

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

AD A 1 2 9 2 1 6

and the second second

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data	Entered)	
REPORT DOCUMENTATION		READ INSTRUCTIONS
T. REPORT NUMBER		BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
Technical Report No. 375	AD-1129216	
4. TITLE (and Substitie)	<u>VII </u>	S. TYPE OF REPORT & PERIOD COVERED
Mobility and Transportability Asse	ssment of a	Technical Descut
Generic High Mobility Multipurpose		Technical Report
Vehicle (HMMWV)		5. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(4)
W. Ferguson; L. Martin; J. Rouse; 1	E. Kusterer	
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Mobility Analysis Branch USAMSAA		
APG. MD 21005		12. REPORT DATE
Commander US Army Materiel Dev & Readiness Co	amman d	FEBRUARY 1983
US Army Materiel Dev & Readiness Co 5001 Eisenhower Ave	ommand	13. NUMBER OF PAGES
Alexandria, VA 22333		154 15. SECURITY CLASS, (of this report)
14. MONITORING AGENCY NAME & ADDRESS(11 dilloran	it man Connolling Ullice)	13. SECURITY CLASS. (or bir report)
		UNCLASSIFIED
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for Public Release; Distr 17. DISTRIBUTION STATEMENT (of the education entered		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse elds if necessary a Speed Profiles; Terrain Unit; Soil Acceleration; Lateral Stability; Tu	Strength; Tracti	<pre>ive Force: Mobility Level;</pre>
28. ABSTRACT (Control of the HMMWV is and will replace. A generic HMMWV is a off-road and on-road performance in criteria are: Speed profiles, per the vehicles were immobilized, fact speed, vehicle acceleration, speed side slopes. Additionally air tran	alyzed and compar postulated. The n Europe and the centages of total tors causing immo on slopes and st	red to the vehicles which it vehicles are assessed for Mid-East. The performance terrain area in which bilization, factors limiting cability during turns on
DD 1 JAN 73 1473 EDITION OF I NOV 68 IS OBSO	LETE UNCL	ASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

and the second second

and a star and a second

i

Į.

ACKNOWLEDGEMENT

The US Army Materiel Systems Analysis Activity (AMSAA) recognizes the following individual for contributing to this report:

PEER REVIEWER: Herbert Gage

Next page is blank.

1

100

and the set of the property of the

CONTENTS

		PAGE
1.	INTRODUCTION	1
2.	MOBILITY EVALUATION	3
	2.1 Off-Road Performance	3
	2.2 On-Road Performance	8
	2.3 Tactical Mobility Levels	13
	2.4 Acceleration and Speed on Slopes	21
	2.5 Lateral Stability	21
3.	AIR TRANSPORTABILITY	26
	3.1 Fixed Wing Transport	26
	3.2 Rotary Wing Transport	30
4.	CONCLUSIONS	30
	APPENDIX A	35
	APPENDIX B	148
	DISTRIBUTION LIST	153

111

· · · ·

Next page is blank.

MOBILITY AND TRANSPORTABILITY ASSESSMENT OF A GENERIC HIGH MOBILITY MULTIPURPOSE WHEELED VEHICLE (HMMWV)

1. INTRODUCTION

The US Army Infantry School (USAIS) is currently carrying out a Performance and Cost Analysis (P&CA) of the High Mobility Multipurpose Wheeled Vehicle (HMMWV). AMSAA was requested to support this effort by conducting performance analyses of the HMMWV and those vehicles which the HMMWV will supplant in its various roles. The vehicles or combinations of vehicles considered in this study are:

HMMWV Utility Truck HMMWV Utility Truck Mounting the S250 Shelter @ 3600 pounds HMMWV Utility Truck Towing the M101 3/4-ton Trailer M151 1/4-ton Truck M151 1/4-ton Truck Towing the M416 1/4-ton Trailer M561 1-1/4 ton Truck M561 1-1/4 ton Truck Towing M101 3/4-ton Trailer

Since the HMMWV vehicles are still undergoing competitive evaluation, it was decided, for analysis purposes, to use a generic form of the HMMWV having attributes representative of all of the candidate vehicles, but peculiar to none. In addition, it was felt that the performance of the cargo loaded HMMWV truck and the HMMWV weapons carrier mounting the TOW launcher would be similar and therefore the TOW vehicle was not evaluated as such.

The mobility assessment encompassed vehicle performance off-road and on-road in Europe and the Mid-East. The European terrain over which the vehicles were exercised is located in West Germany and the Mid-East terrain in Jordan. Conditions considered were dry, wet and snow covered surfaces in West Germany and dry and wet surfaces in Jordan.

Results of the assessment are presented in the form of speed profiles and a listing of the percentages of the total area in which the vehicles were immobilized. The factors which caused immobilization as well as those which limited speed are also indicated.

On-road performance is shown as average speeds over primary and secondary roads and trails. The road networks over which the speeds were computed are located in West Germany and Yuma, Arizona. The Yuma network was selected because it resembles Jordan roads and because no Jordan network is available. Both off-road and on-road vehicle performance were obtained by exercising the vehicles in the Army Mobility Model. Finally, both off-road and on-road performance were employed to determine tactical high, tactical standard and tactical support mobility levels. Additional measures of performance which are not provided as specific outputs of the Army Mobility Model are also furnished. These are vehicle acceleration and maximum speed on slopes. Stability during turns on side slopes was also investigated for the M151, M561 and the HMMWV when carrying the S250 shelter.

During the course of the mobility analysis a request was received from USAIS for additional HMMWV P&CA analysis support in the form of a transportability evaluation of the HMMWV and certain base case vehicles. Only air transport was to be considered. The vehicles, aircraft and operational areas are listed below:

a. Vehicles evaluated:

Base Case

HMMWV

M561, 5/4-ton, truck M151, 1/4-ton, truck M151, 1/4-ton, TOW Carrier M151, 1/4-ton, Missile Carrier M416, 1/4-ton, Trailer

b. Aircraft to be considered:

- (1) Internal Loads C130, C141B, C5A, CH-47D
- (2) External Loads CH-47D, UH-60, UH-60 (BI)*

c. Scenarios to be considered:

- (1) Europe
- (2) Mid-East
- *Block Improvement

The objectives of the transportability assessment were to determine:

a. Based on loading only one type of vehicle system, the number of each type that can be loaded on the Cl30, Cl41B, C5A and the CH-47D aircraft.

b. Whether the CH-47D, UH-60 and UH-60 (BI) can sling load each of the vehicle systems in the Europe and Mid-East areas taking into consideration pressure altitude, temperature and round trip distance. Conditions under which sling loading cannot be effected should be noted.

Section II contains a discussion of the various aspects of the mobility assessment. In Section III, air transport of the various vehicles in the designated aircraft in the Mid-East and Europe is evaluated. Characteristics of the generic HMMWV and speed profiles of actual and cumulative average speeds of the various vehicles are presented in Appendix A and payload range curves for the helicopters considered in Appendix B.

