
ADA, 982 THE IMPLEMENTATION OF A MULTIBACKEND DATABASE SYSTEM .
(MBS) PART SOFTW..U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA D S KERR FT AL JUN 83 NPS52-83-008-PT-

UNCL ASSIFfl D F/G92 N

1 I.0 U; jjIJL 1112.5

1. jJj.8

MICF?OCOP RESOLUTION ES' CARi

NPS52-83-OO8

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THE IMPLEMENTATION OF A MULTI-BACKEND
DATABASE SYSTEM (MDBS):

PART I - SOFTWARE ENGINEERING STRATEGIES
AND EFFORTS TOWARDS A PROTOTYPE MDBS

0Q-
Douglas S. Kerr, Ali Orooji,

Zong-Zhi Shi and Paula R. Strawser

L4u
__j June 1983

Approved for public release; distribution unlimited

Prepared for: Naval Postgraduate School
Monterey, CA 93940

83 06 30 031.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund David A. Schrady
Superintendent Provost

The work reported herein was supported by Contract N00014-75-C-0573 from
the Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

DAVID K. HSIAO
Professor and Chairman

of Computer Science

Reviewed by: Released by:

DAVID K. HSIAO, Chairman WILLIAM M. TOLLES
Department of Computer Science Dean of Research

TlIi'-1 jag fipti
SIECURITY CLASSIFICATION OF THIS PAGE (We Data Entaesd)

REPORT DOCUMENTATION PAGE BEEAD COMPLETINORM
1. REPOT HUMME T ACESIN NO. 3. R9CIPIfNT*S CATALOG $41611901

4. TITLE (and Subtitle) S. YP9 OF REPORT 6 PERIOD CO)VEREO
The Implementation of a Multi-Backend Database
System (NDBS): Part I - Software Engineering Technical Repore
Strategies and Efforts Towards a Prototype MDBS 6. PERFORMING Oe.REPORT Mulliga

7. AUTlHOR(a) 6. CONTRACT On GRANT NIJM1119(sJ

Douglas S. Kerr, Ali Orooji, Zong-Zhi Shi and
Paula Strawser

9. PERFORMING ORGANIZATION NAME AND ADDRESS SO. PROGRAM ELEMENT. PROJECT . TASK
AREA 4 WORK UNIT XUM89RS

Naval Postgraduate School
Monterey, CA 93940

11. CONTROLLING OFFICE NAME AND ADDRESS 12. *&PORT OATS

Chief of Naval Research June 1983 -

Arlington, VA 22217 "-NUM!9R OFPOES31
146

M4 MONITORING AGENCY NAME 6 AOORESS(If different froo Cantlfind Office) IL. SECURITY CLASS. fat Alat repm

Unclassif'ied

I6. DISTRIBUTION STATEMENT (of We1 RPeor)

Approved for public release; distribution unlimited

17. DISTRIOUTION STATEMENT (of the abstract entered In Black 20, If different 1"M Report)

IS. SUPPLEMENTARY NOTES

Is. Key WORDS (Ca.,thsae an, Fevese. aide It noceeft MW Identify 6? black nhmbew)

backend database system, database system implementation, database computer,
database machine, software engineering, database.

; AOSTRACT (Canifnwa a, r..evee side It meesav a" ideuifyp by 6lock aimS..)

- backend multi-minicomputer database system, known as MDBS, has been proposed.
IBS utilizes one minicomputer as the master (or controller) and a varying number

Df minicomputers as slaves (or backends) which are configured in a novel and paral-
lel fashion. MDBS is primarily designed to provide for database growth and per-
ormance enhancement by the addition of identical backends. The software archi-
ecture allows the backend addition without the need of new progranmming and re-
rogramming. Instead, the backend system software is replicated on the new back-
nds for concurrent and parallel operations which in turn allow the database to,

DD i,'NI 1473 EDITION OF I NOV 65SIS O9$L1'E

S/K 102.IJ.0~.6s1 *SECURITY CLASSPICATIOS OF TWISPAGE (1bmM Dma m

~ECURITY CLASS IF, I T : P A z.FC~.~P,~

krow and the ?erfor.a¢a.c- e improve without an increase in software cc.-,.
Prototypes of '.,D3S 1.7e being implemented in brder to carry out de-.. , . -

cation and performance evaluation of MDBS, The types of design verificaLivn a,'d
performance evaluation of MDBS to be conducted are discussed in the report. The
prototypes.will be developed in versions starting with a very simple version, i.e.,
MDBS-I, that is desc-b ed-n-detail in this report. Four more versions are en-
visioned. The rationale fot each of the subsequent versions is also given.

--;As the first in a series of reports on the implementation, this report dis-
cusses the choice of hardware and operatirg system software. It also discusses
the choice of the system programming language.

The project is being used as an experiment in implementation metho'dologies and
software engineering techniques. Thus, tl.e report discusses the methodologies and
techniques used, including a modified chief-programmer-team orzanization, struc-
tured walkthrough, data and service abstractions, a formal systems design language,
and structured coding. The choice of a '!lack-box' testing strategy is also dis-
cussed.

T- .DBS-- sottwar- svstern architecttre is described in some aetail. 1n
nart-cuiar, the ncrtion o: tln .. ster whi:c rocesses t1-i_ informaticn a-ou tne
aca abase, i.e., the directory data. is descrised. in order to use a database that
already exists, a subsystem to convert anc load t.,e database will be -rovided. The
database load subsystem is tnerefore desciibed. --nallv, in order to facilitate
performance evaluation experiments, a proc£ram to zenerate test data is Drovided.

The final section of the report provides a preliminar, discussibn of alter-
native approaches for the operating system interface. Both a message-oriented
approach and a procedure-oriented approach are examined for the purpose of sup-
porting concurrency control of MDBS which is to-be incorporated in the second
version of MDBS, i.e., MDBS-II........

-The appendices contain the detailed c.esigns for the directory management sub-
system, the database load subsystem and the test data generation progr Later
reports will describe subsequent versions of the multi-backend database system,
namely, MBS-!!, MDBS-III, MDBS-IV ar.d.MD;S-V.

of/ /

dld
. .SCU.. CLASSIFICATION OF THIS PAGU0hen Date Enfet,

PREFACE

This work was supported by Contract N00014-75-0573 from the Office of

Naval Research to Dr. David K. Hsiao and conducted in the Laboratory for Data-

base systems Research. The Laboratory for Database Systems Research is

initially funded by the Digital Equipment Corporation (DEC), Office of Naval

Research (ONR) and the Ohio State University (OSU) and consists of the staff,

graduate students, undergraduate students, visiting scholars and faculty for

conducting research in database systems. Dr. Douglas S. Kerr, Associate

Professor of Computer and Information Science at the Ohio State University,

is the present Director of the Laboratory.

Since July 1, 1982, Dr. Hsiao assumed the Chairmanship of the Computer

Science Department at the Naval Postgraduate School and continued the funded

research at the Naval Postgraduate School. The Laboratory for Database Systems

Research is being moved to the Naval Postgraduate School (NPS) in June of 1983

and supported by DEC, ONR, and NPS. This report is a re-issue of an earlier

report published in January 1982 at the Ohio State University under report

number OSU-CISRC-TR-82-1.

We would like to thank all those who have helped with the MDBS project.

In particular, the MBS design and analysis were developed by Jai Menon.

(Now, Dr. Jai Menon of IBM Research Laboratoty, San Jose, California). He also

provided much help in the detailed designs. A visiting scholar, Xing-Gui He,

is involved with MDBS project. Several undergraduate students are also

involved with the project: Raymond Browder, Chris Jeschke, Jim McKenna, and

Joe Stuber. Several graduate students, visiting scholars and undergraduate

students provided much help in the detailed design and coding: Steven Barth,

Julie Bendig, Abdulrahim Beram, Patti Dock, Masanobu Higashida, Jim Kiper,

Drew Logan, William Mielke, Tamer Ozsu, Zong-Zhi Shi, and Paula Strawser.

Jose Alegria, Tom Bodnovich and David Brown contributed background material

which was necessary for making our design decisions. We would also like to

thank the laboratory staff and other operators who provided us with system

support: Bill Donovan, Doug Karl, Paul Placeway, Steven Romig, Jim Skon, Dennis

Slaggy, Mark Verber, and Geoff Wyant.

LIST OF FIGURES

Page

Figure 1 - The MDBS Hardware Organization 5

Figure 2 - Execution Phases of a Retrieval Request 8

Figure 3 - Execution of a Retrieval Request in the Presence
of Access Control and Concurrency Control 10

Figure 4 - Gverview of Directory Management as Seen From
The i-th Backend 12

Figure 5 - Record Processing Function 13

Figure 6 - Modes of ?DBS Operations 14

Figure 7 - The Organization of the MDBS Design and

Implementation Teams 31

Figure 8 - A Sample Walkthrough Report 33

Figure 9 - A SSL Specification of a Program Procedure 36

Figure 10 - A Sample Procedure Hierarchy 39

Figure 11 - A Sample of The Cluster Definition Table (CDT) 54

Figure 12 - The Cluster-Id-To-Next-Backend Table (CINBT) 58

Figure 13 - The Descr:.ptor-To-Descriptor-ld Table (DDIT) 64

Figure 14 - The Attribute Table (AT) and its Relationship
to DDIT 65

Figure 15 - A Sample Request-Descriptor-ld Table (RDIT) 72

Figure 16 - An Example of DT, DTCM and ECDT 74

Figure 17 - Four Phases of Database Loading 77

Figure 18 - The Message-Oriented Design for Concurrency
Control in MDBS-II 87

Figure 19 - The Procedure-Oriented Design for Concurrency

Control in MDBS-11 88

I II i IIiI ii ii__ _iiiiii_,_ii_. . . .

PAGE ii:t

TABLE OF CONTENTS

LIST OF FIGURES ... ix

PREFACE ... x

1. AN INTRODUCTION TO HIGH-PERFOBMANCE AND

GREAT-CAPACITY DATABASE SYSTE1.S 1
1.1 Multi-Backend Database System Design Goals 2

1.1.1 Design Issues .. 3
1.1.2 Solutions for a Multi-Backend Database

System Architecture 4

1.1.3 Distribution of Request Execution Among

Controller and Backends 9

1.2 Why Implement This System? 15

1.2.1 Validation of Simulation Results 15

(A) System Evaluaticn with Program-Generated

Databases .. 16

(B) System Evaluaticn with Actual

Databases .. 16

1.2.2 Towards a Methodology for Database

Applications Classification 16

1.2.3 Bench-Marking the S)stem Performance 17

1.3 The Implementation Strategy - What and Why 18

1.3.1 Version I - A Very Simple System: Single

Mini Without Concurrency Control and With

Simplified Directory Management 18

1.3.2 Version II - A Simple System: Single Mini With

Concurrency Control 18

1.3.3 Version III - The First "Real" System

Multiple Minis With Concurrency Control 19

1.3.4 Version IV - The Real System With "Good"

Directory Management 19

1.3.5 Version V - Full System With All the

Designed Features Included 19

PAGE iv

1.4 The Organization of the Rest of the Report 19

1.4.1 Preparations for the First Effort of the

Laboratory for Database Systems Research 20

1.4.2 Software Engineering Approaches to the

First Effort ... 20

1.4.3 The Implementation Status 20

2. THE PROJECT PLANNING AND THE IMPLEMENTATION

EFFORT AND STRATEGY .. 21

2.1 The Choice of Hardware and Systems Software 21

2.1.1 "he PDP11/34 vs. the PDP11/44 and the

PDPI1/70 vs. the VAX1I/780 22

2.1.2 The Systems Programming Language 23

(A) The Bliss Language and Its

Compilers .. 24

(B) The C Language and Its Programming

Development Environment 25

(C) The MAINSAIL Language and Its

Relationship to the Other Languages 26

(D) Why Do We Choose the C Language? 26

2.1.3 The Operating Systems 27

(A) The UNIX Operating System 27

(B) The RSX1l Operating System 28

(C) Why Do We Choose the UNIX Operating

System for the Development Effort

and RSXll for the Run-time Effort? 28

2.2 The "How" of the Implementation Strategy 29

2.2.1 Team Organization and Monitoring the

Development Effort 29

(A) A Modified Chief-Programmer-Team

Organization 30

(B) The Structured Walkthrough 32

2.2.2 The Design and Coding Stages of the

MDBS Life Cycle 32

(A) A Top-Down Design Strategy and the

Use of Data Abstraction 34

~tj

PAGE v

(B) A Formal Systems Specification

Language (SSL) 34

(C) A Practice of Structured Coding 37

2.2.3 A "Black-Box" Testing Approach 37

2.2.4 A Uniform Documentation Standard 38

2.3 A Retrospective .. 40

2.3.1 Evaluating the Hardware and the Systems

Software ... 41

2.3.2 Evaluating the Software Engineering

Experience ... 41

3. THE DESIGN AND IMPLEMENTATION OF MDBS VERSIONS 42

3.1 The Data Model and the Data Manipulation Language 42

3.1.1 Concepts and Terminology 42

(A) Three Kinds of Keywords 43

(B) Keyword Predicates 43

(C) Three Types of Descriptors 44

(D) Rules for Providing Descriptors 45

(E) The Relationship of Keywords and

Descriptors 45

(F) Query Conjunctions and Queries 45

3.1.2 The Data Manipulation Language (DML) 46

(A) Retrieve Requests 46

(B) Insert Requests 47

(C) Delete Requests 47

(D) Update Requests 47

3.1.3 Transactions and Consistencies 49

3.2 The Notion of Record Clusters 50

3.2.1 Cluster Formation 51

3.2.2 Cluster Determination During Request Execution 52

(A) Inserting Records into Clusters 53

(B) Retrieving, Deleting and Updating Records

from Clusters 53

3.3 The Entire Process of Request Execution 57

3.3.1 Executing an Insert Request 57

3.3.2 Executing a Retrieve Request 57

3.3.3 Executing a Delete Request 59

PAGE vi

3.3.4 Executing an Update Request 60

3.4 Directory Management 62

3.4.1 The Input: Non-Insert Requests and Insert

Requests ... 62

(A) Four Directory Tables: The Descriptor-to-

Descriptor-Id Table (DDIT), The Attribute

Table (AT), The Cluster Definition Table

(CDT) and The Cluster-Id-to-Next-Backend

Table (CINBT) 63

(B) Three Phases of Processing: Descriptor

Search, Cluster Search and Address

Generation 66

(C) The Choice of a Processing Strategy for the

Controller and the Backends 66

(I) The Fully-Duplicated Strategy 67

(2) The Descriptors-Division-Within-

Attribute Strategy 67

(3) The Fully-Replicated Strategy 67

3.4.2 The Use of Abstractions and Tables for

Implementation 68

(A) Two Data Abstractions for Descriptor Search 69

(B) The Difference Between Descriptor Sets and

Descriptor Groups 69

(C) The Generation of the Descriptor-id Groups

for a Request 69

(D) A Service Abstraction for Passing

Descriptor-id Groups to Cluster Search 71

(E) A Data Abstraction and Three Directory

Tables for Cluster Search and Address

Generation 71

(F) A Typical Directory Management Sequence of

Actions for an Insert Request 73

(G) A Typical Directory Management Sequence of

Actions for a Non-insert Request 75

PAGE vii

4. LOADING THE DATABASE ... 76

4.1 Three Directory Tables for Loading 76

4.2 Four Phases of Database Loading 76

4.2.1 The Database Definition Phase 76

4.2.2 The Record Preparation Phase 79

4.2.3 The Record Clustering Phase 79

4.2.4 The Record and Table Distribution Phase 79

4.3 The Implementation Status 80

5. THE TEST FILE GENERATION 81

5.1 Three Types of Test Data 81

5.2 Random Test Data vs. Realistic Test Data................... 81

5.3 Steps in Test File Generation 82

5.4 The Relationship of the Package to Testing Strategies

and Performance Evaluation Experiments 82

5.5 Current Status of the Package 83

6. PLANS FOR THE NEXT MDBS VERSIONS 84

6.1 Interfacing with Operating Systems 84

6.2 Two Kinds of Interfacing Approaches........................ 84

6.2.1 Concurrency Control in MDBS-II using

Message-oriented Approach 86

6.2.2 Concurrency Control in MDBS-II using

Procedure-oriented Approach 86

REFERENCES ... 90

APPENDIX A: HOW TO READ AND FOLLOW THE PROGRAM

SPECIFICATIONS 92

A.1 Parts within an Appendix 92

A.2 The Format of a Part 92

A.3 Documentation Techniques for the Part 93

APPENDIX B: THE SSL SPECIFICATION FOR TEST FILE

GENERATION .. 94

B.1 Part I - Generating Random Test Data Strings 94

B.2 Part II - Generating Realistic Test Data Sets.............. 99

APPENDIX C: THE SSL SPECIFICATION FOR DATABASE LOAD 107

C.1 Part I - Database Load Subsystem.......................... 107

C.2 Part II - Record Template Module 130

PAGE viii

APPENDIX D: THE SSL SPECIFICATION FOR DIRECTORY

MANAGEMENT.. 133

D.1 Part I - The Top Level of Directory Management133

D.2 Part II - The Service Abstraction (DIRINT)................. 136

D.3 Part III - The Data Abstraction for Attribute Table 139

D.4 Part IV - The Data Abstraction for

Descriptor-to-Descriptor-Id Table140

D.5 Part V - The Data Abstraction for Cluster-Definition

Table... 142

1.0 AN INTRODUCTION TO HIGH-PERFORMANCE AND GREAT-CAPACITY DATABASE SYSTEMS

Traditionally, database management systems run as large software pack-

ages (e.g., TOTAL) on large host computers (e.g., IBM 3033). Such systems

have had problems with performance; i.e., as the database grows and the rate

of requests to the database system increases, the host computer performance

decreases. Instead of upgrading the host to a more powerful and expensive

model (say, IBM 3081) and incurring a major system interruption, it has been

proposed [Cana74] to offload most of the database system software from the

host to a second computer system, known as the backend, thus freeing the ex-

isting host computer for other tasks.

One backend approach is to use a single minicomputer for the backend.

This approach can free up the host, thereby improving the system performance

for other tasks. However, if the database continues to grow and the rate of

requests continues to increase, this approach cannot solve the database per-

formance problem since the backend will soon be overloaded. Consequently,

its pertormance will be degraded just as the host's would have been in the

traditional approach. Thus, overall performance of the host and backend will

be degraded. This approach is known as the single software backend approach.

A second approach to solving the database system performance problem is

to develop a special-purpose database machine with specially designed

hardware. However, the cost-effectiveness of this approach, known as the

hardware backend approach, has not yet been demonstrated.

A third approach is to use multiple mini-computers configured in a novel

and parallel way for performance improvement in order to allow for database

growth and for increases in the request rate. This approach also requires

the development of an innovative software design which allows the addition of

mini-computers of the same type and the replication of the software on the

new mini-computers without major system interruptions. Thus, it does not re-

quire the development of any new hardware, but only the development of a new

and replicatable software architecture and a new and parallel hardware

configuration. Because it allows the use of multiple mini-computers, this

approach will result in a multi-backend database system.

PAGE 2

In this report we describe the current status of the development of a

prototype of such a multi-backend database system known as MDBS. By a proto-

type we mean one that has enough of the functionality of the full system to

allow meaningful experiments to be conducted. However, some features that

would be essential for a full system would be omitted in order to simplify

the current implementation effort. The functionality provided and features

omitted will be described in later sections.

1.1 Multi-Backend Database System Dsjtn Goals

The major goals we are trying to achieve are to design a multi-backend

database system that allows the database to grow and the rate of requests to

increase while maintaining good overall performance. In particular, a "good"

multi-backend database system with high performance and great capacity should

have the following properties:

(1) Throughput improvement is proportional to the number of backends. In

other words, if the number of backends and disk drives is doubled, it

should be possible to nearly double the size of the database and to

nearly double the request rate on the database system.

(2: Response time is inversely proportional to the number of backends.

It should also be possible to-nearly halve the average response time

by doubling the number of backends.

(3 System is extensible for capacity growth and/or performance improve-

ment. By extensibility of a multi-backend database system we mean

that upgrade of the system can be provided with no modification to

existing software and no new programming; no modification to exist-

ing hardware; and no major disruption of system activity when addi-

tional hardware is being incorporated into the existing hardware and

software.

This kind of extensibility is to be provided by designing a system with

one controller (i.e., the master mini-computer) and several backends (slave

mini-computers) where the design allows expansion by the addition of more

backends of the same type, instead of by the replacement of the present back-

ends with more powerful and expensive models. It also allows identical

software to run on each backend, including new backends added for expansion.

PAGE 3

This kind of extensibility calls for a design which minimizes the role of the

controller of the backends so that it will not become a bottleneck after the

addition of only a few backends.

1.1.1 Design Issues

Three types of design issues are addressed: hardware issues, system is-

sues, and software issues. They are discussed in detail in [Hsia8la] and

(sia~lb]. Here we will review the hardware and system issues and solutions

briefly. Since the software issues are closely related to our implementation

effort, we will discuss their solutions more elaborately in the next section.

In this chapter, definitions will be kept informal. More precise definitions

can be found in Chapter 3 or in the previously mentioned reports, i.e.,

[Hsia8la] and [Hsia8lb].

The hardware issues include the problem of backend interconnection --

Should the backends co-mmunicate with each other via some kind of interconnec-

tion hardware? How can this interconnection be provided in a cost-effective

manner? The hardware issues also include the problem of database store

interconnection - Should each disk be accessible by all the backends, by

only one backend, or by some but not all the backends?

Several system issues are addressed: Database placement - Should re-

lated records of a database be concentrated at one backend or should they be

distributed across several backends? If the records are to be distributed

across several backends, how should this distribution be done? Execution

mode - should all backends process the same request in parallel or should

different backends process different requests concurrently? Directory

structure. placement. and management - How should the auxiliary information

about the database be determined, organized and distributed among the back-

ends? Access control capability - What are the kind and granularity of the

access control and how should an access control mechanism be implemented?

Data model and manipulation language - what data model should be supported

and what data manipulation language should be used?

PAGE 4

The software issues include the problem of degree of concurrency --

Since the basic unit for processing is a request, should two or more requests

be processed concurrently? If requests are not processed concurrently, what

should be done when users submit groups (i.e., transactions) of requests?

Can the processing of these requests be interleaved? As a part of the con-

currency control issue the problem of consistency control and deadlock

avoidance should be addressed - How are the same data values of the database

subject to concurrent processing by different requests to be kept consistent?

How is deadlock to be avoided in an environment with multiple requests and

concurrent processing?

1.1.2 Solutions for a Multi-Backend Database System Architecture

An overview of the resulting MDBS hardware organization is shown in Fig-

ure 1. The issue of backend interconnection is resolved by having the con-

troller and backends connected by a broadcast bus. The controller will

broadcast each request to all backends at the same time over this bus.

Furthermore, there will be minimal broadcasting from one backend to the other

backends. The issue of database store interconnection is resolved by giving

each backend dedicated disk drives.

The issues of database placement and execution mode are resolved by dis-

tributing the data from each file across all the backends. Each backend will

then process he data from its own disk drives. Because each file is spread

across all the backends, all backends can now execute the same request in

parallel. Request execution at a backend is handled by having a queue of re-

quests at the backend. When a backend finishes executing one request it can

start executing the next request. In view of the execution mode, MDBS is a

multiple-instruction-and-multiple-data (MIMD) organizaton.

The data model chosen for the system is the attribute-based data model

[Hsia70]. In MDBS the database consists of files of records. Each record is

a collection of keywords, optionally followed by a record body. A keyword is

made of an attribute-value pair such as <SALARY,$12,000> where $12,000 is the

value of the attribute SALARY. A record body is a string of characters

PAGF 5

Backend one or more

disk drives

Backend 2 -tone or more
disk drives

host Controller
compute

&

Backend n one or more
disk drives

Broadcasting
bus

Figure 1. The MDT)S Hardware Organization

PAGE 6

not used by MDBS for search purposes. An example of a record without a

record body is shown below.

(<FILE,Employee>, <EMPLOYEENAME,Smith>, <CITY,Columbus>,

<SALARY,$12,000>, <SERVICE,10>)

The first attribute-value pairs in all records of a file are the same. In

particular, the attribute is FILE and the value is the file name. For exam-

ple, the above record is from the Employee file.

For pertormance reasons, records are logically grouped into clusters

based on the attribute values and attribute value ranges in the records.

These values and value ranges are called descriptors. For example, one clus-

ter might contain records for those employed in Columbus, making at least

$20,001 but not more than $25,000 and with at least 11 but not more than 15

years of service. Thus records of this cluster are grouped by the following

three descriptors:

(CITY-Columbus), ($20,001'<SALARY-<$25,000), (11=<SERVICE=<15).

Record retrieval in MDBS, for example, is done by clusters. Thus finding

records of employees in Columbus making between $21,000 and $22,000 per year

and with 12 to 13 years experience would require the retrieval of records in

the cluster just described. Other requests such as to find records of em-

ployees in Columbus making between $21,000 and $28,000 and with 12 to 13

years experience might require additional retrieval of records from other

clusters than the one identified above.

In order to allow efficient processing of requests, records in a cluster

are spread across all the backends. Thus each backend needs to search only

its portion of the cluster. Given a user request, there must be a way, of

course, first to determine which clusters to search and then to determine the

location of records in a given cluster. To perform this task, MDBS utilizes

available descriptor information. For example, given the previous request

for finding employees where

(CITY-Columbus) and ($21,000-<SALARY-<$28,000) and (12-<SERVICE-<13)

MDBS first determines that two clusters must be searched. These are the

clusters identified by the two sets of descriptors:

{ (CITY-Columbus), ($20,001=<SALARY<$25,000), (11-<SERVICE=<15)
{(CITY-Columbus), ($25,001-<SALARY-<$30,000), (1l.<SERVICE-<5) }

PAGE 7

After the clusters are identified, MDBS must then determine the disk ad-

dresses of the clusters at each backend. Finally MDBS will cause each back-

end to retrieve from its disks the records so addressed.

The execution phases of a retrieval request are summarized in Figure 2.

Descriptor search determines the descriptors that correspond to the request.

In our example, there are four descriptors corresponding to the request;

namely,

(CITY-Columbus), ($20,001-<SALARY-<$25,000),

($25,001-<SALARY-<$30,000), (II-<SERVICE-<l5).

In order to save space and to save processing time each descriptor is identi-

fied by a descriptor id. For example,

Descriptor Descriptor Id

(CITY-Columbus) D15

C $20,001=<SALARY-<$25,003) D125

C $25,001=<SALARY=<$30,003) D126

(ll-<SERVICE-<15) D250

Thus the output of the descriptor search phase is the Boolean expression of

descriptor ids

DI5 and (D125 or D126) and D250 (1)

corresponding to

($20,001-<SALARY-<$25,000)

(CITY-Columbus) and or and (11-<SERVICE-<15)

($25,001-<SALARY-<$30,000)

which identifies two clusters.

The next phase, cluster search must take the Boolean expression in (1)

and actually determine the corresponding clusters. As with descriptors,

clusters are also identified by ids, known as cluster ids, for example

Descriptor Ids Cluster Id

D15, D125, D250 C17

DIS, D126, D250 C22

PACE 8

_ _ _Directory

Management

From the
available From the
descriptors, From the From the
determine descriptor given cluster given From the

dhose ids, ids, addresses, given
escriptor -clusters -determine the._determine ,addresses,
(actually (actually addresses of which retrieve the
descriptor ctul the records backends and required
ids), which cluster ids), in those disks to records.
correspond tc clusters, search.
the given may satisfy

the request.request.

Boolean
Retrieval Expression Cluster Ds
Request Descriptor of Cutr Ids Address Addresses Record Results

Search Descripto ech Generation RequesIds

Figure 2. Execution Phases of a Retrieval Request

PAGE 9

The final two phases are address generation (to find the disk addresses,

e.g., A354b and A3547, corresponding to each cluster id, e.g., C17) and

record selection (to retrieve the actual records so addressed).

Descriptor search, cluster search and address generation together forn

the major portion of directory management.

Because all directory management is based on the concept of clusters, il:

is also logical to design an access control capability based on clubters.

Thus cluster search is augmented by a cluster access control mechanism.

The final design issue was the question of the degree of concurre.c2 to

be allowed. Executing one request at a time at a backend will frequentl"

leave the backend's CPU idle while waiting for a disk to access records.

Since the MDBS hardware organization provides multiple disk drives per back-

end, it is possible for a backend to support concurrent processing cf re.-

quests from different users. However a mechanism to control conc!urrent ac-

cess to data must then be provided. The mechanism used in MDBS i.s also cen-

tered on the concept of clusters. In particular, the concurrkntv controL

mechaniim will lock clusters to prevent conflicting access to the same

clustered data.

This section has described the general method used by MDBS in processing

a retrieval request. This processing is summarized in Figure 3. The next

section will show how this processing is divided among the controller and the

backends.

1.1.3 Distribution of Request Execution Among Controller and Backends

In the previous section, we mentioned how the database wa- distributed

across the backends. However, we did not discuss the placement of directory

data and the distribution of the processing required in directory management.

In order to minimize the time for directory management and to facilitate

record update, the directory data is duplicated at all backends. On the

other hand, the processing required for directory management is not duplicat-

ed at each backend. The descriptor search phase, instead, is divided among

PAGE 10

original function

i I future function
i [

Boolean
Retrieval Expression Disk
Request Descriptor ,f Cluster Address Addresses-Record emtlts

Search Descriptor Search Generation
Ids

Cluster |Cluster Ids,
Ids L Ready for Processing

Cluste-r " 1lAuthorized--IConcurrency I

Access ICluster IdslControl
L Onto !L 1 L j

Figure 3. Execution of a Retrieval Request in the Presence
of Access Control and Concurrency Control

PAGE 11

the backends. Each backend must find only a subset of descrLptor ids. It

then broadcasts its results to all the other backends. In Figure 4 we sum-

marize how directory management is performed at a backend. A retrieval re-

quest is received from the controller. Then the backend performs a descrip-

tor search on its portion of the request and broadcasts the resulting des-

criptor ids to the other backends. After the descriptor ids from all other

backends have been received, cluster search is used to determine the clus-

ters. Finally, address generation determines the local disk addresses for

records at that backend.

The backend can do more than just retrieve all the records in a cluster.

First, it can select those records that actually satisfy the request. For

example, the request to find records of employees in Columbus earning more

than $20,000 but not more than $28,000 and with more than 10, but not more

than 15 years experience, requires selecting records from the two clusters.

Those clusters are identified by

(CITY-Columbus) and ($20,001<SALARY-<$25,000) and (11<SERVICEc<15)

and

(CITY-Columbus) and ($25,001=<SALARY=<$30,000) and (11-<SERVICE=<15).

All the records will be selected from the first cluster, but only records

with SALARY-<$28,000 will be selected from the second cluster.

Often not all the data in a record is needed to respond to a request.

In this example, only the names of the employees might be required. Thus the

appropriate values must be extracted from the record. The other values may

be discarded. Although not shown in this example, MDBS can perform various

types of aggregate operations on a set of values instead of just returning

the raw values. An example would be to find the average salary of employees

who live in Columbus. Thus after selecting the appropriate records and ex-

tracting the salary values, MDBS would compute the average. The steps of

record processig are summarized in Figure 5.

