
. AD-AI30 109 SOFTWARE CONFIGURATION MANAGEMENT IN AN INTEGRATED
PROGRAMMING SUPPORT EN..U) ROYAL SIGNALS AND RADAR
ESTABLISHMENT MALVERN (ENGLAND) M STANLEY APR 83

UNCLASSIFIED RSRE-MEMO-3578 DRICBR-88136 F/G 5/1 NL

*mIIIuIIIIIIEEEEEEEIIEIIEE
IIIIIEEEIIIIIE

IIIIIND]

IIIL2 A
liiii ,,

111..~z! 1 11--- 1.4 Jlllj 1rr .8

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 193-A

;I

p7,4

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3578

TITLE: SOFTWARE CONFIGURATION MANAGEMENT IN AN INTEGRATED
PROGRAMMING SUPPORT ENVIRONMENT

AUTHOR: Margaret Stanley

DATE: April 1983

SUMMARY

Configuratii management is defined as the management of change.
This paper i s about the use of an integrated Programming Support
Environmentjin Software Configuration Management. It discusses
the current methods of software confi uration management, and
how the control of change in evolvingNPSE)-with an adequately
design database and an integrated set of software tools. The
discussion is based on the facilities to be provided in the
database and tools of the UK CHAPSE (CHILL Ada Programming Support
Environment).

Accession For

NTIS GRA&I
DTIC TAB
Unannounced

Justification

By
Distribution/

Availability Codes

jAvail: and/or
Dist Special

This memorandum is for advance information. It is not necessarily to be
regarded as a final or official statement by Procurement Executive, Ministry
of Defence

Copyright
C

Controller HMSO London

SOF1WAPL CONFIGURATION MANAGEM[NT Ii AN IITEGRA1Fu
PknGPA0AMINn SUPPORT ENVIRUNMEfNT.

CnNTENTS

I . INTkOb1)CTInNI..

P.0 WHAT IS A SOFT,'ARW COf1FiGuAT;

2.1 Software Confiouration Item (SCI) Network.3

?.2 Raselines..
3.0 hmAl IS SOFTWAQE cnNFIG3RATI A S4AkALEMENT;.
4.0 HOW IS CnNFIGURATION MANAGEMENT TRADITIONALLY

ACHIEVED? . . * * 7
4.1 Development O; A onfiqur;tion i;,;iica;i;n

System. 6 . .

41.? nefinition ;f The'R;s;lines. . * : : : * * b.. .
41,3 Peqistration 8

a.4 Pondin0..
4.5 Project Librarin. 3

6.6 Chanae Mechanism.

5.0 AIDS 10 CUNFTGUkATION MANAGYEt'JI IN THF t; MChAPSE. 10

5.1 LK MCHAPSL. * I
5.1.1 Database TrPminolony 11
5.1.2 Information Associated hith SCIs 13

5.1.2.1 Pandatory Attributes 13

5.1.2.2 P'andatorv Poles. 14
5.1.3 Versions 14
5.1.4 modification OfRecistered SCis: 15
5.1.5 Cooyino SCIs And Creatino New Versions Jf SCIs. lb

S.1.6 Uniqueness Of Entities. 17
5.1.7 History 18

5..R Peconstruction Of SCI; 1
5.I.q Dependencies Between Ada Compilation Units. . 19
5.1.10 Sharina Com|pileo Lode Between Products. . . . 20

5.1.11 Acouisition Of Entities From Another Database. 20
5.2 P3F Tools. ?

S.?.2 Facilities Provided Py The Oatabase Tools . . . 2
5.2.2.1 Access Controls 21
r.2.2.2 Transaction Manaqement 22
S.* .?.3 Archivin. * 22
5.2.3 nthir PSE Tools For Configuration Manaoement. 22
6.n DESIGNING THE SCM SCHEMA. . * 3
6.1 Choice Of Entity Types Arid Reolationshio Types. .?3

6.? Choice Of Attributes And Relationship Types For A
Given Entity Type. 24

6.3 Dependencies And Oe;ign'Of ;Te ;abe Schem.. 24
6.n Content Of The SCM Schema 25
6..1 0bjects Under SCM 2o
6.4.2 rharacteristics Of Objects Under SCM. 28
6.9 Fxamnle Of PArt Of An SCM Database. 0. . . . 29

7.0 SOFT4ARE TOOLS FnR CON4FIGURATIn(N MANAGEMENT. . . . 32
7.1 Access Controls And The Project Librarian. . . . 33
7.2 Configuration Identification 33

7.2.1 The SCI Network Tool 13

7.3 Configuration Control* 14

7.3.1 The Reoistration Tool. 34
7.3.2 The BondinQ Tool 35

LL__

SOFTWAPE CONFIGURATION MANAGEMFNT IN AN INTEGRATED

PROGRAMMING SUPPORT ENVIRONMFNT.

7.3.3 ChanQe Control Tools. 35

7.3.3.1 Text Object Version Control. 3*

7.4 Configuration Auditing. 37

7.5 Configuration Status Accountinq 37

7.5.1 Pecordinq Terminal Uialoue 37

go0 SUMMARY. . o o 37

A.1 SCM Functions . . . o . . . * 3

A.1.1 Software Regeneration. 0

A.1.2 Product Status. 38

8.1.3 Effects Of Changes. 3

Polo' Control Of Software Evolution. 39

Ft.? Tools * 0 39
Q.1) CUNCLUSIONS o.o 0

10.0 RIBLIOrRAPHY 41

SOFTWARE CONFICUPATIn'N MANAGEMFNT IN AN INTLGNATFU PSE. Paqe 1
TTRnuICT ION.

1.0 INTRUDUCTION.

A Frooramming Support Environment (PSE) is intended to
sunport the development and maintenance of Applications software
throughout the life cycle. Stoneman (ref. 1) sets out the
requirements for an Ada PSI (APSE) with particular emphasis on

software for embedded applications. It provides guidelines
indicating the general requirements for such a support system#

and a propos software configuration management, it says:

1. "the APSE must enable configuration control to be maintained:
for any configuration of software, it is necessary to be able
to determine the Origin and purpose of each component of the

configuration and to control the process of further

levelopment and maintenance of the configuration";

?. "PROJECT TEAM SUPPnkT: An APSE snail support all functions
renuired by a Project team: these functions include project
manaqement control, documentation and recording, and

long-term configuration and release control".

it is an essential characteristic of software that it is

created and maintained in various forms and embodiments jurina
its life cYcle. For example initially the software will exist in
the form of a requirements specification. At a later stage in
the life cycle the software will include design documents and

source code. when the software development is complete the

software will exist as a set of compiled units and as an

executable unit, plus a set of acceptance tests and test results.

Configuration management has been defined by Dunn and Ullman
(ref. 3) as the management of chanqe. Uurinq the life cycle of
a software product the software undergoes perpetual change. That
change needs to be controlled if the product is to perform as
required.

Software configuration manaaement techniques have been

developed piecemeal in response to a need rather that as an
integrated set of Procedures. This gives rise to a number of

problems including:

1. difficulty with software regeneration, which is often risky

or even impossible because of insufficient data on how the
original software was nut together;

2. difficulty in determinina the product status at any time;

3. difficulty in tracing the effects of making changes to the

SyStem;

4. inadequate or non-existent derivation histories;

SOFTWARE CONFICUPATION MANAGEMENT IN AN INTEGRATE) PSL. Page 2
TNTRnDtJCT1ON,

5. confusion of the orioinal structure of the software when

evolution of a software system leads to unplanned variants.

2.0 hHAT IS A SnFTmARF CUNF76URATION?

Any part of the software may be embodied in documents on

Paper as well as in computer storage as a file or set of files.
Each of the forms of the software (requirements specification to
executable code and all the intermediate forms) and the
embodiments (for example source code listings and files in

computpr store containina the source code) are aspects of the
same thing and proper records must be kept showing how they
relater now they may oe transformed to create other forms and

what changes have been made to them# if the software development

and evolution is to be controlled effectively. The various forms
and embzrrpiments of the software that exist at a given time are

called the software configuration at that time. Tnus the
software confiquration varies with time as snecification, uesiLn
and implementation proaress. The different forms and emhodiments
of the different parts of the software are called software

configuration items (Sfls). The current software configuration
is the current and controlled definition of the software and
consists of all SCIs that are sufficiently stable to be under
configuration manacement.

The components of a software configuration will include:

1. rc uir rrr, ents Jocu iPnts;

2. desiqn documents;

3. Program source text;

a. compiled code, linked compiled code and executable code;

5. user documents and instructions for starting and recovery

after failure;

6. compilation, link and load commands for each version of the
executable Programs, includino versions of the compiler etc.
used;

7. chanoes reguested (whether approved or not), with history of
autnorisations and action taken;

8. runnino environment (hardware and software) reouireu for each

executable program;

SUFTWAPE CnNFIGUPATION MANA6EMENT IN AN TNTLGRATEU PSk. Pape 3
WHAT IS A SOFTWARE CnNFIGUPATION?

9. sets of test data and expected results (all versions);

10. recoro of actual test results (all versions).

