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STABILITY IN LINEAR DELAY EQUATIONS

by

e

Jack K, Hale, Ettore F. Infante

and Fu-Shiang Peter Tsen

ABSTRACT

For linear autonomous differential difference equations of retarded

or neutral type, necessary and sufficient conditions are given for the zero

solution to stable (hyperbolic) for all values of the delays.
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1. Introduction
This paper is devoted to the study of the effect of the delays on the
asympotic behavior of the solutions of linear retarded and neutral differential

difference equations. A special case of the retarded equations considered is

(1.1) x(t) = Agx(t) + 2: | Aextemy)

vhere X GRn, each Ay is an n x n matrix and each T >0, k=1,2,...,N.
It is known that the asymptotic behavior of the solutions is determined from
the solutions of the characteristic equation,

N

Ake -krk] = 0’
k=1

(1.2) £0,r,4) 98f det[AI -A,- )

Let o(r,A) be the supremum of the real parts of the A satisfying (1.2).
It is well-known that o(r,A) < 0 implies the zero solution of (1.1) is uniformly
asymptotically stable (see, for example, [4]). |

Because the supremum o(r,A) is attained at some specific value of A
satisfying (1.2) and the function f£(A,r,A) is continuous in r,A, it follows
that o(r,A) is continuous in r,A. Therefore, the property of being asympto-

tically stable at some point ro,Ao is preserved under small perturbations

in r,A from ro,Ao.

Our primary objective is to give conditions on the coefficients A in
(1.1) which will ensure that Eq. (1.1) is asymptotically stable for all delays
t ) (tl, rN) with T > 0, k=1,2, ... , N; that is, we want to charac-
terize those values of A such that o(r,A) <0 for all rk>o, k=1,2, .., N.
Some aspects of this problem have been previously discussed by Zivotovski [7],

Datko [3], Repin [5), Silkowskii [6], Cooke and Ferreira [2].
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If we call the set of such A the stable cone S for (1.1), then one

of our results states that A €S if and only if

N
(i)  det 40
Zk--o A

(11) det[iy - Aj - 2" Ak:;‘ :“] # 0 for all
k=1 N

YER, y#0,3,€C, |s]=LI=1,2 .., N

J

These conditions also imply that the spectrum of IN A‘k and the spectrum
of Ao lie in the left half plane. k=0

If the equation (1.1) is a scalar equation, then the above conditions
for A tobe in S simplify to 2:.0 A <O, z:-l (Al < [Agl. This latter
result was obtained by Zivotovski [7].

In the applications, it is not always true that the delays T, vary
independently of each other. For example, with three delays, T),T),Ty, ORE
may have Ty =Sy, Ty =Sy, Ty S, s, for some positive numbers $)+55- In
this case, the stable cone can be larger than the one obtained before. We also
give a characterization of the stable cone in this case.

Finally, the results are extended to the much more complicated case of a

neutral differential differente equation

d N - N
x(t) - x(t-r, )] = + x(t-r,)
r3 L, 5 mdl = A+ b Ax(tery
The basic difficulty here arises from the fact that the asymptotic behavior of
the solutions of the difforﬁco equation

x(t) -[:llkx(t-rk)-o

depends in a very complicated way upon the delays T+ The results for this
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case are contained in Section S and rely heavily upon Avellar and Hale (1].

2. General results for retarded equations.

Suppose R = [0,), R= (), = (rl, cees rl@ € m*}“,
M

Yk = (Ykl' ses g YkM)’ ij > 0 integers, Yk £0, Yk'r = zj-l ijr-o
k=1,2, .. , N, j=1,2, .. , M, and consider the retarded differential difference
equation

N
(2.1) X(t) = Agx(t) +k§1 AX(t - Yy - T)

where x €R™ and each Ak’ k=0,1, ..., N is an n x n real constant matrix.
The characteristic function for Eq. (2.1} is

. -Ayk.f

(2.2 £(A,7,A) = det[AI-Ap- 1T Ae ]
k=

)|
2

where A = (AjAy, ..., A) €RF (WD),

Definition 2.1. System (2.1) is said to hyperbolic at (r,A) if f(\,xr,A) =0

implies Re A # 0. System (2.1) is said to be asymptotically stable at (r,A)

if £(A,r,A) = 0 implies Re A< O.

The delays in Eq. (2.1) are the constants Y,-r, k=1,2, ..., N. They are
not independent and are determined by the vector r = (rl,.....rn)em')“. For
example, if M=2, N= 3, r= (rl,rz), Y (1,0), Ve (0,1), Y3 * (1,1), then
the delays are T sTyTy *+ Ty

Our objective is to determine conditions on the coefficients A in a.n
to ensure stability (or hyperbolicity) for all values of r€ ®")M. This means,

in particular, that, for a given r°, we must have stability (or hyperbolicity)

for a1l ar® with a > 0. By letting t + at in (1.1), this moans that, if
A0 ensures stability (or hyperbolicity) for all ré€ m”)", then a A% aiso

ensures this for every a > 0; that is, the set of such A's is a cone. We
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formalize these ideas in the following
Definition 2.2. For a given re¢ (R")“, the ray Yr through r is the set

{a r €(R+)M: a> 0}. For a given roe(ll+ )", the hyperbolic cone at t°.

