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SUMMARY

*- The theory is presented of a technique for measuring the attitude and

position of cylindrical objects which is of interest in studying the

behaviour of stores ejected from aircraft wing pylons. The sight-line

angles of the tangents to the top and bottom edges of the store are measured

in two vertical planes using linear CCD array cameras, and equations relat-

ing these angles to the required attitude and position are derived in this

Report. The measurement of bank angle from the observation of marks painted

on the side of the store, is also considered. The errors in position and

attitude determination, which arise from uncertainties in the angle measure-

ments and camera geometry, are discussed and simple first order approxima-

tions are derived for these.
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I INTRODUCTION

A new method of measuring the position and attitude of cylindrical stores during

their release or ejection from aircraft wing pylons is currently being investigated by

Instrumentation and Trials Department RAE. The aim is to make available, within a few

minutes of store release, information such as the pitch rate and separation velocity

time-histories, thereby eliminating the lengthy time scales and tedious analysis

associated with existing photographic techniques. Initial interest is focussed on the

ground testing of ejector performance but the wider problems of airborne carriage and

release trials are being kept firmly in mind.

The technique being studied employs two solid state cameras incorporating linear

charge coupled imaging devices (CCDs) to measure the angles of the sight-line tangents to

the top and bottom edges of the store, in two separate vertical planes. These four

measurements, together with a knowledge of the store radius and camera positions, enable

the position of the store in two dimensions and its heading and elevation attitude to be

determined, provided that the cross-section of the store is cylindrical in the measurement

zone. It follows from this restriction that measurement of the sight-line tangent angles

is incapable of determining roll about the longitudinal axis of the store, or motion

along this direction. In principle however, bank angle may be determined by the observa-

tion of suitable markings painted along the side of the store with the same CCD cameras

as used for measuring heading and elevation angles.

The aim of this Report is to present the geometrical relationships between the

store position and attitude and the measure sight-line tangent angles from which the

former may be calculated. Although not required in the present application the computa-

tion of bank is also included for completeness. Finally the influences of measurement

and alignment errors on the calculated store position and attitude are discussed. The

detailed design and results of the evaluation of an experimental system will be reported

elsewhere in due course.

An advantage of the technique considered here, in addition to its fast response

time, is that no modification of the store is necessary, other than a coat of paint to

provide a high contrast image against its background. A major disadvantage however is

the need for a cylindrical cross-section at least in the regions viewed by the cameras.

In principle this could be overcome by the use of additional cameras and by making use of

the known profile of the store, however the computational load would increase considerably

and a more versatile approach in this instance would be to use shape correlation

algorithm on a complete image of the store. This would probably require a large main-

frame computer for the necessary processing speed and power. In contrast, the computation

involved in the technique described here is within the capabilities of a hand-held

programmable calculator and since at least two of the stores in question do have

cylindrical cross-sections, over some part of their profile, the technique clearly

merits further consideration.

The term attitude is used in a restricted sense in this Report to include only

elevation and heading angles. The third parameter, bank angle, normally encompassed in
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the definition of attitude is only referred to in the specific section dealing with the

derivation of the bank angle equations (section 2.5).

2 THE EO RICAL EQUATIONS

2.1 General

The basic arrangement of two linear array cameras positioned to one side of the

store whose attitude and position are required, is illustrated in Fig I. Both cameras

are accurately aligned so that each CCD array has a fan shaped field of view in a

vertical plane which is of sufficient extent to include the top and bottom edges of the

store throughout the required displacement range. If the store is cylindrical, then its

cross-section in the plane of either camera will be an ellipse, in general, whose orienta-

tion and eccentricity are functions of the store's attitude. The angles of the sight-

line tangents from the cameras to the elliptical sections will therefore be functions of

this attitude as well as relative position.

The two cameras are assumed to lie in the same horizontal plane and the line

joining them is conveniently taken to define the datum heading angle relative to which

store heading * * is to be measured. The cameras need not, of course, be set up to

view exactly at right angles to this direction, nor need their viewing planes be parallel

to each other, although the geometrical relationships will obviously simplify in these

special cases. The general case is considered here however, by specifying separate

heading angles for the viewing planes of the two cameras.

In the analysis which follows, the equation of the elliptical section of the store

in the plane of one of the cameras is derived first and then the equations of the sight-

line tangents to this ellipse from the camera position are'determined, giving the sight-

line angles as functions of store attitude and position. Manipulation of the sum and

differences of the angles to the top and bottom edges of the store enables a set of

equations to be derived which express store position as a function of these compound

angles and attitude. A further set of equations is derived which link store attitude

to store position and the known geometry of the cameras. These two sets of equations

must then be solved simultaneously if store attitude and position are to be found

independently. Unfortunately it has not proved possible to solve these equations

analytically but an interative solution is presented which is suitable for implementation

on a computer or prograinable calculator and the performance of this technique on a T159

calculator is discussed in section 3.

The equations required for the calculation of bank angle are derived in section 2.5

and require an a priorzi knowledge of pitch, yaw and position.

2.2 Equation of the store section

The equation of the store section in the camera viewing plane can be found from

the intersection of this plane with the three-dimensional equation of the cylindrical

surface of the store.

For a complete list of symbols see page 34.
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If the store has a radius a and an instantaneous attitude described by elevation

angle e and heading i , then, for the spherical polar coordinate system shown in

Fig 2, the equation of its three-dimensional surface is shown in Appendix A to be:

R2 a2R - sina sin 8 + cos a cos e cos(O - 0)

where R - radius from the origin of a point P on the store surface

a - elevation angle of point P above the horizontal plane

- bearing of point P in the horizontal plane.

Note that the origin of the coordinate system used here has been chosen to lie on the

centre line of the store. If we further assume that the viewing plane also passes

through the origin, with heading angle *0 . then the store section in this plane is

given simply by substituting I t 0 in equation (l) above. We may also rearrange the

trigonometric functions in the denominator of the equation to give finally for the

equation of the store section:

2 a 2

R s2a 2  (2).2I - K sin (a + y)

where K = I -cos26 sin2 -)

y - tan'cot e coo(*, .
Appendix B shows that this represents an ellipse with minor and major semi-axes

of a and a/(0 - K) respectively, rotated through an angle y , where y is the

angle between the minor axis of the ellipse and the horizontal plane.