Referring to Figure 6, the execution of a user request can now be sum-

marized as follows. The user submits a request to the host, which then

transmits that request, in an internal form, to the controller of MDBS. The

controller parses the request and then broadcasts it to the backends. The

PAGE 12

II II The (i-l)-th Backend

Descriptors Descriptors Found

Found at the at all the other
i-th Backend Backends

are Broadcast

to all the

other Backends

Descripto Found at escriptor escri totsClust Ids Addresses

Descriptors Descriptors Found

Jl Found at the at all the other
i-th Backend Backends

are Broadcast
to all the
other Backends
other_________

The (i+1)-th Backend

II II

Figure 4. Overview of Directory Management

as Seen From The i-th Backend

PAGE 13

KRecord Processing

Local Disk Record Records Value Values Aggreizate Results
Addresses Selection Extract Operation
(from Directory
Management)

Figure 5. Record Processing Function

PAGE 14

Host

MDBS

Con-
trolle:.

'NI/
/ \N.~ Parallel

/\

Back- Back- Back-
edend end

Broadcast

Broadcast 'lode

* Controller-to-all-backends operation (e.g., query)
* Backend-to-all-other-backends operations (e.g., transferring

descriptor ids)

Parallel Mode

* Response-of-each-backend-to-controller operations (e.g., forwarding
retrieved data)

Figure 6. Modes of MDBS Operations

PAGE 15

backends determine their portion of the descriptor ids and broadcast the re-

sults to the other backends. Each backend determines the clusters that must

be searched and the corresponding local disk addresses. Then the appropriate

records are selected, values extracted and results sent back to the

controller. When the controller has received the results from all the back-

ends, it performs any aggregate operation required and then forwards the

final results to the host for return to the user.

1.2 Why Implement This System?

The design of MDBS is based on extensive analysis of queueing models and

simulation studies of MDBS components. These results are included in

[lsia8la] and [Hsia8lb]. This report is concerned with the implementation of

an MDBS prototype. We, therefore, will not repeat the expected performance

of MDBS as simulated and analyzed in those reports. These models and studies

are, of course, only approximations. We are implementing a prototype of MDBS

in order to conauct more accurate performance evaluation and more thorough

design validation.

1.2.1 Validation of Simulation Results

The first reason to build a prototype system is to validate the simula-

tion results. The main goal is to measure the extensibility of the system,

i.e., how does it perform as more backends are added? In particular, is the

pertormance gain proportional to the number of backends? If this proportion-

ality holds for a small number of backends, how many backends can be added

before no more improvement is possible? Can the response time, indeed, be

improved for the same size database by increasing the number of backends,

each with a smaller number of disk drives as is predicted by the simulation?

The simulation models used to develop the design predict improved performance

with an increase in the number of backends and the same amount of data. They

also'predict constant performance with an increase in data, if the number of

backends is increased.

PAGE 16

(A) System Evaluation with Program-Generated Databases

The first set of experiments will use test data that is generated by

programs and specified by experimenters. The record formats will be deter-

mined by the experimenter. The actual data will then be generated from dis-

tributions specified by the experimenter. For example, one file might have

10,000 records each with 10 fields. The value in the first field of a record

may be drawn from a uniform distribution on the interval [0,1001; the second

field of a record may be drawn from a predefined set of values, while the

third field might come from a normal distribution. The number of records and

their formats can be varied in the experiments.

Requests will also be constructed in a similar way. This approach Is

taken first because it is easy to perform these experiments. However, we

also intend to run experiments on actual databases borrowed from the Depart-

ment of Defense's user community.

(B) System Evaluation With Actual Databases

The validation of the simulation will also use data taken from an actual

database. Thus the second step will be to obtain one or more actual data-

bases. Sets of "typical" requests will then be developed on the basis of the

data languages of the databases. These databases and sets of requests will

be used for a second set of experiments. It is hoped that such experiments

will provide more insight into how a multi-backend system might actually per-

form. Furthermore, it will provide insights into the relative performance of

the multi-backend system vs. a single-backend system and vs. a conventional

system.

1.2.2 Towards a Methodology for Database Applications Classification

After experimenting with several actual databases, our goal is to devel-

op a methodology for classifying database applications. With such a metho-

dology it should be easier to predict the performance of a new application on

an existing multi-backend system. Such a classification could also be used

in the redesign of the multi-backend system, since it would allow much more

accurate simulation of system performance. Right now, only two gross appli-

PAGE 17

cation classification schemes exist. One is to distinguish between
"query-intensive" and "update-intensive" applications. In the first case
most requests only seek information from the database, while in the second

case most requests require addition and modification to the database.

A second classification scheme Involves the complexity of the queries.

For example, some queries are very simple, e.g., finding the address of the

employee whose employee number !s 123456. Other queries are much more com-

plex, e.g., finding the names and addresses of all employees who live in Co-

lumbus, earn between $20,000 and $32,000 per year and have worked for the

company for at least 10 years. T'iere are still more complex queries which

require reterence to more than one fLle. It seems likely that some designs

will provide better performance on simple queries, while other designs will

provide better pertormance on more complex queries. These classificatons

need to be made more precise. Still other classificaton schemes need to be

developed.

1.2.3 Bench-Marking the System Perf~rmance

A well-known method for compariag the relative performance of computer

systems is to compare the average execution time of a standard instruction

mix (Ferr78]. One such mix, the Gibson mix (Gibs701, was derived from the

average relative usage of IBM 7090 CPU instructions in a scientific environ-

ment. Similarly, this approach has been applied to high-level programming

languages. One such mix, [Knut7l], was collected for the average relative

usage of Fortran statements. Once such a mix has been developed, it can be

used to estimate the performance of a new computer system by first determin-

ing the execution time of each instruction type and then computing the

weighted average execution time for the typical mix of instructions.

This same technique may be generalized and applied to the performance of

database systems. Corresponding to a standard CPU instruction mix would be a

mix of low-level database processing statements such as the requests provided

by MDBS. Corresponding to the high-level programming statement mix would be

a mix of high-level query language statements provided by a language such as

SQL (Astr76]. The relative mix of MDBS requests or SQL statements would be

PAGE 18

determined by examining several typical database applications. This mix

could be used to estimate the performance of a new database system after the

execution time of each type of MDBS request or SQL statement is known.

1.3 The Implementation Strategy - What and Why?

It seems only reasonable to develop most systems in stages. For proto-

type systems such an approach seems even more important. Thus we plan to de-

velop several versions of MDBS. We chose to begin with an implemention of a

very simple system.

1.3.1 Version I - A Very Simple System: Single Mini Without Concurrency

Control and With Simplified Directory Management

The system we are now implementing is intended to be as simple as possi-

ble. The aim is to get something running so that we can gain some experience

with both the MDBS design and our new computer systems. Thus we have chosen

to simplify the design as much as possible. MDBS-I will execute only a sin-

gle request at a time. It will run on a single computer, i.e., a PDPll/44.

There is no distinction made between the slave and master. In other words,

there is no separate controller. Directory management will be simplified by

storing all directory data in the main memory. There will be no concurrent

execution of requests. Since the whole system will run as a single operating

system process, the interface with the operating system will be minimized.

1.3.2 Version II - A Simple System: Single Mini With Concurrency Control

The second version will allow concurrent execution of requests, but will

still be restricted to a single mini. We plan to use the services of our op-

erating system to facilitate this concurrent processing. Thus we will use

the capability ot creating independent concurrent processes which coununicate

among themselves. These processes will execute in parallel so that MDBS-II

will be able to execute requests in parallel. This version will allow us to

gain experience with the problem of multiple processes and the problem of

concurrency control.

PAGE 19

1.3.3 Version III - The First "Real" System : Multiple Minis With Concur-

rency Control

After MDBS-II is working, we will transfer the sytitem to our real envi-

ronment including a controller (i.e., VAX 11/780) and several backends (PDP

11/449). This transfer should be fairly easy, since the major changes re-

quired will be to replace communications between procealses in one computer by

communications between processes running on different computers. This ver-

sion will allow us to see how the intercomputer communication overhead is

going to affect system performance. This system, MDBS-I11, will still not be

sufficient for a full MDBS, since it has a very simpl.fied directory manage-

ment subsystem. However, it will allow us to begin p!:eliminary testing of

the MDBS design.

1.3.4 Version IV - The Real System With "Good" Direc:ory Management

This version will include a fully implemented directory management sub-

system utilizing the secondary memories. It will ae a complete prototype

system, except for the lack of access control features. This system,

MDBS-IV, will be the one on which we will try to validate the simulation stu-

dies used in the development of the original design.

1.3.5 Version V - The Full System With All the Designed Features Included

The final version will incorporate access control in the backends and a

friendly user-interface in the controller or host computer.

1.4 The Orzanization of the Rest of the Report

The rest of this report summarizes the design and implementation deci-

sions that have been made, the software engineering approaches that have been

selected and used, and the current status of the implementation.

PAGE 20

1.4.1 Preparations for the First Effort of the Laboratory for Database Sys-

tems Research

This project marks the first implementation effort of the Laboratory for

Database Systems Research. Before the implementation effort can begin, it is

necessary to select the hardware to be used, both for the controller and for

the backends; the implementation language; and the operating systems. The

choices made and the rationale for the choices are discussed in the beginning

of Chapter 2.

1.4.2 Software Engineering Approaches to the First Effort

Because the development of the prototype MDBS is our first implementa-

tion effort, we have been using this development as an exercise in implemen-

tation techniques. The actual implementation of any software system goes

through several phases including specification, design, coding and testing.

At present, the specifications and high-level design of MDBS have already

been completed. We continue with the detailed design phase. Specific tech-

niques for the detailed design, coding and testing phases have been adopted.

These techniques are described in Chapter 2.

1.4.3 The Implementation Status

The implementation of MDBS-I is well underway. We expect the entire

system to be operational in the spring of 1982. That implemen:ation is

described in detail in Chapters 3, 4 and 5. The directory management portion

of the system is completed. We have also completed a utility, database load,

to perrorm the loading of a database. Finally, a package to generate files

of test data is also completed.

In addition to directory management, database load utility and the test

file generation package, some preliminary work has been done on the approach

to be taken for concurrency control. These preliminary results are discussed

in Chapter 6.

PAGE 21

2.0 THE PROJECT PLANNING AND THE IMPLEMENTATION EFFORT AND STRATEGY

Before any effort toward implementing the MDBS prototype system can

begin, many decisions are required. Project planners must choose the

hardware for the prototype system. In particular, they must decide upon the

minicomputers for the controller and the backends. Then the systems program-

ming language must be selected. Finally, the operating systems must be cho-

sen. The implementors must decide on an implementation strategy. They must

develop a plan not only for what is to be done, but also for how it is to be

done. The "what" of this strategy is discussed in Section 1.3, wi.ich

describes the five phases of the implementation strategy for MDBS. The "low"

of the strategy requires the selection of software engineering techniqueE to

be used in the implementation effort.

The primary goal of the implementation effort is to develop a prototype

of MDBS to be used in database systems research. Some future directions for

this research are presented in Section 1.2. Our goal also requires the

software development effort to generate reliable software in as short a time

period as possible without sacrificing the reliability and quality of the

software. In succeeding sections of this chapter, we will document and ex-

plain the decisions made by the project planners and implementors during the

preparatory stages of the MDBS implementation effort. We will show how their

choices of hardware and systems software and software engineering tEchniques

are related to the goals of the implementation effort.

2.1 The Choice of Hardware and Systems Software

Project planners have to address three fundamental questions in prepara-

tion for the implementation effort:

(I) What kind of hardware should be used in the

multi-backend database system as depicted

earlier in Figure I?

(2) What systems programming language should be

selected for the MDBS development effort?

j

PAGE 22

(3) What operating systems should be used in order

to best support the MDBS features?

We will review the alternatives which the project planners considered, and

give the reasons for their choices.

2.1.1 The PDPII/34 vs. the PDPII/44 and the PDPII/70 vs. the VAX1I/780

Project planners want to select hardware which satisfies the require-

ments of the MDBS hardware organization at the smallest price. The MDBS

hardware organization is shown in Figure 1. That organization assumes that

the backends are connected by a broadcast bus. It also assumes that the ded-

icated disk drives at the backends have the capacity to support very large

databases. In addition to the MDBS design requirements, project planners

must consider that the development effort for an MDBS prototype will probably

require more computing power than the computing power required to run the

prototype.

Since the planners anticipated an equipment grant from Digital Equipment

Corporation (DEC), a proposal for DEC equipment was drafted. The proposal

suggests that the most cost-effective selection of hardware would be

PDPIl/34s for backends and a PDPlI/70 for the controller. At the time this

proposal was drafted, the latest generation of the corresponding DEC minicom-

puters was represented by the PDP11/44 and the VAXII780.

In a multi-backend database system, performance is improved by increas-

ing the number of backends. MDBS is designed to be easily extensible, as ex-

plained in Section 1.1, so that no significant software development or

down-time costs are incurred in expanding the system. The greatest expense

incurred will be the cost of the hardware. Therefore, the cost of adding

backends to a system is an important measure of cost-effectiveness. In 1979,

the PDP11/34 minicomputer was the least expensive model in the PDPI1 series

which supports large-capacity, hard disks and can be interconnected with

DEC's Parallel Comunication Bus (PCL). Using PDPI1/34s as backends will

minimize expansion costs for MDBS. Hardware cost is less important in se-

lecting the controller than in selecting the backends. The PDPI/70 can fur-

PAGE 23

nish additional computing power required to support the development effort at

a reasonable cost.

DEC's response to the original proposal was that since the ultimate goal

of the implementation effort is database systems research and not product de-

velopment, the latest technology available should be used. Although never

equipment may be more costly, it may also enhance the research and implemen-

tation effort. The final agreement, therefore, shows: PDPl1/44s are used as

the backends; the VAXll/780 is used as the controller and to support the

program development effort; and the PCL is used to interconnect the

VAXI/780 and PDP1/44s for the purpose of simulating the broadcast and par-

allel transfer capabilities. (See Figure 6 again.)

2.1.2 The Systems Programming Language

A systems programming language for the MDBS implementation must be

powerful yet relatively easy to use. In other words, the language must have

enough constructs to program the features for the multi-backend database sys-

tem discussed earlier in Section 1.1.2. It is also important to choose the

programming environment and language constructs which will make the develop-

ment effort easier. The implementation team for MDBS is composed primarily

of computer science students who have little practical experience, although

they have a broad base in textbook knowledge. A systems programming language

which makes the development effort easier will help these relatively inexper-

ienced implementors to develop more reliable software.

Systems programming languages can be evaluated in terms of:

availability, portability, and vendor support; programming environment and

language features; and reliability and efficiency. Project planners exam-

ined three systems programming languages; Bliss, C, and MAINSAIL. A brief

evaluation of each language and a summary of the reasons for choosing C fol-

low this section. Some important language features and issues which are ad-

dressed in the evaluations are also explained in the following sections.*

* We wish to thank Jos4 Alegria and Tom Bodnovich for the background
material which they contributed for this section.

PAGE 24

A data abstraction is a group of related functions or operations that

act upon a particular class of objects. Users of an object represented by a

data abstraction are constrained to use only the operations defined in the

abstraction. The classic example of a push-down stack as a data abstraction

includes operations to create ne4 stacks, to "push" data onto a stack, to

"pop" data off the top of a stack, and to test for stack-full and stack-empty

conditions. This technique is useful in enforcing data integrity and in con-

trolling concurrent operations on shared data. Such a language feature will

be a useful way to implement solutions for one of the design issues for a

zuiti-backend system mentioned in Section 1.1.1, i.e. the software issue of

degree of concurrency.

Another useful feature in a language is some mechanism for

type-checking. Such a mechanism assures that the data types of the operands

in an expression (or subexpression) are compatible with the operation which

is to be pertormed. Type-checking contributes to the overall reliability of

the sontware. The issue of reliability of a language involves whether or not

the instructions in a language actually do what they are purported to do by

the language designers and compiler writers. Clearly an unreliable language

leads to unreliable software. Remember that a reliable prototype of MDBS is

our goal.

(A) The Bliss Language and Its Compilers

The Bliss language [Wulf7lI was originated in the Department of Computer

Science at Carnegie-Mellon University. Dialects of Bliss are available from

DEC for PDPlI and VAX systems, but there are significant differences between

the dialects. Another limitation is that object code for the PDPIl must be

generated by a cross compiler running on a larger computer system.

There is no set of programming tools for Bliss programmers, so the pro-

gramming environment is poor. Bliss is an expression-level language. In its

syntax, all identifiers denote addresses rather than values, so a

de-reterence operator ('.') must be used. For example,

a - .a + .b

PAGE 25

is a valid Bliss instruction which, when executed, adds the values at the

addresses represented by identifiers a and b and stores the result at address

a. This notation makes it difficult for the uninitiated to write or read

Bliss code. The language supports no primitive data types. Since operators

are never type-specific, type-checking is non-existent. Nevertheless, an ad-

vantage of Bliss is that it supports the data abstraction concept.

There is some question as to the reliability of Bliss, since it contains

so many low-level features. It does, however, seem to be the best of those

languages surveyed when measured in terms of time/space efficiency on the DEC

equipment.

(B) The C Language and Its Programming Development Environment

The C language [Kern78] was originally designed for and implemented with

the UNIX operating system [Ritc74] for the DEC PDPII. UNIX is a Bell Tele-

phone Laboratories trademark, and UNIX operating systems are licensed by

Western Electric. C, however, is not tied to any particular operating system

or architecture; C compilers are available on many systems. Not all ver-

sions of C are compatible, so portability can be a problem. C is supported

with all versions of UNIX, and is available from the Digital Equipment Com-

puter Users Society (DECUS), for use with PDPII and VAX operating systems.

A rich set of program development tools usually accompanies UNIX system

software. These tools provide a very good environment for C programmers. C

syntax is very simple. The language supports primitive data types such as

integer and character; type-checking, however, is not strongly enforced. C

compilers usually do not support extra features, such as sophisticated macro

processing, but many of these features are available in the programming envi-

ronment support provided with UNIX. C, unlike Bliss, does not support the

data abstraction concept.

C is reasonably reliable, even though many vendors do not commercially

support the language. It is also reasonably efficient. A good textbook for

C users is [Kern78].

PAGE 26

(C) The MAINSAIL Language and Its Relationship to the Other Languages

MAINSAIL (MAchine INdependent SAIL) [Wilc77] evolved from the program-

ming language SAIL, which was developed in the late 1960s at Stanford Univer-

sity's Artificial IntellLgence Laboratory. XIDAK, Inc. owns exclusive

rights to develop and market MAINSAIL. The language is distinguished by its

portability. The same compiler and runtime system, both written in MAINSAIL,

are the basis for every implementation; code generators and procedures which

interface to the operating system must be specially written. MAINSAIL is im-

plemented for DEC PDPll systems.

MAINSAIL was developed and is marketed with a set of integrated tools

for program development. The syntax of the language is similar to ALGOL-60.

Consequently, it appears familiar to most people with formal training in com-

puter science. The set of data types supported is more extensive than that

supported either by Bliss or by C, and there is strong type-checking. On the

other hand, the major disadvantage of the language is that there is no capa-

bility to invoke subroutines written in a language other than MAINSAIL or an

assembly language.

Reliability is rated good. Efficiency, however, is rated lower than

that of either Bliss or C. Low-level features must be coded in an assembly

language, which implies that two development languages must be learned rather

than one.

(D) Why Do We Choose the C Language?

The efficiency ratings of MAINSAIL and the requirement that low-level

features be coded in an assembly language quickly eliminate that language

from consideration. The real choice, then, lies between Bliss and C. C has

a number of features which make it more desirable than Bliss.

First, C is a smaller language and has a simpler syntax. Given the

inexperience of the implementation team, it is important to choose a language

which can be easily learned. Next, the programming environment which can be

provided under UNIX for developing C programs is a major consideration. A

PAGE 27

third factor is that the compilation process for Bliss would require the re-

sources of a computer system at considerable distance from the Laboratory for

Database Systems Research. The Laboratory initally has only two PDPII/44

systems, which are not large enough to support the Bliss compiler. The re-

sources of a DECSYSTEM20 are available through the Department of Computer and

Information Science, but it is neither convenient nor practical to set up the

required communication links and procedures, since the alternative, using the

C language, is acceptable. C, then, is the language we choose, since it can

make the greatest contribution toward the goals of the implementation effort.

2.1.3 The Operating Systems

Important considerations in choosing the operating systems are system

pertormance, suitability of the operating system features for the MDBS appli-

cation, and suitability of the operating system features for the development

effort. System performance is critical if the design goals for a

multi-backend system are to be met. The first two of the three design goals,

which are explained fully in Section 1.1, are:

(I2 Throughput performance proportional to the number of

backends.

(2; Response time inversely proportional to the number

of backends.

Suitability for the MDBS application is related to the software sclutions

described earlier a Section 1.1.2. Operating system features must support

the solutions selected for design issues such as degree of concurrency.

Suitability for the development effort relates to the implementation goals to

develop reliable software and to effectively manage the development effort.

An operating system which is easier for relatively inexperienced programmers

to use will be more suitable for develoment. Both UNIX and RSX11 are ana-

lyzed with these considerations in mind.

(A) The UNIX Operating System

UNIX IRitc74] is a very "user-friendly" operating system. Interactive

programs which teach the user how to use operating system facilities are a

part of the UNIX package; all documentation is available on-line. A variety

PAGE 28

of aids to C programmers are available. An example is the program "Lint",

which checks C programs for syntax errors, such a* type violations, which are

not checked by the C compiler.

The characteristics mentioned above make the UNIX environment desirable

for program development. UNIX does, however, lack some system features which

are required for the MDBS implementation. For example, the UNIX file system

would not be satisfactory for our purposes; we would have to write a com-

plete new input/output subsystem.

(B) The RSXll Operating System

RSXI is a DEC real-time operating system. Since real-time systems are

engineered for execution speed, RSXIl is desirable from the performance

standpoint. RSX1I also provides more flexibility; implementors can choose

which operating system features to use. RSX1l also has a variety of features

such an message passing which will be useful in implementing software solu-

tions for concurrency control and backend intercommunication. RSX1I provides

a less desirable programming environment than UNIX, due to the limited set

of programming aids which are available through DECUS.

(C) Why Do We Choose the UNIX Operating System for the

Development Effort and RSXl1 for the Run-Time Effort?

The above discussions make it clear that, while UNIX is more favorable

for MDBS development, RSXll is more suitable for MDBS applications. An addi-

tional factor to be considered is that C language programs are portable from

UNIX to RSXI1 with only minor conversion. Furthermore, both UNIX and RSX11

are available for the PDP11/44 and the VAX11/780. Thus, project planners in-

tend to take advantage of the best features of both systems. UNIX is to be

used in the development effort, i.e., for programming the MDBS procedures.

RSX1I is to be used for research purposes. The MDBS procedures when complet-

ed, will be put together and run with the RSX11 operating system as the final

MDBS. It will be used to validate the results of the MDBS simulation studies

- one of the research directions discussed in Section 1.2.

• -',nm

PAGE 29

2.2 The "How" of the Implementation Strateny

The software development life cycle is commonly described in stages as

follows:

(1) Requirements analysis

(2) Specification

(3) Design

(4) Coding

(5) Testing

(6) Operation and maintenance

It is sound software engineering practice to choose specific techniques to be

used throughout the system life cycle. The software engineering objectives

are to enhance the reliability of the software which is developed and to pro-

vide continuity throughout the life of the system. 4 further objective for

the MDBS implementation effort is that the implementation should proceed as

quickly and effectively as possible, since the eveatual goal is to do re-

search using the prototype system.

The MDBS implementation begins with stage two, since stage one, require-

ments analysis, is largely completed. The implementation strategy presented

earlier in Section 1.3 details the development of fiie versions of MDBS.

Each version after the first will be based in part ipon some previous ver-

sion. Furthermore, these multiple versions may not be developed in chrono-

logical order; the implementation team can be working on more than one ver-

sion at the same time. Therefore, it becomes especially important to select

specific software engineering techniques for the design, coding, and testing

stages of the sortware development effort. These techniques should be se-

lected to provide the best possible project management techniques, design and

development tools, and documentation for the life cycles of all of the ver-

sions of MDBS. The techniques to be used in the MDBS implementation effort

are described in succeeding sections of this report.*

2.2.1 Team Organization and Monitoring the Development Effort

Two issues in management strategy are specifically addressed in the

= We wouid like to thank Tamer Ozsu for the background material
which he contributed for this section.

PAGE 30

choice of software engineering techniques for the MDBS implementation effort.

First, how should the group be organized? Second, what specific techniques

should be adopted to monitor the development effort?

(A) A Modified Chief-Progra--er-Team Organization

The classic chief-programmer team [Mill7l] is headed by a project

leader, the chief programmer, who has absolute decision-making authority.

Other permanent members of the team include a senior-level backup programmer

and a librarian. Additional programmers may be added as necessary.

The chief programmer does all the design work and writes all of the

critical sections of code, for example the routines for subsystem interfaces.

The backup prozrammer is an understudy for the chief programer, and partici-

pates in design and coding; he takes over if the chief programmer leaves the

team. The librarian maintains the group's program libraries and coordinates

the documentation effort.

One advantage of such an organization is that, since the levels of com-

munication between team members are minimized, development is likely to

proceed at a faster pace than with a decertralized organization. Also, the

system which is developed is likely to be more coherent and consistent since

it is designed primarily by one person. By selecting this organization, we

enhance the reliability and speed of development, in accordance with our

software engineering objectives.

The MDBS implementation group is organized as a modified

chief-programmer team. The entire effort is headed by a team supervisor.

Separate teams are organized for each subproject being developed; each of

these teams is composed of a chief programmer, one backup programmer and one

or more programmers. A second organization chart of the group, depicted in

Figure 7, shows three such teams working on directory management, test file

generation, and database load.

PAGE 31

Team Supervisor: T. Ozsu

DIRECTORY
MAAGEMET

CLUSTER SEARCH AND
DESCRIPTOR ADDRESS GENERATION

DATABASE LOAD SEARCH PHASE PHASES
Chief: P. Strawser Chief: A. Orooji Chief: T. Ozsu
Backup: D.S. Kerr Backup: Z. Shi Programmer(s): to
Programmer(s): to Programmer(s): to be assiged

be assigned be assigned

a. The Organization as of 6/15/81

I eam Supervisor: D.S. Kerr

TEST FILE CEN TION DATABA F LOAD DTRFC,OR'T. ANACMMF1N.

Chief: D.S. Kerr Chief: P. Strawser Chief: A. Orooli
i Backup: P. Strawser IBackup: M. Higashi& IBackup : X . He

Programmers: Programmers: I Programmers:
Bcu R. Browder Bk Z. qhi Ba j. Bendie

S. Barth R. Browder S. Barth

D.S. Kerr

b. The Organization as of 10/1/81

Figure 7. The Organization of the MDBS Design

and Implementation Teams

PAGE 32

(B) The Structured Walkthrough

A structured walkthrouah is a formal review of the software development

effort at a given stage in its development cycle. The work is reviewed by a

walkthrough committee, with the purpose of finding any errors that may be

present. The purpose of a walkthrough is not to solve problems, only to

identify them; neither is a walkthrough a management tool to evaluate any

employee's performance.

Each member of the walkthrough committee has a well-defined role. A

coordinator organizes and runs the meeting. The presentor, the originator of

the work, presents his work to the group and answers any questions. The

reviewers examine the material before the walkthrough is held, and, during

the walkthrough, present their findings. A scribe records the proceedings.

Each member votes on the outcome; the material may be accepted as presented,

accepted with revision, or returned for revision and subsequent walkthrough.

The MDBS group uses this technique at the design stage and at the coding

stage. All detailed program specifications and source code are reviewed by

walkthrough committees. These committees are chosen to include members fsom

more than one chief-programmer team. This practice contributes to a more ef-

fective walkthrough, since not all participants are involved in the develop-

ment of the material being reviewed. It is also valuable in cross-training

team members in areas other than those to which they are currently assigned.

The status of a task can be determined by reviewing the walkthrough reports

for that task. Figure 8 shows a sample walkthrough report. A good reference

describing the structured walkthrough technique is [Your79].

2.2.2 The Design and Coding Stages of the MDBS Life Cycle

During the design and coding stages of the software development life

cycle, the detailed program specification is developed, and code in some pro-

grassing language is generated from the program specification. The design

strategy and methodology and the approach to coding must be carefully chosen

to be complementary. A design strategy is selected first; then a design

methodology with which to implement the strategy is chosen. The approach to

PAGE 33

33WI PqsS~I5335i3aaa *s3 gasg$aaaras$$asssgasassssaas i saass

WALKThROUGN REPORT

Coordinator:;------

PTe.4ecU NO$$ Sjd7s 1/%id,4

Coordinator's Checklist:

1. Confire with Producer that material tI readw and stable.

2. Issue invitations, esstan responsibilities, distribute materials.

DATE -41S7 P.ACE Z 0 -

TIME .. I... DURATION

Can Has
Participant Role Attend Material Initials

I. ---- -- _

de --- ,-

SzslazslsszssasLaasllasszuszl~aaaaaussaasussssaaaslaaaaaaalasaaaa

1- 1. All Participants &or** to follot the (same!) set of rules.

-. 2. Now Project) 4alkthrlush of material.

Old Pro.act: iL-Ovitem checkoff of previous action list

-- 3. Creation of new action list (contributions bv each Participant).

._ 4. Group decision.

-. S. Deliver czpv of this fore to Proet manasesoment.

Decision:
c:Revie (no further -lkthroush

-- Revise and schedule anotAer walkthrough
(Participants should initial above.)

3O,33]chkl~st.t::t

Notes:

Refer to Figure 7a, which shows the MDBS organization

chart in effect at the time this walkthrough was held.

Note that three of the four chief-proerammers are represented

in this walkthrough committee.
This module is a part of the test file generation

oroarammlin task.

Figure 8. A Sample Walkthrough Report

PAGE 34

coding follows logically from these decisions. A top-down design strategy,

implemented in a formal system specification language, and a structured cod-

ing technique are used in the MDBS implementation effort.

(A) A Top-Down Design Strategy and the Use of Data Abstraction

A top-down design strategy is a natural choice for MDBS. The design and

analysis study in [Hsia8la] and [Hsia8lb] clearly describes the top level of

design. It also suggests the possibility of functional decomposition, i.e.,

the entire system can be broken into discrete functional units. This idea is

suppcrted by Section 1.1.2, which describes a multi-backend system architec-

ture and summarizes the execution phases of a retrieval request, as depicted

in Figure 2. Directory management, an example of a functional unit, includes

the descriptor search, cluster search, and address generation phases of re-

quest execution.

At a lower level, one concept, data abstraction, is borrowed from the

bottom-up design approach. Since MDBS is being developed as a prototype sys-

tem and is to be used to research performance evaluation, we anticipate that

data structures will be routinely modified in attempts to measure the effect

of dLfferent data structures on system performance. The data abstraction al-

lows us to separate the basic system functions from the data structures, min-

imizing the effect on the system when a data structure is modified.

(B) A Formal Systems Specification Language (SSL)

The design methodology which the MDBS implementation group uses is a

systems specification language (SSL) modeled on the program description

language (PDL) described in [Ling79I. The SSL adopts the same basic con-

structs as that PDL. The SSL is characterized by a formal "outer syntax" and

an informal "inner syntax". It supports the outer-syntax constructs required

for a structured design methodology - sequence, decision, and iteration.