2.1 Software Configuration Item (SCI) Network.

Software configuration items (except the overall system
renuirempnt specification) usually depend on Some item or items
alreauy in the software confiquration. For example a design
document Is a desinn intended to satisfy a particular
requirement, and a source code file is intended as the
implementation of some oesign or an executable proQram has been

created by linking several items of compiled code, which in turn
are derived from source code items. Thus the configuration items
are connected in a directed network, which indicates dependencies
between the different items. Frequently the network is a tree.

reQI

SI I I
aevei nA design desion desion accent.
plans plans 11 12 13 tests

user I I I
manual source source source source test

code code code code stubs
I1 l112 1131 codeI I

CII I I I CU13 1 1 testCU

exec.
code

test
results

CU=Comoilation Unit

Note the difficulty in nomenclature Shown by rUlimi which is
dependent not only on source coue 11 but also on source code 11?
end on source code 121.il

SOFTWAPE CONFIGURATION MANAGEMENT TN AN INTEGRATEU PSE, Page 4
WHAT IS A SOFTWARE CONFIGURATION?

2.2 baselines.

A Daseline is an approved list of SCls. The development
olan for a software product will define a succession of Planned
baselines coincident with the reference Points or milestones in
the life cycle. As the development proceeds the definitions of
the baselines are refined until the relevant milestone is
reached, when the baseline is said to he establishea.

because several different implementations of a Product need
to coexist* there may be several versions of each baseline. For
example, during nroduct maintenance there will he established
baselines corresnondirin to the current realisation of the oroduct
in addition to baselines for the revised realisation that is
under jevelopment. The SCIs in these baselines will probably

overlao to a considerable extent, because parts of the system
will not need to be changed.

A sinale software configuration network can cover all the
different versions of the product. There will he a set of

baselines for each version of the product.

The current software configuration is usually defined by
reference to the current baselines (i.e. the most recently
established baselines) plus a list of increments to those

haselines. Alternatively, it may sometimes be useful to define
the current software configuration by reference to the next
planned baseline plus a list of deviations from the planned
baseline* showing the particulars in which the software
configuration at that time deviates from the planned baseline
(i.e. those SCIs in the planned baseline that have not Yet come
under configuration managemente and those SC~s that have come
under configuration management that were not included in the

olanned baseline although they are a part of the configuration
for that version of the product).

Both baselines and the software configuration are controlled
by software configuration management.

The following baselineS are commonly used (refs 2 and 5):

1. functional baseliner established prior to software
develonment,

(may include Program development plan; quality assurance
Plan; configuration manaqement plan and the system
requirement specification);

P. allocated baseline, established when the functions to be
Performed have been allocated to specific hardware and software,

(may include the same configuration items as the functional

baseline, Plus the software requirements specification and

acceptance test plans);

SOFTWARL CONFIGUPATinN MANAGEMENT IN AN INTEGRATED PSL. Page 5
WHAI IS A SOFTWAPE CONFIGURATION?

3. desion baseline, established when the top level design of
the software is complete,

(may include the same items as the Preceding baseline, plus
documents givina the functional breakdown of the
of the data and other high level design documents; the

integration test Plan and test orocedures);

4. detailed design baseline, established when the design of

the software is complete,
(may include the same items as the Precedino baseline lus

detailed design descriptions of each software module and

system user manuals);

S. Product baseline, estdblished when the software is ready

for delivery to the customer,
(may include the same items as in the preceding baspline

plus source Code; compiled source code; compiler and
loader reports; maps ShowinQ the allocation of the
executable code to computer store anu to firtyware;
executable Program and test reports, but excludinq the
integration test olan and the acceptance test plan);

6. operational baseline, establishea on delivery of the

software product to the customer,
(may include the same items as in the Precedina oaseline

except for the program development plan and the duality
assurance plan).

3.0 AHAT TS SOFTKARF CUNFIGURATTON MANAGEMENT?

Software configuration mananement (SLM) is the discipline of
systematically controlling changes to the configuration to
maintain the integrity and traceability of the configuration

throughout the software system life cycle (Ref. 2). It is a
Part of software product management rather than Software project
manaaement, in that it is concerned with controllind the Product
rather than the orqanisation that develops the product.

A configuration management plan identifies all interested

Parties and all documents and computer files that are to he
controlled, indicates when each item will come under control, who
will control the item, and how changes are to be made and

controlled. A software configuration item is Said to be
registered when it has come under the control of software

configuration management.

In some organisations (ref. 12) there are two levels of

control applied to SCIs: registration and bonding. Sonoen SCIs
are subject to stricter and more formal control of changes than
is *oplied to SCIs that have been reoistered but not bonded. The
control of bonded SCs involves approval of bodies external to

SUFTWAPE CONFIGUPATION MANAGFMFNT IN AN INTEGRATFO PSt. Page b
WHAT IS SUFTkARE CONFIGURATION MANAGEMFNT?

the product development organisation. Changes to SCIs that are
reoistereo but not bonded must still be vroperly authorised, but
the uooV required to oive the authorisation may be internal to
the Product development ornanisation.

Confiouration management has four complementary functions:
identification; control; auuitinq; and status accountino.

Confiouration Identification involves:

1. labelling each configuration item and showina how the
various items are combined to Produce the different

versions of the executable programs;

2. oefininq and updating the baselines and the SCI network;

3. maintaining the dependencies in the SCI network;

4. listing the current baselines;

5. listing those SCIs belonging to each baseline, and
whether they are bonded in that taseline;

0. listing when each registered SCI came under
confiouration control and when each honded SCI was

bonded;

7. listing the current software confiquration, inuicatino

deviations from the t-aselines (i.e. the SCIS that have
yet to be registered in the baseline; the SCIs that
should have been oonded , that have been registered but
not yet bonded; and the SCIs that have been registered

or bonded although not in the baseline).

Confiouration control involves:

1. approving ano monitoring the reaistration of objects as
SCIs;

2. registering approved SCLIs (i.e. creating and
maintaining the library of SCTs);

3. approving and monitorino the bondino of registered SCls;

4. bonding registered SC75;

5. approving, monitoring and controlling changes to

registered or bonded SLIst (1,e. makinq the
implications of a proposed change visible prior to

change approval and ensurino that all actions required
when changing the software configuration have been done,

SUF1wARE CnNFIGURATION MANAGFMENT IN AN INTLGkATEU PSE. Page 7
WHAT IS SUFIWARE CnNFIGURATION MANAGEMFNT?

such as approval by the appropriate body, completion of
aPprooriate testS and related changes to all dependent
configuration items.).

Confiouration Auditing involves:

1. sanctioning a new baseline by verification And

validation;

e. listing the ways in which the new baseline differs from

the stated needs as given in the requ ements
specification and design documents.

(verification is defined as checking that the new _,line
is a correct interpretation of the preceding base ie and
validation is defined as checking that the Prc as
defined in the new baseline meets the customers rPqL ents
(ref. 2)).

Confinuration status accounting involves recordino and
reporting all significant events in the product life cycle
related to the software confiouration, iricludinq:

1. recording the eStablishment and attainment of each

baseline;

2. recording any changes to the confiquration, with reasons
for the changes;

3. recording, controllina and actionina ail defect reports
or change requests, (changes to registered or onnied
confiouration items are usually controlled by renuirino
the submission ano approval of defect reports or change
requests, for every change however trivial).

4.0 tlOm IS CONFIGURAITUN MANAGLwLNT IRADITIONALLY ACHILVED?

Configuration management today is a largely manual process,
involvinn collecting each configuration item into a central
library, indexing the library and managing the ProcedureS for
system development and change.

SUFTWAPE CONFIGUPATION MANAGFMENT IN AN 1TTEGRATEO PSE. Page 9
HUW IS CONFIGUPATION MANAGFMENT TRADITIONALLY ACHIFVFD?

'.1 Uevelopment Uf A Configuration Identification System.

The development of a software configuration identification

systen, with labelling conventions reflectino the deoenuencies of

the different items, and matching the software design, is usually

a joint responsihility of software configuration manadement,
software quality assurance and product management. The network

of dependencies will develop as the desinn develops.

4.2 Definition nf The baselines.

Baselines and the associated milestones are defined ry
project management supported by guality assurance and

configuration manacement when the software development plan is

ProduceJ. The detailed definition of the content of a baseline
will develop in step with the software desiqn.

4.3 Registration.

Proorammers and software designers work on objects outside

the purview of software configuration management. Ahen the

rIogrammer or designer is satisfied that the item is staole and

meets its objectives it will Lie submitted for registration as a

software configuration item. The first step is the completion of

a design review to check that the item meets its objectives. if

the item meets its objectives it can be regis'erodr togethpr with

associated SCIs (for example a source code item will probably Je
registered at the Same time as the compilation unit derived from

it, the executable code in which it was tested and the test

results).

4.4 bonding.

A registered SCI is bonded when it is t ought to he unlikely
to need further chanqe unless the change is reQuired because of

chanqe to an associated item or chanqe to the user reQuirement.

