B.
Brooks, Sol. Cells 2, 227 (1980).

9. N.B. Goodman, H. Fritzsche, and H. Ozaki, J. Non-Cryst.
Solids 35-36, 599 (1980).

10. B. von Roedern, L. Ley, and M. Cardona, Phys. Rev. Lett.
39, 1576 (1977).

11 . T.D. Moustakas, D.A. Anderson, and W. Paul, Solid State
Commun. 23, 155 (1977).

12. D.C. Allan and J.D. Joannopoulos, Phys. Rev. Lett. 44, 43

(1980).

13. W.Y. Ching, D.J. Lam, and C.C. Lin, Phys. Rev. Lett. 42,
805 (1980).

14, D.P. DiVincenzo, J. Bernholc, M.H. Brodsky, N.O. Lipari,
and S.T. Pantelides, "Tetrahedrally Bonded Amorphous Semi-
conductors”" eds. R.A. Street, D.K. Biegelsen and J.C.
Knights (Am. Inst. Phys., New York 1981) p. 156.

MODEL OF THE DISORDER (P1-P4)

Our model1 describes hydrogenated a-Si by constructing
an effective lattice whose sites may have probability c of being
vacant, and probability 1-c¢ of having a Si atom. In addition,
we have assumed that hydrogen atoms may be located along the
lines connecting a vacant site with its nearest-neighbors.
Thus, we have included in our model, at random, Si sites,
vacancy sites, and sites surrounded by one, two, three, or four
hydrogen atoms which saturate the Si dangling bonds. Using this




model of disorder, we have used the coherent-potential approxi-
mation (CPA) to perform calculations of the electronic density
of states (DOS). The results (references 1-4 reprinted herein)
may be summarized as follows:

a) We have demonstrated the existence of dangling bond states
in the gap.

b) We have shown the restoration of the band gap upon hydro-
genation.

c) We have shown that for a 20% hydrogen concentration the gap
is wider by 0.4 eV due to a recession of the valence band.

d) We have identified H induced peaks in the DOS of the valence

band.

e) We have concluded that Si-H antibonding states at the bottom

of the conduction band have wavefunctions with very strong
hydrogen component.

LOCAL Si-H BONDING (P5, P6)

We have carried out detailed self-consistent pseudopoten-
tial electronic structure calculations on the hydrogen saturated
Si vacancy, (HSV) (i.e., a hydrogen atom attached to each of the
four Si dangling bonds) to learn more about H-Si bonding in a
bulk environment. The geometrical model consisted of a crystal-
line array of HSV "supercells". The local DOS confirmed the CPA
results that valence band states within 0.6 eV of the gap are
strongly depleted by hydrogenation and that conduction states
just above the gap are strongly influenced by hydrogen. We have
also studied relaxation (symmetric only) of the HSV by calculat-
ing forces (by the Hellman-Feynman theorem) and total energies.
It was found that the DOS features discussed above are sensitive
to H-Si bond length and possibly to H-H interactions. These
studies suggest that the stable HSV assumes a low symmetry
buckled form which is similar to the ideal (unrelaxed) HSV in
local H-Si bonding features.

D.C. CONDUCTIVITY AND OPTICAL ABSORPTION (P7, P8)

In addition to our work summarized sbove, we have perform-
ed calculations of the transport properties of a-Si:H. We have
evaluated the d.c. conductivity by the Kubo-Greenwood formula-
tion using the Green's functions generated by our coherent
potential approximation (CPA) calculations. Our results show
that the mobility of electrons is greater than that of holes,
apparently due to the strong hydrogen component of the density
of states just above the gap.

Finally, we have been able to calculate the a.c. conductiv-
ity and thereby obtain the optical absorption coefficient. This
is the first application of the CPA in the evaluation of the
absorption and transport properties of a-Si:H using a realistic
multi-band model. A comparison of our calculated optical ab-
sorption to the convoluted DOS shows that the optical gap is

e i

~
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larger than the DOS gap. This difference in calculated gaps is
due to remanent wavevector conservation arising from short range
order in a-Si:H.

Overall, the comparison of theoretical calculations with |
experimental data leads to the following important conclusion: !
for many properties of a-Si:H which do not intimately involve ,
band tail states or gap states, knowledge of the precise atomic l
positions are not necessary for their calculation and comprehen- .
sion.
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Slater-Koster parametrization for Si and the ideal-vacancy calculation
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A Slater-Koster Hamiltonian for Si is constructed using four (one s and three p) orthogonal orbitals per site. This ) ‘ﬂ

Hamiltonian reproduces reasonably accurately the empirical pseudopotential band structure not only for the valence b
but for the conduction band as well. It also determines correctly the position of the bound level of an

unreconstructed vacancy demonstrating thus that the effects of electronic self-consistency are minor.

I. INTRODUCTION

Koster and Slater® proposed in 1954 a Green’s-
function method for the calculation of the changes
in the electronic structure of perfect crystals
caused by the presence of localized defects. The
first numerical implementation of this method was
made by Callaway and Hughes? on silicon. How-
ever, the first-principles numerical evaluation of
the matrix elements in a Wannier representation
made this approach too complicated.

Recently, due to the work of Bernholc et al.>*
and that of Baraff and Schiiiter, % significant pro-
gress has been made in performing realistic de-
fect calculations. These authors have presented
similar formalisms and actual calculations which
seem to indicate a level of accuracy approaching
that of band-structure calculations for perfect
crystals,

The purpose of the present work is to show that
for Si an accurate orthogonal basis Slater-Koster’
parametrization can be obtained, which when used
in the Koster-Slater! impurity method gives re-
sults in close agreement to the self-consistent
calculations of Refs. 4, 5, and 6. The orthogo-
nality of the basis is a clear numerical advantage
especially in attempts to treat disordered Si by an
effective Slater-Koster (SK) Hamiltonian. On the
other hand we recognize that the orthogonality
assumption, which implies no atomiclike basis,
makes it difficult to estimate modifications in the
matrix elements resulting from structural
changes. '

QOur SK Hamiltonian produces a very good fit to
the pseudopotential band structure of silicon,®
and reproduces fairly accurately not only the
band gap but the conduction band as well, unlike
all the previous attempts.

In Sec. II we describe our Slater-Koster inter-
polation scheme and in Sec. III we apply it to the
ideal Si vacancy problem.

II. SLATER-KOSTER INTERPOLATION

Since Slater and Koster” proposed the use of the
tight-binding method as an interpolation scheme
there have been many attempts to apply this idea
to the band structure of silicon.*”** Most of these
calculations give a good description of the valence
band but the band gap is too wide and the conduc-
tion band too narrow. For example, the calcula-
tion of Chadi and Cohen'® and also that of Chadi'?
gives a gap of 3 eV and no reasonable representa-
tion of the conduction band. However, Chadi'® has
succeeded in obtaining the correct gap and con-
duction band by a different approach in which he
used as adjustable parameters the exponential de-
cay constants cf Slater orbitals together with an
empirical pseudopatential Hamiltonian. We con-
sider this methoa as not falling into the same
category as SK fits and, therefore, we will not
compare with it except to say that our results are
in close agreement. .

The SK fit which has been repeatedly quoted in
the literature as giving a realistic tight-binding
Hamiltonian is that of Pandey and Phillips.!* This
calculation overestimates the gap to 1.4 eV and
gives a very narrow conduction band. As stated
by the authors, their calculations are not reliable
for the conduction band. We will give a detailed
comparison with Pandey and Phillips (PP) after
we have given details about our own calculation.

Qur SK fit uses an orthogonal basis set of s and
p functions, thus our nonsymmetrized Hamiltonian
is an 8§ x 8. We have used, as adjustable parame-
ters, 20 three-center interaction integrals which
include first, second, and third neighbors. These
parameters were determined by nonlinear least-
squares fit to the local pseudopotential results of
Pickett.® This step was done after reducing the
8 x 8 secular equation by symmetry following the
original paper of Slater and Koster? and also that
of Dresselhaus and Dresselhaus.® This block

2903 © 1980 The American Physical Society




2904 D. A. PAPACONSTANTOPOULOS AND E. N. ECONOMOU

TABLE 1. Comparison of Slater-Koster parameters
for S expressed in eV.

Pandey
Present and
work Phillips®

E, ,(000) -3.953 -4.19
E, 4(110) 0.001 0.0
E, (011) -0.196 0.0
E, .(110) 0.033 0.0
E, (333 -1.916 -2.08
E. (5 1.509 1.224
E, ,(000) 1.512 0.20
E, 4(110) 0.318 0.2¢
E,.(011) -0.583 -0.10
Eq 4(110) 0.084 0.34
E,,(011) -0.034 0.0
E,(333) 0.276 0.43
E, (333 1.407 0.947
E,, (34 -0.113 0.0
E,_,(-:%%) ~0.081 0.0
E,4(33) 0.101 0.0
Eo (35 0.027 0.0
5,_,(%% 0.062 0.0
E, (33%) 0.116 0.0
E.,G3) -0.077 0.0

3 Reference 14.

diagonalization of the 8 X 8 matrix is essential for
obtaining a reliable fit. We have fit in this way
all eight bands of Pickett’s calculation® for a grid
of 20 % points in the irreducible Brillouin zone.
The rms fitting error was less than 0.25 eV for
the valence bands which is slightly better than the
0.30-eV value quoted by PP. For the conduction
band our fitting errors were 0.36 eV (5th band),
0,50 eV (6th band), and 0.90 eV (7th and 8th bands).
Pandey and Phillips'* do not give rms errors for
the conduction band; our own estimates using their
parameters and the pseudopotential results of
Pickett® are 0.7 eV (Sth band), 1.5 eV (6th band),
and 3.5 eV (7th and 8th bands). It is clear there-
fore that our own SK fit is of superior accuracy.
We attribute this improvement to our inclusion, in
contrast to PP, of the third-neighbor interac-
tions., In Table I we list our SK parameters

fol -wing the not- on of the SK paper’ and com-
pa. “"mw’ .oseof PP. The PP parame-
ters +* . heeu converted from the two-center to
the three-center notation in a straightforward
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FIG. 1. (a) Energy bands for Si resulting from our
Slater-Koster Hamiltonian. (b) Energy bands for Si
from the pseudopotential calculation of Pickett.

manner.” Figure 1(a) shows our SK energy bands,
and Fig. 1(b), for comparison, the bands from the
empirical pseudopotential of Pickett.® One can
see that we have even reproduced the plane-wave
character of the conduction bands in contrast to
the narrow conduction states given by Pandey and
Phillips.!* Our band gap from the SK bands is 1
eV wide, which is almost exactly the value from
the pseudopotential results.*

In order to calculate the densities of states (DOS)
we have generated from the SK Hamiltonian eigen-
values and eigenvectors for 89 & points. These
results were then used in the tetrzhedron method.!”
The resulting DOS are shown in Fig. 2 where one
can note that the well-accepted three-peak struc-
ture of the valence bands is reproduced as well
as a fairly accurate value for the gap and very
reasonable shape for the conduction bands. Also,
the angular momentum decomposition gives the
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FIG. 2, Total and angular momentum-decomposed densities of states for Si derived from our Slater-Koster Hamil-

tonian,

expected strong s character at the bottom of the
valence band and strong p character at the top of
the valence band and the conduction band. In Fig.
3 we present, calculated in the same way, the
DOS from the Pandey and Phillips'* parameters.
The similarity in tne valence band and the clear
disagreement in the conduction band is evident.

Il IDEAL VACANCY IN SILICON

Bernholc and Pantelides® have given a clear sum-
mary of the Koster-Slater! theory, and performed
calculations of the ideal vacancy in Si based on the
SK parameters of PP.!* We have done calculations
along the same lines using the PP parameters,
for the purpose of checking our computer codes,
and also using our own SK parameters. We have
reproduced the results of Bernholc and Pantelides®
using the PP parameters. In particular, using the
PP parameters we find a bound state of T, (p-
like) symmetry at 0.27 eV above the top of the
valence band.

However, using our own SK parameters we find
the bound state of T, symmetry to be at 0.75 eV
above the top of the valence band, i.e., much
closer to the conduction band rather than the
valence band. The bound levels are determined in
general as solutions of the equation

det [[Sq. = 3 Giarr (EVgu g

are

=0,

where G,,.. (E)=(a} (E -H%)™ a’) is the unper-
turbed (crystalline) Green’s function'® and V...
are the matrix elements of the perturbing poten-
tial. In the present case G,,..(E) is diagonal
when a, a’’ refer to the four orbitals of the same
site and V,..,. is diagonal and infinite when

a’’, a’ refer to the four orbitals of the vacant site
and zero otherwise. Thus the equations deter-
mining the bound levels become

G,(E)=0, ()
G,(E)=0, @)
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FIG. 3. Total and angular momentum-decomposed densities of states for Si derived using the Slater-Koster param-

eters of Pandey and Phillips.

where G,, G, are the p and s diagonal matrix
elements of G°, respectively. In Fig. 4 we plot
the real part of G, (ImG, is zero in the gap) vs
E, showing thus the solution of Eq. (1) at £
=0.75 eV, On the other hand, the plot of the real
part of G, versus E in Fig. 5 shows that Eq. (2)
has no solution, i.e., no s-like bound level exists.
The important point in this section is that the
position of the bound state that we have calculated
(0.75 eV) is in close agreement with the 0.8-eV
value reported by Bernholc et al.* and obtained
from electronically self-consistent calculations.
Qur value is also in good agreement with the 0.7-
eV value given by Baraff and Schliiter®*® and also
by an electronically self-consistent approach.
This confirms the suspicion of Bernholc et al.*
that the position of the bound level in the gap is
determined mainly by the crystalline SK Hamil-
tonian. Indeed, the present calculation shows that
the effect of electronic seif-consistency on the
position of the bound level is within the numerical

uncertainties of the calculation and thus can be
neglected. Hence, it appears to us that the
question of carrying the calculation to self-con-
sistency is of secondary importance. What is
needed is a tight-binding Hamiltonian which gives
the correct gap and a good representation of the
valence as well as the conduction band. With such
a Hamiltonian as a starting point the electronic
self-consistency effects seem tc be of minor im-
portance. On the other hand, the effects of lattice
relaxation due to the vacancy (i.e., the effects of
ionic self-consistency) are quite important as
suggested recently by White and Ngai'® and demon-
strated by elaborate first-principles calculations
by Baraff ef al.?® and Lipart et af.?

In conclusion, we have succeeded in construct-
ing an orthogonal s,p’ basis Slater-Koster Hamil-
tonian for Si which reproduces reasonably ac-
curately the crystalline band structure not only of
the valence band but of the conduction band as
well. This Hamiltonian was shown also to be
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FiG. 4. The real part of the p-like Green function
G, plotted as a function of energy. Note that the gap is
in the range 0S £E<1 0 eV.

capable of calculating correctly the effects of un-
reconstructed vacancies. In forthcoming publica-
tions we employ this Hamiltonian together with a
coherent potential approximation approach to
study the electronic structure of amorphous and
hydrogenated amorphous Si. In such a compli-
cated calculation, the orthogonality and the smal}
number (four orbitals per site) of the basis of the
present SK scheme are very important advantages.

FIG. 5. The real part of the s-like Green functions
G, plotted as a function of energy. Note that the gap is
in the range 0 E<1.y eV,
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Electronic Densities of States in a-Si:H
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ABSTRACT

We have used the coherent potential approximation to calculate
the electronic densities of states for a model of hydrogenated
amorphous silicon. The results are in good agreement with photo-
emission, optical, photoconductivity and photoluminescence data.

Recent experimental work in a-Si:H has shown that hydrogen
reduces the density of states (D0S) in the band gap by several

orders of mavgm‘tude,1 and also widens the optical gap.2’3 In addi-
tion, other experiments have shown that hydrogen modifies both the

va1ence‘ and conduction bands.5

For the purpose of understanding these experiments several
theoretical models and calculations have been proposed.6 We present

here a brief account of our calcu]ations7 which we believe provide
satisfactory explanations of the above mentioned measurements.

Our model assumes an effective lattice whose sites may have
probability ¢ of being vacant, and probability l-c of having a
Si atom. In addition, we have assumed that hydrogen atoms may
be located along the lines connecting a vacant site with its nearest
neighbors. Thus we have included {n our model, at random, Si sites,
vacancy sites, and sites that have one, two, three, or four hydrogen
atoms. Using this model of disorder, we have used a8 tight-binding
form of the coherent-potential approximation (CPA) to perform de-
tailed calculations of the electronic D0S. Since we have not allowed
for reconstruction, we believe that the most stable configuration
to be compared with experiment is that in which a vacancy is re-
placed by a complex of four hydrogen atoms. This configuration
is shown in two dimensions in Fig. 1.