2.3 The sight-line tangents

The angles of the sight-line tangents to the top and bottom edges of the store may

now be determined by finding the equations of the tangents to the elliptical store

section described by equation (2) above. This operation is facilitated by changing the

rigin of the coordinate system employed from the centre of the store to the camera

position, whereupon the tangents become simple radial vectors passing through the new

origin.

If the position of the store centre is specified by range g0  and depression
angle a. in the new coordinate system as shown in Fig 3 then the nw coordinates of a

point P on the surface of the store R', a' may be related to the old coordinates

R, a by the equations:

o aO -, RI coo at - RD cO 01
(3)

lamek - Rsin* GO R sin a'.

The angles a' and o0 hae been defined as depression angles here in anticipation of

the likely experimental configuration.

I II0



6

givesTransfoxming the store section into the new coordinate system using equation (3)
gives, after some manipulation:

R1 2 - K sn 2 (0 ' - Y)) - 2R'R co (a 0  - a') - K sin(c 0  - y) sin ' - 2

+RO - K sin(c 0 Y} - (4)

This is a quadratic in R' indicating that for a given radius vector at depression
angle a' there are in general two points of intersection with the elliptical store

section. As the vector approaches a tangent position however the two roots of the
equation must converge to a single value and this criterion of equal roots can be used

to establish the angles of the tangents.

The roots of a quadratic of the general form Ax2 + Bx + C - 0 are equal when
2B2  4AC , hence from equation (4) above the tangent angles must satisfy:

2coo(Ioo - a')- K sinO - Y) sin(c' -)

2 21 2,0 Y) 2)

- -K sin2(Wi - Y) R6( -K sin ~c0 -Y)- a?(5

In order to solve this for the angle a' we can multiply out and make the substitutions:

cos( O - ') - cos{(ao - Y) - (' - Y)}

= cos(CL0 - y) cos(a' - y) + sin(a0 - y) sin(a' - y)

Cos 2 W - y) - I+ cos 2(ao' - y)

sin 2 (Wi - y) a 0- cos 2(ai' - y))
and

cos(O' - y) sin(a' - y) - sin 2(i' - y)

which yields the equation:

P cos 2(a' - y) + Qsin 2(a' y) = S (6)

where P - (I - K) cos 2(co - y) + Kg

Q - (I - K) sin 2(u 0 - y)

a2

S - I -K- (2-K)- .

*0!
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However, this is recognised to be of a standard trigonometric form enabling us to write:

P2+ Q 2)1 sinJ2(x' - y) + 4 S (7)

where - tan l{Q1

Rearranging, we find that the angle of depression of the tangent is given by:

-"4in( L •I SC) + . (8)

The two tangent angles required are given by the two values of the sin-  term

between 0 and 2w which are, of course, simply related since their sum is equal to fr

It follows therefore, that if the tangent angles to the top and bottom of the store are

a and a1  respectively, then:

i + 2 = - + 2y (9)

and

a - a = i-
1(P2 + Q2

S - -
( 1 0 )cos( ( Q)O

S Co '( p2 + Q2) |

These sum and difference equations may be further developed, as shown in Appendix C,

to give the following equations for the range and depression angle of the store centre:

1 (0 + a sin K a2 sn2 - (a+a

2 + K{C0, 2(co2 - , 2( - y) - 1- 2 cos(a 2 - il) x

2 X IK sin gfl(00 -Y) f2- K + Kcos(IO .Y) Cos (0M2 4

a
2 X2  2
04 + sin (a2- at)

....(12)

.......................................... .......... '"...... rol.......... 2



The ranges and depression angles of the store centres in the two camera planes will

of course be different in general but can be related for a given store attitude by

considering the known camera geometry.

2.4 Camera geometry

The two sets of parameters which apply to the two different camera planes may be

conveniently distinguished by the use of primed and unprimed symbols. Thus the set of

unprimed symbols used up to now ROI 0gQ1 ,Q 2 ,* 0 } may be taken as applying to the forward

camera, while the corresponding primed symbols R, ajta,1 refer to the aft camera.

Appendix D shows how the range and depression angles in any two camera planes are

related for a given store attitude (e,*) and camera separation D

Thus:

%{sin e cos a sin(4' -0 + cos a sin a0 sin(' - + D sin sin
tan O

0 os 0 R0 Cos ,0s in(* 0 -) -Dsin4'

...... (13)

and

R0 cos ca,0 sin(W0 - ) - i(14)

" cos a6 sin(Vo0 - 0

The term in ct may be eliminated from equation (14) by substitution from equation (13)

but this is tedious and gives a very cumbersome result, whereas the above form is

perfectly adequate for numerical evaluation, provided that equation (13) is evaluated

first.

Appendix D also shows that attitude may be determined from a knowledge of the range

and depression angle of the store centre in the two camera planes:

cos Q& sin 0- I cos a sintan. , (15)
tan D + D o cos 0 a cos 0  Cs s cos (

sin ml R sin m0
- sin, 1 cos a0 sin *0 cos ; sin (16)

The term in $ in equation (16) may be eliminated by substitution from equation (15) but

again the above simpler form is adequate for numerical evaluation, provided that * is

determined first. The second pair of equations is of course equivalent to the first

(equations (13) and (14)), having been derived from them merely by a rearrangement of

term, and completes the set of equations necessary for the determination of store

position and attitude in elevation and heading. The solution of the equations is

discussed in section 3.

It should be noted that equations (13) to (16) inclusive can be divided top and

bottom by store radius leaving only normalized dimensions %/a and D/a and showing

that behaviour can be simply scaled according to store radius.
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2.5 Bank angle

Although not required for the present application the measurement of bank angle is

presented here for completeness. Its determination requires an a priori knowledge of

the store position and attitude in heading and elevation, whereupon it may be directly

calculated from the observed sight-line angles to marks painted on the side of the store.

