

Approved for public release; distribution unlimited.

DIS OSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIC. NATED BY OTHER AUTHORIZED DOCUMENTS.

USE OF TAADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HAROWARE OR SOFTWARE.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPOAT NUMEER RD-CR-83-15 ADOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBEA
4. TIFLE (end Subtilte) STINGER POST HYBRID SIMULATION: DESIGN DESCRIPTION AND USERS' MANUAL	3. TYPE OF REPOAT A PERIOD COVEREO Technical Report 21 June, ' 82-30 Nov., ' 82 6. PERFORMING ORG. REPORT NUMBER Tech. Report \#83/1
7. AUTMOA(s) Terry N. Long, Timothy A. Palmer \& Donn A. Hall	a. COntaAct or ghant numientol DAAH01-82-D-A008 Delivery Order 0003
9. performing onganization name and adoness The University of Alabama in Huntsville School of Engineering Hyntsyille, AL 35899	10. AROGTAM ELEEMENTPROJECT. TASK AREA WORA UNIT NUMERS
11. CONTROLLING OFFICE NAME AND ADORESS Compandef US Army Hissile Command ATTN: DRSSM- ${ }^{\text {PPT }}$ Redstone Arsenal, AL 35898	12. REPORT CATE April 1983 1. NUMEER OF PAGES 160
Commander US Army Missile Command ATIN: DRSMI-RD Redstone Arsenal, AL 35898	is. SECUAITY CLASS. (of inlo ropert) Unclassified 136. DECLASSIFICATION DOWNGRADING SCMEOULE

Approved for public release: distribution unlimited.

1. SUPDLEMENTAAY NOTES

Stinger POST, Hybrid Simulation, Real-Time Simulation, iR/iV Sec:ser, Electronics Breadbord Aseembly, EAI-791 Analog Computer, CDC 6600 Digital Computer, Trunking Stations, Hybrid Interface Signal Conditioner, Target Modelling, Interfacing, Diagnostic Techniques

Developaent of a hybrid simulation for the Stinger POST Yissile Systen was completed during this task. A comprehansive users' manual is presented through this report. Descriptions of the analog sodels, slectronics breadboard assembly, control logic, digital program, interfaces, diagnostic capabilities, and operation sequences are provided.

This technical report was prepared by the Electrical and Computer Engineering Department of the School of Engineering, The University of Alabama in Huntsville (UAH). The project documented in this report was directed by T. N. Long and was staffed by T. A. Palmer, D. A. Hall and T. N. Long. The work was performed through delivery order number 0003 , contract number DAAHO1-82-D-A008; Dr. N. A. Kheir, Principal Investigator. Dr. M. M. Hallum, III, Chief, Systems Evaluation Branch, Army Missile Laboratory, U.S. Army Missile Command, was technical monitor. Mr. D. H. Dublin of the Systems Evaluation Branch provided technical soordination.

The authors wish to acknowledge the valuable contributions of personnel from the various organizations, including MICOM, Georgia Institute of Technology Engineering Experiment Station and General Dynamics, that have participated in development of the Stinger POST hybrid simulation. Since development spanned a period of over three years, it is difficult to acknowledge each contributor individually. So, apology is due for any oversight of contributors on the "background" page.

The technical viewpoints, opinions, and conclusions expressed in this report are those of the authors and do not necessarily express or imply policies or positions of the U. S. Army Missile Command.

This project was originally directed by personnel from the Georgia Institute of Technology Engineering Experiment Station (GITEES), and V. Grimes, of MICOM, provided technical coordination. C. Barnett initially directed the GITEES project which was staffed by T. Long, D. McKinley, and R. Murray. GITEES personnel defined configurations, partitioning, and interfaces and participated in hardware development. The guidance electronics breadboard assembly was provided by General Dynamics (GD), [1] and the gyroscope models were obtained from GD personnel working papers. D. Curry, of MICOM, developed and maintained the digital program under the direction of V. Grimes. Analog models were implemented and maintained by K. Hall, I . Adams, and R. Robinson of MICOM, UAH staff members P. Pritchett, R. Burt and D. Hall participated in target modelling efforts, [3]. Midway through development, T. Lons undertook GITEES project direction responsibilities, R. Burt joined the GITEES staff, and D. Dublin began technical coordination for MICOM. During this period, implementation was completed and the simulation was made operational. Toward the end of the development cycle, P. Pritchett foined the GITEES staff and T. Long joined the UAH staff. During this final period, P. Pritchett participated in target modelling, R. Burt upgraded configurations of the guidance electronics, and UAH personnel developed diagnostic capabilities, maintained guidance electronics hardware, maintained simulation operation, and began simulation validation.
Page
PREFACE 1
BACKGROUND 11
TABLE OF CONTENTS 111
LIST OF FIGURES vi
LIST OF TABLES viii
ABBREVIATIONS ix
1.0 INTRODUCTION 1
2.0 CONTROL LOGIC 3
3.0 ANALOG MODELS 5
3.1 Introduction 5
3.2 Gyroscope Motoring Models 5
3.3 Gyroscope Model 7
3.4 Target Models 9
3.4.1 Circles (Point Sources) 13
3.4.2 Rectangle (Body) 14
3.4.3 Triangle (Plume) 16
3.4.4 Flares 18
3.4.5 Integrated Detector Signals 21
3.5 Wing Servo Model 21
3.6 Function Generators 23
4.0 ELECTRONICS EREADBOARD ASSEMBLY 25
5.0 DIGITAL PROGRAY 26
6.0 IMTERFACES 27
6.1 Introduction 97
6.2 Bybrid Interface Signal Conditioner (BISC) 27
6.2.1 Pomer Card 27
6.2.2 Analos In Card 27
6.2.3 Discrete In Card 30
6.2.4 Breadboard Patch Pancl Card 30
6.2.5 Breadboard 1/0 Card 30
6.2.6 Analos Out Card 31
6.2.7 Miscellaneous Hardware, Patching, and Cabling 31
6.3 Trunkins Stations 33
6.4 Common Blocks 33
Page
7.0 DIAGNOSTIC CAPABILITIES 35
7.1 Introduction 35
7.2 EBA Diagnostic Capabilities 35
7.2.1 Tektronix 8002 Test Programe for the EBA 36
7.2.1.1 Transfer of EBA Memory to 8002a Memory 36
7.2.1.2 Verification of EBA PROM Memory
Against 8002a Diskette File 37
7.2.1.3 EBA Synthesized Error Signal DACs Tests 38
7.2.1.4 Automatic Gain Control (AGC) Tests 38
7.2.1.5 EBA RAM Memory Tests 39
7.2.2 㫙i615A Logic Analyzer Techniques 40
7.3 Analog Control Pancl Diagnostic Functions 42
7.3.1 Roll Control 45
7.3.2 Gyroscope 45
7.3.3 Target Position 45
7.3.4 Circle Size and Intensity 45
7.3.5 Triangle and Rectangle Size and Intensity 45
7.3.6 Flare Position, Size and Intensity 46
7.3.7 X-Y Display 46
7.3.8 Static Gain Curves 46
7.4 Digital Display Systen (DDS) Diagnostic Routines 47
8.0 SIMULATION USAGE SEQUENCES 48
8.1 Introduction 48
8.2 Initialization Sequence 48
8.3 Tailorias Sequence 51
8.4 Operation Sequences 54
9.0 CONCLUSIONS AND RECOMLHDATIONS 55
REFERENCES 56
appendix á eai-781 Model Schematics
Appendil 8 Function Generator Data
APPENIX C HISC Documentation
C. 1 SchematicsC. 2 Circuit Card LayoutsC. 3 Wiring Lists
APPENDIX D Trunk Listings

TABLE OF CONTENTS (Cont'd)

APPENDIX E Tektronix 8002a Diagnostic Programs (Flowcharts and Listings)

E. 1 PROM Memory to 8002a Memory Transfer E. 2 PROM Memory Verification Against 8002a Diskette File
E. 3 Synthesized Error Signal DAC's Tests
E. 4 Automatic Gain Control (AGC) Tests
E. 5 RAM Memory Tests

APPENDIX F DDS Diagnostic Routines
F.l OLOOPI CYCLE 2 Flow Chart
F. 2 OLOOPI CYCLE 3 FLow Chart
F. 3 DDS Diagnostic Routines Operation Sequence

[^0]| Figure B-1 | Plot of Precessibility Function Data (PABSBY or FABSBZ) |
| :---: | :---: |
| Figure B-2 | Plot of Cage Coil Physical Scaling Data (BTCC) |
| Figure C-1 | Power Supply Module |
| Pigure C-2 | Analog In Module |
| Pigure C-3 | Discrete In Module |
| Figure C-4 | Breadboard Patch Panel Module |
| Pigure C-5 | Breadboard I/O Module |
| Pigure C-6 | Analog Out Module |
| Figure C-7 | Power Supply Card Layout |
| Figure C-8 | Analos In Card Layout |
| Figure C-9 | Diserete In Card Layout |
| Figure C-10 | Breadbored Patch Pancl Card layout |
| Figure C-11 | Breadbored I/O Card Leyout |
| Figure C-12 | Analog Out Card Layout |
| Flgure E-1 | EBA PROM Memory to 8002a Mewory Transfer Diagnostic Progras |
| Flgure E-2 | EBA PRDM Memory Verification Against 8002a Diskette File Diagnostic Progran |
| Figure E-3 | EAA Syathesized Error Signal DaCs Teste Diagnostic Progran |
| Figure E-4 | EAA Autontic Gain Control (ACC) Tests Diagnostic Progran |
| Plgure E-S | EAA LAM Mamory Teete Diagnostic Progran |
| Figure F-1 | OL00pl Cycle 2 Flowchart (1 of 7) |
| Plgure F-2 | 0L00P1 Cycle 3 Flowehart (1 of 5) |

LIST OF TABLES

A
ADC
AGC
C
CCA
CGAV
CDC
CM
D
DAC
DDS
DFG
DIP
EAI
EBA
EM 0
EM 1
EM 2
ETSC
F
F
FOV
GD/P
RISC
RP
MS
I
IC
ITOU
1/0
IR
J
K
L
LED
M
MVEG
PB
PCP
POST
5
SCC
TAC
TGxx
T6xxx
T0xx
TP
TPoxxx
U
U
$4 P$

Amplifier
Analog to Digital Converter
Automatic Gain Control
Servo-Set Potentiometer
Circuit Card Assembly
Counter-Coutermeasure Verification
Control Data Corp.
Comparator
Divider
Digital to Analog Converter
Digital Dieplay Systen
Diode Function Generator
Dual In-line Peckage
Electronic Associates Inc.
Electronic Breadboard Assembly
Emulation Mode 1
Enulation Mode 2
Emulation Mode 3
Electronic Target Signal Generator
Diode Function Generstor
Flip - Flop
Field of View
Ganeral Dynamics - Pasona
Hybrid Interface Signal Conditioner
Hewle:t Packard
Hand Set Potentiometer
Integrator
Integrated Circuit
Instantancous Field of View
Iaput/Output
Infre-led
Jack
Function Relay
Luater
Light Enitting DIode
multiplier
Fulti-Variable Function Generator
Push Button
Prototype Control Probe
Pessive Optical Secker Technique
Analos Switch
Static Galn Curve
Target Adaptive Guidance
Output Logic Trunk
Green Analos Trunk
Iaput Logic Trunk
Test Point
Red Aaslos Trunk
Integrated Circuit
Ulera-Violet
Meroprocessor

1.0 INTRODUCTION

Development of the Stinger-POST hybrid simulation was completed during performance of the task documented by this report. Subsequently, the intent of this report is to provide a comprehensive description of the simulation. It should contain most of the information required for effective and efficient operation.

Stinger POST is a small, shoulder launched missile. It has a dual spectrum (infra-red and ultra-violet) seeker which scans its field of view in a rosette fashion. Energy from a source is focused on its detector through the use of two counter-rotating mirrors annd a set of lenses. The mirrors also form the seeker's gyroscope. Stinger POST is an "intelligent" missile with two microprocessors in its electronics section. The electronics maintain tracking with the gyroscope and maintain guidance with the wing servo-mechanism. The missile has only a single wing-set which requires a rolling airframe. Since the missile is so small, it carries a very small warhead. Accordingly, it must score a "hit" on a target in order to record a "kill".

The Stinger POST hybrid simulation provides a high-fidelity, real-time simulation of the missile system. It can be used to predict test flight performance and analyze the flight afterwards. A variety of targets can be modelled with flares included. The simulation can also be used to evaluate the contributions of individual parameters or to generate engagement boundaries for the composite system.

A block diagram of simulation partitioning is presented in Figure 1. Guidance electronics functions are duplicated by an Electronics Breadboard Assembly (EBA). Interface functions are accomplished in the Hybrid Interface Signal Conditioner (HISC). The gyroscope motoring models, gyroscope dynamics model, target models, and wing servomechanism model are implemented on an EAI-781 analog computer. Target intensity profiles and drift profiles are contained in multi-variable function generators (MVFGs). And, scenario control, target calculations, and airframe modelling are performed by a CDC-6600 digital computer system.

The report is partitioned similar to the way that the simulation is partitioned. Section 2.0 describes the control logic which resides on the logic portion of an EAI-781 analog computer. Section 3.0 details the analog models. These include the gyroscope motoring models, gyroscope model, target models, and wing servo model; all reside primarily on the EAI-781. Section 4.0 reviews the EBA. It is identical to the seeker's electronics except for the fact that it is in discrete component form. The digital program, which runs on the CDC 6600, is discussed in Section 5.0. The interfaces are reviewed in Section 6.0 with the HISC and trunking stations being the principal areas reviewed. Then in Section 7.0 , diagnostic capabilities are described. These include diagnostic techniques for the EBA, diagnostic tools implemented on the EAI-781 control console, and test routines developed on the CDC 6600. And finally, in Section 8.0, usage sequences are detalled. This includes initialization, tailoring, and operation sequences.

Figure 1 Stinger POST Hybrid Simulation Partitioning

2.0 CONTROL LOGIC

Simulation operation is controlled primarily by the digital program, which operates on the CDC 6600 computer. It is controlled by the operator through the Real $1:$ me Digital Display System (DDS). Logic signals transferred between the CDC 6600 and EAI-781 logic panel via a digital input/output system are used to execute the control. Combinational logic on the logic panel generates control signals used by the analog circuits, EBA, and digital program.

Most of the control logic functions are illustrated in Figure A-1 in Appendix A. Flip-flop FFOOO is used to enable operation of the simulation. When it is enabled and Input Logic Trunk TO15 is sent "high", a "handshaking" initialization signal is sent back to the digital program via Output Logic Trunk TG15. The equation for this function is presented as Equation 1 in Table 1. In words, the CDC 660C receives an "all
initialized" signal after it has sent its "initialize" signal and the "enable simulation" flip-flop has been set.

The equations presented in Table 1 represent the functional requirements. Actual implementation on the control logic panel is different in many cases since only AND and NAND gates are available. Examining Equation 2, a "gyro operate" signal is generated if the "all initialized" signal is generated or the "force gyro operate" flip-flop is set. The inverted output (negative logic) is used because integrators on the EAI 781 require a "low" to begin operation.

For Equation 3, a "8yro look angle integrator operate" signal is generated if there is a "gyro operate" signal and the iisable track loop" push-button has not been set.

For Equation 4, a "preliminary launch" signal is generated if "all initialized," "uncage EBA," and "launch" signals have been generated and the "stop" and "ubort simulation" signals are absent.

For Equation 5, the "launch operate" signal is simply the inverse of Equation 4.

For Equation 6, a negative logic "roll resolver operate" signal is generated if the "launch" signal is generated or the "force roll resolver operate" flip-flop is set.

For Equation 7, a negative logic "roll resolver integrator operate" signal is generated if the "preliminary launch" signal is generated or the "force roll resolver operate" flip-flop is set.

For Equation 8, a "wing servo operate" signal is generated if the "force wing servo operate" push-button is set or the "bore clear" signal is generated.

For Equation 9, a "cage EBA" is present if the "all initialized and uncage EBA" signal has not been generated and the "force uncage" flip-flop has not been set.

For Equation 10, a "launch EBA" signal is generated if the "preliminary launch" signal is present or if the "force EBA launch" flip-flop is set.

For Equation 11, the "turn on oscillograph" signal is generated if the "enable oscillograph" push-button has been set and the "run oscillograph" signal has been generated.

For Equation 12, the "abort" signal is essentially the same as the "abort simulation" signal.

And for Equation 13, the "clear EBA" signal simply passes through the logic panel without going through any gates.

Some of flip-flops and push-buttons mentioned above were added for diagnostic purposes. Their use will be described further in Section 7.0. Others will be described in Section 3.0 with the analog description. Additionally, there are a few logic components which have not been included in Figure A-1. Some serve diagnostic purposes and others are integral parts of models; they too will be described in later sections.

```
ALLINI = INITLZ - ENSIM
GYROOP = \overline{ALLINI + FGYROP}
GLAIOP = \overline{\mathrm{ GYROOP }}\cdot\overline{\mathrm{ DISTRK }}
PLNCH = ALLINI - UNCAGE - LAUNCH - \overline{STOP }}\cdot\overline{ABSIM
LNCHOP = P(5)
```

RROP $=\overline{\text { LAUNCH }}+\mathrm{FRROP}$ (6)
RRINOP $=\overline{\text { PLNCH }+ \text { FRROP }}$ (7)
WSRVOP = ENWSRV + BORCLR

```(8)
```

CAGEBB $=\overline{\text { FUNCAG }} \cdot(\overline{\text { ALLINI } \cdot \text { UNCAGE }})$ (9)
LNCHBB $=$ PLNCH + FBBLCH (10)

```OSCON = ENOCSC • RUNOSC(11)
```

ABORT $=\mathrm{ABSIM}$

```(12)
```

CLRBB = CLRBB

```(13)
```

Table 1 Control Logic Equations

3.0 Analog Models

3.1 Introduction

The analog models reside primarily on the EAI-781 analog computer. They include the gyroscope motoring models, gyroscope dynamics model, target models, and wing servo model. Some models also use multivariabie function generators (MVF''s). They are accessed by the EAI-781 via the trunking stations. The analog schematics are presented in Appendix A and programs (data sets) for function generators are presented in Appendix B.

3.2 Gyroscope Motoring Models

It was determined that it would be adequate to simply present the EBA with reference signals defined by a spin rate profile. This would simplify the simulation without jeopardizing its ability to model system performance. Subsequently, the motoring loops were left open, spin profiles were defined, and the EBA drive signals were left unused.

The simplified gyroscope motoring models are presented in Figures A-2 and A-3 of Appendix A. Resolver R500 and R530 (Figure A-2) produce the sines and cosines of the primary and secondary spins respectively. They are placed into operation by FF440. Primary spin rate is determined by integrator 1032 and servo-set potentiometer CO51. The initial condition for 1032 is determined by Cl 50 . Its value, I , defines the prelaunch spin rate. The upper value, F, on the limiter Lill defines the final post-launch spin rate. The value, R, on ClOO defines the rate at which the spin rate is ramped from pre-launch to post-launch. Scaling, in Hertz, for the output of I032 is 200 ($100 \mathrm{~V}=200 \mathrm{~Hz}$).