The starting point of this calculation is a Slater-Koster
{SK) Hamiltonian fit to the pseudopotential band structure of crys-

talline S1.8 The basts is orthonormal with four orbitals (one

s-like and three p-like) per atom. We have used 20 S$§-Si matrix
elements (three-center interactions) that include first, second, and

ISSN:0094-243X/81/730130-0651.50 Copyright 1981 American Institute of Physics
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Figure 1. Two-dimensional view of the atom configuration used in
the present calculations.

third nearest neighbors. We have determined the H-H, and H-Si matrix

elements from the SiH4 molecule on an sp3 basifs, and then converted

them to our SK basis.

The CPA effective Hamiltonian H_ has off-diagonal matrix ele-
ments which for the first nearest ngighbors are a virtual crystal
average (VCA) of the Si-Si and H-Si values. The off-diagonal second
and third nearest neighbor fnteractions were assumed to have the
S§i-S1 values. The diagonal matrix elements I and tp form a diagonal

4x4 matrix (since each site is associated with four orbitals):

tr;, 0 0 0
SN
0o 0 0 I,
and they are determined from the CPA condition:
L Pty =0 (2)

3
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where P.‘l is the probability for each configuration j, and
- -~ -~ o -1
tj = Uj[l-GeUJ] (3)

where G. is a 4x4 site diagonal Green's function corresponding to
the efféctive Hamiltonian 'Fle, and

U; = EJ-(OOO) -z (4)

where .E'J(OOO) is a 4x4, in general non-diagonal, matrix which con-
Eains the on-site SK parameters. Having determined I, tp. and thus
Ge from the above equations we can calculate the DOS from the stand-
ard expression:

o(E) = - 1 1a7rG, (5)

Our calculated DOS are shown in Fig. 2 for the case of 5% vacancies
which are all saturated by hydrogen resulting in a hydrogen concen-
tration of 20%. From Fig. 2 we note first a bandgap E9=1.4ev that

is wider by 0.4eV than the corresponding 59-1.0ev which our tight-

binding Hamiltonian gives for the non-hydrogenated case.8 This
widening of the gap is due to a narrowing of the third peak of the
DOS at the top of the valence band which we have identiffed to be

a result of a2 decrease of the ppx interaction due to hydrogenation.7
This recession of the valence band by 0.4eV is in excellent agre

ment with the photoemission measurements of von Roedern et al.
Figure 2 also shows a site decomposition of the DOS. Concentrating
on the H site DOS, we have identified hydrogen induced peaks at
approximately 5.2 eV, 7.6 eV, and 13.5 eV below the Fermi 1level.

This 1s also in good agreement with the photoemission data.‘

We have further demonstrated the widening of the band gap by
performing a joint DOS calculation and presenting our results in the
same manner as that followed in the analysis of the measurements of

the optical absorptfon coefficient a.g The calculated square root
of the joint DOS is assumed to be proportional to the quantity

(aE)Uz, and has been normalized to the experimental value’ at E=4eV.

A comparison with the measurements of Cody et al3 is shown in Fig. 3.
Although the experimental graph corresponds to a smaller hydrogen
content (16%) than the calculated one, the agreement s good with the
only discrepancy being that the theory predicts a smaller gap.
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Figure 2. Total and site decomposed densities of states for Sﬂ-l
with x=0.20. Note that the Si and H DOS have been multi%
plied by l-c and ¢ respectively (c=0.05). The Ferm{ level
1s located in the middle of the gap.

Figure 4 shows the variation of the band gap as a function
of the hydrogen content. In all cases shown in this graph we are
dealing with vacancies fully saturated by hydrogen. We note a
monotonic increase of the band gap with increasing hydrogen concen- :
tratfon. This is in qualitative agreement with the experiments of !
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Figure 3. Plot of the square root of the joint density states

versus energy. The apenlﬂrc!es are the experimental
values of the quantity (af) (Ref. 3).

Moustakas et alz who have studied the dependence of the optical
gap on hydrogen content for sputtered hydrogenated a-Si.

We should mention here that in addition to the hydrogen-
saturated vacancy case we have also considered configurations where
one, two, or three hydrogen atoms are present, leaving three, two, or
one dangling bonds respectively. The results demonstrate the appear-

ance of dangling bond states in the gap.7

Turning now to the conduction band, we have found from the
site-decomposed DOS of Fig. 2 that the bottom of the conduction
band has strong hydrogen character. This supports the notion that

photoluminescence clata5 suggest the formation of Si-H antibonding
states at the bottom of the conduction band.

We wish to acknowledge discussions with W.E. Ptckett, T.D.
Moustakas, L.L. Boyer, B.M. Klein, and 6.D. Cody. We are also
grateful to T.D. Moustakas for providing his unpublished data shown
in Fig. 4. This work was supported in part by the Solar Energy
Research Institute via an interagency agreement with the US Depart-
ment of Energy.
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Using a coherent-potential approximation, we calculate the cffects of hydrogenation on the
density of states of silicon containing a finite concentration of ideal vacancies. The resulis
reproducc the main features seen in the measurements including the restoration and the widen-
ing of the gap with incressing hydrogen content.

Hydrogenated a-Si has recently received a lot of at-
tention partly because of the possibilities it offers as a
device material.'* In particular, emphasis has been
given to the determination of the density of electron-
ic states (DOS) by various experimentul tech-
niques’™" and to a lesser degree by theoretical calcula-
tions.?'® As a result of these efforts it is generally
believed that the gup states in a-Si are associated
with dangling bonds: hydrogen is attached to these
dangling bonds thus pushing these states out of the
gap. The model we consider in this work demon-
strates, for the first time in a quantitative way. the
appearance of dangling bond states and their passiva-
tion by hydrogen, and also shows the role of hydro-
gen in widening the gap. An aiternate computational
technique® using small Si-H molecules (terminated by
Si Bethe lattices) has produced qualitatively simitar
conclusions to those presented here.

The starting point in our calculation is a Slater-
Koster Hamiltonian H, including up to the third-
nearest-neighbor interactions; the basis is orthonor-
mal with four orbitals (one s-like and three p-like)
per atom.'' This Hamiltonian accurately reproduces’
both the valence and the conduction bands of crystal-
line Si: we found that this level of accuracy is essen-
tial for our calculation. Randomness is introduced by
assuming that there is a finite concentration ¢ of ideal
vacancies which means that the diagonal matrix ele-
ments of the Humiltonian, (n|Hlm), at a given site
n have a probamiity ¢ to be infinite and a probability

p}]

16

I — ¢ to have the perfect-crystal values. This type of
disorder produces the essential feature ol dangling
bonds at the atoms surrounding a vacancy. Topologi-
cal disorder is simulated by changing the ught-
binding parameters Eq ( %-;—-;—) and £l %-;—%) from
their crystailine Si values'' to the values 1.39 and
0.31 eV, respectively, as a resuit of varving the
dihedral ungle in a range which spans the eclipsed
and staggered configurations. We have omitted the
reconstruction and relaxation of the Si lattice which
tends to push the dangling bond states back into the
bands as shown by explicit calculations in the one va-
cancy case.'> "} Thus our model would overestimate
the number of dangling bond states and consequently
the hydrogen required for their passivation. The size
of this overestimation depends on how much recon-
struction has taken place. which in turn is uffected by
the method of preparation of the Si-l1f film.} For ex-
ample reconstruction may be prohibiled when the
film is grown in the presence of a substantial amount
of hydrogen.’ Finually we point out that no correla-
tion among the positions of the vacancies has heen
included in the present calculation. it has been
shown elsewhere! that the main effect of the tenden-
¢y to :luster the vacancies together to form divacan-
cies. trivacancies, and internal voids. etc., is to re-
place ¢ by 1 smaller effective ¢*.

Hydrogens 4re assumed to be located along the
lines connecting & vacant site with ils nearest neigh-
bors. Thus up to four hydrogens cin be accomodated

2042
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around a Si vacancy. The H-Si distance is taken as in
the SiH, molecule. Charge-density contours of a H
saturated Si-vacancy calculation'’ suggest the ex-
istence of higher than s components of the hydrogen
wave function; and show that this multiple / wave
function can be approximated by a single s-wave
function, |S4). which is displaced towards Si by
about 20%. Using this wave function 1S,). the ma-
trix elements of SiH,.'® the results of Chadi'’ that

Si wave functions decay as exp{—1.04r), and \
Mattheiss’s values for hydrogenic matrix elements;\"
we have estimated matrix elements y,(i=1, ..., 6)
analogous to those defined by Hirabayashi'? with one
or both.of the Si sp?® hybrids replaced by |Sy). When
a hydrogen is missing the corresponding y; is taken
as infinite. Knowing the matrix elements vy, for each
configuration, we can transform'? to the original basis
lin} and obtain (nilH1jn). For the H-saturated Si
vacancy the matrix elements in eV are E£,,(000)
=—8.72, £4(000) =—1.60, E,(7573)=—3.08,
Ea(+33) =196, Eq(351) =064, Ep(+37)
=0.98. The off-diagonal disorder in our model Ham-
iltonian was treated in the virtual-crystal approxima-
tion by averaging the above Si-H matrix elements
with those of Si.'!! We then employ the coherent-
potential approximation (CPA) to obtain the DOS.
The CPA calculates the DOS from a periodic effec-
tive Hamiltonian £, which is obtained by replacing
(ns|H|sn) by 2,(E) and (ap|H |pn) by 2,(E)
where p stands for any of the three p orbitals. The
unknown quantities (self-energies) Z,,Z, are deter-
mined from the self-consistency condition

(U(1=G,U) ") =0 , (1)

where the parentheses denote average over the fol-
lowing 17 configurations at a given latlice site: the
site occupied by Si (one configuration with probability
1 —c). the site being vacant with no H (one config-
uration with probability xq), the site being vacant
with one dangling bond occupied by H (four config-
urations each of probability x,/4), the site being va-
cant with two dangling bonds occupied by H (six con-
figurations each of probability x,/6), the site being
vacant with three dangling bonds occupied by H (four
configurations each of probability x,/4). and the site
being vacant with all four dangling bonds occupied by
H (one configuration of probability x,). G, is the di-
agonal 4 x 4 matrix (ni|[(E = H,)"|in) and U is the
configuration-dependent 4 x 4 matrix (nj |(H = H,)}|mn).
As expected from symmetry considerations, the ma-
trix {U(1=G,U)™") was found to be diagonal with
the three p matrix elements equal to each other.
Thus Eq. (1) is actually reduced to two equations
which determine the unknown quantities X,.%,.

E xplicit results were obtained by assuming that hy-
drogen occupies dangling bonds in an uncorrelated
way. In this case the probabilities v, (/ =0, . .. 4)

17

are given by

- 4! oxl(4e = x)*!
(4= (4¢)*

X; (2)
where x is the ratio of hydrogen atoms to lattice sites.
We found that the numerical work is significantly re-
duced if the following additional approximation is
employed: Eq. (1) is solved for the limiting cases

x =0, x =4c obtaining thus L, (£:0), I,(£:0),
2,(E:4c), and X,(E;4c). For intermediate values of x
an average /-matrix approximation is used with

S(Ex)= [I -7";]:,(5;0) +4—’:_I,(E:4c): (3)

.

i=sp .

Using these I's we obtain the 4 x 4 matrix G, and
the configuration-dependent 4 x 4 matrices U. The Si
and the H partial DOS are given explicitly by the
equations

pg:(E)-(l—c)[-l—m Tel(1 =G, Us)-'G,] . (4)
™

p“(E)'-—c%"-Tr((l-G.U)"G,), . (5)

where the symbol ( ), indicates average over only
those configurations associated with no Si at the site
n. The total DOS is of course:

In Fig. | we plot the DOS in the gap where one
sees that by increasing the hydrogen content x the
states in the gap are reduced drastically in agreement
with the experimental findings. It is our impression
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that the present calculation is the first one to show in
a convincing quantitative manner. this restoration of
the band gap upon hydrogenation.

In Fig. 2 we show1he DOS for the whole spectrum
including both the valence and conduction bunds.
Figure 2(a) shows the total DOS for the case of 5%
vacancies, i.e., ¢ =0.05 and x = 0.0. This is com-
pared to Fig. 2(b). where all (x =0.20) of the dan- *
gling bonds are terminated by hydrogen. The H site
DOS fin Fig. 2(b}] shows two peaks at approximately
5.2 and 7.6 ¢V helow the Fermi level in good agree-
ment with the photoemission data of von Roedern
eral’ Furthermore our results show a recession of
the valence band by about 0.4 eV in agreement with
the above experiment.’ By examining the site
decomposition of the DOS and the limiting case of an
isolated hydrogen impurity we have determined that

TABLE 1. Band gap £; fin ¢V as a function of hydrogen
content for cases where all Jungling boads are suturated

fic, v =4¢). The estinmated uncertiinty is £5%.

= E.
(.00 1.05
0.05 1.20
0nio 1.25
nis 1.35
0.20 1.40
0.2§ 1.45
0.30 1.50

the eigenstates at the bottom of the conduction band
of Si-H are resonance states exhibiting an enhanced
probability to find the electron around the hydrogen
atom. These states can be thought of as antibonding
H-Si states mixed with regular conduction-band Si
states. We would like 1o point out that the existence
of this type of states has been suggested in order to
interpret transport and photoluminescence® results in
highly hydrogenated samples.

Finafly, we wish (0 emphasize that the present
work shows a substantial increase of the gap upon
hydrogenation in agreement with experiment.-? This
is demonstrated in Table | which gives the size of the
gap as a function of hydrogen content for cases
where no dangling bonds are present. According to
the present theory the widening of the gap is due to
the following two effects: (a) The Si—H bond being
stronger than the Si—Si bond tends to push the bot-
tom of the conduction band towards higher energies.
thus cancelling the opposite effect produced by the
diagonal hydrogen mdlrix elemcnls. (b) The differ-
ence £ (7%? ~ L (+ 7Y ; ). which is a measure of
the pp 7 interaction, cffectively decreases upon hy-
drogenation: this causes a narrowing® of the third
peak of the vaicnce band (VB) which results in the
recession of the top VB states.

[n conclusion our calculations for Si-ff reproduce
with no adjustable parameters, the main features of
the mcasurements of the DOS, including the widen-
ing of the gup.
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We have used the coherent potential approximation to calculate the electronic densities
of states for a model of hydrogenated amorphous silicon. The results desmonstrate the
restoration and widening of the band gap with increasing hydrogen content. In the
valence band, excellent agreement with photoemission experiments is obtained. In the
conduction band Si-H antibonding states are predicted that can be inferred from photo-

conductivity measurements.

1. INTRODUCTION
Basic experimental facts

The.current intensive investigation of hydro-
genated amorphous silicon originated in 1975 when
Spear and LeComber! succeeded to substitutionally
dope amorphous Si{a-Si), produced by decomposi-
tion of silane, through the incorporation of phos-
phorous and boron impurities. Soon after, it be-
carae apparent, as a result of work by Paul et al.?
who also presented similar doping results in g-Si
produced by sputtering in an Ar + H plasma, that
the origin of the doping effects as well as other
good electronic properties of this material®* is the
H passivation of dangling bonds. It has been
shown recently,’ for example, that the density of
states in the middle of the gap can be reduced
through hydrogenation to values as low as 5x 10"
cm~3eV~!. However, the amounts of hydrogen in
these Si-H *alloys™ were found to be as much as
100 times larger tifan the maximum number of
dangling bonds. Therefore hydrogen, in addition
to saturating the dangling bonds, introduces other
changes in the electronic structure of a-Si. .

Hydrogenation not only eliminates the dangling-
bond states from the energy gap. but also widens
the gap as demonstrated by Freeman and Paul,® by
Cody et al.,” and by Goodman et o/.} using dif-
ferent experimental techniques.

Away from the gap, photoe.nission measure-
ments by von Roedern et al.” revealed hydrogen
associated states well within the valence band. In

24
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the conduction band the photoconductivity data of
Moustakas et al.'® suggest the formation of Si-H
antibonding states. The role of hydrogen in modi-
fying the network is investigated through a variety
of experimental techniques, such as infrared and
Raman spectroscopy,'"!* nuclear magnetic reso-
nance,'’ small-angle x-ray scattering,'* H implanta-
tion in ¢-Si,'* and neutron scattering measure-
ments.'® For review of experimental work the
reader is referred to the articles by Spear,!” Mous-
takas,’ and Fritzsche.?

Present physical understanding

Unhydrogenated a-Si is thought of as a random
network where the local tetrahedral arrangement,
with bond lengths almost identical to those of the
crystalline state, is retained to a high degree. An
idealization of this concept is the so-cailed “ideal
random network,” where the tetrahedral coordina-
tion is satisfied throughout with very small fluctua-
tions in the bond lengths and larger fluctuations in
other longer range geometrical aspects such as ring
sizes, dihedral angles, etc. This ideal random net-
work defines the concept of topological disorder.
In reality, there are important deviations from the
ideal network. such as vacancies and other strong
local distortions, which may even cluster together
to form voids, internal surfaces, etc. Associated
with this type of defect are dangling bonds (or,
more generally, weakly bonded states). The
number of these states is considerably smaller than
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expected because the random lattice undergoes re-
laxation processes around a vacancy (or a cluster of
vacancies) which result in a substantial bond recon-
struction and, consequently, partial elimination of
dangling-bond states. This “healing” process can-
not be complete because of the high coordina-
tion'*'? of Si which imposes severe geometrical re-
strictions on the reconstruction process.