2. MOBILITY EVALUATION

2.1 Off-Road Performance.

The Army Mobility Model off-road module was used to assess performance of the various vehicles in the West Germany and Jordan terrains. The Army Mobility Model is composed of two modules, the aforementioned off-road module and an on-road module. The off-road module computes the maximum feasible firstpass speed for a single vehicle in a single areal patch or terrain unit. Terrain units are areas in which certain attributes of the terrain such as soil strength, slope, roughness, obstacles and vegetation fall within certain rather narrow ranges and thereby can be characterized by a single representative value for each feature. These attributes are then considered to be homogeneous throughout the unit.

The vehicle is specified in terms of mechanical, geometric and inertial characteristics that determine its interaction with the terrain. These include such factors as weight distribution, track or wheel size, approach and departure angles, tractive force as a function of speed, and ride and obstacle performance curves. Driver inputs are considered in terms of his ability to stand shock and vibration and his reaction to certain situations affecting his driving behavior.

With this information at hand, the off-road module computes the maximum vehicle speed in each terrain unit. The terrain unit speeds are cumulated in a speed profile. In these profiles, the terrain units are ordered so that they progress from the easiest to the most difficult to negotiate. The profiles show both the actual and cumulative average speeds as a function of the percentage of terrain traversed. Cumulative average speed is the average speed a vehicle can sustain as a function of the total area it avoids, under the assumption that it avoids the areas posing the greatest impediment to its motion.

An additional output of the off-road module is a listing of the speed limiting and immobilizing factors and the percentage contribution of each factor.

All the vehicles were exercised in both the off-road and on-road modules of the Mobility Model. Tables 1-3 show the cumulative average speeds achieved by each vehicle for each condition over the easiest 50 percent (V_{50}) and easiest 90 percent (V_{90}) of the terrain, and indicate the fraction of the terrain that is not negotiable under each condition.

Two sets of abbreviations appear in this report. The first set appears in the body of the report and is used because of its compactness and clarity. The second, imposed by additional computer plotter constraints, appears on the speed profiles presented in the Appendices. These abbreviations are:

VEHICLE/COMBINATION	ABBREVIATION IN REPORT TEXT	PLOTTER ABBREVIATION
HMMWV Utility Truck	HMMWVG	HMMWVG
HMMWV Utility Truck Mounting S250 Shelter	HMMWV W/SHELTER	HMMWVSH
HMMWV Towing M101 Trailer	HMMWV W/M101	HMMWV W/M1
M151 1/4-ton Truck	M1 51 A2	M1 51 A2
M151 1/4-ton Truck Towing M416 Trailer (AMMO)	M151 W/AMMO TRL	M151 W/AMM
M151 1/4-ton Truck Towing M416 Trailer	M151 W/M416	M151 W/TRL
M561 1-1/4 ton Truck	M561	M561
M561 1-1/4 ton Truck Towing M101 Trailer	M561 W/M101	M561 TR

Table 1 shows that the HMMWV carrying cargo or the S250 shelter or towing the M101 has higher V_{50} speeds than the other vehicles on dry surfaces in West Germany and Jordan terrain. All vehicles are immobilized by the time 90 percent of either area is traversed, hence no V_{90} values are given. The HMMWV has a lower incidence of immobilization in the German terrain, but a higher percentage of no-go's in Jordan. The Jordan terrain is rougher and the configuration of the HMMWV is such that the obstacles encountered in Jordan immobilize it more frequently than the M151. The M151's shorter wheelbase and slightly better breakover angle probably contribute to this.

Data presented in Table 2 show the degrading effects of wet surfaces on vehicle mobility. All vehicles experience a reduction in V_{50} speeds and an increase in the percentage of no-go's. In particular, trailered vehicles show a marked increase in no-go's on wet surfaces in West Germany. A reduction in vehicle traction occurs due to the weakness of the soil when wet, resulting in increased immobilization. This is especially true of the West German terrain which receives considerably more rainfall in the wet season than does Jordan, and hence has greater moisture content in the soil.

Table 4 contains a listing of the Vehicle Cone Index (VCI₁) values for the various vehicles studied. The VCI₁ value is the soil strength required to support one pass of the vehicle in question. This value enters into the expression used to determine the magnitude of the reactive force exerted by the soil in opposition to the tractive or propulsive force imposed on it by the vehicle. Other things being equal, the lower the VCI₁, the smaller the reactive force the soil must develop to allow the vehicle to move. Consequently, the

PREDICTED VEHICLE MOBILITY

CUMULATIVE AVERAGE SPEEDS

		GERMANY-	DRY		JORDAN-DR	Y
	V50	V90	PERCENT*	V 50	V ₉₀ мрн	PERCENT*
VEHICLE	МРН	MPH	NOGO	Мрн		NOGO
HMMWV W/M101	18.6	N0-G0	12.3	13.7	NO-GO	17.4
M151 W/M416	16.4	NO-GO	15.4	10.7	NO-GO	13.2
M561 W/M101	15.1	N0-G0	11.5	12.5	NO-GO	16.4
M151 W/AMMO TRL	16.5	NO-GO	14.8	10.7	N0-G0	13.1
M151A2	17.9	N0-G0	11.7	10.8	NO-GO	13.1
M561	15.8	N0-G0	10.2	12.5	NO-GO	16.4
HMMWVG	20.3	N0-G0	10.0	14.0	NO-GO	16.5
HMMWV W/SHELTER	19.7	NO-GO	10.0	13.9	N0-G0	16.5

*NO-GO UNDER v_{50} OR v_{90} COLUMN INDICATES THE VEHICLE WAS IMMOBILIZED BEFORE IT REACHED THE 50% OR 90% AREA POINT AND CONSEQUENTLY HAS NO SPEED AT THAT POINT.

5

a first and a second

and a state of the second states of the second stat

PREDICTED VEHICLE MOBILITY

CUMULATIVE AVERAGE SPEEDS

		GERMANY-	WET		JORDAN-W	ET
VEHICLE	V ₅₀ MPH	V ₉₀ мрн	PERCENT* NOGO	V ₅₀ мрн	V ₉₀ мрн	PERCENT* NOGO
HMMWV W/M101	14.2	NO-GO	28.6	12.5	N0-G0	19.0
M151 W/M416	11.5	NO-GO	30.1	9.7	N0-G0	15.5
M561 W/M101	12.3	NO-GO	25.5	11.0	N0-G0	18.1
M151 W/AMMO Trl	11.6	NO-GO	32.3	9.6	N0-G0	19.0
M151A2	14.5	NO-GO	19.8	10.1	NO-GO	14.0
M561	13.8	NO-GO	18.4	12.2	NO-GO	16.8
HMMWVG	16.3	NO-GO	18,6	13.0	N0-G0	16.8
HMMWV W/SHELTER	16.1	N0-G0	18,3	13.0	N0-G0	16.8

TABLE 3PREDICTED VEHICLE MOBILITYCUMULATIVE AVERAGE SPEEDS

•

		GERMANY-SNOW	
	V ₅₀	۷۹۵	PERCENT*
VEHICLE	МРН	МРН	NOGO
HMMWV W/M101	NO-GO	NO-GO	50.3
M151 W/M416	NO-GO	NO-GO	54.9
M561 W/M101	7.8	NO-GO	38.7
M151 W/AMMO TRL	NO-GO	NO-GO	63.0
M151A2	16.8	NO-G0	26.7
M561	11.5	NO-GO	25.0
HMMWVG	18.6	NO-GO	25.2
HMMWV W/SHELTER	17.3	NO-GO	25.4

vehicles having the lower VCI_1 will be able to negotiate weaker soils with fewer incidents of immobilization than those having the higher VCI_1 values. However, as shown in Table 4, there are no significant differences among the vehicles considered here.