Secondary spin rate is directly proportional to the primary rate and is defined by the value, S, of $C 052$. " $-S$ " is used since the secondary rotates in a direction opposite of the primary.

Rectangular coordinates of the instantaneous field-of-view (IFOV) in the rosette scan are developed using Amplifier All2. and Al32. Figure 2 illustrates the horizontal and vertical components of the primary and secondary optical vectors which are summed to form the IFOV. Conventions were chosen based on the physical relationships of magnets and coils in the seeker head. The summation equations are given in Equation 14 and Equation 15 respectively.

Figure - Rosette Optical Vector Components

$$
\begin{align*}
& \text { XROST }=.5(\text { SINUPT }+ \text { COSUST }) \tag{14}\\
& \text { YROST }=.5(\text { COSUPT }- \text { SINUST }) \tag{15}
\end{align*}
$$

R510 (Figure A-3) produces the sine and cosine of roll. Control logic for the resolver is discussed in Section 2. Roll rate is developed in the digital program and transferred via a DAC through Red Trunk TR552. FFO40 and FF22l are diagnostic tools that will be discussed in Section 7. Since roll is in a direction which is negative with respect to the chosen convention, it is subtracted from primary and secondary spin before the signals are sent to the EBA as reference signals. For the secondary signal, this is done in R530 (Figure A-2). The output, R531, is used as the Secondary Reference Coil and is defined by Equation 16.
XPRIM2 = SINUPT • COSPT - COSUPT • SINPT

Equation 16 is a quadrature representation of Equation 17.

$$
\begin{align*}
& \text { XPRIM2 }=\sin \left(\omega_{p} t-\dot{f} t\right) \tag{17}\\
& \text { where } \begin{aligned}
\text { wp } & =\text { secondary spin rate (rad/sec) } \\
\dot{\rho} & =\text { roll rate (rad/sec) } \\
t & =\text { time. }
\end{aligned} .
\end{align*}
$$

It should be noted that the subscript " p " represents prism which is the same as secondary. The subscript "s" is similarly used to represent spin which is the same as primary. This use of " s " and " p " is quite often confusing when examining the primary and secondary gyro reference signals.

Roll is subtracted from the primary in R510 (Figure A-3). Its outputs are defined by Equation 18 and Equation 19.

$$
\begin{align*}
& \text { XPRIM3 }=\text { SINUST } \cdot \text { SINPT }+ \text { COSUST } \cdot \text { COSPT } \tag{18}\\
& \text { YPRIM3 }=\text { SINUST } \cdot \text { COSPT }- \text { COSUST } \cdot \text { SINPT } \tag{19}
\end{align*}
$$

Equation 18 and Equation 19 are quadrature representations of Equation 20 and Equation 21 respectively.

$$
\begin{align*}
& \operatorname{XPRIM} 3=\operatorname{COS}\left(\omega_{\mathrm{s}} t-\dot{c t}\right) \tag{20}\\
& \text { YPRIM3 }=\operatorname{SIN}\left(\omega_{\mathrm{g}} t-\dot{p} t\right) \tag{21}
\end{align*}
$$

where $\omega_{z}=$ primary spin rate (rad/sec).
The sumation of -.1060 (XPRIM3) and -.1696 (YPRIM3) by 1231 is used to adjust the phase of primary referance signal presented to the EBA, which in turn deteraines system phasing. A complete discussion of system phasing is presented in Section 8.3.

3.3 Gyroscope Mode1

The basic gyroscope model is presented in Figures A-4 through A-6 [1]. Three basic equations are modeled. The first two are the basic dynamics equations of elevation (θ) and azimuth ($\Psi \underset{\sim}{\Psi}$). They are presented in Equation 22 and Equation 23 respectively.

$$
\begin{align*}
& \ddot{\theta}_{G}=-\left(D_{G} / J_{G}\right) \dot{\theta}_{G}-\left(I_{G} / J_{G}\right) \omega_{s} \dot{\Psi}_{G}+\left(K_{m} / J_{G}\right) \dot{\sigma}\left(\sin \omega_{s} t\right) f\left(\left|\beta_{z}\right|\right)+\left(D_{G} / J_{G}\right) \dot{\Psi}_{G D} \tag{22}\\
& \ddot{\Psi}_{G}=-\left(D_{G} / J_{G}\right) \dot{\Psi}_{G}+\left(I_{G} / J_{G}\right) \omega_{s} \dot{\theta}_{G}-\left(K_{m} / J_{G}\right) \dot{\sigma}\left(\cos \omega_{s} t\right) f\left(\left|\beta_{y}\right|\right)-\left(D_{G} / J_{G}\right) \dot{\theta}_{G D} \tag{23}
\end{align*}
$$

where:
$\dot{\theta}_{G}, \dot{\Psi}_{G}=$ projections of gyro spin axis precession rate in the $X-Z$
(elevation) and $X-Y$ (azimuth) planes respectively
(degree/second)
$D_{G}=$ viscous damping (ft-lb-sec)
$J_{G}=g y r o$ transverse moment of inertia (slug-ft ${ }^{2}$)
$I_{G}=g y r o$ polar moment of inertia (slug-ft ${ }^{2}$)
$K_{p}=$ gyro gain (ft-1b-sec)
㫘 = seeker tracking rate signal (deg/sec)
$B_{Y}, B_{Z}=$ projection of the look angle in the $X-Z$ and $X-Y$ planes
$\dot{\theta}_{G D}, \dot{\Psi}_{G D}=$ projections of the g-dependent drift velocity in the $X-Z$
and X-Y planes respectively (deg/sec)
$f\left(\left|\beta_{2}\right|\right), f\left(\left|\beta_{y}\right|\right)=$ physical cage coil precessibility functions.

The third equation is a representation of the cage coil signal which is returned to the EBA. It is presented in Equation 29 with Equation 24 through Equation 28 being intermediate equations.

$$
\begin{align*}
\beta_{z} & =\Psi_{G}-\Psi_{M}+\theta Q^{\prime} \tag{24}\\
\beta_{y} & =\theta_{G}-\theta_{M}-\Psi_{R}{ }^{\prime} \tag{25}\\
\beta_{T A C T} & =\sqrt{\beta_{y}^{2}+\beta_{z}^{2}} \tag{26}\\
B_{\text {TACT }}^{\cos \left(\omega_{s} t-\phi_{B}\right)} & \left.=\beta_{y} \cos \omega_{s} t+\beta_{z} \sin \omega_{B} t\right) \tag{27}\\
\text { FBTCC } & =f\left(\beta_{\text {TACT }}\right) \tag{28}\\
\text { ECAGE } & =\left[F B T C C \cdot \omega_{s} \cdot \beta_{\text {TACT }}\right] \operatorname{COS}\left(\omega_{s} t-\phi_{B}\right) \tag{29}
\end{align*}
$$

where:

```
    # M, *
                        and X-Y (yaw) planes respectively (deg)
        0 Q', \PsiR' = empirical body-rate/gyro-rate look angle components
                        (deg)
    \beta TACT = total look angle (deg)
BTACT}\operatorname{COS}(\mp@subsup{\omega}{s}{}t-\mp@subsup{\phi}{B}{})= real, spin frequency modulated look angle signal
        \mp@subsup{\phi}{B}{}= phase modulation factor
    FBTCC = physical cage coil amplitude function
    ECAGE = real, spin frequency modulated cage coll signal
```

A correlation between schematic variables and equation variables is premsente in Table 2.
$\dot{\theta}_{G}, \dot{\psi}_{G}=$ THEGn, PSIG1
$\cos \omega_{s} t$, SIN $\omega_{s} t=\operatorname{COSUST}$, SINUS
$f\left(\left|\beta_{z}\right|\right), f\left(\mid \beta_{y}{ }^{3}\right)=F B Z, F B Y$
${ }^{\theta_{G D}}, \dot{\Psi}_{G D}=T H G I D R$, PSG1DR
$B_{y}, B_{z}=B Y, B Z$
= PRECMD
$\omega_{s}=\mathrm{US}=\mathrm{FS}$
$\theta_{G}, \Psi_{G}=$ THE, PSI
$\theta_{M}, \Psi_{M}=$ PITCh, YAW
$\theta Q^{\prime}, \Psi \mathrm{R}^{\prime}=$ THEGIQ, PSIGIQ
$\beta_{\text {TACT }}=$ TACT

Table 2
Gyroscope Equation/Schematic Variable Relations

Examining Figure A-4, precession is presented to the gyro model by the EBA via TR 502. Multiplier M343 and M344 scale the precession signals, used by the elevation and azimuth channels respectively, by the precessibiliny functions. Tables B-1 and B-2 in Appendix B contain the data for these functions. A plot of the functions is presented in Figure 8-1. A detailed explanation of these functions, along with additional gyro analyes, is presented in Reference [2]. M124 and M134 demodulate the orecession signal in elevation and azimuth respectively. The combined inputs to 1020 and 1030 represent $-\theta_{G}$ and - \mathbb{W}_{G} respectively. Each input can be identified as a term from Equation 22 and Equation 23. The outputs then represent $\dot{\theta}_{G}$ and Ψ_{G}. I210 and I220 are diagnostic tools used for tailoring and static gain curve generation. They are discussed further in Section 7.3.8.

In Figure A-5, θ_{G} and Ψ_{G} are developed by 1010 and 1022 respectively. In addition to inputs θ_{G} and Ψ_{G}, TG551 and TG552 can be used to impart gyro rates from the digital program for diagnostic purposes. CO12 and C102 can be used to define constant initial pointing angles. They are useful for tailoring and diagnostics. Pointing angles, θ_{G} and Ψ_{G}, are sent to ADC's
for the digital program via TR521 and TR522 respectively. Control logic for $I 010$ and $I 022$ is discussed in Section 2.0. A011 and A023 are used to develop the look angles in elevation and azimuth respectively. Body angles are subtracted from gyro pointing angles in their respective planes to derive the true planar look angles. Body pitch and yaw angles are received from DAC's via TR540 and TR541 respectively. The terms from A031 and A021 are empirically derived components of body and gyro pitch and yaw rates. They were derived in an effort to make tie analytical model match the physical device. M103 and M104 then begin the process of developing total look angle and M125 and M143 begin the process of modulating the cage coil signal at the primary spin frequency.

In Figure $A-6$, a real, spin frequency modulated look angle signal is prom duced by Al22. Its amplitude is then scaled by the other components in the figure to develop the cage coil signal, which is sent to the EBA via TR44l. It is multiplied by the spin rate term at Ml23. Then it is multiplied by another term, which represents the physical electrical design of the cage coil, at M133. The total look angle, which is finally developed at Squarerooter 105, is used to drive the function which defines that term. Data for the function can be found in Table B-3 of Appendix B. A plot of the function is presented in Figure B-2.

Additionally in Figure $A-6$, comparator CM450 is used to inform the digital program when the traximum possible gyro look angle has been exceeded. That valve, FOVL, is defined by C543. The discrete signal is transmitted via the TG13.

The gyro drift terms, which are presented to 1020 and IO30 in Figure A-4, are illustrated in Figure $A-14$. Data for the function generators are listed in Table B-4 (Radial Drift) and Table B-5 (Tangential Drift) in Appendix B. A detailed explanation of the radial and tangential drift models can be found in Reference [2].

$3.4^{\text {Target Models }}$

Initial simulation design envisioned use of an Electronic Target Signal Generator (ETSG). Delays in its development led to the design of a simple square, logical target on the EAI-781. Its purpose was to drive the simulation so that simulation development could be expedited. However, it worked so well that other geometric targets were developed on the EAI-781. This, coupled with continuing ETSG problems, led to the abandonment of the ETSG and the sole use of targets implemented on the analog computer.

Targets are modeled on the EAI-781 by using equations to define regions of space. As the IFOV scans the rosette pattern, target equations deteraine whether the point is within or outside the boundaries of the respective target. If it is within, a logic output gates an analog switch to present an intensity function to the summation amplifier for the particular spectral channel. If the IFOV is outside the boundary, the switch is left open with no input being provided to the sumation.

The word "target" refers to each individual source which may be summed to develop a composite signal for each channel. Four sources are available for the infrared (IR) channel. They are a circle (point source), a rectangle (body), a triangle (plume), and a square (flare). Three sources are available for the ultra-violet (U) channel. They are a circle, a rectangle, and a square. However, only one boundary is defined for both the IR and UV circles; only one boundary is defined for the rectangles; and only one boundary is defined for the squares. This is possible due to the fact that each boundary defines a target which presents two coincident spectral sources.

Using comparators to generate boundaries for targets means that rectangular pulses are produced. This is due to the fact that the IFOV is defined by a point. Figure 3 illustrates the process by which a pulse is generated as a "point" IFOV scans across a circular target. However, the optics in an actual seeker are such that the IFOV has a definite size (blur size) that was designd into the system. Figure 4 illustrates the pulse generation process that occurs in an actual seeker. The pulse that results from this true convolution process is notably different from the rectangular pulse.

The validity of using rectangular pulses with the Stinger POST EBA is quite acceptable though. This is due to the fact that the 2nd order filters in its pre-amp circuits well represent only the energy contained in the pulse. The pre-amps are rather insensitive to pulse shape. However, a bias in target size must be added to compensate for differences in pulse width. This bias was determined empirically by adjusting the size of a point source (circle) target until the pulse width matched that measured during an actual seeker head test. The difference between the theoretical and empjrical sizes of a point source is used as the blas for all target size calculations.
.The besic target shapes (except flares) all have a single point (key point) in common when they are used in a composite target. Figure 5 shows an example target shape and its key point. This permits the calculation of only one error signal to define the position of the composite target within the rosette pattern. Additionally, target position and orientation in the pattern are relative. Torget motion and changes in orientation can be modeled by pattern offsets (Figure 6) and sotation (Figure 7) of the pattern respectively.

Figure A-7 shows the circuitry that performs the translation and rotation functions. Target error aignals in elevation and azimuth, relative to the center of the rosette, are calculated in the digital program. They are presented to the analog model through DAC's via TG402 and TG4O1 respectively. FF450, Handset Potentiometer HS134, HS135, Function Relay K050, and KO51 are used for manual control of target position. The rotation (target orientation) angle is calculated similarly and presented via TG411. Translations in elevation and azimuth are performed in A223 and A233, respectively, uaing the rosette signals from Figure $\mathrm{A}-2$ and the error signals. RS5O performe the rotation function. Equations for the translated and rotated rosette signals are presented in Equation 30 and Equation 31.

Figure 3 Generation of Detector Signal with Li:ic

Figure 4 Convolution of IFOV and Source with a Real Detector

Figure 5 Basic Target Shape with Reypoint

Figure 6 Target Transistion

Fisure 7 Target Translacion and Rotation

$$
\left.\begin{array}{rl}
X^{\prime}= & \left(Y_{R}-\varepsilon_{y}\right) \sin \Omega+\left(X_{R}-\varepsilon_{x}\right) \cos \Omega \\
Y^{\prime}= & \left(Y_{R}-\varepsilon_{y}\right) \cos \Omega-\left(X_{R}-\varepsilon_{x}\right) \text { sin } \Omega \tag{31}\\
\text { where } X_{R}, Y_{R}= & \text { normalized IFOV position in elevation and azimuth } \\
& \text { respectively }
\end{array}\right\}
$$

Table 3 presents a correlation between schematic variables and equation variables.

Table 3 Target Equetion/Schematic Variable Relations

3.4.1 Circles (Poiat Sources)

C̣ircle generation circultry le presented in Figure A-8 in Appendix A. The equation for a circle is presented in Equation 32.

$$
\begin{equation*}
\left(X^{\prime}\right)^{2}+\left(Y^{\prime}\right)^{2}=r^{2} \tag{32}
\end{equation*}
$$

M335 and M34S fore $\left(X^{\prime}\right)^{2}$ and $\left(Y^{\prime}\right)^{2}$ respectively. 1342 perforas the sump aation of the two. Therefore, the output of $\lambda 342$ represents the radius (r) squared of a circle defined by the instantaneous location of the Ifov. It is laportant to resember that, effectively, translation and rotation relative to the rosette scan pattern has already been performed with the circuitry illustrated in figure A-7. Circie radius is defined in the digital progran, eeat to a DAC, and presented to the model via TRS12. it is presented to Cu2so alons with the output of di42. The inverted output of CH2SO is high if the radius of the circle defined by the effective position of the IFOV is less then the radius of the targit. In other cords, the

Inverted output is high as the IFOV passes through the region of the target. Equation 33 is true for this condition and represents the operation of CM250.

$$
\begin{equation*}
P C S Q O-R C S Q \leq 0 \text { or } \quad R C S Q \leq P C S Q O \tag{33}
\end{equation*}
$$

where $P C S Q O=$ target radius squared (rad ${ }^{2}$)

$$
\operatorname{RCSQ}=\left(X^{\prime}\right)^{2}+\left(Y^{\prime}\right)^{2} .
$$

The ghaded area shown in Figure 8 represents the region where $\left(X^{\prime}\right)^{2}+$ $\left(Y^{\prime}\right)^{2}<r^{2}$.

In Figure A-8, C551, C343, and C350 are used for scaling matching. K251, HS144 and FF440 are used to allow manual sontrol of target size.

Figure 8 Circle $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2} \leq r^{2}$
The intensity functions for IR and W are contained in Diode Function Generator (DFG) F101 and Fill respectively. They are a function of range which is ipput fron the digital program via a DAC and TG412. They are gated into their respective detector sumations by analog switch (S) 020 and S401 respectively. 5020 and $S 401$ are controlled by the inverted output of G1250. RS145, K01O, R4O1, and FF2SI are used to allow manual control of intensity.

The contente of Fl01 and Flll represent a particular target and are changed for each new target. Therefore, representative programs are not presented in this report but uill be presented in following validation reports. Additionally a conplete discussion on the use of the circular target in the codeling of a composite target is presented in Reforence [3].

3.4.2 Rectancle (Body)

Rectansle resion generation circuitry is presented on the lower portion of Figure A-9 in Appendix A. The region of the rectangle is definet by the intersection of four resions of space. These four regions ire represented by Equation 34 and Equation 35 where each equation defines the intersection of the two regions
$-R L \leq X^{\prime} \leq 0$
$-W R / 2 \leq Y^{\prime} \leq W R / 2$
where: $R L=$ rectangle length (rad)
WR $=$ rectangle width (rad).
Again, it is important to remember that, effectively, translation and rotation has already been performed with the circuitry illustrated in Figure A-7 (X^{\prime} and Y^{\prime}).

Rectangle length and width are presented to the model by the digital program via DACs and TR542 and TR543 respectively. The inverted output of CM251 is logic high for $X^{\prime} \leq 0$; the output of $C M 031$ is logic high for $X^{\prime} \geq R L$; the output of CMO40 is logic high for $Y^{\prime} \geq-W R / 2$; and, the output of CM041 is logic high for $Y^{\prime} \leq W R / 2$. The output of And Gate (AND) 3B then represents the intersection of these four outputs (regions) and defines the region of the rectangle.