Calculations for the ideal single-vacancy prob-
lem®~ 2 show that dangling bonds are associated
with local states whose eigenenergy lies in the gap
(about 0.75 eV above the valence-band edge). Al-
lowing the atoms around the ideal vacancy to relax
pushes these states toward the valence and the con-
duction band. On the basis of these calculations,
one can conclude that the dangling bonds, which
have survived reconstruction, create states in the
gap. These states are of the order of 10'®—10%°
cm~3eV~! as electron-spin-resonance experiments
show.'"'? [t is generally believed that hydrogen
passivates the dangling-bond states by forming
Si—H bonds which are associated with states lying
well within the valence band. Furthermore, if the
material is grown in the presence of hydrogen,
much of the reconstruction is prevented as a result
of Si—H bond formation.” This explains why the
highest amount of hydrogen in a-SiH, is so much
larger than the number of dangling bonds (which
survived reconstruction) in the unhydrogenated
specimens. One may view the abundant presence
of hydrogen during the growth process as effective-
ly reducing the coordination of the resulting struc-
ture and thus allowing the growth of an un-
strained, chemically stable substance. The widen-
ing®~8 of the gap upon hydrogenation has been at-
tributed to the stronger Si— H bond as compared
with the Si—Si bond. Here, as well as in a prelim-
inary report?>?* of this work, we argue that an
equally itnportant contribution comes from the ef-
fective reduction of the pp interaction upon hy-
drogenation.

Theoretical models

From the above discussion it follows that a com-
plete theory of hydrogenated a-Si has to deal with
the following aspects of the problem.

{a) Topological disorder. Models incorporating
topological disorder (TD) using a continuous ran-
dom network, have been used®*?% in conjunction
with the orthogonalized-linear-combination-of-
atomic-orbitals method to perform calculations of
the electronic structure of a-Si:H. These calcula-

tions are consistent with photoemission experi-
ments,” but they do not seem capable of obtaining
detailed information for the densities of states
(DOS) in the gap region and in the conduction
band. Recently, Cohen et al.?” argued that TD
widens the gap and creates a tail in the DOS
which enters the gap. Using small Si-H molecules
terminated by Si Bethe lattices, Allan and Joanno-

. poulos®® have examined the question of ring statis-

tics and its influence on certain regions of the spec-
trum. We feel that increasing hydrogenation may
reduce the importance of ring statistics. Finally,
TD, introduced by allowing varation in the
dihedral angle, seems to effectively reduce the size
of the ppw interaction®® and thus contributes fur-
ther to the widening of the gap.

(b) Reconstruction. Reconstruction is probably
the most important aspect of unhydrogenated a-Si.
A qualitative lattice distortion model has been pro-
posed by Watkins.?® This model has been used as
the basis to address the problem of the single
reconstructed vacancy in Si using elaborate
Green’s-function techniques.’®*! Also, White and
Ngai’? have discussed reconstructing states at the
Si-SiQ, interface. However, it seems that the
amount of reconstruction, and therefore its impor-
tance, is reduced when hydrogen is present during
the growth process.’ Thus, depending on the
abundance of hydrogen. the method of preparation,
and other details of the growth process, the impor-
tance of reconstruction may vary from a dominant
role to an insignificant detail.

(c) Chemical nature and statistics of the hydrogen
incorporation. By chemical nature we mean wheth-
er the hydrogen is always bonded to one of the four
sp? hybrids of Si, or may participate in other bond-
ing configurations. Even if hydrogen is only bond-
ed to Si one still has to know statistical informa-
tion such as the percentage of monohydrides versus
polyhydrides, whether or not there are some hydro-
gen clustering tendencies, etc. Obviously, these
questions affect the electronic structure of the ma-
terial.

With the exception of the continuous-random-
network work,?>*¢ most attempts in the literature
to study the above three aspects are based on con-
sidering small Si-H molecules. These Si-H clusters
are either isolated or terminated by hydrogen®® or
by Si Bethe lattice®® to avoid unphysical boundary
effects. These approaches are very useful in re-
vealing certain qualitative and even semiquantita-
tive aspects of the subject; they are also necessary
in some cases (e.g., other hydrogen bonding config-
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urations) given the difficulty of the problem.
However, these approaches cannot be considered as
a substitute for calculations dealing with macro-
scopic size systems. We should not lose sight of
the fact that these calculations more properly ap-
ply to the study of Si-H molecules than to the Si-H
solid. In addition, the Bethe-lattice calculations
are based on a first-nearest-neighbor interaction
Hamiltonian which, as has been shown,?>* is
inadequate to reproduce the correct gap or a
reasonable conduction band.

The work we report here is one of the first at-
tempts to deal with the problem at the actual mac-
roscopic scale which involves many particular local
configurations. We found it necessary to omit as-
pects related to topological disorder and recon-
struction, and concentrate our efforts on the third
aspect which is the role of hydrogen in the elec-
tronic structure of a-SiH,. We think that for fully
hydrogenated samples with high hydrogen content,
hydrogenation is the most important aspect and
that TD and reconstruction will change our results
only quantitatively. To treat the role of hydrogen,
we have used a particular model of hydrogen in-
corporation which assumes that all hydrogens are
bonded to Si. Although our model may not be
quite realistic, we think that it incorporates the im-
portant features (which are independent of particu-
lar models) such as bonding and antibonding states
made out of Sisp? and hydrogen orbitals, a
stronger Si—H bond (as compared with Si—Si
bond) which affects the states at the bottom of the
conduction band, and an effective reduction, with
hydrogenation, of the pp interaction which is very
important for the states at the top of the valence
band.

Thus we believe that the main conclusions of our
work have a much wider validity than the particu-
lar model from which they were derived. Recently,
a caiculation complementary to ours was reported
by Pickett.”® Pickett has employed the self-con-
sistent pseudopotential method with a supercell
configuration to study the electronic states of the
hydrogen-saturated vacancy in Si. His approach
differs from ours in that he is using a pencdic ar-
ray of atoms, while we are using a random array.
The results of the two calculations, however, have
the same qualitative features. In the Appendix we
utilize his conclusion of a strong Si —H bond and
his charge-density contours to estimate certain H-
Si matrix elements of our tight-binding Hamiltoni-
an. Finally, we refer to a calculation along similar
lines to ours reported by Divincenzo et al.*® This

calculation deals with a model defect which is an
isolated monovacancy in an otherwise perfect crys-
tal.

The rest of the paper is organized as follows.
Section [I describes our model configuration of hy-
drogenated a-Si; Sec. I1I gives the theory of the
coherent-potential approximation as applied in the
present work; Sec. IV discusses the results and
compares with experiment, and the Appendix deals
with the estimation of the H-H and H-Si matrix
elements.

II. THE PRESENT MODEL

Our model describes hydrogenated Si by con-
structing an effective lattice whose sites may have
probability ¢ of being vacant and probability I-c of
having a Si atom. In addition, we have assumed
that hydrogen atoms may be located along the
lines connecting a vacant site with its nearest
neighbors, as shown in Fig. !(b). Thus we have in-
cluded in our model, at random, Si sites, vacancy
sites, and sites that have one, two, three, or four
hydrogen atoms. Using this model of disorder, we
have used a tight-binding form of the coherent-
potential approximation®”** (CPA) to perform de-
tailed calculations of the electronic DOS.

The starting point of the present calculations is
a Slater-Koster (SK) Hamiltonian H; the bases are
four Si orbitals (one !s) and three !p)) which
have been t1aken as orthonormal. The matrix ele-
ments in this basis have been chosen in such a
way as to reproduce the band structure of crystal-
line Si (both valence and conduction band) rather
accurately.:2 Such an accuracy is necessary in or-
der to study dangling-bond states. As we have dis-
cussed in the Introduction, we have neglected the
TD cxcept tor the following point: Because the
dihedral angle li.e., the angle which determines the
orientation of the three bonds which are attached
to one end of a given bond with respect to the oth-
er three bonds which are attached to the other end
of this given bond) varies in a disordered structure
in a range which starts from the eclipsed confi-
guration all the way to the staggered configuration,
the pp interaction fluctuates. As we have men-
tioned before, the ppr interaction is very important
because it controls the position of the top of the
valence band. In the periodic case, the ppw in-
teraction is equal to the difference A=F, ,(t 1 1)

—Ei« (% '— %) =¥ — Vs Where y, =(6 H . 2)
and ye =6, H {3)=(6iH  4) and 12}, {3),

I—
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FIG. 1. (a) Two-dimensional view of the atom confi-
guration for Si showing the sp*® orbitals. (b) Two-
dimensional view of the atom configuration for Si-H
showing the replacement of one Si atom by four H
atoms.

|4), and | 6) are the sp? hybrids shown in Fig.
i(a). In the random structure (6| H |3)5
(6| H |4) so that, in general, there are three dif-
ferent matrix elements (6| H |2), (6{H |3), and
(6|H |4). We have found how these matrix ele-
ments vary with the dihedral angle and we have
taken, as a measure of the pp interaction, the
average of the maximum of the three differences of
one of them from the mean value of the other two.
To perform the average, we have assumed that the
dihedral angle has a uniform (constant) probability
distribution. The effect of this is to change the

. R L
matrix elements £, (75 7) and E, (7 77) from
their crystalline values?? 1.407 and 0.276 eV,
respectively, to the values 1.39 and 0.31 eV. This
reduces the ppw interaction A from the value 1.131
eV to the value 1.08 eV. This leads to a recession
of the top of the valence band and, hence, a widen-
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ing of the gap from E; =1.0 eV in the crystalline
case to 1.05 in the “amorphous™ state. We believe
that if TD were taken into account in a more
rigorous way, it would lead to a more substantial
widening of the gap and to a tailing of the states
into the gap.

Our model also omits reconstruction; this is a
very serious omission in the cases where the dan-
gling bonds have not been passivated by hydrogen.
For those cases, our results should not be taken
seriously except to say that if all these dangling
bonds were present there would be substantial DOS
in the gap. On the other hand, in the fully hydro-
genated cases we expect thrat reconstruction is
minimal and thus its omission in our model is not
a serious shortcoming.

The way hydrogen is incorporated in our model
is shown in Fig. 1(b), where an ideal vacancy has
been created, resulting in four sp* Si dangling
bonds. Such vacancies can accommodate up to
four hydrogen atoms as shown in Fig. 1(b). The
result of replacing a Si by four hydrogens as shown
in Fig. 1(b) is to replace the Si-Si matrix elements
[given in Table I of Ref. 22 with E, (77 7) and
E,.(777) changed as discussed above] by H-H
or H-Si matrix elements. In the Appendix we ex-
plicitly estimate the effective matrix elements asso-
ciated with the configuration of Fig. 1(b). They
are the following:

E;,(000)=—8.72 eV, E;,(000)=—1.6¢V,

Actually, the second- and third-nearest-neighbor
matrix elements will be affected by the replacement
of a Si by four hydrogens. We assumed that this
additional modification is much iess significant
than the diagonal and first-nearest-neighbor
changes and thus we have omitted it. It must be
pointed out that the E'(000)'s given above are
matrix elements between fictitious s and p orbitals
associated with the four hydrogens shown in Fig.
1(b) (they are the same linear combinations of the
hydrogen orbitals {1°), {2'), (3'), and [4') as
the actual Si, s, and p are of the corresponding
four sp> hybrids; see Appendix) and the
E'(377)'s are matrix eléments between the
fictitious four hydrogen s and p’s and the s and p's
of the nearest Si's. '

h ¥

—
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[11. COHERENT-POTENTIAL APPROXIMATION

As we have mentioned in the previous section,
we have used the tight-binding (TB) CPA (Refs. 37
and 38) to obtain the DOS. Since, in addition to
the configuration shown in Fig. 1(b), we have also

J

- - -~ ~ ~ -~ x, & o - -~
(1—c)usm—G,Usn-'+x,,uu(1-c,uv)-‘+—4‘— S 0,(1-6,0,) '+ =2
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where G, is an effective Green’s function obtained
from the corresponding crystalline Si Green’s func-
tion G by replacing ¢, and €, with the CPA self-
energies 2, and 3, respectively. From Ref. 22 we
have that e, =E, ;,(000)= —3.953 eV and

€, =E,,(000)=1.512 eV. G(E) is a 4x 4 diagonal
matrix with matrix elements G;,G1;,G1:,G, and
where Gy, =(0s | (E —H)~'{0s) and

Gy ={(0x |(E —H)~"'|0x ), where |{0s) and |Ox)
are the s and p, Si orbitals at the site 0, and where
Us,, the Si scattering matrix, is

&-3, 0 0 0 |
- 0 ¢-2, 0 no
Us=1 0 0 -3 O

o o 0 -3,

2)

U,, the vacancy scattering matrix is

t

(3)

Il
© o o3
ccoc8§ o
c8 oo
8§ ocoo

U,; is a matrix corresponding to the four
equivalent configurations where only one hydrogen
atom is present with probability of occurrence

Xy /4,

-

=

§-3, (4)

o088 ©
o8 oo
8 co o

and, similarly, for U,;, U}, and U,,. Sis the
matrix which accomplished the orbital trans-
formation (Appendix). The hydrogen matrix
element 7 is taken equal to —3.38 eV which is its
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considered cases where one or more of the hydro-
gens shown are missing, we had to generalize the
TB-CPA to handle these additional configurations.
The CPA condition of zero scattering on the aver-
age leads, in our case to the following equation:

’

X

(&3

6 —~— - A~
S U,(1-G,U,)~!
6 /5

X3 i _ -~
+ —
4

3 U,01-6,.0.)"+x,0,01-G,Us~'=0,
i=1

(1

value for silane (Appendix). The matrix—3 is a
diagonal matrix like (2) but without the ¢; and ¢,.
U,; is a matrix corresponding to the six equivalent
configurations where two hydrogen atoms are
present with probability x, /6,

V2 00
o i ri 0 0]
U:| =S o 0 «© o S—E » (5)
[0 0 0
and similarly for Uy, Uy, Usy, Uss, and Use.
The matrix element 3= ~1.78 ¢V is estimated in

the Appendix. Uy is a matrix corresponding to
the four equivalent configurations where three hy-
drogen atoms are present with probability x,/4,

i 7

0
p 57’:1"1 r’:OS_i 6l
A [ AR N A
0 0 0 o«

and similarly for U, (::33, and (7;.4. U, is a ma-
trix corresponding to the case of four hydrogen
atoms present with probability x:

e Y
. _nrnrnornl|_ _
U=S|. . . .i§-% (n
14N e R A TR

17 n

The probability of occurrence of the configuration
shown in Fig. l(a) is denoted by 1 —c¢: the probabil-
ity of the configuration of Fig. 1tbi is denoted by
x4. Obviously,

C=Xg+X|+X7+X34X,. (8
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In the case where there is no statistical correlation pressions:

among hydrogens the probabilities x; (i =0, ...,4)
can be expressed in terms of the quantity x, which

is the ratio of the total number of hydrogens over —€,+66,G,, =0,
the total number of lattice sites, and the quantity ¢:

41 xl{ac —x !