It is shown in Appendix E that the sight-line depression angle a3 , in the plane of

the forward camera, of longitudinal marks on the side of the store at a bank angle * is

given by:

t 3sin m0 cos O sin( O - 0) -sin f sin(o0 -) + sin e cos 4 cos(* 0 -)
tano (3 . 0

Cos Ba-p Cos az sin(*'-' -Cos~

...... (17)

This may be rearranged to give bank angle as a function of the measured angle a3:

* a - sin cos6a - sinO 0 - ocos Ci0  a3 -sin c0

Icos jtan 23 +32ntano 3 tan e Cos(* 0 - - Cos -

where n tan- cos 6

Similar expressions apply to the aft camera of course but with %, ,0 and *0

replaced by %~, a' and * respectively. The direct calculation of a mean roll angle

in this way, is quite straightforward once store position and attitude in elevation and

heading are known.

3 SOLVING FOR POSITION AND ATTITUDE

Evaluating equations (11) and (12). in the two camera planes (using primed and

unprimed symbols as appropriate), together with a pair of the camera geometry equations

from section 2.4, provides a set of six equations altogether, giving the parameters go.

Go t , a, 6 and * in term of each other and known or measured quantities, and which

in principle can be solved to find these parameters. An analytical solution of these

equations by the conventional technique of substitution and elimination would, however,

be extremely tedious even if it were possible and this route has not been seriously
considered. Instead a relatively simple iterative technique has been employed which is

easily impleemnted on a progranmable calculator or microcomputer and since the

computational load is sufficient to ret ..re the v- of much a machine in any case, this

does not present any additional problems. 'as .erative procedure adopted is described
7below.
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The first step in the procedure is to make an initial estimate of the ranges and

depression angles of the store centre in the two camera planes. This is conveniently

achieved by assuming that the store section in these planes is circular, ie that there

is no pitch (e = 0) and the camera planes are orthogonal to the store axis

S- ,) - - ,. I/2). In this special case equations (11) and (12) simplify

considerably giving, for the forward camera:

0  1(a + a 2) (19)

a cosecQK 2 / (20)

and similarly for the aft camera:

1(;+a (21)

a cosec(- 2 /22

Using these initial estimates for the positions of the store centres in the two

camera planes it is now possible to obtain a more realistic estimate of the store

attitude knowing the camera geometry and using equations (15) and (16) which are

repeated here in their non-dimensional form.

sin R'-- co a0 sin 0-- Cos a sin

tan o 0  0 a 0s R0 (23)

+a co C05O cos %'--- coso 0'cos 0

a 0 0 a 0RO's n a ' sin a

tan = sin *1 0  7 . (24)
-Cos O0 sin _0- cos a;0  i

This new estimate of attitude may in turn be used to obtain a better estimate of

the true position of the store centres in each of the camera planes. Thus from

equations (11) and (12) for the forward camera:

C9 M.[. +02) s- K a sin2y (a+ ] (25)
,-. 2 1• -'-/ >I 2

2 + K{cos2(a2- M,) cos 2(a0 - ,) - 1} - 2 cos(a 2 - aI) x

a2 K i 0Y 2 - K +Kcs2 (O- Y) Cos 2(C&2 - C

-=Ksis-y 
2 (a2  a a 2 a)

2  2

4 + I sin - a1)

...... (26)



II

where Kc 2 2 - 2

Y " tan-l{cot 6 cOS(*o- 0  )

and similarly for the aft camera

i0 = n[cl + 1- K' sin12y' - (c' + c) (27)

2 + K'{cos 2 (o -(a ) cos 2( - ) - ,}-2 cos(a - x

2 X I I - K sin 2(i N ')2 -K' + K' cs2 N, - Y')Co 2 (a a;)

K' 2 -4 +T -- r sin2(ci - ;)"

...... (28)

where K' - 2 s2N

y = tan'{cot a cos( -

This procedure may be repeated by the cyclic evaluation of equations (23) to (28)

until the desired accuracy is achieved.

A programme to implement the procedure described above has been written for a TI59

programmable calculator and has an execution time of approximately I mn/iteration. It

is estimated that this same programme would run some 7 times faster on a small desk top

machine such as the Hewlett Packard HP85.

The number of iterations required before the answer is obtained to a given degree

of accuracy depends on the store attitude and position and generally increases markedly

with the eccentricity of the store section in the camera planes. It also depends on the

orientation of this elliptical section and can require more than twice the number of

iterations when the major axis of the ellipse is nominally at right angles to the mean

camera sight-line compared to when the major axis is aligned with this direction.

The convergence of the iterative solution is illustrated in Tables I and 2 for a

particular case being considered where the cameras are separated by only 1.25 store radii

(D/a - 1.25) and view at 900 to the datum heading direction. The use of smaller values

of D/a than this is unlikely in practice and to this extent this example represents

a worst case. The store is assumed to be nominally at a range of five store radii and at

a depression angle of 300 but with elevation and heading angles of 100 in the first case

and 300 in the second. It is seen that the initial estimates of attitude (iteration

number 0 in the tables) are within 0.5 when the elevation and heading angles are 10 but
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are in error by up to 70 for the 300 attitude. Convergence is also more rapid in the 100

case with the answer being correct to 0.0010 in only two iterations while ten iterations

are required in the 300 case. The data given in the tables for the infinite iteration

case, are in fact the initial data used to calculate the sight-line tangent angles fed

into the iterative programme and which were computed using equations presented in this

Report.

The convergence behaviour for elevation and heading angles both of opposite sign to

those just considered would be identical to that shown above, since the eccentricity and

orientation of the store sections would be the same, but convergence would be faster if

only one were of different sign, since the ellipse would now be oriented more towards the

cameras as discussed earlier. Thus for elevation e = -300 and heading ' p 300 the

initial estimates of attitude are within 1.70 and the solution is correct to 0.001 0 in

only four iterations.

4 ERROR ANALYSIS

4.1 General

The foregoing equations may be used to compute the detailed effects of measurement

errors occurring in the sight-line tangent angles ( 1,a2,ca ,CL) or of errors in setting

up the camera geometry (0,,D) for any particular store position and attitude. However

it is more useful to the system designer to have simple analytical expressions which

relate the resultant errors in position and attitude to the measurement or setting up

errors where these can be derived.