A graphical representation of the region is shown in Figure 9.

Figure 9 Rectangle $\left(R L \leq X^{\prime} \leq 0\right) \cap\left(-W R / 2 \leq Y^{\prime} \leq W R / 2\right)$
Note that the keypoint is offset to one side with a particular initial orientation defined for the rectangle. Since the rectangle is used to represent an aircraft body, provisions must be made to properly mate it to a plume model (triangle). Comparing this offset and orientation to the triangle's offset and orientation shown in the next section reveals how the mating is achieved.

An aircraft body has both IR and UV spectral content. Therefore, the output of AND3B is used to gate two intensity functions (See Figure A-13 in Appendix A). AND3B controls SO11 and SO50 for the IR and UV summation inputs respectively. The functions are stored on Multi-Variable Function Generators (MVFGs). Aspect angle and range are generated by the digital program and transferred to the model via DACs and TG400 and TG412 respectively. They are then presented to the IR MVFG via TG301 and TG300 respectively, and to the UV MVFG via TG213 and TG212 respectively. The IR MVFG output is received via TR320; the UV MVFG output is received via TG222. Again, representative MVFG programs are not presented in this report but will be presented in following validation reports, and a rectangle usage discussion can be found in Reference [3].

FF431, K431, K421, HS125, and HS115 in Figure A-9 are used to allow manual control of rectangle lengch and width. FF251, K240, K011, and HS145 in figure A-13 are used to allow manual control of intensity.

3.4.3 Triangle (Plume)

Triangle region generation circuitry is presented on the upper portion of Figure A-9 in Appendix A. The region of the triangle is defined by the intersection of three regions of space. These three regions are represented by Equation 36 and Equation 37 . Equation 37 represents the intersection of two regions.

$$
\begin{align*}
& X^{\prime} \geq 0 \tag{36}\\
& {\left[(-W / L) X^{\prime}+W\right] \leq Y^{\prime} \leq\left[(W / L) X^{\prime}-W\right]} \tag{37}
\end{align*}
$$

where: $W=$ half width of isoceles triangle base (rad)
$L=$ isoceles triangle length from center of base (rad).
Again, it is important to remember that, effectively, translation and rotation has already been performed with the circuitry illustrated in Figure A-7 (X^{\prime} and Y^{\prime}).

- The triangle is isoceles in shape. The half width of its base and its length, measured from the center of its base, are presented to the mocel by the digital program via DACs and TG410 and TG403 respectively. The output of CM251'is logic high for $X^{\prime} \geq 0$. This determines the first region. Divider (D) 304 produces W/L and M314 then produces -(WiL)X'. 1400 performs a summation to produce (W/L) X^{\prime} - W, and CM431 generates a logic high when $(W / L) X^{\prime}-W-Y^{\prime} \geq 0$. Subsequently, this output deteraines the second region $\left[Y^{\prime} \leq(W / L) X^{\prime}-W\right]$. A401 also produces $-(W / L) X^{\prime}$ and is a result of the developmental process. It feeds CM410 which generates a logic high when $(W / L) X^{\prime}-W+Y^{\prime} \geq 0$. The third region $\left[Y^{\prime} \geq-(W / L) X^{\prime}+W\right]$ is determined by this output. ANDOG performs the intersection of the three regions to define the region of the triangle.

Figure 10 Triangle - [$\left.X^{\prime} \geq 0\right] \quad\left[\left(-(W / L) X^{\prime}+W\right) \leq Y^{\prime} \leq\left((W / L) X^{\prime}-W\right)\right]$

Note the location of its keypoint and its orientation. The triangle is used to represent an aircraft plume, and provisions have been made to properly mate it to the body (rectangle) model. Comparing the offsets and orientations of the two reveals how the mating is achieved.

An aircraft plume primarily has only IR spectral content which implies the need for only one intensity function. However, that one function is rather complex with an intensity gradient being distributed over the plume. Circuitry illustrated in Figure A-10 of Appendix A provides a two-slope, inear gradient function.

A452 sums three components to generate the composite gradient. C503 first generates a dc level for the plume.

D324 generates -X'/L while A442 and Ll21 are used to insure $0 \leq X^{\prime} / L \leq$ 1. A450 then generates $1-X^{\prime} / L$, which is the first normalized inear gradient. It is illustrated in Figure 11, and it is scaled by C502.

Figure 11 First Linear
Pluse Gradient

Figure 12 Second Linear Linear Plume Gradient

A432 takes the output of A450 and adds a value, PGS2, to generate 1-PGS2-X'/L, which is the second normalized linear gradient. It is illustrated in Figure 12. However, to form a breakpoint in the composite two-slope gradient, $S 431$ and AND3A are used to gate the second gradient. CM200 and C511 (PBP) are used to define the normalized breakpoint with a logic high being generated if PBP-X'/L ≥ 0 ($\mathrm{X}^{\prime} / \mathrm{L} \leq \mathrm{PBP}$). C501 scales the second gradient.

PBP is generally chosen so that the composite model is represented by case (a) in Figure 13. However, case (b) or case (c) can be generated if other breakpoints are chosen. Reference [3] includes a program to determine potentiometer settings for chosen configurations. CM210, C523 and TG400 (Aspect Angle) can be used to make the breakpoint a function aspect angle also.

Figure 13 Composite Plume Gradient as Function of Breakpoint
The composite gradient model is scaled by an intensity function, which is a function of range and aspect angle, before the result is gated into the IR detector summation amplifier. The function resides in an MVFG. Aspect angle (TG400) and range (TG412) is provided to the MVFG via TG211 and-TG210 respectively. Its output is received via TG220, and the scaling is performed by M355. Again, representative MVFG programs are not presented in this report but will be presented in following validation reports, and a triangle usage discussion can be found in Reference [3].

Gating is performed by the output of the triangle region generation circuitry (ANDOG) from Figure A-9 and A-240. FF441 and K250 are used to allow manual control of plume intensity if desired.

3.4.4 Flare

Flare region generation circuitry is presented in Figure A-11 in Appendix A. The flare is modeled as a square (Figure 14) and is a simplified form of a rectangle. However, since a flare separates from the composite target model during a flight, independent positioning must be performed for the flare. Independent elevation and azimuth error signals, relative to
the center of the rosette pattern, are presented to the model by the digital program via DAC's and TR400 and TR402 respectively. A413 subtracts the azimuth error signal from X_{R}, and $A 403$ subtracts the elevation error signal from Y_{R}. The result is a new translated set of axes (Figure 15).

Figure 14 Square (Flare) Region

Figure 15 Translated Square (Flare)

The translation is represented by Equation 38 and Equation 39.

$$
\begin{align*}
& X^{\prime} F=X_{R}-\varepsilon x F \tag{38}\\
& Y^{\prime} F=Y_{R}-\varepsilon y F \tag{39}
\end{align*}
$$

where: X'F, Y'F = translated flare axes
$\begin{aligned} \varepsilon_{x} F, \varepsilon_{y} F= & \text { azimuth and elevation flare error signals relative } \\ & \text { to rosette pattern center (rad) }\end{aligned}$
Rotation circuitry is not required though since its size is always about as swall as a point source.

Like the rectangle, the square is defined by the intersection of four regions of space. These four regions are represented by Equation 40 and Equation 41. The intersection of two regions is defined by each equation.

$$
\begin{align*}
& -F L S Z / 2 \leq X^{\prime} F \leq F L S Z / 2 \tag{40}\\
& -F L S Z / 2 \leq Y^{\prime} F \leq F L S Z / 2 \tag{41}
\end{align*}
$$

where $\operatorname{FLSZ}=$ flare size (rad)
X'F is presented to CMOOO and CM420 while $Y^{\prime} F$ is presented to CM211 and CM430. Flare size remains constant during a flight, so it is defined by C553. FLSZ/2 is then presented to CMOOO and CM211, and -FLSZ/2 is presented to CM420 and CM430. The output of CMOOO is a logic high for X'F \geq -FLSZ/2; the inverted output of CM420 is "high" for X'F \leq FLSZ/2; the output of CM211 is "high" for Y'F $\geq-F L S Z / 2$; and, the inverted output of CM430 is "high" for $Y^{\prime} F \leq F L S Z / 2$. The output of ANDIG then represents the intersection of the four outputs (regions) and defines the region of the square. A graphical representation of the flare region is in Figure 16.

Figure 16 Flare-(-FLSZ/2 \leq XF \leq FLSZ/2) $\cap\left(-F L S Z / 2 \leq Y^{\prime} E \leq F L S Z / 2\right)$
AND5G is used to gate the flare on or off under external control. Utilizing AND6B, AND6C, and AND3C, flare circuity is turned on by the digital progran via T002. AND3C is the final output that initiates the flare's intensity protile model. And, FF231 and FP411 perform diagnostic functione.

Flare IR and UV intensity functions are illustrated in Figure A-12 in Appendix A. I411, C223, and C233 are combined to siaply form a timer. It is put into operation by a logic low from AND3C, illustraed in Figure A-11. The timer driven Fl20 which contains the time dependent flare profile. Its output is then scaled by a range and asimuth dependent function which resides in a MVFG. The digital progran provides the flare model with the range to the flare and aspect via DACs and TR403 and TG400 respectively. They are then sent to the MVFG viz. TG302 and TG303 respectively. Its output is received via TR322, and M325 performs the actual scaling. The resulting intensity function is then gated oy the output of the flare logic circuitry (ANDSG) and S000. This output represents the IR spectral output of the flare.

The $U V$ spectral output of a flare is generally short lived and can be modeled directly from the IR spectral output. Therefore, the output of A003 is gated by $\mathrm{SO1O}$ and CMO1O. The inverted output of CMO1O simply shuts off the signal after a present amount of time determined by C541. Time is provided to CMO1O by the flares master timer (I411). The output of SO10 then represents the $U V$ spectral output oi the flare.

3.4.5 Integrated Detector Signals

The composite detector signals are developed by 4451 and A252, illustrated in Figure A-13 in Appendix A. A451 sums the individual contributions from the target models, and its output, the simulated IR detector signal, is sent to the EBA via TR440. C250 scales the circle input; C252 scales the rectangle input; C301 scales the noise input; and, C25l scales the triangle input. The flare input comes from A033, illustrated in Figure A-12, and its input is scaled by C032. The other inputs to A033 allow for the addition of more flares. Ll50 limits A033 to a value between -100 V and +100 v . System saturation occurs at +125 v .

Similar to the IR channel, A252 performs the UV summation, and its output is sent to the EBA via TR452. C300 scales the noise input; C342 scales the rectangle :ifut; and, C253 scales the circle input. The flare input comes from A211 (Figure A-12), and its input is scaled by C453. Its limiting is performed by Li30.

3.5 Wing Servomechanism Model

The wing servomechanism used in StingeryPOST is unchanged from that of Stinger. Its transfer function is presented in Figure 17, and its EAI-781 model is illiastrated in Figures A-15 and A-16 in Appendix A. The model is hybrid in nature, employing large percentages of both analog and logic components. This is necessary because the wing servomechanism is a single oscillating wing set. Subsequently the system is roll dependent.

The wing servo model is rather complex, but there is only one input and one output. Wing command ($\delta \mathrm{c}$) is developed by the EBA and presented to the model via the Hybrid Interface Signal Conditioner (HISC - See Section 6.2) and TR501. Its output, wing incidence, is used by the digital program. It is received via TR520 and an ADC.

The model is maintained by MICOM personnel who manage the Analog Computer Room. They possess design information and diagnostic tools. Since the design is essentially the same as a previous model used for Stinger, a high degree of confidence has been developed in the model. Documentation of impulse response, step response, etc. is used in the event of failures in the model. Of the EAI-781 models, it has the greatest failure rate. However, MICOM personnel are quite idept at diagnosing and correcting any failures that occur in the model.

Figure 17 Wing Servomechanism Transfer Function

3.6 Function Generators

There are two types of function generators used in the simulation with the analog models described in the previous sections. The most simple type is the Diode Function Generator (DFG). It provides a single function of one variable with 16 break points. The DFG is an integral component of the EAI-781. The first three data sets presented in Appendix B are for DFG's.

Multi-Variable Function Generators (MVFGs) are separate from the EAI-781 and mast be accessed via trunking stations. Depending upon the chosen mode, four one-variable functions, two two-variable functions, one three-variable function, or two one-variable and one two-variable functions can be provided by one MVFG. MVFGs are accessed via the trunking stations in pairs. The modes and possible configurations for a pair of MVFGs are presented in Table 4 and Table 5 respectively. The last two data sets presented in Appendix B are for MVFGs.

Mode	Description
1	Four functions of one variable each 2
3	Two funstions of two variables each
4	Two functions of one variable each and one One function of three variables.

Table 4 MVFG Modes

	Function	Argument	Trunkin	tion A	Address	Output Hole
Mode	Number	Number	Argument		Function	
1	1	1	X V208	V210	$\mathrm{F}_{1}(\mathrm{x})$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$
	2	1	Y V209	V211	$F_{1}(y)$	
	3	1	2 V 20 A	V212	$\mathrm{F}_{1}(2)$	
	4	1	W V20B	V213	$\mathrm{F}_{1}(\mathrm{w})$	
	5	1	X V208	V214	${ }_{\text {F2 }}{ }_{2}(x)$	
	7	1	2 V 20 A	V216	$\mathrm{F}_{2}(\mathrm{z})$	
	8	1	W V20B	V217	$\mathrm{F}_{2}(\mathrm{w})$	
2	1	1	X V208	V210	$F_{1}(x, y)$	1
		2	Y V209			
	2	1	2 V 20 A	V212	$F_{1}(2, w)$	3
		2	W V20B			
	3	1	X V208	V214	$F_{2}(x, y)$	5
		2	Y V209			
	4	1	2 V20A	V216	$F_{2}(z, w)$	7
		2	W V20B			
${ }^{3}$	123	1	X V208	$\begin{array}{ll}V 210 & F_{1}(x) \\ V 211 & F_{1}(y)\end{array}$		1
		1	Y V209			$\begin{aligned} & 2 \\ & 3 \end{aligned}$
		1	2 V20A	V212	$F_{1}(z, w)$	
		2	W V208			567
	$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	1	X V208	V214		
		1	Y V209	V215	$F_{2}(y)$	
		1	2 V20A	V216	$F_{2}(2, w)$	
		2	W V208			
4	1	1	X V208	$V 210 F_{1}(x, y, z)$		1
		2	Y V209			
		3	2 V20A			
	2	1	X V208	V214 $\mathrm{F}_{2}(x, y, z)$		5
		2	Y V209			
		3	2 V20A			

Table 5 MVFG Trunking Station Patching

4.0 ELECTRONICS BREADBOARD ASSEMBLY (EBA)

The Electronics Breadboard Assembly (EBA) is a collection of seven circuit card assemblies (CCAs) mounted on a motherboard within a frame. One CCA is used to aid diagnostics. It serves as an interface between the motherboard and front panel and controls the display circuitry on the front panel. The other six cards contain circuitry which closely duplicates that used by a Stinger POST guidance assembly. However, the six cards primarily use off-the-shelf, dual-in-line package (DIP) integrated circuits (ICs). An actual guidance assembly uses basic IC chips, mounted on printed substrates, to form hybrid microcircuit wafers.

The EBA is designed to perform three primary functions. First it has circuitry to maintain the speed of the gyroscope's primary and secondary mirrors. However, since operation of this circuitry is seldom critical to overall system performance, it has been bypassed. A primary speed profile with a constant relative secondary speed has been defined at the EAI-781. The second function is to maintain gyroscope tracking of a target in space. The EBA processes IR and UV detector signals, primary and secondary reference signals, and a cage coil signal to develop a precession signal to perform this function. The third function is to maintain missile guidance. A wing command signal is developed from the precession, cage coil, and reference signals to perform this function.

Through the course of development of the hybrid simulation, several hardware and firmware programs used by microprocessors on CCA: and CCA 5 have evolved with the Stinger POST program. Hardware descriptions can be found through a large number of General Dynamics-Pamona (GD/P) documents. The most useful sources of information are the GD/P schematice of the EBA and Reference [4]. That reference describes the major EBA signals of the configuration first received at MICOM. However, EBA hardware changes have been performed in two stages at MICOM to match two revision levels. Descriptions of these changes are due to be published shortiy in a final report for project A 3125 of the Georgia Institute of Technology Engineering Experiment Station. Firmware configurations have generally been a function of individual flight tests. A detailed outine of firmare configurations will be presented in an upcoming University of Alabama in luntsville final ceport on Stinger POST hybrid simulation validation.

Use of the EBA in the simulation is best understood by examining its interface to the simulation. The hybrid interface signal conditioner described in Section 6.2 is used to perfora the interface function. Additionally, detailed interface signal descriptions can be found in Reference [2]. Some of this information is classified as confidential and is not repeated in this report for that reason.

EBA failures wer a frequent occurrence throughout the course of simulation developeant. It was received with several problems that were diagnosed and corrected. And, the need to frequently examine signals on various CCA's led to a large number of the failures. Subsequently several diagnostic capabilities were developed for the EBA. They are described in Section 7.2.

5.0 DIGITAL PROGRAM

The digital program is executed in real-time on a CDC 6600 large scale computer. It includes simulation executive control, the airframe model and target processing calculations. An operator executes the program through a station in the Digital Display System (DDS).

Executive control of the simulation is performed by the digital program. It first schedules all resources to be used by the simulation. Then after execution begins, the logical sequence of events of the simulated missile flight is directed by the program. The sequence is controlled with the assistance of the control logic on the EAI-781, (See Section 2.0). Control bits are output to the EAI-781 via a common block (*OD1S2), and status bits are received via a common block (*IDIS2). Common blocks are discussed in more detail in the interface section (Section 6.4).

The airframe model is contained in the digital program, and it is almost identical to the one used for the Stinger simulations. It models the motion of a rolling missile under single oscillating wing set control. Equations of motion for the model can be found in Reference [5]. Additionally, a detailed description of the airframe model and the complete digital program is currently being prepared by MICOM personnel.

Target processing calculations are performed to determine target location within the secker's FOV and target size. In the current con= figuration, the program must only perform calculations for the "key point" (See Section 3.4) of the composite target and for the flare. Early in the simulation aeveiopeent cycle, it was anticipated that calculations would be required for a larger number of targets and that a Direct Cell would be required to transfer data. At that time, a timing study of the progran's slow and fast loops was parformed. That study and another discussion of the digital program can be found in Reference [6]. However, the relaxed requirements for the current configuration allows adequate tiae for good stability.

Both the alrframe model and the sarget processing section require informa-ion from the analog models (Section 3.0) and generate information used by the analog models. The progran interfaces with the models via ADC's and DAC's. Actual comunication from and to the ADC's and DAC's is performed via common blocks (*ADCL and *DACl respectively). Again, section 6.4 has an additional discussion on the role of common blocks as an interface tool.

The digital progran was also used to develop diagnontic programs for the simulation. Portions of the aain digital progran have besn extracted to build the prograns described in Section 7.4 .