Vehicle performance on snow covered surfaces in West Germany is even more degraded, with all but one of the trailered vehicles showing no-go's at the V₅₀ point. However, it may be noted that the HMMWV vehicles without trailers, and the MI51, show higher V₅₀ speeds in snow than on wet surfaces. This is caused first by an assumed attenuation of surface roughness by the snow cover, and secondly by reduced motion resistance with snow over frozen ground as compared to wet soil. However, the percentage of no-go's is higher in the snow, indicating more difficulty in traversing the more severe terrain.

In general, the HMMMV vehicles had higher $v_{5\Omega}$ speeds than the comparison vehicles and fewer no-go's.

Tables showing factors that cause no-go's and factors that limit speeds are contained in Appendix A. Profiles of actual and cumulative average speeds are also contained in this appendix.

2.2 On-Road Performance.

Average speeds of the various vehicles on the West Germany and Yuma road networks are presented in Tables 5-7. Speeds are shown over primary and secondary roads and trails for the same surface conditions considered for offroad travel. Since the Yuma road network represents the Mid-East roads, performance in snow was not evaluated for this network.

The on-road module of the Army Mohility Model was used to perform this assessment. The on-road module is similar in concept to the off-road module. Factors such as road type, surface strength, curvature and surface roughness are used to characterize the road units. Vehicle data include geometric, inertial and mechanical characteristics. The model output is vehicle speed. The three classes of road mentioned are identified as:

Class 1 - Primary: surfaced all weather road, two lanes or more.

Class 2 - Secondary: the halance of all weather roads, generally unpaved hut improved, plus paved roads less than two lanes wide.

Class 3 - Trails: unimproved and fair weather roads and trails of at least one vehicle width.

The average speeds of all the HMMWV vehicles, including the one towing the M101 trailer, exceed those of the other vehicles on dry and wet roads and trails in West Germany and Yuma. On snow covered roads and trails, the HMMWV carrying cargo or the TOW weapon has higher speeds than all other vehicles, but

VEHICLE VCI1 VALUES

VEHICLE	VCI 1
HMMWV W/M101	22.5
M151 W/M416	21.2
M561 W/M101	21.5
M151 W/AMMO TRL	21.2
M151A2	18.8
M561	19.4
HMMWVG	19.4
HMMWV W/SHELTER	20.9

9

		GERMANY-DRY			YUMA-DRY	
VEHICLE	PRIMARY	SECONDARY	TRAILS	PRIMARY	SECONDARY	TRAILS
HMMWV W/M101	50.3	36.1	13.7	57.7	33.6	13.6
M151 W/M416	44.5	29.8	9.5	49.6	26.5	10.0
M561 W/M101	39.4	21.4	12.3	47.0	18.8	12.4
M151 W/AMMO TRL	41.7	29.5	9.6	45.0	26.1	10.0
M1 51 A2	48.8	32.1	9.7	53.0	27.3	10.0
M561	44.0	23.7	12.9	50.9	19.8	12.4
HMMWVG	53.5	38.4	14.0	60.6	34.3	13.6
HMMWV W/SHELTER	51.7	37.2	13.9	59.2	33.9	13.6

AVERAGE SPEED ON ROADS AND TRAILS (MPH)

÷

		GERMANY-WET			YUMA-WET	
VEHICLE	PRIMARY	SECONDARY	TRAILS	PRIMARY	SECONDARY	TRAILS
HMMWV W/M101	50.3	36.1	13.6	57.7	33.6	13.6
M151 W/M416	44.5	29.8	9.5	49.6	26.5	10.0
M561 W/M101	39.4	21.4	12.1	47.0	18.8	12.4
M151 W/AMMO TRL	41.7	29.5	9.6	44.9	26.1	10.0
M151A2	48.8	32.1	9.7	53.0	27.3	10.0
M561	44.0	23.7	12.8	50.9	19.8	12.4
HMMWVG	53.5	38.4	14.0	60.6	34.3	13.6
HMMWV W/SHELTER	51.7	37.2	13.8	59.2	33.9	13.6

Ĥ

AVERAGE SPEED ON ROADS AND TRAILS (MPH)

AVERAGE SPEED ON ROADS AND TRAILS (MPH)

	GERMANY-SNOW	
PRIMARY	SECONDARY	TRAILS
26.8	25.4	16.2
25.1	23.0	14.6
16.3	15.7	11.6
27.2	25.7	15.9
30.0	29.1	18.1
21.5	19.7	12.9
32.9	31.1	18.3
29.7	28.4	17.5
	PRIMARY 26.8 25.1 16.3 27.2 30.0 21.5 32.9	26.825.425.123.016.315.727.225.730.029.121.519.732.931.1

when the S250 shelter is added, the speed falls slightly below that of the M151. The addition of the M101 trailer to the HMMWV results in only a small reduction of speed in snow.

2.3 Tactical Mobility Levels.

One means of rating vehicle performance is to express it in terms of a "mobility level". A mobility level rating system was used in this study to evaluate the various vehicles. This system comprises five levels of mobility proposed in the HIMO 1 study. It is based on the mission requirements of the vehicle, including both the frequency of operation on various surface types and the degree of severity of terrain encountered for each surface type.

Table 8 lists the various mobility levels, the composition of the networks in West Germany and the Mid-East (percentages of off-road, road and trail travel) and the severity of the operation in terms of the terrain and roads challenged).

Since the HMMWV will have a very wide range of mission requirements in replacing both the M151 and the M561, all mobility levels from "tactical support" to "tactical high" are of interest. The speeds computed for each of these levels are shown in Tables 9 through 11 2 . To summarize the results shown in those tables, the following observations are offered:

a. The basic HMMWV tactical mobility equals or exceeds that of the M151 and the M561 in 13 of the 15 conditions examined. Only in the Mid-East wet and dry conditions at the tactical high level does a baseline vehicle have a speed advantage and even there the advantage is less than one mile per hour.

b. The S250 shelter weight of 3600 pounds does not significantly affect the tactical mobility speeds of the HMMWV.

c. When each is towing a trailer the M561 has a slight advantage over the HMMWV at the higher tactical mobility levels.

NOTE: ¹Nuttall, C.J., Jr, and Randolph, D.D., "Mobility Analysis of Standardand High-Mobility Tactical Support Vehicles (HIMO Study)". Technical Report M-76-3, February 1976, US Army Engineers Waterways Experiment Station, CE, Vicksburg, MS.