designated by “r°’ is defined by

2
H = Wer® D gq (2.1) is hyperbolic at (r,A)

T
for every r €y }
T

The hyperbolic cone H is defined by

+
H = nH :remy)
For a given °€ (IR*IM, the asymptotically stable cone at r°, designated by

S o’ is defined by

r
2
50 = {Aer" (Nﬂ):Eq. (2.1) is asymptotically

stable at (r,A) for every r € yro}

The asymptotically stable cone S is defined by

s = n(s,:r e@h™)
In the following, the notation ReA(A) for a matrix A designates the set
consisting of the real parts of the eigenvalues of A. As a preliminary for
the classification of Hr’sr’ we have the following elementary result, a form

of which was proved by Datko [3].
Theorem 2.3, A € Hr[or Sr] if and only if

N N
(1) Re A ( ) # 0 [or Re A( )< O
ik-oA" lox Re kzoA* :

(i1) £(iy,ar,A) 0 forall y€R, y #0, a > 0.
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Proof: Let Sy = 18X {Re A <0:£(), ar,A) = 0}, = min {Re A > 0:£(A,ar,A) =

Ya

with Sq T T Uy =4 if the corresponding set is empty. The numbers Sq Yy

are continuous in a. Condition (i) implies So <0, u, > 0. If A!Hr,

% %

tradicts (ii). Thus, (i),(ii) imply A€ Hr‘ The converse is obvious.

then there is an ao> 0 such that either s =0 or u = 0. This con-

For the more difficult equations with distributed delays, Cooke and
Ferreira [2] have obtained nontrivial results in the spirit of Theorem 2.3.

Theorem 2.4. A €H if and only if

N
(H,) det 0
1 zkso Ay

N Y

. kY
(Hz) det [iy - Ao - ik--l Aks1 ...sMkm] #0 for all y€ER, y #0

s.€C, |s;.|=1,j=1,2, ... , M.
J I N

A€S if and only if (H)) and ReA(2k=0Ak) < 0.
Proof. Suppose A€H. Then (Hl) is satisfied. If (Hz) is not satisfied
at (y,s), choose y ¥ 06,, so that -yek >0 and S = exp(iek) for all k
T = -ek/y, we have f(iy,r,A) = 0 which contradicts the fact that A € H.
Conversely, suppose (“1)'(“2) are satisfied and A € H. Then there
ijsan o >0, y€ER,y#0, ro € (lf)M such that £(iy, aro, A) = 0. Since
this contradicts (l-lz), we h;ve proved the first part of the theorem.

The condition Rek(z Ak) < 0 is equivalent to saying that Eq.(2.1)
k=0

is asymptotically stable for r = 0. Thus, the last statement in the theorem

is true.

0}

. With

To obtain other characterizations of H,S, we need the following l-t.’

We are grateful to John Mallet-Paret for assistance in the statements snd

proofs of the next two results.




N My
(2.3) ’ p(lasll ‘eee 3 %) \a d.t [M < Ao -:k lAk‘l i "‘-aw]q—h

then the hypothesis -(Hz) implies

(2.4) P(iy,8;, «-r 259 # 0 for y€E R, Is;1< 1, 3 -1,2, ... . M.

Proof: Fix sg,' |s?| = 1, §=1,2, ..., M and consider the function

Qi) %f pras), L., us:).

Designate the zeros of this equation by a(A). Then a(A) is meromorphic,

defined on some Reimann surface over the A-plane and lim [A|+o la(n)| = =.

Consider the curve in the a-plane defined by a(iy), y € R. Hypothesis (Hz)
implies that Ja(iy)] > 1 if y # 0. Thus, |a(iy)] >1 for all y. Thus,
Q(iy,a) = P.(i)'.as(l). vee s usg) #0 for Jaj <1, y €ER and all sg,lsgl =1,
j =1,2, ... , M. This proves the lemma. 7

By taking each sj =0, j=1,2, ... , \,in Lemma 2.5, we obtain‘
Corollary 2.6. Hypothesis (H,) ilplies“ Re A (Ag) # 0.

Corollary 2.7. 1I1f A€H, then Re A ([ A) $0, Re ) (A) #0 and the
- k=0 ST

N
mstrices } A, and A, have the same nusber of eigenvalues with positive
k=0

and nc-ptivi real parts. N
I£ AES, then Re X (A) <0, Re A ( ) < 0.
- % zk-oh"

Proof: Let P(A,s) be defined by Relation (2.5). Let Q(A8) = P(A, 3, ... , 8).
Prom Lesma 2.5 and Relstion (2.4), Qiy,s) # 0 for 0< s < 1,y €R. Hypothesis
(M) isplies Q(iy, 1) 0 for all y €R. Thus, Q(-,5) hes no Tocts on the "
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imaginary axis for any s € (0,1]. Since Q(A,0) = det [AI - AO], Q(\,1) =
N N
det [AI -} Ak], it follows that Re A(A,) #0, Rer () A) # 0. Since the
k=0 k=0

zeros of Q (As) = 0 are continuous in s, the result follows immediately.
The verification of Hypothesis (Hz) is extremely difficult. For the
case of an nth order scalar equation and independent delays, this hypothesis
can be written in a more convenient form.
Following Ziwtovskii, consider the scalar equation
@8  yPw o1 8,0 Ve ] 1 ey w) =0
.1 J0 ._q JK %
j=1 k=1 j=1
where Wy >0, ajk €R for all j,k. We can now state the following generali-
zation of the results in Zivotovskii [7].