An estimate of the effect of finite or limited camera resolution is of particular

interest here. In practice resolution may be determined by the size of the individual

CCD photosites and the focal length of the lens employed, giving rise to a quantization

in the angular measurements and it is important to know how the errors associated with

this translate into uncertainties in store attitude and position. The effect of

measurement errors has therefore been considered in some detail. Errors in the determina-

tion of bank angle have not been considered.

4.2 Measurement errors

Simple analytical expressions for the effect of measurement errors may be found by

restricting attention to the moderate pitch and yaw situation, eg such that

sin e f tan 6 % 6 , to when the store is some distance away from the cameras

I) , and to when the cameras are orthogonal to the reference heading direction

- /2) . To a first approximation the effects of measurement errors can then be

assumed to be independent of actual store attitude and, more specifically, these effects

can be quantified by considering the zero pitch and yaw case, which greatly simplifies

the mathematics involved.

The uncertainties in range 6R and depression angle 8c 0  can be related to the

errors 6aI and 6a2  in the measurement of the sight-line tangent angles aI and a 2

respectively, for the forward camera, by the partial differential equations for separable

variables:
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6RO S (29)
a-6ct +-6z (29)

6 = -6a +-11060 (30)
0 a0 I 0- + 

2  (

Similar expressions apply to the aft camera using the appropriate primed variables.

The partial derivatives in the above equations may be found in the zero pitch and

yaw case (9 - 0, 0 = ) by differentiation of equations (19) and (20), substitution of

these yields:
2

6R0  "- (6a 2 1 a 1 (31)

and

6m 0  = 1(6I + 6Lc2 ) (32)

These equations together with their counterparts for the aft camera enable the mean

positional errors in range and depression angle, ARO and Am0  respectively, to be

calculated, using:

A = J(6R 0 + 6R') (33)

Aao - (o + sa )) (34)

The errors 6* and 60 in the heading and elevation angles respectively, may be

determined similarly, from their partial differential equations:

60 6~R +-A,-6% + + -6a +-2!L6a; 35
aR' 0 , am 0 0(3)

and

69 2 e 6R° + r 6 % + Be6ao + o UL 0 (36)
0 0 00

The partial derivatives required here may be obtained from the attitude equations (15)

and (16), which simplify in the case being considered, to:

~~R Cos~ M 0RCos QL
tan co D ,0 - (37)

sisin a
a tan sin (38- )0 (38I D

Thus for a ao  and f 1% we have:

S -D (IRo - 6R;) + -D sin a 0O' - 6o )  (39)
Son=
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60o ( (6 - 60 (40)
D -D 0

The positional errors given by equations (31) and (32) and their counterparts for the aft

camera may be substituted in the above to give the attitude errors directly in terms of

the Measurement errors 6ol, 602, 6CI and 6a•
2f 2

Of particular interest to the modelling of the effects of finite camera resolution,

is the case where all four measurements can be in error by the same amount, of magnitude

AQ say. but where the sign of the error can be positive or negative in an arbitrary

manner. Since there are four measurements there will be 16 different possible error

combinations altogether, but only eight of these will lead to different magnitudes of

error in store position and attitude, the other eight giving similar magnitudes but

opposite signs. It is a relatively simple, if somewhat tedious matter to evaluate these

eight different error combinations but only those giving rise to the worst position and

attitude errors will be discussed further here.

The largest range error occurs when both measurements to the top of the store

(a and a;) are too large and those to the bottom (a2 and a 2) are too small, or

vice versa, giving;

- + (41)

The worst case depression angle error obviously arises when all the measurement errors

have the same sign and:
AL0 =-0o (42)

The largest attitude errors generally occur when the measurement errors combine to

make the nose of the store appear closer to the camera than it really is and the tail

appear further away, or vice versa. Thus, for the forward camera, the top sight-line

angle might be too small and that to the bottom too large, while for the aft camera the

top angle would be too large and the bottom one too small. The errors in this situation

are given by:

S2Rjcos o Am (43)
Da

and

2R; sin m0 Aa
60 (44)

For purely horizontal viewing (a0 - 0) the error in yaw reaches a maximum but the

pitch error 68 is then zero for this particular error format. The worst case pitch

error in this situation occurs when both measurement errors for the forward camera are of

the sm polarity, eg making the nose appear high, while those at the tail are both

opposite to this, making the tail appear low. The pitch error is then given by:

2R 0 cos a0  (60- D ' "(45)
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It is easily seen that this exceeds the error given by equation (44) above for small

angles, such that a < tan (a/%) , and this very roughly equates to the store centre

being less than one store radius below the horizontal plane containing the camera, ie to

small drop heights.

Consideration of all 16 possible measurement error combinations gives average

position and attitude errors which are less than half of the worst case values presented

above. In practice, with a random error distribution, there will be occasions when some

or all of the measurement errors are zero and the resultant attitude and position errors

will therefore be even smaller. It is common practice in such a situation to equate the

worst case errors with three times the standard deviation of the random errors.

The worst case attitude errors can be many times greater than the measurement

errors in the sight-line tangent angles as numerical evaluation of equations (43) and

(44) quickly shows. Thus in the specific case considered in section 3 (R0/a = 5,

D/a - 1.25, a 0 a 30o) we have:

6S = 34.6 Aa

(46)

66 - 20.0 Aa

Hence to measure attitude to ±10 in this case it would be necessary to measure the sight-

line tangent angles with an error of less than ±0.030 and it is clear that very stringent

demands can be placed on the system designer in this way.

The major questions posed by the system designer are likely to involve the

optimisation of the viewing geometry, eg camera spacing and range, in order to minimise

the influence of the measurement errors discussed above. The dependencies contained in

the error equations indicate that the technique is best suited to long stores, enabling

the cameras to be placed a large distance apart (D large) and, at first sight, suggest

greatly improved performance at relatively short ranges (R0 small).