²Tables 9 through 11 indicate where vehicles cannot negotiate sufficient terrain to accommodate the tactical mobility definition. In such cases a speed of 0.1 MPH is assumed for the unnegotiable area to reflect the time penalty to provide required engineering support.

œ
щ
뭅
<

NETWORK COMPOSITION AND SEVERITY AT TACTICAL MOBILITY LEVELS

FOR HIMD WEST GERMANY STUDY AREA

1	COMP	COMPOSITION OF NETWORK IN PERCENT	INUKK IN PER	CCENT	0F T	OF TERRAIN AND ROADS CHALLENGED	ADS CHALLENC	ĴED
4	PRIMARY	SECONDARY			PRIMARY	SECONDARY		
	ROADS	ROADS	TRAILS	OFF-ROAD	ROAD	ROADS	TRAILS	OFF-ROAD
MOBILITY LEVELS	(Pp)	(PS)	(1 d)	(d)	(dd)	(VSP)	(VTP)	
HIGH-HIGH	0	0	0	100		t t		00 LA
TACTICAL HIGH	10	30	10	50	V100	00 LV	00 LA	V 90
TACTICAL STANDARD	20	50	15	15	V1 00	V1 00	00 l _A	V 80
TACTICAL SUPPORT	30	55	10	5	V100	00 LA	V 50	V 80
ON-ROAD	35	60	2	0	00 LA	00 la	V 10	ı
			FOR HIMC	FOR HIMO MID-EAST STUDY AREA	AREA			
HIGH-HIGH	C	C	c	100	F	E		001A
TACTICAL HIGH	ъ	20	25	50	ύυιν	00 LA	00 LV	06 A
TACTICAL STANDARD	15	35	35	15	UJUO	V1 N0	0017	V 80
TACTICAL SUPPORT	20	40	35	5	00 LA	00 LV	V 80	V 50
ON-ROAD	30	40	30	c	Vinn	VIDO	VEN	

	W	EST GERMANY-D	RY		MID-EAST DRY	
	TACTICAL	TACTICAL	TACTICAL	TACTICAL	TACTICAL	TACTICAL
VEHICLE	HIGH	STANDARD	SUPPORT	HIGH	STANDARD	SUPPOPT
HMMWV/MIOI	4.1*	18.3	30.2	3.2*	15.2	22.8
M151/M416	2.3*	15.2	26.1	2.7*	10.7	18.2
M561/M101	4.6*	14.7	21.8	4.5*	13.6	17.2
M151/AMMO TRL	2.6*	15.1	25.8	3.7*	10.6	18.0
M151A2	4.5*	16.0	27.9	4.9*	10.7	18.4
M561	7.3*	15.6	22.7	4.5*	13.8	17.6
HMMWVG	9.4	19.1	32.0	4.1*	15.3	23.0
HMMWV/SHELTER	9.3	18.8	31.2	4.1*	15.3	22.9

		TABLE	E 9	
SPEEN	AT	TACTICAL	MOBILITY	LEVELS

. . .

15

	W	EST GERMANY-W	ET		MID-EAST-WET	
	TACTICAL	TACTICAL	TACTICAL	TACTICAL	TACTICAL	TACTICAL
VEHICLE	HIGH	STANDARD	SUPPORT	HIGH	STANDARD	SUPPORT
HMMWV/M1 01	0.9*	4.3**	29.0	1.7*	14.7	22.6
M151/M416	0.8*	3.7**	24.9	2.6*	9.9	18.0
M561/M101	0.9*	5.5**	20.2	2.7*	13.4	17.1
M151/AMMO TRL	0.8*	3.3**	24.7	1.5*	9.8	17.8
M151A2	1.4*	14.7	27.0	3.3*	10.5	18,4
M561	1.7*	14.7	22.2	4.0*	13.7	17.6
HMMWVG	1.7*	17.5	30.9	3.7*	15.1	22.9
HMMWV/SHELTER	1.7*	17.3	30.1	3.7*	15.1	22.8
*AREA TRAFFICABLE	90%					
**AREA TRAFFICABLE	80%					

TABLE 10 SPEED AT TACTICAL MOBILITY LEVELS

16

•

		WEST GERMANY-SNOW	
	TACTICAL	TACTICAL	TACTICAL
VEHICLE	HIGH	STANDARD	SUPPORT
HMMWV/M101	0,4*	1.8**	17.9***
M151/M416	0.4*	1.2**	9.3***
M561/M101	0.6*	2.2**	14.1
M151/AMMO TRL	0,3*	1.2**	6.0***
M151A2	0,9*	5.4**	24.9
M561	1.1*	5.9**	17.7
HMMWVG	1.1*	6,2**	26.6
HMMWV/SHELTER	1.1*	6.1**	24.5
*AREA TRAFFICABLE	90%		
**AREA TRAFFICABLE	80%		
***AREA TRAFFICABLE	50%		

TABLE 11 SPEED AT TACTICAL MOBILITY LEVELS

17

ويحجم مردينا والا

Constance.

SPEED VERSUS ELAPSED TIME AS A FUNCTION OF SOIL STRENGTH

			MAXIMUM	TIME TO				
	SURFACE		SPEED	REACH	REACH	REACH	REACH	REACH
VEHICLE	RCI	SLOPE	OBTAINED	HdW 01	HOM 02	HdW 02	40 MPH	50 MPH
10 IM/W AMMANH	290	0.0	50.8	1.5	5.0	11.8	27.5	79.0
M151 W/M416	290	0.0	41.4	4.7	10.1	17.7	55.2	1
M561 W/M101	290	0.0	31.1	5.5	14.6	32.1	ı	ı
MISI W/AMMO TRL	290	0.0	43.6	4.0	8.4	14.2	33.9	ı
M151A2	290	0.0	48.3	2,8	5.7	9.2	18.5	·
M561	290	0.0	38.7	4、4	10.4	20.7	ı	1
AMMMH	290	0.0	58.0	1.2	3.5	7.6	15.4	29.7
HMMWV W/SHELTER	290	0.0	55.3	1.3	4.1	9.1	19.4	41.1

18

والمنابع مواديني و

SPEED VERSUS ELAPSED TIME AS A FUNCTION OF SOIL STRENGTH

			MAXIMUM	TIME TO				
	SURFACE		SPEED	REACH	REACH	REACH	REACH	REACH
VEHICLE	RCI	SLOPE	OBTAINED	10 MPH	20 MPH	30 MPH	40 MPH	50 MPH
LOTIM/W VUMPH	120	0.0	44.4	1.5	5.4	13.5	40.0	•
M151 W/M416	120	0.0	35.2	4.9	10.8	20.0	ı	ı
N561 W/MIO	120	0°U	31.1	5.8	17.4	49.0	ı	ı
MI51 W/AMMO TRL	120	0.0	38.6	4.1	8.8	15.8	I	r
M151A2	120	0.0	44.6	2.9	5.9	9.8	23.3	ı
M561	120	0.0	31.1	4.5	11.4	24.9	ı	ı
NUM	120	0.0	53.3	1.2	3.7	8.2	18.0	42.4
HIMMIN W/SHEL FER	120	0"0	49.7	1.3	4.3	10.0	24.1	ı