G”}:,z-i-—(l—e,G” —'G;G” )2,—C(€; —€)

MG ey Ot G132) +(1-6,Gn—€,Gn)Z, —cle —¢,)
9) —6 +G’€;,G21 =0,
The case x =4c represents the fully. hydrogenated " where ¢; =E;,(000)=—8.72 ¢V and
case where x,=c and x; =0, [ =0, . . ., 3; this is €, =E; ;(000)= —1.6 eV are the effective H-H ma-
the case where the reconstruction effects are ex- trix elements (Appendix). Equations (12) are also
pected to be minimal and, consequently, our model solved for Z, and 2, by iteration. Since both sets
to be more realistic. of Egs. (11) and {12) are complex, we found it com-
Since the Green’s function G, is a function of putationally efficient to separate them into their
the self-cnergy £, the CPA condition [Eq. (1] is real and imaginary parts and do the computer code
very complicated to solve, even numerically. For in real arithmetic.
this reason we have solved Eq. (1) for the limiting For the intermediate values of x, we have em-
cases x =0 (no hydrogen) and x =4c (all vacancies ployed an average t-matrix approximation (ATA)
saturated by hydrogen). For x =0, Eq. (1) com- instead of the CPA. We have done this to simplify
bined with Eq. (3) reduces to the computational effort since the additional errors
~ ~ =~ -_ are small, and because the cases with x < 4c are not
U=0)Usi(1-G, Us) ™' ~cG, '=0. (10 very realistic due to the reconstruction that takes
Utilizing symmetry Eq. (10) results in the fol- place. The ATA-like approximation used for
lowing two scalar equations: 0 <x <4c is the following. We define Z,(E x)

i =s,p by the relation
2,=€,—c/G“(E,2,,2,) ’

{an LEm= [1- 2 [S(E0+ S3Ede)
3,=€,—c/Gn(E,2,,5,) . (13)
Equations (11) are solved simultaneously for =, where Z,(E;0) and Z;(E;4c) have been obtained
and 3, using a Newton-Raphson iterative pro- from the CPA described above.
cedure. The Brillouin-zone summation necessary Having determined 2, and I, [using the CPA
in evaluating G,,,G,; was done for 240 X points in condition (1) for the cases x =0,4c and Eq. (13) for
the irreducible zone. x50,4c] we can obtian G,(E); then in all cases the
For x =4¢, Eq. (1) reduces to the following ex- DOS is given from the following expressions:
_ 1
== (1w T(1-6, 0007161}
(14)
4
H=;‘ 2 —ImTi{(1-G,U,)"'G, n+6— 2[—ImTr[(l—G Uy)~'G. 1}
f=1 . i=1
+; 2 {—ImTr[(l—G Uy)~'G, ]]+—-(—ImTr[(l—G 0o-'G,1} ,
im]
where the notation is the same as that of Eq. (1). 1 = - ~
In the special case of the fully saturated vacancy, Ny=-— ;lm Tr ((2-&) —— G
i = = - , €y —¢€s;i
i.e, x =4¢, x,=c, and x; =x, =x;=x,=0, the
above Egs. (14) become These equations can be further reduced to give the
1 B s- and p-like components of the DOS. The total
Ng= ——lm Tr l(! —&n) G, |, DOS is of course the sum of N5 and V. The
€si—€H CPA, as described above, treats the diagonal disor-
(15) der. The inclusion of off-diagonal disorder in the
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TB-CPA is computationally very complicated and
at present there is no established “best” technique.

In our calculations, the off-diagonal disorder was
treated within the virtual crystal approximation
(VCA), i.e., the nearest-neighbor matrix elements
were replaced by their averaged values:

x

=2

ErEp=li- Bt SER

Lj=s,x,y,2 . (16)

The VCA is a good approximation if the differ-
ence between the Si-Si and the Si-H matrix ele-
ments is small in comparison to their average
value. This condition is not satisfied for all matrix
elements and so there is a need here for improving
our present calculational techniques. Given, how-
ever, the complexity of introducing off-diagonal
disorder in the CPA and that there are already
other uncertainties in our model, we decided in the
present stage to work with the VCA for the off-
diagonal disorder. We have used the simpie CPA
ino cluster extensions) and have assumed that there
18 no statistical correlation among the various con-
figurations discussed before. At this point we must
note that it has been proposed that vacancies {see
Fig. 1(b)] tend to cluster together as to formm micro-
voids and internal surfaces.'*3? We have found that
this clustering effect effectively reduces the value of
¢ and tends to create some internal surface states
which make a small contribution to the total DOS.
Thus the vacancy clustering effects can easily be
incorporated in our model by appropriately reduc-
ing the value of ¢. Let us add that in the presence
of adequate hydrogen during the growth process
this clustering effect may not occur.

IV. RESULTS AND DISCUSSION

In Fig. 2 we show the DOS in the gap region for
the configuration Si and vacancies with no hydro-
gen introduced yet. We note the appearance of
dangling-bond states in the gap. The density of
these states increases with vacancy concentration c.
Also the gap becomes smaller with i1ncreasing ¢ un-
t1l it is completely filled. It is also interesting to
note that the gap states have as thetr center of
gravity the position of the bound state 10.75 eV) of
the ideal single vacancy.”®~** It should be stressed
here that the results of Fig. 2 are useful in demon-
strating qualitatively the existence of dangling-
bond states in the gap. However. due to the omis-
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FI1G. 2. CPA densities of states in the gap region for
the Si vacancy case for different vacancy concentrations.

sion of the effects of reconstruction, we certainly
overestimate the number of these states and. there-
fore, we don't attempt any quantitative comparison
with expenment.

Figure 3 deals with the restoration of the band
gap upon hydrogenation. Figure 3 corresponds to
¢ =0.05 and 0 < x <4c. It is evident that by in-
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FIG. 3. Densities of states of SiH, 1n the zap region
for different hvdrogen concentrations x ¢ =0.05 .
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creasing the hydrogen content x, the states in the
gap are reduced until they are completely eliminat-
ed for the fully hydrogen-saturated-vacancy case
(x =0.20). This is, of course, what the experimen-
tal situation is and the reason why a-Si:H has
semiconducting properties similar to those of crys-
talline Si.

In Fig. 4 we show the DOS of Si-H (with
¢ =0.05 and x =0.20) for the whole spectrum, in-
cluding both the valence and conduction bands.
We note first a band gap E; = 1.4 eV that is wider
by 0.4 eV than the corresponding E; =1.0 eV
which our tight-binding Hamiltonian gives for the
nonhydrogenated case. This widening of the gap is
due to a narrowing of the third DOS peak at the
top of the valence band. We have identified this to
be the result of a decrease of the difference:
Ey(37+3)—Es:(577) which is a measure of
the ppw interaction. This recession of the valence
band by 0.4 eV is in excellent agreement with the
photoemission experiments of von Roedern et al.’
Figure 4 also shows the DOS decomposed by site.
The hydrogen-site DOS shows pronounced peaks
at 5.2, 7.6, and 13.5 eV below the Fermi level.
Comparison with photoemission data is more ap-
propriately done after smoothing the H-site DOS

SiM X020 €0.05

ALV

J
g by

° f\wf“/\4 /\ufv\w

FIG. 4. Total and site-decomposed densities of states
for SiH, with x =0.2. Note that the Si and H DOS are
multipled by (1-—c¢) and ¢, respectively (¢ =0.05). The
Fermi level is located in the middle of the gap.
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FIG. 5. Broadened H-site dgnsity of states. The ar-
rows indicate the peak positions from the photoemission
measurements (Ref. 9).

by applying a Lorentzian broadening. This is plot-
ted in Fig. S which shows that the 5.2 and 7.6 eV
peaks are predicted in almost exactly the same po-
sition found in the measurements.’ The 13.5 eV
peak is not seen experimentally for reasons we do
not understand.

The widening of the band gap has been demon-
strated experimentally by a variety of experimental
techniques.~* To compare with these experi-
ments, we have performed a calculation of the joint
DOS NY(E). The calculated [N/(E)}'/? is assumed
to be proportional to the measured quantity
(@E)'?, where a is the absorption coefficient. A
comparison with the measurements of Cody er al.’
is shown in Fig. 6, where [N/(E)]'/* has been nor-
malized to the value of (aE)'/? at E=4 eV. The
experimental graph was obtained at approximately
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FIG. 6. Plot of the square root of the joint density of
states versus energy. The line joining the open circles
represents the measured quantity (a£)'/? (Ref. 7).
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16% hydrogen content, while the theoretical graph
corresponds to 209%. Despite this and the fact that
the theory predicts a smaller gap the overall agree-
ment is rather good.

Our calculations can also be used to compare
with Auger and soft-x-ray-emission measure-
ments.®* We present in Fig. 7 a decomposition of
the Si-site DOS of SiH in its s and p components.
The s-like and p-like DOS are proportional to the
K and L spectra, respectively.

We now turn to a discussion of hydrogen-
induced antibonding states at the bottom of the
conduction band. Let us first examine the case of
a single configuration of the kind shown ir: Fig.
1(b) embedded in a Si lattice.

The bound states around this four-hydrogen
cluster will be given by

1

E;,(000)— E,(000) °
1

E;(000) — E,(000)

The graphical solution of Eq. (17a) is shown in
Fig. 8. As we see from Fig. 8, there is no real

G||(E)= (17a)

GulE)= (17b)
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FIG. 7. Si-site density of states and its s- and p-like
components.

solution of Eq. (17a) because the intersection of
ReG with | /E' — E occurs within the band where
ImG#0. On the other hand, this intersection
occurs near the bottom of the conduction band
{(CB). The physical meaning of no real intersection
is that there are no true bound states associated
with the four-hydrogen cluster embedded in a Si
lattice. The fact that the intersection occurs near
the bottom of the CB where ImG is very smalil
means, physically, that the four-hydrogen cluster
creates resonance s states i.e., states where the wave
function has a peak around the cluster. Thess
resonance states can be viewed as a hybridization
of the Si-H s-antibonding states with the regular Si
states at the bottom of the conduction band. Such
resonance states are associated with a lower than
the regular CB mobility (because the electron is
almost trapped around the hydrogen). Evaluation
of Eq. (17b) showed neither bound states of p
character nor any resonance states below 3 eV.
The suggestion of Moustakas et al.,'® born out
of their photoconductivity measurements that Si-H
antibonding states form at the bottom of the con-
duction band, is strongly supported by the present
calculations. This is shown in Fig. 9 where we
have plotted the ratio Ny /N, as a function of E.
Indeed, this graph, in addition to the peaks in the
valence band that we have already discussed, shows
a pronounced maximum at the bottom of the CB
indicating strong H participation in the formation
of these states. .
Finally, we will discuss the variation of the gap
size E, with hydrogen content x. We define the
Fermi level Ep=(E, +E,)/2 where E, is the top
of the valence band and E, the bottom of the con-
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FIG. 8. The real part of the s-like Green's function
plotted as a function of energy for the case of the single
impurity that consists of {four hydrogen atoms. The dot-
ted line indicates the value of the right-hand side of Eq.
(17a),
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FIG. 9. Ratio of H-site density of states Ny to the
total density of states N, for SiH (x =0.2).

duction band. The variation of E,, E,, and Ef
with x is shown in Fig. 10, where in all cases we
are dealing with vacancies fully saturated by hy-
drogen, i.e., x =4c. We note first that E, is essen-
tially constant. This is due to a cancellation of the
effects of disorder (tends to push E, down) by the
effect of a stronger Si—H bond (tends to push E,
up) ‘as manifested by the larger value of the param-
eter 73 (see Appendix) in SiH,. E, depends mainly
on the matrix clement difference y¢—v; or
equivalently E, (55 7)—Ex (77 ) which is a
measure of the pp interaction. Hydrogen de-
creases ¥ —vs and so pushes E, down and widens
the gap. As a result Ef is also pushed down.

Our work shows that the size of the gap depends
essentially on two parameters: the bond strength y;
and the pp interaction ys—ys. Hydrogen incor-
poration effectively increases y; and decréases
¥6—7s thus producing a wider gap. This effect of

1.0

0.6

ENERGY(eV)
0.2

-06 -02

i
]

0.0 o1 02 03
HYDROGEN CONTENT

FIG. 10. Variation of the bottom of the conduction
band E, of the Fermi level Er and the top of the
valence band E, versus hydrogen content for fully hy-
drogenated samples.
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hydrogenation on ¥, and y4—¥s, being essentially a
local chemical effect, is expected to transcend the
validity of our present model and thus constitutes a
general feature of hydrogen incorporation in a Si
tetrahedral structure,

In conclusion many important properties of fully
hydrogenated a-Si (such as widening of the gap,
Si-H bonding states, Si-H antibonding resonance
states) depend mainly on the local chemical en-
vironment. Thus these properties are largely in-
dependent of the particular model, provided that it
satisfactorily treats the limiting case of nonhydro-
genated Si. Our preseat model satisfies these re-
quirements (with the exception of the omission of
topological disorder) and as a result we expect our
main conclusions to have a much wider validity
than the model itself.
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APPENDIX: ESTIMATE OF HYDROGEN-
HYDROGEN AND HYDROGEN-SILICON
MATRIX ELEMENTS

For each Si we have the four orbitals s}, [x),
|¥), |z) or equivalently the four sp* hybridized
orbitals shown in Fig. 1(a). The transformations
from the one set to the other are the following:

1) Is)
[2) Ix)
[4) |z)
[s) [
[x) 12)
1) =S 13) ] (A
F2; i4)




for the Si at 4. For the Si at B assuming that 4B
is along the 111 direction, we have

[5) [5)
[6)} _1|%)
17y [=5 L (A3)
18) (Z)
Ep) {;s)
1) 16
lf) |8)

where 57 is the transposed matrix of §. The 4x4
matrices S and § are given by

1 1 1 1

1! 1 -1 -1
S=E 1 —1 1 —11° (AS)

1 -1 -1 1

I -1 -1 -1

- 11 -1 1 1
S=E 1 1 -1 K (A6)

1 1 1 -1

Following the SK notation, the diagonal and
nearest-neighbor matrix elements of the Hamiltoni-
an in the |s),|x),|y),|2) representation are
denoted as follows:

E, (000)=(s |H |5}, . (AT
£, (000)=(x |H |x)
=(y |H |y)=(z|H|z), (A8)
E,(773)=(s |H|T), (A9)
ETT7)=(%|H [s)=—(T|H |x)
=(§|H|s)=""", (A10)
E,(3537)=(X|H |x)=(F|H|y)
=(z|H|z), (A1)

Ecy\t37)=(X|H |y)=(%|H |z)
=(F|H|x)=(F|H|z)="""
(A12}

Hirabayashi*' has written the matrix elements of H
in the hybrid representation as follows:

n=(11H|1), {A13)
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r:=(1|H|2), (A14)
73=(S5|H|1), (A15)
ve=(6|H 1), (A16)
vs=(6|H |3), (AI7)
ve=(6/H |2), (A18)

where the orbitals |6) and |2) are along an-
tiparallel directions.

Using Eqs. (A1) and (A2) one easily expresses
the ¥'s in terms of the E's and vice versa. We have

1= 7(E,,(000) +3E, ,(000)] , (A19)
V2= +{E, 4(000) ~ E, . (000)) , (A20)
Vo= tlEusl 5 1 1)-6E (1 TT)

=3B, (357)-6E, (37 1)], (A2D)
ro=tlE (37T~ 2E4(357)

(177)42E,(377)], (A22)

+E 11T -2E (7], (A23)

=3B (317)4+2E (17 11], (A29)
Ex.x(mx”=rl +37;, (A25)
E,4(000)=y,~7,, (A26)

E,(737)=7(n+6r,+6y;s+37,), (A2
E L (337)=7(=rs=2r+2rs+7) . (A28)

E (377 =7(~11+274+2r5=37,) , (A29)
Ey(337)=1(~1+2n—2r+7) . (A30)

In Fig. 1(b) the Si at 4 has been removed and
four hydrogens have been placed as shown, in or-
der to passivate the Si dangling bonds. Charge-
density contours resulting from the pseudopotential
supercell calculation of Pickett® involving the con-
figuration shown in Fig. 1(b), demonstrate that
there are hydrogen p and even d components in the
eigenfunction. Furthenmnore, these charge-density
contours strongly suggest that this multiple ! hy-
drogen state can be approximated by an s-only or-

—

.______—__..-

1




7244 D. A. PAPACONSTANTOPOULOS AND E. N. ECONOMOU 24

bital which is displaced towards the Si site by
about 20% as shown in Fig. 1(b). If O, 0y, Oy,
and 04 are the positions of the centers of the dis-
placed hydrogen s orbitals | 1'), |2'), |3}, and
| '), respectively, the distances are as follows:
B0;-=2.30 a.u., B0;=5.18 a.u, 0,0,,=3.50 a.u.

Comparing Figs. 1(a) and 1{b) we can see that
the role of the four sp* hybrids |1) to [4) is
played by the four orbitals |1°) to |4'). The re-
sult of this replacement is to change the

Y0¥z - - - Yo O YL, . . ., Y6 given by
vi=(U|H|1'), (A31)
vi=(I'{H |2'), (A32)
ri=(S|H|1), (A33)
Yan=(6[H |1}, (A34)
Yan=(5|H|2"), (A35)
vs=(6{H |3), (A36)
7e=(6|H|2). (A37)

A complication associated with the configuration
of Fig. 1(b) is that ¥}, and ¥}, are not necessarily
equal as in the configuration of Fig. 1(a). Howev-
er, as we shall see below the difference between
Yu1) and Yy;) tums out to be small, thus we can
replace these matrix elements by their mean value,
ie.,

o= Yan+Yun - ©(A38)

2

Before we proceed with the estimation of the values
of the v’s we mention that we can introduce ficti-
tious s and p orbitals fs'), |x'),|y'}, | 2') associ-
ated with four hydrogens of Fig. 1(b) throngh the
relation .

[s") R
lx") 12°)
[z') [4')

These orbitals allow us to define hydrogen
associated E”s by replacing in Egs. (A7) —(A12)
the {s),Ix) |y)]z) by {s), (=), |y ) |z).
Because the transformation in Eq. (A39) is
identical to that in Eq. (A2), it follows that the
E"s are given in terms of ¥'s as in Egs. (A25) and
(A30). Thus the removal of a Si and the
placement of four hydrogens as shown in Fig. 1(b)
is equivalent to changing the six matrix elements
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E’s to the new values E”’s. Actually, the second-
and third-nearest-neighbor matrix elements should
be modified as well. These modifications are
difficult to estimate and are not expected to be as
important as the changes in the diagonal and
nearest-neighbor matrix elements. For these
reasons we have omitted these modifications.