Below is an example of the if-then-else decision construct.

PAGE 35

if expression

then statement sequence

else statement sequence

endif;

The underlined words represent the formal outer syntax. The other words

represent the informal inner syntax; the only requirement for this inner

syntax is that it must be understood by all team members.

In addition there are constructs for the expression of the different

levels of program execution: job, module and procedure. A job is at the

highest level of program execution. Test file generation described in

Chapter 5 and documented in Appendix B, for example, is a job. A procedure

is at the lowest level of program execution. It corresponds to the usual no-

tion of a subroutine. Procedures are invoked to perform some work on some

input data and produce some output. However, they are not allowed to retain

data between invocations. Figure 9 shows a typical SSL procedure specifica-

tion. More examples of SSL specifications using other constructs can be

found in the appendices of this report.

Above the level of procedures, we have the level of modules. A module

is intended for the implementation of a data abstraction. It consists of the

procedures and data structures implementing the abstraction. An additional

construct, the subsystem construct, is added to support the idea of function-

al decomposition. In other words, each job may perform several functions,

each of which is a subsystem. Thus, subsystems are at the second highest

level of program execution. Directory management described in Chapter 3 and

documented in Appendix D, for example, is a subsystem, as is database load

described in Chapter 4 and documented in Appendix C. The job for both direc-

tory manageLent and database load is, of course, the MDBS.

We may also introduce one more construct, the concurrent construct, to

allow the designers the capability of expressing the notion of concurrent ex-

ecution, including concurrent execution at different backends. For example,

directory management may be executed on all backends concurrently, while da-

tabase load executes on the controller.

TPAGE 36

which requires 4 numbersTh
for each Program statement Teoimments for Programs

Program statements immediatelv
'lameabove

FOURTH LEVEL SPECIFICATION FOR DATABASE LOAD PAGE 5
VERSION 2P September 16P 1981

4.10.21.1. aroc. LIST-.TYPE-C.ATTR-NAMES /I TYPECLST (DBL1113) S
(input# twjpe-C-.attr-.names,

atpointer);

/S List a1l the attribute names over which tvpe-C descriptors /
IS are to be defined. Iniput is a list for attribute names
/S over which twpe-C attributes are to be defined, arid a S
IS Pointer to the AT. S

4.10.21.2 scalar index, IS Index to list of attribute names. 9I
att r-.namet

st duplicate, /t Indicator - TRUE or FALSE, S/
dditpointerp/ Pyinter into DDlT returned from ATM*/

/FNDfnction. S
descr-.tvpe; It A, Br Cy or NOTFOUND, 5

4,10.21.3 index := 1; IS Null indicates end of list. S/
4 .10. 21.4 t pe-C .a ttr -.names index J , = null;

-re4.10.21#5 wbilh more tvpe-C descriptors d ndrind Tey a e e
4.10.21.6 begin S4.10.21.7 get attr-.name from terminal; Scosrt.
4.10.21.8 settoze ATM$FIND(attr-riame?

dditpointer,
Pointer to descr-tvpe);

4.10.21.9 it a t.upe-A or tupe-9 descriptor is alreadv defined
over this attribute name
/V descr-t'vpe rnot =NOTFOUND 5

4.10.21.10 LLbea
4.10.21.11 displav error message; Tnner syntax element3
4.10.21.12 else are not underlind
4.10.21.13 basic .

4,10.21.14** duplicate =FALSE;
4. 10.21 .15 eerfare SEARCH-.TYPE-C-ATTR-AES

(tvpe-C-attr-namesp
attr-.namep A prog r am on st an t
duplicate);______

4.10.21.16 it duplicate is FALSE
4.10.21.17 Lben
4.10.21.18 begin
4.10.21.19 tvee-C-attr-names~index] attr-name;
4.10.21.20 index := index + 1.;A rea
4.10.21.21 tupe-C-.attr-names~index] null; variable
4.10.21.22 ead..±L
4.10.21.23 and-it;

4.10.21.24 end-mbiia;

-iguPrgre s.tatemeeciic tio of thi prca rocedure. h

PAGE 37

(C) A Practice of Structured Coding

The value of structured coding techniques to the software development

effort is generally recognized. "Structured coding" refers to a methodology

for problem solving as well as to the particular programming constructs used

in code development.

The structured coding methodolozy is a top-down approach to the applica-

tion of the principle of modularity, i.e., that a program procedure should

have only one function. "Function" in this context means the transformation

of input into output. A large problem is broken down into smaller

sub-problems. This process is repeated until the solution for the smallest

sub-problem it expressed as a procedure.

Structured code requires the procedure to be written with a small set of

programming constructs: the statement sequence, the if-then-else and case

for decisions, the do-while for iteration. It has been proved that any pro-

gram can be written with only these constructs.

2.2.3 A "Bla,:k-Box" Testing Approach

In the black-box approach to testing, test data is selected without

referenca to the internal structure of the program. Instead, test data is

generated based on the program functions described in the requirements

analysis study. This approach is in contrast to the structural approach to

testing, where test data is selected based on some characteristics of the

internal program structure, for example, the number of paths through the pro-

gram.

Intuitively, the black-box testing approach is applicable to testing da-

tabase systems, since database users generally know more about the content of

their databases than about the inner workings of the database system. Test

data selected using the black-box approach will more closely resemble a real-

istic test of the system. Another advantage of the black-box approach is

that, since no knowledge of internal program structures is required to devel-

op the test data, it is easier to integrate into the testing phase the people

who are not involved in the development phase.

PAGE 38

One application of the black-box approach is functional testing

(HowdS0]. In this application, programs are viewed as functions which map

values from the program's domain of input variables into its domain of output

variables. Test data is selected based on the important properties of ele-

ments in these domains. The functional testing method is particularly suited

to the MDBS implementation. The requirements analysis study in [Hsia8la] and

[Hsia8lb] describes the functional components of MDBS and their input and

output domains. One example, explained earlier in Section 1.1.2, is the

descriptor search phase of request execution. The input domain of descriptor

search includes the set of retrieval requests; its output domain is the set

of Boolean expressions of descriptor ids.

2.2.4 A Uniform Documentation Standard

The objectives of a uniform documentation standard are [Gilm79]:

(I) To achieve precise and unambiguous communication

among staff members.

(2) To produce complete and accurate documentation.

(3) To assist in project management.

(4) To reduce dependence on individuals.

We have an additional objective for the MDBS documentation standard: to in-

tegrate the documentation effort into the design and development stages of

the MDBS implementation.

A documentation standard is developed in three steps. First, the termi-

nology to be used must be selected. For MDBS, we adopt a set of standards

for naming programs, program source files, and documentation text files.

More specifically, each program will have a mnemonic name which describes its

function as well as a coded name which identifies its place in the sub-

system hierarchy. For example, the hierarchy chart in Figure 10 shows both

the mnemonic and coded names for the procedures of the database load subsys-

tem.

In the second step, the end products of the documentation effort are

described. The organization and content of each document is planned in

detail. For MDBS, two formal documents are proposed: a systems reference

PAGE 39

Iv' FILEPREP
(DELl 1)

VVDESCRDEF / DBPREP BOD(B1

VVITYPEADEF (DBLlll) (DRLl2)
(DBL1ill)

V' TY-PEBDEF

(DBLll12)

VVTYPECLST (DBLlll3) /'RTEMPDEF

1 REVDTESCR (T)ATl1l1) SRTCLUST
(vF DBLlll4) (DBLl 3)

/VVATTRCIIAR/

VV SRCHCLST7 (DBLll21:

(DBLll22) V/SRCHCLST (DBN122)

/V/RFVRTEMP (DBLl12.3)

'VDRVAORB (DILI3l) VDRVKWORD VV LOADT)ATA
(DBLll3) (DBLlA)

/IRVC (DBLl132)

V?UTTNLST (DBLll33)

'PROCLUST

BLDSRT (DBLl134) (DBL141)
-Procedures on the Ilef-

of a solid line are the RE.VTYPEC (DBLll35)
subprocedures of the /ERN DL41
procedure on the right /ERN D~~l
of the solid line. DSTRC(42

ICoding is completed; walkthrough
is completed; test is to start.

ITesting is completed also.

Procedures on the left of a dotted (DBCLUlSl
line are also the subprocedures of (B111
the procedure on the right of the
dotted line.

Figure 10. A Sample Procedure Rierarchv

PAGE 40

manual (SRM), and an operating procedures manual(OPM). The SRM will be de-

veloped around the design documentation, i.e., the SSL specifications, thus

minimizing the amount of new material to be written. Material for the OPM

will be developed during the design of the system's user interface.

The above steps define the documentation task. The next step is to de-

fine procedures for managing the documentation effort. A documentation coor-

dinator will assist the project manager to monitor the MDBS documentation

process. Milestones in the documentation effort are identified to establish

a schedule by which the coordinator can measure progress. The first of these

milestones is delivery of the SSL specification to the progratmaer; progress

of the documentation will be monitored starting at that point. A

step-by-step procedure is established which charts the documentation process

from the first milestone to the last milestone, which is the assembly of the

finished document.

Conformity to the uniform documentation standard will assist the devel-

opment group to prepare complete, accurate, and timely documentation. The

MDBS implementation strategy calls for multiple.versions of the MDBS proto-

type to be developed; some of these versions will be based on previous ver-

sions. The organization of the implementation teams is based on specific

tasks; the team will be reorganized as new tasks replace completed tasks.

These are two of the reasons that good documentation and a uniform documenta-

tion standard are especially important to the MDBS implementation effort.

2.3 A Retrospective

After six months experience with the MDBS implementation effort, we

reexamine our decisions. Since the implementation is in its early stages, we

cannot make any conclusive statements. We do, however, observe that thus far

the decisions have proved to be sound. Here we will briefly review our ex-

perience with the hardware and systems software and with the software en-

gineering techniques.

PAGE 41

2.3.1 Evaluating the Hardware and the Systems Software

The PDP1/44s have performed as expected. The VAX1I/780 is scheduled to

be delivered soon. The PCL is installed and operational, although we have

not yet reached a stage where the software development effort requires a

broadcast capability, since MDBS-I and MDBS-II require no such capability.

To date we have not had available a working version of UNIX, so all of

the development has been done under RSXI1. We hope to have Berkeley UNIX on

the PDPl1/44s very soon. The entire implementation team is learning and

using the C language as the development effort is progressing. We have en-

countered only those difficulties due to minimal support provided by RSX11

for programming in C. We have not yet reached a stage in system development

where the underlying features of the operating system are important.

2.3.2 Evaluating the Software Engineering Experience

The project management techniques and the design and coding techniques

have served us well. The SSL and the structured walkthrough have been par-

ticularly valuable. We have, however, discovered some voids in implementa-

tion of our software engineering techniques as well as some additional areas

where new techniques are needed.

The largest void in implementation is that there is no project librarian

to maintain code libraries and no documentation coordinator to supervise the

documentation effort. An area in which the lack of any standard technique or

procedure has proved to be a handicap is in the coding process, where data

structures other than those encapsulated in data abstractions have been

shared between subsystems. These problems can be solved, however, without

invalidating any of the original decisions. It will be instructive to ob-

serve whether this remains true as the MDBS implementation progresses.

PAGE 42

3.0 THE DESIGN AND IMPLEMENTATION OF MDBS VERSIONS

In this chapter we describe the overall designs of MDBS-I and MDBS-II.

We then present the detailed designs of those parts of MDBS-I and MDBS-II

that have been implemented. Occasionally, we refer to other versions of MDBS

in the course of examining design alternatives. Thus, some of the design al-

ternatives are also discussed. On the other hand, details of the implementa-

tion, i.e., data structures and program modules specified in System Specifi-

cation Language(SSL), are not included in this chapter. Because they do not

fit well with the designs and discussions written in the English prose, the

implementation details are placed, instead, in the appendices.

In Section 3.1 we first discuss the data model used and summarize the

data manipulation language adopted. As is described in Chapter 1, records

are grouped into clusters by descriptors. Thus we next discuss in Section

3.2 the notion of record clustering and the use of descriptors. Finally, we

summarize in Section 3.3 the entire process of request execution in MDBS-I

and MDBS-II.

Section 3.4 is devoted to directory management. There, we discuss the

detailed design of directory management in MDBS-I.

3.1 The Data Model and The Data Manipulation Language

In this section, we develop, in detail, the attribute-based data model

used in MDBS. We then describe the data manipulation language in which users

may issue requests to MDBS. The language also encompasses the useful notion

of a transaction.

3.1.1 Concepts and Terminology

The smallest unit of data in MDBS is a keyword which is an

attribute-value pair, where the attribute may represent the type, quality, or

characteristic of the value. Information is stored in and retrieved from

MDBS in terms of records. A record is made up of a collection of keywords

PAGE 43

and a record body. The record body consists of a (possibly empty) string of

characters which are not used for search purposes by MDBS. For logical rea-

sons, all the attributes in a record are required to be distinct. An example

of a record without record body is shown below:

(<FILE, Employee>, <JOB, Mgr>, <DEPT, Toy>, <SALARY, 30000>).

The record consists of four keywords. The value of the attribute DEPr, for

instance, is Toy. In particular, the first attribute, FILE, is known as a

system attribute and the value of the system attribute is the file name of

the record.

(A) Three Kinds of Keywords

MDBS recognizes several kinds of keywords: simple, security and direc-

tory. Simple keywords are intended for search and retrieval purposes.

Security keywords are intended for access control. Since MDBS-I does not im-

plement any access control feature, no reference to security keywords dill be

made in this report. Directory keywords are used for forming clusters. As

is described in Chapter 1, records of a cluster are distributed across the

backends. Within a backend, records of a cluster are stored i" close proxim-

ity. We will discuss the concept of a cluster and cluster algorithms in Sec-

tion 3.2.

(B) Keyword Predicates

A keyword Predicate, cr simply Predicate, is of the form (attribute, re-

lational operator, value). A relational operator can be one of

{ , 1, >, >, <, -< . A keyword K is said to satisfy a predicate T if the

attribute of K is identical to the attribute in T and the relation specified

by the relational operator of T holds between the value of K and the value in

T. For example, the keyword <SALARY,15000> satisfies the predicate (SALARY >

10000).

PAGE 44

(C) Three Types of Descriptors

A descriptor can be one of three types:

Type-A: The descriptor is a conjunction of a less-than-or-equal-to predicate

and a greater-than-or-equal-to predcate, such that the same attri-

bute appears in both predicates. An example of a type-A descriptor

is as follows:

((SALARY >- 2,000) and (SALARY =< 10,000)).

More simply, this is written as follows:

(2,000 =< SALARY =< 10,000).

Thus, for creating a type-A descriptor, the database creator merely

specifies an attribute (i.e., SALARY) and a range of values ($2,000

and $10,000) for that attribute. We term the value to the left of

the attribute the lower limit and the value to the right of the at-

tribute the upper limit.

Type-B: The descriptor is an equality predicate. An example of a type-B des-

criptor is:

(POSITION - Professor).

Type-C: The descriptor consists of only an attribute name, known as the

type-C attribute. Let us assume that there are n different keywords

KI, K2, ..., Kn, in the records of a database with a type-C attri-

bute. Then, this type-C descriptor is really equivalent to n type-B

descriptors BI, B2, ..., Bn, where Bi is the equality predicate sa-

tisfied by Ki. In fact, this type-C descriptor will cause n differ-

ent type-B descriptors to be formed. From now on, we shall refer to

the type-B descriptors formed from a type-C descriptor as type-C

sub-descriptors. For instance, consider that DEPT is specified as a

type-C attribute for a file of employee records. Furthermore, let

all employees in the file belong to either the Toy department or the

Sales department. Then, two type-B descriptors will be formed as

follows for this file.

(DEPT-Toy) and (DEPT-Sales)

They are the type-C sub-descriptors of DEPT.

PAGE 45

(D) Rules for Providing Descriptors

The database creator may cause clusters to be formed for his database by

giving the MDBS a list of descriptors. However, he must observe certain

rules in providing the descriptors. These are specified below:

(I) Ranges specified in type-A descriptors for a given attribute must be

mutually exclusive.

(2) For every type-B descriptor of the form (attribute-i - value-i), no

type-A descriptor can have the same attribute (i.e., attribute-I) and

a range that contains its value (i.e., value-i).

(3) An attribute that appears in a type-C descriptor must not also appear

in a type-A or a type-B descriptor defined previously.

(4) Type-A descriptors are specified first; type-B descriptors next;

type-C descriptors last.

(E) The Relationship of Keywords and Descriptors

A keyword is said to be derived or derivable from a descriptor if one of

the following holds:

(1) The attribute of the keyword is specified in a type-A descriptor and

the value is within the range of the descriptor.

(2) The attribute and value of the keyword match those specified in a

type-B descriptor.

(3) The attribute of the keyword is specified in a type-C descriptor.

(F) Query Conjunctions and Queries

A Query conjunction, or simply conjunction, is a conjunction of predi-

cates. An example of a query conjunction is:

(SALARY>25000) and (DEPT-Toy) and (NAME-Jai).

We say that a record satisfies a guery conjunction if the record contains

keywords that satisfy every predicate in the conjunction.

A query is any arbitrary Boolean expression of predicates. An example

of a query is:

((DEPT-Toy) and (SALARY<f0000)) or ((DEPT-Book) and (SALARY>50000)).

PAGE 46

3.1.2 The Data Manipulation Language (DML)

The data manipulation language for MDBS is a non-procedural language

which s;upports four different types of requests - retrieve, insert, delete

and update. The syntax of these various requests and examples of them are

presented below.

(A) Retrieve Requests

ThE: syntax of a retrieve request is:

RETRIEVE Query Target-List [BY Attribute] [WITH Pointer].

That is, it consists of five parts. The first part is the name of the re-

quest. The second part is a query which identifies the portion of the data-

base to be retrieved. The target-list is a list of elements. Each element

is either an attribute, e.g., SALARY, or an aggregate operator to be per-

formed on an attribute, e.g., AVG(SALARY). We will support five aggregate

operators - AVG, SUM, COUNT, MAX, MIN - in MDBS. An example of a target-list

of two elements is (NAME,SALARY). The values of an attribute in the

target-list are retrieved from all records identified by the query. If no

aggregate operator is specified on the attribute in the target-list, its va-

lues in all the records identified by the query are returned directly to the

user or user program. If an aggregate operator is specified on the attribute

in the target-list, some computation is to be performed on all the attribute

values in the records identified by the query and a single aggregate value is

returned to the user or user program. The fourth part of the request, re-

ferred to as the BY-clause, is optional as designated by the square brackets

around it. The use of the By-clause is explained by means of an example.

Assume that employee records are to be divided into groups on the basis of

the departments for the purpose of calculating the average salary for all the

employees in a department. This may be achieved by using a retrieve request

with the specific target-list, (AVG(SALARY)), and the specific BY-clause, BY

DEPT. Finally, the fifth part of the request, which is an optional

WITH-clause, specifies whether pointers to the retrieved records must be re-

turned to the user or user program for later use in an update request. Some

examples of retrieve requests are presented below.

PAGE 47

Example 1. Retrieve the names of all employees who work in the Toy De-

partment.

RETRIEVE (FILE-Employee) and (DEPT-Toy) (NAME)

Example 2. Retrieve the names and salaries of all employees making more

than $5000 per year.

RETRIEVE (FILE-Employee) and (SALARY>5000) (NAME,SALARY)

Example 3. Find the average salary of an employee.

RETRIEVE (FILE-Employee) (AVG(SALARY))

Example 4. List the average salary of all departments.

RETRIEVE (FILE-Employee) (AVG(SALARY)) BY DEPT

(B) Insert Requests

The syntax of an insert request is:

INSERT lecord

where the Record is to be inserted into the database. An example of an in-

sert request is:

INSERT (<FILE,Employee>,<SALARY,5000>,<DEPT,Toy>)

(C) Delete Requests

The syntax of a delete request is:

DELETE Query

where the Query specifies the particular records to be deleted from the data-

base. An example of a DELETE request is:

DELETE (NAME-Hsiao) or (SALARY>50000)

(D) Update Requests

The syntax of an update request is:

UPDATE Query Modifier

where the Query specifies the particular records to be updated from the data-

base and the Modifier specifies the kinds of modification that need to be

PAGE 48

done on records that satisfy the query. In an update request, if a single

attribute value is to be changed, then the attribute is termed the attribute

being modified. The modifier in an update request specifies the new value to

be taken by the attribute being modified. The new value to be taken by the

attribute being modified is specified as a function f of the old value of ei-

ther the same attribute or some other attribute (say, attribute-I). More

specifically, the modifier may be one of the following five types:

Type-0 : <attribute-constant>

Type-I : <attribute-f(attribute)>

Type-Il <attribute-f(attribute-l)>

Type-Ill : <arribute-f(attribute-1) of Query>

Type-IV : <attribute-f(attribute-l) of Pointer>

Let a record whose attribute is being modified be referred to as the

record being modified. Then, a type-0 modifier sets the new value of the at-

tribute being modified to a constant. A type-I modifier sets the new value

of the attribute being modified to be some function of its old value in the

record being modified. A type-Il modifier sets the new value of the attri-

bute being modified to be some function of some other attribute value in

the record being modified. A type-Ill modifier sets the new value of the at-

tribute being modified to be some function of some other attribute value in

another record uniquely identified by the query in the modifier. Finally, a

type-IV modifier sets the new value of the attribute being modified to be

some function of some other attribute value in another record identified by

the pointer in the modifier.

An example of a type-0 modifier is:

<SALARY=50000>

This sets the salary in all the records being modified to 50000.

An example of a type-I modifier is:

<SALARY-I .1*SALARY>

This raises the salary in all the records being modified by 10%.

An example of a type-Il modifier is:

<MONTBSAL-YEARSAL/12>

This sets the monthly salary in all the records being modified to be a

twelfth of their own yearly salaries.

PAGE 49

An example of a type-III modifier is:

<SALARY-SALARY of (FILE-Wife) and (NAME=Tara)>.

This causes the following actions to be taken by MDBS. Using the query

"(FILE-Wife) and (NAME=Tara)", a record is retrieved. Then, the SALARY value

of that record is obtained. This value is used for the salary in all the re-
cords being modified.

An example of a type-IV modifier is:

<SALARY-SALARY of 2000>

which modifies the salary in all the records being modified to that of the

record stored in location 2000. In order to use this type of modifier, the

user must have previously issued a retrieve request which had WITH POINTER

option.

An example of a complete update request would be:

UPDATE (FILE-Employee) <SALARY-SALARY+5000>

which gives a $5000 raise to all employees.

3.1.3 Tran:aactions and Consistencies

In DML, we allow the flexibility for a user to specify a set of requests

for repeated execution. Such a pre-specified set of requests shall be re-

ferred to at; a transaction. As in other systems, a transaction must preserve

consistency. A database-creator specifies a set of assertions on the data-

base. These assertions are constraints which must be satisfied by data in

the database. For instance, since employees may not have negative salaries,

an assertion on the database may require that all employees have non-negative

salaries. An assertion about a database is said to be true in the database

if the data in the database satisfies the constraints in the assertion. A

database is in a consistent state if all the assertions made on the database

by the database-creator are true in the database. Finally, a transaction is

said to preserve consistency if assuming the database is in a consistent

state before the transaction is executed, then immediately after the transac-

tion has completed execution, the database must be still in a consistent

state.

PAGE 50

3.2 The Notion of Record Clusters

Record clusters are formed for the purposes of narrowing the search

space and minimizing the effort needed to search for records which may satis-

fy a given request. In other words, by organizing a database into clusters

and by maintaining information about these clusters, MDBS may readily identi-

fy those clusters whose records will sa, sfy the given request, thereby achi-

eving high throughput and good response time.

Although the notion of a record cluster for the aforementioned purposes

is well known, the effectiveness of clusters for throughput gain and response

time improvement lies in the effectiveness of the clustering algorithm for

forming clusters and the placement strategy for storing these clusters. In

other words, it depends on how clusters are formed and placed. Interestingly

enough, it does not depend on how clusters are used. In other words, the

throughput and response time of MDBS are 'immune' to the way the clusters

are utilized. This is because every request execution by MDBS will involve

the search and retrieval of clusters. Such search and retrieval can always

be shown to be maximal for throughput gain and response-time improvement.

Briefly, this is due to our use of the descriptors as a means to define and

form clusters. As we recall, a descriptor is either a single predicate or a

conjunction of predicates. We may also recall that a query in a user request

is a Boolean expression of predicates. Thus, a given user request will re-

quire the retrieval of data which satisfy the predicates of the expression.

Since clusters are formed by the definition of descriptors and both descrip-

tors and queries utilize the common notion of predicates, the data retrieved

for the request are actually one or more clusters. Clusters therefore become

the ideal formation (or unit) of data for storage and retrieval and for per-

formance optimization.

In the following sections, we will describe how the clusters are formed

in MDBS and how they are used. We will begin with some definitions.

aL b .II I II I I "-

PAGE 51

3.2.1 Cluster Formation

For a database, the creator of the database specifies a number of des-

criptors called clustering descriotors, or simply, descriptors. An attribute

that appears in a descriptor is called a directory attribute. We say that a

directory attribute belongs to a descriptor if the attribute appears in that

descriptor.

We recall that a record consLsts of attribute-value pairs or keywords.

For purposes of clustering, onl:r those keywords of the record which contain

directory attributes are consider,!d. Such keywords of the record are termed

directory keywords. From the ::ules for forming descriptors specified ear-

lier, it is easy to see that a di:rectory keyword is derivable from at most

one descriptor. For example, consider a database with SALARY as the only di-

rectory attribute. Furthermore, let (0=<SALARY=<50000) be the only descrip-

tor Dl on SALARY specified by :he database creator. Now, consider two re-

cords, one containing the directory keyword <SALARY,25000> and the other con-

taining the directory keyword <SALARY,75000>. Clearly, the former directory

keyword is derivable from the des:riptor DI and the latter directory keyword

is not derivable from D1. Hen:e, the latter keyword is not derivable from

any descriptor in the database and we say that the directory keyword is

derivable from no descriptor. Since a record may have many directory key-

words, each of which will be deri-iable from at most one descriptor, we say

that the record is derived from a set of descriptors. It is possible for a

record to be derived from the empty set of descriptors. There are two such

cases. In the first case, it may happen that a record does not contain any

directory keyword. In this case, it is said that the record is derived from

the empty set of descriptors. Thus, going back to the previous example with

the single directory attribute, SALARY, and the single descriptor,

(0<SALARY-<50000), a record which does not contain any salary information

(i.e., no keyword with the attribute SALARY) is said to be derived from the

empty set of descriptors. The second case in which a record is derived from

the empty set of descriptors is when the record does indeed contain directory

keywords, but these keywords are not derivable from existing descriptors. In

the previous example, a record with the directory keyword <SALARY,75000>

which is not derivable from the descriptor is therefore derived from the

empty set of descriptors also.

PAGE 52

If two records are derived from the same set of descriptors, they are

likely to be retrieved together in response to a user request, since these

two records have keywords which are derivable from the same set of descrip-

tors. Thus, these two records should be stored together in the same cluster.

A cluster is, therefore, a group of records such that every record in the

cluster is derived from the same set of descriptors. We say that a record

cluster is defined by the set of descriptors from which all records in the

cluster are derived.

It is easy to see that a record belongs to one and only one cluster.

The reasoning is as follows. A record consists of zero or more directory

keywords. If it consists of zero directory keywords, it belongs to the clus-

ter defined by the empty set of descriptors. If the record consists of one

or more directory keywords, then, the record must be derived from one and

only one set of descriptors, since each directory keyword is derived from at

most one descriptor. This unique set of descriptors defines the unique clus-

ter to which the record belongs. Thus, we have used the concept of descrip-

tor sets to partition the database into equivalence classes, namely clusters.

In order to form clusters for the records in a database, the

record-to-cluster aliorithm is provided to take a record and determine its

cluster. For each attribute-value pair in the record, determine if the at-

tribute is a directory attribute. If it is not, then that attribute-value

pair is not used for cluster determination. If the attribute is a directory

attribute, determine the descriptor, if any, from which it is derived. We

refer to this descriptor, if any, as the corresponding descriptor for the

given attribute-value pair. The set of corresponding descriptors for all the

attribute-value pairs in a record defines the cluster to which the record be-

longs. By using the algorithm on every record of a database at

database-creation time, we may form the record clusters of the database.

3.2.2 Cluster Determination During Request Execution

Up to this point, we have been describing the process of cluster forma-

tion. We will now explain how clusters are used during request execution.

PAGE 53

More specifically, we will explain how to determine the cluster to which a

new record belongs and how to determine the set of clusters which must be re-

trieved in order to satisfy a query for retrieval, deletion or update.

(A) Inserting Records into Clusters

During the process of cluster formation described in the previous sec-

tion, MDBS uses the record-to-cluster algorithm repeatedly for determining

the cluster of a record in the database. This same algorithm may now be used

by MDBS to determine the cluster of a record for the record's insertion. In

insertion, the cluster definition table (CDT) is used in order to determine

the secondary memory address (addresses) of this cltster. CDT is a table ma-

intained by MDBS. There is an entry in this table for every cluster. Each

entry consists of a cluster number, set of descriptor ids defining the clus-

ter, and addresses of the records in the cluster. 1. sample CDT is depicted

in Figure II.

(B) Retrieving, Deleting and Updating Records from (lusters

Let us describe how MDBS determines the set of clusters which satisfy

the query in a retrieval, deletion or update request. Before we may do this,

we must introduce some concepts and terminology.

Descriptor X is defined to be less than descriptor Y, if the attributes

in both descriptors are the same and one of the following holds.

(1) Both descriptors are of type-A and the upper limit of descriptor X is

lower than the lower limit of descriptor Y.

(2) Both descriptors are of type-B and the value in descriptor X is

smaller than the value in descriptor Y.

(3) Descriptor X is of type-A and descriptor Y is of type-B and the upper

limit of descriptor X is lower than the value in descriptor Y.

(4) Descriptor X is of type-B and descriptor Y is of type-A and the value

in descriptor X is smaller than the lower limit of descriptor Y.

The above definition also covers the case where either X or Y is a

type-C descriptor, since type-C descriptors are stored as type-B descriptors

PAGE 54

Notes:
(1) Clusters have unique cluster numbers.
(2) No two clusters have a record in common.

(3) A cluster is defined by a set of descriptors.
(4) The keywords of the records in a cluster are

derivable from the descriptors of the set

defining the cluster.
(5) Two sets of descriptors defining two clusters

may have descriptors in common.

Cluster CorresDondinR Set the o

Number of Descritor Ids the clr
the Cluster

Cl D2,D3 Rl,R6,R7

C2 Dl,D3,D7 R4,R8

C3 D4,D6 R2,R3

Figure 11. A Sample of The Cluster Definition Table (CDT)

PAGE 55

in MDBS. An exactly parallel description for the greater-than relation among

descriptors may also be given.

As an example, let us assume that we are given the descriptcrs DI

(10000-<SALARY-<20000), D2 (0-<SALARY-<8000), D3 (SALARY-9000) and D4

(SALARY-21000). Thus, D3 is less than DI; D2 is less than D3; and Dl is

less than D4.

Using the above definition of less-than and greater-than for the des-

criptors, we are ready to describe the algorithm for determining the corres-

ponding set of clusters for a query in a user request. The query is assumed

to be in disjunctive normal form, i.e., disjunction of conjunctious. The al-

gorithm, known as the query-to-cluster algorithm, will proceed in three

steps.