Clearly camera separation must be made as large as practically feasible although

it is really the separation of the viewing planes at the store position which is of

importance here and so toe-in or out of the cameras can be used as appropriate, with

benefit, when the choice of camera position is otherwise constrained.

The apparent dependence of attitude errors on the square of range in equations (43)

and (44) can be substantially modified by the interdependencies of depression angle n0 ,

angular resolution Am and range R% which arise in practice. The designer is usually

interested in observing the motion of the store as it falls through a predetermined

vertical drop height H and obviously as this is viewed from greater and greater range

the sight-line depression angles involved become smaller and hence a0 which enters

into the error equations is also smaller. Furthermore the focal length of the camera

lens can be increased as it moves away to maintain the field of view in the plane of the

store equal to the required drop height. This also maintains a constant spatial

resolution in the store plane, at least to a first approximation, if it is assumed that
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resolution is limited by the CCD element size, but angular resolution, Am uill then

actually improve in inverse proportion to the increase in range R.

The result of such interdependencies is that the error in heading angle, 6* , now

varies in direct proportion to the horizontal separation of the camera and store

(R0 cos mO ) rather than with ,
2 , while the errors in elevation angle 6e , given by

equation (44) for large m0 , become directly proportional to the vertical separation of

the camera and store (R0 sin m0) . The latter can be minimised by arranging for near

horizontal viewing whenever possible and in this event the elevation errors depend only

on the vertical drop height H which must be covered. As indicated earlier this will

usually be a fixed parameter in the experiments and the worst case elevation angle error

then becomes essentially independent of range.

In the small angle case when equation (45) applies (H < a) elevation errors will

increase with range due to the associated decrease in a0 * This variation will

typically be small since a0  is small anyway.

Different dependencies in range will of course be obtained if the designer invokes

different practical links between resolution, range and depression angle to those assumed

above. It is left to the reader to evaluate these as necessary. The general conclusions

to be reached here however, are that the influence of measurement errors on attitude

can be minimised by wide camera separation, near horizontal viewing and, in the typical

case considered (Am - I/R), by minimising viewing range, although the benefits

attributable to the latter constraint are less than would appear at first sight to be the

case.

Changing the camera separation D or nominal viewing angle a 0  is seen to have

no effect on the magnitude of the worst cases position errors (AR0  and A 0 ) arising

from measurement errors in the sight-line tangent angles, as might be expected. In

discussing the influence of viewing range on these position errors however, we may again

invoke practical relationships between range depression angle and angular resolution,

thus modifying the apparent dependencies given in equations (41) and (42). Thus if we

again vary lens focal length to give an angular resolution Am inversely proportional to

range, we find that the error in range AR0  is now directly proportional to the range

* , while the angular error A 0, varies inversely with this. The net effect is that

positional uncertainty along the line of sight is proportional to range while

uncertainty at right angles to the sight-line, given by the product R 0Ami , is

essentially constant. For near horizontal viewing conditions these directions may be

roughly equated with the local horizontal and vertical respectively so that in this case

horizontal position error will increase in direct proportion to viewing range, while the

uncertainty in height remains constant. Once again therefore the overall balance is

probably in favour of shorter viewing ranges.

The influence of store radius on the effects of measurement errors is seen in

equations (41), (43) and (44) which indicate a reduction in range and attitude errors

for large radius stores, all other things being equal. Physically this goes together
with the requirement for shorter viewing ranges noted above and the ability, observed
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in section 2, to normalise all the dimensions involved in the geometrical equations by

store radius, which in themselves would suggest that normalised range RO/a is the

f important parameter here and the one to be minimised.

4.3 Setting up errors

The effects of errors in setting up the camera geometry, both in attitude and

separation, may be discussed qualitatively in general, or computed accurately for

specific cases using the iterative technique described earlier.

Errors in the camera separation D would not be expected to lead to significant

errors in store position, at least to a first order approximation when near orthogonal

viewing conditions are used. However errors in store attitude can be generated and these

would be expected to vary in direct proportion to the errors in D . Since the latter

are easily limited in typical practical situations to much less than I, this error

source can be effectively eliminated.

The effects of errors in the camera heading angles ( 0 and *') can, however, be

much more serious, especially when the camera separation is small and the viewing range

large, since, as indicated earlier, it is really the separation between the camera

planes at the store which is important in determining attitude. It is easy to deduce an

expression for the fractional change in store attitude resulting from a change 6* 0  in

both camera heading angles, the worst case being when both cameras angle in towards

each other or both toe out. To a first approximation the attitude errors would then be

expected to be given by:
5e _ ~ 2 cos az

These errors can obviously be minimised by making the camera separation D as

large as possible and selecting a small horizontal working distance (R0 coo m0) . In the

particular case considered earlier, where R0/a - 5, D/a - 1.25 and a a 300

equation (47) shows that to measure attitude to ±10 over a range of ±200 in store

elevation and heading, camera heading angle must be known to better than ±0.40.

Camera heading angle errors would be expected to have a negligible effect on store

position, to a first approximation, for near orthogonal viewing conditions

(0 (N4- w) /2)

Errors in the camera elevation angles will lead to errors in the determination of

the store depression angle a0  if these are in the same direction for both cameras and

to errors in store attitude if of opposite polarity. The principal attitude error would

be in elevation for near horizontal viewing. There is of course a close parallel here

with some of the measurement error combinations discussed in section 4.2 and similar

equations are obtained for modelling purposes. Thus, by analogy with equations (42)

and (45), the worst case depression angle error Am resulting from a camera elevation

angle error 6e is:
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which for near horizontal viewing will mainly result in an error in store height

measurement, and the worst case store elevation angle error 68 is given by:

2% cos m06e = 86e
D

The associated store heading angle error is:

2R sin a 0D

which tends to zero for horizontal viewing (10 0 0).

The resultant errors in attitude and height measurement will all increase with

greater viewing range and the attitude errors will also become worse for smaller camera

separations. For R0/a - 5, D/a - 1.25 and c0 = 300 the elevation and heading errors

become respectively seven and four times the error in camera elevation angle and hence

for attitude to be determined to ±10 camera elevation angle must be accurate to ±0.14 °.