Theorem 2.8. Let a = (ajk’ j =1,2,...,n, k=0,1,...,N)

n n n-j
py(r,a) = A" + 2 ajoA
i=1
Zn n-j
p.(A,a) = a., A
k" j=1 jk

Then a €H if and only if

N
(2.6) Y a./fo
j=0 ™
N
(2.7 Ipgliv,a)| > Ek . |py(iy,a)| for all y 40, y€R

and then necessarily a n0 $0.

The vector a€S if and only if (2.6),(2.7) are satisfied and

(2.8) Re A < 0 if po(A,a) =0,
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Proof: Transform the equation to an equivalent system
N
X = Agx(t) + IoAX(t - o)
k=1
where x = (y,y(l),...,y(n'l)). The characteristic function is given by

N
£(,7,3) = py(r,a) + ik pk(l,a)e'kwk
=] ’

Hypothesis (Hl) is equivalent to f£(0,r,a) # 0 which is (2.6). Hypothesis (Hz)
is equivalent to

N 3
Poliv,a) + § P liv,a) s #0 VYER, y#0, |5} =1, .
k=1

and this is equivalent to (2.7). The last statement follows from Corollary 2.7 .
since the characteristic function for Ao is po(A,a). This proves the theorem.

We also can generalize Zivotovskii's result to the case where the delays
are dependent, but it cannot be stated in such a simple fashion. The proof is

the same as before.

Theorem 2.9. Consider again Eq. (2.5) with wj = y.'r, r€ aij, Y. = (yjl,...,ij),

J J
nonnegative integers, Yj # 0. With po(x,a), pk(x,a) defined as in Theorem

YJk
2.8, the vector a € H if and only if Relation (2.6) and

N Y Y
(2.9)  pyliy,a) + Zk p, (iy,3) s, " .5 M £ 0 VyER, v F 0, Is51= 1,
-1

j=1,2,...,M
are satisfied.

The vector a € S if and only if relations (2.6),(2.9),(2.8) are satisfied.

For the case of one delay in Eq. (2.1) one can obtain an equivalent

formulation of the cones H,S following an idea of Repin [5] via the following

lemma.
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Lemma 2.10. 1If AO’AI' are real n xn matrices, then the statement

(2.10) For every W E€R, 11 #0, the solutions of the equation

AA_ +A -Aul

01

Aul AA0+A1

! satisfy |A| <1

is equivalent to the statement

(2.11) For every y €R, |a| < 1, det[iy - Ay - A ] # 0
Proof: If A #0, u # 0, then the equation in (2.10) is equivalent to

2 1
0 “Aul + (M0+A1) —-Xil_

det =

Aul J\AO*AI

which is equivalent to ﬁ
. det [\2p%1 + (M0+A1)2] =0
which is equivalent to
det [-A(iy) + (',\A0+A1)] =0

for y €R, y #0. If |A| <1 when this is satisfied, then this is equivalent

to saying that

det [iy-Ao-aAIJ-O,yGR.Y)‘O

implies |a| » 1. Thus, the solutions of this equation for all y €R satisfy

jal > 1. Thus, we obtain (2.10) is équivalent to (2.11) and the lemma is proved.
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Corollary 2.11. For the n-dimensional system
x(t) = on(t) + Alx(t-r)

A= (AjA) EH if and only if (2.10) and

(2.12) det(Ao-l-Al) $0

are satisfied. A € S if and only if these conditions a_nd Re A (Ao) < 0.

Proof: This is an immediate consequence of Lemmas 2.10,2.5 and Theorem 2.4.

3. First order scalar equations. For first order scalar equations,

N
3.1 x(t) = agx(t) + zk lakx(t-yk-r)

where ‘j €ER, j =0,1,...,N, the characterization of the hyperbolic and asymp-
totically stable cones can be specified in terms of properties of the solutions
of the difference equation

N
(3.2) : agy(t) + Zk.lnky(t-vk-r) =0,
It is the purpose of this section to obtain such a characterization.

Let as= (aopalscccjak)l

N
a(0,8) = a, + ik lak cos v, *0

(3.3)
N
B(6,8) = ik s siny, 8 , 6€ER'
-1

The characteristic equation for the difference equation (3.2) is

-AYk.r

X
(3.4) sA,a,1)  92F oy o R

I e ——
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The functions a(6,a), 8(6,8) are related to the function g(A,a,r) by

: the relation

(3.5) g(iy,a,r) = a(-yr,a) - i8 (yr,a)

The main result of this section is the following

Theorem 3.1. For the scalar equation (3.1), a €H if and only if

N
(H;) £ 0
. 2k=:o *

(H4) For each © ER“, either «a(0,a) # 0 or simultaneously,

a(8,a) = 0, 8(6,8) = 0. If (H4) is satisfied then 8, # 0.
The vector a € S if and only if (HS),(H4) and ao< 0.