Since a query conjunction consists of predicates, we will determine, in

the first step, a corresponding descriptor or a corresponding set of

descriptors for each predicate. This is done as follows. If the predicate

in a query conjunction is an equality predicate, then the corresponding des-

criptor is the one from which the keyword satisfying the predicate is

derived. For example, if the predicate is (LOCATION-Napa), then the keyword

satisfying the predicate is <LOCATION, Napa> and the correspondiug descriptor

is (LOCATION-Napa). If the predicate is either a less-than or

less-than-or-equal-to predicate, it is first treated as an equality predicate

and the corresponding descriptor D for that equality predicate is first de-

termined. Then, all the descriptors less than D, along with D, form the cor-

responding set of descriptors for the less-than or less-than-ar-equal-to

predicate. If the predicate is a greater-than or greater-than-or-equal-to

predicate, then it is first treated as an equality predicate and the corres-

ponding descriptor D for that equality predicate is first determined. Then,

all the descriptors greater than D, along with D, form the corresponding set

of descriptors for the greater-than or greater-than-or-equal-to predicate.

Thus, we have determined a corresponding set of descriptors for a predicate.

The above procedure is repeated for every predicate in the query

PAGE 56

conjunction. Thus, we will have determined a corresponding set of descrip-

tors for every predicate in a query conjunction.

Our next step is to determine the corresponding set of clusters for a

querv conjunction, since a query consists of one or more query conjunctions.

Let the query conjunction have p predicates. Let the set of descriptors cor-

responding to the i-th predicate be Si. Now, form all possible groups, where

each group consists of one descriptor from Si for i ranging from 1 to p. In

other words, we are forming the cross-product of Si. The reason for forming

this cross-product of p sets is because a query conjunction consists of a

conjunction of p predicates, each of which has a corresponding set Si of des-

criptors. Each element in this cross-product is termed a descriptor group

which is of course a set of descriptors. Intuitively, a group defines a set

of clusters whose records satisfy the query conjunction.

We now consult the cluster definition table, i.e. CDT (see Figure 1i

again.) However, the definitions kept in the table may not be identical to

the definitions of the groups. Without relating the descriptor groups with

the descriptor sets kept in the table, we may not be able to determine the

clusters involved. Thus, this second step includes the determination of

whether there are descriptor sets in the table which contain a descriptor

group. If there are such sets, then the clusters defined by the descriptor

sets are indeed the clusters referred to by the descriptor group.

By repeating this procedure for every descriptor group in the

cross-product, we are able to determine the corresponding set of clusters for

a query conjunction. The entire second step which is used to determine the

corresponding set of clusters for a query conjunction is then repeated for

every query conjunction in the query. Thus, we have determined a correspond-

ing set of clusters for every query conjunction in the query.

The final step of the algorithm determines the corresponding set of

clusters for the auery from the corresponding set of clusters for each query

conjunction in the query. Since the query in a disjunction of conjunctions,

the corresponding set can be simply obtained as the union of the sets of

clusters for each query conjunction in the query.

PAGE 57

3.3 The Entire Process of Request Execution

In this section, we discuss the entire sequence of actions performed by

MDBS in processing the four different types of requests. We shall discuss

each type of request, in turn.

3.3.1 Executing an Insert Request

The syntax of an insert request in MDBS is

INSERT Record.

The controller will first parse the request and determine that it is an in-

sert request. Next, the controller will broadcast the request to all the

backends. The backends will perform descriptor processing. At the end of

the descriptor search phase, the single cluster to which the record to be in-

serted is known to the backend(s) whose secondary memory (memories) has

(have) been accommodating the cluster. The reason that more than one backend

may be involved in accommodating the cluster in consideration is that the

cluster being sufficiently large has been evenly distributed by the data

placement strategy over several backends' secondary memories at the

database-creation time. Consequently, MDBS must decide which backend's sec-

ondary memory is to be used for accommodating the new record. By consulting

the cluster-id-to-next-backend table (CINBT), MDBS can select the secondary

memory of a specific backend for record insertion. The CINBT is created at

the database-creation time by the data placement strategy. A sample CINBT is

depicted in Figure 12.

3.3.2 Executing a Retrieve Request

We recall that the syntax of a retrieve request in MDBS is as follows;

RETRIEVE Query Target-list [By Attribute][WITH Pointer].

The controller will first parse the request and determine that it is a

retrieve request. Next, the controller will broadcast the request to all the

backends. The backends will perform descriptor processing and address gener-

ation. Upon completion, each backend has a list of seco'. ary memory

PAGE 58

Notes:

(1) The number of backends in a MDBS may be

large, say, 6.

(2) A cluster of many records is stored in a

specific round-robin way among the backends'

disk drives.
(3) This table is kept up to date bv MDRS as new

records are inserted into the database and
existing records are modified which result

in changes of clusters.

Backend Number of

Cluster the next Backend foi

Number Inserting the Recor

nf the (Tigter

Cl B3

C2 31

C3 B2

c4 Bl

C5 B6

Figure 12. The Cluster-ld-To-Next-Backend Table (CINBT)

PAGE 59

addresses of the tracks which contain the relevant records. These tracks are

accessed by the backend. The query in the request is used to select the

records from these tracks. First, the records satisfying the query are se-

lected. If a BY-clause is specified in the retrieve request, the selected

records are grouped by the values of the attribute in the BY-clause. If no

BY-clause is specified in the retrieve request, all the selected records are

treated as a single set. Next, for each set of selected records, the values

of all attributes in the target-list are extracted from the records of the

set. If no aggregate operator is specified on an attribute in the

target-list, the extracted values of the set are returned to the controller.

If an aggregate operator is specified on an attribute in the target-list,

some computation is performed on all the attribute values in the records of

the set and the results are returned to the controller. For example, to com-

pute the average salary, each backend computes the sum of all the salaries in

its set of retrieved records. It then returns this sum and a count of the

number of reccrds in the set to the controller. The controller combines the

sums and counts. from all the backends to give the average salary, which is

returned to the user. This completes the actions performed by a backend on

each set of sel.ected records. If a WITH-clause is specified in the retrieve

request, the secondary memory addresses of all selected records must also be

sent to the controller by each backend.

The controller will wait for responses from all the backends. Upon re-

ceiving all :he responses (i.e., attribute values, aggregate values or ad-

dresses) from all backends, the controller will forward these responses to

the user that issued the retrieve request. This completes the execution of

the retrieve request.

3.3.3 Executing a Delete Request

As we recall, the syntax of a delete request is

DELETE Query

The execution of this request in HDBS is similar to the execution of a

retrieve request. The controller will first parse the request and determine

that it is a delete request. Next, the controller will broadcast the request

to all backends. The backends will perform descriptor processing and address

PAGE 60

generation. Upon completion, each backend has a list of secondary memory ad-

dresses of tracks which contain relevant records. Records of these tracks

are retrieved from the secondary memory by respective backends. The query in

the delete request is used to select the records which are to be deleted.

The selected records are then marked for deletion. The track space occupied

by the marked records is not immediately recovered. Such recovery of space

will be done during database reorganization time. After the records are

marked, the marked records are written back to the same tracks by each back-

end. If all the records in a track are marked for deletion, the address of

this track is removed from all entries in which it appears in the cluster de-

finition table (CDT). Finally, each backend will send an acknowledgement to

the controller to indicate that it has finished executing the delete request.

Upon receiving the acknowledgements from all the backends, the controller

will inform the user or user program that the delete request has successfully

been completed.

3.3.4 Executing an Update Request

The syntax of an update request in MDBS is as follows:

UPDATE Query Modifier.

We recall that the modifier in an update request specifies the new value to

be taken by the attribute being modified and that it may be one of the types

described below.

Type-0 : <attribute constant>

Type-I : <attribute - f(attribute)>

Type-Il : <attribute - f(attribute-l)>

Type-Ill : <attribute - f(attribute-l) of Query>

Type-IV : <attribute f(attribute-l) of Pointer>

An update request containing a modifier of types 0, I or II is broadcast

by the controller to all the backends. The backends will perform descriptor

processing and address generation. Afterwards, each backend has a list of

secondary memory addresses of the tracks containing the relevant records.

These tracks are accessed by respective backends and the records satisfying

the query are selected from these tracks. These are the records being modi-

fied.

PAGE 61

Each of these records is changed according to the modifier in the update

request. If the modifier is of type-0, the new value is provided in the mod-

ifier. If the modifier is of type-l, the new value is computed as a function

(specified in the modifier) of the value of the same attribute. Finally, if

the modifier is of type-Il, i.e. of the form <attribute - f(attribute-l)>,

the new value is computed as a function f of the value of the attribute-1 in

that record.

Due to its change in attribute values, an updated record may remain in

the same cluster to which it (more precisely, pre-updated version) belonged

or it may now belong to a differe:it cluster. In the latter case, a record is

said to change cluster. Recall that a cluster is a group of records such

that every record in the cluster is derived from the same set of descriptors.

Thus, an updated record will belong to a different cluster only if the set of

descriptors from which it is derived is different from the set of descriptors

from which the pre-updated version was derived. If the attribute being modi-

fied in an updated record is not a directory attribute, the updated record

continues to be derived from the same set of descriptors, since only directo-

ry attributes affect the descriptors. Hence, the updated record does not

change cluster. If the attribute being modified is a directory attribute, an

updated record may change cluster. If an updated record changes cluster, the

pre-updated record is marked for deletion and the updated record is inserted

in the appropriate cluster.

Finally, each backend will send an acknowledgement to the controller to

indicate that it has finished processing the update request. When it has re-

ceived acknowledgements from all backends, the controller will return a mes-

sage to the user to signal successful completion of the update request. This

completes the processing of an update request containing modifiers of types

0, I or II.

Now, let us describe the execution of an update request containing a

type-Ill or type-IV modifier. Recall that these modifiers have the form

<attribute - f(attribute-l) of Query> and <attribute - f(attribute-l) of

Pointer>. Thus, in this case, another record must first be retrieved by HDBS

on the basis of a user-provided query or pointer. After the record is

PAGE 62

retrieved, the controller will extract the attribute-I value v from the re-

trieved record. It will then compute the function f (specified in the

type-Ill or type-IV modifier) on the value v and thus obtain a new value v'.

The controller will then form a type-0 modifier of the form

<attribute - v'>

where attribute is the one that appeared to the left of the equality sign in

the type-Ill or type-IV modifier. The original type-Ill or type-IV modifier

in the update request is now replaced with this newly created type-O modif-

ier. In other words, MDBS converts an update request containing a type-Ill

or type-IV modifier to an update request containing a type-0 modifier. This

update request containing a type-0 modifier may now be executed in the same

manner described previously.

3.4 Directory Manaaement

In this section, we describe the detailed design and implementation of

directory management in MDBS-I.

3.4.1 The Input: Notf-Insert Requests and Insert Requests

The input to directory management is either the record part of an insert

request or the query part of a retrieve, delete, or update request. The

three non-insert request types, namely, retrieve, delete and update, require

the same directory management. However, the insert request type requires a

different directory management. Thus we will describe directory management

in terms of two categories: non-inserts and inserts.

We recall that the directory management in MDBS-I consists of three

phases. In the first phase, MDBS determines the corresponding descriptors

either for each predicate of a query in the case of a non-insert request or

for each keyword of a record in the case of an insert request. In the second

phase, MDBS determines either the corresponding set of clusters in the case

of a non-insert request or the corresponding single cluster or a new cluster

in the case of an insert request. In the third phase, MDBS determines either

the addresses of clusters in the case of a non-insert request or a single ad-

i | I i , " - Il I , I

PAGE 63

dress for inserting the record in the case of an insert request. (See Figure

2 again.) The following tables are used in the three phases for processing

either non-insert or insert requests.

(A) Four Directory Tables: The Descriptor-to-Descriptor-Id Table (DDIT),

The Attribute Table (AT), The Cluster-Definition Table (CDT) and

The Cluster-Id-to-Next-Backend Table (CINBT)

These tables are an integrated part of the directory management.

Logically, they are defined as follows;

All the descriptors defined by the database creator are stored in the

descriptor-to-descriptor-id table (DDIT). There is a descriptor id associat-

ed with each descriptor. A sample DDIT is depicted in Figure 13.

There is an entry in the attribute table (AT) for every directory attri-

bute. A pointer to the DDIT is stored with each directory attribute. The

pointer points to the first descriptor whose attribute is identical to the

corresponding directory attribute. A sample AT is depicted in Figure 14.

Also shown in the figure is the DDIT of Figure 13. By showing these two

tables together, we can easily depict the pointers of AT.

The cluster-definition table (CDT) is described in Section 3.2.2. A

sample CDT is also depicted earlier in Figure 11, so we do not repeat the

figure here. However, we do repeat the definition here. There is an entry

in this table for every cluster. Each entry consists of the cluster number,

the set of descriptor ids whose descriptors define the cluster, and addresses

of the records in the cluster.

The cluster-id-to-next-backend table (CINBT) is also depicted earlier in

Figure 12. A backend for record insertion is chosen on the basis of this

table.

PAGE 64

Notes:
(1) Descriptors are provided by the database creator.
(2) A set of descriptors defines a cluster.
(3) Clusters are system entities which are 'transparent'

to the user.

Descriptor

Descriptor Id

20 = < AGE - < 30 DI

40 - < AGE - < 65 D2

5000 = < BALANCE = < 10000 D3

BALANCE = 20000 D4

30000 - < BALANCE = < 45000 D5

LOCATION - OSU D6

LOCATION = ONR D7

Figure 13. The Descriotor-To-Descriptor-Id Table (DDIT)

PAGE 65

AT

Directory Pointer

Attribute to DDIT

AGE

BALANCE

LOCATION

DDIT (from Figure 13)
Descriptor

Descriptor Id

20 = < AGE = < 30 DI l

40 = < AGE = < 65 2

5000 = < BALANCE = < 10000 D3

BALANCE = 20000 D4

30000 = < BALANCE = < 45000 D5

LOCATION = OSU D6

LOCATION = ONR D7

Figure 14. The Attribute Table (AT) and
its Relationship to DDIT

PAGE 66

(B) Three Phases of Processing: Descriptor Search, Cluster Search and

Address Generation

As described in Chapter 1, directory management has three phases. In

the first phase, both AT and DDIT are searched to determine the corresponding

descriptors either for each predicate of a query in the case of a non-insert

request or for each keyword of a record in the case of an insert request.

This is the descriptor search phase. In the second phase, the CDT is

searched. For descriptors produced from the previous phase, either the cor-

responding single cluster in the case of an insert request or the correspond-

ing set of clusters in the case of a non-insert request is determined. This

is the cluster search phase. By searching the same CDT, the addresses of

clusters can be found in the third phase. This is the address generation

phase.

(C) The Choice of a Processing Strategy for the Controller and the Backends

In previous discussions, we make no distinction whether the three phases

are carried out in a single computer (i.e., either the controller or one of

the backends) or in multiple computers (a controller and several backends).

In [Hsia81a,', six different strategies for carrying out the descriptor search

phase in the multiple backends and one strategy for carrying out the descrip-

tor search phase in the controller are examined. There are also two strateg-

ies for carrying out the cluster search and address generation phases: one

in the controller and the other in the backends.

If we are to achieve an ideal system in which the response time is in-

versely proportional to the number of backends, we need to distribute the di-

rectory management work among the backends. By carrying out the directory

management in the backends, MDBS may be alleviated from the controller limi-

tation problem as suggested in [Hsia8la].

In the following, we describe those three strategies that distribute the

work among the backends and utilize parallel processing by the backends. All

three strategies carry out the cluster search phase and the address genera-

PACE 67

tion phase in all the backends. By carrying out these two phases in the

backends, each backend would need to generate only those secondary memory ad-

dresses associated with that backend. On the other hand, if the addresses

were to be generated by the controller, the controller would need to generate

all the relevant secondary memory addresses associated with all the backends.

Thus, the former case distributes address generation work among the backends;

the latter case does not and concentrates all the work in the controller.

(1) The Fully-Duplicated Strategy

In this strategy, AT and DDIT are fully duplicated in all the backends.

However, CDT is not duplicated. Instead, only the portion of CDT which is

relevant to those clusters stored in the backend is placed in that backend.

The descriptor search work is distributed among the backends. More specifi-

cally, if there are n backends in MDBS and a query contains x predicates,

each backend will perform descriptor search, by using AT and DDIT, on x/n

predicates and generate x/n corresponding descriptor sets which will, in

turn, be communicated to all other backends. Each backend then performs,

by using its portion of CDT, the cluster search phase and the address

generation phase.

(2) The Descriptors-Division-Within-Attribute Strategy

In this strategy, AT is duplicated in all the backends. DDIT and CDT

are not duplicated. If there are i descriptors on each directory attribute,

each backend will maintain for each attribute i/n descriptors. Each backend

performs descriptor search on all the predicates to generate part of corres-

ponding descriptor sets. After each backend obtains some results, they ex-

change their results. Then, each backend proceeds with its own cluster

search phase and address generation phase.

(3) The Fully-Replicated Strategy

In this strategy as in strategy 1, AT and DDIT are duplicated in all the

backends. CDT is not duplicated. However, unlike strategy 1, each backend

will work on the entire query during the descriptor search phase, instead of

PAGE 68

x/n predicates of the query. The advantage of letting each backend do the

descriptor search on all predicates is that exchanges of descriptors among

backends are unnecessary in this strategy because each backend has all the

needed descriptors. After completing the descriptor search, each backend

does its cluster search phase and address generation phase.

According to the analyses in (Hsia8laI, strategy 2 has a poor

average-and-worst case performance for typical number of attributes and typi-

cal number of descriptors per attribute; strategy 3 replicates the descrip-

tor search phase; strategy I does not have the shortcomings of the other two

strategies. Consequently, we choose to design and implement strategy 1 for

directory management. In addition to utilizing strategy I for parallel pro-

cessing of the three directory management phases for non-insert requests and

the first two phases for insert requests by the backends, we choose the

strategy of placing the CINBT entirely in the controller to be used only by

the controller. For insert requests, the controller consults this table to

select a backend for record insertion. Thus, records in a cluster can be

distributed across the backends in order to achieve maximum parallel process-

ing by the backends for subsequent requests.

3.4.2 The Use of Abstractions and Tables for Implementation

In this section, we detail the first implementation of the directory

management of MDBS-I. As outlined in Chapter 1, this implementation does not

provide concurrency control and access control. It maintains the directory

information in the main memory only. In this implementation, cluster search

and address generation are carried out together. Thus, in the sequel, we

refer to descriptor search as phase I, and to cluster search and address gen-

eration as phase II. The input to phase I is either the record part of an

insert request or the query part of a non-insert request, and the output is a

set of descriptor ids corresponding to the descriptors a.rived from either

the keywords of the record or the predicates of the query in the user re-

quest. Phase II makes use of these descriptor ids to come up with the cor-

responding cluster ids and, in turn, the set of secondary memory addresses

for I/0 operations.

PAGE 69

(A) Two Data Abstractions for Descriptor Search

In compliance with the design decision of treating data structures and

services, which are necessary in the phase I processing, as abstractions,

both AT and DDIT tables are enclosed in data abstractions. For AT, the ab-

straction is the attribute-table module (ATM), and for DDIT it is the

descriptor-to-descriptor-id-table module (DDITM). This approach requires ac-

cess to these tables via explicit calls to procedures that operate on the

tables.

(B) The Difference Between Descriptor Sets and Descriptor Groups

We now make the distinction between descriptor sets and descriptor

groups by means of an example. Let us assume that MDBS has the following

DDIT and CDT for the employee file:

10000 -<SALARY =<15000 Dl Cl {D2,D4,D8) Rl

20000 -< SALARY -< 30000 D2 C2 {DI,D5,D7} R3,R4

40000 -< SALARY -< 60000 D3 C3 {DI,D4,D8) R2,R6,R7

20 -< AGE =< 30 D4 C4 {D3,D5,D7) R5,R8

31 -< AGE -< 50 D5

51 =< AGE -< 70 D6

SEX - F D7

SEX M D8

For this file, the descriptor set for cluster Cl, for example, is

{ 20000-<SALARY-<30000 , 20-<AGE-<30, SEX-M }

Now, consider the following retrieval request.

RETRIEVE (FILE-Employee) and (SALARY>-20000) and (AGE-<50) (NAME)

In referring to DDIT, we see that the predicates of the requests have the

following derivability. The predicate (SALARY>-20000) is derivable from ei-

ther the descriptor (20000-<SALARY-<30000) or the descriptor

(40000-<SALARY-<60000); and the :edicate (AGE-<50) is derivable from either

the descriptor (20-<AGE-<30) or the descriptor (31-<AGE-<50). Using their

descriptor ids instead of the descriptors themselves, we learn that the query

of the request is derivable from the following

(D2 or D3) and (D4 or D5)

PAGE 70

So, for the employee file MDBS should look for clusters whose descriptor-id

sets contain {D2,D4} or {D2,D} or {D3,D4} or {D3,DW}.

To distingu.ish sets in CDT from those derived from the predicates, we

term the aforementioned four collections of descriptor ids the descriptor-id

groups and their corresponding descriptor collections the descriptor groups.

For {D2,D4}, for example, the descriptor group is

{ 20000-<SALARY-<30000, 20-<AGE-<30 }
Thus, descriptor sets are associated with clusters and created either at the

database creation time or when there is a new cluster, whereas descriptor

groups are obtained from the query part or the record part of the request and

they change from request to request. For the above retrieval request, the

descriptor-id set of cluster Cl contains the descriptor-id group {D2,D4) and

the descriptor-id set of cluster C4 contains the descriptor-id group {D3,D5.

Thus, the records in these clusters, i.e., {Rl,R5,R8}, are retrieved, select-

ed and the NAME values in the selected records are returned to the user.

Phase II needs descriptor-id groups to come up with cluster numbers and,

in turn, addresses of the records in those clusters. In the next section, we

describe how MDBS-I generates descriptor-id groups.

(C) The Generation of the Descriptor-id Groups for a Request

In order to generate the descriptor-id groups readily, we introduce the

encoding scheme of location parameter. From the query part of a non-insert

request, the scheme extracts the conjunctions of the query and numbers them

consecutively. Each predicate is then identified by its conjunction number

followed by its relative position in that conjunction. For example, in the

following query part of a non-insert request

((DEPT-Shoe) and (SALARY>l0000)) or ((DEPT-Toy) and (SALARY<15000))

the predicate (DEPT-Shoe) has the location parameter 11, since it is the

first predicate of the first conjunction. Thus, for the above query the

predicates have their location parameters represented on the left hand side:

11 DEPT-Shoe

12 SALARY>10000

21 DEPT-Toy

22 SALARY<15000

PAGE 71

In the case of insert requests, the keywords of the record are treated

as one coajunction, so the first number of the location parameter is always

1. Furthernore, the second number of the location parameter is not the rela-

tive predicate number, but the relative keyword number since the record to be

inserted consists of keywords instead of predicates.

(D) A Service Abstraction for Passing Descriptor-id Groups to Cluster

Search

The outpuL of phase I, the corresponding descriptor ids, are the input

to phase II. Since the format of the input to phase II depends on the clus-

ter search strategy on CDT employed in that phase, format and strategy

changes ir. one of the phases can affect the other phase. In order to make

each phase immune to the changes made in the other phase, a service abstrac-

tion is placed between the two phases. This abstraction, known as directory

interface (DIRINT), accepts the output of phase I and produces the input for

phase II. All the abstractions are documented in the appendicies.

For the output of phase I, DIRINT produces a table called request

descriptor--id table (RDIT), given a query part or a record part of the

request. Each entry of the table is an ordered pair of location parameters

and descriptor 'is. Thus, an entry of RDIT indicates the id of a descriptor

derived fram the predicate or the keyword and is uniquely identified by the

location parameter in the entry. If multiple descriptors are derived from a

predicate, then there are multiple entries in RDIT, one for each such des-

criptor. In this case, EDIT contains the descriptor ids of all the descrip-

tors derived from the predicate. In Figure 15, we depict a sample of RDIT.

(E) A Data Abstraction and Three Directory Tables for Cluster Search and

Address Generation

In phase II, MDBS-I makes use of three tables : the descriptor table,

the descriptor-to-cluster map, and the extended cluster definition table.

Each entry of the descriptor table (DT) contains the id of a d-scriptor that

has been defined for a given database, the number of clusters aefined for the

descriptor, and a pointer to the first cluster of those defined for the d,'-

cripcor.

PAGE 72

Location Descriptor
Parameter id

11 D4

12 D 16] Multi-descriotors

12 D7for the same
12 D7 r Dredicate

12 D9J

47 D2

Figure 15. A Sam~1e Request-Descriptor-Id Table (RDIT)

PAGE 73

The descriptor-to-cluster mas (DTCM) serves the purpose of mapping des-

criptors to clusters. It is maintained in such a way that all the DTCM en-

tries for a descriptor are linked together. Each DTCM entry, then, points to

a cluster definition whose descriptor-id set contains the descriptor id of

this descriptor.

The extended cluster definition table (ECDT) contains more information

about each cluster than CDT, which was discussed in Section 3.2.2 and

depicted in Figure 11. Each entry consists of the cluster number of a cluster,

number of descriptors defining the cluster, a pointer to the list of descrip-

tor ids whose descriptors define the cluster, and a pointe: to the list of

addresses of records belonging to this cluster.

All of these tables are enclosed within a data abstraction called

cluster-definition-table module (CDTM). A sample of the tables i3 depicted

in Figure 16.

(F) A Typical Sequence of Directory Management Actions for an Insert Request

When there is a request for inserting a record, the following directory

management takes place in MDBS-I. An equality predicate is constructed for

each keyword of the record. For example, the keyword <NAME-Kerr> becomes the

predicate (NAME-Kerr). Then, for each predicate, the descriptor id of the

descriptor derived from the predicate is found by using AT and DDIT. This
process is repeated for every keyword of the record. All the descriptor ids
are then put into RDIT via the service abstraction DIRINT.

-he descriptor-id group corresponding to the record being inserted is

obtained from RDIT via DIRINT. We note that there is only one descriptor-id

group because each of the equality predicates constructed from the keywords

is derived from at most one descriptor. Among the descriptor ids in the des-

criptor-id group, the id of the descriptor that participates in defining the

smallest number of clusters is chosen by using DT. Let us call this descrip-

tor id Din. By using DT, DTCM, and ECDT, all the clusters whose descriptor-id

PAGE 74

The DescriDtor-To-Cluster
The Descriptor Table (DT) Map (DTCM)

I4

-.4r
w 1.. 0- U.w 0 C4

W4J Z

50 3

-i)May ntie 0r left

w 0.

D2 2

The nxtended-Cluster-Definition Table (CDT)

() an entre ar ft

.1 -

blank, although there Dij Addr1
are information in them. Z 3

(2) One of descriptors Di,
Dj and Dk must be D)2.

(3) The hvrnhen '-' denotes D
the end of a list.

Fieure 16. An Example of DT, OTCM and FCDT

PAGE 75

sets contain Dm are examined. If there is a cluster whose descriptor-id set

matches the descriptor-id group, then the record being inserted belongs to

the cluster identified. We note again that for -in insert request, the des-

criptor-id set must match the descriptor-id group so that the record may be

inserted in the cluster whose records are derived from the same set of des-

criptors.

(G) A Typical Directory Management Sequence of Actions for a Non-insert Re-

quest

When there is a non-insert request, the fol'.owing directory management

takes place in MDBS-I. For each predicate in the query part of the request,

all the descriptor ids of the descriptors derivi d from the predicate are

found by using AT and DDIT. All the descriptor :.ds are put into RDIT via the

service abstraction DIRINT.

Each of the descriptor-id groups correspond:Lng to the query is obtained

from RDIT via DIRINT. We note that there may bet more than one descriptor-id

group because each predicate of the query may be derived from more than one

descriptor. See the example in part (B) of this section. Among the descrip-

tor ids in the descriptor-id group, the id whose descriptor participates in

defining the smallest number of clusters is chosen by using DT. This des-

criptor id is designated with Dm. By using DT, DTCM, and ECDT, all the clus-

ters whose descriptor-id sets contain Dm are examined. The clusters whose

descriptor-id sets contain the descriptor-id group are therefore found. This

process is repeated for each descriptor-id group. We note that for a

non-insert request, the descriptor-id set does not have to be identical to

the descriptor-id group as long as the set contains the group. Then, the ad-

dresses of the records in the clusters just found are obtained.

PAGE 76

4.0 LOADING THE DATABASE

In MDBS, as in other database systems, a database creator may want to

load a database with data that exists elsewhere. Such data may reside as

files on magnetic tapes, for example. The database creator can use a

software tool, provided by MDBS and called database load, to specify the

source data files and to create a database. In this section, we describe the

design of this tool. The implementation details for the version used in

MDBS-I are placed in Appendix C.

4.1 Three Directory Tables for Loadins.

A user of the database-load subsystem may want to consolidate several

related files into one database. In this case, there will be one attribute

table (AT), one descripter-to-descripter-id table (DDIT) and one

extended-cluster-definition table (ECDT) for the database. Alternatively,

the user may want each file to become a separate database. In this case

there will be a separate AT, DDIT and ECDT for each database.

4.2 Four Phases of Database Loading

The database load subsystem, as seen by the user and shown in Figure 17,

executes in four logical phases. First, the user specifies various charac-

teristics of the existing source files and of the database to be created and

loaded. Then the data is read from user supplied source-files and prepared

for loading. Next, the data is grouped into clusters. After clustering, the

data is distributed to the backends. The programs in the database-load sub-

system run mainly in the controller. Howeverthe database-load subsystem

does include the distribution of records and directory tables to the back-

ends.

4.2.1 The Database Definition Phase

Before the source files are read, two tasks are accomplished in this

phase. The first task is descriptor definition. In this task the user spec-

PAGE 77

Characteristics of
Source Files and
of Databases to ! Records from
Created and Loaded Source

Database Record Rcr n al
Definition Preparation Clustering and table

S<?d \ 4
4 \ \K 01,1 1o

I" L J /

" \\ >. /./" -

eiscriptor DDT a nECDTd

uh D AT Entries

DTables actually constructed by tile database load

IECDTI: Tnformation needed for the construction of this
L - .J table is provided to the backends

Figure 17. Four Phases of Database Loading

PAGE 78

ifies all directory attributes for the database. Then the user specifies the

upper and lower bounds for each type-A descriptor and the value for each

type-B descriptor. As these values are given, they are checked against pre-

viously defined descriptors to make sure there is no overlap of the ranges

and values specified. In other words, the rules governing the proper use of

descriptors given in Section 3.1.1 are enforced by the database load subsys-

tem.

Only the attribute names of type-C descriptors are specified at this

time. The type-C sub-descriptors of the type-C descriptors will be formed

later when the actual source records are processed. As described above,

clusters may be formed for one file at a time or for all files at the same

time. When clusters are formed for all the files, the descriptor definition

procedure will be invoked only once per database; when clusters are formed

for separate files, the descriptor definition procedure will be invoked once

per file.

During execution of this task the attribute table (AT) will be built

using the data abstraction of the attribute table modulc (ATM). Iz addition,

descriptor-to-descriptor-id table (DDIT) entries for all type-A and type-B

descriptors will be established using the data abstraction of the

descriptor-to-descriptor-id module (DDITM). The ATM and DDITM are described

in Section 3.4.2. The type-C sub-descriptors formed from the type-C descrip-

tor entries will be added later as the source-data is examined in the next

phase.