4.5 Project Librarian.

A project librarian is responsible for recording, storing,
indexing, controlling access to and issuina reference copies of

all reistered SCIs. He is also responsible for issuing chanue
information to affected personnel (e.O. nroqrammers responsible

for SCIs dependent on a modified SLI) whenever an SCI Is
modified. He produces reports, for use by project management and

Software quality assurance, on the current planned baselines, the

SOFTWAPE CONFIGUPATION MANA6EMENT IN AN INTLGRATF PSE. Page Q
HOW IS CONFICURATION MANAGFMENT TRAUTITUNALLY ACHIEVF?

current software confiouration, what has been changed, and what
authorised changes have not vet been implemented. The librarian
is also responsible for archiving, and making copies of all SCls
to ensure the inteqrity of the configuration.

4.6 Change 4echanism.

During development and maintenance of software it Is
inevitable that chanoes will need to he made to the software
configuration, either because of changes in the requirement or
the taroet hardware, or because defects are discovered in the
desion or implementation. A mechanism is therefore required for
controlling changes and ensurino that none are overlooked or

acted upon without proper authorisation. A formal method for
vroposing changes, ano reportinq defects is usual, involvinq a

set of forms, and required authorisations. The process entails:

1. proposal of a change (Possibly by the user or the

imp1ementer);

2. incorporation of the change proposal into a document (whether

or not the proposed chanoe is accepted);

1. review of the proposed change by an appropriate authority;

13. alteration to the software confiquration or planned baseline

to incorporate the change if it is approved.

For example, (refs 2 and 5), the following system may he used:

1. when it is believed that the software may be deficient,
either because of an incident when running a program or as a
result of a design review or other causer a boftware Lefect
RePort is completed identifying the suspecteo defect and
aiving reasons;

2. Software Defect Reports are reviewed and marked as 'no action
renuired', 'deficiency needs remedy' or 'change in

requirement needed', (each marking needs endorsement by an

appropriate authority);

3. if 'deficiency needs remedy' then a Software Lhange Notice is
completed, that may authorise a change in documentation, in

deSign or in source code and dependent SCIs. The Software
Chance Notice will list the affected SCls;

4. if 'chanoce in requirement needed' then a Software Change

Request is completed. Such chance reguests may also be
oenerated without a Preceoino defect report. Chance requests
must he submitted, with Supporting informAtion, for formal

authoriSation by a body such as the Configuration Control

oarrd;

.....

SUFIWAPL CONFICURATION MANAGEMFNT 11N AN INTEGRAIFU PSE. Paoe 10
HOw IS CnNFGURATION MANAGFMENT TRADITIONALLY ACHIEVFD?

5. if Changes in requirement are authorised tnen a Software
Chanoe Notice may be completed, or another form called an
Enqineerino Chanqe Proposal may be required;

6. all defect reports and software ohanqe requests are archivea,
for conflouration Status accountino. It is the
responsihility of the project librarian to progress any
authorised Changes and to notify affected personnel.

It is essential that versions of an SCI that exist prior to
an authorised change are retained, partly to Support any
suhsequent audit, and partly so that, for examole, the
requirement specification for an existino product remains
available despite the evolution of the specification into a later
basel ine.

5.) AIDS TO CONFIGURATION MANAGFMENT IN THL UK MCHAP5F.

An Ada Programmino Support Environment (APSE), as defined in
the Stoneman Requirements (Ref. I), is intendd to include
facilities to assist in configuration mananement. An integrated
orogramminq support environment (PSF) includes a computer
controlled database and a set of software tools (proorams) for

manipulating Objects in the computer controlled database. The
database not only acts as a repository for all information

associated with a project throuqhout the Project life cycle, but
also relates the different objects to one another. In fact, the
main difference between a PSE and currently availahle collections

of software tools, provided for building and controlling the
production of software systems, is the existence of an underlyino
computer controlled database relatino different objects
associated with the development and providing facilities for
controllinn relationships and dependencies, together with an
inteorated set of software tools for operatino on objects in the
database and creatina new database objects.

5.1 UK mCHAPSF.

The MCHAPSF (Minimal CHILL Ada Programminn Support
Environment) is heina developed in the LjK to satisfy the Stoneman
reouirements. Refs 10 and 11 describe the MCHAPSF as it is

currently envisaned.

The WCHAPSE will include a PSL database althouh its
software toolset is the minimum set of tools needed to support
the development of Ada and CHILL applications for embedded

software. It is the intention that further tools be adoed to
transform the MCHAPSF into a full PSF in due course. It is also
intended that these tools shall all operate on the PSE database

SOFNiARE CnNFIGURATION MANAGEME1T IN AN INTLr.RATE PSE. Pace 11
AIDS in CONFIGURATIUN MANAGEMENT IN THF UK MCtiAPSL.

and communicate with the users throuqh a common Set of
interfaces. The tools to he developed will include tools for

configuration manaqement. The facilities required for softwarp

confiuuration manacement are independent of the languaqe in which

the software is implemented.

5.1.1 Database Terminology.

Objects in the MCHAPSE database (see ref. to) are known as

entities and relationships. Entities are orouned into disjoirnt

sets of objects having common characteristics. The disjoint sets
are called entity types. A connection between two entities is

called a relationship. Relationships also belono to disjoint

sets, called relationship tynes, that connect two entity types.
Roth entities and relationships have attributes that represent

tho properties of the objects. An entity type is said to have a
role in a relationshin type. A relationship type may be

identified by the name of one of the two roles.

A database schema is used to define the structure of a
particular database, showinq the tyDes of objects that may exist

in the database, the ways in which the objects may be relateo,
the attributes they may have and the properties of the

attributes, relationship types and entity types.

Diagram of a database schema, Showinq two entity types connected

by a relationship tyDe.

A I A°,, ,2m entity type.

< relationship type.

Q D attribute.

Entities of type El may he connected to entities of type E?
hy relationships of tyoe RI;

The role of entities of type El in relationship type R1 is hI;

The role of entities of type L? in relationship tyne R! is K2;

Entities of type El have attribute At;

Fntities of type EP have attribute A2.

t

SOFTWARE CONFIGURATIn MANAGFMEtoT IN AN INTEGkATED PSE. Pane 12
AIDS TO CONFIGURATION MANAGEMENT IN THE IK MChAPSL.

Instances of database objects connected as in the above schema:

r2

f"-- entity

relationship

C-ZI attrihute

el is an entity of type El, with value al for attribute At;

e2 is an entity of type F2, with value a2 for attribute A2;
e3 is an entity of type F2, with value a3 for attribute A2;
el is connected to both e2 and e3 by relationships, ri ano

r2, of type R1.

The tools that nrovide access to the database will ensure
that the structure and properties of the database, as set out in
the schema, are maintained. They also check that the access 0

protection specified for objects in the database is not violated
and they provide facilities to users for maintainino the
inteority and consistency of the database. In this paper these
priveleged tools will he called the database tools.

The core Schema is that Dart of the database schema
specified for the mCHAPSE (ref. 11). It is the mimimum Schema
needed to Provide a database to suoport the MCHAPSE tools, in

Particular the compilation and linkinq system. Any schema for a
database to support a full PSL based on the VCHAPSE will need to
include the core schema as a subset. Fxtension to the core
schema will he needed to support software confiJuration
manaoement.

The PSE database will include objects that are not under SCM
as well as objects that are under SCM. 1he part of the database
schema that defines objects under SCM will be called the SCM
schema. The part of the database holding objects under SCM will
he called the software Corifiquration database.

SOFTWARE CONFIGUPATION MANAGFMFNT IN AN INTEGRATED PSE. Paqe 13
AIDS TO CUNFIGtLRATION MANAGEMENT IN THE ilK MCHAPSE.

5.1.? Information Associated With SCIs.

The attributes of an entity contain the information closely
associated with the entity such as creation date, name, body (of

a text file for example) or the history of the entity.
Information less closely related to the entity (such as the name
of the person rexponsible for the entity) may he held in the
attributes of related entities or of relationships.

5.1.2.1 Mandatory Attributes.

A mandatory attribute is an attribute that every member of a

specified entity type or relationship type must have. There is a
set of predefined attributes that are mandatory for all entity
types in the CHAPSF database, and a set of predefined mandatory
attributes for all relationship types in the CtiAPSE datahase.
The list of mandatory attributes of any entity type or

relationship type can he extended to include mandatory attributes
which are not in the predefined list.

Some of the Predefined mandatory entity attributes hold
information needed for software configuration manaqement, for

ex amp I e:

1. name of the object;

2. version (successor and variant) of the object;

3. creation date;

4. name of Person (author) who created the object;

S. derivation of the object;

6. access controls.

Some additional information must he associated with every

SCI. For exampler every SCI must have:

I. SCI identification of the object;

2. reason for creation of the current version of the object.

In addition, specific kinds of SC? may need to to have other
information associated with them. For example, a change reauest
must have an attribute to hold the status (accepted, rejected,

£endinq) of the Proposed change.

SOFTWAPE CONFIGURATION MANAGEMENT IN AN INTEGRATED PSE. Pace 14
AIDS TO CUNFIGLiHATION MANAGEMENT IN THf 1W MCHAPSE.

The database schema specifies the attributes of an entity or
of a relationship that are mandatory and the database tools
ensure that entities and relationships are not formed with their
wandatory attributes unset.

A tool for renisterina an object as an SCI could prompt for
values for the mandatory attributes and could check that tme
values were acceptable.