A PARTY A PARTY PARTY

19

17:53

SPEED VERSUS ELAPSED TIME AS A FUNCTION OF SOIL STRENGTH

			MAXIMUM	TIME TO				
	SURFACE		SPEED	REACH	REACH	REACH	REACH	REACH
VEHICLE	RCI	SLOPE	OBTAINED	10 MPH	20 MPH	30 MPH	40 MPH	40 Mph
IO IM/M AMMAH	60	0.0	32.6	1.7	6.4	22.0	1	
M151 W/M416	60	0.0	32.5	5,3	12.8	32.6	I	t
M561 W/M101	60	0.0	17.6	6.7	1	ı	,	·
MI51 W/AMMO TRL	60	0.0	32.4	4.5	10.1	21.7	ı	I
M1 51 A2	60	0.0	36 . 9	3.1	6.5	11.6	ı	4
M561	60	0.0	30.2	5.2	15.7	60.0	t	1
AMMMH	60	0.0	42.9	1.3	4.1	10.2	34.8	,
HMMWV W/SHELTER	60	0.0	37.7	1.4	4.9	13.7	ſ	١

20

ŀ

2.4 Acceleration and Speed on Slopes

The acceleration performance of the various vehicles in soils of three different strengths, RCI 290, 120 and 60^3 , is presented in Tables 12-14. The RCI 290 soil is a strong soil, the RCI 120 has moderate strength and the RCI 60 is relatively weak. It can be seen by referring to the tables that the times to achieve a given speed increase as the soil strength decreases. In terms of highest speed achieved and times to reach a given speed, the HMMWV exhibited the best performance.

Profiles of acceleration performance over the various strength soils are presented in Appendix A.

A further measure of vehicle performance is the speeds it can attain on slopes of various grades. Tables 15-17 present the speeds attained by the various vehicles on grades ranging from 0 to 60 percent, on soil strengths of RCI 290, 120 and 60. Attention is directed to the comparative performance of the M151A2 and the HMMWV. Neither vehicle ascends the slopes at speeds consistently higher than the other. This may be explained by referring to Figure 1. In this plot, the ratio of the vehicle tractive force to vehicle weight is shown as a function of speed. It will be noted that the plots for this function cross at several points, indicating higher tractive force available to one or the other of the vehicles and consequently a greater speed on a given slope as shown in the tables.

2.5 Lateral Stability.

In the course of their operations, vehicles are often required to traverse side slopes. During this time, the vehicle may maneuver to change direction, avoid obstacles or for other reasons. When the maneuvering involves turning, centrifugal forces are developed. In addition to this there is a down hill force attributable to the inclination of the vehicle on the side slope. These two forces can act in concert to overturn the vehicle. The greatest potential to accomplish this occurs when the vehicle path on the slope is perpendicular to the maximum gradient of the slope and the radius of the turn circle lies along this gradient with its center uphill of the vehicle. Lateral instability can arise in two forms. First, if the resisting force of the soil is less than the sum of the two forces are greater than the vehicle restoring moment, tipping or overturning will occur. All other things being equal, for a given vehicle, the overturning moments will vary directly as the vertical height of the center of gravity.

A means of determining the stability of a vehicle is to fix the side slope angle, turn radius and soil strength and then compute the speed at which

NOTE: 1 RCI (Rating Cone Index) is a rating of the soil strength under vehicular traffic.

						e ,	SLOPE							
VEHICLE	RCI	0	5	10	15	20	25	30	35	40	45	50	55	60
HMMWV W/M101	290	51.3	31.5	24.1	18.0	14.5	11.6	9.4	7.6	5.5	1.1	-	-	-
M151 W/M416	290	40.2	31.6	19.3	16.6	9.6	9,3	9.1	7.4	-	-	-	-	-
M561 W/M101	290	31.2	17.6	15.7	8.1	7.7	7.0	5.5	3.8	3.3	2.8	-	-	-
M151 W/AMMO TRL	290	43.7	32.3	19.3	18.8	14.7	9.3	8.8	8.2	3.7	-	-	-	-
M1 51 A2	290	48.4	34.1	32.2	19.4	19.2	16.5	12.3	9.4	9.2	9.0	8.8	6.8	3.7
M561	290	42.1	28.2	17.5	14.9	8.1	7.9	7.4	6.8	5.3	3.9	3.5	3.1	2.7
HMMWV	290	58.2	40.9	29.7	24.6	19.3	16.7	14.1	11.9	10.3	8.8	7.5	5.9	4.1
HMMWV W/SHELTER	290	55.5	36.3	27.1	21.7	17.5	14.6	12.1	10.3	8.7	7.2	5.8	4.7	2.3

TABLE 15 PREDICTED SPEED ON SLOPE PERFORMANCE (MPH)

						%	SLOPE							
VEHICLE	RCI	0	5	10	15	20	25	30	35	40	45	50	55	60
HMMWV W/M101	120	44.8	28.8	22.1	17.1	13.6	11.0	8.9	7.1	4.7	-	-	-	-
M151 W/M416	120	34.2	28.3	19.2	15.3	9.5	9.3	9.0	6,7	-	-	-	-	-
M561 W/M101	120	31.1	17.5	14.3	8.0	7.6	6.8	4.2	3.7	3.1	2.5	-	-	-
M151 W/AMMO TRL	120	38.6	32.2	19.2	17.7	12.9	9.1	8,6	8.0	1.1	-	-	-	-
M1 51 A2	120	44.7	32.5	30.3	19.3	18.9	15.7	10.5	9.4	9.1	8.9	8.3	6.2	2.5
M561	120	31.2	24.5	17.4	14.2	8.1	7.8	7.3	6.6	4.2	3.8	3.3	2.9	2.5
HMMWV	120	53.4	36.6	27.8	23.4	18.6	16.0	13.5	11.5	9.9	8,5	7.1	5.4	3.3
HMMWV W/SHELTER	120	50.0	32.5	25.7	19.9	16.7	13.8	11.6	9.8	8.3	6.8	5.5	4.3	1.6

 TABLE 16

 PREDICTED SPEED ON SLOPE PERFORMANCE (MPH)