The second task is definition of attribute characteristics for each

file. A file is defined to include records of one format only. A record

template will be built for each file. It will include an entry for each at-

tribute. Each entry will include the attribute name, data-type (e.g., in-

teger), length, etc. For each source file, the user must supply the names of

all the attributes in the records. Then for each attribute, the user must

define the data-type. If the data-type is character string, the user must

specify whether the strings are of fixed or variable length. The user must

also specify the minimum and maximum values of each integer type as well as

the minimum and maximum lengths of each character string type. All of the

PAGE 79

values specified are stored in the record template by the record template

module.

4.2.2 The Record Preparation Phase

This phase includes the conversion of source records into the format re-

quired for internal storage in MDBS. As each record is examined the set of

descriptors from which the keywords of the record can bi derived will be de-

termined using the ATM and DDITM abstractions. In conjunction with this

task, the type-C sub-descriptor entries formed from each type-C descriptor

will be added to DDIT. Additionally, the formatted record will be appended

to the descriptor-id set corresponding to the descriptors derived from the

record. ooth the descriptor-id set and their appended records are the input

to the next phase. At the end of this phase the attribute table (AT) and the

descripter-to-descripter-id table (DDIT) are complete.

4.2.3 The Record Clustering Phase

This phase separates the records into clusters. As is described in

Chapters 1 and 3, all the records in a cluster are derived from the same set

of descriptors. Thus, separating the records into clusters is accomplished

by "crting the records according to the descriptor ids appended to each re-

cord in the previous phase. A sort package is used for this phase.

4.2.4 The Record and Table Distribution Phase

The last phase is distribution of data to the backends. The records are

distributed to the backends one cluster at a time. For each cluster, the

descriptors defining the cluster are broadcast to the backends so that the

cluster can be defined in the extended-cluster-definition table (ECDT) using

procedures in the cluster-definition-table module (CDTM) that was described

in Section 3.4.2. Typically, a cluster will contain many records. Within a

cluster, the records are spread across the backends. Sufficient records to

fill one disk track are sent to one backend. Then sufficient records to fill

a second track are sent to second backend. Thiq procedure continues until

PAGE 80

all the records have been distributed. It should be noted, of course, that

the last group of records may not fill a track. The information about the

last backend and amount of track space available is kept in the

cluster-id-to-next-backend table (CINBT) so that the next records to be in-

serted into that cluster can be stored in that partially filled track.

In order to distribute the data evenly across all the backends, the

first backend to receive records is chosen randomly. Then the choice of

backends goes in sequence. This distribution strategy was called the

track-splitting-with-random-placement strategy in [Hsia8la].

This phase also distributes the system tables to the backends. The at-

tribute table (AT) and the descriptor-to-descriptor-id table (DDIT) are com-

plete after the record preparation phase. Portions of the

extended-cluster-definition table (ECDT) will be built at each backend. The

portion of ECDT at a backend will contain only the addresses of the records

stored in that backend.

4.3 The Implementation Status

The complete design of the database load subsystem for MDBS-I is includ-

ed in Appendix C. Coding has been completed for almost all the procedures.

Testing is completed for about half of the procedures. As described in Ap-

pendix A, Appendix C shows exactly which procedures have been completed and

which procedures have been tested. This information is also included in Sec-

tion 2.2.4 as Figure 10.

PAGE 81

5.0 THE TEST FILE GENERATION

Program-generated test data will be used for two purposes. First, we

will be testing each version of MDBS to see that it works correctly. Second,

as described in Chapter 1, the initial performance evaluation experiments

will use program-generated data.

5.1 Three Types of Test Data

The test data to be generated will be organized into files. Thus we

designate the program the File Generaton Package. The characteristics of a

file are specified by the user of the file generation package. Each file has

a file-name and a certain number-of-records. Each record in a database is

composed of a set of attribute-value pairs. For initial testing purposes, we

have decided to require that all records in a file have the same attributes.

Thus each zecord has a fixed number-of-attributes. The values of an attri-

bute in different records are restricted to a particular data-type. The pos-

sible data-types are integer, string (i.e., character-strings) and float

(i.e., floating-point numbers).

In adc.ition to specifying the format of data to be generated, we must

also specify how particular values of each record are to be generated. The

first meant of generating a value is to use a routine that generates a

random-integer, random-string or random-float value. These routines make use

of random-number generators to arrive at a value from some particular distri-

butions of potential values. Thus the values of the first attribute might be

a randomly chosen integer between 100 and 500. The value of the second at-

tribute might be a random character string. The value of the third attribute

might be a random floating-point number.

5.2 Random Test Data vs. Realistic Test Data

The data generated as just described is fine for program testing and in-

itial performance evaluation. However, since each value is generated random-

ly by a program, the test data is not selectd by the user. In order to gen-

PAGE 82

erate realistic data for the user, a second form of value generation is also

supplied. In this form, a user may specify the data sets, say, a set of

names. Then the user can direct the file generation package to select values

for an attribute from one of these predefined sets. Once a set is defined,

its values are saved for later use.

5.3 Steps in Test File Generation

The file generation package works in three steps. First, the user de-

fines the form of the file to be generated, i.e., the number-of-records,

number-of-attributes and the characteristics of each attribute. Then initial

processing of test data sets follows. If the user wants to use sets that al-

ready exist, then the data of those sets are loaded into the main memory. If

there are new sets that the user wants to specify then the program pronipts

for the values of the data of the sets, which are then loaded into the nain

memory and also stored in the secondary memory for later use. After all the

sets are loaded into the main memory, the final step is the actual generazion

of tie records.

5.4 The Relationship of the Package to Testing Strategies and

Performance Evaluation Experiments

The first use for the file generation package is for the black-box test-

ing of MDBS as described in Section 2.2.3. In particular, the system testers

will be able to generate easily any form of test databases that they require.

They will then only have to generate sample requests in order to run tests to

see if MDBS is working correctly.

The second use for the file generation package is for the type of per-

formance evaluation experiments using program-generated data as described in

Section 1.2.1(A). For these tests, the experimenters can vary the form of

the database by varying the distribution of different types of data. They

can see how MDBS performs on different types of queries and using different

numbers of backends.

PAGE 83

5.5 Current Status of the Package

The file generation package is now working in its initial form and is

ready to be used for black-box testing. The package handles integer and

string data types. The subsystem which handles data sets is finished. The

routines to generate data values from a uniform distribution are complete.

The data type, float, must still be added. Routines to generate data values

from distributions other than uniform are not needed for black-box testing.

They will be added if it is determined that they are needed for performance

evaluation experiments.

The design of the complete file generation package is included in Appen-

dix B. The first version of the operating procedures manual (OPM) is also

completed.

PAGE 84

6.0 PLANS FOR THE NEXT MDBS VERSIONS

As we recall from Chapter 1, MDBS-I will not provide concurrency con-

trol. We also note that MDBS-I does not provide a secondary-memory-based di-

rectory management. Instead, MDBS-I utilizes the main memory for directory

management. We plan, therefore, to implement a concurrency control mechanism

in MDBS-II and an efficient directory management utilizing the secondary mem-

ory for MDBS-IV.

The basic design of the concurrency control mechanism is included in

[Hsia8lb]. We will not elaborate on the basic design here except to note

that the detailed design eliminates any need for communication among the

backends other than the required exchange of descriptors during the descrip-

tor search phase of directory management. In this section, we will discuss

one of most important system issues which must be resolved before we can im-

plement the concurrency contrLl mechanism, i.e., how will MDBS interface with

the operating systems at the controller and at the backends? On the other

hand, we will not discuss various approaches toward an efficient directory

management based on the secondary memory since our preliminary studies on the

approaches are still inconclusive.

6.1 Interfacini with Operating Systems

Most operating systems provide mechanisms for allowing concurrent execu-

tion of different processes. These mechanisms include primitives for commun-

ication and synchronization among processes. Process communication and syn-

chronization primitives of the operating system are the basic system primi-

tives that MDBS-II may utilize for concurrent executions of multiple re-

quests.

6.2 Two Kinds of Interfacing Approaches

Operating systems have been characterized as either message-oriented or

procedure-oriented, depending on how they implement the notions of process

and synchronization [Laue79]. We could use either approach for implementing

AD-A129 892 THE IMPLEMENTATION OF A MULTI-BACKEND DATABASE SYSTEM la
(MDBS) PART I SOFTW..(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA D S KERR ET AL. dUN 83 NPSS2-R3-BDS-PT-!UNCLASSIFIED F/G 9/2 NL

mhmmmmmmmmm
mmmmmmmmm

I2.

MCOOYRSTO EI CHR

N4jJ2.

PAGE 85

the concurrency control mechanism of MDBS-II.

Using a message-oriented operating system, t:here would be a fixed number

of processes (one per MDBS activity). Direct:ory management, for example,

might be an activity, which could be implemented as a process.

Synchronization is implemented by passing messages among processes. There is

a relatively limited amount of direct sharing of data in the memory among

processes. Processes for each activity are created when MDBS is started up.

They are only deleted when MDBS is shut down.

Using a procedure-oriented operating system, there would be a varying

number of processes (one process per user). Synchronization is implemented by

direct sharing and locking of common data in the main memory. Processes are

rapidly created and deleted.

In the following sections, we describe how tach of the two kinds of op-

erating system can be used for supporting concurTency control in MDBS-II. In

order to simplify the discussion, we restrict the types of requests that are

allowed. These restrictions mean that no changes to the directory informa-

tion will be made. To show the applicability of the approaches to MDBS, we

give a simplified description of the operation of MDBS using each approach.

The descriptions are based on the following assunptions:

(1) There are n users.

(2) Each user has submitted one or more requests so that there are k ac-

tive requests in total. The requests arrive at the controller at

times tl, t2, . . . tk.

(3) Grouping of requests into .ransaetions is not allowed.

(4) Only retrieve and update requests are allowed. Records being modi-

fied in an update request will not change cluster. Thus, there is no

need for concurrency control in directory management since directory

information will not change.

(5) Concurrency control is done at the cluster level. For example, using

a procedure-oriented operating system, locking is on clusters.

(6) The scheduling of requests that reference common clusters is done

using the concurrency control mechanism described in [Hsia8lb].

PAGE 86

6.2.1 Concurrency Control in MDBS-II using Message-oriented Approach

The interactions are shown in Figure 18. Requests are received at the

controller and then broadcast to the backends. At each backend, a request is

first input to the "directory management" process. This process determines

the set of clusters needed by the request. The request and the cluster

numbers of clusters determined are sent to the "scheduler" process. This

process keeps a queue of requests waiting to be processed and a list of clus-

ter numbers of clusters being accessed. This process takes a request off the

queue if it can be scheduled, updates the list, and sends the request to the
"request execution" process. The "request execution" process carries out the

request, forwards the results to the controller, and sends a message back to

the "scheduler" process indicating that the request is completed. When the
"scheduler" process receives the message from the "request execution" pro-

cess, it updates the list, releasing all those clusters accessed by the

completed request.

6.2.2 Concurrency Control in MDBS-II using Procedure-oriented Approach

The interactions are shown in Figure 19. In this approach each backend

maintains a process for each active user. Thus, the number of "user"

processes in MDBS-II is the product of the number of backends and the number

of MDBS-II users. All "user" processes at one backend share a "cluster-lock"

table. Thus, there are as many "cluster-lock" tables as there are backends.

In carrying out a user request, the "user" process at each backend con-

sults the "cluster-lock" tatle at that backend. If the needed clusters are

not locked, then they are locked by the process. Furthermore, the request is

carried out by the process. Upon completion of the request, the process un-

locks the clusters from the "cluster-lock" table. If a needed cluster is

locked, then the process must wait until the cluster is unlocked. We note

that there is no explicit scheduler or request queue. Instead, requests are

carried out on the availability 3f the needed clusters as reflected from

their state in the "cluster-lock" table.

Most database system implementations have used the procedure-oriented

PAGE 87

Notes:
(1) There are k requests Backend 1

ri, arriving at
different times,
i.e., t1,..., tk . Directory Execution /

Management
(2) All k requests are

broadcast to each K< .
backend. -u e

(3) There are 3 \
processes in a
backend.

rtl--Backend 2

tDirectory Execution/
rt k -- ngeen

rt

(4) Internrocess
communications
among the
processes for
exchanging the Backend m
descriptors in
the descriptor Directory Execution
search phase are Management -
not shown here.

Figure 18. The Message-Oriented Design for
Concurrency Control in MDBS-TI

PACE 88

Notes:
(1) There are n users. Backend 1
(2) There are m

backends. "

(3) There are mxn
user processes. Cluster-

(4) There are m - Ck
cluster-lock Lock
tables. N Table 1

Backend 2

- Cluster-

Ctl Lock* Controller\"Table 2

(5) Interorocess
communi-ation
among the
Processes for
exchanging

ackend
descriptors in
the descriptor
search phase
are not shown
here. Cluster-

Lock
* Table m

Figure 19. The Procedure-Oriented Design for
Concurrency Control In .fDBS-II

PAGE 89

approach. However, it has been suggested that a message-oriented approach

might be more efficient [Ston8l]. We plan to investigate both approaches

more fully before choosing one for our implementation.

PAGE 90

REFERENCES

[Astr76] Astrahan, M.M., et al., "System R: Relational Approach to Database

Management," ACM Transactions on Database Systems, Vol. 1, No. 3, September

1976, pp. 189-222.

(Cana74I Canaday, R.H., et al., "A Back-End Computer for Database Manage-

ment," Communications of the ACM, Vol. 17, No. 10, October 1974, pp.

575-582.

[Ferr78] Ferrari, D., Computer Systems Performance Evaluation, Prentice-Hall,

1978.

[Gibs70] Gibson, J.C., "The Gibson Mix," IBM Technical Report, TROO.2043,

June 1970.

[Gilm79] Gilmour, R.W., Business Systems Handbook: Analysis. Design. and

Documentation Standards, Prentice-Hall, 1979.

(Howd8O] Howden, W.E., "Functional Program Testing", IEEE Trans. on Software

Engineering, Vol. 6, No. 2, March 1980, pp. 162-169.

[Hsia70] Hsiao, D.K. and Harary, F.A., "A Formal System for Information Re-

trieval from Files," Communications of the ACM, Vol. 13, No. 2, February

1970; Corrigenda, Communications of the ACM, 13, 3, March 1970.

[Hsia8laJ Hsiao, D.K. and Menon, M.J., "Design and Analysis of a

Multi-Backend Database System for Performance Improvement, Functionality Ex-

pansion and Capacity Growth (Part I)", Technical Report, OSU-CISRC-TR-81-7,

The Ohio State University, Columbus, Ohio, July 1981.

[Hsia81b] Hsiao, D.K. and Menon, M.J., "Design and Analysis of a

Multi-Backend Database System for performance Improvement, Functionality Ex-

pansion and Capacity Growth (Part II)", Technical Report, OSU-CISRC-TR-81-8,

The Ohio State University, Columbus, Ohio, August 1981.

PAGE 91

[Kern78] Kernighan, B.W., and Ritchie, D.M., The C Programming Language,

Prentice-Hall, 1978.

[Knut7l] Knuth, D.E., "An Empirical Study of Fortran Programs",

Software-Practice and Experience, Vol. 1, pp. 105-133.

[Laue79] Lauer, H. and Needham, R., "On the Duality of Operating System

Structures," in Proc. Second International Symposium on Operating Systems,

IRIA, October 1978, reprinted in Operating Systems Review, Vol. 13, No. 2,

April 1979, pp. 3-19.

[Ling79I Linger, R.C., Mills, H.D., and Witt, B.I., Structured

Programming - Theory and Practice, Addison-Wesley, 1979.

[Mill71] Mills, H.D., "Chief-Programmer Teams - Principles and Procedures,"

IBM Report FSC 71-5108, 1971.

jRitc74] Ritchie, D.M. and Thompson, K., "The UNIX Time-Sharing System",

Communications of the ACM, 17, No. 7, July 1974, pp. 365-375.

(Stone8l] Stonebraker, M., "Operating System Support for Database Manage-

ment," Communicatons of the ACM, Vol. 24, No. 7, July 1981, pp. 412-418.

[Wilc77] Wilcox, C.R., "MAINSAIL Language Reference Manual", SUMEX Computer

Project, Stanford University Medical Center, June 1977.

[Wulf7l] Wulf, W.A., Russell, D.E., and Habermann, A.N., "BLISS: A Language

for Systems Programming," Communicatons of the ACM, Vol. 14, No. 12, De-

cember 1971, pp. 780-790.

[Your79] Yourdon, E., Structured Walkthroughs (2nd Edition), Prentice-Hall,

1979.

PAGE 92

APPENDIX A

HOW TO READ AND FOLLOW THE PROGRAM SPECIFICATIONS

In Appendices B, C and D, a large number of MDBS-I programs are des-

cribed and specified. These programs represent those parts of MDBS-I that

have been designed and implemented at this time.

A.I Parts within an Appendix

Each appendix begins with an introduction which outlines the major com-

ponents of the design. For example, the design of test file generation, pre-

sented in Appendix B, consists of two major components: one for generating

random test data strings and the other for generating realistic test data

sets. Accordingly, each major component is described and specified in a 3ep-

erate part of the appendix. Thus Appendix B has Part I and Part II.

A.2 The Format of a Part

In each part, we provide the following documentation elements:

(1) Title of the part,

(2) Name of the design,

(3) Name of the designer,

(4) Date the design was first submitted,

(5) Dates of design modifications,

(6) Statements of the design purpose, and of the input and output re-

quirements,

PAGE 93

(7) Formal specifications of the input and output, if necessary,

(8) Procedure names used in the design,

(9) Data structures used in the design,

(10) Program specification of the design.

A.3 Documentation Techniques for the Part

In the previous section, we list the various documentation elements.

They are used to describe a design. Documentation elements I through 5 are

written in English phrases. Document element 6 is written in prose. On the

other hand, document elements 7 through 10 can be expressed more effectively

using other means as described in Chapter 2. Specifically, we use

Backus-Hlaur form (BNF) for writing the specifications in document element 7.

The procedure names of document element 8 are shown in a program hierar-

chy as discussed in Section 2.2.4 and depicted in Figure 10. The use of the

hierarc'iy makes clear the calling sequences of the procedures named. The

data structures of documentation element 9 are specified in either SSL or in

the C programming language. In documentation element 10, the procedures,

themselves, are specified in SSL.

Except for the programming team that writes the procedures, other teams

will usually not be interested in the internal logic of the procedures.

Consequently, they need only know the higher-level specifications of the pro-

cedures. SSL as described in Section 2.2.2 and depicted in Figure 9 is an

ideal specification language for revealing the design of the procedures from

a top-to-bottom-and-layer-to-layer way. It also works well with the hierar-

chical organization of procedures.

PAGE 94

APPENDIX B

THE SSL SPECIFICATION FOR TEST FILE GENERATION

The program specification for test file generation is shown in this ap-

pendix. The specification design is composed of two parts. In part two, all

procedures and data structures that are required to define set members and

then to select a particular member for a value in a record are specified. In

part one, all the procedures that are not concerned with data sets are speci-

fied.

B.1 Part I - Generating Random Test Data Strings

1* 1 Part I - Generating Random Test Data Strings *
2 Design:GENERATE FILE(FILE-NAME)
3 Designer: D.S. Kerr ./
/ 4 Date: July 23, 1981 */1

/* 5 Modified Jul 30 1981
1* August 4 181 i
1* August 11, 1981 - removed SETS to Part II, no other changes */
1. August 25, 1981 - changed identification of set from */
1. SetNumber to SetPointer in AttributeDescription */
1. January 3, 1982 - description changed, no changes to the
1.'* design itself ./

1* (6) Purpose: *1
/. The purpose of this system is to generate a file of test data which */

pcan be aplied to MDBS. The user s ecifies the FILE-NAME *
/* NUMBER-OF -RECORDS, and the NUMBER-OF-ATTRIBUTES-PER-RECOAD. The user
/* then specifies how the values of each attribute are to be chosen: *
1* randomly from a predefined set, randomly from a range of integers, or
!* as a random character string.
1* A set is characterized by a set-name, type(length), number-of-members, *
/* and the members. It will be stored in a tile calleA set-name in a
/* library of sets. */. *1
1* A distribution function, UNIFORM(min,max), must be provided. It
1* should generate a random integer between min and max. */.*

(7) Output: *
1* Output is a file of records where each record has the form *
/* fieldl$field2 . .. fieldn# *
/* The actual data output is a character string. $ is a special character *
/* to seperate fields, # is a special character to seperate records. A *
/* more formal definition is given below. *
/* *
/* Notation fiteml ... means 1 or more occurrences of item *1L* Itemj ... means 0 or more occurrences of item */1* *
/* file ::- label data */
/* label ::- number-of-records $ number-of-attributes $ attribute-body */
/* number-of-records ::- integer the number of records in the file */
/* number-of-attributes :: integer the number per file */1* *

PAGE 95

1* attribute-body ::- {attribute-descrittion$} ... *
1* attribute-description ::- Type(length) source-domain $ distribution *
1* type ::- INTEGER I STRING I FLOAT I others to be added later *
1* source-domain ::- set-name I RANDOM-INTEGER I RANDOM-qTRING *
* distribution ::- distribution-func~ion parameter-list) *
/* distribution-function ::- UFIFORM I Qthers to be added later *
1* parameter-list ::- integer L,integerJ *
1* length ::- iiteger in bytes of an attribute *
/* integer ::" tdigit} usual definition *
/* set-name :: filename sets are described belov *
/* filename :: any legal RSX (UNIX) filename1,*
/* data ::- {record#} .
1* record :: field L$field ... *
1* field ::string actual field value *
1* string :: string character I character *
/* character ::- digit I letter I specialcharacter *
/* digit ::=0 11 2 3 14 15 16 71 19 *
1* letter ::lowercaseletter uppercaseletter *
1* lovercaseletter ::- albc d e jfglh k mm olp r s t u h vily *11* uppercaseletter ::-A B C D E F H I KLMN 0 R S T U
1* specialcharacter ::+ &|-| I I < I *

, I / / *

(8) Procedure Hierarchy for File Generation

Generate
File
(TFG1)

-------- -----------------------------------

Define Load Generate
File Sets Data
(TFGll) (TFG12) (TFGI3)

(See Procedure Structure for Sets) --

Describe Write Write
Attribute Label Data(TFGI1I) (TF 131) (TFG132)

- I
Write Generate Write
Attribute Record Record
Description (TFG1321) (TFG1322)
(TFGI311)

Get Attribute Stuff
alue AttributeTFGI3111) Yalue

(TFGI3212)

SETS$ Random- Random- Random-
RANDOM- Integer- String- Float-
VALUE Value Value Value
(SET6) (TFGI32111) (TFG132112) (TFG132113)

PAGE 96

(9) Data Structures

#define FILENAMELENGTH 10 /* maximum number of characters in a file name
#define MAXATTRIBUTES 10 /* maximum number of attributes in a record
#define MAXPARAMS 10 /* maximum number of parameters for distribution */

/* functions */

struct AttributeDescription {
char Type; /* INTEGER = z. , STRING -'s , FLOAT af */
int Length, /* number of bytes */
int Source;/* SET - 1 , RANDOMINTEGER - 2 , RANDOM STRING = 3 */
char SetName[FILENAMELENGTH ; -/* defined only for sets *1
struct SetDef *SetPointer; /* to the set definition */
int Distributign; /* UNIORM - I , ... */
int Parameters [MAXPARAMS];/* of the distribution */

struct FileDescription {
char FileName[FILENAMELENGTH I; /* name of the file */
int NumberOfRecords; /* to be generated in the file */
int NumberOfAttributes; /* in a record.*/
struct AttributeDescription Description[MAXATTRIBUTES];}

(10) Program Specifications

I. job GENERATE FILE;
/* Uses: DEFINE FILE - to fill in the attribute descriptions */1* LOAD SETS - to load the sets *1
/* GENERATE DATA - to generate the actual data */

2. perform DEFINE FILE;
3. erorm LOAD SETS;
4. perform GENERATE DATA;
5 end ioB

2.1. proc DEFINE FILE; /* fill in file description */
2.2 read and-store FileName, NumberOfRecords, NumberOfAttributes;
2.3 NumberOfAttributes <- MAXATTRIBUTES;

/* Uses DESCRIBE ATTRIBUTE(pointer to description) - to read */
and store an attribute description */

2.4 int i; 1* attribute subscript */

2.5 for i from I to NumberOfAttributes do
2.6 - pef-m D!1MCRIBEATTRIBUTE(&Fi-l-Description.Description[iJ);
2.7 end zor
2.8 enZ proc

4.1 proc GENERATE DATA
/* Uses tFe information in the file and attribute descriptions to */
/* generate the file.

4.2 open file(file name);
4.3 perform WRITE TABEL;
4.4 e WRITE-DATA;
4.5 close ile(fiTename);
4.6 end proc

4.3.1 proc WRITE LABEL;
/*-Jses the information in the file and attribu.e */
/* descriptions to write the label. */

4.3.2 int i; /* attribute subscript */
4.3.3 $char is the special character used to seperate fields

4.3.4 write NumberOfRecords, $char, NumberOfAttributes, $char;
4.3.5 for i from I to NumberOfAttributes do
4.3.6 - peirr-rm W!ME ATTRIBUTE DESCRIPTION(
4.3.7 &Filebescription.Description[i]);
4.3.8 write $char;
4.3.9 end for
4.3.10 end proc

PAGE 97

4.4.1 proc WRITE DATA;
/*--Uses the information in the file and attribute descriptions*/
/* to generate and write the records. */

Uses: GENERATE RECORD(record) returns record as a
character strir.g

WRITERECORD(record) where record is the character
string to be acded to the output file.

4.4.2 int rec no; /* index for records */
4.4.3 #char ii the special character used to seperate records

4.4.3 for rec no from 1 to numberofrecords
4.4.4 U-0
4.4.5 perform GENERATE RECQRD(record);
4.4.6 pefr WRITEREZ0BD(file name , record)
4.4.7 Wr-3-td--char;
4.4.8 end for;
4.4.9 end proc

4.5.1 proc GENERATE ECORD(record);
output: record - character string

Uses: GETATTRIBUTE VALUE(pcinter to description) -
to determine a value-(c~aracter string) for
this attribute

STUFF-ATTRIBUTE VALUE(value, record) - appends
value t5 recorc..

4.5.2 int attr no; /* index for actributes */
4.5.3 string vilue; /* for a particular attribute, in string form */

4.5.4 for attr no from I to number of attributes do
4.5.5 value :=-= ATTBUTE VLUt(

FiTeDescriptlon.Description[att; no]);
4.5.6 perform STUFATTRIBUTEVALUE(vNalue,record)T
4.5.7 end or; -
4.5.8 returnkrecord);
4.5.9 end proc

/* end scope of FileDescription */

2.6.1 proc DESCRIBE ATTRIBUTE(DescriptionPtr :;
input: DescriptionPtr - / points to AttributeDescription */

2.6.2 struct AttributeDescription (..
2.6.3 char Type; /* INTEGER - i , STRING - s , FLOAT - f *
2.6.4 int Length; /* number of bytes in string to be generated */
2.6.5 int Source;/* SET = 1 , RA OMINTEGER ! 2 , RANDOM STRING = 3*/
2.6.6 char SetName[FILENAMELENGT4 1; /* defined only for sets *1
2.6.7** struct SetDef *SetPointer; /* to the set definition */
2.6.8 int DistributiQn; /* UNIFORM - 1 , ... */
2.6.9 int ParametersIMAXPARAMSJ; /* of the distribution */
2.6.10 }

/* enter attribute into attribute table */

2.6.11 define Type;
2.6.12 define Length;
2.6.13 define Source;
2.6.14 if Source is SET
2.6.15 then
2.6.16 define SetName;
2.6.17 define Distribution;
2.6.18 define Parameters;
2.6.19 end proc

I -

PAGE 98

4.3.6.1 2proc WRITE ATTRIBUTEDESCRIPTION(DescriptionPtr)
/* Wri-tes the description of one attribute into the output file *

4.3.6.2 $char is the special character used to seperate fields

4.3.6.3 Write the description;
4.3.6.4 end proc

4.5.5.1 proc GET ATTRIBUTEVALUE(Des6crgtonPtr)
input: DescriptionPtr Ipoints to AtributeDescription *
returns: value character string

Uses: SETSSRANDOM VALUE(DescriptionPtr)
RANDOM INTEME VALUgC DescriptionPtr)
RANDOM-STRING VALUE(Descriptionftr)
RANDOK-FLOATVALUE(Description~tr)

each-returns a character string representation
of the appropriate value

4.5.5.2 struct AttributeDescription ;.
4.5.5.3 char Type; /* INTEGER -i , STRING -'s' , FLOAT - 'f'*
4.5.5.4 mnt Length; 1* number of bytes */
4.5.5.5 mnt Source; 1* SET - 1 RADM INTEGER -2 , RANDOM STRIN 3 *
4.5.5.6 char SetNamel FILENAMELdNGTH J;/* defined only for iFets 10I
4.5.5.7** struct SetDef *SetPointer; /* to the set definition *
4.5.5.8 mnt Distribution; 1* UNIFORM - 1 .. *
4.5.5.8 u.t Parameters[MAXPARAMSI; /* of the distribution *

4.5.5.10 /* get a value for attribute attr-no

4.5.5.11 case DescriptionPtr.Source value
4.5.5.12 set' : value :-

SETS$RANDOMVALUEC DescriptionPtr)

4.5.5.13 'integer' : value :
RANDOMINTEGERVALUEC DescriptionPtr)

4.5.5.14 string' : value :-
RANDOM_-STRING_-VALUE(DescriptionPtr)

4.5.5.15 'float : value :=
RANDOMFLOATVALUEC DescriptionPtr)

4.5.5.16 end case
4.5.5.17 returnkCalue);
4.5.5.18 end Proc

4.5.6.1 Proc.STUFFATTRIBUTE VALUE(value,record);
input: value - -character string
input/output: record - character string

4.5.6.2 /* puts value into record *
4.5.6.3 end Proc

4.4.6.1 proc WRITE RECORD(file name, record)
input:-file name,' record
1* actually-writes record to file file-name

4.4.6.2 end Proc

4.5.5.13.1 proc RANDOMINTEGERVALUE(DescriptionPtr)
input: Descriptionftr
1* returns an integer value as a character string *

4.5.5.13.2 end proc

4.5.5.14.1 proc.RANDOM STRING VALUE(DescriptionPtr)
input: '~escripEionPtr
1* returns a character string value ~

4.5.5.14.2 end proc

4.5.5.15.1 Proc RANDOM FLOAT VALUE(DescriptionPtr)
input: Nescri-tionPtr
1* returns alfloating point number as a character string *

4.5.5.15.2 end Proc

PAGE 99

B.2 Part II - Generating Realistic Test Data Sets

2 Design: SETS in File Generation *//. ~ 3 Designer: D. S. Kerr */
1* 4 Date: July 23, 1981 */
* Modified: Jul 30 1981*
1* August i 1981
/* August 24, 1981
/* August 27, 1981 Minor changes after final walkthrough */* */
/* (6) Purpose: *1
1* A set is characterized by a set name, type, length, NumberOfMembers, */
/* and the members. It will be stored in a file called set-name in a
/* library of sets. */I* *I
/* (7) Input and Output Data */
1* The form of the data in a file is shown below. $ is a special character */
/* used to seperate fields in the file label. # is a special character */
/* used to seperate members. *//* *i
/* set file name :: any legal RSX (UNIX) filename
/* set-file-::- set label set data
/* set-label :: DaCaType $ DitaLength $ NumberOfMembers $ */
/* set-data ::- { Member # } ... */
/* Mem~er :: { character } ... */

/* DataType :: INTEGER I STRING I FLOAT I others to be added later */
/* DataLength ::- integer in bytes, of a set member
/* NumberOfMembjrs :: integer the number of members in the set */
/* integer :: i digit u ... usual definition */1* */
/* character ::- digit I letter I specialcharacter */
/* digit :: 0 1 2 1 3 1 4 1 5 6 1 7 1 8 1 9
/* letter :: lowercasel t er upe cseletter *1
1* lowercaseletter ::= a b cld efl |h ii JkjmlnopIcIrfsltlulvlwlxIz *1
1* uppercaseletter :: AIB C ID EIFIGIH1I1J'K L M N OP IR SITU V W Xi *
/* specialcharacter ::I @ # & % I& I) I 1+! */
1* */=

1* III I " "* ... 1

1*< >

PAGE 100

(8) Procedure Structure for Sets

Get
Load At tribute
Sets Value
(TFG12) (TFGI3211)

SE~iSMS SETSM$ SETSM$ SETSM$ SETSM$ SETSM$
START STATUS LOADED IN FILE DEFINE LOADED INFILE RANDOM
(SET1) CHECK (SET3) (s!'r4) LOAD AND AND ERROR AND ERRVDR VALUE-

(SET2) SAVE - (TFM121) (TFM122) (SET6)
(SET5)

4.--+-4. ---------------------------------------

INET REALD MEMBER READ MEMBER SAEMEMBER
SET FR0W-'ILE -FROM TERMINAL IN FILE
(SET21) (SE 1T41) T'SET5l) CTET52)

SET MEM1BERSM$ SET MEMBERSM$
STANr STORE

(SMi) MEMBER
(SM2)

PAGE 101

(10) Program Specifications

3.1 Proc LOAD SETS;/* FoFr each set to be loaded in main memory, fill in SetDefinition. *
/* Also fill in SetPointer in AttributeDescription. Set may already *
/* be loaded for a previous attribute. It may also be in a prviously *
1* defi.ned library of sets. If it is not already defined, hen it must ~
1* be read from a terminal. *
/* Any new sets defined will be added to this library. *
Uses:

SETSMI START - to initialize SETSM module
SETSM STATUS CHECKC(NamePtr, TY e, Len~th, Status, SetPtr)

-Returns the status of set NamePtr . Also returns SetPtr, a
pointer to a structure of type SetDef if there were no errors.
ioss ib le values of Status are:
LOADED - Already loaded in primary memory for a previous attribute
LOADED AND ERROR - Loaded but set description and attribute

Uesciiption do not match
"NFILE - Already defined in a file but not yet loaded in primary

memory
::NFILE AND ERROR - Defined but set description and attribute

d-escr~ption do not match
11EW -Set not yet defined

SE'CSM$LOADED(NamePtr, SetPtr)-Returns SetPtr for set 'NamePtr'
which is already loaded in Erimary memory.