6.0 INTERFACES

6.1 Introduction

The Stinger POST hybrid simulation contains a large number of interfaces. A layout of simulation components and their interconnections, is presented in Figure 18. Signal conditioning and support hardware required by the EBA are discussed in Section 6.2. Trunking stations are described in Section 6.3, and the interface between the digital program and the rest of the simulation is discussed in Section 6.4.

6.2 Hybrid Interface Signal Conditioner (HISC)

The Hybrid Interface Signal Conditioner (HISC) was designed to serve as an interface between the EBA and the rest of the simulation. When it was designed, the interface was much wore complicated due to the fact that an Electronic Target Signal Generator (ETSG) was planned for use as a target source by the simulation. However, the development of targets on the EAI-781 and abandonment of the ETSG resulted in a greatly simplified interface. Subsequently, much of the HISC's circuitry has been bypassed and will not be discussed. Descriptions of each of the HISC's circuit cards will be presented in Sections 6.2.1 through 6.2.6.

6.2.1 Power Card

The power supply card provides regulated voltages to the other cards. Its schematic is presented in Figure $C-1$ in Appendix C, and its layout is presented in Figure C-7. Regulator (R)l provides +15 V from a 20 in input: $R 2$ provides -15V from -20V; $R 3$ provides $+5 V$ from $+8 V$; and, $R 4$ provides $-5 V$ from -8V. The regulated voltages are available at the power supply card's front panel and are ade available to all other cards in the HISC via the back-plane wiring. Back-plane wiring is presented in Figure 19 and a sketch of front view is presented in Figure 20.

6.2.2 Analos In Card

The Analog In card receives the differential analog signals originating from the truaking stations' analos buffers. Its schematic and layout are presented in Figure $\mathbf{C - 2}$ and Figure $\mathbf{C - 8}$ respectively. Five receivers are currently implemented on the card. Each recelver consists of two stages built from one LM747. The first stage inverts the input signal with respect to BISC comon. The second stage then wum analos common with the inverted signal and inverts that result with respect to HISC comson. The fiaal receiver output is a clean, accurate, buffered signal.

The differential inputs come from the beck-plane connector (A9). The receiver outputs are routed to the front panel. Gyro reference, secondary reference, and cage coil are the signals needed by the EBA. They are available at Jack (J) 3, J6, and J2 respectively, X-rosette (J4) and Yrosette (J5) are the rectangular coordinates of the IFOV in the rosete pattern and are available for diagnostic purposes.

Figure 18 stinger post Simulation Interconnections

Figure 20 HISC Front View

The Discrete In card receives the differential logic signals originaing from the trunking stations' digital buffers. Its schematic and layout are presented in Figure C-3 and Figure C-9 respectively. SN75108's are used as the receiving end of a transmitter/receiver pair. Three signals are received which are used to control the EBA. They are "cage," "launch," and "clear". "Cage" and "launch" are routed directly to the card's front panel at J 2 and J 3 respectively. The "clear" signal controls a normallyopen, single-throw miniature relay. It grcunds the "EBA clear" line when a logic high is received. The clear line from the EBA must be plugged into Jl on the card's front panel for proper operation.

A fourth signal, which controls operation of the oscillograph, is received by the card. The "oscillograph operate" signal is routed to J4. A jumper is then required between $J 4$ and $J 7$. This permits the signal to control a normally-open, single-throw minature relay. It closes the remote operate line when a logic high is received. The remote operate lines and differential inputs are received via the back-plane connector (A6).

6.2.4 Breadboard Patch Panel Card

The Breadboard Patch Panel card serves two purposes. It is first used to route signals from the front panel to the back-plane wiring via connector A4. Signals used by the EBA which pass through this card include launch, test, AGC freeze, cage, cage coil, gyro reference, secondary reference, precession, guidance command, and signal ground. The card's schematic and layout are presented in Figure $C-4$ and $C-10$ respectively.

A second purpose of the card is to perform necessary scaling for two signals. The cage coil signal must be multiplied by a factor of two before it is presented to the EBA. This is required to prevent saturation of the cage coil signal in the EAI system. A two-stage amplifier, built with an LM747 (U7), performs the scaling. The input comes from J11 on the front panel and the output goes to the back-plane connector (A4), pin W.

The EBA's guidance command output is also scaled to insure against saturation in the EAI system. It is multiplied by a factor of .8 with a similar two-otage amplifier (U2). The input comes from connector A4, pin P, and the output is routed to J18.

6.2.5 Breadboard I/O Card

The Breadboard I/O card serves several purposes. Its schematic and layout are presented in Figure C-5 and Figure C-11 respectively. The card's primary purpose is to route all EBA/HISC interface signals through a connector on the card's front panel. A wiring list for the connector and its cable is presented in Table C-1 in Appendix C. Several signals are simply routed through the card from the back-plane connector (A3) to the front connector (P6). These signals on the back-plane are connected directly between the Breadboard I/O and Breadboard Patch Panel cards.

A scaling circuit is also implemented on the card. The EBA's precession output must be multiplied by a factor of .5 to prevent saturation in the EAI system. The two-stage amplifier is built with an LM747(U2). Its input comes from pin 3 of the front panel connector, and its output goes to pin 19 on A3.

Several logic functions are also performed on the card. A normallyopen, single-throw minature relay (U5) and an AND gate ($1 / 4$ of $U 1$) are used to perform the caging function. A logic high cage signal from A3, pin 20, causes the relay contacts to close. This routes the "buffered cage coil" signal back to the EBA via its "cage in" line. When the cage signal is "low," the line is left open. This action performs the caging function.

The timer start line is controlled by two miniature relays (U7 and U8) and two AND gates ($1 / 2$ of U1). With the current configuration, the "test" input from A3, pin 21, should always remain grounded. A logic high on the "launch" line (A3, pin 22) causes the contacts on the normally-closed, single-throw relay (U8) to open. Otherwise the timer start ine is connected to ground through relay U7. This action performs the pre-launch/post-launch function.

For the present configuration, U6 and the remaining AND gate in Ul are not necessary. However, the "test" and "AGC freeze" lines from A3, pin 21, and A3, pin 7, should always remain "grounded".

6.2.6 Analog Out Card

The schematic and layout for the Analog Out card are presented in Figure C-6 and Figure C-12 respectively. In the current configuration, the card serves only one purpose. It routes the "precession" and "guidance command" signals from its front panel to the back-plane connector (All). The signals have already been buffered by the scaling circuits. Four buffers are also available on the card to route signals to the EAI system if desired for diagnostic purposes.

6.2.7 Miscellaneous Hardware, Patching, and Cabling

Original design envisioned a multi-purpose simulation and anticipated changes throughout the development cycle. Subsequentiy, the modular design of the HISC occurred. The modular design requires that certain signals be "patched" between the modules via the front panels. This "patching" can be found in Table 13 in Section 8.2.

The power supply that supplies the HISC also provides +20 V and -20 V to the EBA. A "star" common is employed with the HISC, EBA, and their associated test and recording equipment. A single copper bar provides the common for all of this equipment. It is important to note that the common lines for the EBA are connected to the black connector for the positive supply and the red connector for the negative supply.

A sketch of the cabinet with the EBA, HISC, Power Supplies and oscillograph is presented in Figure 21. Interconnections associated with this equipment are detailed in Figure 13. The "clear" line, between Jl of the Discrete In module and the EBA, and the cable (1W6), between the Breadboard I/O module and the EBA, have already been noted in the above sections. Discrete In, Analog In, and Analog Out cables have also been referenced. The wiring list for the Discrete In cable is presented in Table C-2 in Appendix C. The Analog In and Analog Out cables are identical and are detailed in Table C-3.

Original simulation design included detector signal pre-amplifiers in the HISC. However, noise and AGC switching considerations prompted their movement to CCA\#6 in the EBA. Subsequently, differential detector signals from the EAI system are "broken out" at the connector plate and routed to CCA\#F6. They are first routed to a cinch connector strip on the connector plate though. Coaxial cables are then used to route the signals to CCAß6. These interconnections can be seen in Figure 18 also.

Figure 21 Physical Configuration of the Stinger POST Simulation Cabinet

6.3 Trunking Stations

Examination of Figure 17 reveals that all interconnections for the hybrid simulation facility are completed in the trunking stations. Each interconnection is called a "trunk". Listings for the trunks used by the Stinger POST hybrid simulation are detailed in Appendix D. Table 6 serves as a guide to locate specific trunk listings in Appendix D.

Table	Source	Destination
	CDC 6600 DAC(1)	
D-1	CDC 6600 DAC(2)	EAI-781
$D-2$	EAI-781	HISC
$D-3$	EAI-781	CDC 6600 ADC(1)
$D-4$	EAI-781	MVFG 0,1$)$
$D-5$	MVFG (0,1)	EAI-781
$D-6$	EAI-781	MVFG (6,7)
$D-7$	MVFG (6,7)	EAI-781
$D-8$	HISC	EAI-781
$D-9$	EAI-781 Logic	HISC
$D-10$	EAI-781 Logic	CDC 6600 In. Dis.
$D-11$	CDC 6600 Out. Dis.	EAI-781 Logic
$D-12$		

Table 6 Guide to Trunk Listings in Appendix D

6.4 Common Blocks

Common blocks are used as an interface between the digital program and the hybrid simulation system. In Fortran programs, common blocks are used to conveniently transfer variables between subroutines contaiaing the given common blocks. Variables are sent to the DACs and Output Discretes and received from the ADCs and Input Discretes via these common blocks. *ADC1, *IDIS2, *DAC1, and *ODIS2 communicate with the ADCs, Input Discretes, DACs and Output Discretes respectively. These blocks, with their variables, can be identified in the portion of the program listing presented in Figure 22. It is important to note that variables 1-16 of *DACl are used to supply DAC(1) while variables $17-32$ are used to supply DAC(2). The JAM, ON command in the listing prompts the iximediate transfer of the particular DAC variable as soon as it is calculated.
FINH 4.02+81294
CPT=1
74174
1 SIS, ذYM:SLL, HFILEI
FROGRAK: MAIATIHFUT=GS, CUTHUT=ES, TAPE5=IHFUT, TAPEG=OUTHUT,TAPE1=
R=13C, $=26,0=\angle C C D$
I.UliION/*ALC1/1, CWIUATA, THEG,FSIG, PHII,SHMII, CPHII

dili, CH

Figure 22 Common Blocks Used for the Interface Between the Digital

7.0 DIAGNOSTIC CAPABILITIES

7.1 Introduction

The complexity of the Stinger POST hybrid simulation made it imperative that a number of diagnostic capabilities to be developed. Some capabilities are independent of the simulation while others are integral parts. Frequent failures of the EBA made it the first target for diagnostic aids. Section 7.2 describes trouble-shooting hints, techniques, tools, and procedures for the EBA. Section 7.3 reviews the diagnostic tools that have been built into the EAI-781 models. These tools aid one to conveniently test the analog models and much of the simulation hardware. The main closedloop digital program has also been used to develop diagnostic open-loop and closed-100p programs. These are discussed in Section 7.4.

7.2 EBA Diagnostis Capabilities

Frequent failures of the EBA, due to both its design and the necessity to often probe for signals on CCAs, made it imperative to develop diagnostic techniques for the EBA. Section 7.2 .1 describes test routines developed on the Tektronix 8002 microprocessor development system, and Section 7.2.2 describes the use of the HP-1615A logic analyzer as an anlaysis tool. However, some problems can be diagnosed through tailoring, by observation, or by trouble shooting with an oscilloscope. Some possible checks are listed in Table 7.

1. +15 V (J6 - front panel), -15V (J8), and +10V (J78) Regulators
2. 5 MHz Clock (J77)

3: Activity on all data lines (J67-J74)
4. Gyro Reference (J10)
5. Digital 256 X Gyro Reference (J60)
6. Secondary Reference (J13)
7. Digital 256 X Secondary Reference (J62)
8. IR Predetect (J5) and/or UV Predetect (J20)
9. IR Preamp (TP7 - CCA\#6) and/or UV Preamp (TP5 - CCA\#6)
10. CFAR Indicate (J56)
11. Relative position of Predetect between GFAR's for on-axis target
12. Digital 1024 X Cage Coil (J64)

13 'age state (front panel LED), and Launch state (J61)
14. Iser generated Cage Coil (J32), and subsequent look angle logic (front panel LED)
15. Precession for off-axis target (J31)
16. Proper AGC action (AGC word-front panel)
17. Valid (Table 8) CCAl4 word (front panel display)
18. Valid (Table 9) CCAß5 word (front panel display)
19. Relative position of IR Predetect (J5) and LT CMD (TP8-CCA\#4)
20. Relative position of LT CAD and TE (TP7 -CCAM4)

Table 720 Simple EBA Operation Checks

Word	Status
91	Caged
90	$91: \quad$ Target Not in FOV
11	Pre-Launch
10	$11: \quad$ Target Not in FOV
51	Post-Launch
50	$51: \quad$ Target Not in FOV
41	$51: \quad \dot{\sigma} \quad$ Blanking
40	$41: \quad$ Target Not in FOV

Table 8 Valid CCC非 Words

Word	Status
00	No Acquisition
01	$00:$ Type 1 Forced
80	Flare Mode
81	$80:$ Type 1 Forced
C0	IR Acquisition
C1	C0: Type 1 Forced
E0	UV Acquisition
E1	E0: Type 1 Forced

Table 9 Valid CCC非5 Words

7.2.1 Tektronix 8002a Test Programs for the EBA

A microprocessor ($\mu \mathrm{P}$) development system has been used to develop and execute several programs to insure proper operation of the EBA and to diagnose problems that may occur in the EBA. The programs were written and debugged using a Tektronix 8002a system with full RCA 1802 microprocessor emulation capabilities. They are executed using the 8002a in its iteractive emulation mode (EM 1) with the prototype control probe (PCP) connected to the appropriate CCA in the EBA. The CCA's μP is replaced by the PCP. In this mode, 1802 input/output (I/O) commands are routed frow/to the EBA via the PCP. This permits memory to be shared between the EBA memory and the 8002a program memory in 12810 byte blocks. For execution, most of the programs require parameters to be passed to the program. To accomodate this need, memory locations $\mathrm{FFFO}_{16}-\mathrm{FFFF}_{16}$ have been reserved for control parameters which may be defined using the 8002a PATCH or EXAM Commands as described in the 8002a System Reference Manual [7]. However, through the use of command files, the user interface has been reduced to a minimum, and only a few system level inputs are required. The theory and instructions for use of each diagnostic program are described in the following sections. Appendix E contains all diagnostic software flowcharts, command file listings, and program ilstings.

7.2.1.1 Transfer of EBA PROM Memory to 8002 z Memory

This program transfers memory, byte-by-byte, from PROMs located on CCA \#5 to the 8002a system's program memory. The program also fetches each PROM memory byte a second time and compares it to the first byte in RAM. Any differences cause a termination; otherwise, the program continues until the last address of PROM has been transferred. The program assumes that the PROM starting location is $0000_{16 \text {. The last PROM address to be trans- }}$ ferred and the starting address of 8002a RAM to be used for storage are passed as control parameters.

To simplify use of the program, a chain (command) file has been written to pass the control parameters and execute the program. The sequence for using the program follows with user entries underscored.

```
SYSTEM CONFIGURATION
    Drive 0: 1802 v3.3 system files
    Drive 1: INS1TX, INS2TX, XFERMF;0 files
    PCP: CCA非 \muP
```

INSTRUCTIONS
INS 1TX/ 1
INS2TX/1 (last EBA PROM address) (first 8002a RAM address)
ex: INS $2 T \bar{X} / 1$ 07FF E000

PROGRAM OUTPUTS

1. "AA" will be displayed on the front panel "W5 WRITE" display if the transfer was successful (may be " x " " in some cases).
2. "EE" will be displayed on the "W5 WRITE" display if an error was discovered in the transfer (also may be "xE").
3. The "Q" line (front panel, pin 57) will be a logic high if the transfer was successful.
4. The " Q " line will oscillate at about a 50% duty cycle if an error was discovered in the transfer.

7.2.1.2 Verification of EBA PE ${ }^{\wedge}$ M Memory Against 8002a Diskette File

This program verifies the contents of EBA PROM memory on CCA \#5 against a prevíuusly saved diskette file. Such a file can be developed using the program documented in the previous section. The program assumes the PROM memory starts at 0000_{16}. The first address of $8002 a$ RAM to be used to store the file and the name of the file are passed as control parameters. The program does a byte-by-byte comparison of the file (as loaded in RAM) to PROM memory. It exits if there are any differences or continues until all locations have been checked.

Again, a command file has been written to pass the control parameters and execute the program. The operation sequence follows with user entries underscored.

SYSTEM CONFIGURATION

Drive 0: 1802 v3.3 system files, (file for verification)
Drive 1: INSIVF, INS2VF, VFILE;0 files
PCP: CCA 5 山P

INSTRUCTIONS
INSIVF/L
INS2VF/L (verification file) (last EBA PROM address) (first 8002a RNM address)

PROGRAM OUTPUTS

1. "AA" will be displayed on "W5 WRITE" display if verification was successful.
2. "EE" will be displayed on "W5 WRITE" display if an error was found.
3. The "Q" line (front panel, pin 57) will be logic high if verification was successful.
4. The " Q " line will oscillate at about a 50% duty cycle if an error was discovered.

7.2.1.3 EBA Synthesized Error Signal DACs Tests

This program outputs either a fixed value or a sinusoidal wave at a user specified frequency to either the Ex, Ey, or both $\dot{\sigma}$ error DAC channels. The program may be used to check the DAC operation, type I/II filter operation, and synthesized error amplifier performance. For the sinusoidal wave portion of the program, the sine table used for error calculations on CCA \#4 is used in order to better simulate actual error output.

The sequence for using the program follows. Again, user entries are underscored, and a chain file has been written to pass the control parameters and execute the program.

SYSTEM CONFIGURATION
Drive 0: 1802 v3.3 system files
Drive 1: INSIER, INS2ER, EROUTA; 0 files
PCP: CCA敬 $\mu \mathrm{P}$
INSTRUCTIONS
INSIER/1
INS2ER/I (type: I=00, II=FF) (frequency: hex) (channel: X and $Y=0$, $X=1, Y=2$) (output: fixed $=0$, sine $=1$) (Elxed level: Hex)

PROGRAM OUTPUTS

1. The "Q" line ('FOV VALID' test point on CCA 4) will oscillate at a 50% duty cycle if a parameter error was detected.

7.2.1.4 Automatic Gain Control (AGC) Tests

This progran tests the IR and UV Automatic Gain Control (AGC) circuitry on CCAl6. The progran outputs aser selected bit pattern to the flipflops and analos switches which control the IR and UV AGC action on CCA $\$ 6$ via CCAPS. The bit pattern is togsled with 0_{16} so that individual bits in the flip-flops and gain steps can be checked for correct operation. The rate at which the bits are togsled is user defined also.

Again, a shain file has been written to pass the output byte and the delay factor to the progran. The sequence for using the progran follows with user entries underscored.