23

5

, ³

						٩,	SLOPE							
VEHICLE	RCI	0	5	10	15	20	25	30	35	40	45	50	55	60
HMMWV W/M101	60	32.5	24.7	18.4	14.9	11.9	9.6	7.8	5.5	-	-	-	-	-
M151 W/M416	60	32.3	19.3	17.2	10.6	9.3	9.0	7.7	4.0	-	-	-	-	-
M561 W/M1 01	60	17.6	16.4	8.1	7.8	7.1	5.9	3.4	2.1	0.8	-	-	-	-
M151 W/AMMO TRL	60	31.9	22.0	18.2	14.0	2.5	-	-	-	-	-	-	-	-
M151A2	60	37.0	32.3	21.2	19.1	17.2	13.5	9.4	9.2	8.9	8.7	6.9	3.3	-
M561	60	30.3	17.5	15.8	8.7	8.0	7.5	6.8	5.8	3.7	2.7	1.7	0.7	-
HMMWV	60	43.0	30.6	25.1	19.9	17.0	14.4	12.1	10.5	8.9	7.5	5,9	2.1	-
HMMWV W/SHELTER	60	37.9	27.5	2.2.3	17.7	14.8	12.2	10.4	8.8	7.3	5.8	4,5	2.2	-

PREDICTED SPEED ON SLOPE PERFORMANCE (MPH)

ŗ.

the vehicle will slide and the speed at which it will overturn. Of course, the speeds thus derived will hold only for the set of fixed conditions imposed and will vary as the conditions vary. Table 18 presents sliding and tipping speeds for several sets of conditions. The soil strength selected was RCI 120, a medium strength soil. The turning circle radius chosen represents the minimum turn radius of each vehicle. Sliding and tipping speeds were calculated for the slopes indicated in the tables. Two versions of the M561 are shown, one mounting a 2500 pound S250 shelter and one a 3600 pound shelter of the same category. The HMMWV mounts the 3600 pound S250 shelter.

All the vehicles shown have tipping speeds that are higher than the sliding speeds, hence sliding will occur. The M561 is an articulated vehicle and speeds are presented for both sections of the vehicle. It should be noted that the tipping speeds of the two units differ. If the second unit overturns before the first, the whole vehicle will be immobilized, hence the tipping speeds of the second unit apply to the whole vehicle. Since both the HMMWV and the M561 carrying the S250 shelter at 3600 pounds have the same turning circle, we may compare their tipping speeds. On any given slope, the overturning speed of the HMMWV is higher than that of the M561, indicating a greater margin of stability.

3. AIR TRANSPORTABILITY

Although the vehicles, aircraft and scenarios to be considered are specified in Section 1, there are additional conditions which affect the evaluation. They are:

a. The term "density altitude" as used in the study request was replaced by "pressure altitude" as agreed during a telephone conversation between USAIS and this office.

b. There was no data base available which contained the distribution of pressure altitude/temperature conditions for either Europe or the Mid-East. Existing information on this subject indicates that $2000'/70^{\circ}$ F is a suitable approximation for Europe while $4000'/95^{\circ}$ F may be used for Mid-East scenarios.

c. The round trip distances for helicopter missions are taken to be 104 miles for Europe and 198 miles for the Mid-East. These distances which were agreed to at the beginning of this study, are representative of those encountered between points of debarkation and engagement in Europe and the Mid-East.

Physical Characteristics used to determine vehicle air transportability are presented in Table 19.

3.1 Fixed Wing Transport.

Analysis of fixed wing transportability was based on homogeneously loading as many of each system type as possible into the aircraft of interest. Consideration was given to the system's total weight, total length and center of

LATERAL STABILITY

VEHICLE	RCI	% SLOPE	TURNING CIRCLE RADIUS (FT)	SPEED AT SLIDE (MPH)	SPEED AT TIPPING (MPH)
HMMWV	120	0	30	16.9	22.6
2500#		20		14.6	21.1
		30		12.6	19.8
		40		10.2	18.4
HMMWV/	120	0	30	16.9	20.1
SHELTER 3600#		20		14.6	18.6
M561 1st UNIT 2500# SHELTER		30		12.6	17.2
		40		10.2	15.7
	120	0	30	16.8	24.3
		20		14.6	23.4
SHELLER		30		12.6	22.2
		40		10.2	20.9
M561	120	0	30	16.8	19.1
2nd UNIT 2500#		20		14.6	17.5
SHELTER		30		12.6	16.0
		40		10.2	14.3

27

· .. ·

LATERAL STABILITY

VEHICLE	RCI	SLOPE	TURNING CIRCLE RADIUS (FT)	SPEED AT SLIDE (MPH)	SPEED AT TIPPING (MPH)
M561	120	0	30	16.8	24.3
<u>1st UNIT</u> 3600#		20		14.6	23.4
SHELTER		30		12.6	22.2
		40		10.2	20.9
M561	120	0	30	16.8	18.4
2nd UNIT 3600# SHELTER		20		14.6	16.6
		30		12.6	15.0
		40		10.2	13.3
M151A2	120	0	17	12.7	16.6
		20		11.0	15.8
		30		9.5	14.8
		40		7.7	13.7

VEHICLE PHYSICAL CHARACTERISTICS

	VEHICLE				
CHARACTERISTIC	<u>M151</u>	M151 W/ M416	2-M151 W/M416	M561	HMMWV
WEIGHT (LB)	3600	4790	8570	10,300	7500
LENGTH (IN)	132.7	235.7	368.4	230	190
WIDTH (IN)	64.0	64.0	64.0	84.4	85
HEIGHT (IN)	52.5	52.5	52.5	67.8	72
LONGITUDINAL C.G.	58.0 in REAR	99.8 in REAR		113.0 in REAR	101 in REAR
LOCATION	OF FRONT BUMPER	OF FRONT BUMPER	N/A	OF FRONT BUMPER	OF FRONT Bumper
gravity (c.g.) location with respect to the optimum aircraft c.g. position. Analysis results are presented in Table 20.

The limiting parameter for those systems considered was the overall length of each vehicle or vehicle combination.

It should be noted that while the C-5A aircraft was included in the analysis, its availability to carry these vehicles would be limited. In no case is that aircraft's maximum payload limit challenged by these systems. Normally, the C-5A is reserved for high priority systems such as the M-1 and M-2 which do challenge that parameter.

3.2 Rotary Wing Transport.

Complete payload vs range curves for the CH-47C and D helicopters and the UH-60 and UH-60(BI) helicopters are presented in Appendix B. Data from these curves are summarized in Table 21.

The four air vehicle systems analyzed met round trip mission distance requirements with the following exceptions:

a. The 3-piece system consisting of the two M151 trucks and M416 trailer cannot be transported by the UH-60 helicopters because there are no provisions for slinging three vehicles, and even if there were, the system's total weight would limit the round trip flying distance to less than mission requirements for either scenario.

b. The M561 cannot be transported by the UH-60 series because its weight exceeds the craft's maximum payload capacity.

c. Mission requirements in either scenario were not met by the UH-60 when carrying the HMMWV. When the UH-60 (BI) transports the HMMWV, it can meet mission requirements in Europe only. It should be noted that this aircraft exists only as a concept and its performance when fielded may vary considerably from that postulated herein.

4. CONCLUSIONS

When the HMMWV is compared to the M151 and the M561 baseline vehicle in off-road travel, its performance generally exceeds that of the latter two vehicles. The HMMWV carrying a 3600 pound \$250 shelter shows little or no reduction in performance when compared to the HMMWV at its rated cargo payload of 2500 pounds. All of the vehicles exhibited a degradation in performance when trailers were towed by them.