SETSM$INFILE(NaznePtr, SetPtr)- oads set 'NamePtr' from file
into prry memory. Returns the corresponding SetPtr.

SETSM$DEFIN~~~E LOADMIDSAVEj NamePtr, Type, Lent etr)-Wn
set Was not previously been defined. Rleais the set
from the terminal, loads it into primary memory, and
saves it in a file for future use. SetPt r is returned.

LOADED AND ERROR -Used to fix error.
IN_-FIL-_ANIERROR -Used to fix error.

3.2 mnt Status; /* of a set takes on values shown above *1
3.3 int i- 1* attribute subscript V.
3.4 char 4CurrentAttributePtr- 1* pointer to the current attribute if a set.*/
3.5 set descri~tion *SetPtr; ,7* pointer to the set description *
3.6 pR.rform, SETSM$START;
3.7 -f-orTl-rom I to NumberOfAttributes ,3.8 if-Ti eDeicri ption.Descri'ption [ii.Source is SET
3.9 then /* then there are 3 cases */

7W 1. set already loaded in memory for a previous attribute*/
/* 2. set already defined in a file */
1* 3. set must be read from terminal, loaded and saved *

3.10 CurrentAttributePtr - &FileDe scription Descriptionfi];
3.11 perform SETSMSSTATUS CHECK(CurrentAttributePtr->SetName,

CurrentAttri'FutePtr->Type,
CurrentAttributePtr->Length,
Status SetPtr)

3.12 case Status value
3.13 -- LOADED: -per orm STSMLOADED(SetPtr)
3.14 IN FILE: SETSM$IN FILE(SetPtr)
3.15 NEW: er~3TM$DEFINE-LOAD AND SAVE(SetPtr)
3.16 LOAD ~O : pegrorLOADED AND ERROR-
3.17 INFILYANUERROR: pe1r Form INFlEATDERR6R;
3.18 end casWe;--

3.19 CurrentAttributePtr->SetPointer -SetPtr;
3.20 end if;
3.21 end T-or
3.22 end Proc

3.16.1 oroc/ LOADED AND ERROR-
3*My isk 'For reAefinition of set name or attribute description. *

3.16.2 end Proc

3.17.1 proc/IN ,FILE AND ERROR;f/R ay ask f~r redefinition of set name or attribute description. *
3.17.2 end Proc

PAGE 102

module SETSM;
1* Values of defined constants must be determined before system */
/* is fully operational. *1

#define FILENAMELENGTHIO0 * maximum number of characters in a file name
#define MAXSETS 10 /* maximum number of sets allowed
#define MAXMEMBERS 10 /* maximum number of members in a set */
#define MAXSETSTORAGE 10 /* maximum storage to hold the sets */

struct SetDef {
char Name[FILENAMELENGTHI;
char DataType; /* INTEGER - i , STRING - s , FLOAT - f */
int DataLength; /* nu*ber of bytes */
int NumberOfMemer s; / in the set. When set is being stored */

h* is the number of membeTs currently in the set. */
char *MeberPtr(MAXMEMBERSJ; /* MemberPtriJ points to the */

1* character string value of the i-th member of this set. */

struct SetDef SetDefinition[MAXSETS]; /* one for each set */

struct SetDef *SetAvailablePtr; /* points to next available set */

exported: START, STATUS CHECK, LOADED, IN FILE, DEFINELOAD ANDSAVE,
RANDOM-VALUE

internal: READMEMBER FROM FILE READ MEMBERFROMTERMINAL,
SAVE. ER _IN_ILE -

uses START and STORE MEMBER from SETMEMBERSM module

1.1 Proc START;
/* initializes SetAvailablePtr and SET MEMBERSM module */

1.2 Initialize SetAvailablePtr t3 initial getDefinition.
1.3 perform SETMEMBERSM$START;
1.4 end proc

PAGE 103

2.1 Proc STATUS CHECK(input : SetNamePtr, Type, Length,
-- utt : Status SetPtr

input: SiER-iePtr /* ol set to be checked */
Type /* from attribute description */
Length /* from attribute description */

output: Status /* of set "NamePtr'. Possible values are:
LOADED - Already loaded in primary memory
LOADED AND ERROR - loaded but descriptions do not match
IN FILY - 'I1ready defined in a file
IN-FILE AN'D ERROR - Defined but descriptions don't match
NEV - not y-et defined */

SetPtr /* PDinter to structure of type SetDef. This set
/* is to be defined if there are no errors.

1* SetName pointed to by SetNamePtr is the same as the name of the file */
1* which holds the set. */

2.2 if there exists a set j, such that SetDefinition[j].Name matches
set name iaentified by SetNamePtr

2.3 then /* Check set des:ription and attribute description */
2.4 if descriptions match
2.5 then
2.6 - Status - LOADED;
2.7 define SetPtr to point to SetDefinition[j];
2.8 else Status z LOADEDANDERROR;
2.9 end TF

2.10 else /* There are still two possibilities. First, check for set */
-- /* in library of sets */

2.11 open file(SetNamePtr);
2.12 if open successful
2.13 - then /* check set description and attribute description */
2.14 read set lescription from file;
2.15 if descriptions match
2.16 then
2.17 Status - IN FILE-
2.18 perform NEXT SET(SetPtr);
2.19 store set name, type, length & NumberOfMembers
2.20 in set descrip tion
2.21 else Status = INFILEAND_ERR6R;
2.22 end _ _

2.23 else /* Since open was not successful, set must not have */
2.24 /* been previously defined */
2.25 Status - NEW;
2.26 perform NEXTSET(SetPtr);
2.27 store set name, type and length in set description-

/* Note that NumberOfMembers is not known until the */
/* set has been read from the terminal. */

2.28 end if;
2.29 end it;
2.30 end proc; -

internal procedure which requires access to all of SetDefinition

2.18.1 Proc NEXT SET(output : SetPtr);
1* Returns a pointer to the next available set. Increments */
/* SetAvailablePtr. */

/* SetPtr and SetAvailablePtr - pointers to structures of type SetDef. */

2.18.2 SetPtr = SetAvailablePtr;
2.18.3 Increment SetAvailablePtr;

2.18.4 end proc

endscope of SetDefinition

3.1 proc LOADED(input : SetPtr);
1* actuall--T oe not have to do anything */
input: SetPtr * a pointer to a structure of type SetDef */

3.2 end proc

PAGE 104
4.1 2roc IN FILE(,in t: etPtr);

-input:e tr 7* a pointer to a structure of type SetDef, the */
/* set to be input */

1* Reads in the actual set members from the file and */
1* stores them in set SetPtr. */

4.2 struct SetDef {
4.3 char Name[FILENAMELENGTH];
4.4 char DataType; /* INTEGER - i , STRING - s' , FLOAT - f */
4.5 int DataLength; /* number of bytes */
4.6 int NumberOfMemIers; /* in the set. When set is being stored */

/* is the number of membeTs currently in the set. */
4.7 char *Me berPtr[MAXMEMBERS]; /* MemberPtrii] points to the

1* character string value of the L-th member of this set. */
4.8 }

4.9 int i; /*-index for set members *1

4.10 /* read and store the members */
4.11 for i from 1 to NumberOfMembers do
4.12 - e-r. __ RE) MEMBER FROM FILEU Se Ptr->Name , MemberValue);
4.13 e SET REMBERSIT$STOE MEMBER(input : MemberValue,

outut : NewMemberlrtr);
4.14 MemberPt'rt i = NewMemberPtr;

4.15 end fori
4.16 close tile(SetPtr->Name);

4.17 end proc

5.1 proc DEFINE LOAD AND SAVE(input : SetFtr);
input: -SetP-Er /W pointer to structure of type SetDef */

/* Set has not previously been defined. Reads the set from the */
/* terminal, loads it into primary memory, and saves it in a file for */
1* future use. Stores NumberOfMembers in set description. *1

5.2 struct SetDef {
5.3 char Name[FILENAMELENGTH];
5.4 char DataType; /* INTEGER - 'i , STRING - s , FLOAT = f" *
5.5 int DataLength; /* number of bytes */
5.6 int NumberOfMembers; /* in the set. When set is being stored */

/* is the number of members currently in the set. */
5.7 char *11emberPtr[MAXMEMBERS]; /* MemberPtr[i] points to the/* character string value of the i-th member of this set. *

5.8 c

5.9 int i; /* inde. *1
5.10 SetNamePtr /* pointer to the name of the set */

/* Define and load set into primary memory. */
5.11 i = 0;
5.12 Perf m READ MEMBER FROM TERMINAL(MemberValue);
5.13 w-iiiI-T Morelembers-) do-
5.14 if i > MAXMEMBERS-
5.15 then perform ErrorRoutine;
5.16 perf-rSZTEMFERSM$STORE MEMBER(in : MemberValue,

output NevMemberl7tr , ErrorStatus);
5.17 if Erroribtus NO SPACE
5.18 then perform ErForRoutine;
5.19 increment ii
5.20 MemberPtr[i I = NewMemberPtr-
5.21 Perf READMEMBERFROMTERMNA(MemberValue);5.22 end wni e ; - - -

5.23 store i in NumberOfMembers in SetDef;

5.24 /* Save set in file. */
5.25 SetNamePtr - SetPtr->Name;
5.26 open file(SetNamePtr);
5.27 write set description to file-

/* write set members to file I/
5.28 for i from I to NumberOfMembers do
5.29 perF-rm STVE MEMBER IN FILE(-- etNamePtr,SetPtr-3 Mem-berPtr[i) ;
5.30

end for;

5.31 close tilek SetNamePtr);

5.3. end proc

PAGE 105

6.1 proc RANDOM VALUE(input : AttributeDescriptionPtr);/ *returns pointer to value */
input: AttributeDescriptionPtr /* pointer to structure of type *1

/* AttributeDescription

6.2 struct AttributeDescription i
6.3 char Type; 1* INTEGER - , STRING - , FLOAT f *
6.4 int Length; /* number of bytes *I
6. chint Soure;/*.SET w I RANDOMINTEGER -2 RANDOMSTRING - 3 */
6. char Setame FILENMLENGTH J; /* defi.neA only for sets */
6.7 struct SetDef *SetPointer; /* to the set definition */
6.8 int Distributiqn- /* UNIORM - 1 , ... */SParameters[MAXPARAMS]; /* of the distribution */
6.10f

6.11 struct SetDef {
6.12 char Name(FILENAMELENCTH];
6.13 char DataType; /* INTEGER = i , STRING - 's' , FLOAT - 'f' *
6.14 int DataLength; /* number of bytef. */
6.15 int NumberOfMembers; /* in the set. When set is being stored */

1* is the number of membIrs currently in the set. */
6.16 char *MemberPtr[MAXMEMBERS]; /* MemberPtr[i] points to the */

/* character string value of the i-th member of this set. *16.17 }

/* Uses SetPointer, Distribution, Parameters
/* to find the value of a random member of the set */
/* Note that different attributes may use the same set, but *1
/* with different distribution functions.

6.18 end proc

end of exportedprocedures

startof internalprocedures

4.12.1 proc READMEMBER FROM FILE(input : SetNamePtr,
-- : Memb er lue);

/* Reads a memb-r from file SetNamePtr */
4.12.2 end proc;

5.12.1 proc READ MEMBER FROM TERMINAL(. output MemberValue);
/* Reads a member-from terminal *1
/* Uses NULL to indicate no more members. */

5.12.2 end proc;

5.29.1 proc.SAVE MEMBER IN FILE(input : SetNamePtr, MemberPtr);
inputT SetNamePEr

MemberPtr
/* writes member into file SetNamePtr */

5.29.2 end proc;

end-ofinternalprocedures

end module SETSM

PAGE 106

module SET MEMBERSM
c-'Ear SitData[MAXSETSTORAGE]; 1* holds the set members - pointed to *1

1* by MemberPtr
char *MemberAvailablePtr; /* Points to 1st available space in

/* SetData */

/* first character of member m of set a is SetDqfinition[s].MeberPtr[m] *1
/* last character is SetDefinition[s .MemberPtrtm+DataLegth-l *11* SetDefinition[s].MemberPtr[m+DataLengthl is NULL - \0) *1

1.1 Proc START;
/* Initialize MemberAvailablePtr to beginning of SetData.

1.2 end proc

2.1 Proc STOREMEMBER(input :MemberValue,
output : NewMemberPtr , ErrorStatus);

/* MemberValue is the value to be stored. It is stored in the next */
/* available spaces in SetData. NewMemberPtr is returned after it "1
/* is set to point to this value. MemberAvailablePtr is incremented.*/
1* ErrorStatus is set to OK. If there is no room, then ErrorStatus *1
/* is set to NO SPACE.

/* It should be noted that only STORE MEMBER requires access to all */
/* of SetData. All other routines get pointers to a particular */
/* value in SetValue and use only that particular value. *1
1* SetData looks like */

* */
/* *---
1* I value NULL value NULL . . . last-value NULL unused I *11* --1* *1
1* */
/* vhere MemberAvailablePtr points to the first available space.

2.2 if there is not enough space
2.3 then ErrorStatui = NO-SPACE;
2.4 ese
2.5 ErrorStatus = OK;
2.6 Store MemberValue in SetData from MemberAvailablePtr on;
2.7 NewMemberPtr = MemberAvailablePtr;
2.8 increment MemberAvailablePtr;
2.9 end if

2.10 end proc

end module SETMEMBERSM

PAGE 107

APPENDIX C

THE SSL SPECIFICATION FOR DATABASE LOAD

The program specification for database load is shown in this appendix.

The specification design is composed of two parts. Part one includes all

procedures for the database load subsystem. Part two includes the :;pecifica-

tions for the Record Template module.

C.1 Part I - Database Load Subsystem

Design: DATABASE LOAD UTILITY *// 3 Designer: P. R. Strawser *1
/* Date: August 25, 1981 */
* Modified: September 16, 1981

Changes marked with **' in SSL. */I* *1
/* (6) Purpose: "1

The database load utility gives MDBS users ,/
1* the capability to load pre-existing data from */
1* other database systems or other files into */

the MDBS system. This utility is designed to */
run on the MDBS controller.
The files being loaded are assumed to be of */

1* fixed length records, all records in a file */
having the same format. The files are also */
assumed to be resident at the controller. */
The database load utility, using these files */
and other information supplied by the user,

1. constructs the DDIT and AT tables required by */
1* ~he directory management subsystem. It also *

formats the input records as required for
storage in the database, organizes the records*

'* into clusters, and distributes the records and*
the directory management data to the backends.*//*"*1

/* (7) Output: *
1* Output is DDIT and AT information for the *

directory management subs ystem, and records *
/* formatted for storage at the backends. *

PAGE 108

(8) Procedure Hierarchy for Database Load

//vFILE? REP
(DBL11)

/ //DBLOAD (DELl)
1 DES CRDEF VVDBPREP

VVTYPEADEF (DEL11i) (DRL12)
(DBLiI1)

1/ 'TY".O~rDEF
(DBL11l2)

,/7YPECLST (DBL1 1 13) (/TD1.F
V(MBLIT.2) SRTCLUST11 REVflESCR (DBLlhl14) (DBUl3)

VV ATTRCHAR

/./SRCIICLST (DBLll21)
(DBLI122) //RCHCLST (DBL1122)

,/VRFVRT.IfP (DBL1l23)

VDRVAORB (DBLll3l) / DRVKWORD Y//LOADDATA
(DEL113) (DBL14)

-/DRVC (DBLI132Y

,'?UTINLS-T (DBLI3)
VPROCLUST

BLDSRT (DBL1J4) (DBLl4l)

-Procedures on the left
of a solid line are the REVTYPEC (DBUl35)
subprocedures of the VERN DL41
procedure on the right /ERN D~~1
of the solid line. /ITRC(42

V Coding is completed; walkthrough
i-s completed; test is to start.

vV Testing is completed.-also.

Procedures on the left of a dotted V/NFCLUST
line are also the subprocedures of (DBL14121)
the procedure on the right of the
dotted line.

PAGE 109

(9) Data Structures

Data structure definitions are included at the beginning of each procedure

definition in (10) below.

(10) Program Specifications

First Level Specifications for Database Load

I. subsystem DATABASELOAD; /* DBLOAD (DBLI) */

/* Prepare data for initial load into the database. */

/* Define descriptors and prepare records for */
/* loading into the database.

2. if clusters to be formed at file level
3. T en
4. perform FILE_PREP
5. else
6. pform DATABASE-PREP
7. end

/* Sort data into clusters.

8. perform SORTINTOCLUSTERS;

/* Load data into database store. *1

9. perform LOADDATA;

10. end subsystem*

PAGE 110

Second Level Specifications for Database Load

4.1 proc FILE PREP; /* FILEPREP (DBLII) */

/* Prepare files for loading to the database store. Clusters will be *1
1* defined at file level.

4.2 array type-C attrnames; /* Attribute names over which type-C */
/* descriptors will be defined.

4.3 arglist - (clusteringlevel /* "FILE' */
record type, /* Type records in the current file. */

/* (Payroll, Employee, Inventory
database name, /* Generic name for this database */

/* e.g. PERSONNEL, PARTS, CONTRACTS. */
pointer to type-C attrnames);

4.4 scalar atpointer /* Pointer to instance of AT */
/* created for this task. */

rectemppointer; /* Pointer to RTEMP for current */
/* file. */

4.5 arglist.clustering_level := "FILE";
4.6 get arglist.databasename from terminal;

4.7 while more files to be loaded do

4.8

4.9 get arglist.recordtype from terminal;

* Define all descriptors for this file.
* Argument list constructed as above is passed to */
/* the DEFINE DESCRIPTORS procedure, which returns */
/* a pointer Yo the instance of AT created for this*/
1* task. */

4.10 perform DEFINEDESCRIPTORS(arglist,
atpointer);

4.11 arglist + atpointer;

/* Define record structure via a record template. */
/* Argument list constructed as above is passed to */
/* this procedure, which returns a pointer to the */
/* record template created for this file.

4.12 perform DEFINERECTEMP(arglist,
rectemppointer);

4.13 arglist + rectemppointer;

/* Examine each record in the file, and determine */
* the set of descriptor ids representing descriptors *1
* from which keyworas in that record can be derived. */
* Create records to be sorted into clusters. */
/* Argument list constructed as above is passed to */
/* this procedure. */

4.14 perform DERIVEDIRECTORYKEYWORDS(arglist);

4.15 end while

4.16 end Proc;

PAGE III

6.1 proc DATABASE-PREP; /* DBPREP (DBLI2) */

/* Prepare data for loading to th database store. Clusters will be
defined at database level.

6.2 array type-C attr names; /* Attribute names over which type-C */
/* descriptors will be defined. */

6.3 arglist - (clustering.level, 1* "DATABASE" */
record type, /* Type records in the current file. */

1- /* (Payroll, employee inventory ...

database name, /* Generic name for ta~i database *1
/* e.g. PERSONNEL, PARTS, CONTRACTS. */

pointer to type-C attr_names);

6.4 scalar atpointer, /* Pointer to instance of AT */
/* created for this task. */

rectemppointer; /* Pointer to RTEMP for current */
/* file. */

6.5 arglist.clusteringlevel :- "DATABASE";

6.6 get arglist.databasename from terminal;

/* Define all descriptors for this database. */
/* Argument list constructed as above is passed to */
/* the DEFINE DESCRIPTORS procedure, which returns */

a pointer To the instance of AT created for this*/
/* task. */

6.7 perform DEFINEDESCRIPTORS(arglist,
atpointer);

6.8 arglist + atpointer;

6.9 while more files in this database do
6.1G begin

6.11 get arglist.recordtype from terminal;

/* Define record structure via a record template. */
/* Argument list constructed as above is passed to */
/* this procedure, which returns a pointer to the */
/* record template created for this file.

6.12 perform DEFINERECTEMP(arglist,
rectemppointer);

/* Examine each record in the file, and determine
/* the set of descriptor ids representing descriptors */
/* from which keywords in that record can be derived. */
/* Create records to be sorted into clusters. */
/* Argument list constructed as above is passed to */
/* this procedure. *1

6.13 arglist + rectemppointer;

6.14 perform DERIVE DIRECTORY KEYWORDS
(arglistT;

6.15 end while

6.16 end proc;

PAGE 112

8.1 proc SORTINTOCLUSTERS; /* SRTCLUST (DBLI3) *1

/* Records to be sorted have the form: */
/* record - (descr count, Number of descriptors in descr ids*/1* -- list which follows. - */
1* descrjids, List of descriptor ids from which */
1* -- this record can be derived. */
/* database-record); Record formatted into form
/* -- required for storing in the data- */
/* base store. */

8.2 open files;

8.3 sort records in ascending sequence by
descriptors ids within descr_count;

8.4 close files;

8.5 end proce

9.1 proc LOADDATA; /* LOADDATA (DBLl4) *1'

/* Distribute clusters of data across the multiple backends */
1* according to the track-splitting-with-random-placement */
/* data placement strategy. */

9.2 scalar cdtpointer; /* From CDTM module CREATE. */

9.3 record = (descr count, /* Number of descriptors in descr ids*/
/* list which follows. */

descr ids, /* List of descriptor ids from which */
/* this record can be derived. *1

database-record); /* Record already formatted into form*/
/* required for storing in the data- *1
/* base store.

9.4 systeminfo = (number of backends, /* This data assumed to be */
** backen-& a~dresses, /*available in some system*/

track capacity); /* generation file accessi-*/
/* ble through some module */
/* called SY SDATA. */

/* Create an instance of CDT for this task. The CREATE function of*/
/* the CDT module returns a pointer to the instance of CDT created */
/* for this database. */

9.5 perform CDTM$CREATE(cdtpointer);

/* Get from the system the information required for this task. */

9.6 perform SYSDATA$INFO(systemjinfo);

/* Read the first record. */

9.7 open file of sorted records and read first record;

9.8 while more clusters in sort file do
9.9

9.10 perform PROCESS_A_CLUSTER(record,
system info,cdtpoiiter);

9.11 end while

9.12 end Proc:

PAGE 113

Third Level Specifications for Database Load

4.10.1 ,roc DEFINE DESCRIPTORS /* DESCRDEF (DBLI11) */
(inputT inpointer(clusterinlevel,

record type,databa-e name,
ype-C_aEtr names),

output: atpointer)a

/* Define descriptors for this file or database, and store them */
i* in the DDIT created for this task. *1
/* Input is a pointer tQ an list which contains
/* clustering_level ("FILE" or "DATABASE"), record ty e, *1
/* database name, a list of attribute names over w'Fich type-C*/

descriptors are to be defined.
/* Output Is a pointer to the instance of AT created for
/* this task.

4.10.2 scalar name, /* Name to identify AT */
atpointer; /* Pointer to instance of AT

/* created for this task.

if inpointer.clusteringlevel = "database"
4.10.4 Then
4.10.5 name := inpointer.database name, /* NOTE: may also want */
4.10.6 else -- to indicate cluster- */
4.10.7 name : inpointer.record-type; /* ing level here. */
4.10.8 end if;

/* CREATE function of module ATM returns a pointer to */
/* the instance of AT created for this task. */

4.10.9 perform ATM$CREATE(name, atpointer);

4.10.10 if unsuccessful create
4.10.11 T-en
4.10.12 - display message
4.10.13 else

4.10.14 beizi

/* First all type-A descriptors. *1
4.10.15 while more type-A descriptors do
4.10.16 oerform DEFTYPE-A DESCR(at-ointer);
4.i0.17 end wtiie;

/* Then all type-B descriptors. *1
4.10.18 while more type-B descriptors do
4.10.19 _rf DFTYPE-BDESCR(atpointer);
4.10.20 end while:

/* Build an array of attribute names over which type-C */
/* descriptors are to be defined when input is read. */

4.10.21 perform LISTTYPE-C ATTR NAMES
(iipointer type-C attr names,
atpointer; --

/* Allow user to review descriptors for accuracy. */

4.10.22 perform REVIEWDESCRIPTORS
(inpointer. type-Cattrnames,
atpointer);

4.10.23 return(atpointer);

4.10.24 end if;

4.10.25 end proc;

PAGE 114

4.12.1 Proc DEFINE RECTEMP /* RTEMPDEF (DBLI12) */
(input: inpointer(clustering_level,

record type,
databaSe name,
type-C_attrnames,atpoi~ter),-

output: rectemppointer);

/* Define the structure of the records in this file by *
/* building a record template.

1* Input is a pointer to an list which contains */
1* clustering_level ("FILE" or "DATABASE"), record type *
1* database name, a list of attribute names over wlich type-C*I
/* descriptors are to be defined and a pointer to the AT. */
/* Output is a pointer to the record template created
/* for this t ask a

4.12.2 scalar record-type, /* Type of records in this file. *
attr name, /* Attribute name. *
descr type, 1* A, B, C, or NOTFOUND. *
rectemppointer, /* Pointer to RTEMP created for *

7* this task. *
dditpointer, /* Pointer into the DDIT returned *

/* from the FIND function of AT. *
duplicate, /* Indicator - TRUE or FALSE.
matched /* Indicator - TRUE or FALSE. *
successtul; /* Indicator - TRUE or FALSE. *

/* Attrlist to be returned from GETATTRIBUTECHARACTERISTICS */
I* procedure has the form: */

4.12.3 attrlist = (attr name, attr data type, attr format,
a-ttribute_characteristics);

4.12.4 recordtype :- inpointer.record-type;

/* Invoke the CREATE function of module RTEMPM to */
/* create an record template for this task. A
1* pointer to the template is returned. */

4.12.5 perform RTEMPM$CREATE(recordtype, rectemppointer);

4.12.6 if create is not successful
4.12.7 Ten
4.12.8 display message;
4.12.9 else
4.12.10 begin
4.12.11 whie more attributes to be defined do
4.12.12
4.12.13 get attr_name from terminal;

1* Check to see whether this attribute name is */
1* unique within this record. */

4.12.14 perform RTEMPM$DUPCHECK(rectemppointer,
attr name
duplTcatel;

/* If it is unique, then get the characteristics*/
/* of the attribute.

4.12.15 if duplicate is TRUE
4.12.16 Ten
4.12.17 display message
4.12.18 else
4.12.19 - e--beain

/* Get attribute characteristics, and return a
/* list of attribute characteristics, attrlist. */

PA GE 11 5

4.12.20 perform GETATTRIBUTECHARACTERISTICS
natttr-? m

/* Determine whether there is a descriptor defined *
1* over this attribute name. If there is, mark the*/
1* record temlt entryt indicate tye. This ~
1* mark wil~mi eued in DERIVE-DIRECTORYKEYWORDS *
1* procedure.