Finally, uncertainties in the radius of the store would be expected to result

mainly in proportional errors in the store range with a minimal effect on attitude, any

taper in the store profile between the two camera planes would, however, be much more
serious in this respect.

4.4 Discussion

It is clear from the error equations presented in sections 4.2 and 4.3 that the
effects of both measurement errors and setting up errors can be minimised in general by
working at relatively close range and with as large a separation of the camera planes as
possible. While the effects of measurement errors will usually be random in nature,

setting up errors will be systematic and are therefore less of a problem in practice
since they can be largely eliminated by calibration and they do not in any case

significantly affect the measurement of store velocities or angular rates which are
frequently the variables of prime interest.

Calculations of the errors in specific cases, using the iterative techniques

described in section 3, has confirmed the general validity of the error equations

presented above. The agreement obtained is excellent except in the single case of the

effect of camera heading angle errors on store attitude (equation (47)). The effects of

pitch and yaw interact markedly here but even so the simple formula presented holds

with ±50Z for elevation, heading and depression angles in the range ±300 and this is

adequate for mot design purposes.

There are of course many other aspects which must be considered in arriving at an
overall specification of system errors such as the problems of distortion in the optics,

lens focus, depth of field and resolution and vibration. These however, are beyond the

scope of this Report.
'I
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5 CONCLUSIONS

The derivation of the equations relating the position and attitude of a cylindrical

object to the sight-line tangent angles measured in two vertical planes has been

presented together with an iterative technique for their solution. The convergence of

the iterative technique has been illustrated by results obtained with a programe

written for a T159 calculator.

Simple first order approximations have been derived for the dependence of attitude

and position errors on both measurement errors and errors in setting up the camera

geometry. It is shown that the resultant attitude errors can be very many times greater

than the measurement errors causing them and that the technique is best suited to long

stores, enabling a wide separation of the camera planes, and for relatively short range

viewing (RO/a small).
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Appendix A

THE EQUATION OF THE STORE SURFACE

Consider the point P on the surface of a cylindrical store of radius a with

coordinates RaO in the coordinate system shown in Fig 2 and having its origin at a

point 0 on the axis of the store. Angle a represents the elevation angle of point P

above the horizontal XY plane while 8 is the azimuth angle measured in this horizontal

plane relative to the X axis.

The elevation and azimuth angles defining the attitude of the store are 6 and

respectively, in accordance with convention.

Point C on the axis of the store is the centre of the normal circular section

whose circumference contains the point P

Thus

PC - a (A-I)

OP - R (A-2)

and by Pythagoras: OC - (R42 - a2)1 (A-3)

CD and PA are perpendiculars from C and P respectively, to the horizontal

XY plane, CB is the perpendicular from C to PA as shown in Fig 2.

Thus
A - CD - (R2-a2) sin 6 (A-4)

PA - R sin a (A-5)

and

PB - PA- AB - R sin a - (R2 - a 2 )1 sin 0 (A-6)

In triangle DOA

OD - 2 - a2) cos e (A-7)

OA = R cos 8 (A-8)

D A - (A-9)

By the cosine rule

AD 2 OD2 + OA - 2 .OD .OA cos(DOA) (A-1O)

But
AD -BC (A-I)

and, by Pythagoras:
2 2 2

BC + PB -a (A-12)
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hence
( 2

sinG- -(R sin 0 + (R2 - a2  con20 +R 2 co 2

21(R2 _2)- cos a cos 8 cos(O a2  (A 13)

(R2 - - 2R(112- a2) sin a sin 6 + cos a con 8 cos(O - *) - 0 (A-14)

and for R *a:

R2  a2 - R2Isina sin e + con a coo 0 cos( - 2  (A-15)

or, rearranging, ye have for the equation of the surface of the store:

R2 a2

2 , a (A-16), - {sin s in, 8 + cos cos 8 cos(B - *)12
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Appendix B

THE ELLIPSE

The familiar equation of an ellipse in Cartesian coordinates is:

x2 2

- +(B- )

p q

where p and q are the magnitudes of the semi-axes in the x and y directions

respectively.

Transforming to polar coordinates by means of the substitutions

x - R cos 0 (B-2)

y - R sin 0 (B-3)

gives the polar form of the ellipse:

2 2 2  2
R cos$ + R sin l P (B-4)

2 2
p q

which can be rearranged to give:

2 2

R2  2 (B-S)

I -1 -kq.Psin2 o
q

If we now rotate this coordinate system through an angle 0 such that the angle a

measured in the new system is given by

a = *- i (B-6)

we have

2
R - - - (B-7)

This is seen to have exactly the same form as equation (2) of the main text which

therefore represents an ellipse.

Comparing coefficients we have

a a p (B-8)

2
K - I -Zy (B-9)

q

0 = Y• (B-1o)
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Hence

q 2 B-l
(I -K)

and since

0 < K < I

a a

(I - K)t

then equation (2) therefore represents an ellipse vith minor semi-axis a and major

semi-axis a/(0 - K)I , rotated through an angle y
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Appendix C

IEVELOP'ENT OF THE SUM AND DIFFERENCE EQUATIONS

C. 1 The sum equation

From the sum of the sight-line tangent angles to the top and bottom of the store

given in equation (9) of the main text we have:

tan(l +01 )  - tan{(2 -Z + 2y4 (C-I)

a2
(-K) cos 2a0- y) +K -

~where =tan-]
we - K) sin 2 (aO0 - y)

expanding:

cot + tan 2y (C-2)

tan( 1  2 - cot 4 tan 2y

2
(I - K)Jsin 2(a0 - y) cos 2y + cos 2(aO - y) sin 2y + K-2 sin 2y

R; (C-3)

(I - K) cos 2( 0 - y) cos 2y- sin 2 (aO0 - y) sin 2y + K-- cos 2y
R;

K a2
sin 2a 0 + I -K R2 sin 2y

2 (C-4)

Cos2'0+ IK Sa sin 2y
cos 2o 0 + 2

Hence rearranging:

sin(aI + a2) cos 2 o0 - cos(a I + ca2) sin 2a0 K a 2  2y -2a -- cos 2y.tan 2y - a~l+ a2)i
Cos (a + a2 - K 2 1  2