Proof: For n = 1, the condition (Hl) in Theorem 2.4 is equivalent to (Hs)

and (Hz) is the same as

(a(8,3), y - 8(8,2)) #0 forall yER, y#0, 6 €RN

which is equivalent to (H 4). Corollary 2.7 implies a, # 0. The statement
about S is also a consequence of Corollary 2.7. This completes the proof
of the theorem.

o An immediate consequence of Theorem 3.1 is the following result of

Silkowski [6].

Corollary 3.2 Suppose the components of r are rational and define the

: functions
| N
Y(y)-ao+2“akcosvk-ry
N
‘ G(yJ-I“aksmvk'ry

. Then a € "r if and only if




N
1) £0
Xk-l *

(ii) For each y €ER, y § 0, either vy(y) ¢# 0 or y(y) =0, 8(y) =~ 0.

Furthermore, a € sr if and only if (i),(ii) and &

0 < 0. Finally, condition

{(ii) is equivalent to

N -)«Yk- r
=

Re)‘f_o_i_fao+):kglake 0.

Proof: Since the components of r are rational, we may assume the equation
has only one independent delay. The result is then a special case of Theorem 3.1.
It is interesting to state Corollary 3.2 in terms of properties of zeros

of polynomials. If the components of r are rational we can write

N
a, + 2k=1 a, cos Y, - Ty = h(cos y)

(3.8)
N

ik . 3, siny, - Ty = (siny) g (cos y)

where h,g are polynomials.

Corollary 3.3. With h,g as in reldtion (3.8) the statement

(i) h(Q1) # 0 and, for every n € [0,1) for which h(n) = 0,

it follows that g(n) = 0

is equivalent to the statement

N "kvk'r

(1) h(1) #0, a. #0, Re A < 0 if a, + ° 0 4
0 = 0 zk_l‘k

Proof: This is a restatement of Corollary 3.1.

Corollazry 3.4. For the scalar equation

N
X(t) = agx(t) + ]

x(t-x,)
S S !
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N N
we have a € H if and only if £0, < .
we have Ik_o 8 2&-1 Loyl < layl

The vector 8 €S ifandomly if a€H and g, < 0.

N
Proof: Theorem 3.1 implies 8 €H if and only if uoio.i s, f0 wnd
k=0

(H4). Hypothesis (H4) is equivalent to either
N
a(9,a) -ao+2k a cos 6, £ 0
=]

or, simultaneously,

a(6,a) = 0
:N
8(6,a) = sin 0, = 0.
ol ' X

N
The latter relation implies 2 Inkl < laol. Conversely, if
k=1

{: . la,| < lagl, then a(8,s) = 0 for some & implies 2: l\a.kl = |ay|

and each component ek of 6 is 0 or w. But this implies g(8,a) = 0.

The last assertion about S is also a consequence of Theorem 3.1.

Corollary 3.5. For the scalar equation

x(t) = aox(t) + alx(t-rl) + azx(t—rz) + asx(t-rl-rz)

we have a €EH if and only if

(1) ay+3a, +a,+a; ¥0

a a, a
1 2.3 a
(1) 1 + —=> |2+ 2| 0 < - 1/ <1
8% % 8|’ %
LT L B | R Y AR
LY PR W

;
i
|
4
1
i
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(iii) either ) ¢+ 8, =8, +a; oOr

i Ty Ml Bl &

The vector a2 €S ifendonly if a€H and n°<0.

Proof: Theorem 3.1 implies that a € H if and only if
2, $0, (i) and (H‘) is satisfied; that is, if bj - 'j /a,, and

a(8,a) = ‘0 [1-+ bl

8(8,a) = a; [b, sin &) + b, sin 6, + b

2 2 3

then, if there is a 8 such that o(0,a) = 0, then g(6,a8) = 0.

But, these 6 are precisely the ones for which

that is,
io ie i®

1+ ble 1, -8 2(b2 + b3° 1).
To have a solution of this equation, one must have 61,02 take on the values
0 or 7. Checking separately the cases 61 =0, e1 = T, one observes that,
for any bl’ one has a solution of this equation if and only if either
(3.9) 1+b =b, +by
or
(3.10) 1 - b1 = b2 - bs

If we choose a value of

these inequalities and, if (H4) is satisfied, then we must have

2

for all O = (91. 62) €R". The relation a(0,a) # 0 for all

equivalent to

ie ie 10

Re [1 + )

¢ Nenroe byre ‘150

1

cos 61 + b2 cos 62 + by cos (010 92)],

sin (01 . 92)].

a(8,a) + i8(0,a) = 0;

b= (bl’bZ’bs) which does not satisfy either of

a(6,8) # 0

2

6 ER is




G
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for all 6 €R’. This implies [b| < 1. If [b)] <1, them it is essily

observed that

if 0 <b, <1, then 1-b1>|b2-b3(,

1

(3.11)

if 0 <-b,< 1, then 1+b1>|b2+b3|.

Relations (3.9), (3.10) and (3.11) are precisley the relations in (ii).
Thus, (H4) implies (ii). The converse is a straightforward reversal of the
argument. This proves the corollary.

If there are three independent delays in the equation in Corollary 3.§,
the condition (ii) would be replaced by |a,| + |a,| + lag] < |a,]
which is a more restrictive condition on the coefficients than the one for

only two independent delays.

4. Some examples. In this section, we give some examples illustrating the

application of the results of Section 2 to equations of order > 2. These
examples will also show that the results in Section 3 do not generalize to
systems; that is, one cannot reduce the discussion of the hyperbolic and

stable cones to the discussion of properties of difference equations.