SYSTEM CONFIGURATION
Drive 0: 1802 v3.3 system files
Drive 1: INS1AGC, INS2AGC, AGCOUT;0 files
PCP: CCA非 $\mu \mathrm{P}$
INS TRUCTIONS
INSIAGC/1
INS2AGC/1 (output byte: Hex) (delay factor: Hex)
PROGRAM OUTPUTS

1. The byte is written to the "W5 WRITE" display as it is being written to CCA $\#_{6}$.
2. The "Q" line (front panel, pin 57) will toggle at the same rate as the output byte.

7.2.1.5 EBA RAM Memory Tests

This program tests RAM memory located on CCA非 or CCA\#5. The program writes a series of bit patterns $\left(0_{16}, 55_{16},{A A_{1}}_{16}, F_{16}\right)$ to RAM, reads the location, and compares the result to the pattern written. If the bytes are the same, the next location is tested. If a bad location is found, the program halts. The bad location and the bic pattern which failed to test properly may be examined by the user.

Again, a chain file has been written to load and execute the program. The sequence for running the program follows with user entries underscored.

SYSTEM CONFIGURATION
Drive 0: 1802 v3.3 system files
Drive 1: INSIMT,METS;0 files
PCP: CCA\#4 $\mu \mathrm{F}$ or CCA\#5 is P
INSTRUCTIONS
INS IMT/1
PROGRAY OUTPUTS

1. The "Q" line ("FOV VALID" test point for CCA"4 - pin 57, front panel for CCAF5) on the respective CCA will be logic high if the test was a success.
2. The "Q" line will oscillate at a 50% duty cycle if the test falled.
3. For CCA15, the "WS WRITE" display will display either an "FF," " M," " $55, "$ or " 00 " if that pattern failed to test properly.

Realisticly, the $H P-1615 A$ is probably the most important tool required for EBA maintenance. It can record and store 256 words with a maximum total of 24 bits each. It records a word with each clock signal received. Additionally, six qualifier inputs can be received to qualify the clock signal. An important concept to remember is that the qualifying bits must reach their chosen steady-state status before the clock input is received. Here it may be important to choose whether to clock on the clock signal's positive or negative transition.

For use of the HP-1615A with the EBA and its RCA- 1802 microprocessors, it is mandatory that the tiring diagram (Figure 23) of the 1802 [8] is thoroughly understood. Again, the most important task is to find a signal that can be used to clock the 1615A. Examination of gure 23 reveals that all 1802 signals are in a steady state condition during the low-to-high transition of the TPB signal. Subsequently it is generally advisable to use TPB as a clock signal when working with the 1615A. Other signals can then be used as "qualifiers" for the clock when defining the conditions required for the collection of data.

The "menu" type operation of the 1615 A makes it relatively easy to use. Two principal areas must be defined by the user after the probes have been attached to a circuit. First, the conditions of the trace must be defined. This includes the clock, qualifier, and trigger considerations discussed above. Second, the format of the output must be specified. The 1615A allows the user to observe the collected data in a large number of formats. The data can also be written to a printer (HP-IB required).

The 1615A is particularly useful with three of the CCA's. CCAl4 contains a u P. Subsequently, it is often desirable to observe its program during execution. After attaching the probes to the data and address lines, and clocking on TPB, each cycle of the 1802 can be observed. Specific words can be chosen as a trigger to begin a trace. This permits one to begin looking at specific chosen points in the program. Data which is read/written from/to a particular I/O device (CDP 1852) ot DAC (AD7524) can be isolated aliso. While still looking at the data lines, the clock signal can be "qualified" with the chip select signals for that device. The 1615 A is also ureful for looking at the counters in the phase-lockloops (MC14520) on CCAll.

CCAlS also contains a u P. Again, it is often desirable to observe its progran during execution and data read/written from/to particular I/O devices. Addicionally, the 1615A is very useful for looking at the thresholds on CCAlS during EAM operation.

CCAl6 does not have a $\mu \mathrm{P}$, but its AGC action is controlled by the one or CCAFS. Checking operation of the latches (YC14175) and analog switches (DG 201) used to perfora AGC action is greatly simplified by use of the 1S15A.

07Es:

smaceo meas moveate "Jom'个 eane on unocrmed state:

Figure 23 RCA 1802 tiaing Diagram

7.3 Analog Control Panel Diagnostic Functions

Much of the simulation hardware can be tested with the aid of diagnostic tools built into the analos models on the EAI-781. Some of the tools are used to allow the user to control certain model parameters independent from simulation control. Some are instrumental in tailoring.

A number of the capabilities were discussed in Section 2.0 (Control Logic) and are illustrated in Figure A-1 in Appendix A. FF220 forces the EBA into the "uncaged" states and FFO41 forces the "launched" state. PBOO2 enables operation of the oscillograph. And, PBOO3 forces the wing servo model into operation.

Specific functions will be discussed in Sections 7.3.1-7.3.8. Tables 10-12 provide a summary of flip-flops, push-buttons, and hand-set potentiometers that make up most of the analog control panel diagnostic functions.

Flip-Fiop ${ }^{\text {P }}$	Description
000	Enable Analog and Recorders
001	
010	Force Rate Gyro Operate
011	(Static Test)
020	(Part of Wing Servo)
021	(Part of Wing Servo)
030	
031	-
040	Force Handset Roll Rate (HS104)
041	Force Launch
050	
051	Force Roll Resolver Operate
200	Abort Real-Time
201	Activate Static Gain Integrators
210	
211	-
220	Force Uncage
221	Force Zero Roll
230	Force Handset Flare Positioning (HS105, HS114)
231	Force Flare \#l Operation
240	-
241	-
250	Force Normalized Flare Intensity History
251	Force Handset Target Intensity (HS145)
400	Enable Rosette
401	Select UV Display
410	
411	Disable Flare \#1 Ignition
420	Disable Flare Il Izition
421	-
430	Force Handset Triangle Sizing (HS115, HS125)
431	Force Handset Rectangle Sizing (HS115, HS125)
440	Force Handset Circle Sizing (HS144)
441	Disable Triangle Gradient
450	Force Handset Target Positioning (HS134, HS135)
451	Display Synchronization

Table 10 Analog Control Panel Flip-Flop Assignments

PB非	Description
000	-
001	Open Tracker Loop
002	Enable Oscillograph
003	Force Wing Servo Operate

Table 11 Analog Control Panel Push-But ton Assignments

Handset Pot \#	Description
104	Roll Rate
105	Flare Position-Azimuth (FF230)
114	Flare Position-Elevation (FF230)
115	Target Width (FF43l)
124	-
125	Target Length (FF431)
134	Target Position - Azimuth (FF450)
135	Target Position - Elevation (FF450)
144	Circle Size (FF\#440)
145	Target Intensity (FF\#251)
154	-
155	-

7.3.1 Roll Control

Roll rate can be placed under user control as shown in Figure A-3. The roll resolver (R 510) can be forced into operation by setting FF051. FF221 and K241 combine to insure zero roll when FF221 is set. And, FF040 and K041 combine to permit the user to define a constant roll rate when FF040 is set. HS104 can then be used to define that rate.

7.3.2 Gyroscope

The gyroscope model (Figures $A-5$ and $A-6$) can be forced into operation by setting FFO1O. IO1O (θg) and IO22 ($\Psi 8$) can be independently placed into initial condition, though, by setting PBOO1. Constant, open-loop look angles can then be defined by placing values on $C 012$ (θg) and C102 (Ψg). These functions are important in tailoring and can be used to develop specific cage coil signals.

7.3.3 Target Position

Constant target positions within the rosette pattern can be defined by the user via FF450, K050, K051, HS134, and HS135 (illustrated in Figure A-7). When FF450 is set, positioning control is switched from the trunk inputs to the hand-set potentiometers. HS134 can be used to position the target in azimuth, and HS135 can be used to position it in elevation.

7.3.4 Circle Size and Intensity

Circle parameters of size and intensity can be defined by the user (illustrated in Figure A-9). When FF440 is set, HSl44 controls circle size via. K251. When FF251 is set, HS145 defines a constant intensity in both the IR and UV channels via KO1O and K4O1 respectively.

7.3.5 Triangle and Rectangle Size and Intensity

Triangle and rectangle size can be defined by the user (illustrated in Figure A-9). When FF430 is set, HS125 controls the length of the triangle and HS115 controls its width. When FF431 is set, HS125 and HS115 also respectively control the length and width of the rectangle.

Triangle inteneity (illustrated in Figure A-10) can be defined to Include its gradient and be function of range and aspect angle, to be uniform and a function of range and aspect angle, or to be a constant value. Setting FF44l forces a constant value via K250. Otherwise, the entire intenaity model remains in effect. The gradient model can be disabled by setting C501=C502=0.0 and C503 equal to some value. The value of C503 then determines the level of the uniform intensity.

Rectangle intensities (illustrated in Figure A-13) can also be controlled by the user. Setting FF251 enables the user to set constant intensity values with HS145 via K01l in the IR channel and K250 in the UV channel.
7.3.6 Flare Position, Size and Intensity

Abstract

Constant flare positions (illustrated in Figure A-11) within the rosette pattern can also be defined by the user. When FF230 is set, positioning control is switched from the trunk inputs to HS105 and HS114. HS105 can used to position the flare in azimuth via K030, and HS114 can be used to position it in elevation via K031.

Since flare size remains constant during a simulated flight, its size is already user definable. C553 defines this simulation variable.

FF231 can be used to independently force the flare into operation. And, FF4ll can be used to disable ignition of the flare intensity profile by the digital program. When FF250 is set, the normalized intensity profile is multiplied (via $K 000$) by a constant, instead of the range dependent function.

7.3.7 X-Y Display

The intensity input to the $X-Y$ Display is driven by either the composite IR signal or the composite UV signal (illustrated in Figure A-13). The result is a visual representation of the individual spectral composite target within the rosette pattern. While FF4Ol is left unset, the IR source is displayed. The UV source is displayed via K040 when FF401 is set. A bias for the display can be set with the aid of C302 and Al01. The relative target-to-rosette intensity can be controlled by the value set on C302.

7.3.8 Static Gain Curves

Static Gain Curven are used to characterize the EBA's response to a particular target. With the simulation, they represent a graphical record of a target model's validity. Subsequently, a more detailed static gain curve discussion will be presented in the next report in this series of tasks (Simulation Validation). However, a brief explanation of the method used to generate static gain curves will be presented here.

After forcing the gyroscope into operation (FFO1O), "opening the tracker loop" (PBOO1), and defining a zero look angle ($C 012=C 102=0.0$), static gain curves can be generated with the use of FF201, K200, 1210, K201, and I220 (illustrated in Figure A-4). Additionally, the EBA must be uncaged (FF220). Then, using the techniques described in sections 7.3.47.3.6, the target model to be characterized must be defined by the user.

The actual curves are generated by plotting the output of either I210 or I220 against the target's position within the rosette pattern in either elevation (HS135) or azinuth (HS134) respectively. While FF201 is left unset, $1210^{\prime} s$ output represents θg and $I 220^{\prime} s$ output represents ψg. When FF201 is eet and C203 and C221 are set to 1.0 , the outputs of I210 and I220 are filtered representations of $\dot{\theta} g$ and $\dot{\psi} g$ respectively. It is important to remember that these outputs are a direct measure of the EBA's precession signal in response to the particular target.

7.4 Digital Display System (DDS) Diagnostic Routines

Two digital diagnostic programs, which can be executed from a Digital Display System (DDS) terminal, are available to the simulation user. With these programs, OI OOP1 CYCLF 2 and OLOOP1 CYCLE 3, it is possible to exercise the simulation under a variety of known conditions. This permits one to evaluate the "health" of the simulation or assists one in the diagnosis and repair of occasional simulation failures. Joth programs are "user friendly" and require a minimum number of inputs from the operator. When each of the programs is either initialized or halted, the operator is presented with a "menu" of options. However, it is important to insure that the Initialization and Tailoring Sequences outlined in Section 8.0 have been performed before attempting to use these programs.

The first program, OLOOP1 CYCLE 2, is designed to model a simple, nonmaneuvering, closed-loop flight. Its flowchart is presented in Figure F-1 in Appendix F. Both tracking and guidance loops are closed with this program. The operator can specify the initial conditions (missile and target) and target characteristics. Initial conditions include range to target, missile body angle, missile body rate, and target azimuth. Target characteristics include rate, crossing angle, body dimensions, plume dimensions and flare drop rate. A detailed operation sequence is presented in Appendix F.

OLOOP1 CYCLE 3 differs from the first program in that it only closes the loop around the tracker. Its flow chart is presented in Figure $\mathrm{F}-2$. A standard, circular (point source) target should be used for all tests with this program. Options 0 through 5 enable evaluation of the simulation's ability to acquire a target with or without an initial pointing error. Options 6 through 11 are used to check track rate perfor mance. And, options 12 through 15 are used to evaluate the effects of range closure and accelerations.

With this program, as soon as an option is chosen, Real-Time execution begins. New options can then be chosen and implemented during program execution. This permits the evaluation of a variety of steady-state and transient conditions.

8.0 SIMULATION USAGE SEQUENCES

8.1 Introduction

Use of the Stinger POST hybrid simulation can be divided into three stages. The first is the initialization stage. A sequence for initialization is presented in Section 8.2. Tailoring is the second stage of usage. Tailoring must be checked and/or adjusted to insure proper operation of the simulation. The operation sequence for tailoring is presented in Section 8.3. Actual operation of the simulation is the third stage of usage and should only be attempted after the initialization and tailoring sequences have been completed. The operation sequence is presented in Section 8.4.

8.2 Initialization Sequence

I. Check with Analog Computer Room personnel to insure that the following activities have been completed.
A. Mount the proper analog and logic boards on the EAI-781.
B. Cunnect the proper trunk lines.
C. Successfully complete a static check of the system.
II. Initialize the Display System to display the composite rosette/ target representation.
A. Set the following push-buttons (in order)

1. Trace Selector: I
2. Input: 20
3. Trace Selector: II
4. Input: 21
5. Cross Plot: I
B. Adjust the intensity setting on the display to the desired level.
III. Initialize the EBA, HISC, and oscilloscope.
A. Check to insure that the EBA and HISC power awitches are off.
B. Turn on all four power supply switches (located at the botton of the simulation hardware cabinet), and check to insure that the two variable supplies are set to 8 volts.
C. Verify that the HISC is patched as outlined in Table 13.
D. Turn on the aISC (located directly above the power supplies).
E. Tura on the EBA (located on top of the cabinet) and check to insure that neither ameter exceeds 1 Amp .
F. Set the EBA switches as indicated in Table 14.
G. Turn on the Tektronix oscilloscope.
H. Cunnect X10 probes to "CH 2" of each of the oscilloscope's amplifier rodules.
I. Set the DISPLAY MODE and TRIGGER SOURCE switches of each module to "CB 2".
J. Set the GAIN of both amplifiers to 5V/DIV and select "DC" coupling.
K. Turn the time base adfustment fully counter-clockwise and select "AUTO" MODE, "DC" COUPLING, and "INT" SOURCE.
L. Set the oscilloscope VERT MODE to "RIGHT," the TRIGGER SOURCE to "LEFT," and choose "NON STORE" trace.
M. Connect the left "CH 2" probe to Ex (TP1 on EBA CCA㚈) and the right "CH 2" probe to Ey (TP4 on CCA栍).
IV. Initialize the EAI-781 control console.
A. Check to insure that PWR and PP push-buttons are "on".
B. Set the following push-buttons:
6. Select System: DVM and ADR
7. Clock: 10^{6}
8. Analog Time Scale: M and SEC
9. Analog Mode: IC
10. Logic Mode: R
11. Slave: MSL and HYB
C. Set FF 400 .
D. Poll FF 451 "on" and "off" until rosette pattern appears on $X-Y$ display ($0-5$ pollings may be required).
V. Check (via the PACER 100 Control Console) to insure that simulation trucks are connected as indicated in Table 15.

From		To		Signal
Module	Pin Noc	Module	PinNOC	
Discrete In A	2	B.B.P.P.*	4	Cage Command
Discrete In A	3	B.B.P.P.	1	Launch Command
Discrete In A	4	Discrete In A	7	Oscillograph Control
Analog In	Cage	B.B.P.P.	11	Cage Coil
Analog In	Gyro	B.B.P.P.	12	Gyro Reference
Analog In	Sec	B.B.P.P.	13	Secondary Reference
B.B.P.P.	18	Analog Out	2	Wing Command
B.B.P.P.	15	Analog Out	3	Precession
HISC Power	PWR/GND	B.B.P.P.	2	Test Command
RSIC Power	PWR/GND	E.B.P.P.	3	AGC Freeze Command
HISC Power	PWR/GND	Analog Out	SIG GND	Differential Gnd
HISC Power	PWR/GND	Analog Out	5	Empty
HISC Power	HWR/GND	Analog Out	6	Empty
HISC Power	PWR/GND	Analog Out	7	Empty

* Breadboard Patch Panel.

Table 13
RISC Patching Instructions for Stinger/POST Configuration

Table 14
EBA Switch Settings For Initialization

ADDRESS	DESTINATION
W10	V3B
W11	V36
W00	V3A
U90	V83
V30	V24
V31	V25
V33	V26
V34	V27
V81	W52
V80	W62
V38	W43
V39	V43

Table 15
Analog Room Trunke For Stinger POST Simulation Configuration
VI. Initialize an IR Point Source (Circle) target.
A. Set FF251 and F440.
B. Adjust HS 145 to a fully clockwise position.
C. Set C250 to . 1000
D. Set C251, C301, C252, C032, C453, C300, C342, and C253 to 0.0000 .
E. Adjust HS144 (circle size) to yield an output which represents a point source.

8.3 Iailoring Sequence

I. Check to insure that the initialization sequence has been performed correctly.
II. Tailor Scan Phase.
A. Set FF220, FF221, FFO41, FFO10 and PBOO1.
B. Set CO12 and ClO2 to 0.0000 .
C. Adjust the left DIP switch atop CCAAl 4 to a setting (approximately C2 ${ }_{16}$ - MSB at bot tom) which yields the smallest pattern of "dots" on the oscilloscope.
D. Perform corrective maintenance if the resulting DIP setting varies over 2 or 3 bits from its previous setting.
III. Tailor Track Phase.
A. Check to insure that scan phase tailoring has been performed.
B. Set FF450.
C. Initialize strip chart recorder \#2 (right side). 1. Zero channels 1 and 2 in the center of their respective scales.
2. Set channel 1 and 2 scales to $2.0 \mathrm{~V} / 1$ ine.
3. Set "STOP," "LC," and "X.O1" on speed control.
D. Adjust HS134 to +0.2500 and HS135 to 0.0000 , and check to insure that the circie on the $X-Y$ display is to the right.
E. Set strip chart speed to " 200 " for approximately 4 seconds and then "STOP."
F. Adjust HS134 to $\mathbf{- 0 . 2 5 0 0}$, and check to insure that the circle is to the left.
G. Repeat Step E.
H. Adjust KS1 34 to 0.0000 and HS 135 to -0.2500 , and check to insure that the circle is to the bottom.
I. Repeat Step E.
J. Adjust HS135 to +0.2500 , and check to insure that the circle is to the top.
K. Repeat Step E.
L. Compare the strip chart trace to Figure 24.
4. If a strip chart offset occurs in one plane while the circle location is adjusted in the other plane (Figure 25) adjust the right DIP switch atop CCA/4 (approximately EA A_{16} - MSB at bottom).
N. Repeat Steps $D-M$ until the strip chart trace matches ifigure 24.
0. Perform corrective maintenance if the resulting DIP setting varies over 3 or 4 bits from its previous setting.
P. Unset FF450.