...... (C-5)

si 0 L 2 ) K a2 sin 2y - a 2)a (C-6)

1 21 -K 2 2
sin .a 0 a) - 2c001= - -- j hi{ - (ci1 + z)(-6

and

4092 + - sin'-T_ -asin 2y (a + 2  (C-7)

.0 K R; 1 2L 1 o
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C.2 The difference equation

From the difference between the sight-line tangent angles given in equation (10) of

the main text we have:

Cos2(a2 a p2 + 2 (C-8)
p + Q

4 2
(1- K)2 + (2 - 1)2 0 -2(2 - K)(I - K) a

(C-9)

2 2  K2 a4

( - )2 + 2K(l - K) cos 2(mo - a) 2 + KRa7

2 2which yields a quadratic in a /R:

(1 - K) + 2 (a - a K2 + K- cos 2(a - -

+ (I - K)2 sin2 (CL2 - aI) = 0 . (C-10)

Solving the quadratic, choosing the correct root by inspection, and after some tedious

manipulation we obtain:

2 + K{cos 2(a 2 - Il) cos 2(a 0 + y) - I} - 2 cos(a 2 - aI ) x

4 + s

SK 2  2S sin2(a2 - a1 )

....................................(C-Il)
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Appendix D

CAERA MOETRY

Fig 4 shows the basic geometry and relative positions of the store centres in the

two camera planes. The camera separation is D and the separation of the store centres

measured along the axis of the store is L

Resolving into the horizontal and vertical planes as shown in Fig 4 we have, from

the horizontal plane:

L cos os c = D + R0 cos a 0 cos 0  R cos a' co (D-1)

and

L cosesin % Cos a sin R e cos a sin P (D-2)co esi = cs 0 s 0 R0 a0

and from the vertical plane:

L sin 0 - Re sin a; - R sin a0  (D-3)
0 0 0

Eliminating L from (D-1) and (D-2) gives:

ROcos a0 sin c 0 -Re cos a; sin0

tancos ' (D-4)
tn 0D + R0 Cos a 0 Cos o0 Ro a C 0

Similarly from (D-2) and (D-3)

Re sin a' R sin a0
tan e = sin 0 cos sin (D-5)

where the sin 4 term on the right hand side may be eliminated by substitution using

equation (D-4) if required.

Equations (D-4) and (D-5) give the store attitude in terms of the camera geometry

and positions of the store centres and they may be rearranged to give the relationship

between the positions of the store centres for a known attitude.

Rearranging (D-5) we have:

Rolsin 6 cos 0 Cos a 0 + cos 8 sin sin aO(
sin 8 cos *' cos a + cos n (D-6)

and from (D-4)

D sin c+ R cos a 0(Cos s0 sin sin *0 Cosin)

Re C' o. sin sin coo (D-7)

0 0
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This simplifiea to give:

- % Co C L si ( *;- ,, - D s n V (D -8)

Equating the right hand sides of equations (D-6) and (D-8) and collecting together terms
in 01; yields:

-Rsin 0 cos a sin(N - + cos 6 sin a0 sin(Ns - - D sin 0 sintan a I ,,0 0

coo {R0 Cos a 0 sin(*O - V) - D sin ii
...... (D-9)
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Appendix E

DETERMINATION OF BANK ANGLE

Consider a line painted along the port side of the cylindrical store (the side

assumed to be nearest to the cameras), so that in straight and level flight the line lies

in the horizontal plane containing the centre line of the store. The problem is to

determine the sight-line angle of the painted mark, in either camera plane, when the

store banks through an angle 0 defined in the conventional sense (port wing high),

and is otherwise of known attitude and position.

A procedure may be followed which is similar to that adopted in determining the

sight-line tangent angles to the top and bottom edges of the store. The general equation

of the painted line in three-dimensional space is found first and the intersection of

this line with the camera viewing plane then gives the coordinates of the observed

point where sight-line angle is required. The foregoing is carried out in a polar

coordinate system centred on the store centre line and a simple transformation of axes

to a new origin at the camera position enables the sight-line angle to be found in the

coordinate system used for experimental measurements.

The geometry of the situation is shown in Fig 5 where P is a point on the line at

coordinates Ra$ , a and 8 being the elevation and azimuth of the point P

respectively. C is the centre of the normal section having P on its circumference and

CH is the horizontal from C in the same normal section of the store.

PA and CD are the perpendiculous from P and C respectively on to the

horizontal XY plane containing the origin 0 , which, as indicated earlier lies on the

centre line of the store (OC). Also, PQ is the perpendicular from P to CH

giving APQ = e , AE is the perpendicular from A to OD , QJ is mutually

perpendicular to PQ and CH with J lying on PA , and JK is the perpendicular from

J to OC..

Now, since QJ and CK are both mutually perpendicular to the normal section

PHC , QJKC is a rectangle and therefore JK is equal to QC and also horizontal. It

follows that JKAE is also a rectangle. We have:

PA R sina = PJ + AJ (E-1)

- PQ sece O+ KE (E-2)

= a sin 0 sec + OE tan 0 (E-3)

a sec ea sin 0 + OA cos(* - B) sin e (E-4)

therefore R sin a - see ea sin 0 + R cos a cos (V - B) sin e . (E-5)

Also:
AE - OAsin(* -e) - K - QC (E-6)

hence

R cos a sin(* - ) - a cosn . (9-7)

LM :-
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Substituting from (E-7) for t cos a into (E-5) gives two independent equations

in R and m which may be solved for these parameters if required, however this is not
necessary for present purposes

asin# sin('- ) + sin e cos * cos('- )
R #in a - coo e sin( -) (E-8)

Kcos M a a co (E-9)

As in determining the equation of the store section in the camera plane
(section 2.2) we now assume that the camera plane passes through the origin with azimuth

*0 . enabling the coordinates of the mark observed in the camera plane to be determined
by substituting 0 - 0 + r in equations (E-8) and (E-9) above for the port side,
a W0 giving the starboard side. If we also change the coordinate system as before,
giving a new origin at the camera position and specifying the new coordinates of point P
as range R3 and depression angle a3, we have for the port side

R3 cos a3 R0 cos n0 - Rcos a (E-10)

R3 sin 3 - 0 sin 0 - Rsin a(E-ll)

where R0  and a0 are the range and depression angle of the store centre in the new
coordinate system.