Example 4.1. Consider the system
(4.1) k(t) = B[x(t) - ux(t - 1))

where B is a 2x2 matrix with ReA(B) < 0, u is s
scalsr, |u|/< 1. We want to determine conditions on B,u so that the

matrices (B, -u B) € S, the asymptotically stable cone.
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By using the Jordsn normal form for B, onme sees that Theorem 2.4 asserts
that (B,-uB)€ S if and only if . o b

iy -A(®) 0 +ut®po foranl yewm, yso, oen,

for every eigenvalue A(B) of B. If A(B) is real, this relation is
always satisfied. However, if A(B) is complex, this may not be true. In
fact,

Lope® a1 2ucos 803D exp 1 £
where

tan! £(4,0) = (usin®)AL + p cos 6)

and 0 < [2(u,8) | <m, T(W,0) = 0. If go(u) = maxy|z(u,0)|, them

Loy 2 m/2 4f 0 < u<1, go(w) < w2 if -1<ug 0.

We can now assert that (B,-uB) € S if snd only if

5~ <arg A(B) + 5 < 7w

for all eigonvgluos A(B) of B. This clearly puts a restriction on the

eigenvalues of B and u with the restrictions being more severe for

U > 0 than for u < 0. .
This example shows that the results in Section 3 cannot be generalized

to systems. In fact, the zero solution of the difference equation

By(t) - uBy(t-r) = 0

is asymptotically stable for every u, |u| <1, snd (B,-uB) ni;m belong

3 A L R Y s T -—_ T T . 0 T
B e XSl o s . . Wi ) ' . - SRR ks 7" G
> 4 ay. < V : _ ) L . . : ) b . Swipt il v
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to S for every B,u.
Example 4.2. Consider the equation

(4.2) X(t) + aok(t) + ali(t-r) * azx(t) * asx(t-r) =0
along with the characteristic equation

+a e-Ar

-Ar
e ) vayae T g,

12 + A (ao + a,

If a-= (ao,al,az,as), then Theorem 2.8 implies that a € H, the hyperbolic

cone, if and only if
(4.3) a, + a, £0
(4.4) |P(iy)] >|Q(iy)] for all y #0, y €R
PO =A% +a ) +a
0 2

Q) = alA +a,

The condition (4.4) is equivalent to

£ % 0P-ap? ¢ a)-adiyal > 0.

for all y €R, or, equivalently, f(r) >0 for r > 0. It is easy to show the

quadratic function f£(r) >0 for r >0 if and only if

2 2
ay - 8] - 28, >0 implies la,] > |a4]

(4.5)

2 2 2 2 ,1,.2 2 2
8 -8 - 2a, < 0 implies 8, > 85 ¢ ?('0"1'2'2)

Thus, a €H if and only if (4.3),(4.5) are satisfied.
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Theorem 2.8 also implies that a € S, the asymptotically stable cone,
2

if and only if (4.3),(4.5) and Re A < 0 if A" + a

0X+32=0;that is, .

(4.6) >0, a, >0,

3 2

If Eq. (4.2) is transformed to a system of order two
x(t) = on(t) + Alx(t-r)
then the zero solution of the difference equation
Aoy(t) + Al_y(t-r) =0 .

is asymptotically stable if |a3| < |a2| which does not imply anything
about H.

5. Neutral equations. In this section, we generalize the results of

Section 2 and 3 to neutral differential difference equations
N N

(5-1) 4= [x(t) - ):k [BR(EYe D] = Ay x() Zk Ay Xy D

where x €Rn, each Ao.Ak.Bk, k=1,2,...,N, is an n xn constant matrix
and the Yy T are the same as before. The characteristic fumction for

Eq. (5.1) is

N AT ZN -Ayk.r]
5.2 A,7,A,B) = det|A(I- ~A,- e
(5.2)  g(A,1,A,B) t[( Zk'lnke ol M

where A = (AjA;,...,A), B = (B,...,B).
Definition S.1. System (5.1) is said to be hyperbolic at (r,A,B) if there

is 8 6 >0 such that {Rer:g()\,r,A,B) =0} N [5,8] = @. .
System (5.1) is said to be (uniformly) asymptotically stsble at (r,A,B) if it
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it hyperbolic at (r,A,B) and {Rel:g(),r,A,B) = 0}IN[-§,») = @,
Definition 5.2. For a given r°€ (lt‘)", the hyperbolic cone at ro, designated

by H 0’ is defined as
b 4
H, = {(AB) €r"
T

2 2 :
(NH)KR“ N Eq.(5.1) is hyperbolic at (r,A,B) for every
a.ro, a > 0}

The hyperbolic cone H is defined by

Hen 7€ ®&HY

For a given ro € (R*)M, the asymptotically stable cone at ro, designated by

S is the set of (A,B) € H 0 such that (r,A,B) is asymptotically stable

0 r

T
for every r = aro, a > 0. The asymptotically stable cone S is defined by

+ M
S = nr(sr:reok )}

The set Hr is not really a cone in (A,B) space. In fact, if (A,B) € “r'

then (0A,B) € Hr for every a > 0, but (aA, aB) will generally not be. The

reason for this is that, if r v ar, t v at, then the new equation has co-

efficients (aA,B). In spite of this fact, we retain the term cone for Hr,

but it should be remembered that the property of bsing a cone holds only in the

varisble.
Our objective is to give a classification of the hyperbolic and asympto-

A

tically stable cones. This problem is much wore difficult then the corvesponding

one for the retarded equation in Section 2 because the set of real parts of the

zeros 0f the characteristic function

N —)qk-r
(5.3 e(A,r,B) = m»[ - ik e
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of the difference equation

, . N |
5.9 y(®) - Ik B (tnen = °

does not depend continuously on .