S.1.2.2 Mandatory koles.

Some information that must be associateH with an SCI may be
better catered for by forcina the SCI to have a alven type of
relationship to another entity type than by the imposition of
mandatory attributes. For example, every SCI must be the
responsibility of one Person. The details of the Person, Such as
aualifications, department and telephone number may be held as
attributes of the persnn entity. Tme SCI therefore needs a
relationship to one Person entity, inuicatino responsibility.

The database schema indicates the relationships an entity
must have by specifyinq the mandntory roles. The Property of
having mandatory roles in a relationship will he useful for
configuration management. They can ensure that Some of the
denendencies in the SC! network are enforced in the database.
For example, an Sr] must have a relationship to the Person
responsible for the SCI.

In adoition, particular kinds of SCI will neeo other
mandatory roles. For example, any Fnaineerina Chance Proposal
must have a relationship to at least one Software Chance wequest,
to at least one responsible person, and to at least one SLI.

5.1.3 Versions.

Since software is constantly being chanoed, any SC! may
exist in a number of different versions, all of which need to ue
retained. In addition to the different versions related in a
predecessor/successor fashion# there will be different versions
of the same thinq arlsinq, for example, because of variations in
the implementation of a desinnt or minor differences between SCIs
to cater for different tarqet hardware confiourations.

To assist in dealinq with this Problem the CHAPSF database
will Provide two forms of versions, called successors and
variants, for objects that have the same name in the database.
The variants represent different interpretations of an object,
such as different implementations of the body of an Ada packaqe,

SOFTWAPE CONFIGUPATION MA14AGFMENT 114 AN JNTEGkATED PSE. Paae 15
AIDS TO CUNFIGURATION MANAGEMENT IN THE UK MCHAPSE.

both satisfyinq the same Ada Package specification. The
successor versions of an object describe an ordering of the
oolect representations. For example, the evolution of a piece of
text may be represented as a set of successor versions of a
database oniect. The successor representations provided for the
CHAPSE form a hierarchy, as Shown below:

Diagram showinQ a Set of successors and variants of a
Single database object with three variants, AeF and C

r 3 ---2..2I
(A, .1 ~-~(A, 1 *.. ----A , .2.)-----, I .J).A,1)

I
(C, I . .?) "--(C, 1 .2.3)

Successors have numeric identifiers, with hierarchic
structure as illustrated for variant A.

Variants: R is a revision of (A,1.3); C is a revision of(A, 1.2.2) ;

The entity has several "current" versions, vi?. (R,1.);
(A,1.5); (A,1.2.3); (C,1.2.3).

It is recommended that only a sinqle chain of successors oe
used for registered SCls to avoid confusion as to which IS the
WCurrent" version of each variant.

Adeouate precautions will have to be taken to ensure that
the correct version is used in any software confiouration. It
will probably he necessary to nAme successor and variant
exnlicitly in any reference, rather than using the default
successor and variant. The database tools allow for a preferred
variant and a preferred successor to be used as default% if no
version identification is aiven.

5.1.4 Modification Of Registered SCTs.

Ideally, once an SCI has been registered it should not be
modified. However, if a modification is authorised, it should
result in the creation of a new version of the SCI, rather than a
channe in the attrihutes or relationships associated with the
existing version of the SCI. Fven though it will be possible to

SOFTWARE CONFIGURATION MANAGEMENT IN AN INTEGRATEU PSI. Paoe 16
AIOS TO CUNFIGU1RATION MANAGEmENI IN THE IJK MCHAPSE.

chanoe the attributes or relationships of an entity in the
database without creatino a new (version of the) entity this is
not recommended.

The CHAPSE database provides a facility whereby an Object or
an attribute of an object can be hound (for details see ref. 11
and ref. 16). A hound object or attribute cannot be deleted or
modified. rhanges to the hound object can only be effected by

creating a new object or a new version of the object. Similarly,
relationships Can be bound so that it iS impossible to destroy
the relationship between two entities as lono as both entities
exist. The Property of bindina can he used to prevent
modification to or deletion of reqistereo SCIs. Rinjino is
imposed on an entity or its attributes or its relationships ny
the creation of a relationship, defined in the database schema to
have the binding property, between the entity and some other

entity.

In order to impose the binding required on SCIs it will De
necessary to represent an SCI Uy a network of entities and
relationships, rather than by a single entity in the database.

S.I.S Copying SCls And Creating New Versions Of SCIs.

hhen SCIs are to be issued for amendment, or wren new
versions are to be createa, all the renuired attributes and
relationships must be carried forward into the new entity. Since

SCIs may he represented in the database by a network of entities
and relAtionships, rather than by a single entity, the
preservation of the information associated with the Srl may be

complicated.

The CHAPSF Provides facilities for creating a new version of
An entity (called revision) or for creating a separate copy of
the entity, with a new name in the database (called copyinq).
Certain attributes and relationships of the entity are
automatically inherited without change. Other attributes are
either given the value "unset" or their new values are specified
by the user when the entity is revised or copied. The database
schema specifies the attributes and relationship types that are
inherited hy members of an entity type. A tool will be needed to
issue copies of SCTs for amendment, with the necessary attributes
and relationshirs preserved but with some of the binding
relationships deleted, and with channed access protection.

The facilities in the rHAPSE database only allow a new
version of an existinn entity to he added to the database uvy
revision from an existing version of the entity. Since an
Amended SCI entity should be added to the software configuration

database as a successor or variant of the oriainal SCI entity,
the tool that issues an SCI entity for modification, and the

- I I I I~ I I l I I I I II I II I II I I A

SOFTWARE CnNFInURATION MANAGEMFqT IN AN INTLGRATFU PSE. PaQe 17
AiDS Tn CONFIGURATION MANAGEMENT1 ' THE IlK MCHAPSE.

re-registration tool, must revise the SCI to be issued rather
than copyinn to a new name. The issued entity may be a new
variant of the oriQinal SCI.

when a reaistered SCT is issued so that an authorised

amendment can be made, the copy *ill Probably go through several
versions opfore the amended SCI is ready for re-renistration. It
will be advisable to divorce the SCI versiuninq frony the
versioning of the issued copy to avoid unnecessary confusion.

Piagram Showinq a set of successors and variants of a an SCI.

(Cs,,3)---(CSDL)- (CS,5)- (CS,o)

(C#1I)'-' (C, 2 1- (r,3)---(C ,o)4

The SCI has two variants, C for the controlled variant and
CS for the issued variant which is not under configuration
management.

Successors have numeric identifiers.

Variants: CS is a revision of (C,3), that noes tnrouqh

several successors before it is rea oy for re-registration. (C"4)
is a revision of (CS,6), created when (CS,6) is re-reqistered as
a successor of (C,3).

0hen fCS#b) has Open re-registered as (C,'), the successor
chain for the CS variant can be deleted, since it is not under
configuration manaqement.

5.1.6 Unioueness nf Entities.

Entities in the database are usually distinquished by namino
the entity type, entity name, successor and variant. Mowevor,
since many inuependent users may Share an entity type, each with
their own entity naming conventions, it is possible that more

then one entity in a sinole entity type will share the same name,
Successor and variant. Ambiouity caused hy Sharing a name iS
normally avoioed because entities are found by Searchinn (see
ref. 16) via other entities and relationshipse from a known
entity or set of entities. If different users have chosen the

same name for different entities in the Same entity tyne, the
entities and relationshios throuoh which they can he reacneo will
usually be different. Entities with the same name can Also be
distinquished from each other by the values of other attribute%.

SUFT"ARE COIFIGUPATION MANAGFMENT IN AN INTEGRATEO PSE. Page IS
AIDS TO CUNFTGIJRATION MANAGEMENT IN THE UK MCHAPSL.

Since finding a set of entities when only one entity was
expected could lead to Confusion# there is a facility to specify
in the oatabase schema that an entity performing a specified role

in a given relationship has the 'unidue naming property'. lhis
means that when searchino via that relationship type, from a

unique entity, the values of entity type, name, successor and
variant will be sufficient to identify at most one entity.

This property may be important when Setting up a database
schema for configuration manaoement, to Prevent confusion caused
by accessing a set of entities when only a single entity was
required.

t;. 1.7 H i s to ryV

The history of every SCI (i.e. all information relevant to
the creation of the object) is needed for configuration status

accounting. Every database ouject must have a mandatory history
attribute that "Shall contain sufficient information to Provide a

basis for comprehesive confiouration control. Any necessary
conStraints Shall be imposed on database operations so that the
validity and consistency of history attributes is ensured."

(Stoneman). The history attribut- is called derivation in the
rHAPSE.

In adritinn to derivation it is recommended that all SCIs
have a mandatory attribute to hold the reason for the creation of
that version of the SCI, with references to relevant chane
requests if appropriate. Reaistration tools could prompt for the
reason when an SC! is reaistereu.

It is interided that all PSL tools shall recoro derivations
of any object that they create or amend.

5.1.A Reconstruction Of SCIs.