The on-road speeds of the HMMWV generally exceeded those of the M151 and the M561, often by an appreciable amount.

TABLE 20

MAXIMUM SYSTEMS CARRIED

SYSTEM	<u>C-130</u>	<u>C-141B</u>	<u>C-5A</u>
M561	2	5	12
M1 51	4	8	20
2-M151 + M416	1	3	8
HMMWV	2	5	14

TABLE 21

HELICOPTER TRANSPORTABILITY

	MAXIM	UM ROUNDTRIP CAPABILI	TY - NAUTICAL	MILES
HELICOPTER	M151	2-M151/M416	M561	HMMWV
CH-47C	240ª	240 ^c	240 ^e	240 e
CH-47D	260 ^a	280c	260 ^e	260 ^e
UH-60	200p	0d	of	h,g
UH-60 (BI)	240h	0d	of	b ,h

NOTES:

^a Two vehicles carried internally plus one vehicle slung externally.

- ^b One vehicle slung externally.
- ^C One system carried internally.
- ^d No provisions for carrying three vehicle system.
- e Can be carried internally or slung externally.
- f Exceeds maximum payload capacity of helicopter.
- 9 0 (4000', 95°F), 50 miles (2000', 70°F), 162 miles (sea level, 59°F). h 72 miles (4000', 95°F), 170 miles (2000', 70°F), 224 miles (sea level, 59°F)

Considered in the context of the various tactical mobility levels, the HMMMWV displayed consistent superiority over the baseline vehicles.

The acceleration of the HMMWV was better than that of the baseline vehicles. The HMMWV generally met or exceeded the slope climbing performance of the other two vehicles.

In a comparison of the lateral stability of the HMMWV with the M561 with each carrying S250 shelter, the HMMWV was found to have the more stable configuration.

The HMMWV can be air transported by the Cl30, Cl41 and C5A in varying numbers. The UH-60 helicopter was not able to carry it over the distances required in the European and Mid-East scenarios.

NEXT PAGE IS BLANK

APPENDIX A

	PAGE
VEHICLE CHARACTERISTICS	36
SPEED PROFILES	39
NO-GO AND SPEED LIMITING FACTORS	119
ACCELERATION PROFILES	132
SPEED ON SLOPES PROFILES	140

HMMWV Generic (HMMWVG) Vehicle Characteristics

The HMMWV vehicle data presented on pages 41 and 42 represent characteristics derived from the vehicles in the HMMWV competition. These characteristics are representative of all the competition vehicles and yet are peculiar to none. The data shown are a complete set of those required as input to the Army Mobility Model.

MENTELE		-
VENILLE	DATA FOR H	
	DUAL VARIA	2 C
VD=	1.000	O IF VEHICLE TRACKED,1 IF WHEELED
VU-	7750.000	VEHICLE WEIGHT(LSS)
ALX=	.500	MAXAXLE LOAD/WT.IF WHEELS:C IF TRAX
YP=	7750.00	WT. ON PULLING AXLES IF WHEELED,O IF TRAX
NVEH-	1	VEHICLE TYPE (O=TRACKED,1=4x4,2=6x6, 3=8x8)
VL=	190.000	VEHICLE LENGTH (INCHES)
WV=	85.000	VEHICLE WIDTH(INCHES)
HP=	23.000	HEIGHT OF PUSHBAR (INCHES)
HB=	21.000	FRONT END CLEARANCE(INCHES)
GCX=	12.000	NININUM GROUND CLEARANCE(INCHES)
DS=	17.000	IF TRAX, HORIZ.DIST. CG. TO FRONT ROAD WHEEL CL., IF WHEELE
	2.0000	ROLLING RADIUS(INCHES)
6C =	16.000	GROUND CLEARANCE AT CENTER OF GREATEST SPAN; IF TRAX,=10CC
ŤL.+	132.000	DIST.FIRST TO LAST WHEEL/ROADWHEEL CL .
DWX=	132.000	IF TRAX=0, IF WHEELED MAX.DIST.BETWEEN ADJACENT WHEEL
		CENTERLINES
AV.	65.000	APPROACH ANGLE(DEGREES)
ACG-	17.800	ANGLE BETWEEN LINE // TO GROUND AND LINE BETWEEN CG. AND
		CENTER OF REAR ROADWHEEL OR IDLER
FLEW=	11625.000	MAX. FORCE LEADING EDGE WILL STAND(L3S)
XT¥=	12.500	TIRE WIDTH(INCH)
XRDT=	16.500	RIN DIAMETER(INCH)
X wi D=	37.000	OUTSIDE DIAMETER OF THE TIRE(INCH)
RR =	17.000	ROLLING RADIUS OF TIRE(INCH)
XTP=	17.000	TIRE PRESSURE(PSI)
XNT=	4.000	NUMBER OF WHEELS(DUALS AS ONE)
XNTE=	4.000	NUMBER OF WHEELS(DUALS AS TWO)
TPR=	4.000	TIRE PLY RATING
XCF=	0.000	O WITH NO TIRE CHAINS, 1 WITH TIRE CHAINS
XNA=	2.000	NUMBER OF AXLES
RADIAL=		O IF NO RADIALS,1 IF RADIALS
DRISCG=		
XBC=	•670	VEH.BRAKING FORCE/VEH.WEIGHT
TCNCGH=		
TCMCGF+	76.000	HORZ.DIST.CG.TO FRONT ROADWHEEL CL (ICH)
TCHREC =	26.000	REAR END CLEARANCE (INCH)
TCHVDA=		VEH.DEPARTURE ANGLE(DEGREES)
TCHRW#=	17.000	IF TRAX RADIUS OF WHEEL/SPROCKET/IDLER USED TO DETERMINE
TV AR=	0.000	DEPARTURE ANGLE+TRACK THICKNESS.IF WHEELED, ROLL. RADIUS(IN)
EFF+	0.000 1.000	1=MANUAL TRANS;=1=MANUAL/TRANSFER CASE;0=AUTUMATIC TRANSMISSION EFFICIENCY
FDR=	1.000	FINAL DRIVE RATIO
FDREF=	1.000	FINAL DRIVE RATIO
HPT=	20.000	HORSEPOWER/TON
RR=	17.000	TRAX=SPOCKET PITCH RADIUS(IN), WHEELS= TIRE ROLLING RADIUS
NN•	21	NUMBER OF POINTS IN TRACTIVE FORCE ARRAY
	64	NUMBER OF FULNES IN IRACIIVE FURGE ARRAY