For the difference equdtfon (5.4),we need the definitions analgous to
Definitions 5. l and 5.2 for Eq. (5.1). , o
Definition 5.3. System (5.4) is said to be hyperbohc at (r,B) if there is a

8§ >0 such that {ReA:e(A,r,B) =0} N [-6,8] = §. System (5.4) is said to be
(uniformly) asymptotically stable at (r,B) if it is hyperbolic and

{Rer:e(A,r,B) = 0} N [-§,=) = ¢. ’ .
If Equation (5.4) is hyperbolic (asymptotically stable) at (r,B), then

it is hyperbolic (asymptotically stable) at (ar,B) for every a > 0. If we

N
(5.5) det(I -] B) #0,
k=0

{ then it is also hyperbolic at o = 0 because {ReA:e(X,0,B) = 0} "is empty.
Thus, with (5.5), if Bq. (5.4) is hyperbolic at (r°,B) it is hyperbolic for

every (ar,B), @ > 0. This means there is no reason to use the comcept of
hyperbolic cone st °  for Eq. (5.4). It becomes only necessary to discuss
whether or not hyperbolic is or is aot preserved under varistions in r.
Throughout this section, we assume (5.5) is slways satisfied.
Defimition S.4. Bq. (5.4) is said to be hyperbolic locally at (:7.8) if there
is a meighborhoed U(z) af 2 . such thet Bq. (5.4) is Wperbolic at (r.B)

s pamo:

for every r € U(z"). Eq. (5.4) 1s said to be ) adobally sx . 8. if )
it is hyperbolic at (r,B) for every r € m) m.mma | - |
Bq. (5.4) is the set (B tll“z' :Bq. (5.4) is hyplrbouc at every (»,B),r € ﬂ )*) 3

R T s

EETRTRL ST 1 T AR, 5.
D - W - o e e e 2 i@'w-‘|?m'§#~ﬁ, B RSN~ o
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Similar definitions are made for asymptotically stable locally at (ro.B) s

asymptotically stable globally at B and the asymptotically stable set for

Eq. (5.4).

In Definition 5.4, no mention is made of the variation of the concept
of hyperbolic with respect to variations in the coefficients B. The reason
for this is that if Eq. (5.4) is hyperbolic at (ro,Bo), then there is a neigh-
borhood V(Bo) such that Eq. (5.4) is hyperbolic at (ro,B) for every
B € V(%) (see Avellar and Hale [1]).

WNe need the following fundamental result from [1].

2
Lemma S.1. Fix B €R" N. The following statements are equivalent:

(i) There is an rOGCR*)M with rationally independent components such

that Eq. (5.4) is hypergolic at (ro,B).

(ii) There is an rc‘e(ll*)M such that Eq. (5.4) is hyperbolic locally at

(r0 .B).

(iii) Eq. (5.4) is hyperbolic globally at _ B.

N iy, -0
(iv) 1 ¢ I (r,B) def {|u(0)|:detﬁll -] Be k ] =0,0 GR“}
k=1

) If

,0emM , pER

-pyk. T iyk. 9]
e
k=1

N
E(p,0,r,B) = det[l -3 B e
and T(r,B) = {p: 3 @ with E(p,8,r,B) = 0}, then 0 £ I'(r,B).

The same result holds with hyperbolic replaced by asymptotically stable

and (iv),(v, are replaced by
(v’ 1(r,8) € [0,1)
™' 1@ N[0, =8
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With g(2,r,A,8) as in Relation (5.2), define

a (r,A,B) = sup {Rex<0 : g()\,r,A,B) = 0}

(5.6)

a’(x,A,B) = inf {ReA>0 : g(A,r,A,B) = 0}
and define a (r,A,B) = -®, a'(r,A,B) = + ®» if the corresponding set is
empty.

We need the following result which is stated without proof. The proof uses
some special properties of characteristic functions which we have not used before.

The reader can supply the details following ideas from [4, Ch. 12].

Lemma 5.2. If Eq. (5.1) is hyperbolic (asymptotically stable) at (r,A,B), then

the difference equation (5.4) is hyperbolic (asymptotically stable) at (r,B).

If Eq. (5.4) is hyperbolic at (r,A,B), then a (ar,A,B), a*(ar,A,B) are con-

tinuous in a for a > O.

One can now generalize the results of Section 2 to the neutral equation
(5.1) (see also Datko [3].)
Theorem 5.3. (A,B) € Hr (or Sr) if and only if

N g N
(i) ReX [(1 -1 BT} Ak]# 0 (or < 0)
k=0

k=1

(i1) g@y,ar,A,B)f0 for all YyER, y# 0, a>0.

e

Proof: The proof is the same as the proof of Theorem 2.1, making use of

prae

Lemma 5.1. .