It is necessary for confiquration management that mechanisms
be prnvideu whereby all database objects needed to recreate a
specified object are maintained in the database as long as the

specified object itself remains in the database. This means that
it will not be possible to delete from the database any SCI
necessary to the recreation of another SCI. It is expected that,

with the exception of text files modified by the Lditors it will

always be possible to recreate an entity from the derivation
information. Derivations will probably include reference to the
version of the tools used to create or amend the entity (e.g.

the compiler and linker that were used in the creation of
compiled objects and linked compilations from source files)* to
command files and to input data files needed for the recreation

SOFTWARE CONFIGURATION MANAGEMENT IN AN INTEGRATEU PSE. Page 19
AIDS TO CONFTGURATION MANAGEMENT IN THE UK MCHAPSE.

of the entity. In addition to derivation certain objects in the
database will have a steering file attribute that may hold the
commands used when the object was created.

Given a program or partial link it will be possible, using
derivations and steering file attributes, to discover the names
and versions of any intermediate components, and source entities,
and names and versions of the tools used to create or to modify

them.

The t,inding characteristic may be used to prevent dpletion
of or amendment of objects needed for reconstruction. The
transmission of binding through a chain of objects each of which
is necessary to the creation of the next object in the chain is
important in this context.

For example, the existence of a binding relationship between
a linked program and its constituent parts can Prevent change to
or deletion of the compiled parts. The relationship between each
compiled part and the source code from which it derived can in
turn bind the source code. The relationship between the source

code and the design specification of which it is an

implementation can bind the desiqn specification.

khen Source code entities are compiled in the MCHAPSF, the

source code entities and the booy attribute of the entities (that
holds the Rctual Source text) are hound until the compiled entity
is deleted.

hhen an SCI is renistered the registrition tool will neeo to

create the network of binding relationships needed to bind the
SCT and the objects on which it depends, such as those needed for
its reconstruction.

5.1.9 Dependencies Retween Ada Compilation Units.

Phe Ada separate compilation system (see Ref. 15) allows

several separately compiled units to be combined in an executable
Program. Packane and task specifications may he compiled

separately from the corresponding bodies. With the separate
compilation facility, several separately compiled entities may be
interdependent. It will not be possible to delete a comoiled
unit from the database while other units exist in the database
that depend on the unit to be deleted.

The Ada lanpuage definition (ref. 17) reQuires that if any
compiled unit is changed, all the units dependent on the compiled
unit must he marked as invalid so that they may he recompiled.

Invalid compiled units must be recompiled before they can be
linked to the new version of the compilation unit. The user of
the MCHAPSF will be offered assistance such as a listing of units

SUFTWARE CONFIGURATION MANAGEMENT IN AN INTEGRATED PSE. Page 20
AIDS 70 CONFIGU1RATION MANAGEMENT IN THE UK MCHAPSE.

that have been invalidated by a compilation, and helo with
recompiling.

The following dependencies are relevant:

1. a specification or body is dependent on a library unit
specification if the source of the compilation unit quotes a
$with' clause (in this context a library unit is another unit
that exists in the database;

?. the body of a separately compiled in-line suovroqram is
dependent on the body of the compilation unit in which the
subproqram is defined;

3. a body depends on its specification;

4. subunit bodies depend on their parent bodies;

S. a body or svecification that instantiates a separately
compiled generic body is deppndent on the Qeneric body, Which
may be supplied in several separately compiled parts;

b. a Partial link is dependent on all its constituent parts;

7. a Program is dependent on all its constituent varts.

This renuirement noes a lonn way to ensurina the inteqrity
of executable programst but it is not sufficient for total
control of dependencies, since dependencies such as a source code
file being dependent on documentation must also be controlled.

5.1.10 Sharinq Compiled Code Between Products.

It may sometimes he desirable to share compiled code between
different products usinq the same database, or between different
programs within a project. This will be the subject of another
naoer,

5.1.11 Acouisition nf Entities From Another Database.

If software is to be reused, libraries are to be shared or a
software project is to be undertaken in physically different
locations, it will be necessary to acquire software from external
sources, The acquired software will need to be incorporated into
the database and the necessary entities and relationships will
need to be set up. This will he the subject of another paper.

I

SOFIWAPE CONFIGUPAT1fN MANAGFMENT IJ AN INTECRATED PSE. Paae 21
AIDS 10 CONFIGLikATION MANA GEMLNI IN T H F IJK MCHAPSE.

'.2 PSE Tools.

A nSE includes an extensible set of software tools(proqrams) for operating on objects in the database.

!.?.I MChAPSE Tools.

The MCHAPSE tools will proviue the minimum set of machine
independent facilities that enable a programmer to develop Ada
and CHMILL software conveniently. All access to objects in the
database will be made via the privilegea MCHAPSL tools that
enforce the database characteristics described above, such as
hindino, mandatory attributes etc.. lhey also provide the
facilities such as checks to Prevent violation of access
controls, and transaction manaaement to assist in maintainina the
intearity of the database (see oelow). These tools can he used
by any tool in the PSE.

The MCHAPSE toolset will include the tools necessary for
creating entities such as text objects, for compilina and linkino
programs and parts of Programs written in Ada or CHIL, with the
characteristics described above for keepinq control of
interdependencies, for runninq and testinq proorams and for
developing new tools.

5.?.2 Facilities Providea By The Database Tools.

5.P.2.1 Access Controls.

Access to entities, relationships and attributes will De
controlled, in the CHAPSLE to allow only authorized access. The
access allowed to database objects is indicated by the access
attributes of each object and can be set individually for each
entity, for each relationship and for every attrioute. Access is
restricted accordino to the identity Of the user requestinq
access, and in certain cases according to the tool beingj used to
obtain access. The details of the access controls are discussed
in Ref 16.

The complex system of access controls will aid configuration
manacement hy enforcing the use of appropriate tools to access
renistered SCIs$ It may also be useful to provide the project
librarian with special Permits givinq the librarian nreater
access to renisterea SCIs then accorded to other users.

SOFTWARE CONF1GURATION PANAGFMFNT IN AN 1NTEGRATFU PSE. Paqe 2?

AIDS TO CONFIGURATTON MANAGEMENT IN THE UK MCHAPSE.

S.2.2.2 Transaction Management.

Transaction management is a facility whereby a user can
specify that a certain sequence of operations on the database
shall he performed either completely or not at all. The user
defines the sequence of operations to he so treated as a
transaction. In effect he is then asserting that if the database
was consistent at the start of the transaction it will still be
consistent on completion, even if it is inconsistent at some
stage durina the transaction. The database tools will ensure
that if a transaction fails to complete, the database is returned
to the state it was in before the transaction had commenced.

It will be essential to use transaction manaqement when
updating the software confiquration database, to prevent partial
entry into confiquration control of confiquration items that
consist of more than one entity or relationship, and to prevent
creation of a relationship that binds an attribute until the
attribute has had the required value assiqned to it.

5.2.2.3 Archiving.

Facilities will be provided in the MCHAPSE for lonq term
archivino of database entities and their relationships. This is
a vital function for configuration status accounting, which will
he needed by the project librarian.

5.2.3 Other PSE Tools For Configuration Management.

A data dictionary, which is a database holding descriptions
of the entity types and relationship types in the main datanasP
will be available for the development of tools for the production
of software configuration management reports. It can include
useful aliasing information and cross referencinq information as
well as descriptions of the meaninn of the different kinds of
database objects, attributes and structures. It can also include
cross reference information showing, for example, the tools that
use each part of the database and the people that require the
different reports.

A query lanquage for the PSF database might use the data
dictionary and wold be very useful for the Production Of
reports.

SUFIWAPE CnNFIGUPATION MANAGEs4ENT 114 AN JI.TLGkIATF PSE. Paqe 23
DESIGNING THF SCM SCHEMA.

h.O DESIGNING THE SCM SCHFMA.

It is important that a database Schema he devised that takes
full advantage of the available database properties. It will
neea to be an extension of the core database schema Proposed for
the MCHAPSL which includes the Schema for the compilation and

linkinq system. The core database schema clearly provides an
excellent starting point for an SCw schema.

6.1 Choice Of Entity T-pes And Pelationship Types.

The deciSion as to whether different kinds of object havinq

Common characteristics should he represented by a single entity
type, or by a numoer of different entity types, is a dI fficult

one. For example, there are many different kinos of object whose
most important attribute is a text file. These obiects will have
various different functions (e.o. Ada source text, command
files, different kinds of documentation). Potentially this could
he reflected by having several different entity types for the
different kinds of text object. The henefits would incluje:

1. tools that only accert input from appropriate entity types;

2. the ability of ddtahase tools to prevent illeqal
relationships between different text entity types;

A. the facility for a user to determine the classification of A

text entity without examinino its contents;

a. the possibility of defining different attributes for
different text entity types.

The disarivantaoes would include:

1. Po direct facility for copying between entity typos in the
database, (it would, however, oe nossible to write a tool to
copy the attributes of an entity from an entity of one entity
type to an entity of another entity type. It would be
necessary to check that the appropriate relationshins and

bindinqs were established for the new entity.);

2. the need to modify the database schema to accomodate any new
text entity tyoe, with all the cnncomitant problems;

3. the Potential proliferation of text entity types adainn to
the complexity of the database sche

4. the use of a particular text entity for more than one purpose

(e.g. a desion document may contain sorre Ada Source text or
extracts from documents of one kind mioht Ue used within

SOFTWARE CONFIGURATION MANAGEMENT 7N AN I(TLGRATE0 PSE. Paoe 2I
PESIGNING THE SCM SCHEMA.

documents of another kind).