Figure 24 Strip Chart Trace of $-\dot{\theta}_{8}$ and $\dot{\Psi}_{8}$ With Correct Phase Tailoring.

Figure 25 Strip Chart Irace of $-\dot{\theta} g$ and $\dot{\Psi} g$ With Phase Tailoring Out By
IV. Check the Guidance Circuitry.
A. Set COL2 to +0.3000.
B. Unset FF221.
C. Set FP040, FFOS1, and P3003.
D. Set HS104 to a value equal to $-.0180 \times$ (roll rate in Hertz).
E. Monitor $J 26$ on the EAA with the oscilloscope.
F. Perfors corrective maintenance if a roll rate signal is not present at J26.
G. Check Wing Servo operation by observing 4440 with an oscilloscope at the EAI-781.
H. Set C012 to 0.0000.
I. Unset FF040, FFOS1, FF220, FF221, FF041, FF010, P8001, and P3003.
V. Tailor Signal-to-Noise Ratio (SNR)
A. Set C250 and C253 to 0.0000 .
B. Set the EBA AGC word switch to IR AGC.
C. Check to insure that the EBA AGC word display reads approximately FF.
D. Set C301 to a value which generates the required amount of IR noise as indicated by the AGC word. Note that the output is scaled to $.44 \mathrm{db} /$ step as indicated by Figure 26.

Figure 26 AGC Word Scaling
E. Using the OLOOP1 CYCLE3 program (described in Section 7.4), set the target in the center of the FOV at a range equal to the launch range of the flight to be modeled. An operations sequence for this procedure is presented in Appendix F.
F. Set $C 250$ to a value which generates the required amount of IR signal as indicated by the ACC word.
G. Set the EBA ACC word switch to UV ACC.
H. Check to insure that the display reads approximately FF.
I. Set C3OO to value which generates the required amouni of UV nolse.
J. Set C253 to a value which generates the required amount of UV signal.
VI. Tailor Syster Guidance Phase.
A. Using OLOOP1 CYCLE3, begin tracking a target, and continuousiy move the target back and forth in azimuth.
B. Using an oscilloscope at the EAI 781, compare the phase of R510 (-sin $\dot{\rho} t$) and TRSOI ($\delta \mathrm{c}$) while the target is moving to the left.
C. If a phase difference occurs, set $C 230$ and $C 231$ subject to Equation 42 and Equation 43 respectively.
$\mathrm{C} 230=\sin$ •/5
C231 - Cos $1 / 5$
where: - syeten phase coapensation (degrees).

If the resulting value of ϕ differs more than 10 degrees from 212°, perform corrective maintenance on the system.
D. Check Scan and Track Phase tailoring.
E. Repeat Steps C and D if phase words required a change.
F. Check phasing for target motion in other directions as indicated in Table 16.

Table 16 Target Motion and System Phasing Relationships

8.4 Operation Sequence

I. Call Computer Control to bring the DDS terminal "on line".
II. Enter user ID, Password, etc., on DDS terminal.
III. Access file space and make ready digital portion of hybrid simulation.
A. Modify digital routines as required.
B. Recompile.
C. Save in permanent space new modifications.
IV. Check to deteraine if inftialization and tailoring sequences have been completed.
V. Verify that adequate resources are available (core space, trunks, etc.) and status schedule those resources needed for run(s).
VI. Begin the hybeid simulation operation by executing DIRSS.
VII. ENTER $C 0$ TO START will appear on screen.
VIII. Insure that recorders are acaled correctly and in "remote" sode.
IX. Type " 60 " and press the SEND kay. A delay will be experienced as pre-run calculations are perforaed.
X. READY POR REAL IINE will appear on the screen. at this point, any parameter desired to be monitored on the DDS terainal can be entered. After these are entered, type "CO" and press SEND key.
XI. If edequate resources are not available, progran will delay and recycle to point where READY FOR REAL TIME will once again appear on screen. If this occurs, repeat starting at Step .
XII. If all vas ready, the simulation proceeds under EXECUTIVE control of the real time operating systom and follows the logical sequence of events simulating alssile flight.
XIII. Following end (either norani or aborted) of simulated flisht, and OF REAL TIIE appears on screen. Enter "CO" to print/plot resulting date.

9.0 CONCLUSIONS AND RECOMMENDATIONS

The Stinger POST simulation has reached a usable level of development. Diagnostic capabilities and configuration enhancements have yielded a good degree of reliability, Validation has been completed for a couple of test flights and will be presented in the next final report in this series of tasks, which will be completed soon.

There are still several minor tasks that could be completed co improve the reliability and testability of the simulation. Some of the tasks are related to the need to remove excess items left in the simulation during the development process. Review of the control logic would find several circuits that could be simplified. And, the HISC could be simplified to just four circuit cards. Extra lines in the HISC cables could be used to transfer several more diagnostic signals between the EBA and the EAI-781. Additionally, extra components in two extra flare models could be used to develop more diagnostic capabilities at the EAI-781. Alternately though, they could easily be incorporated into the simulation if the need for extra flares arises.

An important diagnostic improvement recomendation is for development of a syster of function relays and flip-flops to send chosen (by flip-flop) signals to the EAI-781 syste' oscilloscope. Including δ_{c} and sinp or cosp in such a system would grea.ly simplify checking system phasing.

A minor change should be made to the simulation to improve validity. The square flare models should be changed to eircles. Extra components from the extra flare models could be used for this purpose.

Aside froa these recommendations, little needs to be done to improve the usability of the simulation. However, additional validation needs to be cospleted for the simulation. The extent of additional validation needed is subject to discussion though. Regardless, the Stinger POST hybrid simulation has been developed into a reliable, high fidelity simulation.
[1] Stinger/POST Working Papers Data Package for MICOM (Gyro Equations and Analog Models), 9/5/80, GD/Pomona, Devine, Terrazas, Van Zee, Wimberly.
[2] Barnett, C. E., Long, T. N. and Wallace, C. T., "Stinger/POST Hybrid Simulation Integration," Final Report prepared by Georgia Inatitute of Technology Engineering Experiment Station, prepared for U. S. Army Missile Command, February 1981, Contract DAAK40-79-D-0028. (Confidential)
[3] Pritchett, Paul, "Target Irradiance Models for Stinger POST Hybrid Simulation," Technical Report \$2/07, prepared by the University of Alabama in Runtsville Contract DAAHO1-8i-D-A006 Delivery Order \#0012, prepared for U. S. Army Missile Comand, June 1982.
[4] Sweeny, W. E., "CCNV Electronics Section Requirements," General Dynamics Report DI455-1B1-265, January 1980 (Confidential)
[5] Grimes, Victor S., "Stinger Equations of Motion With Aerodynamic Representations for MICOM Hybrid Simulation," Technical Report prepared by U. S. Army Misaile Command for U. S. Army Missile Comand, Report RD-75-13, January 1975, (DA) ix634306D646.
[6] Barnett, C. E., and Long, T. N., "Intugration of a Rybid Simulation for a Saxll Air Defense Missile," Final Report prepared by Georgia Institute of Technology Engincering Experiment Station, prepared for U. S. Aryy Missile Comand, April 1980, Contrset DAMR10-78-D-0008, Delivery Order 0011.
[7] TEXTRONIX, "8002A Processor Lab Systea Users' Manua1," JuIy 1978.
[8] COSMAC Meroprocessor Product Guide, RCA 1979.
[9] Gr6-25S-3143, "Stinger/POST CCHV Areadboerd Operating Procedure," 13 February 1981, by M. L. Bellemare.
[10] TP6-255-4082, "Stinger/POST CCIV Breadboard Cuidance Asseably Tailor and Test Procedure," 5 May 198c, by K. O. Wilderson.
[11] RAD-6-45S-181-011 8, Stinger POSt Requirements Allocation Directive-"CGN Stinger POST Guidance Asseably," 30 March 1981.

Sarnett, C. E. and Lons, T. N., "Stiager/POST Simulation Validation Preparation," Final leport prepared by Georgia Institute of Technology Engincering Experimant Station, prepared for U. S. Aray Miseile Comand, July 1981, Contract DAAHO1-81-D-A003, Delivery Order 10001.
[13] Barnett, C. E., Long, T. N., Burt, R. G., and Richardson, C. M., "Hybrid Simulation and ETSG Modification," Final Report prepared by Georgia Institute of Technology Engineering Experiment Station, Prepared for The U. S. Army Missile Command, April 1982, Contract Number DAAHO1-81-D-A003, Delivery Order 0014.
[14] Long, T. N. and Burt, R. G., "Hybrid Simulation Support and Flight Data Analysis," Final Report prepared by Georgia Institute of Technology Engineering Experiment Station, Prepared for the U. S. Army Missile Command, January 1982, Contract Number DAAH01-81-D-A003, Delivery Order 0032.
[15] General Dynamics/Pomona Divisi, \quad, "Missile Command Specification System Specification for Stinger POST Air Defense Weapon System," May 1982, Contract Number DAAK40-77-C-0122.

APPENDIX A
EAI-781 Model Schematics

Figure A-1 Simulation Control lob.

F'gure A-2 Primary Gyro Motor, Secondary Gyro Motor, Rosette, and Secondary

Figure A-S Gyroscope (2 of 3)

Pigure A-6 Gyroscope (3 of 3)

Figure A-7 Target Rotation and Positioning

Figure A-8 Circle (Point Source) Logic and Intensities

Figure A-9 Triangle (Plume) and Rectangle (Body) Logic

Pigure A-12 Plare Intensities

Figure A-13 Rectangle (Body) Intensity and Composite Detector Signals

Figure A-15 Wing Servomechanisin (1 of 2)

sheet il
Pigure A-16 Wing Servomechanism (2 of 2)

Function Generator Data

	Name	UNITS	ND. EPTS
Funiction	FAESB2		
Variable			
1	$E 2$		15

T:ole B-1 Precessibility in Elevation Function Data (FABSBY)

Figure B-1 Plot of Precessibility Function Data (fabsby or FABSBZ)

emd df function taEle

Table B-2 P-ecessibility in Azimuth Function Data (FABSBZ)

Pigure b-2 Plot of Cage Coil Physical Scaling Data (BTCC)

[^1]

	BTACT	PfRTME	RDLJRF	INDEX
	.00000E+100	-. 10000E+00	. 60000E-01	1,
		. $70000 \mathrm{E}+01$. SOOOOE-0.	2.
		. 10500E+6	.rsmoue-01	3.
		. $140005+102$. $12000 \mathrm{E}+100$	4 ,
		-18000E+0E	-: $5000 \mathrm{E}+100$	S,
	. $50000 \mathrm{E}+01$	-. $10000 \mathrm{E}+00$. $190008+100$	1. 2
		. $70000 \mathrm{E}+101$. $2 \times 0005+100$	E.
		- 10500E+0E	. $27000 \mathrm{E}+0 \mathrm{O}$	$3 \cdot$
		. 14000E+0E	. 310 OTE-00	4,
		-18000E+1E	. $35500 \mathrm{E}+00$	5,
	. $600005+01$	-. $10000 \mathrm{E}+100$. $400005+10$	1.
		. $700000 \mathrm{E}+01$	- $4 \times 500 \mathrm{E}+00$	E.
		. $10500 \mathrm{E}+0 \mathrm{E}$	- $48000 \mathrm{E}+00$	B,
		. 14000 EHE	. $30000 \mathrm{E}+00$	4. 3
		- : 8000Ectos	. $57000 \mathrm{E}+10$	E,
	. $80000 \mathrm{E}+01$	-. $10000 \mathrm{E}+10$. $5: 500 \mathrm{E}-190$!
		. $70000 \mathrm{E}+0: 1$. E E000E-100	2,4
		- $10500 \mathrm{E}+10$	- E-4DOE +00	3. 4
		. 14000ETHE	. $8: 0005-10$	4, 4
		- 18000E+0E	- E9000E-91	5, 4
	. $10000 \mathrm{E}+0.2$	-. 0 OMOEE+EO	- SiOUOE-91	:
		. $-00005+01$	- 7 C000 - -	2, 5
		-10500E+0E	. $2000 \mathrm{E}-10$	3. 3
		- 1 COODE-0E	. $5900 \mathrm{E}-10$	4.3
		. $18090 \mathrm{E}+10 \mathrm{E}$.10000E-i0	5. 3
	. $120005+02$	-. $10000 \mathrm{E}+00$	- E0003E-100	! $\quad \pm$
		. 200000 CO :	- $-000 \mathrm{E}+90$	E- +
		- 20500 ElO	- $\because: 5005+19$	E. \quad -
		. 40000 E 10 E	- Essune-a	:, ;
			- Sonoseor	E. \quad S
	. 14000E+02	-. $10000 \mathrm{E}+00$. $\mathrm{ASPCOE}+\mathrm{y}$!. -
.		. $70000 \mathrm{E}+0 \mathrm{l}$	- 5000 E - 0	2.
		. $10500 \mathrm{E}+102$	-5900E-00	$\because \cdot 7$
		-14000EnE	- $5-0005+00$	+,
		- $\operatorname{sinogeraz}$. 5 ESE- 0	E.
	. $15000 \mathrm{E}+02$	-. $20000 \mathrm{E}+100$	- EE00.5-9?	: 3
		- - O0000E+1:	- $84000 E-00$	E. 3
		. 10500E+1)	. $840005+10$	三, 3
		-14000E+0E	- Sc00nE-S!	4, 3
		.13000E+0E	-50000E-1)	5. ${ }^{\text {a }}$
	. $18000 \mathrm{E}+02$	$-.10000 E+00$. $-5000 \mathrm{E}-01$: ${ }^{\text {a }}$
		. $-20000 \mathrm{E}+0$!	. $1: 000 \mathrm{E}+10$	2. 7
		.10500E+02	. $: 4500 E-10$	3, 7
		. $14000 \mathrm{E}+02$	$.18000 \mathrm{E}+10$	4. 3
		. $19000 \mathrm{E}+1$ E	- E:OOOE +00	-.
	. $2001000+02$	-. 10000E+00	- E2000E-50	: 10
		.-0000E+u:	. 2 FOOUE+00	$E \cdot \mathrm{is}$

Table B-4 Radial Drift Dacs (3DLこRF - 1 of :)

Table B-4 (Cont'd) Radial Drift Data (RDLDRF-2 of 2)

Table 8-5 Tangential Drift Data (marmp-1 of 2)

B-8

Table b-S (Cont'd) Tangential Drift Data (micdaf-2 of 2)

APPENDIX C

BISC Documentation

- Schematics
- Circuit Card Layouts
- Wiring Lists

Figure C-1 Power Supply Module

3	©	©	\bigcirc	©	(5)	E	
	©	(1)	\bigcirc	Θ	(1)	(1)	
	\bigcirc	\bigcirc	(1)	(3)	(3)	(\%)	

Figure C-2 Analog in Module

Figure C-3 Discrete In Hodule

Pigure C-4 Breadboard Patch Panel Module
(1)

Figure C-S Breadboerd I/O Module

Figure C-6 Analog Out Module

Pigure C-7 Power supply Card Layout

Flgure C-8 Analog la Card Layout

Figure C-9 Discrete In Card Layout

Figure C-10 Emedbeard Patch Panel Card Layout

Figure C-11 Breadboard 1/O Card Layout

Figure C-12 Anslog Out Cart Layout

Sipnal			1w6 Connector Pin No.	Bread Connector Pin No.	Front Pin No.
Precession Coil	P6-3	S6-3	P98-34	J98-34	31
Cage Coil	4	,	30	30	32
Sec. Reference	5	5	12	12	13
UV Preamp	6	6	8	8	16
Siganl Retura 1	7	7	28	28	1
Gyro Drive	9	9	16	16	33
IR ACC 1	13	13	20	20	40
Precescion Retura	22	22	36	36	42
Gyro Reference	23	23	26	26	10
IR Preasp	24	24	4	4	2
Preamp Retura	25	25	24	24	21
Secondary Drive	28	28	14	14	36
IR ACC 2	32	32	10	10	42
Tlear start	1	1	P99-6	599-6	76
Duffered Cage Coil	2	2	10	10	18
Sigal Retura 3	8	8	30	30	3
Guidance Comand	10	10	36	36	26
Uv Preapp/Pulee	11	11	4	4	14
TE Palees/IR Threshold	12	12	28	28	43
tac/acc control	20	20	26	26	19
Cage-In	21	21		Mone	75
Wing Erect Control	27	27	199-34	J99-34	48
IR Freenp/	29	29	- 24	26	29
+ Hiag Erect/	30	30	14	14	47
ov inreahold audio/Syac Pilter	31	31	12	12	27

Table C-1 EaNaIsC Cable (IWG) Hiriay List

SIGNAL	CABLE 1W4			CABLE 2W4		
OUTDIS	$\begin{gathered} \text { U90 } \\ \text { edse } \end{gathered}$	$\begin{aligned} & \text { Wire } \\ & \text { Colos } \end{aligned}$	$\begin{gathered} \text { Connector } \\ \text { P4 Pin } \end{gathered}$	$\begin{gathered} \text { Connector } \\ 34 \mathrm{Pin} \end{gathered}$	$\begin{aligned} & \text { Wire } \\ & \text { Color } \end{aligned}$	$\begin{gathered} A 6 / A 7 \\ \operatorname{Pin} \end{gathered}$
$0+$ *	1	White	1	1	White	A6-22
0 -	1	Green	20	20	Green	A6-Y
$1+$	D	Blue	2	2	Blue	A6-21
1 -	4	White	21	21	White	A6-8
$2+$	8	Ied	3	3	Red	A6-20
2 -	2	Orang	22	22	Orang	A6-W
$3+$	C	Blue	6	4	Blue	A6-9 9
$3-$	3	Green	23	23	Green	A6-V
$6+$	7	Black	5	5	Black	A6-18
4-	6	White	24	24	White	Ab-V
$5+$	M	Green	6	6	Greea	A6-17
5 -	11	Yellor	25	25	Yellod	A6-T
$6+$	J	Ied	7	7	Ind	A6-16
6 -	8	Brown	26	26	Brown	16-8
$7+$	π	Green	8	8	Green	A6-15
7 -	9	Black	27	27	Black	A6-R
$8+$	$?$	Brown	9	9	Brown	17-22
$8-$	13	Green	28	28	Green	17-8
$9+$	0	Ind	10	10	Ind	A7-21
9.	17	Elack	29	29	Elack	17-2
10 +	R	Slue	11	11	Blue	17-20
10 -	14	Black	30	30	Black	17-11
$11+$	8	Orang	12	12	Orame	A7-19
11 -	15	Elack	31	31	Black	17-9
$12+$	∇	Jrown	13	13	Brown	17-18
12. -	18	Elack	32	32	Elack	17-10
$13+$	2	81ue	14	16	lue	A7-17
13-	22	Ind	33	33	Ind	A7- ${ }^{\text {a }}$
$14+$	4	E1ack	15	15	Rlack	17-16
14 -	18	Yeller	34	36	Yellor	
$15+$ $15{ }^{\circ}$ -	X 20	Green	16	16	Green	A7-15
15 -	80	Ead	35	35	ad	NJ,