4.12.21 perform ATM$FIND(attr name,
Zescr type,)

4.12.22 if a descriptor has been defined
for his attribute name

4.1223 hen * descr-type not -NOTFOUND *

4.12.24** attrlist + descr-type;
4.12.25 elLie
4.12.26 Dein
4.12.27 Perform SE4RCH TYPE-C ATTR NAME

(.npointer .type-'C attr-lames,
att

4.12.28 if matched is TRUE
4.12.29 TEWen
4.12.30** attrlist + ''
4.12.31 else
4.12.32 attrlist + nulicharacter;
4.12.33 en bgin; 1* Not type A or B.*
4.12.34 Encl T * If descriptor defined. *

/* Add information about this attribute to the ~
/* template. *

4.12.35 Pefr RTEPM$INSERT(rectemppointer,
attrlist,
successful1);

4.12.36 if successful is FALSE
4.12.37 -eW~n
4.12.38 display message;
4.12.39 end if:

4.12.40 end while; I* While more attributes to be defined. */
4.12.41 eiid- -ein;

1* Allow the user to review the entire template. *

4.12.42 perform REVIEWRECTEMP(rectemppointer);

4.12.44 end if;

4.12.45 end proc;

4.14.1 Proc DERIVEDIRECTORY KEYWORDS /* DRVKWORD (DBL113) *
(input-- inpointeirclusteringjlevel,

record type,
databa-ie name,
type-C aEttr -names,
atpo inter,

/* Input is a pointer; to a list of arguments which contains *
/* clustering level (."FILE" or "DATABASE"), record type, *
/* database name, type-C attr names, (a list of attribute ~
1* names over which type-C descriptors are to be defined) , a*/
/* ~Ointer to the AT and a pointer to the RTEMP for this *

/* file

PAGE 116

/* The procedure reads records from the source file(s). */
/* For each record, the set of descriptors from which the */
/* record is derivable is determined, the record is format- *1
1* ted into the form required for storage in the database, */
/* and a count of descriptors, the descriptor list, and */
/* the formatted record are written to a tile for sorting. */

4.14.2 scalar descr id, 1* Descriptor id. *1
descr-count, / of descriptors derived. */
field-count, 1* Indicates nth field of record.*/
field-value, /* Value of nth field. *1
filen-ame; /* Name of current input file. *1

4.14.3 array descriptor ida; /* List of descriptors derived.*/

4.14.4 predicate - (attribute, ""value); /* Equality predicate *
* to test derivation of keyword.*/

4.14.5 input-record - (fieldvalue$fieldvalue$... fieldvalue);
4.14.6 rectemp_.entry (attr name, attr data type, lower bound,

uppe4ebounp, dercr itd)a /* EnTry re-
uppe /*u trievd from RTEMP. */

4.14.7 open output file for records to be sorted

4.14.8 while xore files of input data do
4.14.9 7e in
4.14.10 get filename from terminal;
4.14.11 open file filename;

4.14.12 while more records in file do
4.14.13 -egin

.* Initialize counts, get first record. */
4.14.14 descr count : 0;
4.14.15 field-count :- 0;
4.14.16 get inputrecord from file filename;

4.14.17 while more fields in record do
4.14.18 begin

/* Get a field value from the record. */

4.14.19 field value : next field value from inputrecord;
4.14.20 field-count : fieldcoun? + 1;

/* Get the entry from the record template */
/* which contains attribute name and char-*/
/* acteristics of that field. *1

4.14.21 perform RTEMPM$GETENTRY(inpointer.rectemppointer,
field count,
rectemp_entry);

4.14.22 if rectempentry.descrind not - null
4.14.23 -Men
4.14.24 bein

/* Build a keyword predicate to be used to test */
/* whether current attribute-value pair can be *I
/* derived from any descriptor. */

4.14.25 predicate.attribute :- rectemp entry.attr name;
4.14.26 predicate.value :- field_value;

/* Determine whether keyword is derivable. *
/* Descriptor id will be updated by the */
/* DERIVE procedures called below. If the
/* descrip tor id is null, the keyword is not */
/* derivale.*/

PAGE 117

4.14.27 if rectemp entry.descr ind ' x"
** 7W x indicates that Tescriptor is type A or B.*/
4.14.28 then
4.14.29 perform DERIVE FROM A OR B DESCR

(pre.iEcate,
Inpo)inter.atpointer,
de3crid);

4.14.30 else
4.14.31 perform DERIVE FROM C DESCR(preEicatT,-

inpointer.atpointer,
descr_id);

4.14.32 end if; dsri)

/* If it is derivable, insert the corresponding *1
/* descriptor id into the list of such ids being*/
/* built for this record.

4.14.33 if keyword predicate is derivable
4.14.34 Ten
4.14.35 b-i
4.14.36 biffhrm PUT DESCR ID INTO LIST

. . . . (descr id,
descriptor ids
descrcount);

4.14.37 descr count := descrcount + 1;
4.14.38 end if;

4.14.39 end if;

4.14.40 end while; /* more fields loop *1
4.14.41 perform BUILDSORTRECORD(descr count,

descriptor ids,
inputrecord,rectempointer);

4.14.42 end while; 1* records in file loop 7

4.14.43 close file filename;

4.14.44 end while; /* files to be sorted loop */

1* Review the list of type-C attr:.bute names, and create */
/* null AT entries where no descr:.ptors have been defined.*/

4.14.45 perform REVIEWTYPE-C ATTR NAMES
(tipe-C attr names,
atpoin-er) ;-

4.14.46 close file for sort records;

4.14.47 end Proc;

9.10.1 proc PROCESS A CLUSTER /* PROCLUST (DBLI41) */
- -tinput: record,

sytem nf,
c tpoi-ter);

/* Process a cluster for loading into the database store. */
/* Input is the first record of a cluster, some system *

** /* information, and a pointer to the CDT created for this */
/* task. */
/* Records hav the form: */
1* record = descr count, descriptorids, databaserecord)*/

PAGE 118

** /* System information is a list of backend addresses.
** 1* system_info - (number of backends, */
** 1* backenZ a~dresses,

/* track_cipacity);

9.10.1 scalar next backend index, /* Index into array of back-*/
/* end addresses in system info*/

capacityremaining, 1* Capacit remaining in tb~e*/
/* track ol the next backend*/
/* at which records of thee*/
1* current cluster are toe*/be stored. Usedtoude*

CINBT.
cluster_number;

/* Randomly select a backend at which to begin distribution of */
/* records in the first cluster, and set the track capacity. */

9.10.2 perform GET RANDOM BACKEND START
** (system info.number of backends,

next__bickendindex;

9.10.3** capacity :- systeminfo.trackcapacity;

/* Generate a Cluster Definition Table entry for the new cluster. */
/* The following procedure returns the cluster number.

S.10.4 /* From somewhere as yet undefined, get a new cluster number. */

9.10.5 perform CDTM$INSERTNEWCLUSTER
** (record.descriptor ids,

cdtpointer,
clusternumber);

/* Physically distribute the data over the multiple */
/* backends according to the selected data placement *
/* strategy. The DISTRIBUTE RECORDS procedure, starting*/
/* at a randomly selected backend, evenly distributes */
/* data across the backends in track-size lots. The */
/* address of the next backend and the amount of stor- */
/* age available there are returned from the procedure */

** /* to be used to update the CINBT. Note that the
** 1* records are read ahead, so that upon return from */

/ 1* the DISTRIBUTE RECORDS procedure, the first record */
** /* of a new cluster will have replaced the record ori- *

/* ginally passed. *1

9.10.6** perform DISTRIBUTERECORDS(record,
** nextbackend index,
** system info,

c uster number,
capacity_remaining);

1* Update the Cluster-ID-to-Next-Backend-Table with the address*/
/* of the next backend into which records belonging to this */
/* cluster should be inserted, and the remaining capacity at */
/* that backend. */

9.10.7 perform CINBTM$UPDATE(cluster number,
next backed index
capaFityremaining3 ;

9.10.8 end proc;

PAGE 119

Fourth Level Specifications for Database Load

4.10.16.1 proc DEF TYPEADESCR /* TYPEADEF (DBL111) */
(input: atpointer);

/* Define all type A descriptors. Input is a pointer :o */
1* the instance of AT created for this task. *

4.10.16.2 scalar attr data type, /* Character, integer, etc. */
descY id,- /* Descriptor id. */
descr-type, /* A, B, C, or NOTFOUND. */
attr name, /* Attribute name. */
duplicate, /* Indicator, TRUE or FALSE.
dditpointer; 1* Pointer into the DDIT, either *1

/* to first descriptor defined *1
/* for this attribute or to lait */
/* descriptor inserted. */

4.10.16.3 descriptor - (lower bound, upper bound);
/* An "other" descriptor will be &efined for each attribute */

over which descriptors are defined to represent alL those */
/* keywords which are not deriveable from any other de3criptor*/
/* defined for that attribute. */

4.10.16.4 otherdescriptor = (lower-bound, upper-bound);

/* Initialize "other" descriptor bounds. */
4.10.16.5 other descriptor.lower bound = null;
4.10.16.6 other-descriptor.upper-bound = null;

4.10.16.7 get attr name from terminal;
4.10.16.8 get attr-data type from terminal;
4.10.16.9 while more descriptors for this attribute do4.10.16,1 7e-i0

/-* NOTE: Limits supplied for the descriptor mist */
/* be right-justified, padded on left.

4.10.16.11 get descriptor.lower bound from terminal-
4.10.16.12 get descriptor.upper bound from terminali;

4.10.16.13 check upper and lower bounds to insure that data is
of the correct type;

4.10.16.14 if data not of correct type
4.10.16.15 "E--en
4.10.16.16 display an informational message;
4.10.16.17 else

4.10.16.18
4.10.16.19** duplicate : false;
4.10.16.20 descr type . nul;
4.10.16.21 perfo-m AT$FIND attr name,

dditpointer,
pointer to descr type);

4.10.16.22 if this attribute name found in AT
6 t /* descr-type not = NOTFOUND */4.10.16.23 then

4.10.16.24 begin
4.10.16.25 p orm DDITM$DUPCH CK

.descriptor,

dditpointer,
duplicate);

4.10.16.26 if this descriptor exactly duplicates
another or the range overlaps another
/* duplicate is TRE */

4.10.16.27 then
4.10.16.28 display message;
4.10.16.29 else

1* Get descr id from somewhere as yet *1
1* undefined. .

PAGE 120

4.10.16.30 perform DDITM$INSERT(descriptor,
dditpointer,

4,10.16.31 end if descrid);

4.10.16.32 en-d-Webekin
4.10.16.33 else
4.10.16.34 e

7T-sert type "other" descriptor for each new
1* attribute name added to the AT. *1
/* Get descr id from somewhere as yet undefined.*/

4.10.16.35 perform DDITI$INSERT(other descriptor,
dditp~inter,
descr id);

/* Now insert the new attribute name. */
4.10.16.36 perform ATM$INSERT(attr name,

-A',

dditpointer);
/* Now insert the new descriptor defined here. */
/* Get descr id from somewhere as yet undefined.*/

4.10.16.37 perform DDIT$NSERT(descriptor,
dditpointer,descr id);

4.10.16.38 end bein -

4.10.16.39 end if; 1wiin AT) */
4.10.16.40 en-d -e in;
4.10.16.41 end if; /w knot of correct type) */

4.10.16.42 end while;

4.10.16.43 end proc;

4.10.19.1 proc DEFTYPEBDESCR /* TYPEBDEF (DBLI112) */
(input: atpointer);

/* Define all type B descriptors. Input is a pointer to */
/* the instance of AT created for this task. */

4.10.19.2 scalar attr data type, /* Character, integer, etc.descF id,-- /* Descriptor id. */
descr-type, 1* A,B 1 C, or NOTFOUND. *1
attr name, /* Attribute name. */
duplicate, /* Indicator, TRUE or FALSE.
dditpointer; /* Pointer into the DDIT, either */

/* to first descriptor defined */
/* for this attribute or to last */

4.10.19.3 descriptor = (lower bound, upper bound);
/* An "other" descriptor will be-defined for each attribute */
/* over which descriptors are defined to represent all those *1
/* keywords which are not deriveable from any other descriptor*/
/* defined for that attribute.

4.10.19.4 otherdescriptor - (lowerbound, upperbound);

/* Initialize "other" descriptor bounds. */
4.10.19.5 other descriptor.lower bound - null;
4.10.19.6 other-descriptor.upper--bound - null;

4.10.19.7 get attrname from terminal;
4.10.19.8 get attr data type from terminal;

/* NOTE:- Limits supplied for the descriptor must *1
1* be right- justifie, padded on left.

4.10.19.9 while more descriptors for this attribute do4.10.19.10 be in-

4.10.19.11 --- escriptor.lower bound : null;
4.10.19.12 get descriptor.upperbound from terminal;

4.10.19.13 check upper bound to insure that data is
of the correct type;

PAGE 121

4.10.19.14 if data not of correct type
4.10.19.15 -Etien
4.10.19.16 display local message;
4.10.19.17 else
4.10.19.18 i
4.10.19.19* dpiate - false'

4.10.9.20descr typ .. null;
4.10.19.21 perfo7= A$FIND~attr name,

ddit~ointer
pointer to Aescr..sype);

4.10.19.22 if this attribute name found in AT
4.10.19.23 -Men
4.10.19.24 ei
4.10.19.25 pefr DDITMSDUPCHECK~descriptor,

dditpointer,
duplicate);4.10.19.26 if this descriptor exacty duplicates

4.10.9.27thenanother or the range overlaps another

4.10.19.28 display message;
4.1.1.29ele1* Get descr id from somewhere as yet*'

1* undefined-.*
4.10.19.30 perform DDITMSINSERT(descriptor,

dditpointer,

4.1019.3 enddescrid);
4.10.19.312n i;
4.10.19.33 else
4. 10 .19 .34 ---- bgin

/W Insert type "other" descriptor for each new *
1* attribute name added to the AT.
/* Get descr id from somewhere as yet undefined.*/

4.10.19.35 perform DDITITINSERT(other descriptor,
dditp~ointer,
descr id);

I* Now insert the new attr-lbute name.
4.10.19.36 perform ATMSINSERT(attr name,

dditpointer);
1* Now insert the new descriptor defined here. *

1* Get descr id from somewhere as yet undefined.*/
4.10.19.37 perform DDll T$INSERT(other descriptor,

dscroid);

4.10.19.38 end begin; dsri)

4.10.19.39 end if 1* (in AT) *
4.10.19.40 end75egin

4.10.19.41 end if; /* (not of correct type) *
4.10.19.42 end while;

4.10.19.43 end proc;

4.10.21.1 proc LISTTYPE-CATTRNAMES 1* TYPECLST (DBLIII3) *
-(input: type-C attr names,

atpointEer);-
f* List all the attribute names over which type-C descriptors ~
1* are to be defined. Input is a list for attribute names
1* over which type -C attributes are to be defined, and a *
1* pointer to the AT. *

4.10.21.2 scalar index, /* Indexc to list of attribute names.
attr name

** dupl~cate, /* Indicator - TRUE or FALSE.
dditpointer,/* Pointer into DDIT returned from ATM*/

1* FIND function.
descr-type; 1* A, B, C, or NOTFOUND. *

PAGE 122

4.10.21.3 index -1 /* Null indicates end of list. *
4.10.21.4 type-C -attr-names(index] :- null;

4.10.21.5 while more type-C descriptors do
4.10.21.6 Te-stn
4.10.21.7 get attr_ namq frop terminal;
4.10.21.8 perform ATM FIND(attr name,' eZditpo intr

pointer to descr_type);
4.10.21.9 if a type-A or type-B descriptor is already defined7ver this attribute name

4.1021.0 ten * descr type not - NOTFOUND *
4.10.21.11 -- isplay error message;
4.10.21.12 else
4.10.21.13 begin
4.1O.21.14** duplTicate -FALSE;
4.10.21.15 perform SEAR H TYPE-C ATTRNAMES

(type-C -attr names,
attr name
dupllcate5 ;

4.10.21.16 if duplicate is FALSE
4.10.21.17 T~en
4.10.21.18 bhegin
4.10.21.19 type-C attr names[index] :attr name;
4.10.21.20 index T=in~ex + 1
4.10.21.21 type-C-attr-nameshIindex] :null;
4.10.21.22 end i;
4.10.21.23 tndLir_

4.10.21.24 end while;

4.10.21.25 end proc;

4.10.22.1 Proc REVIEWDESCRIPTORS 1* REVDESCR (DBL1ll4) *
(input: type7C attr names,

atpoidnter) ;-

1* S T U B *
4.10.22.? end Proc;

4.12.19.1 Proc GETATTRIB1VTE_CHARACTERISTICS /* ATTRCHAR (DBLll2l) *
(input: attr name, attrlist);

/* Get characteristics of an attribute for and entry *
/* in the record template. *
1* Input to the procedure is an attribute name and a
/* list for attribute characteristics. *
1* The values of those characteristics will be col- *
1* lected in this procedure. *
/* Attribute list has the form: *
1* attrlist - (attr name, Attribute name. *
1*value Zata type, String ,integer, float

value-format, Fixed or variable (string) *
valuecharl First characteristic. *

1* valuechar23; Second characteristic. *

4.12.19.2 attrlist.attr name :- attr name;
4.12.19.3 get attrlist.Value-data_type from terminal;

4.12.19.4 case attriist.value-data type value

4.12.19.5 integer:
4.12.19.6 be4.12.19.7 aff*rLIist.value-format :- null;

PAGE 123

4.12.19.8 get attrlist.value charl; /* Mi value.
4.12.19.9 get attrlist.value-char2; /* Max value. */
4.12.19.10 end bezin;

4.12.19.11 string:
4.12.19.12

7*Fixed or variable length string ? */
4.12.19.13 get attrlist.value format from terminal;
4.12.19.14 if attrlist.value 'ormat is fixed
4.12.19..'5 THen
4.12.19.16

JWin length 0; get max length.
4.12.19.17 attrlist.value char :- 0;
4.12.19.18 get attrlist.valuechar2 hrom terminal;
4.12.19.19 end begin
4.12.19.20 else
4.12.19..21

/w-Get min and max lengths.
4.12.19.22 get attrlist.valu3 charl from terminal;
4.12.19.23 et attrlist.value-char2 from terminal;
4.12.19.Z4 end if;
4.12.19.25 end Pein;

4.12.19.Z6 float:

4.12.19.Z7 otherwise:

4.12.19.Z8 end case

4.i2.19.Z9 end proc;

4.12.27.1 proc SEARCH TYPE-C ATTR NAMES /* SRCHCLST (DBLII22) */
(Tnput: Type-C attrnames,

attr name,
output: fouEd)i

/* Search the list of attribute names over which type C */
/* descriptors are to be defined to determie whether */
1* attr name is a duplicate. Input is a list of attri *
/* bute-names over which type-C descriptors are to be */
/* defined, and an attribute name. */

4.12.27.2 scalar index, /* Index into list of attribute names.*/
found; /* Indicator, TRUE or FALSE. */

4.12.27.3 index : 1;
4.12.27.A** found : false;

4.12.27.5 while typ -C attr names[index] not = null
/* ull Tndicates end of list */

and

4.12.27.6 type-Cattrnamesiindex] not = attrname do

4.12.27.7 index := index + 1;
4.12.27.8 end while;

4.12.27.9 if type-Cat~r_namestindex] = attr name
4.12.27.10 then
4.12.27.11** - found := true;
4.12.27.12 end if;

4.12.27.13 end proc;

4.12.42.1 proc REVIEW RECTEMP /* REVRTEMP (DBLI123) */

(input: rectemppointer);

/* S T U B */

4.12.42.? end proc;

PAGE 124

4.14.29.1 Proc DERIVE FROM A OR B DESCR /* DRVAORB (DBLI131) */
(input: predicate atpointer,
output: descr id;

1* Determine whether there exists a type A or type B descriptor */
/* from which the current keyword can be derived. */
/* Input is an equality predicate, and a pointer to the AT. *1
/* A predicate has the form: */
/* predicate = (attribute, "&", value)
/* A descriptor id is returned to the calling procedure. */

4.14.29.2 scalar descr id,
dditpointer, /* Pointer into DDIT returned from */

/* FIND function of ATM. */
descr type; /* A, B, C, or NOTFOUND. */

4.14.29.3 descrid := null;

/* FIND returns a pointer to first descriptor defined for */
/* this attribute name. */

4.14.29.3 perform ATM$FIND(predicate.attribute,
dditpointer,
pointer to descrtype);

/* DERIVE returns the descriptor id for any descriptor from */
/* which this keyword can be derived. (May be null) */

4.14.29.4 perform DDITM$DERIVE(predicate,
dditpointer,
descr-id);

4.14.29.5 end proc;

4.14.31.1 proc DERIVE FROM C DESCR /* DRVC (DBLII32) */
(input:-pedicate atpointer,
output: descr idi

/* Determine whether keyord can be derived from an existing */
/* type-C descriptor. If not, define a new type-C descriptor. */
1* In put is an equality predicate, and a pointer to the AT.
1* A predicate has the form: */
/* predicate - (attribute, "", value)
/* A descriptor id is returned to the calling procedure. */

4.14.31.2 scalar descr id, /* Descriptor id returned from DERIVE *1
/* function of DDITM. */

dditpointer, /* Pointer into DDIT returned from */
/* FIND function of ATM. */

keepdditptr /* Save pointer returned fromFIND */
to compare with that returned by */

/* INSERT function of DDITM. *1
descr type; /* A, B, C, or NOTFOUND. */

4.14.31.3 descriptor = (lowerbound, upper bound);

4.14.31.4 dditpointer :- null;

/* FIND returns pointer to the first descriptor defined for */
/* this attribute name in DDIT. */

4.14.31.5 perform ATMSFIND(predicate.attribute,
dditpointer
pointer to Aescr type);

PAGE 125

4.14.31.6 descr id :N ULL;

/* If this ii; the first type-C descriptor defined for this */
/* name, fir.;t insert the descriptor into DDIT, then put "1
/* an entry i.n the AT with a pointer to that descriptor. */
/* If this ii not the first type-C descri tor defined for */
1* thizi attribute name, check to see whether this descrip- "1
/* tor already exists. If it does, use the existing id; *I
/* otherwise, insert the new descriptor into DDIIT. *

4.14.31.7 if no descriptors yet defined for this attribute
4.14.31.8 T-en
4.14.31.9 - - e n.
4.14.31.10 descriptor.lower bound = null;
4.14.31.11 descriptor.upper-bound = predicate.value;

/* Get descr id 'rom somewhere as yet undefined. */
4.14.31.12 perform I)DITH$INSERT(descriptor,
** dditpointer,

descr id);
4.14.31.13 Derform iTM$1NSRT redicate.attribute,

dditpointer);
4.14.31.14 end begin
4.14.31.15 else /wMiscriptors previously defined for this attr.*/
4.14.31.16 ----begin
4.14.31.17 keep ddit:ptr := dditpointer;

/* DEes :Fis descriptor already exist? */
4.14.31.18 perform DDITM$DERIVE(predicate

ditpointer,

/* 7f not- add it. descrid) *

4.14.31.19 i keywo:A is not derivable
74 This .s a new descriptor */

4.14.31.20 then
4.14.31.21 -"-be i

V- -et descr id from somewhere as yet undefined. */
4.14.31.22 perform DDITF$INSERT(descriptor,
** dditpointer,

descr id)i
4.14.31.23 if keep_dditptr != dditpointer
4.14.31.24 Then
4.14.31.25** perform ATMSUPDATE(predicate.attribute,dditpointer);

4.14.31.26
end bein

4.14.31.27 end =i,
4.14.31.28 Wa i !;
4.14.31.29 end

4.14.31.30 end proc;

4.14.36.1 Proc PUT DESCR ID INTO LIST /* PUTINLST DBL1133) */
- (input: descr_id, descriptorids, descr_count);

/* Insert a new descriptor id into the list of descriptor ids */
/* from which the current record can be derived.
/* Input is a descriptor id, a list of descriptor ids, and a
/* count of the number of items in the list. The list must be*/
/* a new id to be inserted into the list. The list must be */
/* maintained in ascending sequence. */

4.14.36.2 insert descrid in order into list of descriptor ids

4.14.36.3 end proc;

PAGE 126

4.14.41.1 Proc BUILD-SORT RECORD /* BLDSRT (DBL1134) */
-(input: descr count,

descriptor ids,
input record,
recteappointer);

4.14.41.2 sortrec = (descr-count, descriptor-ids, database_record);

4.14.41.3 sortrec.descr count :- descr count;
4.14.41.4 sortrec.descrptorids :- descriptorida;

4.14.41.5 format input -record into sortrec.database-record;

4.14.41.6 write sortrec to output file for sort

4.14.41.7 end proc;

4.14.45.1 Proc REVIEWTYPE-C ATTR NAMES /* REVTYPEC (DBL1134) */
-Cinpu?: type-C attr names,

atpointer) ;

/* Review the list of attribute names over which type-C
/* descriptors are to be defined. If no descriptors have yet */
/* been defined for an attribute, create an entry in AT with
/* a null pointer in place of a pointer into DDI1. *1
/* Input is a list of the attribute names over which type-C
/* descriptors are to be defined and a pointer to the AT. */

4.14.45.2 scalar index /* Index into list of attribute names.*/
dditpointer, /* Pointer from AT into DDIT. */
descrtype; /* A, B, C, or NOTFOUND. */

4.14.45.3 index :- 1;

4.14.45.4 while type-C attrnames[index]°not =/null do
/* null Indicates end of list

4.14.45.5
4-14.45.6 perform ATM$FIND(type-C attr names[index],

dditpointer-
4.14.45.7 if not found

7W descr-type = NOTFOUND */
4.14.45.8 then
4.14.45.9 -- e-in
4.14.45.10 dditpointer : null;
4.14.45.11 perform ATM$INSERT~type-C attr namestindex],

C, - -

dditpointer);

4.14.45.12
end if;

4.14.45.13 end whil;

4.14.45.14 *end_proc;

9.10.2.1 proc GETRANDOMBACKEND START /* GETRAND (DBLI411) *I
(input: number of backends,
output: randomindex to backends);

* Randomly select a backend at which to begin distributing */
* data from the current cluster. Input is a pointer to an
* argument list which contains the number of backends in */
/* the system. Output is a random number generated within */
1* the range of I to number of backends. */

9.10.2.2 scalar randomindexto backends;

PAGE 127

9.10.2.3 generate random index to backends
within the range T to number-of backends;

9.10.2.4 end proc;

9.10.6.1 proc DISTRIBUTE RECORDS /* DISTREC (DBLI412) */
** (input/output: record,
** next backendindex,

input: system info-,
** cluster number,
** output: capabiTityremaining);

/* Physically distribute the data over the multiple backends */
/* according to the track-splitcing-with-random-placement *1
/* strategy. */

** /* Input is the first record of a cluster a randomly gener- */
** /* ated index into the list of backeid addresses, some system */
' /* information, including the iist o[backend addresses, and */

/* the cluster number. Output is the capability remainIng in */
** /* the track at which records added to this cluster are to be */
** /* stored. This capacity, together with the index and the */
** 1* cluster number, will be used to update the CINBT. Note */
** /* also that records are read at this level so that when the */
** /* procedure terminates, the variabl2 record will contain the */

/* first record of the next cluster.
/* Records have the form: */
/* record(descr count descriptorids, databaserecord). */
/* System info hai the form: */
1* systeEinfo-(number of backends, */
1* backen_ aadresses
1* track capacity; */
/* Cluster number is a-character string. */

9.10.6.2 scalar capacity remaining, 1* Capacity remaining on the */
/* track of the backend at */
/* which the next record of */
/* this cluster is to be
/* stored. */

next backend index,/* Index to backend addresses*/
prev-descr c-unt, /* Count of descriptor ids */

/* from the previous ricord. */
newcluster; /* TRUE or FALSE. */

9.10.6.3 record = (descr count, /* Number of descriptor ids */
/* in the list following. */

descriptor ids, /* List of descriptor ids
/* from which this record may*/
/* be derived. */

database-record); /* Record in format required */
/* for storage. */

9.10.6.4 array prev-descrids; /* Descriptor ids from the */
/* previous record. */

9.10.6.5 array fulltrack; /* Array in which to accumulace*/
/* a full track of records. */

9.10.6.6** capacityremaining :- system info.track_capacity;

9.10.6.7 while more records in cluster do
9.10.6.8 Fein

/* Accumulate a full track of data before distributing */
/* data to the next backend. When a track is distributed*/
/* increment the next backend index to point to tb. iext */
/* backend address anE reset the capacityremaini.., */

PAGE 128

9.10.6.9 if capacityremaining >- size(record)
9.10.6.10 -en

9.10.6.11 begin
9.10.6.12 ad- ecord to.full_track array;9.10.6.13 capac ity_r;emaining :-capacity remaining - size(record);

9.10.6.14 end

9.10.6.15 else

9.10.6.16
9.10.6.17 disEibute clusternumber, full_track to

backend at
system info.backe d address-- [Lnext backend_index];

9.10.6.18 next backend index a

(nuxt-backind index + 1)
-mod (number of backends;

9.10.6.19 capacity remaining :-

9.10.6.20 end if; system into.track capacity;

/* Save descriptor count and list of descri tor ids from */
/* the current record for comparison with the next to
/* detect cluster change. */

9.10.6.21 prevdescr count :- record.descr count;
9.10.6.22 prevdescr-ids :- record.descr-i~s;

/* Read the next record */

9.10.6.23 read a record from file of sorted records;

9.10.6.24 perform CHECKFORNEWCLUSTER
(record,
prey descr count,
prev-descr-ids,
newclusteF);

9.10.6.25 end while;

9.10.6.26 if fulltrack array is not empty
9.10.6.27 'Een
9.10.6.28 - distribute cluster number, full track to backend

at system-info.backend a-dress-- [text_backend_indexiJ;

9.10.6.29
end if;

9.10.6.30 end proc;

PAGE 129

Fifth Level Specification for Database Load

9.10.6.25.1 proc CHECK FOR NEW CLUSTER /* NEWCLUST (DBL14121) *1
(input: record,

prev descr count,
prev-descr-ids,

** output: new_clus&Eer);

1* Check the list of descriptor ids from the current */
/* record against the prev desc? ids list from the *1
/* previous record. If the- listi are different lengths */
/* a new cluster is indicated. If the lists are the *[
/* same length, compare them item by item to determine *1
/* whether a new cluster is indicated. */
/* Records have the form: *1
/* record-(descrcount, descriptor-ids, databaserecord)*/

9.10.6.25.2 scalar index /* Index to both lists of ids. *1
.06 .2aa new_cluster; /* Indicator, TRUE or false. */

9.10.6.25.3 new cluster :- false;
9.10.6.25.4 if -record.descr count not•prey _descr_count
9.10.b.25.5

thenp

9.10.6.25.6** new cluster : true;
9.10.6.25.7 else
9.10.6.25.8 - in
9.10.6.25.9 iN : 1; /* Set index. */
9.10.6.25.10** new cluster • false;
9.10.6.25.11 whiTe index <- recorA.descr-count do
9.10.6.25.12 ft in

9.10.6.25.13 if record.descriptor_ids(index] notprey descr ids (iniex]

9.10.6.25.14
then

9.10.6.25.15** newcluster :- true;
9.10.6.25.16 else
9.10.6.25.17 index :- index + 1;

9.10.6.25.18 end while;

9.10.6.25.19 end if

9.10.6.25.20 endproc;

PAGE 130

C.2 Part II - Record Template Module

2 Design: Record Template Module *1
1* (3 Designer: P. R. Strawser *1

4 Date: August 25, 1981 *1
5 Modified: *1

1* (6) Purpose:
1* The record template module provides ser-
* vices for record template data structures.*/

A record template data structure is a *1
1* tabular collection of information about the*/
1* records of one file, where all records are *1

assumed to have the same format. Each *1
1* template is identified by record type, and */
1* contains a count of entries and an entry */
1* for each field in the record. Each entry */
1* contains field name, data type length in-
1* formation, and an indication of whether the*/
1* field might be a descriptor. */
1* (7) Output Data:
1* A record template for a given file. */

(8) Procedure Structure for RTEMPM

RTEMPM
(Module)

I I I
RTEMPM$ RTEMPM$ RTEMPM$ RTEMPM$
CREATE DUPCHECK GETENTRY INSERT

PAGE 131

(10) Program Specifications

module RTEMPM

programs CREATE, DUPCHECK, GETENTRY, INSERT;

data structures record template;

end module

proc RTLMPMCREATE(input: record-type,
output: rectemppointer);

/* Name a record template structure with the name record-type */
/* and initialize count of entries to zero. */
/* A record template has the structure: */
/* record temp ate = (count, entry[no entries]); *
/* An entry in the record template has-the structure: */
/* entry = (attr name, data type, format, leni, len2, *

desFr_ind);

scalar rectemppointer; /* Pointer to record template structure. */

Allocate a record template data structure with the name

record-type;

rectemppointer := pointer to allocated data structure;

rectemppointer.count := 0;

end proc;

proc RTEMPMDUPCHECK(input: rectemppointer,
attr name,

output: dupTicate);

/* Check to see whether there is already an entry in this record /
/* template with an attribute name equal to the input attribute */
/* name. Input is a pointer to the record template and an attri-*/
/* bute name. Output is an indicator with a true or false value.*/
/* A record template has the structure:
1* record template - (count, entrytno entries]);
1* An entry in the record template has-the structure: *1
/* entry - (attr name, data type, format, lenl, len2, */
/* desEr_ind); -

scalar duplicate, / Indicator with TRUE or FALSE value. */
counter; /* Local variable.

counter := 1;
duplicate :- false;

while counter is less than or equal to rectemppointer.count
& duplicate is false do

if attrname = rectemppointer.entf-yicounter].attrname
then duplicate :- true;

end while--7-

end proc;

PAGE 132

Proc RTEMPM GETENTRY(input: rectemppointer,
field number,

output: rectmp_.entry);

1* Get the entry indicated by field number from the record template */
1* pointed to by rectemppointer, anZ return the information to the *1
/* calling procedure..
/* A record template has the structu4re: *11* record template - (count, entry~no entries]); *1
/* An entry in the record template has-the structure: *1
/* entry - (attr name, data type, format, lenl, len2,
/* des-rind);

/* A record template entry. */
rectemp entry - (attr name value data type, value format,

vaTuecharl, value.char2, descr_-ind);

if field-number greater than rectemppointer.count
ten

rectemp_entry : null;

rectemp_ entry := rectemppointer.entry[fieldnumber];
end if;

end proc;

proc RT1NPM_INSERT(input: rectemppointer,
rectemp entry,

output: successful);

/* Insert an entry in the next available slot of the record template */
1* pointed to by rectemppointer. Output is an indicator indicating */
1* success or failure of the operation.
/* A record template has the structure: *1
1* record template = (count, entry no entries]); */
/* An entry in the record template has the structure: */
1* entry - (attr name data type, format, lenl, len2,1* des-r-inA); ay fn

scalar successful; /* Indicator with TRUE or FALSE value. */

successful :- true;

rectemppointer.count :- rectemppointer.count + 1;

if rectemppointer.count > maximum fields per record
tMen

successful :- false;
else

rectemppointer.entry[rectemppointer.count] - rectempentry;
end if;

end proc;

PAGE 133

APPENDIX D

THE SSL SPECIFICATION FOR DIRECTORY MANAGEMENT

The system specification for directory management is given in this ap-

pendix. The specification consists of five parts: the top level of directo-

ry management, one service abstraction, and three data abstractions.