F
4
A
)
Al
gf
&
k4
#,

FEERIE S
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Theorem 5.4. If
. N k1 Yi 1 N Yk1 Y
(5.7) P(A,5),...,8,,A,B) = det A-(I-{k By 5D (Ao+2k e B!

then (A,B) € H if and only if

(Hl) Eq. (5.4) is hyperbolic globally at B

(H2) P(0,1,...,1,A,B) # C

(H,) P(iy,sl,...,sM,A,B) #0

for all y €R, y £ 0, |sj| =1, j=1,2, ..., M.
N

]
< .
=1 k=0

Proof: Suppose (A,B) € H. Then Lemma 5.2 implies (Hl)' Lemma 5.1, part (iv)

The pair (A,B) € S if and only if (H)),(H,) and nex[(l - zk

o N o Y qu)
implies there are constants § > 0, n>0 such that |det(I-): Bks1 ...sM |
k=1

> § for Ilsjl-ll <n,j=12, ..., M. Therefore, P in Relatio. (5.7)
is well defined for |lsj|-1| <n. Theorem 5.3 implivs (H,)). 3£ (Hy) is not
satisfied for some (y’sl""’sM)’ Y#0, |sk| = 1, zhoose 8, €ER so that
Sk = exp(iek), -y ek >0, k=1,2,,..,M. If T = -Ok/y, then g(iy,r,A,B) =0,
which contradicts the fact that (A,B) € H. Thus, (A,B) € H implies (Hl)"(“s)'
Conversely, suppose (Hl)'(Hs) and (A,B) € H. Then there is an a > 0,
y€R, y #0, € ®)M such that g(iy, ar®,A,B) = 0. This contradicts (Hy)
and proves the first part of the theorenm.
N N
The condition ReX [(I-] Bk)'lz Ak] <0 is equivalent to saying that
k=1 k=0
Eq. (5.1) is asymptotically stable at r = 0. Thus, the last statement in the

theorem is true.
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Our next objective is to obtain an alternative characterization of H,S
in terms of ReA(Ao) as in Section 2.
Lemma 5.5. 1If Eq. (5.4) is hyperbolic globally at B, then, for any

S0seen s |s‘J?| =1, j =1,2,...,M, Hypothesis (H,) implies either

P(iy,as),...,a50) #0 for y€R, la| < |

P(iy,as‘l’,...,asg) 40 for yER, |af > |

If Eq. (5.4) is dsymptotically stable globally at B, only the first alternative

Proof: From the hypotheses on Eq. (5.4), there is a 61 > 0 such that for

any 0 <§ <61, there is an n > 0 such that

N Yk1  YkM
|det(l-ik=13ksl ce Sy )I >n

for  1-8¢|s) <146, j=1,2, ..., M Fix s‘j’, |s;’|-1.
j=1,2, ..., M and define Q(\,d) = P(\,as), ... ,asp) for a€¢, A€,
Designate the zeros of this function by a(A). Then a()) is meromorphic,

defined on some Reimann surface over the A-plane. As |\]| + =, one must have

k1 0. kN
. [a(x)su] + 0.

d L %
etf{l - B, [a(A)s
W Lt
Thus, for large |)\|,
a()) € {pe€¢: Iplf_l-al}ufpetz |p|_>_l¢6l)

Consider the curve in the a-plane defined by a(iy), y €R.
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For y very large and positive, suppose a(iy) € { p€ ¢: [p[ > 1 + 61}.

Then Hypothesis (H,) implies that la(iy)] > 1 if y # 0. Thus, [a(iy)| 21
for all y. Consequently, Q(iy,a) = P(iy.asg, cer s asg) $0 for |al<i,
y€R. If a(iy) € {p€¢: |p] <1 -8 ) for large positive y, then
Hypothesis (H,) implies la(iy)| < 1 for all y # 0. Thus, |a(iy)] <1

for all y and Q(iy,aso) #0 for all |a| > 1. This proves the lemma.

Corollary 5.6. If (A,B) € H, then

ReA[ ZN )1 EN y
I - 0.
eAlC k=lak k=0Ak]

N N
If (AB) €5, then ReA(A) <0, RA[(I-] B) '] Al<o.
k=1 k=0

Proof: Let Q(A,s) = P(), s, cer s s}. For real s, Lemma 5.5 implies

either

Q(iy,s) #0 for 0 <s<1, y€R

or

Q(iy,s) #0 forl <s, YyE€ER
Hypothesis (Hz) implies Q(iy,1) # 0 for all y €R.
Thus, Q(:,s) has no noots on the imaginary axis either for 0< s<1 or

for 1< s. Since

Q x » 1 = th AI - (I - B ) »

. N N
it follows that ReA{[(I- {k lﬂk) 1 zk oAk] # 0. This proves the first part of
= -
the corollary.

The last part follows from the last statement in Lemma 5.5 and the proof

of Corollary 2.7.
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Remark 5.7. One can have Eq. (5.4) asymptotically stable globally at B

and have (A,B) € H, (A,B) £ S. In fact, consider the equation -
(s.8) ft—[x(t) - cx(t-r)] = ax(t)
with ¢ 1real, O0<c<1l, a>0. The characteristic function is -

J\(l-ce')‘r) -a

which is # 0 for X\ = iy, y €R. Also, there is areal A > 0 such that
A(l-cexp-Ar) = a.