- twisted pairs

Table C-2 Mecrete Cable (1U6) Mirtm List

$\begin{gathered} \text { Signal } \\ \text { Analog } \\ \hline \end{gathered}$	Cable 1W2 or 1W3			Cable 2W2 or 2W3		
		$\begin{aligned} & \text { Wire } \\ & \text { Color } \end{aligned}$	```Connector J2 or J3 Pin #```	Connector P2 or P3 Pin \#	Wire Color	$\begin{aligned} & \text { A9 or All } \\ & \text { Pin \# } \end{aligned}$
$0+$	1-A	Yellow	1	1	Yellow	22
0 -	1-C	Red	20	20	Red	Y
1+	1-L	Red	2	2	Red	21
1-	1-N	White	21	21	White	X
2+	1-U	Blue	3	3	Blue	20
2-	1-X	Black	22	22	Black	W
3+	1-B	Brown	4	4	Brown	19
3-	1-E	Red	23	23	Red	V
$4+$	1-M	Black	5	5	Black	18
4-	1-R	Green	24	24	Green	U
54	1-W	Blue	6	6	Blue	17
5-	1-7	Red	25	25	Red	T
$6+$	2-A	Green	7	7	Green	16
60	2-C	Red	26	26	Red	S
$7+$	2-L	Black	8	8	Black	15
7-	2-N	White	27	27	White	R
84	2-U	Black	9	9	Black	14
8-	2-8	Brown	28	28	Brown	P
$9+$	2-B	Orang	10	10	Orange	13
9-	2-E	Red	29	29	Red	N
$10+$	2-K	Yellow	11	11	Yellow	12
10-	2-R	Black	30	30	Black	M
11+	2-W	Red	12	12	Red	11
11-	2-8	Black	31	31	Black	1
12+	3-A	Green	13	13	Green	10
12-	3-C	White	32	32	White	K
13+	3-L	Green	14	14	Green	9
13-	3-N	Yellow	33	33	Yellow	J
$14+$	3-U	Brown	15	15	Brown	8
14-	3-X	Green	34	34	Green	H
$15+$	3-8	Green	16	16	Green	7
15-	3-8	Blue	35	35	Blue	7

Table C-3 Analos Cables (1 W2 and $2 W 2$ or $1 W 3$ and 2W3) Wiring List

Noce: All cables are shielded twisted pair cables. All shields are tied together at J2 or J3 and connected to pin 37 of J 2 or $\mathrm{J3}$ respectively. Pin 37 of P2 or P3 and all shields at P2 or P3 are tied together and connected to comen.

APPEMDIX D
Trunk Listings

Source $\operatorname{maC}(1)$	Variable/Unit: Scale Factor	$\begin{gathered} \text { Trunk } \\ \mathbf{W} 10 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Trunk } \\ & \text { V 3B } \\ & \hline \end{aligned}$	Destination	Variable/Scaling
hidac (0)	Eapty				
hidac (1)	YANO/rad:1.146	$\omega 101$	v381	TR541	YAW/50 deg
hidac (2)	LRRO/rad:19.1	W102	V382	TR542	RL/3 deg
hidac (3)	WReo/rad:19.1	$\omega 103$	v383	TR543	WR/3 deg
MDAC (4)	Eapty				
hidac (5)	RPO/rad/sec: 22918	H105	V385	TR551	R/250 deg/sec
hdac (6)	PPIO/rad/sec: . 00286	W106	v386	TR552	P/-20,000 deg/sec
midac (7)	EGDOTO/none: . 5	$\omega 107$	v387	TR553	BGDOT/2
midac (8)	ALPHAO/rad:2.865	W108	$v 388$	TG540	same/20 deg
MDAC (9)	UPIO/ft/sec: 000333	4109	V389	TGS41	same/3000 ft ${ }^{\text {c }}$
hDAC (10)	DUPIO/ft/sec ${ }^{2}$: 0005	W10A	v3ba	TG542	same/2000 ft/sec ${ }^{2}$
MDAC (11)	VP0/ft/sec: 0001	W108	V3BE	TG543	same/1000 ft/sec
MDAC (12)		W10C	V3BC v3BD	TG550	same/1000 ft/sec
HDAC (13)	RPTCH0/rad/sec:1.146	W10D	V3BD	TG551	
MDAC (14) MDAC (15)	RYANO/rad/sec:1.146 SIGDYO/rad/sec:1.0	W10F	v3by	TG553	same/l rad/sec

source MAC(2)	Variable/Unit: Scale Factor	Trunk $W 11$	$\begin{aligned} & \text { Trunk } \\ & \text { V36 } \\ & \hline \end{aligned}$	Destination	Variable/Scaling
MDAC (0)	EPP10/rad:57.3	0110	V360	TR400	EPSQY/ 1 deg
MDAC (1)	8IGD20/rad/sec: 1.0	W111	V361	TR401	same/1 rad/sec
MDAC (2)	EYF10/rad: 57.3	$\omega 112$	V362	TR402	EPSQZ1/1 deg
MDAC (3)	EMGF10/none: 1.0	W113	V363	TR403	SNRNG1/1
MDAC (4)	Empty				
MDAC (5)	Empty				
MDAC (6)	BCSQO/rad ${ }^{2}$: 13132.0	W116	V366	TR412	PCSQ0/1.25 deg ${ }^{2}$
MDAC (7)	PITCH0/rad: 1.146	W117	V367	TR413	PITCH/50 deg
MDAC (8)	CEO/none: 1.0	$W 118$	V368	TG400	ASPANG/ 1
MDAC (9)	EYTO/rad:28.648	W119	V369	TG401	EPSIZT/2 deg
MDAC (10)	EPTO/rad: 28.648	W11A	V36A	TG402	EPSIYT/2 deg
MDAC (11)	LTBO/rad:19.1	H118	V368	TG403	L/3 deg
MDAC (12)	WTRO/rad: 57.3	W11C	V36C	TG410	W/1 deg
MDAC (13)	TRPO/radz . 2864	W11D	V36D	TG411	THR/200 deg
MDAC (14)	RANGEO/mone: 1.0	W11E	V36E	TG412	NRANGE/1
MDAC (15)	QPO/radz . 22918	W11F	V36F	TG413	Q/250 deg/sec

Source	Variable/Scaling ${ }^{\circ}$	$\begin{aligned} & \text { Trunk } \\ & \text { V } 38 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Trunk } \\ & \mathbf{W} 43 \\ & \hline \end{aligned}$	Destination HISC	Variable
TR440	Enpty				
T2441	Cace/2000	V381	W431		
TR442	ICDMOD/8.5	v382	W432	A9-21 A9-20	Cage Cofl
[1443	SECCO1/5	v383	W433	A9-20	Gyro Refp:ence
TR450	xR03ET/1	v384	W434	A9-17	Secondary Ruference
TR4S1	YROSET/1	V385	W435	A9-18	X-Rosette

Table D-3 EAI-781 Outputs to HISC

Source	Variable/Scallng	Trunk V3A	$\begin{aligned} & \text { Trunk } \\ & \text { W00 } \\ & \hline \end{aligned}$	Destination	Variable/Unit: Scale Pactor
TR520	WIMED/1 rad	$V 3.0$	$\omega 000$		
TR521	THEG/50 deg	v3A1	W001	ADC S/A (1 (DWIDATA/rad: 1.0
TR522	PSIC/50 deg	V3A2	$\omega 002$	ADC S / H (2)	THEG/rad:. 8726
$\begin{aligned} & \text { TR523 } \\ & \text { TR530 } \end{aligned}$	PT/200 des	V3A3	4003	ADC S/H (3)	PSIG/rad:8726
TR531	cospt/1	V3A4 +43	W004	ADC S/H (4)	SPHII/none:1.0
	cospt/	v3as	$\omega 005$	ADC S/H (5)	CPHII/none:1.0

Source	Variable/scaling ${ }^{\text {² }}$	Trunk V30	Trunk V20	Destination	Variable
TG200	PPRITE/18	v308	V208	HVOO	X(IN)
TG201	etact/S0	V309	v209	HVOO	Y(IN)
TG202	Praime/ 18	v30A	V20A	HVOO	Z(IN)
TG203	ETACT/50	v308	v208	HVOO	W(IN)
TG210	mance/l	v30C	V20C	HVO1	X(IN)
TG211	aspang/l	v300	V200	MVO1	Y(IN)
TG212	mance/l	V308	V208	HVO1	2(IN)
TG213	Aspanc/l	v30F	V20P	MVO1	W(IN)

Table D-5 EAI-781 Outputs to MVFG (0,1)

Source	Variable	Trunk V21	Trunk V31	Destination	Variable/Scaling
HV00	P1(X,Y)	V210	V310	TR220	rabaft/1
nvoo	Fl(\mathbf{Z}, w)	V216	v316	TR222	TNDRFT/1
MVOI	F1(X, y)	V218	V318	TG220	TRIMOD/1
MY01	P1(Z, W)	v21E	v31E	TG222	PUV86/1

D-6 MVFG (0,1) Outpute to EAI-781

Source	Variable/Scal	$\begin{aligned} & \text { Trunk } \\ & \text { V33 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Trunk } \\ & \text { V26 } \\ & \hline \end{aligned}$	Destination	Variable
TG300	mange/l	V338	$\checkmark 268$	HV06 X (IN)	\mathbf{X} (IN)
T6301	Aspang/ 1	V339	V269	HV06 Y(IN)	Y(IN)
TG302	Sunmel/1	V33A	V26A	MV06 2 (IN)	2(IN)
TG303	aspang/l	v338	v268	HV06 W(IN)	W(IN)
Table D-7 EaI-781 Outputs to MVPG (6,7)					
Source	Variable	$\begin{aligned} & \text { Trunk } \\ & \text { V27 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Trunk } \\ & \text { V34 } \\ & \hline \end{aligned}$	Destination	Variable/Scaling
Mv06 nv06	$\begin{aligned} & \mathrm{Pl}(\mathrm{X}, \mathrm{Y}) \\ & \mathrm{F} 1(Z, w) \end{aligned}$	$\begin{aligned} & \mathbf{V 2 7 0} \\ & \text { V276 } \end{aligned}$	$\begin{aligned} & \text { V340 } \\ & \text { V346 } \end{aligned}$	$\begin{aligned} & \text { TR320 } \\ & \text { TR322 } \end{aligned}$	PIRRCT/1 PLRINT/1
Table D-8 mVFG (6,7) Outputs to EAI-781					
Source HISC	Variable	Trunk V43	$\begin{aligned} & \text { Trunk } \\ & \text { V39 } \\ & \hline \end{aligned}$	Destination	Variable/Scaling
A11-22	Elpty ${ }^{\text {Eling Comand }}$	V431	V391	TR501	EEWICD/25
A11-20	Precession	V432	v392	TR502	PRECMD/20

Table D-10 Eai-781 Logic Outputs to Hisc

Source	Variable	Trunk V81	Trunk W52	Dest	Inatio		Variable
TG12	ABORT	v81C	W52C		SENSE	LINE (12)	indis
TG13	POVLIM	v81D	W52D	IDS	SEASE	LINE (13)	
TG14	Empty						
TG15	Alimit	v81F	W52F	IDS	SENSE	LINE (15)	

Table D-11 EAI-781 Logic Outputs to CDC 6600 Input Discretes

	：	＝		\％
\＃	m	m	w	
E	\％	＝	\％	\％
\％${ }^{\text {m }}$	㗊	器	器	䈍

Table D－12 CDC 6600 Logic Output Discretes to EAI－781

APPENDIX E

Tektrouix 8002a EBA Diagnostic Prograss
(Floweharts, Comand Files, and Progran Listings)

- PROM Memory to 8002a Mesory Transfer
- PBOM Masory Verification Against 8002a Diskette File
- Syathesised Error Signal DaCs' Tests
- Autometic Gain Control (ACC) Tests
- RAM Memory Tests

Pigute E-1 EAM PMOM Memory to 8002a Memory Transfer Diagnoetic Prograe


```
|"U ThE gogza. TO RLN THE FHOGNAM
* the folluwing fafameteris mljot ee
* FASSED TJ THE FROGFAM
*
* 1: THE LAST ADDRESS OF THE FROM
        TU BE COFIEO
    2) T'HE FIRST ADDFESS LF FAM TO
        EE COFIED TO
    TO fASS THE ARGUIENTS, TYEE THE
    FOLLOWING:
    INSITX,I [LAST ADD FROMJ [:IEGT MLO rANII
```



```
    ExECUTE "XFERMF:%id".
*
PATCH FFFC $1$2
LOAD XFERME:O:1
EM 1
SEB
HES
* TRANSFEF NOW ACTIVE
50 8000
```


Figure E-2 ExA PMOM Memory Verification Againet 8002a Diskette File Diagnostic Progran

```
* THIS IS A FOUTINE WHICH VERIFIES GN
* EXISTING DISK, FILE AEAINST THE CON-
* TENTS OF THE PROMS IN THE WAFEFI #5
* FROM SOCKETS. THE FROGRAM REQUIFES
* THE Emulator to be attached to the
* PROCESSOR SOCKET OF WAFER 5.
* THE FOLLOWINS FARAMETERS MLIST BE FAS-
* SED TO THE FROGRAM:
* 1) FILE.NAME OF EXISTING FETLH FILE
            TO VERIFY AGAINST
* 2) LAST ADDRESS OF FROM TO BE CHECKED
* 3> FIRST ADDRESS OF FAM TO VERIFY
*
* TO FASS THESE ARGUMENTS, TYFE:
* INS2VF/1 [NAME] [LST ADD] [FIFST ADD RAM]
```

* "inszuf" verify file routine
METCH \$1
PATCH FFFC $\$ 2 \$ 3$
-JAD VFILE;0/1
Eld 1
DEB
HES
- vFile:o now executing
3000


```
\begin{tabular}{|c|c|c|}
\hline & SM & EERO \\
\hline & BR & FINE \\
\hline \multirow[t]{6}{*}{zero} & LDI & \(\cdots \mathrm{OOH}\) \\
\hline & ADI & *(0) \\
\hline & Inc & R1 \\
\hline & INC & R3 \\
\hline & INC & R4 \\
\hline & BR & READ \\
\hline \multirow[t]{7}{*}{\[
\begin{aligned}
& \text { FINE } \\
& \text { OUTS }
\end{aligned}
\]} & SEX & RO \\
\hline & Out & 7 \\
\hline & BYTE & OAAH \\
\hline & SEa & \\
\hline & OUT & 2 \\
\hline & arte & OAM \\
\hline & 8 R & OUTS \\
\hline \multirow[t]{6}{*}{ERR} & SEX & R4 \\
\hline & EHI & R4 \\
\hline & STR & RA \\
\hline & INC & RA \\
\hline & CLO & R4 \\
\hline & STR & RA \\
\hline \multirow[t]{13}{*}{ERI} & gex & Ro \\
\hline & SEE & \\
\hline & NCP & \\
\hline & NOP & \\
\hline & NOP & \\
\hline & SEX & 24 \\
\hline & OUT & 3 \\
\hline & DEC & R4 \\
\hline & 3EX & RO \\
\hline & OUT & 2 \\
\hline & BYTE & OEEH \\
\hline & OUT & 7 \\
\hline & BYTE & OEEH \\
\hline \multirow[t]{2}{*}{} & REC & \\
\hline & 8R
END & ER1
BGN \\
\hline
\end{tabular}
; Not done yet point to next location
:OUTPUT BYTE OT WS DISPLAY
"WS WRITE" DISPLAY WILL HAVE "AA" IF SUCCESSFUL VERIFY 3SO WILL "UV AGC"
: TO UV ABC
:LDOF FOREVER (Q SET, SUCCESS)
;FFFAMMSB OF BAD ADDRESS
;FFFB=LSB OF BAD ADDRESS
;Q=50\% DUTV CYCLE IF NOT SUCCESSFULL
PPOINT TO BAD GYTE
IUV AIC=EAD BYTE
: "UV ABC" DISPLAVS "EE" IF NOT SUCEESSFLLL
; ERROR MESSAGE
:SO DOES "WS WPITE"
```



```
THIS IS A WAFER 4 DAC GEEL FEGGAAM
WRITTEN TO :
    A) DUTFUT A FIXED VALUE TO EOTH
        X AND Y CHANNELS
of B) ouTfut a sINUSOIDAL WAVE at a
    FRESET FREQUENCY TO ONE OF BUTH
    THE CHANNELS
    in ofder to run the frogram, the fullowing
    DATA SHOULD BE ENTEFED (DELIMITED BY SFACES)
        [TYFE (0/1)] [FREQUENCY FACTOF] [CHANNELS (0= X %Y,1=x, \Omega=Y)]
        [OO=FIXED QUTPUT VALUE,OL=SIN CLKVE] [VALUE OF FIXED OLTFUT]
    TO PASS THE ARGUMENTG TYFE:
        INSNER [ARG] [ARG] [ARG] [ARG] [ARGE
    "INSIER"-ROUTINE TO FHSS FHGUMENTE ANL :%EGU"=
        "EROUTA;O/I"
PATCH FFFB $1$2$$क4$S
FETCH SINTAB/1
LOAD EROUTA;D/1
DEB
EM 1
RES
* "EROUTA;D/1" NUW ENESUTING
S0 0400
```

```
ITHIS ROUTINE OUTPUTS VALUE(S) TO THE X ANDIOR Y ERROR DEC CHANNELS
;OF THE EREADBQARD. THE OUTPUTS MAY EE MONITGRED AT THE TEST POINTS
;ON WAFER *4. THE UEER MUST PASS PARAMETERS TO THE PRQGRAM AS FOLLOWS:
MEMORY LOCATION . BYTE DEFINITION
FFFB "TYPE" gYTE,ONI,I=II
FFFC BIN MAVE PERIOD ECALINB (O-FHORT,I LONE)
FFFD OO=X AND Y CHANNELS,01 =X CHANWEL,O2=Y CHANMLSL
FFFE OOGFIXED VALUE OUTPUT,OI=8IN WAVE OUTPUT
FFFF FIXED VALUE TO OUTPUT (00-FF)
BTHE USER SHOLLD ALsO FETCH "BINTAE" EEFDRE EXECUTINE THE PROGRAM
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { ORI } \\
& \text { DI8 }
\end{aligned}
\] & 0400H & SDIEAELE INTERMUPTE \\
\hline & EVTE & 0004 & \\
\hline & LDI & \#00 & \% ZERO OUT MEBIETER \\
\hline & PLO & R1 & \\
\hline & Plo & R2 & \\
\hline & PLO & R3 & \\
\hline & FLO & R4 & \\
\hline & PLO & R5 & \\
\hline & PLO & R6 & \\
\hline & FLO & R7 & \\
\hline & PHI & R1 & \\
\hline & PHI & R2 & \\
\hline & PHI & RS & \\
\hline & PHI & R4 & \\
\hline & PHI & RS & \\
\hline & PHI & no & \\
\hline & PHI & n7 & \\
\hline & LDI & morph & BPUT FF IN MIEM PART OF REEIETER \\
\hline & FHI & RS & ITO POINT TO PROERAN PARANB IN HIEN MEMORY \\
\hline & PHI & Re & \\
\hline & WHI & R9 & \\
\hline & PHI & R2 & \\
\hline & PHI & RJ & \\
\hline & PLO & R2 & in2 POINTE TO EVTE TO OUTPUT TO ERROR DAC(S) \\
\hline & PLO & R7 & IR7 WILL EE THE EIN TABLE EVTE COUNTER \\
\hline - & L08 & \%oren & \\
\hline & FLO & Re & \\
\hline & 101 & WOPM & \\
\hline & PLO & NS & \\
\hline & LDI & WOFCH & \\
\hline & PLO & R3 &  \\
\hline & LDI & HOPEN &  \\
\hline - & PLO & ค9 & [R9 (PFPD) POINTE TO "TVPE EWITEN" (00i, inis) \\
\hline & L01 & 003 H &  \\
\hline 8en & Prix & R4 &  \\
\hline & OUT & \(\dagger\) & BOUTPUTS EPPFPS TO FORT © IEETE T \\
\hline & UEC & ค9 & 1STILL POSNTE TO FPFE \\
\hline & cx & no & \\
\hline & LDN & ns &  \\
\hline & 82 & XNY & \\
\hline & 901 & OIM & \\
\hline & 82 & JuTx & 12 If Juer \(\times\) cinmill \\
\hline & 期 & susy &  \\
\hline Juey & L.DN & 成 & IFIXED VAL 00 , SIRNOI \\
\hline & 82 & F180 & 100 if fixm output Ricuseted \\
\hline & 808 & OIM & 100 ff ksk ourput kmouched \\
\hline & ON2 & Elinor & 1 IF NOT 1 C* 0 \\
\hline 8100 & erx & R4 & BIN WNE OUTHUT 70 Y Cummb \\
\hline & LON & RS &  \\
\hline
\end{tabular}
```