In view of the disadvantaqes listed above, the core database
schema Proposed for the MCHAPSL (Pef. 11) caters for only one
entity type for text objects, TEXT, with a single attribute
holaina the body of the text. It is not, however, necessary that
the SCM schema restrict itself to a single entity type for text

objects, provided that objects such aS source text that are used
l-y MCmAPSE tools are retained in the entity type defined for them
in the core database schema.

The differences in the different kinds of TEXT entity all
helongina to the same entity type can he identified by the role
the entity plays in various relationships with other entities in
the database. For example, if TEXT entity 5 is a source file
that realises a desiqn documented in TEXT entity O, then a
relationship ray exist between S and D in which S Plays the role
"realises" and U plays the role "design".

realises Hesian

6.2 Choice nf Attributes And kelationshin lypes For A Given
Entity Type.

Information can be associateo with an entity either directly
by beino contained in an dttrihute of the entity, or indirectly
hy being contained in an attribute either of a relationship of
the entity or of another entity connected to the aiven entity bV
a relationship. The decision as to how the information will be
associated with an entity will depenj to some extent on the
strength of the association, and the extent to which the
information has meanina independent of the entity

6.3 Dependencies And Desiqn Uf The qatabase Schema.

Entities in the software development system will depend on
each other in a variety of different ways. For example, there

are the dependencies (already catered for in the MCHAPSE datAbase
schema for the domain) of Compilation units on each other and on
source code entities. There are also dependencies of designs on
renuiremonts, of test results on test oata and on the entity
under test, of software entities on nersonnel entities and the
dependencies implicit in the SCI network. The SCM schema needs
to be desiQned to enforce certain denendencies by usinq mandatory
relationship roles, to Prevent the accidental deletion or change

SOFTWARE CONFIGUPATION MANAGFMENT IN AN TtqTEGRAIFD PSL. Paqe 2 S
DESIGNING THE SCM SCHEMA.

of entities on which other items depend by the use of oindinq*
and to Provide for the tracing of dependencies bY definition of
appropriate relationship types.

6.4 Content Uf The SCm Schema.

This example is intended to illustrateu the features nf a
software configuration management database. It is not intended
to be complete.

The database will include:

1. a skeleton network of SLN entities representing the olanned

SC! network, with relationshipS representina the connections
in the network;

2. baseline entities* with relationships to every SCrq in the
baseline, perhaps using successors and variants to represent
the different versions of successive baselines;

3. a product entity related to every baseline entity associated
with the product;

4. entities holcinn the body of each SCI object such as
specifications, plans, source code etc..# with relationships
plving the connections between them;

5. relationships connecting the network of SCN entities to the
entities holdino the body of each registered SCI, (these
relationships will be created on registration of the bCIP and
will bind the body of the SCT).

SCN entities are connected in the skeleton SCI network
described above. The actual oolects to be repistered as Part of
the software confiquration are called SCIs. Un registration of
an SCI a hindinq relationship will be created to precisely one

SCN entity.

The database facilities provided in the mCHAPSE do not
permit the Searching for all entities in a aiven configuration

unless they have some other attribute in common. It will
therefore be useful to Provide a Product entity connected to all
baseline entities associated with the product.

SU FWARE CONFIGURATION MANAGEMFNT IN AN 7NTEGkATE) PSE. PeCqe 26
DESIGNING THE SCm SCHEmA.

Product prdc

baseline% baseline bapie

net work CIrSqII

SC!S snd

6.4J.1 Objects Under SCM.

Many kinds of object will need to he catered for in any
software configuration database. Some will he catered for by
entities and some by relationships. It may be that several
Mifferent kinds of object can most usefully be catprea for by a
single entity tyre.

It does not seem likely that the database schema will use
different entity types for reoistpred and non registered SCIsp
because of the difficulty of granting appropriate access to tools
for compilation and linkinq.

The following kinds of object need to be considered:

1. Software documentation objects!

1. renuirements documents;

2. desion documents with relationships to the supportinq
renul rements;

3. user documents;

4. instructions for startinq and recovery after failure;

S. running environment (hardware and software) recnuirea for
each executatle program.;

SUF1WAR CONFIGURATION MANAGEMFNT IN AN INTEGRATEU PSE. Paoe 27
DESIGNING THF SCM SCHEMA.

2. Compilation associated objects:

1. program source text with relationships to SUpnOrting

desion documents;

2. compiled code;

3. linked compiled code;

4. executable codo;

S. compiler and loader reports;

6. maps showing the allocation of the executable code to
computer store and to firmware;

7. compilation, link and load commands for each version of
the executable nrogramst including versions of the
compiler etc. used.;

3. Test associated ooiects:

1. database of test data and expected results;

2. test procedures;

3. record of actual test results.;

4. Manaoement objects:

1. product entity;

2. SC! network (of SCN entities);

3. baselines for each milestone, and each version of the

Product;

4. Product development plan;

S. Quality assurance Plan;

6. configuration management plan;

7. acceptance test plans;

8. integration test plan;

9. personnel associated with a project;

10. bodies able to authorise registration and bonainq of SCIs
with relationships to members of the Uodies.;

SOFTWARE CONFIGURATION MANAGEMENqT IN AN INTEGRAIFU PSE. Page 2R

DESIGNING THF SCM SCHEMA.

5. Change control objects:

1. Software Defect Report, with substance of the report,

author, Statuse and relationships to person responsible
for responding to the report and to other defect reports
covering the same fault;

2. Software Change Reauest, with substance of the change,
author, status# relationships to bodies who neea to
authorise the renuest and relationships to affected SCIs;

3. Software Change Notice, with statust relationships to
affected SCIs, relationships to Software Change Requests
and Software Defect Reoorts if appropriate;

a. FnoineerinQ Change Proposal, with relationship to
Software Change Request..

The successor and variant system of versioninq will need to
be worked out to match the version labelling of SCIs and SCNs.

6.4.2 Characteristics Uf nbjects Under SCM.

The Jifferent characteristics of entities in the database
can be catered for by attributes or by relationships to other
entities.

The mandatory predefined entity attributes that give
derivatione date of creation and last amendment and name of user
who created thp entity and who made the last amendment will
provide for some of the needs for configuration status
accounting, although it is likely that more of the history of a
Project will need to be kept than will appear in these
attributes. A reason attribute to hold the reason for any change
made to the configuration could also he of value. 0ools could be
required to write to a Configuration Status Accounting entity or
attribute every time anything is done to any item associated with
the configuration of the software.

The SCN entities will need the following characteristics:

1. SC! identifier;

?. status of the SCI (registered or bonded) and date on which it
achieved that status# held as attributes of relationships
between the SCN and the SCI;

SOFTWARE CONFIGURATION MANA(EMENT IN AN INTLGRATEu PSE. Paoe 2Q
DESIGN1,4G THF SCM SCHEMA.

3. relationships to the bodies by whom autnorisation for
reaistration/bonding can be granted (the relationships Can
have the Status and date attributes to show whether and when
reoistration and bonding have been approved);

4. relationships to each baseline entity if the SC! is a member
of the baseline (the relationship can have an attribute to
show whether the SCI is bonded or registered in that
baseline).

The reoistered SCIs will need to have the followina
characteristics, (in addition to the mandatory predefinej entity
attributes):

1. kind of object (where an entity type caters for more that one
kind of object);

2. relationships bindinn all objects and attributes on which the
SCI depends (this dependence may be of the form 'A' is needed
to recreate 'b', or a more general form of dependence whereby
a change in A' implies a possible need for a chanae in
'B' .);

3. a relationship to the SCN entity, hindino the sionificant
attributes and reldtionships of the SCI to Prevent amendment

of the attributes or aeletion of the relationships;

4. mandatory relationship to the database object representina

the Person resnonsible for the Sri.

6.S Example Of Part Of An SCM Uatabase.

This exemvle is intended to illustrated the use of hindina
an'J of the skeleton SCI network.

Let there be an entity type containinq the SCNs and another
entity type containing the baselines and let the SCI network
connections be represented by relationships (NET), with roles
"supoorts" and "dependson".

SOFTWARE CONFIGURATInN MANAGEMENT IN AN INTEGRATFL PSE. Paqe 30
DESIGNING THE SCM SCHEMA.

A database for an SCI network is Shown below:

I b a s e l n l

supports •F eedo

Suppose that TEXT is the entity type containing objects that
have text attributes, includin requirement specifications,
desion specifications and source text, and suppose that the
followinn relationships can connect TEXt entities to each other:

1. relationship type RR connectinq renuirement soecifications

(role *req") to desiqns (rolp "meets");

2. relationship type OU connectino source code (role "imp)") to

desiqns (role "des");

Suppose also that the role "meets" is a bindino role, and
binds the entity and the body attribute of the entity performinq
the "req" role, and the role "impl" is a binding role, and hinos
the entity and the body attribute of the entity performinq the
"oes" role plus all relationships of type RH in which the bound
entity performs the "meets" role.