We now proceed to estimate the y’s. The quan-
tity ¥} is taken equal to its value in the SiH,
molecule*? )

vi=—3.38¢V. (A40)

To estimate y; we need to obtain the off-diagonal
matrix element between the orthogonalized hydro-
genic wave functions associated with the configura-
tion shown in Fig. 1(b). Mattheiss*’ has examined
this problem in detail for a system of six hydrogens
placed in the corners of a canonical hexagon. We
think that the nearest-neighbor matrix elements do
not depend so sensitively on the geometry and con-
sequently Mattheiss’s results can be used (0 obtain
a fair estimate of y. We have fitted Mattheiss's
results for separations R =2, 3, § a.u. with a qua-
dratic function times the exponential function
[exp{ —R)}]. We found from this fitting that

¥y=—27.07(1.491 —0.072R +0.077R *)e ~ "
(A41)
in units of eV which for R =3.5 a.u. gives
Y2=—1.78¢eV. (A42)

To obtain ¥} we shall write it by employing Eq.
(A3) as follows:

Vi=s(FIH |1 =3XZ|H|I'N. (A43)

Chadi* has found that the nonorthogonalized orbi-
tal |5, ) to which |§) reduces as the overlap goes
goes to zero is proportional to Rexp( —1.04R).
The fact that this 5 Si decays almost exactly like a
hydrogen s orbital suggests that Eq. (A41) may be
used to obtain (| H [1'). However, the extra
factor of R in |§,) would cause the matrix
element to decay more slowly than the right-hand
side of Eq. (A41). To take this into account we
write, in eV

- Ly VSl-H -
(FIH|1I')=- 27.07(1.491 -0.072R
Vh-n
+0.077R%e R |
(A4

where
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Vsin=— ‘(\/3/4+l\/3)(l+R)

exp( —

‘/-3(2+R/4)

is the off-diagonal matrix element between
exp( —R) and R exp{ —R) and

Vis=—(1.5+1.5R +R?/6)exp( —R)

is the same matrix element between two hydrogen-
ic wave functions. To check the accuracy of Eq.
(A44) we substitute for R the Si—H distance in
SiH,(R =2.8 a.u.) and we obtain —3.58 eV. This
is in surprisingly good agreement with the esta-
blished*? value of —3.57 eV. To obtain
(X|H|1') we take into account that the
nonorthogonalized | X, ) is proportional to x | 5, ).
Hence it is plausible to write

(TJH | ") =—cR.(F|H | 1), (A45)

where R, is the x component of the vector 0,-B,
and the constant ¢ can be determined from the
known values of {Xx|H |1’} and (s!H[l ) for
the SiH, molecule.*> We found ¢ =~ 5. Substi-
tuting in Eqs. (A44) and (A45) the values

R =04B=2.3 a.u. and R =1.33 a.u., we obtain
(FIH|I')=—4.85eVand (T|H |1')=2.15eV.
Thus,

yy=—5.65¢eV. . (A46)

The quantity ¥y, can be written, by employing
Eq. (A3), as

Yup=+US|H [ )+ (T H | 1))
=—135eV. (A47)

By employing Eq. (A3) we can rewrite the rest of
the 7°s as follows:

Yan=3US|H|2)=(£|H|2")
~(FIH|2)—(FIH|2)), (A48)

Va=+((F|H |3)—(F|H |3)
+(FIH|3)Y+(Z|H|3)),  (A49)

ve=3UFIH |2) (X |H |2)
+(FIH|2)+(Z|H|2')).  (ASO)

One may attempt to calculate the matrix ele-
ments in the right-hand side of Eqs. (A48)—(AS50)

by using Eqgs. (A44) and (A45). However, Eq.
(A44) will overestimate the size of the ((F|H |2'))
matrix element because of the presence of the hy-
drogen at 1’ which represents an effective repulsive
potential. In Mattheiss’s*’ calculation this reduc-
tion of the next-nearest-neighbor transfer matrix
element is so large that the matrix element be-
comes almost zero (actually it changes sign and is
positive). In the present case, due to the fact that
the hydrogen 1’ is closer to Si and that there is the
extra R factor in the Si wave function, one expects
a smaller reduction of about 509 assuming that
only half the space, i.e., the region around the hy-
drogen at 2’ would contribute to the integral. This
crude reasoning suggests that (| H {2') is rough-
ly half the value given by Eq. (A44), i.e,,

(F|H|2')==-0.42¢eV . (AS1)

The other matrix elements entering Egs.
(A48)—(AS0) can be estimated by employing Eq.
{A45) and the fact that the vector 2'B and 3'B are
(1.327, 3.799, 3.799) and (3.799, 1.327, 3.799),
respectively. We obtain thus

(FIH |3)=(X|H|2')=0.19eV, {AS52)
(FIH |3 =(Z|H|¥)={(F|H|2)
=(Z|H |2')=0.53 ev, (AS3)

which give
Yun=—084eV, (AS4)
ys=—0.11eV, (ASS)
Ye=0.23 eV . (A56)

Using Eq. (A38) we obtain for v,
vi=—1.10eV . (AST)

The corresponding E"'s are obtained from Egs.
(A25)—(A30),

E.,(000)=—8.72 eV,
E;,(000)=—1.60 ¢V ,

8 21
E(+11)=1.96eV,
Ej (+17)=0.64¢V,
E.,(177)=0.98 eV
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The self-consistent pseudopotential method and supercell configuration are used to study the electronic structure of
the hydrogen-saturated vacancy (HSV) in Si. A unified pict:re is obtained by comparing three systems: (i} bulk Si (no
vacancy), (i) the vacancy alone, and (iii) the HSY complex in which each Si dangling bond is comp d by H. The
vacancy dangling-bond states are found to be removed from the gap and the H-H interactions do not interfere with
the formation of a strong H-Si bond. The reappearance of the gap and the form of the charge density in the
proximity of the HSV implies a stability which suggests this may be one of the strain-relieving configurations which
occurs upon hydrogenation of amorphous silicon. These calculatons also suggest a potentiaily observable acceptor

state if 2 HSV-like defect can be created in crystalline silicon.

L INTRODUCTION

The recent upsurge in interest in-amorphous
silicon arises primarily from two sources. The
first involves the possible widespread technologi-
cal application of these materials, particularly
hydrogenated amorphous silicon (a-Si:H) in solar
cells. The second impetus centers on answering
fundamental theoretical questions about the nature
of electronic states in disordered systems, with
the existence of a gap and the structure in its
proximity being of central importance.

The theoretical description of disordered sys-
tems is complicated greatly by a lack of know-
ledge of the atomic geometry. The problem of
disorder on an atomic scale is exacerbated in a
a-Si:H by the existence of voids and related large-
scale inhomogeneities,® i.e., disorder on a mac-
roscopic scale which is extremely difficuli to mod-
el theoretically. Attempts to describe the effects
of the lack of short-range order on the electronic
spectrum of a-Si and a-Si:H have concentrated on
valence force field (bond-stretching and -bending)
effects or on low-symmetry H-Si or Si dangling-
bond configuration. Each of these approaches foc-
uses on specific features of the actual system of
interest and together they have led to a rudimen-
tary understanding of some of the observed phen-
smena.

One potentially important area which has seen
very little theoretical attention is the careful
description of H-Si bonding in a solid-state en-
vironment. Obviously low-symmetry configura-
tions involving H-Si bonds will occur, and it is
particularly in such low-symmetry situations that
self-consistency is often found to be essential in
a realistic description of the electronic structure.
The present work was motivated by these consider-
ations. As a first step toward an understanding of
H-St bonding in the solid state, the {by now stand-
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ard) self-consistent pseudopotential method has
been applied to the H-saturated Si vacancy. Al-
though this is not a low-symmetry configuration, it
provides (as will be shown) a basic example of the
removal of dangling-bond gap states in a buik en-
vironment, much like what has been found to oc-
cur at surfaces and is expected by hydrogenation
of a-Si. The method that is used in this study
guarantees that the bonding electrons react lo a
potential which is itself derived from the elec-
tronic charge density, unlike those used in prev-
ious work (discussed in Sec. IV).

In Sec. II the calculational details are reviewed
briefly. Secticon I is devcted to an exposition of
electronic structure of the H-saturated Si vacancy,
and comparison to both the ideal vacancy and to
crystalline silicon is presented. The Jocal density
of states is used extensively to provide an under-
standing of the “chemical bonding” of H and Si in
an extended system. Comparison with previous
work is presented in Sec. IV, as well as a brief
discussion of the possible connection with experi-
mental data. A summary is given in Sec. V.

It. METHOD OF CALCULATION
A. Self-consistent pseudopotential method

The self-consistent pseudopotential (SCP) method
has been documented eisewhere® and has been used
in numerous applications. In the present study
local ionic pseudopotentials which have been util-
ized successfuliy in other applications™* were
ciuosen. The pseudopotentials were fit to the form

, 4nZe? . .
Vieald) = _—%Ef— alcosihg) « ¢ expl=4q®), (1)

where Q denotes the atemic volume and a(l ~ ¢)

= 1 to yield the correct ¢ =0 limil. The constants

b, ¢, and 4 for Si and H are listed in Table I.
With the SCP method it 1s conventional to cal-
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TABLE [. lonic pseudopotential parameters (in a.u.)
b,c,din Eq. (1) for H and Si.

sitt H
b 0.7907 0.2800
¢ -0.3520 -1.5380
d -0.01807 -0.0070

culate the Hamiltonian matrix elements in a plane-
wave basis, with a cutoff plane-wave energy E,.
To improve convergence of the eigenvalues, ad-
ditional plane waves up to a cutoff E, are used in
the Léwdin perturbation scheme. In this study E,
=3 Ry, £.=6 Ry were found to give convergence
of eigenvalues to about 0.1 eV, which is sufficient
for the present purposes

The plane-wave expansion of the charge density
and screening potential (for which the Hedin-Lund-
qvist® local density functional was used) was car-
ried out to 37 stars (equal to 485 plane waves). In
the early stages of self-consistency the four spe-
cial k-point set was used in calculating the charge
density. The final charge density was self-con-
sisteat on the regulariy spaced ten-point set.

B. Supercell geometry

A cubic cell with edge length a,= 10.2626 a.u.
and containing eight diamond-lattice sites is used
as the unit cell in a superlattice configuration.
Three distinct systems have been studied. As a
control system, the band structure of crystalline
Si was calculated with the use of the 8-atom unit
cell. Next, one Si atom was removed and.the
self-consistent electronic response was recalcu-
lated, without allowing atomic relaxation. This
configuration corresponds to a regular array of
12.5% ideal vacancies, but in some ways (which
we discuss in Sec. III) the results are similar to
those of isolated vacancy calculations. Although
this supercell is,small, interactions between va-
cancies are transmitted along bonding chains for
which a neighboring vacancy is four sites away.
Finally, the four dangling bonds per vacancy
wera “compensated” by H atoms placed symmet-
rically around the vacant site. The H-Si bond
length was chosen to be 2.874 a.u. (= 65 of the
Si-Si distance) in accordance with the regular-
ities of the H-Si-Si, system discussed by Luco-
vsky.*

There are two features of this H-saturated va-
cancy (HSV) configuration which should be noted.
First, it is evident that there will be interactions
between HSV's in neighboring cells. This limita-
tion is less serious than it seems initially, since
there is rather little interest here in the isolated
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HSV. In a-Si:H there will be nearby H-Si com-
plexes which are nearly as well modeled by re-
peated HSV's as by any other specific configura-
tion. (The sharp structure in the density of states
characteristic of crystalline systems of course
will be spurious.) Secondly, there is the likeli-
hood of H-H interactions at a given HSV. The H-H
distance is 2.563 a.u. and the H-H interaction is
appreciable but hard to quantify, although the lo-
cal density of states which we calculate provides
some indication of.the nature of the H-H inter-
actions.

C. Local densities of states

The wave functions and associated weights (see
below) were calculated on the regular 35 k-point
grid (vertices of 64 tetrahedra) in the irreducible
Brillouin zone. The total and local densities of
states (DOS) were calculated with the tetrahedron
method of Lehmann and Taut,” in which both en-
ergies and weights are interpolated linearly within
each tetrahedron,

For {he weights we have used the fraction of
charge of the state which lies within a sphere of
radius R centered at various sites of interesl.
The chosen sites were (1) the vacant site, (2) the
H site, (3) the H-Si bond center {denoted “H-Si
bond”), (4) the nearest-neighbor Si to the vacant
site [“Si(1)"], (5) the Si-Si kond center (“Si-Si
bond”), and (6) the second-neighbor Si [*Si(2}"].
In each case R has been chosen to be 0.15a,= 1.539
a.u., which is slightly more than half the H-Si
bond length. Therefore the various spheres over-
lap considerably and the sum of their weights is
meaningless. For the Si vacancy calculation the
same notation is used although no H atom is ac-
tually present.

1. CALCULATIONAL RESULTS
A. Charge density

A conlour plot of the self-consistent pseudo-
charge-densily of the HSV in the (110) plane is
shown in Fig. 1. Both Si-Si and i1-Si bonds lie
in this plane. The Si-Si bonds are virtually ident-
ical to those calculated for the bulk (not shown)
using the same potential. This result is encoura-
ging as it indicates that interactions between
charge-densily disturbances from neighboring
HSV’'s are rather unimportant.

The peak in charge corresponding to the H-Si
bond is also evident in Fig. 1. The charge density
in the bonding region is similar to that calculated
for the H-Si bond at the Si(111) surface.*? The
large value of charge density at the vacant Si site,
~17 electrons per diamond-lattice unit cell, sug-
gests significant interactions between the four H
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FIG. 1. Contour plot in the (110) plane of the pseudo-
charge-density of the H-saturated St vacancy. The units
are electrons per diamond-lattice unit cell. Solid
straight lines denote Si-Si bonding directions and dashed
lines indicate H-Si bonds; crosses denote vacant Si
sites. For clarity the abscissa and ordinate lengths
are 1.5 times the corresponding supercell dimension.

atoms surrounding the vacant site. However,
apart from the immediate region of the H atoms
the charge density is typical of Si, particularly
the channel of nearly zero density running parallel
to the bonding chains.

The charge density near the Si vacancy (not
shown) was found to be very similar to those cal-
culated for isolated ideal Si vacancy.® As an il-
lustration of the charge-density deformation which
results from (conceptually) placing H atoms so
as to terminate the vacancy dangling bonds, the
charge-density difference (HSV -vacancy) is shown
in Fig. 2. This difference in density is altered
from that arising from overlapping spherical H
atom densities in two ways. First, there is the

/\”\/\/\ N \
(/f’:\\?g%s\ DN
O NN

o e i .

M
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FIG. 2. Ceontour plot in the {110) plane of the charge-
density difference between the H-s1turated vicancy and
the ideal Si vacancy. Notiatlon is the same as in Fig. 1.
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£IG. 3. Total and local density of states of the 5~
saturated vacancy, as defined in the text. Note that
for the local densities of states the large peak at - 12.3
eV has been scaled down by a factor of 10.

aforementioned interaction between H atoms, re-
sulting in a small net flow of charge into the va-
cant site (centroid of the four proton sites). Sec-
ondly, and more noticeable in Fig. 2, there is a
shifting of the pseudocharge maximum from the
H site along the H-Si bonding direction. This is
primarily a result of the dangling-bond charge,
which is known in the vacancy® to “heal” by de-
creasing its magnitude in the (broken) bond posi-
tion, being attracted back into the H-Si bond.
The separalion of the charge-density differences
in Fig. 2 again is a testimony to the small inter-
action between charge disturbances even in the
small supercell being used here.

B. Density of states

The total density of states (DOS) at the HSV is
shown at the bottom of Fig. 3. The overall struc-
ture is similar to that of crystalline Si, shown at
the bottom of Fig. 4, calculated using identical k-
point sampling and Brillouin-zone integration tech-
niques as described in Sec. IIC. Most significant
is the result that terminating the vacancy dangiing
bonds with H removes from the gap the well known
ideal vacancy gap states,® which in the present
supercell fill in the gap as shown in Fig. 5. This
is just what is expected in a chemical bonding pic-
ture if the H-H interactions within an HSV do not
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FIG. 4. Total and local density uf states of crystalline
Si.

cause too much disruption. The calculated gap
for the superlattice of HSV’s is 0.5 eV compared
to the crystalline value of 0.9 eV (for this poten-
tial and for the convergence criteria that have
been imposed). This 0.5-eV “gap” is discussed
more fully below. The only qualitative difference
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F1G. 5. Total and local density of states for the ideal
Si vacancy (superlattice). Cross hatching is used to
emphasize the segments of the partial densities of states
which are strongly vacancy related. The enerygy zero
denotes the top of the filled states.
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between the HSV DOS and that of crystalline Si is
the splitting off of a band in the lower-valence
cegion -13 s E < -12 eV. Comparison to the DOS
of crystalline Si in Fig. 4 suggests that in the case
of an itsolated HSV thig state will occur as a reso-
nance at the bottom of the valence bands.