Hence:

tann 3 a sin :L0 -R sin :
ta 3 =R O cos mO - R con a

and substituting from equations (E-8) and (E-9)

tsin aocos e sin(*0 -) sin 4 sin(*o *) + sin e cos f cos(* O +tan (%3 a= o l osO i(

cos ~ cor c0 sin( 0 -) - cos

(E-12)

Note that R0  has been normalized by the store radius a and the angle (4 - *0)

changed to (*0 - ) to agree with previous form.

Equation (E-12) may be rearranged to give the bank angle # as a function of the
sight-line angle a3 by cross multiplying and then collecting together terms in sin

and coo * . thus:

(cos 0 tan 3 + sin 0 cos(*o- 0 ))cos * - sin(*0 - ) sin *

RO- cooes co - sin Go
a 3 -so)

(A---
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now
2

Ucos,-vsn, ( + V2) sin( -*) (E-14)

where n -tan'(GO

hence

sin( - I = -- cos 0 sin(*0 - V){tan a3 Cos - sin o0

I + Cos 2e{tan2 3+ 2 tan a3 tan e cos( O0 - - cos2 O -0

.. . . . . . . . . . . . ..... (E-15)

and, finally:

= - sin-I  
+ cos 0 sin(o0 - 0) ftan a3 cos a 0 - sin a0

I + cos 2{tan2a3 + 2 tan %3 tan 6 cos( 0 - P)-cos2( 0 - E)

....(E-16)

where - tan I-cos 6 tan a3 + sin 6 cos(o j0  )

sin(V0 - 0)
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Table I

CONVERGENCE OF ITERATIVE PROGRAME FOR 10° PITCH AND YAW

Input data

Da 1.25 a, a 16.55010052

0 = 900 a2 w 40.07081796

- 900 a - 19.82745368

= 43.74644789

Results

Parameter

Iteration
number ORO a a;

a a

0 9.627474 9.87066A 28.310459 4.906320 31.786951 4.825785

I 9.984904 9.984410 28.270516 5.034012 31.753374 4.955189

2 9.998921 9.996105 28.272225 5.041355 31.755280 4.962412

3 9.999955 9.999954 28.272213 5.041757 31.755267 4.962818

4 9.999997 9.999999 28.272218 5.041779 31.755273 4.962840

a 10.0 10.0 28.272218 5.041780 31.755273 4.962841
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Table 2

CONVERGENCE OF ITERATIVE PROGRAMME FOR 300 PITCH AND YAW

Input data

a = 1.25 - 9.814760222
a

0 = 900 a2 a 38.9993655

' 9a; 21.015708200

-2' - 51.88559048

Results

Parameter

Iteration
number R R

0 0 (O 0

0 23.178612 25.349156 24.407063 3.969209 36.450649 3.757364

I 28.105158 27.478669 23.857871 4.646414 36.174493 4.458827

2 29.074128 29.269900 23.953318 4.937227 36.314031 4.730071

3 29.704085 29.595812 23.935244 5.051800 36.294045 4.847901

4 29.847944 29.877479 23.94 .51 5.099939 36.309429 4.892836

5 29.950265 29.932039 23.944922 5.119082 36.306468 4.912509

6 29.974322 29.979157 23.946859 5.127210 36.308892 4.920093

7 29.991542 29.988483 23.946448 5.130457 36.308409 4.923427

8 29.995643 29.996446 23.946770 5.131837 36.308811 4.924716

9 29.998559 29.998045 23.946702 5.132389 36.308731 4.925282

10 29.999260 29.999394 23.946756 5.132624 36.308799 4.925502

- 30.0 30.0 23.946753 5.132785 36.308797 4.925627

!A
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LIST OF SYMBOLS

a store radius

D camera separation

store vertical drop height

K parameter defined by equation (2)

K' as K but referred to aft camera plane (see equation (28))

p semi-axis of ellipse

P variable expression defined by equation (6)

q semi-axis of ellipse

Q variable expression defined by equation (6)

R radius from origin on store centre line

R' radius from origin at camera position

R0  range of store centre from camera position

as R but referred to aft camera plane

R3  range of mark on store side from camera position

S variable expression defined by equation (6)

U general coefficient of cos * in equation (E-14)

V general coefficient of sin * in equation (E-14)

0general elevation angle from origin at store centre

a ' general depression angle from origin at camera

a0  depression angle of store centre from camera position

C1 as a0 but in aft camera plane

.L I  depression angle of sight-line tangent to top of store from camera position

a', as a I but in aft camera plane

a 2  depression angle of sight-line tangent to bottom of store from camera
position

a2  a a2 but in aft camera plane

a3  depression angle of mark on camera side from camera position

0general azimuth angle from origin at store centre measured relative to
direction of line joining the two cameras

Y paramter defined by equation (2)

¥Y as y but referred to aft camera plane (see equation (28))

60 increunt in range R0

6% incremnt in range I
0
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LIST OF SYMBOLS (concluded)

6 0 0 increment in depression angle c0

6; increment in depression angle a;
0a increment in depression angle a

6a increment in depression angle a

6a2  increment in depression angle a 2

6M ' increment in depression angle a '

68 increment in store elevation angle e

60 increment in camera elevation angle

6* increment in store heading angle 0

6 0 0 increment in camera heading angle 0

60 increment in aft camera heading angle *

AR% mean increment in store range

A 0  mean increment in store depression angle

n angle defined by equation (E-14)

8 store elevation angle

Cangle defined by equation (7)

0 store bank angle

polar coordinate defined by equations (B-2) and (B-3)

store heading angle

*0 forward camera heading angle

aft camera heading angle

angle used in equation (B-6)

i l I fJ l II , -' . . . .
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