Let us now consider in more detail the scalar nth-order neutral equation
N n . N n .
) y(n=3 (n-3)
5.9) yW@®)- T by™t-w) - T a, y" Dy - Ta "V eg) =0
kel X LAl k=1 j=1 J¥ *
where mkgo. bké R, ajk €ER for all j,k. Let b = (bl’ cee s bN),

as= (ajk’ j=1, ... ,n, k=0,1, ... ,N), w= (wl, ,wN). 1f we write

this equation &s a system of first order equationms,

N N
X0 - T Bx(t] = Agx) ¢ LA,

for x = (Y.)'(l). cee s y(n'l)), we have

= (x) ,
B = (i) b, = b

(x) _
K’ bij 0 othexvise

0 1 0... 0—7

o o 1‘..0
0 - - - -
0 0 0...1

no  %n-10 %-2p Mo

s




f 3
JEy

A e S e a b 8 e,

.

Ak= ,k'l,z.-.-,uo

%hk an-l,k"’ allj

=

The characteristic function is

N -kwk
(5.10) g\,w,a,b) = py(r,a) -} 1pk(k.a.b)e
k=

S n-j
po(*,a) = det[A-Aj] = X Zj,lajO"

n ,
= n n-j
P (X,a,b) = b +j21 3y \

The corresponding difference equation is

N
(5.11) Y - 1 by(t-iy) =0

with characteristic function

N -
(5.12) e(\,w,b) =1 -] be M
k=1

One can now prove the following generalization of the result of
Zisotovskii (7].
Theorem 5.8. For Eq. (5.9), (a,b) € H if and only if

(5.13) Eq. (5.11) is hyperbolic
N

(5.14) $ 0
2k-o"‘

N
(5.15) Ipytiy. 0| > 2k 1ka(iy,-.b)l for all y€R, y §0.

The vector (a,b) € S if and only if (5.14),(5.15), and




s
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N
(5.16) I Inl<1, Rex<o0 if p,(2,8) = 0.
k=1

Proof: From Theorem 5.4, condition (5.14) is equivalent to Hypothesis (Hz).
Hypothesis (HS) is equivalent to

N
Py (iy.a,b) + 2k=1p“(iy'a'b)s" £0

for all y€R, y#0, |s] =1, k=12, ..., N But this clearly is
equivalent to (5.15). Thus, the first part of the theorem is true.
If (a,b) € S, then Lemma 5.2 implies Eq. 5.11 is asymptotically stable

N
at b. Part (v) of Lemma 5.1 implies this is equivalent to ) lbk' < 1. A
k=1 ;

Corollary 5.6 implies Red <0 if po(l,a) = 0. This proves the theoresm.

We can generalize Theorem 5.8 to the case where the delays are dependent,
but the result cannot be stated in such a simple fashion. The proof is the
same as before.

Theorem 5.9. Consider again Eq. (5.9) with W =Y, T € CR*)",

Yy $0, v = (Vs +oe Y * i > 0 integer. With po(l.a), pk(k.a,b)

defined as in (5.10), the vector (a,b) € H ifland only if (5.13)(S.14) in

Theorem 5.8 are satisfied and

N Y Y
(5.17) Py (iy,a,b) + ik lpk(iy.a,b)slu s HO

for all Yy €R, y #0, Iskl =1, k=1,2, ... , N,

The vector (a,b) € S if and only if (5.14),(5.17) and (5.16) are satisfied.

6. Scalar neutral equations. For first order scalar equations

(6.1) d N N
Jeix(®) - {k . b x(t-v, 7)) = apx(t) + ) 8, x(t-Y, . T) ]

k=1




-29-

where 'o"k’bk €R, k=1,2, ... , N, the characterizatic1 of the hyperbolic
and asymptotically stable cones can be specified in terms of the properties of

the solutions of the difference equations

N
(6.2) v - bt - yen =0
(6.3) 8y2(t) - ):" 8,2(t - ¥,-1) =0
k=1

It is the purpose of this section to obtain such a characterization which
generalizes the results of Section 3.
As in Section 3, let b = (bl' cen s bN), as= (‘0"1' cee .N)’

N

a(0,a8) =a + ] & cos vy 0
k

=1
(6.4)

N
B(6,a) = zk . s, siny, -0

Exactly as in the proof of Theorem 3.1, one uses Theorem 5.9 to obtain
the following result.

Theorem 6.1 . For Eq. (6.1), (a,b) € H if and only if

(6.5) Eq. (6.2) is hyperbolic globally at b.
N
(6.6) Zk.o a8 #0
6.7) Bither a(6,a) 40 or a(6,a) =0, B(6,a) = 0.

snd then necessarily s, # 0. The vector (a,b) €S if and only if

N
6.8) b | <1 a, < 0

and (6.6),(6.7) are satisfied.




e =5 %

For the equation

N

€9 2 e - L

N
bx(t-r)] = ayx(t) + ) & x(t-r))
=1 k=1
the above theorem has a very simple interpretation for the case of stability
globally in the delays. In fact, Eq. (6.9) is stable globally in the delays

if and only if

N
Zmlbkl <1,
N

(6. 10) Zk=oa" <0,
N

iksllakl s lagl -
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