Also shown in Fig. 3 are the local DOS's
(LDOS’s) as described in Sec. I C. For compari-
son, the corresponding LDOS’s for the Si site and
Si-Si bond in crystalline Si are pictured in Fig. 4.
(The primary difference between these latter two
very similar LDOS’s is a larger density of bond-
ing states within 4 eV of the gap in the Si~Si bond
LDOS.) Figure 3 shows that the split-off bound
state at ~~12.5 eV is confined to the region of the
four H atoms, i.e., the vacant site and the H posi-
tions. (Note that this huge LDOS peak has been
divided by ten in Fig. 3.) The other energy region
of interest, that is, where there is large varia-
tion in the LDOS within the supercell, is centered
on the fundamental gap 0.0-0.5 eV. The LDOS
immediately below the gap is primarily due to the
Si-Si bonding regions, as in the crystal. The
H-Si bond, H site, and vacant Si site show a pro-
gressively lower density of bonding states in the
region - 2 to 0 eV which indicates the electrons
in the H-S5i bond are bound more tightly than in
the Si-Si bond. The states above the gap, on the
other hand, are strongly H-related statec, with
the lowest unoccupied state at I' being localized
(apparently) and centered at the vacant site. This
suggests, for the isoclated HSV, a bound state near
the top of the gap, which we discuss further below.
In Fig. 5 the total and local DOS's for the vacancy
superlattice are shown. The regions of states
which are strongly affected by the vacancy are
crosshatched for emphasis. No gap exists, the
bound states in the gap of the igolated ideal Si
vacancy are broadened by intervacancy interac-
tione into bands more than 1 eV wide. (We note,
however, that the charge-density disturbance due
to the vacancy is well localized even for this small
supercell.) These dangling-bond states lie pri-
marily in the region - 0.5 to 1 eV, although some
extend down to - 2 eV. In addition, the s state on
the Si nearest the vacancy is repelled upward into
the low DOS region at — 9 eV by the effectively re-
pulsive pctential of the vacancy. These results
correspond closely lo the isolated vacancy results
of Ref. 9, with the cross hatching at -9 eV in Fig,
5 corresponding to A, symmetry states, and cross
hatching at 0 to 1 eV corresponding to the T, sym-
metry gap states, in this reference.

C. H-related states

The similarity of the energy bands of a super-
lattice of HSV's (“Si.H,”) to those of Si in the same

Dun
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PIG. 6. Energy bands alony the (111} lirection of
the superlattice of HSV'3 (“Si;H{"’) and u: buix siicon
for the same unit cell (“Siy”). Open circles at [ in-
dicate the hydrogen-related states which are discussed
in the text and pictured in Fig. 7.

unit cell (“Sig”) is evidcnt in Fig. 6, where the
bands are shown with the valence-band maxima
aligned. From this figure it is possible to identify
the bulk Si states which are strongly perturbed by
the HSV complex. In essence, this makes use of
the fact that the tetrahedral arrangement of four
hydrogen atoms in the HSV is isoelectronic with
Si and, in fact, it is not too dissimilar in many of
its effects on the overall spectrum. For this com-
parison it is expedient to focus on states at T,
rather than at other positions in the Brillouin
zone, where many characteristics of Bloch states
are sensitive to supercell size and geometry. The
strongly perturbed, and therefore H-related,
states at I’ occur both below and above the lower
gap at — 12 to ~ 11 eV in Fig. 3, and at the bot-
tom of the conduction band at 0.5 eV. Contour
plots in the (110) plane of the charge densities of
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FI1G. 7. Contour plots in the (110} plane of the three
hydrogen—derived states at the zone center of the H-
saturated Si vacancy superlattice. The charge density
is normaiized to one electron per superlattice unit cell.

these states are shown in Fig. 7. The two lower
states [ Figs. 7(b) and 7(c)] are derived from a
symmetric combination of the four H 1s orbitals,
with the splitting arising from interaction with the
Si s states which lie in the same energy range.
Lower-symmetry combinations of the H 1s or-
bitals bond with the Si sp° orbitals throughcut the
range -8 to 0 eV,

The lowest “conduciion-band” state at 0.5 eV
also is derived from a symmetric combination of
H orbitals (presumably 2s and 2p). The small
charge density of this state in both the H-St and
Si-Si bonding regions indicates a nonbonding (ra-
ther than antibonding) tendency toward the Si <p’
orbitals. This behavior suggests that this state
corresponds to a bound state in the gap for the
isolated HSV. The supercell used in this calcula-
tion is far too small to get anv reasonable esti-
mate of the energy of such a state, that is, wheth-
er it is a deep or a shallow acceptor, if indeed it
lies within the gap. Either type could be consistent
with the charge density in Fig. 7(a); (1) the state
is deep and very localized, in which case the in-
terstitial charge density would be due to super-
cell-induced mixing with the conduction-band states
(which have large densities in the interstices), or
{2) the state is shallow and weakly localized, in
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which case the conduction-band mixing and inter-
stitial charge density is an integral component of
the state. Qualitatively, the large density within
the tetrahedron of H atoms tends to support the
deep acceptor point of view.

1V. DISCUSSION
A. Relation to previous work

Using an extended Hiickel method, Choo and Tong!?
investigated an HSV in Ge. Their system con-
sisted of a 47-atom crystalline cluster with sur-
face dangling bonds compensated with H atoms to
remove them from the gap region. When the cen-
tral Ge was replaced with four H atoms a hydro-
gen-related acceptor state (with 40% of the charge
on the four H atoms) appeared in the upper part
of the gap, much as appears to be the case in the
present study.

Recently Economou and Papaconstantopoulos!?
have studied the electronic structure of a random
array of HSV's in Si using a tight-binding co-
herent-potential-approximaticn method. Aside
from the different method of calculation, their
work differs from the present work in essentially
two ways. First, they considered a random array
of 5 % HSV's compared to the periodic array of
12.5% HSV’s studied here. Secondly, the H-H in-
teraction within a given HSV was taken to be the
same as in the SiH, molecule. Their H LDOS
near the fundamental gap is very similar to the
“H-site” curve of Fig. 3, with a strong H com-
ponent in states immediately above the gap and
a comparatively small H component in bonding
states just below the gap. The first H LDOS peak
below the gap occurs somewhat lower (- 6 to 5 eV)
than in the present study (- 4 to - 2 eV), and the
splitoff (by the H-H interaction) state at the bot-
tom of the valence band is broadened, but in other
respects the H and Si LDOS’s are similar.

There are several other calculations®? in the
literature which include the basic H-Si-Si, con-
figuration. However, the similarity of these sys-
tems to the HSV is insufficient to warrant a de-
tailed comparison with the present study.

B. Relationship to experimental systems

The basic unit in the HSV studied here is the
bouded H~Si pair, which is expected to occur in
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a-Si:H, no doubt in several different types of
complexes. Moreover, the HSV is one of the sim-
plest configurations which exhibits hydrogen clus-
tering, a phenomenon which has been observed*?
in a-Si:H. Unfortunately, the presently available
experimental results provide only very indirect
information on atomic configurations. The LDOS's
of Fig. 3 bear some resemblance to photoemission
data’ on unannealed a-Si:H, which show H-related
peaks at 6 and 11 eV binding energy. The calcu-
lated peaks at 7 and 12.5 eV, which will shift if the
HSV is allowed to relax, may be related to the
observed states. However, it is naive to expect
much quantitative correspondence between the
present study and any of the variety of experi-
mental samples of a-Si:H. In particular, the cal-
culated gap of 0.5 eV and the precise location of
peaks are sensitive to the supercell size and,
therefore, the calculated gap bears no clear re-
lationship to the (much wider) experimental gap
which plays a central role in device performance.

Nevertheless, the strong H-Si bond and the res-
toration of the gap suggest that the (relaxed) HSV
may be a stable local configuration in spite of the
H-H interaction. Thus the HSV-type complex
could be one of many strain-relieving configurations
to occur upon hydrogenation of a-Si.

Finally, it should be noted that, if indeed an
HSV-related acceptor state does occur in the
crystal (which should be resolvable on a strictly
theoretical basis with more precise calculations®),
it should be detectable in defected'® Si or Ge.

Note added in proof. A recent self-consistent
Green’s-function study of the isolated HSV (D.P.
DiVincenzo, J. Bernhole, M. H. Brodsky, N. O.
Lipari, and S. T. Pantelides, in Proceedings of the
Topical Conference on Tetrahedrally Bonded
Amorphous Semiconductors, Carefree, Arizona,
1981, in press) found no states in the silicon ener-

gY gap.
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With the use of the self-consistent pseudopotential method, the Hellman-Feynman
theorem is applied to study the symmetric relaxation in the hydrogen-saturated vacancy
(HSV) which has been used previously to model the electronic properties of amorphous sil-
icon hydride. The hydrogen and nearest-neighbor silicon atoms are found to relax outward
by 0.46 and 0.35 a.u., respectively. The primary effect of this relaxation, which is driven by
the large H-H interactions in the ideal HSV, is to restore the depleted local H density of
states just below the band gap. It is suggested that geometries other than those considered
here may lead to more stable configurations.

I. INTRODUCTION

Recently several investigators have used the
hydrogen-saturated vacancy (HSV) in Si to model
the electronic structure and transport properties of
hydrogenated amorphous silicon (a-SiH,). A
tight-binding coherent potential approximation
(CPA) treatment’ on a random 5% “alloy” of
HSV’s in a silicon lattice displayed a valence-band
spectrum very similar to that of g-SiH, as well as
reproducing the experimentally observed widening
of the gap when the H content is increased. The
self-consistent electronic structure of the HSV itself
has been studied from both the supercell® and the
isolated-defect® approaches. Both of these studies
found the density of states (DOS) immediately
below the gap to be strongly depleted around the H
sites, and the former study (Ref. 2, hereafter re-
ferred to as D) also found a DOS increase around the
H sites for conduction states immediately above the
gap.

The depletion of conduction-band states near the
gap by H has been suggested®* as the cause of the
low hole mobility in a-SiH,, and d¢ transport calcu-
lations® on the CPA model' have bomne out this
qualitative picture. More recently, a calculation® of
the absorption coefficient (i.e.,, ac conductivity)
based on the CPA model has suggested an interpre-
tation of the difference between the “optical gap”
and the “DOS gap” in a-SiH,. Thus it seems that
the HSV has provided a reliable basis for under-
standing several of the crucial properties of a-SiH,.

The interpretation discussed above has all been
based on the electronic structure of the ideal HSV.
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However, in I it was emphasized that the large
repulsion between H atoms in the ideal HSV was
likely to lead to substantial atomic relaxation in this
defect, and a preliminary study of the magnitude of
the relaxation has been reported.” In this paper we
allow the symmetric breathing relaxation of the
HSV and find substantial rearrangement of the H
local DOS both above and below the gap which
must be reconciled with the data on a-SiH; if the
HSV is to remain a viable model for this system.
The plan of the paper is as follows. In Sec. II the
numerical procedure which is used to calculate the
forces on the atoms is presented. The numerical re-
sults and their interpretation are given in Sec. IIIL
Tha last section is devoted to a discussion of the im-
plications of these results for our current under-
standing of the electronic properties of a-SiH, .

II. NUMERICAL TECHNIQUES

The self-consistent pseudopotential (SCP) method
has been described in detail elsewhere.” The Si
and H local pseudopotentials, Hedin-Lundqvist
exchange-correlation potential, supercell size corre-
sponding to eight Si atoms, and calculation of local
DOS (LDOS) are as described in I. The novel
feature of the present work is the calculation of
forces on atoms using the Hellman-Feynman (HF)
theorem.® Formal aspects of the HF theorem in
density-functional theory have been discussed else-
where.” However, since this study may be the first
of its kind for a model of a localized defect in a

5650 ©1982 The American Physical Society
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bulk solid, and since technical aspects of the calcu-
lation of HF forces have not been presented in
much detail elsewhere, selected details of the
present calculations will be presented in this section.

A. Hellman-Feynman force calculations

_ For a given atomic configuration [.ﬁj }, the force
F; onan ion at R; is given by ’

F,=F +F, o )

where Fi™ is tfxe direct Coulomb contribution from
all other ions,’ whu.n can be calculated using an
Ewald technique,'® and Fj is the electronic contri-
bution which takes ihe classical form

Fi= [d’ p(r)Vu;(r~R;) b

in terms of the local ionic pseudopotential v;. The
charge density p should be the “exact” charge densi-
ty, i.e., that which satisfies the local-density-
functional equations. An approximate charge den-
sity, which might lead to a reasonabie total energy

E,{R;} (which is variational in p) and thereby to
reasonable forces from the numerical derivative
AE/AR;, can lead to widly uncontrolled results
for F; if the HF expression is applied directly. An
example is the Gordon-Kim'' procedure for deriv-
ing the forces between two closed-shell ions from a
total charge density approximated by the sum of
two spherical ionic densities. Direct application of
the HF theorem to this approximate charge density
leads to nearly vanishing forces for ionic separa-
tions of interest, resulting solely from the exponen-
tial tail of one ionic charge overlapping the nucleus
of the other ion, whereas the Gordon-Kim pro-
cedure of calculating E,, in an intermediate step is
known to be quite reliable.

Physically, the HF force F* j originates from the
distortion (dipolar with respect to R;) of the valence
charge density (away from that of overlapping
spherical atomic densities) due to bonding. In prac-
tice, the calculated (and therefore approximate)
charge density must be (1) converged with respect to
k-point sampling, (2) self-consistent, and (3)
represented sufficiently generally to allow the im-
portant bonding-charge distortions. A plane-wave
representation, either of the total (valence pseudo-)
charge density p fas done here) or of the distortions
of p due to bonding, seems to be a particularly satis-
factory representation as it is not fixed to particular
atomic positions. .

For the HSV, F was calculated from the expres-
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sion

Fi=i 3 Gu( |G| pGre™ %, 3)

G<G

where v;(G) and piG) are Fourier coefficients of v
and p. The summation limit G must be extended
until convergence is obtained. Figure 1 shows the
convergence of F* for both H and Si as G is in-
creased. The important contributions to F° arise
from wavelengths (27/G)>ay/4, where a
=10.263 a.u. is the Si lattice constant. For all re-
sults quoted here the cutoff was taken as G>=27
(27 /ag)*=10 Ry.

Accurate values of -157 require a charge density
which is more accurate than is necessary for simply
determining a self-consistent potential or the total
energy. This in turn requires more precise cigenvec-
tors of the Hamiltonian matrix H 5 5 .. A common
procedure’ in the SCP method for obtaining eigen-
values efficiently is to construct H g g . matrix ele-
ments up to a large cutoff Gz-.Ez and use the
Lowdin procedure'? to fold down the eigenvalue
problem to a smaller one corresponding 1o Gi=E,.
For the present calculations the Lowdin unfolding
procedure'” for subsequently obtaining the eigenvec-
tor components up to G=G, has also been em-
ployed. These procedures, which are reminiscent of
second-order perturbation theory in the matrix ele-
ments H g 5 - for E; <G?, G'* < E;, produce eigen-
vectors of sufficient accuracy for the present pur-
poses. The cutoffs £, =4.5 Ry, E;=8 Ry corre-
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spond to plane-wave basis sets of approximately 175
and 400 plane waves, respectively, and provide only
slightly less accurate solutions to the 400400 sec-
ular equation at substantially less cost than by
direct methods.

In Table I examples of the changes in the calcu-
lated forces due to large-G components of the wave
function are displayed. For this convergence check,
the single special k point'® was used to approximate
the charge density for the ideal configuration, and
the Lowdin unfolding procedure was applied to give
initially 300 and then 400 plane-wave coefficients of
the wave functions. The calculated forces on the H
and Si atoms increased in magnitude by 35% and
6%, respectively, while the total energy per atom
changed only from —5.5028 to —5.5058 Ry.

The set of four special k points'® for the simple
cubic lattice has proven adequate for the HSV su-
percell for determining p. One special point is

clearly insufficient, while results almost identical to
those from the four-special-point mesh were ob-
tained using the 10- and 3S-point regular meshes
and the 20-special-point set.