In entity type TEXT there are the following entities:

1. reqlzrequirement snec ($CtI);

2. desla:esign (SC11l) to satisfy reql;

3. sourcelltsource code (SC1111) for one oart of esl;

4. gourcel2maource code (SCI112) for another Dart of desi.

SQFThARE COrFIGUPATION MANA6EMENT 114 AN INTLGRATFU PSE. Page 31

flESlCM INr THF SCP SCHIEMA.

The database for the text entities is as Shown' below:

t~ind5 es! an the boy attrbute ofdesi, nd)erltosi

betsee des and une)i

relationshipde bdtee de!ad el

bins ea ad hebooy attibute of req!.in

Anyu attmt toantdrq rtocaq the body attributeofdsea% terlinhn

of Similly failstecae of the r elatioshi btoee desl tAnd

tr 15 ond ybohterelationships between desi and theatw

source entities.

Let the relationshic' connecting an SCN to its regist- red SCI
entity have tho roles "is" and "reni"t where "is" ninds the entity
Performing the "rer" role.

SUFIWAPE CONFIGURAT1ON MANAGEMFivT IN AN INTEGRATFij PSE. Paae 32
DESIGNING THE SCM SCHEMA.

As each entity in the text entity type shown above is
registered the connection between it and the correspondino SCN
entity will he created, thus bindling the registered SCI as shown
bel1ow:

reo ishoN yterlainhot SCI (rI "s)

sourc11 isN bon12vterltosipt CIl(oe"s)

sorc 2ishondbyth rlaions toSN1 rl is)

7.0 OF~aRE TOLS UR CNFIGIRAION MNAGEENT

modfynni thssotwre cniurto dtbs soreissn

reolisere d Sby they shtolnse trascti(ole "angeen"we;

conf isur dbye ation daaoe an S o always rte theshsto;
inormation bonedd fo hercnflationsatu accc(olen "into)th

hange,- to heun Stre ine telaoni attribute. ol"i")

The aae tools wsig anec ctaut the cs conttofs the

software confiuration maae mayl shoul base onsuaestanat

daoitaaeuerySC laneuageoand usseitednsaato ditnaryn ifsuhera

lhanuage is hevelored for the reson datarbase.

SUFIWAPE CONFI GURATION MANAGEMENT I1 AN INTEGRATEU PSE. Paqe 33
SUFTWARE TnOLS FnH CnNFIGURATION MANAGFMENT.

7.1 Access Controls And The Project Librarian.

The project librarian will normally be responsible for the
creation and maintenance of the software configuration database.
The librarian must be the only person having access to registered

SCIs. when an SCI is registered, the registration tool may

change the access permits of the SCI possibly restrictinq access

to special tools. The librarian will then need a special set of

tools that have access authority to operate on registered SCIs

with restricted access rights.

7.2 Confiouretion Identification.

Tools are needed to:

1. enter and update the configuration management plan, includina
the SCI network, definition of the baselines ano the

authorities who control chanqes to the software configuration
database;

2. print the SC! network;

3. list a baseline, with details of when the items came under

control and whether or not the items are bonded;

4. list the items in a baseline that have not yet been
renisterpd;

5. show how the various items combine to produce different
versions of the executable software;

6. catalogue in various wdys the registered SCISO their

dependencies, and the Associated entities and relationships

(e.g. associated personnel).

7.?.J The SCI Network Tool.

The SCI network tool may:

1. set up the network of SCNs;

P. Connect the baseline entities to the SCNs;

3. connect the product entity to the baselines;

4. set up the entities representing the bodies needed for the

different kinds of authorisation with relationshios to the

Person entities and to the 5CNs;

SOFTWAPE CONFIGURATION MANAGFMFNT IN AN INTEGRATED PSE. PaQe 34
SOFTWAPE TCOLS FOR CONFIGURATION MANAGEMFNT.

5. provide facilities for extending and modifying the network of

SCNs as the project orogresses.

7.3 Confiouration Control.

Tools are needed to:

1. reoister new SCIs, checkinQ that the necessary authorities

have been obtained;

2. bond SCIs, checkinn that the necessary authorities have been

obtained;

3. list authorities required for reqistration or honding of an

SC!I or for modification;

4. list all items dependent on an SCI with details of the

oersonnel who need to te informed;

5. orovide a mailbox facility to inform personnel of actions
required by them;

6. Progress defect reports and change requests through the

System;

7. issue reference cooies of registered (bonded) SCIs as
authorised;

A. re-register amended SCls;

Q. arcnive all registered and Donded SLIs.

7.3.1 The Registration Tool.

The registration tool may:

1. check that all authorities required for registration have
been granted;

2. check that all the required tests have been successfully
performed;

3. chana the access riqhts to the registered SCI;

4. create a binding relationshio between the SCIJ ant the SCI;

SUFTWARE CONFIGURATION MANAbEMFNT IN AN INTEGRATFU PSE. Pa3e 35
SOFTWARE TOOLS FOR CONFIGURATION MANAGEMFNT.

S. scan the derivation attribute of the SCI in order to uiscover
the registered SCIs needing to he related to the new
registered SCIr and to set up any new relationships that are
needed;

6. write the history information necessary for configuration

status accountina.

7.3.2 The Bonding Tool.

The bonding tool will be similar to the registration tool
except that instead of creating the binding relationship between
SCI and SCN and scanning the derivation attribute it will need to
modify the level of control attribute of the relationshin between
SCN and SCI.

7.3.3 Change Control Tools.

The change control tools will include three qroups of tools:

1. tools for Progressing a change throuah its various staqeS;

2. tools for the issup of SCIs so that chanoes cmn be mace;

3. tools for re-registration, includinq any necessary

modification to steering files to cater for new versions and
variants.

The tools for progressino chanaes through the different staoes
mav:

1. build up a network of relationships between chanoe documents
and the SCIs to he changed, as the change progresses;

2. modify the baseline entities and the network of SCNs to
accomodate authorised chanoe4;

3. list the authorisations required for a given change# the SCIs
affected* the neople responsible and the status of the
channe;

4. vrovide reports on changes to a confiquration, such as

listinq outstandino changes, changes implemented for a
particular baseline etc.;

SOFTWARE CnNFIGURATION MANA6EMENT IN AN INTEGRATED PSE. Page 3b
St)F7WAPE TOOLS FOR CiNFIrGURATION MANAGFMENT.

S. write the history information necessary for configuration
status accountina.

The tool for issue of SCIs may:

1. refuse to permit issue without the necessary authority;

2. revise the SCI to he modified, creating a new version with a

relationship to the parent 6Ci;

3. chanae the access controls to the issued SCI;

4. delete the binding relationships so that the modifications

can he made.

The tool for re-registration may:

I. prompt for the reason for making changes, to store in the

reason attribute;

P. modify steerina files as appropriate to cater for changes in

version And variant of the SCI;

3. invoke the registration tool to reoistpr the amended SCI as a

new version of the Sri which has been amended.

A useful tool has been developed by Bell Lahoratories, (ref.

q) called 'Modification Request Control System (MRCS), that
provides several of the facilities needed for change control.
MRCS tracks and reports project chanoe requests through

interactive i'nput and extraction of change request reports from

computer files.

7..3.1 Text Object Version Control.

There is a tool developed by Bell Laboratories that provides
some very useful facilities for version control of text ohjects.
Called 'Source Code Control System (SCCS) (refs. 4 and 13), it
provides facilities for storing, updating ana retrieving all
versions of text objects# for controllino updating privileges and

for recording who made each software change, and when, where and
why the chanoe was made. The control is implemented by keepinq a
master copy plus a set of %equenced deltas (list of changes) to
the preceding version, which uses less space than keppinn full
copies of each version. SCCS reconstructs the requested version
from the master and the deltas. If a similar tool is to be used
in the PSE the re-registration tool could be required to create a
delta between a new version of an SCI and its predecessor.

SOFTWAPE CONFIGUPATIntN MANA6EMFNT IN AN INTEGRATIED PSE. Paoe 37
SQFTWAPE TOULS FOk CONFIGUPATJON MANAGEMFNT.

7.4 Confinuration Auoltina.

The state of the art in tools for validation and
verification in the sense implied for configuration auditing is
not currently very advanced. However the database could include
attributes detailing the findings of the verification and
validdtion that har been performed. Tools could then be provided
to list the ways In which a baseline diflers from the neers
implied in earlier baselines.

7.5 Confiouration Status Accounting.

The necessary history will be stored in the database and
tools must be provided for producing the appropriate reports.

7.5.1 Recording Terminal Dialogue.

because the librarian function is so vital in Software
configuration manaqement, it may be desirable to record all
terminal dialoaup between the librarian and the System, So that
when Problems occur it will be Possible to trace what has
happened.

A.O 1St 4"APy.

Any Pronramming Support Environment needs an intenrated set
of software configuration management tools that will, combinedwith an adequately designed database schema, Support control of
thp whole life cycle of a software product.

The design of a consistent and complete software
configuration manaoement system has three major facets:

1. judicious desion of an unoerlyino database schema to Provide
the necessary network of entity types and relationship types,
each having attributes appropriate for configuration
manaaement, usinq the properties provided such as bindinq,
mandatory attributes and roles etc.;

?. selection of a strategy for the use of access Permits, access
authorities and access riqhts to support control of the

software confiouration database;

3. design of Appropriate tools for eacK aspect of configuration
management, using the transaction management facilities to
ensure database inteority.