In Part I, the top level of directory management is specified. In Part

II, the service abstraction employed in directory management is specified.

This abstraction, known as directory interface, accepts the output of des-

criptor search and produces the input for cluster search. The data abstrac-

tions for attribute table, descriptor-to-descriptor-id table, and

cluster-definition table are specified in Parts III, IV, and V, respectively.

D.1 Part I - The Top Level of Directory Management

1* (1) Part I The Top Level of Directory Management
1* (21 Design DIRECTORY MAN */

* (3) Designers : T.M. Ozsu_ A. Orooji *1
4* 4) Date : July 28, 1981 *1
5* 5) Modified : Aug. 4 1981 */1* .Sept. I1, 1981 */

* 6) Purpose : .. *
1* This is the directory management subsystem. The inputs are a
1* pointer to a table which contains either the keywords in a record or
/* the predicates in a query, either the number of keywords in the */
/* record or the number of predicates in the query and a schedule */
/* number that is used in determining the range of keywords or */
/* predicates this backend is supposed to process. The output is either */
/* a cluster id (request type-insert) or a set of addresses (request */
/* type-non-insert). */

PAGE 134

(8) Procedure Hierarchy for DIRECTORYMAN

DIRECTORY MAN

.-----------------------------. 4---- ----------.I I I I
DIRECTORY MAN$ DIRECTORY MAN$ DIRECTORY MAN$ DIRECTORY MAN
INSDECSk NINSDISCSR INSCUSU NINSADDR_ R

+-----+-------+

I I I I I
DIRINT$ DIRINT$ DIRINT$ DIRINT$ CDTM$
CREATE DEFPRED BROADCAST GETALLDESC FINDSINGLECLUS

p.-----------' ---------- ---------- +-I I I
DIRINT$ DIRINT$ CDTM$
NODESCGR NEXTDESCGR FINDADDRESS

(9) Data Structures

/* The data structure definitions are included in the program */
/* specifications. */

(10) Program Specifications

1. subsystem DIRECTORYMAN(input: inptr, number, schedule no,
output:{cluster id, addresses));

2. set addresses;

3. Find the Attribute Table of the current database, call it AT;
4. if request type is INSERT
5. then be i /* inptrwrecqrdptr; number-no. of keywords */
6. er AL INS DESC SR(inptr, number, schedule no, AT);

0W o the descriptor search for the keyv-rds in the record */
7. perform INS CLUS GRkinptr, cluster id);

I-/' ind the ctJster the record Welongs to */
8. returntclusterid);
9. en--'-gin
10. else b

/*th ounert int/11 n-nsDeAC- inpTqueryptr number-no. of predicates *
11. ~ PefrmNN D9 nptr, numter I schedule no,' A T);

JWT-Do the descrfiptor search phase for the predicates in ~
/* the query *

12. performNINS ADDR GR(inptr addresses);
_J'*Tind t~e adXresses ot the records in clusters which */
/* may satisf the query13. return(addresseIs);

14. end i --
15. end su-- -tem;,

6.1 2oc INS DESC SR(input : record_ptr, no keywords, schedule no AT);
7This proceure handles the insert cases. Given a record- the number */
/* of keywords in the record, the schedule number and the Attribute */
/* Table, it computes the ranse of keywords it is supposed to handle */
/* and works on the keywords in that range.

6.2 type :- 'insert';

PAGE 135

6.3 calculate the range of keywords to work on;
conjunc no :- 1-
keywvord-no :- startin keyword number;

6.6 PerformbDIRINT$CREATErequest id); /* create a new RDIT table */
6.7 vwiIWeletere are keywords in range do
6.8 '-B- in
6.9 RToparameter :- (conjunc no It (keyword no);

/I-location parameter consists of conjuEction number
/* concatenated with keyword number within that */
/* conjunction. In insert cases, cunjunctiou number is 1 *

6.10 lick next keyword;6.11 form an e~ualit predicate;
6.12 perform D RINT$ EFPRED(type, loc_parameter, predicate,AT);

/- Pnd the descriptors that satisfy the predicate */
6.13 keyword no :- keyword no + 1;
6.14 end while
6.15 2erorwDIRINTBROADCAST;

"1e oroadcast the descriptor ids to all the other backends */
6.16 end Droc;

11.1 proc NINS DESC SR(input . queryptr, nopredicates, schedule no AT)*/*--his procedure Fanes non-insert cases. Given the quer y- th*e
/1 total number of predicates in the query, the schedule number and */
/k the AT, it computes the range of predicates it is supposed to */
/k handle and works on thq predicates in that range. We recall that */
/k each backend handles 1/n of the predicates, where n is number of */
/k backends. */

11.2 type := "non-insert';
11.3 compute the range of predicates to be worked on;
11.4 conjunct-no : first conjunction number in the range;
11.5 predicate no : starting predicate number in the range;
11:6 perform DRINT$CREATE(request id); /* create a new RDIT table */11.7 while there are conjunctions -in the range do
11.8 --- inr
11.9 pick next conjunction;
11.10 o in /* do for each predicate *1
11.11 - oc parameter (conjunct no) II (predicate no);11.12 P DIRINT$DEFPREi(type,locparameter,predicate,AT);
11.13 Yedicate no := predicate no + ;
11.14 unti.l(end of predica es in ths conjunction) or

(end of predicates in the-range);11.15 conjunct no :- conjunct-no + 1;
11.16 end while: - c
11.17 pr DIRINTBROADCAST

---7 roadcast the descriptor ids to all the other backends */
11.18 end proc;

7.1 Prc INS CLUS GR(inut : recordptr, output : cluster id);
1- This-procedure finds the cluster to which the record being */
/* inserted belongs. If the descriptors of the record define a */
/* new cluster, it signals this to the controller. */

7.2 list descriptor id_.roup; /* used internally for keeping */
/* descriptor-id group */

7.3 wait until RDIT tables are obtained from all backends;
7.4 join all these RDIT tables into one RDIT table;
7.5 prf r DIRINTSGET ALL DESC(descriptor idgroup);

/w Get the desFri por-id group for-the recorA being inserted */
7.6 perform CDTM$FIND SINGLE CLUS(descriptor id group, cluster id);

7V-'ind the cTuster T-hat the record Weing inserted bel'ngs to */
7.7 retun(cluster id);

7w If cluster is found, its id is returned. Otherwise a null */
/* value is returned. */

7.8 end proc;

PAGE 136

12.1 oc NINSADDRGR(inpu : queryptr, output :address list);
24This-proceidure i-nds the addresses of the recor~s in this ~
/* backend that may satisfy the query. *

12.2 scalarconjunct no joroup, index: integer;
12.3 Tist adrose;
12.4 Tit descriptor idgroup;
12.5 Tist cluster-nos;

12.6 wait until RDIT tables are obtained from all backends;
12.7 join all these RDIT tables into one R.DIT table;
12.8 conlunct no :- 1;o12.9 while there are conjunctions in the query do
12.10 ___ in
12.11 vrform DIRINT$NO DESC GR(conjunct no, no__grouFp);

/W Th~d the num5~er oF descriptor-id groups for this ~
/* conjunction. *

12.12 for index from 1 to nogroup bX 1 do
12.13 begin -
12.14 Perform DIRINTSNEXT DESC GR(conjunct no,

______ - escriptor i&.group);
1* Get the next descript or-id gro~up. */

12.15 perform CDTM$FIND_-ADDRESS(descriptor idgroup,
addresses);

1* Find the addresses of the records. *
12.16 address list - address list + addresses;

/* AdaT the addresses-found to the address list; *
121 ndfr * caution: duplicates are eliminated. *

12.18 conjunct-no :- conjunct-no + 1;
12.19 end while
12.20 ?-iiunahress-list);
12.21 end Dproc;

D.2 Part II - The Service Abstraction (DIRINT)

1* (1)Part II :The Service Abstraction *
1* ~ 2)Dsign :DIRINT *

1* 3) Designers :T.M. Ozsu A. Orooji1 (4) Date :Aug 4 1§81 *
/ (5) Modified :Sept. 11, 1981

(6) Purpose :*
1* This is the service abstraction employed in directory */

1*management. This abstraction, known as directory interface, *
1*acceptfs the output of descr2.ptor search and produces the

1* input for cluster search.

(8) Procedure Hierarchy for DIRINT

DIRINT

1~----------------- ----- -----------------

DIRINTS DIRINT$ DIRINTS DIRINT$ DIRINTS DIRINT$

CREATE DEIPRED BROADCAST GETALLDESC NODESCGR NEXTDESCGR

ATM$ DDITM$ DDITM$ DDITM$
FIND CDERIVE DERIVE INSERT

PAGE 137

(9) Data Structures

1* The data structure definitions are included in the program *
/* specifications.

(10) Program Specification

mod DIRINT

eg DEFPRED, GETALLDESC, NO DESC GR NEXTDESC.GR, BROADCAST
a~ii request descripto6r_id_tabTe (RDYIT5

7T-A table --f (locparameter,descriptor id) pairs for *
en o * the present request *

6.12.1 2x DEFPRED(ipnRt; type, locp-arameter, predicate, AT);
7~This procduire finds all the descriptors that satisfy *
/a predicate.

6.12.2 list desc-ida; /* list of descriptor ids satisfying *
/* the predicate *

6.12.3 Pefr ATMSFIND(AT, attribute, dditptr,descriptortype);
T* Find the pointer to DDIT entry for the given attribute *

6.12.4 if search successful
6.12.5 then bein
6.12.6 -i type = 'insert') and (descriptor type = 'C')
6.12.7 then beyin
6.12.8 pF-obimDDITM$CDERIVE(predicate, dditptr, descids);
6.12.9 iifL We-ord not derivable
6.12.10 -then be in *~ a new type-C descriptor ~
6.12.11 new c id :- a new descriptor id;

*-Give this descriptor a new id ~
/* and insert it into DDIT *

6.12.12 Perform DDITM$INSERT~descriptor,
new desc id, dditptr2)-

1* insert the ni-w de-scriptor into ?6DIT *
6.12.13 value(RDIT 'locparameter) :=new desc id;

/* Insert the new descriptor id into RDIT *
6.12.14 end begin
6.12.15 else
6.12.16 -value(RDIT, locparameter) :=descids;
6.12.17 endcFTT-

6.12.19 else-bgin~
6.12.20 Prorm DDITM$DERIVE(predicate, dditptr desc ids)-

1 m id those descriptors from which thiT
/* predicate is derivable and put their ids *
/* into the desc ida list *

6.12.21 yalju(RDIT, locparameter) :- desc ids;
7* add a new pair for each deicriptor id in *

6.12.2 en if1* desc-ida list
6.12.22 end if
6.12.23 endC ifro

7.5.1 Rroi GETALL_DESC(output :descriptor idgroup)-
77W This procedure gets the descriptFor ids ot the descriptors ~
/* from which the keywords in a record have been found tob e
/* derivable.

7.5.2 descriptor idzru null;
7.5.3 do 1* coltectall descriptor ids *
7.5.4 descriptor~id~group :- descriptor id-group +

descriptor id at Furrent location of RDIT;
7.5.5 until(end of RDIT table);
7.5.6 -retu-rn~ descriptor id..group);
7.5.7 end nproc,

PAGE 138

12.11.1 proc NO DESCGR(in-put :conjunct no, output n o...roup);
7'ThTs pi-cediiie -Tinds the number dcescrip tor-id groups for *
I* the given conjunction. Furthermore, it initializes certain ~
/* arrays and counters that will be used by NEXT_-DESCGR *

12.11 .2 ara counter, descperpred :integer; 1* global arrays ~
12.11 .3 s--aa pred-no, index :integer;

12.11 .4 find the beginning of predicates for conjunct-no in RDIT;
12.11 .5 pred no:mI
12.11 .6 noZroup:wI
12.11 .7 index :- 1;
12.11 .8 do beg'n I initialize desc prrdary*
12.11.9 -descper pred index):
12.11 .10 index :- index + 1;
12.11.11 until(end of descp erpred array);
12.11.12 d~o bein /* Calculate numbher of descriptors for all *p _ /* predicates in thegiven conjunction. *
12.11.13 locparam :7cconjunct no 11 pred no;
12.11 .14 do 1* calculate no;.- of descri~ptors for one predicate *
12.11.15 R ick next RDI entry;
12.11 .16 alsc~per~red~pred no) :- descperpred(red no) + 1;
12.11.17 until(locparan -= loc~tion param ter in RDIT) OF

12.1.18no-grou :-no~roup* dsc~er end of MEIT;
12.1 .8 ngrop :no~rou * esc predpd no);

1* keep a running total-of number of-*/
1* descriptor-id groups *

12.11 .19 pred no,:=pred no + 1;
12.11.20 until~end of con unction);
12.11 .21 Tescp erpred 0) :- pred no - 1;

e*ep the total n3o. of predicates in conjunction *
12.11.22 index := 1
12.11.23 do begin 1T set counter array to 1; to be used *

/* it NEXT DESC GR *
12.11.24 counter index7 :-
12.11 .25 index :=index + 1;
12.11.26 until~end of counter array);
12.11.27 Tetunknogroup);
12.11 .23 enHT -Pr oc;

12.14.1 proc NEXTDESCGR~input :conjuncjlo,
oMtp" : descriptor idgroup);

/* This procedure generates the next descriptor-id group that *
/* satisfies the predicates in the conjunction identified by *
1* conjunc-no. *

12.14.2 arr desc~per pred, counter :integer; 1* global arrays *
12.14.3 fscay index, 1eff-index :integer;

12.14.4 find the beginning of predicates for conjunc no in RDIT;
12.14.5 7ff index .= beginning position-

(* The for loop finds the next Aescriptor-id group *
12.14.6 descriptor idgroup :- null;
12.14.7 for index -from I to no. of predicates bX I do~
12.14.8 -beggiii
12.14.9 descriptor id_,group :- descriptor id__group +

des~riptor id at R.DIT(effjiTndex+counter(index));
12.14.10 eff index :- eff-index + descper pred(index);
12.14.11 end for;-

/* TF-ENW remainder, the counter array is updated for the *
1* next invocation

12.14.12 index :7 no. of predicates;
12.14.13 cot nter index) :- counter(index) + 1-

/* indicate that the next descrijtor id for the last *
/* predicate will be picked up next time *

12.14.14 while counter(index) > desc-per-pred(index) do
/If the last descriptor id for that predicate is ~
1*already picked up, indicate that te next *1descriptor id for the predicate immediately prior *

/* to0 this one will be picked tvp next time, together *

PACE 139

/* with the first descriptor id of this predicate. */
/* This is done by setting the counter entry */
1* corresponding to present predicate to 1 and */
/* incrementing the counter entry corresponding to the */
0'* immediately previous one, Keep doing this until no
/k more adjustments are necessary. */

12.14.15
12.14.16 counter(index) :- 1

/* next time the first descriptor id for this */
/* predicate wil be picked up */

12.14.17 index : index - 1;)* look at the previous predicate */
12.14.18 if index a 0 /* if all the descriptor-id groups have */

/* been picked *1
12.14.19 then exit /* leave the loop */
12.14.20 -ese ?-i=ter(index) -- counter(index) + li

/* else increment count for the previous */
/* predicate *1

12.14.21 end if
12.14.22 enwhil
12.14.23 return tescriptorid-group);
12.14.24 en pr;

6.15.1 proc BROADCAST;
/ This procedure broadcasts the RJIT to all the other backends */

6.15.2 broadcast RDIT;
6.15.3 end proc;

6.6.1 .a CREATE(in2ut: requestid);
This proce ure creates an occurrence of RDIT table for the */

1* given request.
6.6.2 end proc;

D.3 Part III - The Data Abstraction for Attribute Table

1* (1) Part III The Data Abstraction for Attribute Table
/* (2) Design ATM */
/* (3 Designers T.M. Ozsu A. Orooji */

(4 Date July 28, 1981
/* Modified Aug. 4, 1981
1* Sept. 11, 1981
/* (6) Purpose */
/* This is the data abstraction for attribute table. Operations */
1* on attribute table are done via the procedures in this abstraction. */

(8) Procedure Hierarchy for ATM

ATM

-- - ----------- ---------

A1M$ AMS ATM$ AM$
FIND INSERT DELETE CREATE

(9) Data Structures

1* The data structure definitions are included in the program */
/* specifications.

PAGE 140

(10) Program Specifications

mod ATM;
K 2o ams FIND INSERT, DELETE, CREATE
datasets AT /1 attribute table */

end mod;

6.12.3.1 vroc FIND(inu : AT, attribute, outut : dditptr type);
TW-This pdro--ddeure finds the location of the attribute in AT. "1
/* It returns the pointer to the DDIT for that attribute *1
/* and the type of descriptors specified on the attribute. */

6.12.3.2 find the matching attribute;
6.12.3.3 dditptr :- pointer at that position;
6.12.3.4 type :- type of descriptors defined on that attribute;
6.12.3.5 return(dditptr, type);
6.12.3.6 end proc;

1. p_T INSERT(pnut :.AT, attribute, dditptr);
/* This procere inserts an (attribute, pointer) pair into AT. */

2. search for the position where attribute fits;
3. insert new (attribute, dditptr) pair;
4. end proc;

. oc DELETE(inu : AT, attribute);
This pro-diiie deletes an (attribute, pointer) pair from AT. */

2. find the matching attribute;
3. delete the entry at that position;
4. end proc;

1. p CREATE;
ff Tis procedure creates a new instance of the attribute table */
/* and returns a pointer to it. */

2. create a new instance of the attribute table;
3. insert the database name together with the pointer to the

new AT into the index table for AT's;
4. end proc;

1. Pr__ UPDATE(inpt : AT, attribute, dditptr);
* This pro-dii-e updates the dditptr of the given attribute to *1
/* the new dditptr given as input.

2. find the attribute in AT;
3. replace the dditptr for the attribute with the new one;
4 end proc;

D.4 Part IV - The Data Abstraction for Descriptor-to-Descriptor-Id Table

1* (I) Part IV The Data Abstraction for DDIT *// 2 Design DDITM *
1. 3 Designers T.M. Ozsu A. Orooji
* Date July 28, 1981 *1

5* Modified Aug 4 1981 */
Sept. 11, 1981

1 /* (6) Purpose
This is the data abstraction for DDIT. Operations on DDIT are */

/* done via procedures in this abstraction. */

PAGE 141

(8) Procedure Hierarchy for DDITM

DDITM

I-- -------- +------- ------- +-----------------SI I
DDITM$ DDITM$ DDITM$ DDITM$ DDITM$
CDERIVE DERIVE INSERT DUPCHECK CREATE

(9) Data Structures

1* The data structure definitions are included in the progran */
/* specifications. */

(10) Program Specifications

mod DDITM
prorams DERIVE, CDERIVE, INSERT, DUPCHECK, CREATE
datasets DDIT /* Descriptor-to-descriptor-id table */

6.12.20.1 proc DERIVE(input : predicate, dditptr, outut des: ids);
This procedure finds out the ids of a t~ e desEriptors *1

/* from which the predicate can be derived and retirns these */
1* ids in desc ids. This routine is used for all the cases
/* except wheF the request is insert and attribite of the *1
/* keyword is used in type-C descriptors.

6.12.20.2 desc ids :- null;
6.12.20.3 do -eRjn
6.12.20.4 -- predicate derivable from descriptor at DDIT(dditptr)
6.12.20.5 then
6.12.20.6 - desc ids :- desc ids +

6.12.20.7 end if; descriptor id at DDIT(dditptr);

6.12.20.8 dtEptr:- next entry position in DDIT;
6.12.20.9 until (descriptors on the same attribute as Fredicate's finishes)
6.12.20.10 return(descids);
6.12.20.11 en-d -proc;

6.12.8.1 p CDERIVE(in p . predicate, dditptr, o : descid);
6 .* This procedure finds out the id of teescriptor from */

/* which the predicate can be derived and returns this id. *1
1* This routine is used only when the request is insert */
/* and attribute of the keyword is used in type-C */
/* descriptors. *1

6.12.8.2 do b ein
6.12.8.3 it predicate derivable from descriptor at DDIT(dditptr)
6.12.8.4 then beI
6.12.8.5 desc id :- descriptor id at DDIT(dditptr);
6.12.8.6 return:
6.12.8.7 end if
6.12.8.8 ZT-t tr : next entry position in DDIT;
6.12.8.9 until (descriptors on the same attribute as predicates's finishes)
6.12.8.10 return('not derivable');
6.12.8.11 end ;

PAGE 142

1. ro DUPCHECK(input : descriptor, dditptr, outpt : answer);
7* Given a descriptor, this procedure checks to make sure that *1
/* its range does not overlap the ranges of other already */
/* defined descriptors in DDIT.

2. answer :- 'no';
3. do begin
4. ir descriptor range overlaps the range of that

then begin pointed at by dditptr
6. answer :- -yes-;
7. return;
8. end if;
9. di.p r :- next descriptor in DDIT defined o the same attribute;
10. until (no more descriptors on the same attribute);
11. en Droc;

6.12.12.1 poc INSERT(i : descriptor, desc id, o : dditptr)
2R This pr6cedure inserts a descriptor ana its id into DDIT. */

6.12.12.2 find the place for the descriptor;
6.12.12.3 insert the descriptor;
6.12.12.4 end proc;

1. pr, CREATE;
7* This procedure creates a new instance of the descriptor-to- */
/* descriptor-id table.

2. create a new instance of DDIT;
3. insert the database name together with the pointer to the

new DDIT into the index table for DDIT s;
4. end Proc

D.5 Part V - The Data Abstraction for Cluster-Definition Table

/* (1)Part V : The Data Abstraction for CDT *//* 2I Design :CDTM *[

Designers : T.M. Ozsu A. Orooji, Z. Shi */
1* Date July 31, 1981
/* Modified : Aug. 7 1981
/* Sept. 11, 1981
/* (6) Purpose . *1
/* This is the data abstraction for cluster-definition table. */
/* Operations on CDT are done via the procedures in this */
/* abstraction. */

(8) Procedure Hierarchy for CDTM

CDTMI
-....-. 4-- -- ----------- --------------------I I I I

CDTM$ CDTM$ CDTM$ CDTM$
FINDSINJLECLUS FINDADDRESS INSERT NEWCLUSTER CREATE

---------------I
CDTM$
HINCLUS

PAGE 143

(9) Data Structures

/* The data structure definitions are included in the program */
/* specifications. */

(10) Program Specifications

mod CDTM ;
Programs FIND SINGLE CLUS FIND ADDRESS,

INSERT NEW CLUSTER, CREATE;
datasets ECDT, descriptor table (DT),

descriptor-to-cluster map (DTCM)
end mod;

7.6.1 £ FINDSINGLECLUSi~put desc id group, output cluster id);

This-procedure fidibt he cluster whose descriptor-id set-*
/* matches desc id-group

7.6.2 scalar stop boolean;
7.6.3 scaar index integer;
7.6.4 scal-ar mindesc : character;

7.6.5 cluster id :- null;
7.6.6 verf -'MINCLUS(desc-idgroup, mindesc);

FF Among the descriptor ids in desc idgroup, find the */
/* id whose descriptor participates -in defining the */
/* sma lest number of clusters */

7.6.7 do bezin /* this loop looks at each cluster whose */
/* descriptor-id set contains mindesc */

7.6.8 pick next entry in DTCM for this descriptor;
7.6.9 pick the entry in ECDT pointed at by cdtptr in

the current DTCM entry;
7.6.10 if ECDT(cdtptr).no desc - no. of descriptors in desc idgroup
7.6.11 then begin /7 the descriptor-id set for this cluster *,

/* may match since it has the same number *1
/* of descriptors *1

7.6.12 index : 1;
7.6.13 stop : 'false';
7.6.14 do 1* look at each descriptor id in */

/* descriptor-id set *1
7.6.15 if descriptor id currently pointed at by descptr -

de sc id group(index)
7.6.16 then stop := 'true' -S o match; stop */
7.6.17 else begin /* match, pick next descriptor id

/* in each list
7.6.18 index := index + I;
7.6.19 update descptr to point to

next descriptor id;7.6.20 end if
7.6.21 until(en"T--escriptors in desc idgroup) o_ (stop);
7.6.22 TVnot stop /* see if there was a match 'T
7.6.23 then bezin /* there was a match */
7.6.24 clusterid : cluster id at ECDT(cdtptr);
7.6.25 return;
7.6.26 end T
7.6.27 end if
7.6.28 until (no more entries in DTCM for this descriptor);
7.6.29 end -roc;

12.15.1 p FIND ADDRESS(in ut : desc id roup, output : addresses);This-- procedu- inds t ~e dressei the records in */
/* clusters whose descriptor-id set contain desc-id__group */

12.15.2 scalar index : integer;
12.15.3 scla-r stop :boolean;

12.15.4 addresses :- null;

PAGE 1442

12.15.5 vetorm INCLUS(dec id .. roup,,mindesc);id.gop fnd he /
/* id whose descriptor participa~tes in defining the ~
1* smallest number of clusters. *

12.15.6 do beain /* do for all the clusters whose descriptor-id *
/*set contain mindesc *

12.15.7 pick next entry in DTCM for this descrigtor;
12.15.8 pick next entry in ECDT pointed at by c tpr i

the current DTCM entry;
12.15.9 if DTctt)iods>an.odecitr i ecdgou
12.15.10 the ECDctpr)no d(tec>-o. f descriptors tfri de s irou

thenbeam /* the dctiptor-cid set or hscpTtr*
12.15.11 index :-1; a oti ecdjop*
12.15.12 stop: false;.
12.15.13 do 1* look at each descriptor id in the ~

1* descriptor-id set for this cluster ~
12.15.14 if descriptor id currently pointed at by descptr >

12.15.15 then sto true .descjd.group(index)
/*escr ip tor-id set does not contain *

1* desc iagroup(index)
12.15.16 else if descriptor id pointed at b~y de-c-tr-

12.1.17 h n e 'n desc.Jdgroup(index)

9-4 atchM look at next id in *
/* both lists *

12.15.18 index :=index + 1;
12.15.19 update descptr to pitto next

descrptor id;it
12.15.20 end be in
12.15.21 Sle- a atiescptr to point to next

descriptor id;
/* keep looking in the *
1* descriptor-id set *
1* for the cluster *

12.15.22 end if
12.15.23 end if-
12.15.24 until(e 0 Fecriptors in desc td.group)

Uror (descptr -null o(stop);
12.15.25 if (index > no. of desc. in desc id..group)
12.15.26 then /* the search was successful; *

1* add addresses of the records *
I* in this cluster to the list of ~
/* those which qualify *

12.15.27 addresses :- addresses +
addresses pointed at by addrptr in

12.15.28 end if ECDT(cdtptr);
12.15.29 endiT
12.15.30 un*(no miore entries in DTCM for this descriptor);
12.15.31 en prc;

1. poiMINCLUSCineut desc d..joup, o u mindesc);
/T* Amon& the descriptor ids in desF idfjroup, this procedure *
/* finds the id whose descriptor participates in defining the *
1* smallest number of clusters. *

2. scalar minm integer;

3. find the first descriptor id in descidgroup in DT (call it curdesc);
4. min :- Dcur desc).vo clue;
5. mindesc :- current des-Eriptor id;
6. do bei /* do for all ids in desc idgSroup/
7. - td~x eciptor id in desc Tdgroup in DT;

8. i DT~ur dsc) no clue < min T* see if the current one is min*
9. te ean /T yes, make the current one smi *1
10. min :- DT(cur desc).no clue;
11. uindesc :- current des~criptor id;
12. end if
13. untilkno more ids in desc-idgroup);

15. enT n5roc;

PAGE 145

1. proc INSERTNEWCLUSTER(inut : desc id set, cluster id,
. This : cdtptr);
/* This procedure inserts a new clusterInt ECDT and updates */
1* all the other tables accordingly. It returns a pointer to */
/* this new entry.

2. sort desc id set in ascending order of descriptor ids;
/* update-ECT table */

3. create a new ECDT entry (call it new cdt);
4. new cdt.cluster id :- cluster id; -
5. new-cdt.no desc- no of descFiptors in desc id set;
6. form a linEed list of descriptor ids in desc-id-set;
7. update new cdt.descptr to point to the linkei lTst of descriptor ids;
8. 4dd new cdt to the ECDT list;

/* update DTCM */
9. create DTCM entries for all descriptor ids in

desc id set (call it new dtcm);
10. set cdtptr of all-neg dtcm's to point-to the new cdt entry;
ll. add new dtcm entries to their respective DTCM lists for each

des-riptor id;
/* update DT table */

12. update cluster counts (no clus) of DT entries for the
descriptor ids in Wescidset;13. end Droc;

1. ro CREATE(output : cdtptr);
. This procedure creates a new ECDT and returns a pointer to it */

2. create a new instance of ECDT;
3. insert the database name to ether with the pointer to the

new ECDT into the index table for ECDT's;
4. return the pointer to the new ECDT;
5. end vroc;

PACE 146

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration 1
Code 012A
Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Hq 25
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