B. Geometry

The HSV supercell is a cube corresponding to the
crystalline Si cubic cell of edge length a, and con-
taining eight Si sites. For the HSV the Si atom at
the origin is replaced by hydrogens at (u,u,u) and
equivalent positions tetrahedrally placed around the
origin. For the ideal HSV, u was chosen® as
0.0883a,, corresponding to 2 H~—Si bond length of
Si;-SiH suggested by Lucovsky.'* Only symmetric
“breathing-mode™ relaxations, i.e.,, atoms relaxing
radially from the center of the defect only, of the

* HSV have been considered. Thus only u and the

TABLE I. Comparison of the x component of the caiculated electronic forces (in arbitrary
units) on H and Si atoms when 300 or 400 plane-wave coefficients are included in the plane-
wave expansion. Contributions from each star of reciprocal-lattice vectors as well as the total
are given. Owing to the symmetric placement of the Si atom {at tay/4,a9/4,00/4}] withn the
unit cell, several stars G give vanishing contributions to the force independently of p(G).

Si

218 300 400 300 400
27

100 —1.57 ~1.60 —9.54 —9.70

110 T 352 —3.56

1t —-8.78 —8.78

200 -1.21 —1.23

210 —4.69 —4.76 1.64 1.66

211 —1.49 —1.48 —~0.59 —0.61

220 2.85 3.13

21 1.61 1.7 1.7 1.75

310 0.32 0.31

3 11.86 12.66

22 4.52 4.68

320 —0.56 ~0.63 2.68 3.03

321 0.69 0.77 —4.68 526

400 2.52 291

322 1.42 1.58 ~1.54 ~1.73

330 0.39 0.44 ~0.33 -0.43

331 0.19 0.18

420 —0.01 —-0.02 _

421 ~0.01 —0.01 —0.05 —007

332 0.06 0.07 0.61 0.69

422 ~0.04 -005

430 0.21 0.27 ~0.58 -0.75

431 0.19 0.24 0.25 0.38

333 0.06 0.07

Total 5.01 6.90 ~10.42 —11.04
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coordinate v of the neighboring Si atom at (v,v,v)
and symmetric positions are allowed to vary
(v =0.25ay for the ideal HSV). Changes in unit-
cell volume have not been considered.

IIL. RESULTS
A. Relaxation of the HSV

In addition to the ideal HSV geometry, three re-
laxed geometries have been studied. Their coordi-
nates and the calculated atomic forces are presented
in Table II. Configuration 3 was determined from
the previous configurations (0, 1,2) by fitting forces
determined from the harmonic potential-energy ex-
pression, valid for small enough displacements,

V{u,v)=Au +Bv+Cu*+Dv*+Euv, (3)

to the six calculated forces, and then determining
the equilibrium values of u and v. After calculating
the forces for configuration 3 (Table II), forces de-
rived from expression (3) were least-squares-fitted
twice, to the calculated forces for all four configu-
rations, and separately to configurations 1, 2, and 3
(those nearest equilibrium). From these two poten-
tial functions the equilibrium values uqy and vy and
their uncertainties (arising from which fit one
chooses to use) were found and are given in Table
IL.

The results of the geometrical relaxation can be
summarized as follows. The H atoms relax out-
ward by \/jluo—u(O)l =0.46 a.u. [u(0)=u for
configuration 0] while the neighboring Si atoms re-
lax outward by 0.35 a.u., resulting in a 7% decrease
of the H—Si bond length. This relaxation rotates
the Si—Si bond by 4.5° and compresses it by 2.5%.
The ideal and relaxed geometries in the (110)
plane are shown in Fig. 2. In terms of & =u —u,,

HSV GEOMETRY

a
RELAXED
INTERSTITIAL
-——= IDEAL SITE
x
VACANT
SITE «

FIG. 2. Schematic geometry of the HSV relaxation in
the (110) plane of the supercell. Dashed lines represent
the configuration before relaxation.

U= —uy, the potential energy V for small displace-
ments can be written

V(Z,0)=ad’+ b +cT 7. (4)

From this expression the energy AE gained by re-
laxation is found to be about 1 eV/supercell, i.e.,
per HSV defect. Direct calculation of AE (dis-
cussed more fully below) between configurations 0
and 3 is 1.1 eV.

B. Changes in eigenstates and LDOS

As expected, this rather large atomic relaxation
leads to significant changes in the hydrogen-related
states and LDOS. In Fig. 3 the supercell band
structure along [-R is shown for both the ideal and
relaxed HSV. The states of particular interest in
following the effect of relaxation are numbered 1
through 6, and the charges of each of these states
within spheres distributed throughout the cell are
given in Table IIJ. States 1—3 lie in the lower
valence bands and before relaxation each is strongly

TABLE II. x components of H.u and Si,v positions (in units of the lattice censtant 10.263 a.u.), and the x com-
ponents of ionic, electronic, and total forces on H and Si atoms (hartree/bohr). Equilibrium positions are calculated by
fitting to quadratic potentials as described in the text; uncertainties (in parentheses) are due to the two separate fits to
the calculated forces and do not include uncertainties in the calculated forces.

H Si
Configuration u v Fem F? Fi* Fen Ft Fio
0 0.0883 0.2500 —~0.019 0.038 0.019 0.060 —0.041 0.019
1 0.0960 0.2500 -0.090 0.091 —0.001 0.080 —0.040 0.040
2 0.1000 0.2560 ~0.108 0.115 0.007 0.036 —-0.014 0.022
3 0.1203 0.2730 —-0.213 0.202 —-0.011 -0.049 0.082 0.003
Equilibrium 0.1142(3)  ~ 0.26%6(1) --0.179 0.179* 0.0 -0.040 0.040* 0.0

*Calculated from equiiibrium condition F;* =0.
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FIG. 3. Supercell band structure along the I'-R direc-
tion for configuration O (ideal) and configuration 3 (near
equilibriurn). Dotted arrows indicate states which are
affected strongly by the relaxation. Numbers label
states discussed in text and referred to in Table III.

localized near the H atoms. The outward relaxation
of the H atoms decreases the overlap of the attrac-
tive H pseudopotentials in this region. As a result
these states rise in energy and lower their amplitude
near the H atoms, although state 2 (and to a lesser
extent state 3) remains strongly H related.

States 4 —6 lie near the gap and therefore are cru-
cial in determining low-excitation-energy properties.
State 4 is the uppermost valence band whose eigen-
value is used to fix the energy zero in Figs. 3 and 4.
[With respect to the average potential V,,(G=0),
the energy of state 4 moved downward by 0.5 eV
during relaxation.] From Table 1II it can be seen
that for this state the charge near H nearly doubles
during relaxation. Conversely, the charge on the
lower-conduction-band state 5 decreases dramatical-
ly near and between the H atoms during relaxation,
although its eigenvalue changes very little. Finally,

.state 6, the low-conduction-band state at R in the
ideal HSYV, is raised by nearly 3 eV by the relaxaiion
although its strong H-related character is not
changed dramatically (Table III). Both states § and
6 have large amplitudes in the interstitial regions of
the cell.

The LDOS’s for the spheres along the bonding
chain pictured in Fig. 2 are given in Fig. 4 along
with the total DOS. The only notable change in the
total DOS occurs at the bottom of the valence
bands, where the strongly H-relatad peak at —13 to
—12 ¢V found in I for the ideal HSV is found to
merge with the low Si valence states during relaxa-

TABLE 1II. Relative charges within each of the equal-volume spheres at the positions indicated in Fig. 2 for the six
states designated in Fig. 3. Both ideal (configuration 0, in parentheses) and near equilibrium (configuration 3) values
are given, with normalization such that a uniform state will have a value 1.00 within sach sphere. Also given below is
the total charge (in electrons) within each sphere and the ratio “charge (relaxed)/charge tideai).”

State Vacant

number site H H—-Si bond Si(1) Si—Si bond Si2) Interstitial

1 0.44 1.13 1.53 1.61 2.15 1.74 0.61

(7.90) (5.29) (2.72) (1.66) (1.06) (1.06) (0.14)

2 6.27 7.92 4.60 0.73 0.50 0.60 0.82

(13.15) {7.35) (1.55) (0.54) (1.68) t1.15) 0.26)

3 1.49 3.06 3.20 2.45 175 0.38 1.15

(17.46) (11.00) (4.25) (1.29) " {0.05) 0.25) (0.05)

4 0.66 2.86 2.20 1.36 2.75 1.21 0.0

(0.83) (1.50) (1.52) (1.21) (1.40) (2.74) 0.07

5 1.98 1.10 0.31 0.63 0.89 1.37 822

(5.27 (2.18) 0.90) 0.7 0.09) 10.54! (4.99)

6 8.64 2.96 1.61 1.80 1.12 0.15 4.59

(8.58) (3.61) (2.13) (2.34) 10.18) 0.71) (1.5

Total charge 0.84 2.35 2.21 1.39 1.34 2.03 0.32

2.10) (2.12) 11.90) (1.51) 1.79 : (1.47 Q.20

Ratio 0.40 1.1 1.17 0.92 0.75 1.38 1.63
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FIG. 4. Total and local densities of states in the spher-
ical regions pictured in Fig. 2. In the LDOS curves the
.dashed peak below —12 eV has been divided by ten. All
LDOS are plotted on the same scale. States move from
the single- to the double-cross-hatched regions during re-
laxation.

tion. Accordingly, the vacant-site and H-site
LDOS’s show a general decrease in the —13- to
—9-eV region.

There is a large increase in the LDOS just below
the gap at the H site, I{ —Si bond, and the second-
neighbor Si [“Si(2)"], of which the latter may be a
“supercell effect” which indicates that for these en-
ergies the charge perturbation extends to larger dis-
tances. Conversely, near the bottom of the conduc-
tion bands there is a strong decrease in the LDOS at
the vacant site, H site, and H—Si bond, together
with a significant increase near Si(2) which again
may be a supercell effect.

It should be noted that little can be learned about
the energetics of the relaxation solely from the
DOS, i.e., from the sum over occupied states of the
eigenvalues. It is found that the change in cigen-
value [relative t0 Vi ree(G=0)=0] sum between
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configurations 3 and 0 is —7.70 eV, while the
change in the Coulomb double-counting correction’
is a similar contribution of —7.24 eV. The Ewald
and exchange-correlation correction energy differ-
ences are 13.10 and 0.72 eV, giving the final energy
change (gain) from relaxation of —1.12 eV. Thus
the eigenvalue sum contribution has the same sign
as the total energy difference in this case, but other
contributions compete in importance with the eigen-
value sum.

C. Charge density

The overall appearance of the charge density of
the relaxed HSV in the (110) plane is similar to that
of the ideal HSV in I and is not shown. The differ-
ence plot in Fig. 5 of plconfiguration 3)—plideal)
indicates that the charge distortion accompanying
atomic relaxation is dominated by a removal of
charge from between the tetrahedron of H atoms
and the addition of charge to Si —H bonding region.
This rearrangement of charge can be accounted for
qualitatively by the rigid motion of atomiclike H
and Si charge densities. In addition, there is an in-
crease in charge in the H—Si backbonding position
(more than | a.u. from the Si nucleus) which is con-
sistent with this rigid-atom picture. The increase in
charge in the Si—Si bond likewise can be ascribed
to the 2.59% compression of this bond; its asym-
metric orm, however, suggests a distortion of the
bond charge due to bond rotation. The atomic re-
laxation also results in a decrease of the already
small charge density in the interstitial region.

CHARGE DENSITY DIFFERENCE

G D) PLANE @ s

FIG. 5. Plot in the (110} plane of the difference in
charge density between configuration 3 and configura-
tion O: e, “relaxed” minus “ideal.” Contours are
drawn at 0 'heavy contour), +5, +10, +20, and =50
electrons/cell.
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IV. DISCUSSION

The preceding section has described the sym-
metric, constant volume relaxation of H and neigh-
boring Si atoms in the HSV. The restriction to con-
stant volume has compressed the H—Si and Si—~Si
bonds by 7% and 2.5% compared to their “equili-

WARREN E. PICKETT

brium” values, indicating the “relaxed” HSV as !

described here is under pressure. The compressibili-
ty of crystalline silicon and the Si—Si bond
compression (corresponding to AV /V=7.5%) im-
plies a local pressure of the order of 75 kbar. A full
relaxation of the HSV (within the breathing-mode
constraint assumed here) would require minimizing
the energy with respect to lattice constant, then
again allowing internal atomic relaxation, and
iterating this procedure to convergence. It is not
clear that the result of such a calculation would jus-
tify the expense, so “full relaxation” in this sense
has not been attempted.

As a first approximation the “fully relaxed™ HSV
(in the sense described above) can be approximated
by the present relaxed atomic configuration, but
with lattice constant expanded by 2.5% to restore
the Si—Si bond to its length in crystalline silicon.
This leaves the H—Si bond compressed by 4.5% by
the H-H interactions.

One important property which can = sensitive to
the variation of lattice constant and to internal
stresses is the vibrational frequency of the system.
From the potential-energy expression (4} and atomic
masses the breathing-mode frequencies are found to
be 3300 and 425 cm~' for “optic” and “acoustic™
modes, respectively. [These modes however are not
normal modes of the present supercell lattice since
the Si(2) atoms are fixed.] The high-frequency H-Si
stretching mode is 50% above the 2100-cm ~! band
assigned to H-Si stretching modes'*~'® in a-SiH,.
Volume relaxation would lower the calculated fre-
quency, perhaps drastically, considering the large
but canceling electronic and ionic forces on H
(Table II) at equilibrium.

Experience in electronic structure calculations in-
dicates, however, that the qualitative features of the
electronic structure of the HSV should not vary sig-
nificantly with a 2.5% increase in lattice constant.
Thus the changes in the LDOS near the gap should
be taken seriously and their implications given con-
sideration.

Brodsky* has suggested a “quantum-well model™
for a-SiH, in which it is assumed that H—Si bonds
deplete the valence-band DOS's near the gap and re-
sult in localization of the wave functions within 0.6

26
eV of the valence-band edge. Support for this
model arose from the isolated HSV calculations of
DiVincenzo et al.? (and also from 1), and the model
could explain qualitatively certain optical and trans-
port processes. On the contrary, the present study
shows that most of the H—Si bonding states are re-
stored to the region —0.6 <E <0 eV by symmetric
relaxation.

The CPA HSV alloy model of Papaconstanto-
poulos and Economou' (PE) also indicates a strong
depletion of valence-band states just below the gap.
Moreover, this model explains in a quantitative
manner a number of properties of a-SiH,: (1) re-
moval of states from, and the widening of, the gap
upon hydrogenation,! (2) existence of Si—H anti-
bonding resonance states'® just above the gap, (3)
the absorption coefficient® in the range 2 <hAv <3
tV, and (4) the position of H-related bonding states
in the valence band.! From the “H-site” and
*“H—Si bond™ LDOS in Fig. 4 it is clear that sym-
metric breathing relaxation of the HSV removes pre-
cisely those features of the H-related LDOS in the
CPA model which are responsible for giving an inter-
pretation of properties (1)—{3) above. Property
{4)—the position of H-related photoemission
peaks—is less sensitive to the relaxation calculated
here, with relaxation causing peaks to shift away
somewhat from those measured by von Roedemn
et al." but more toward agreement with those
found by Smith and Strongin.'?

As a consequence, it appears that the ideal HSV
provides a good model of a local defect upon which
an alloy model of a-SiH, can be built, while our re-
laxed HSV fails. This result, in itself, implies no
contradiction, as PE have emphasized that it is the
local H-Si chemical environment rather than the
geometrical arrangement of the cluster of four H
atoms which is the determining factor in their
model.

This result may however be interpreted as sug-
gesting only that the present model of relaxed HSV
does not actually occur, but rather is dynamically
unstable towards a lower-symmetry, lower-energy
configuration. The present study guarantees only
that the relaxed configuration is stable with respect
to breathing-type distortions with full tetrahedral
symmetry, and that it is not Jahn-Teller unstable to-
ward a lower-symmetry configuration. However,
the restricted minimum-energy configuration found
here may well be a saddle point in the full configu-
ration space of atomic distortions.

In such a case the H (and S1) atoms are dvnami-
cally unstable with respect to motion perpendicular

E—



to the (111) H—Si bonding directions. The fully re-
laxed configuration couid be a low-symmetry one
which allows lengthening of the compressed H—Si
and Si—Si bonds toward more typical lengths as
well as the avoidance of strong H-H interactions, at
the cost of relatively low-energy distortions of
H—-Si—Si and Si—Si—Si bond angles. Avoiding
the compression of the H—Si bond should leave the
H LDOS depleted in the upper valence-band region,
similar to that of the ideal HSV in I, and therefore
retain the single feature (the local H-Si chemical en-
vironment discussed by PE) most essential to
modeling a-SiH,.

Assuming a complete loss of symmetry, the con-
figuration space consists of the coordinates of each
of the four H and {our Si atoms, a total of 24 vari-
ables. The present approach of calculating forces
rather than energies provides the only reasonable
approach to finding the lowest-energy configuration
in such a case. However, the loss of symmetry
leads to a large increase in computational effort
(from k-point sampling), and nothing is known at
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present about the number of configurational itera-
tions to be expected to reach equilibrium in such a
large parameter space. Nevertheless restricted re-
laxations along these lines may be studied in the
near future.
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CALCULATIONS OF TRANSPORT PROPERTIES IN a-Si:iH

W.E. Pickett, D.A. Papaconstantopoulos and E.N. Economouy

Yaval Researcrn laboratory, washingron, °C 20275, U.5.A.