L5 1	PLO	H8	;FUT VGLL INTO RB
	UuT	2	; OUTfut Sin to y channel
	DEC	R4	;point to same eyte
	SEX	R9	
	OUT	6	PREFRESH "TYPE" SWITCH
	DEC	R9	;POINT TO SAME BYTE
	SEX	R4	: BACk TO SIN TABLE POINTER
	GLO	R8	; DELAY
	32	NEXTS	
	DEC	R8	
	BR	LPI	
NEXTS	INC	R4	;POINT TO NEXT Sin value
	LDN	R3	3GET DELAY BACK INTO R8
	PLO	R8	
	DEC	R7	3SIN TABLE COUNTER
	GLO	$R 7$	
	B2	RE7	:RESTORE SIN POINTER TO 0300
	8 R	LPi	
RE7	LDI	-034	
	PHI	R4	
	LDI	400	
	PLO	R4	
	LDI	WOFFH	
	PLO	R7	PRESTORE DEC COLNTER
	LDN	63	iget delar abain
	Flo	R8	
	5	LP!	\#STARTE COUNT PVTE OF 3IN TABLE OVER
Fix0	LDN	${ }^{2} 2$	IFIXED VALUE OUTPUT, R2 POINT TO EYTE TO OUTPUT
LP2	SEX	R2	:POINTS TO BYTE TO OUT
	OUT	2	POUTS BYTE TO Y
	DEC	R2	:POINT TO SAME EYTE
	SEX	R9	
	OUT	6	PREFREEN "TYPE"
	DEC	R9	
	SEX	R2	
	ER	$\underline{L 2}$	1LDOP FOREVER
348x	LDN	${ }_{6} 6$	ISAME AS EEFORE
	82	Fix1	
	801	014	
	ENZ	ERROR	
SIN:	3 EX	R4	I8IN TABLE
	LON	R3	; DELAY
	FLO	R8	
LP3	OUT	1	$3 \times$ IIN OUT
	DEE	R4	IPOINT TO EAME OVTE
	SEX	$R 9$	
	OUT	6	
	DEC	R9	
	six	R4	
	6 CL	$\mathrm{FA}^{\text {c }}$	1 crece dezay
	82.	nextt	
	明:	$\mathrm{Ra}^{\text {R }}$	
	8 m	LP3	
NEEXTT	INC	R4	
	LDN	R3	
	MO	R8	
	DEC	R7	
	g-a	R ${ }^{\text {P }}$	
	B2	EF"	
	8 R	LF\%	
6F7	6DI	0 OH	
	FHI	84	
	LOI	-	
	20	R4	
	601	iffr	
	..4 ${ }^{\circ}$	$\cdot .7$	

[13

	ORC	O000 H	
	DIS		
	byte	OOH	.
	LOI	00	
	PLO	R1	
	PLO	R2	
	FLO	RS	
	PLO	R4	
	PHI	R1	
	PHI	R2	
	FHI	R3	
	PHI	124	
	LDI	OfAH	BOOFAMSTART LOC MES
	PLO	RS	; RS=00fa
	LDN	RS	PEET gTART LOC MED
	PHI	R1	
	INC	RS	
	LDN	RS	IEET START LCC LSE
	PLO	${ }^{\text {R } 1}$	3 R1 18 CURRENT LOCATION POINTER
	LD1	OFEH	1OOFE 18 MSB OF BAD LOCATION OF FOUNO
	PLO	22	
	LDI	OFCH	BOOFC IS THE LAST ADDRES MSB I INTO RW
Itin	Lot	OFFH	
	STR	R1	
	LDN	R	
	801	OFFH	
	ENZ	ERRF	
	L08	00	
	ADI	00	
	L0t	OAMM	
	STR	R!	
	CDN	R1	
	808	OAMH	
	SN2	EREA	
	LDI	00	
	ADI	∞	
	L08	534	
	37%	R1	
	LDN	R1	
	801	S5M	
	012	thats	
	L08	00	
	ADI	00	
	L0t	OOH	
	57	R!	
	Lb\%	${ }^{1} 1$	
	T0:	OOH	
	6002	Exin	
	L01	00	
	ADI	00	
	INC	18	
	EEX	*	
	3-15	W!	
	arr		¢ORECK IF Laty anorics is3
	ONZ	mere	

等	$\underset{\sim}{0}$	$\begin{aligned} & \text { 男 } \\ & \text { a } \end{aligned}$	$\begin{array}{ll} \text { a } & \frac{3}{3} \\ 8 & 3 \\ 8 \end{array}$		龴 \％ n
					$\text { \% } 96$
	雲	$\text { B }{ }_{3}^{3}$	萋		\％${ }^{2}$ 응

	いいい	
	NOP	
	FiEO	
	ER	ERFOL
TEND	SEX	Fo
	OUT	7
	BYTE	88H
	SEQ	
	NOF	
	NOF	
	BR	TEND
	END	EEN


```
THE 1BUZ SYSTEM DISK SHCLLD SE IN DFIIVE O
THIS IS AN AGC WORD OUTFLT AND FLIF-FLIF EROGRAM
ITS MAIN USE IS TO OUTFUT A BINARY WORD TO THE
AGC FLIP-FLOPS CN WAFER O AND TOGGLE THE HITE WITHO
THE FOLLOWING PARAMETERS MUST BE PASSED TO THE fROGRAM
    A) THE BYTE (IN 2 DIGIT HEX COOE) TO CUTPUT
    B) THE DELAY FACIOR (2 DIG HEX CODE) Gf DLJTY CYCLE EYTE
to pass these arguments enter the follewing cummand
    INSZAGCII :3YTEJ [DELmY]
PATCH OOFE $1$2
LOAD AGCDUT;O/1
DEB
EM 1
MFS
300000
```


BLE	OOH	
GLD	F4	$:$ LHECK CULNTER
EZ	LOOF	$:$ GO IF DONE
DEC	F4	ELSE DEC COUNTEF
BR	LOOP1	BND LOOF
END	BGN	

Tigure E-S EAM RM Mesory Tests Diaqnostic Progran (1 of 2)

Figure E-S (Cont'd) EAM EM Memory Testa Dlaqnoetic Progran (2 of 2)

```
* THIS FDLITINE IS USED TO CHECK THE
* gREADBCARD'S ON EOARD MEMORY FOR
* Faullty locations. the frogram
* REQUIRES NO USER FARAMETERS
* THE Q LINE (FIN 57 DF B/B FRONT
* FanEls mar be m@NITORED to see
* whether a gad location was found.
*
* THE bAD addrESS CAN bE SEEN BY
* EXAMINING [OOFE] AND [OOFF] FOR
* THE MSE AND LSE OF THE BAD lOCATIEN
IF THE TEST WAS A SUCCESS:
            1) THE Q LINE (F 57,FNONT PANEL)
                WILL BE AT "I"
            2) AN "88" WILL BE ON THE "WS
                WFITE" DISFLAY
IF THE TEST WAS A FAILURE:
        1) THE Q LINE WILL BE OSCILLATING
            AT AEOUT 5O% DUTY EYCLE
            2) THE "WS WRITE" WILL DISFLAY
                AN "FF","AA","55","OQ"
                    *
                    *
LOAD METS;O/1
EM 1
DEE
RES
000000
```

```
THIS IS A ROUTINE TO TEST THE BREADPOARD
'MEMOFIY (2000-207F). NO PARAMETERS NEED
TO BE PASSED.
THE FROGRAM RETURNS THE ADDRESS OF ANY
EAD LOCATION AT [OOFE] COOFFJ (MSB, LEB)
,DISFLAYS THE BAD TEST PATTERN, IF ANY,
AND (1) SETS Q LINE IF EVERYTHINE OK,
    OR (2) TOGGLES : LINE (5O%) IF NO 6OOD
        LOCATION \!WD
```


	B6 BN2	ItND MORE	
mofie	$\begin{aligned} & \angle D I \\ & A D I \\ & B R \end{aligned}$	00 00 BGN	ICLEAR CARFY
ERAF	SEX GHI STR INC ELO STR	$\begin{aligned} & \text { RO } \\ & \text { R1 } \\ & \text { R2 } \\ & \text { R2 } \\ & \text { R1 } \\ & \text { R2 } \end{aligned}$;HERE IF (11111111) NOT GOOD SAVE BAD ADDRESS : INTO [FE] [FF]
ERRF1	our BYTE SEQ NOF NOF REQ 8R	7 WOFFH	©OUTPUT BAD BYTE TO :"WS WRITE" DISPLAY :SET Q LINE =1 3RESET Q LINE=0 (50\%)
ERRA	SEX GHI STR INC GLO STR	RO $R 1$ R2 R2 R1 R2	SAME FOR (10101010)
ERRAI	OUT BYTE SER nop NUP REQ ER	7 OAAH ERRAI	
ERRS	$\begin{aligned} & \text { BEX } \\ & \text { GHI } \\ & \text { STR } \end{aligned}$	RO R1 R2	8AMTE FOR (01010101)
	IINC CLO 8TR	R2 RI R2	-
ERRS	OUT BYTE 850 NOP NOP Reg $8 R$	7 0554 ERRS:	
Ento		RO RI RE RE RI K2	[MEALN FOR (00000000)
EnROI	OUT OVTE SEC NOF: vef: 4.:4	$\begin{aligned} & 7 \\ & 00 \mathrm{H} \end{aligned}$	

```
BH
ERHOM
TEND SEX FO :HERE IF ALL DK
```

OUT 7 BYTE SEQ NOF NOP BR TEND END EGN

APFSADIX E
DD8 Diagnostic Routince

- 0L0021 Cyele 2 Flowehart
- 0L0021 Cycle 3 Flowehart
- Operation Sequence

Pigure F-1 OLOOR Gyele 2 Fiowhart (1 of 7)

Prase P-1 (Cone'd) OLOOR Gyele 2 Flowchart (2 of 7)
8-2

Pigure P-1 (Cont'd) 0LOORL Gycle 2 Mowehart (3 of 7)

0L000 Grele 2 Rowchart (4 of 7)

Figure F-1 (Cont'd) 0L0011 Cycle 2 Flowehart (6 of 7)

Figure F-1 (Cont'd) 0LO0PL Cycle 2 Flowchart (7 of 7)

Pigure F-2 0LOOP1 Cycle 3 Flowchart (1 of 3)

Figure F-2 (Cont'd) 0L00R1 Gycle 3 Flowehart (2 of 5)

Figure F-2 (Cont'd) 0LOORI Gycle 3 Flowchart (5 of 5)
I. Call the DDS operator vis the intercom system.

1. Press "CALL".
2. Press "1".
3. Press "6"; LRD should flash. The console operator will answer.
4. Bolding the button on the inside of the phone receiver ask the operstor to bring terminal 56 "on line."
5. When the operstor acknowledges, preas "BaNG UP".
II. DDS Terninal will dieplay - ACIIVE AND NOT BUSY.
6. Press "SERD".

Terninal will dieplay - EATER USERMALE, PASSWORD, ACCOUNT NayReR.
2. Entermeernane, paseword, eccount maber; press "smp".

Ternimal will display - TRAMBMIT no CMASSIFIBD MATERIAL.
3. Prese "8xid".

Terainal will dieplay - PRIMARI COMMND SET.
4. Tppe E; press "sand".
5. Ruter - AXLAGi, 1fn, pfn, ID=Acct. file, CX=X
wheres
1fn = name of the local f11e to be used,
pfin a name of the permanent file cataloged in temory (i.e. 0L0031),
Acct. f1le = the code nem of the users cataloged files (Dacope), and
X = cycle maber fron 1 to 5 (use 2 or 3).
Press "8.4D".
6. Type 8 js prees "8EDD".
7. Enterifng

- where:

I - lomet "control point avallable for direct" as displayed on ecreen.

Press "8man".
Ternian will flash one maeage and than display-j0s COnLMOL Exrencent
8. Frese "85in"。

The ternanal will display - IVI P Thin IXIT $0,2,1$ when the compler is finished.
9. Press "SEND".
10. Type P; press "SEND".
11. Type $\overline{0}, 2,1 ;$ press "SEND".
a. For OLOOP1 Cycle 2 the terminal will display initial missile and target parameters. The user as the option to change any one of these by following these steps:

1. Press "SKIP" twice; enter number of parameter you want to change; press "SEND".
2. Enter new value; press send. If you enter 11, the computer will go into real-time operation.
b. For OlOOPl Cycle 3, the terminal will display a set of scenarios previously programed. To initiate a run, execute the following steps:
3. Press "SKIP" twice.
4. Enter number coinciding with desired scenario; press "SEND".
5. Unless the program aborts itself, the user aust do so. This is acconplished by setting FF200 at the EAI 781 control-consols.
6. When you ars finished, perform the following steps.
7. Type Ss; press "SEND".
8. Type DROP; press "SEND".
9. If you wat to attach another file, retira to Step 4.
10. Type ST; press "SEND".
11. Press "SLAND".

Terainal will display - A STATION LOGICALLY OFF.Dr. N. A. Kheir20The University of Alabama in HuntevilleSchool of EngineeringBuntaville, Alabama 35899
DRSNI-R 1
-RDF 3
-RPR 15
-LP 1
-RPT 1
US Army Materiel System Analysis Activity AITN: DRXST-AP 1
Aberdeen Proving Ground, ID 21005

[^0]: Figure 1 Stinger POST Hybrid Simulation Partitioning
 Figure 2 Rosette Optical Vector Components
 Figure 3 Generation of Detector Signal with Logic
 Figure 4 Convolution of IFOV and Source with a Real Detector
 Figure 5 Basic Target Shape with Keypoint
 Figure 6 Target Translation
 Figure 7 Target Translation and Rotation
 Figure 8 Circle $\left(X^{\prime}\right)^{2}+\left(Y^{\prime}\right)^{2} \leq r^{2}$
 Figure 9 Rectangle (RL $\left.\leq X^{\prime} \leq 0\right) \cap\left(-W R / 2 \leq Y^{\prime} \leq W R / 2\right)$
 Figure 10 Triangle $\left[X^{\prime} \geq 0\right] \cap\left[\left((-W / L) X^{\prime}+W\right) \leq Y^{\prime} \leq\left((W / L) X^{\prime}-W\right)\right]$
 Figure 11 First Linear Plume Gradient
 Figure 12 Second Linear Plume Gradient
 Figure 13 Composite Plume Gradient as Function of Breakpoint
 Figure 14 Square (Flare) Region
 Figure 15 Translated Square (Flare)
 Figure 16 Flare $\quad\left(-F L S Z / 2 \leq X^{\prime} F \leq F L S Z / 2\right) \cap\left(-F L S Z / 2 \leq Y^{\prime} F \leq F L S Z / 2\right)$
 Figure 17 Hins Servomechaniem Transfer Function
 Pigure 18 Stinger PoST Simulation Interconnections
 Figure 19 日ISC Back-Plane Wirine
 Figure 20 HISC Front View
 Figure 21 Physical Configuration of the Stinger PoST Simulation Cabinet
 Figure 22 Common Blocks Used for the Interface setween Digital Progran and Simulation Rardvare
 Figure 23 RCA 1802 IIming Diagram.
 Figure 24 Strip Chart Trace of - $\dot{\theta}$ g and - $\frac{i}{i g}$ with Correct Phase Tailoring
 Figure 25 Strip Chart Trace of $-\theta_{8}$ and $-\Psi_{8}$ with Phase Talloring Out by One Bit
 Figure 26 AGC Word Scaling
 Figure A-1 Similation Control Losic
 Figure A-2 Primary Gyro Motor, Secondary Gyro Motor, Rosette, and
 Secondary Reference Coll
 Figure A-3 Roll and Primary Reference Coll
 Fisure A-4 Gyroscope (1 ot 3)
 Figure A-5 Gyroscope (2 of 3)
 Figure A-6 Gyroscope (3 of 3)
 Figure A-7 Target Rotation and Positioning
 Fisure A-8 Circle (Point Source) Logic and Intensities
 Figure A-9 Triangle (Plume) and Rectangle (Body) Logic
 Figure A-10 Triangle (Plume) Intensity
 Fiqure A-11 Flare Logic
 Figure A-12 Flare Iatensities
 Fisure A-13 Rectangle (Body) Intensities and Composite Detector Slgnals
 Figure A-14 Gyroscope Drift
 Figure A-15 Wing Servomechanise (1 of 2)
 Fifure A-16 Wing Servomechanise (2 of 2)

[^1]: Table B-3 Cage Voil Physicel Scaling Data (BTCC)