SUFTWAPE CONFIGUPATION MANAGEMENT IN AN INTLGRATEU PSE. Paoe 38
SUMMARY.

The SCM database Schema needs to be as indepenoent as
possible of the details of the rest of the database schema so
that the overall database schema can be extended and# if
appropriate, members of the new entity types and relationship
types Can he brought under SCM without redefining the uasic SCM

database schema and tools.

8.! SCM Functions.

The difficulties imolicit in developing software with
inAdecuate SCM facilities are reduced when an SCM toolset is
inteqrated with the underlying software configuration database.

.1.1 Software Peqeneration.

The risk of incorrect software reqeneration because of
inadequate historic information is much reduced by the use of the
derivation attribute, tooether with relationships to Steprino
files and the enforced recordinq of history by the SCM tools.

8.1.2 Product Status.

The product status at any time will be visible throunh the
baselines and the change control system toorther with tools for
listino and cataloquing the software confiouration database.

A.1.3 Effects Uf Chanqes.

The effects of making any proposed changes will be traceable
through the relationships in the SCI network and the
relationships between reQistered SrIs. The relationships to the

Personnel responsible will ease the Problem of evaluatinq the
results of changes.

The facilities for two forms of versioninQ will prove useful
when building software systems that must differ only in some
small Particular. It will be important to ensure that the
successor and variant of any entity are given explicitly whore

any confusion miqht arise. However, the use of preferred
successor and variant may well be useful in command files for the
creation of new entities, to remove the need for change to such
files when the entities referenced in them are uposted.

L

SUFIWAPE CnNFIGUPATION MANAGEMENT IN AN INTLGRATED PSE. Page 39
SUMMARY.

8.1.4 Control Of Software Evolution.

Since the tools can check for proper authorisation of all
changes# it will be easier to prevent the creation of unolanned
variants.

SCIs can he forced to have at least one of any attributes
and relationships that are deemed necessary, by the use of
mdniatory attributes and relationships. For example source code
entities can be forced to have at least one relationship to a
desiqn entity.

unauthoriSed modification to or deletion of registered SCIs
can be prevented by binding ano bY access controls. The ability
separately to control access to the different parts of the
configurAtion database and to modify the access controls of
individual objects when appropriate is a powerful way of
preventing unauthorised access to reoisterea SCIs. The fact that
access rights may be different for different users is also useful
in that the librarian may be oiven much more qeneral access to
renisterpo SCJs than granted to any other user.

R.2 1ools.

It will Oe necessary to develop a special set of tools for
configuration management. The transaction manaoement facilities
will he used to maintain the integrity of the software
configuration database. The tools will use the relationships in
the database to discover dependencies so that the appropriate
personnel can he informed when changes are required. They will
check that all the necessary authorities have been obtained and
all necessary information has been supplied before modifvinq or
issuino items from the software configuration database. They
will also ensure that adequate historic information is stored in
the Configuration database to satisfy the requirements for
reconstruction of software and for configuration status
accounting.

Tools will be neede, for eacn of the software configuration
management functions, includinq tools for:

1. setting up and updating the configuration management plan
includino the baselinespthe SCI netwo-- and the Set of
authorities involved in configuration manaqtme,t;

2. reqisterina and re-registering SCIs;

3. issuing reference copies of specific registered SCIs to

authorised personnel;k

SOFTWARE CONFIGURATION MA14AGFMFNT IN AN INTEGRATED PSE. Paoe 40

SUMMARY.

4. cataloguing in various ways the registered SCIs, their

dependencies, the associated SCIS (egg* associated

personnel);

5. establishing what is in the current baseline and what is
missina from a planned baseline;

6. nrogressinq software defect reports and software change
notices;

7. reporting on history and current status of the software
configuration.

The database tools will Provide the archivina facilities
necessary for handlinq the volume of date implicit in
configuration manaoement.

9.0 CnNCLUSIUNS.

The proposed MCHAPSE offers an excellent starting point for

the development of an inteorated system for software
configuration mananement. The CHAPSE database offers facilities
fop delininn a schema capable of supportinq the reauirements of
configuration management, with the necessary relationships
between different kinds of SC., and Dinding tooether with access

controls to prevent unauthorised change to the software

configuration.

Good schema design, together with the use of a data
dictionary, will make it possible to proviJe the various renorts

needed for software configuration management and will prevent
modification of or deletion of objects on which other objectS

depend. A standard PSF database Query language, if available,
will ease the production of reports.

Good tool design will preserve the intearity of the software
configuration by the use of transaction management. Tme tools
can prevent registration or issue of SCIs without proper
authorisation and can ensure that the history of the evolution of
the software is maintained. They can Produce reports to assist
in proper planning and control of the software evolution and can

provide facilities for change control, tracing through all defect
reportS and change renuests and showing the interdependence of
SCIs.

The basic SCM schema end tools should be desioned, as far as

possible, to cope with extensions to the overall database schema,
allowing new entity types to be brought under SCM as reQuired
without rewrite of the tools or redesign of the SCM schema.

SOFTWARE CfNFIGURATION MANAGFEMNT IN AN INTEGRATEU PSE. Page 41

BIBLIUCRAPHY.

10.0 SIRLYUr;RAPHY.

1. US Department of Defense "Peouirements for Ada Programming
Suoport Environments 'Stoneman'" Feb 1980;

2. E.H.Persoff, V.D.Henderson and S.G.Sieqal "Software
Configuration Manacement - An Investment in Product
Integrity" Prentice Hall 1980;

3. R.funn and R.Ullman W3 uality Assurance for Comouter

Software"* McGraw Hill 198?;

4. A.L.Glasser *The Evolution of a source code control system*

Proceedings of the Software Quality and Assurancp Workshop in
Software Engineeriny Notes# Vol 3 No 3 July 1978;

S. F.H.Rersoff, V.D.Henderson and S.G.Sieqel "Software
Configuration management: A lutorial" Comvuter Jan 1979;

6. K.J.Pulford "Confiouration Management and the Ada Programmina
Support Environment" 198?;

7. 7.Jelinski "Configuration vanaoement and Software Develooment
Techniaues" Defense Systems Management Review Vol 2 No. 3

Summer 1979;

A. R.McCarthy "Applying the Technique of Configuration
management to Software" Defense Management Journal Vol 11 No

4, Uct 1979;

9. n.S.Knudsen, A.BarofSky and L.R.Satz "A Modification Reauest
Control System" Proceedings of the 2nu International
Conference on Software Engineering# IEEL 1Q76;

10. RSPE "MCHAPSE Reauirements specification Issue 1" Nov 198e;

11. AGL "Final Report of Study into the MCHAPSE" Sept 1992;

12. CC Course Notes for course on Software Design;

13. M.Rochkind "The Source Code Control System" ILEE Transactions

on Software Enoineering, Vol SF-I No. 4, December 1975;

14. E.Sihlpy, P.G.Scallan and F.K.Clemons "The software

configuration management database" NCC AFIPS Conference
Proceedings, Vol 50 op (249-255), 1981;

15. T.A.n.White "Separate Compilation in the MCNHAPSEL" WSHE Memo.
(to be published);

16. S.J.Revan "The UY KAPSE Date Base", RSRL Memo. (to be

DuNlished);

SUFTWAPE CONFIGURATION tANAGEMFNT IN AN INTEGRAIFL) PSE. Page 42

PIRLTUGRAPHY.

17. US Do "Peference manual for Ada Proaramming Languaqe" July

1982;

18. W.F.Tichy "Software Development Control based on Module
Interconnection#" COMPSAC 19,l, Tutorial on Software

fevelooment Environments;

IQ. W.F.Tichy "Desion, Implementation and Fval,ation of a

Revision Control System.n Proceedinqs of 6th International
Conference on Software Engineerinq, 1982;

20. O.Shignp Y.madar Y. Terashima, K.Twamoto dnd T.Nisimura,

"Confiouration Control for Fvolutional Software Products",

Proceedings of bth International Conference on Software

Fnoineerinq, Iq8?;

21. Draft British Standard "Code of Practice For Configuration
Management of Computer 6ase Systems" 1983;

22. w.H.Josephs, "A Mini-comnuter based library control system",
Proceedings of the Software Quality and Assu'ance Workshope

Performance Fvaluation keview, Vol 7 Nov 1 Q 7 8;

23. A.Reqlpy, "The software develooment environment for a large
real-time project" First Annual Conference on Computers and

Communications, IEEE 19b2;

24. M.L.Flournoyr "Software Workbench automates proqram

modification." Data Communications, Feb 1982;

25. R.Sheekey and N.P.P.Milway "System X: Desion and Supnort,
Part 5 Change Control and Documentation Database" PuFLJ Vol

73, July 1980;

26. M.G.walker "Manaoing 5oftware Peliability, The Paradigmatic
Approach." Elsevier North Holland 1981;

a7. P.W.Metzqer, "Paanaing a programming project" Prenticp Hall
Inc. 1973.