Abstract.- We have used the coherent potential approximation

to calculate the d.c. conductivity for a model of hydrogenated
amorphous silicon. The results show that the mobility of
electrons is greater than that of holes. This appears to
be related to the strong hydrogen component of the density
of states just above the gap.

The incorporation of hydrogen into amorphous Si has been found
to change its electronic structure and transport properties drastic-
ally. The density of states in the band gap is reduced by several
orders of magnitude (1), thereby allowing the “"adjustment", by doping
(2) with impurities, of the Fermi level E; which is otherwise pinnec

near the center of the gap in a-Si. Spectral features related tc¢
hydrogenation, such as the removal of states (1) from the g3zap, the
widening of the optical gap (1,3), and the alteration of both the
valence (4) and conduction densities of states, have been studied by
a variety of theoretical methods (5-8).

The model proposed by two of the authors (6,7) accounts for the
data mentioned above as well as showing substantial agreement (7}
with the aoptical absorption data of Cody et al (2}. 1In this paner we
begin a theoretical study of the transport prcperties c¢f a-5%:~ ny
calculating the d.c. conductivity for this model system,

The model consists of an effective lattice whose sites have &
probability ¢ of being vacant and probability l-c of being occupied
by a Si atom. This Si-vacancy alloy provides a model which exhibits
many of the properties (6,7) of a-Si. [n addition, hydrogen atoms
{one, two, three, or four) are incorporated around the vacant site
such as to bond with neighboring Si dangling bonds, and the resulting
spectral properties reproduce many trends evident in the experimental
data on hydrogenation of a-Si. The model is based on a Slater-Koster
(SK) Hamiltonian fit {8) to the pseudopotential band structure of S1,

and the Coherent Potential Approximation (CPA) is invoked *to treat
%he disorder. The calculational details have been given e sewner»
6,7).

In the present work we treat only the fully hydrogenated case of
four hyorogens per vdcant Si site. The resulting system shows a very
Yow density of states in the bana gap, similar to data on a-I1:+. )
To evaluate the conductivity o we begin with the zero frequency Kun2- |
Greenwood formula

292ﬂ A f . . N A
5 = 5> dE |- 5E Tr<pxImG(E+1s)pxImG(E*1;,). ol

Toam

where <...> denotes tnhe confiquration average and f ig the :oarm:
function. The evaluation of this expression in a manner ccnsistent
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with the CPA has been discussed in detail elsewhere (9). By ignoring
the vertex Ccorrections arising from correlations in intermediate
scatterings, the Green's functions G can be averaged separately,
resulting in the effective medium function G. The trace operator
Tr in Eq. (1) includes a sum over the Brillouin zone as well as a
matrix trace over the basis states, which we have taken as the Bloch
sum of s- and p-orbitals which provide the representation for the SK
Hamiltonian (8) of silicon. In this basis the momentum (px) matrix
elements are given by

(p/mhys = 71 [H(kvsk )-H(K) T, /5K, (2)

which we have evaluated numerically by using a finite wavevector
displacement dk_. If a transformation is made to band states which
diagonalize H % nd give eigenvalues Ek, the diagonal elements of

px/m become the band velocity dEk/d(ﬂk). However, preliminary
evaluation of - retaining only band~diagonal components of px/m has

shown that the fuli matrix nature of this operator must be retained.
As opposed to previous CPA evaluations (10) of & which relied on
single band models, we emphasize that the present calculation retains
the full multiband character of our model of a-Si:H.

The zone integration of our expression for g(E),
Zezﬁ

wznmz k ijmn

s(E) =

I T p,,;:(ImG, )

ij jm “mani) (3)

Py mn

was done by an analytic tetrahedron approach {l1i). The irreducible
zone (1/48th) was divided into 4000 equal volume tetrahedra {(compris-
ing 916 distinct vertices), with the integrand being assumed linear
within each tetrahedron. The inteqratior within each tetrahedron can
be evaluated analytically, and the result is summed over all 4000
tetrahedra. The same mesh was used to solve for the (PA Green's
function G and the related density of states N(E). At zero tempera-
ture the thermal redistribution (-3f/3E) reduces to a 3-function
lTocated at Ep, and Egq. (1) reduces to Eq. (3).

The resylts for N(E) and 3(E) near the gap region are shown in
Fig. 1. We find that states very near the top of the valence band at
E ¢ -0.5 eV) are only poorly conducting, as the initial increase in
a(E) for negative energies occurs below that of N(E). At the top of
the gap, however, both o(E) and N(E) show the same “onset” at - 0.85
eV. (The energy zero has been set at the bottom of the gap of the
reference crystalline Si system {8).)

The comparison of the contribution of electron and hole states
tc conductivity can be made if we define

£

s{€}) = const. ;<p§(£)>N2(E) (

which is sungested by the relation N(£) = InG(E+ii). The mean

squars matrix element <p§(£)>, which describes everything except

density of states effects, is 5 to 15 times larger for electrgn
states than for rhole states. This difference reflects the character
of the states which are involved: hole states derived from bonding
combinations of Si-Si and Si-H orbitals, and electron states derived
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Fig. 1 The zero temperature conductivity o(E) {full line) and density
of s%ates Ns } {dashed line) near the gq?_region for the present
model of fully hydrogenated amorphous Siticon.

from anti-bonding combinations of these orbitals.
in energy relative to their Si-Si counter-

nations are pulled down
in the ratio NH(E)/Nt(E) of H local

parts, and thi

S

is

r

eflected

Both Si-H combi-

density of states N, to the total N, being three times larger for
electron states than for hole states (~7% to 2.5%).

The finite temperature conductivity (ignoring thermal lattice
disorder) can be calculated from the relation
Ef(E‘EF)
s(T) = df ST E of{E). (5)

The results are

shown

in Fig. 2 for various values of E. within the
g c

gap, corresponding physically to different doping levals.” The calcu-

lated values of log 3 vs. 1/T reproduce the approximately linear
behavior found in intrinsic and doped samples of &-Si:H (2,12).

Fig. 2 Logarithm of 5 (uf
em)” ' "vs dinverse
temperature for
various placements of
Er, corresponding to
different doping
levels. Solid lines
denote values of EF

in the lower half of
the gap (-0.4, -0.2,
0.0 eV), while dashed
lines are used for
values of E in the
upper part o; the gap
(0.2, 0.4, 0.6 e V).

3 4 5
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In spite of several recent developments in “the theoretical

understanding of the electronic spectrum of a-Sin, a'bap remains

1-3 guch as the optical

in the interpretation of measured quantities
absorption coefficient a, photoconductivity, photoluminescence, etc.
These properties depend not only on the electronic density of states
(p0S), MN(E), but also upon transition matrix elements involving the
eigenfunctions of the system. Since realistic matrix elements are
much more difficult to obtain theoretically than is N(E), the usual
approach is to assume that the matrix elements are constant, i.e.
energy-independent. With this assumption a(w) is proportional to
the convoluted DOS (CDOS) |
Er
alw) -0t / M, (E)N (E+fiw) dE (1)
EF-ﬁw
(v,c denote valence, conduction band) and the resulting optical gap

Egptcoincides with the [0S gap EgOS. In this paper we show that
both the magnitude of a and the measured!*?2 Egpt
a-SiHx are reproduced by our calculations if we remove the assumption
of constant matrix elements, and a better understanding of the
optical process is thereby obtained.

In the present work we calculate a(w) within a recently devel-

oped multiband mode]4’5

of a-Sin. These calculations are the first
application of the coherent-potential-approximation (CPA) 1in the
evaluation of optical properties of a real material using a realistic
multiband system; previous ca1culations6 of the optical conductivity

have been limited to simple single or double band models. The
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significant aspects of our work include: (i) without adjustable

parareters we obtain good agreement with experin.ent1 for alw), both

in energy dependence and absolute nmagnitude, and (ii) we find that

opt DosS
Eg Eg

tude of the wavevector resulting from short-range order.

is due primarily to remanent conservation of the magni-

The optical absorption coefficient is given in terms of the
optical conductivity o{w) and index of refraction n(w) by

a(w) = 4%Re o (w)/cn{w). (2)

where ¢ is the speed of light. The weak w-dependence of n has been

measured1 and is included in the calculations below. For o(w) we

use the general expression7
.
2¢? Z; ~ v R,
Reo(w) = dE Tr<p ImG(k,E+i0)p_ ImG(k,E+Rhw+i0)> ,
2 k X X
Tnmw
EF-‘h'w
(3)
Ee
. 2e% ) - ~ e ~ )
s == %? J(. dE Tr{p <ImG(k,E+i0)>p <ImG(k.E*ﬁw+10))%
X X
no2mw
EF-ﬂw

where @ 1is the normalization volume, Py is the x-comporent of the
momentum operator and G is the Green's function of the system. The
brackets <....> indicate an ensemble average over the disorder and A
denotes that A is an 8x8 matrix. For G we use CPA results for a
highly successful model a—SiHx system discussed elsewhere.4 The
model consists of a tight-binding description of 20 at.% H bonded to

5% Si vacancies in random positions on a Si lattice. The second
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approximate relation (3) results from ignoring vertex corw-ections8
to the exact expression, and allows the evaluatiod of Reo directly

from the CPA Green's function <G>. The momentum matrix is given by

< _ dA(K)
Py dk * (4)

where H is the virtual crystal tight-binding Hamiltonian.4

The results for Reo(w=0,EF) have been presented previously5
as a function of EF' There it was found that contributions from
off-diagonal matrix elements of p, and <G> were negligible (typically
~2%), consistent with an "intraband" picture of the d.c. conductivity.
In crystals absorption at finite frequency occurs due only to inter-
band transitions, but disorder admits the possibility of "intraband"
transitions. Wrereas it will be seen that the T:dependence of the
qatrix elements is neces:ary to understand the energy gaps, the full
mgtrix summations in the trace in Eq. (3) are necessary to obtain the
correct magnitude of a.

Our result for a(w), calculated from Eqs. (2-4) at T=0 (no
thermal disorder) with no adjustable parameters is compared in
Fig. 1 (as the dashed line) in the form (aE)I/2 vs £ (E=fw) with the
experimental data of Cody et gl.l (symbols) and with the CDOS expres-
sion of Eq. (1) (dotted line) corresponding to energy-independent,
non-momentum conserving matrix elements of bx' In the range 2.1 ¢

E ¢ 3.0 ev, (af)}/?

is in excellent agreement with the data apart
from an overall factor of 1.5. In the region 1.6 ¢ E < 2.1 eV the
calculation lTeads to higher absorption (relative to the higher energy

region) than is found for the sample shown in Fig. 1. This could
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be due to the lack of full atomic disorder or té6'the absence of
off-diagonal disorcver, either of which would requiée a Qore sophis-
ticated CPA model.

Another possibility, which we now address, is that the approxi-
mation of Eq. (3) of neglecting vertex corrections is breaking down
in this region. Examination of contributions to a(w) for fw < 2eV
from various regions of i-space shows that this absorption is due
entirely to transitions for which either (I,E) or (I,E*ﬁm) is rather
far from a broadened "band" of a-Sin. In terms of the spectral
density S given by

-+ -1, =, .
S(k,E) = - « "TrG(k,E+i0), (5)

either initial or final state of the transition lies where S is
small. The CPA, however, is designed primarily to provide average,
macroscopic properties of the system, and it may be overestimating
S(:,E) in regions far away from bands which, for example, contribute
Tittle to N(E}). In a region where the influence of a single band m

-
with energy Elm is dominant, S(k,E) assumes the form

|Imxm(EH

S(k,E) =
(E-E} ) 2+l Inz_(E)]2

(6)

A |

since for the tight-binding CPA we find the self-energy zm(i,E) in
the tand representation is nearly i-independent. Therefore S(I,E) is
Lorentzian in E;m at fixed E. Observation of first principles muffin-
tin CPA spectral functions9 however suggests a much faster than
Lorentzian fall-off of S(i,E); i.e.]lmzm(i,E)[should decrease as 1

leaves the vicinity of band m.




Following this line of reasoning we modifiéd the CPA self-

energy to conform to this more physical behavior by defining a k-

dependent on-site self-energy L by10
2
Int, (k.E) = ¢ L Imz, () (7)
S,P S»P (E_E-En)2+r‘2 S,p
r=c |Imz (E)+ 3Imzp(E)| /4, (8)

where Efn is the eigenvalue at I nearest to E. The real part of
£ is relatively less important in the calculation and was left un-
changed. The constants e and cp were determined iteratively by
the requirement that the derived "modified CPA" (MCPA) DOS Ns. N

p
differ by less than 10% from the CPA values. The value c=0.2 was
used, but with this self-consistency constraint on Ns and Np the
results are weakly dependent on the choice of c.

The effect upon S(I,E) of this modification is shown in Fig. 2
for * along the A direction and for two energies, -0.8 eV and 1.1 eV,
which contribute to absorption at fiw = 1.9 eV. S peaks near the
eigenvalues of the underlying crystalline Hamiltonian. Far from a
peak, S in the MCPA is typically reduced by an order of magnitude,
which in turn reduces the low frequency absorption. By constructing
this more physical form for <ImG> by our MCPA procedure, we obtain
corrections to a which must be included in the vertex corrections
neglected in Eq. (3). The result is shown in Fig. 1 as the full

1/2 .atculated from the MCPA is

line. The energy dependence of (af)
slightly steeper at higher energy than the experimental values of
Cody et al., but the behavior below 2 eV is much improved over the

CPA results.
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Comparison of the calculated value of (aE)l/Z“to that arising
from a simple cpos?t demonstrates that Egpt > EgOS (Fig. 1). Linear
extrapolation of (mE)I/2 to zero from the linear high frequency
region leads to a value Egpt ~ 1.8 eV (CPA) or 2.1 eV (MCPA), whereas

£D0S . 1.4 ev from the CDOS. Cody et al.?

g —— ——

have shown that Egpt
varies from 1.5 to 2.0 eV with increasing hydrogen content. It is
encouraging that our model, which contains 20% H, gives an optical
gap of the order of 2 eV, in excellent agreement with data1 on
samples with similiar H content. By making the replacement Bx -
diagonal constant in Eq. (3) we obtain a similiar frequency depend-
ence, indicating the widening of the optical gap is due primarily to
1-space correlations of the electron and hole in the excitation
process rather than an explicit energy dependence of Bx. Physically
this remanent ; conservation is due to the short-range order 1in
a-Sin. Note that our value E:pt ~ 2 eV is much smaller than that
for crystalline Si (~3 eV) in spite of the widening of the gap‘ due
to lowering of the valence bands upon incorporation of H. All of the
absorption below 3 eV arises from the disorder in the model, and the
close agreement with experiment indicates both that the underlying
"crystallinity” of our model is not a serious defect and that knowl-
edge of the long range disorder in a-Sin is not essential for
describing a.

We performed two additional calculations which illustrated other
features of our model. First, we reduced the density of fully hydro-
genated vacancies from 5% to 2.5%. This introduced two competing

effects; the decrease of the H/S{i ratio reduced Egos, but since the
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disorder was also severely reduced, Egpt actually -widened somewhat,
demonstrating the approach to the crystalline Si limit Egpt > 3 eV.
The net effect was to reduce (uE)1/2 by a factor of two below E =
2.6 eV. Secondly, we replaced 1/4 of the H atoms in the original
calculation by dangling bonds. This caused a dramatic increase of
(ch)l/2 below 2 eV due to both the increased disorder and dangling
bond gap states, and resulted in a much smaller Egpt. Although this
result follows the trend in the data when the H content is reduced,
it should not be expected to agree numerically with the experimental
Egpt-versus-H-content 'Iine1 because the dangling bonds have not been
allowed to reconstruct. "Fully hydrogenated" a-Sin does not recon-
struct significantly because all potential dangling bonds have bonded
with hydrogen. Therefore our model, when fully hydrogenated, corre-
sponds semiquantitatively to fully hydrogenated samples (as long as
localized band tail and gap states are not crucial), but it does not
have the flexibility to model situations with reduced H content to
the same accuracy.

To summarize, we have presented here realistic microscopic
calculations of the absorption coefficient of a model for a-Sin.
The calculated absorption coefficient, obtained without adjustable
parameters, is within a factor of two of the experimental value,
which 1is 1itself sample dependent. Considered alongside the other
successes4 of the model, this agreement indicates that knowledge
of the precise atomic positions are not necessary for the understand-

ing of many properties of a-SiHx for which band tail or gap states

are not intimately involved.
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Fig. 1 Comparison of calculated absorption coefficient a with
measured value (data points) of Cody et al., Ref. 1, plotted
as (a€)1/2 ys E. The CPA and MCPA results were multiplied
by 1.5 and 2.4, respectively, to normalize to the experimental

data at 2.9 eV.
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