TRACTIVE FORLE ARRAY		OBSTACLE HEIGHT ARRAY		RMS ARRAY	
SPEED, MPH	T. FORCE, LBS.	JBST. HT., INS	SPEED, MPH	RMS, INS	SPEED, MP-
0.000	10900.000	0.000	100.000	6.000	80.0uC
1.600	10503.303	4.000	100.000	.400	86.000
2.000	9003.000	4.306	70.000	.500	55.QUQ
3.000	7250.000	5.000	45.300	.600	45.000
4.000	6400.000	6.000	27.500	.700	40.000
5.000	5750.000	7.300	19.500	. 300	35.000
6.000	5250.000	8.000	14.500	. 900	30.000
7.000	4800.000	9.000	11.000	1.000	27.000
9.000	4500.000	10.000	9.000	1.100	24.000
9.000	4200.000	11.000	6.000	1.200	22.000
10.000	3850.000	12.300	4.506	1.300	19.500
13.000	3100.000	13.000	3.500	1.400	17.50C
15.000	2750.000	14.000	3.000	1.500	16.000
20.000	2000.000	30.000	2.000	1.800	13.000
24.000	1750.000	0.000	0.000	2.000	11.500
28.000	1400.000	0.000	0.C00	2.500	9.500
34.000	1100.000	0.000	0.000	3.000	8.500
43.000	950.000	0.000	0.000	3.500	6.000
60.000	750.000	0.000	0.000	4.000	7.500
70.000	650.000	0.000	0.000	5.000	7.000
70.100	0.000	0.000	0.000	3.000	2.000
0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	U.UCC
0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	C.300	0.000	0.000	3.000

.

,. **.**

المراجع المراجع . مراجع المراجع المراجع المراجع .

Ļ

ł

Neine .

NONS PERFORMANCE OF M151 W/TRL IN EUROPE1 SO X AREA 0 SO 20 COMLTV SPEED, MPH

.

.

.,

- 44

وي و ها والكليم أنها هو اله ا

عد عو لو ش

en estas

Second Street Street

63

water within any

an al baar anna an an Alban anna ann

66

h

67

ł

الهاهي الأراد المستحافي

NY at an

69

and the second

تقرينها

عولون راز و

1.0

ومقالية وأحمد الأرباب المتعارية والارمان ومردين والمردي الأكاف والاقترار والمتعاد

þ

State State

: i

•

1.44.200

A IT IS A DATE OF IT IS A

•

1.00

all the second second

A Real Provide Automation

and the second second

······

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

.

93

.

The off the second

\$15

95

War a Well Street and

Child to

-

C. Contraction

ė į

103

- ALL DE LE CAL

ALC: LA CARGE CAR

- Water

and product to the other

The second s

110

ter an televisione

and the second

and the second

2

AND IN THE REAL PROPERTY.

117

.

PREDICTED VEHICLE MOBILITY

Salara .

A support of the supp

CUMULATIVE AVERAGE SPEEDS

VENCLE V_{50} V_{90} PERCENT* V_{50} V_{90} W_{PH} W_{PH} W_{91}			GERMANY - DRY			JORDAN - DRY	
(MI01 IELE UO-GO 12.3 13.7 M416 IELY ND-GO 15.4 10.7 M101 15.1 ND-GO 14.8 10.7 M101 15.1 ND-GO 14.8 10.7 MM0 TRL 16.5 ND-GO 14.8 10.7 17.9 ND-GO 11.7 10.8 10.7 17.9 ND-GO 11.7 10.8 10.7 17.9 ND-GO 10.2 12.5 12.5 20.3 ND-GO 10.2 12.5 12.5 VSHELTER 19.7 VO-GO 10.0 13.9 VSHELTER 19.7 VO-GO 10.0 13.9	VEHICLE	V ₅₀ МРН	и ₉₀ Ирн	PERCENT* NOGO	V ₅₀ МРН	л ⁹⁰ 06 У	PERCENT* NOGO
Ma16 16.4 No-60 15.4 10.7 M101 15.1 UD-60 14.8 10.7 AMM0 TRL 16.5 No-60 14.8 10.7 17.9 No-60 14.8 10.7 17.9 No-60 11.7 10.8 17.9 No-60 10.2 12.5 17.9 No-60 10.2 12.5 17.9 No-60 10.2 12.5 17.9 No-60 10.2 12.5 17.9 No-60 10.2 13.9 15.8 No-60 10.0 13.9 15.4 19.7 UO-60 10.0 13.9 15.4 19.7 UO-60 10.0 13.9	LOLM/W VMMMH	18.6	09-0N	12.3	13.7	02-QN	4.71
MIOI IS.I Lb.60 II.5 I2.5 AMMO TRL I.6.5 No-60 I4.8 10.7 17.9 No-60 I4.8 10.2 17.9 No-60 10.2 12.5 17.9 No-60 10.2 12.5 17.9 No-60 10.2 12.5 17.9 No-60 10.2 13.9 15.8 No-60 10.0 13.9 15.1 19.7 No-60 10.0	M151 W/M416	16.4	09-9N	J.L	10.7	09-0N	13.2
AMMO TRL 16.5 Wo-60 14.8 10.7 17.9 Wo-60 11.7 10.2 10.2 17.9 Wo-60 10.2 12.5 12.5 15.8 Wo-60 10.2 12.5 12.5 20.3 Wo-60 10.0 14.0 14.0 15.HELTER 19.7 WO-60 10.0 13.9	M561 W/M101	12.1	No-60	11, 5	12.5	09-00	16.4
17.9 Ио-бо 11.7 10.8 1.5.8 Ио-бо 10.2 12.5 20.3 Ио-бо 10.0 14.0 VISHELTER 19.7 Ио-бо 10.0 13.9	M151 W/AMMO TRL	16.5	No-60	14.8	10.7	09-01	13.1
VG ZO.3 NO-60 10.2 12.5 VG ZO.3 NO-60 10.0 14.0 V W/SHELTER 19.7 VO-60 10.0 13.9	M151A2	17.9	No -60	11.7	10.8	09-91	13.1
20.3 No-60 10.0 14.0 /SHELTER 1	M561	15.8	09-00	10.2	12.5	No-60	16.4
19.7 UD-60 10.0 13.9	HMMMVG	20.3	03-0M	10.0	14.0	No-60	16.5
	HMMWV W/SHELTER	19.7	09-01	0.01	13.9	No - 60	16.5

*DENOTES PERCENT OF AREA

AREAL OCCURRENCE OF VEHICLE NOGOS

SURFACE STRENGTIN MANIL, TRACTION SURFACE STRENGTIN LESS TIIAN LESS TIIAN LESS TIIAN NIOI O. / MIOI O. / AMNO O. / MIOI O. / AMNO O. / AMNO O. O O. O 2.5 RESISTANCE R. O. O O. O 2.5 O 2.5 O 2.5			GERMANY - DRY FACTORS CAUSII	GERMANY - DRY FACTORS CAUSING VEHICLE NOGOS	
/MI01 0.1 4.5 7.3 Mal6 0.0 4.9 8.8 MI01 0.0 3.6 7.4 MI01 0.0 3.6 7.4 MI01 0.0 2.5 8.6 MM0 0.0 2.5 8.2 OLO 2.5 7.3 9.0 VSHELTER 0.0 2.5 7.1	VENICLE	SURFACE STRENGTH LESS THAN VCI	AVAIL TRACTION LESS THAN SOIL & SLOPE RESISTANCE	OBSTACLE INTERFERENCE	AVAIL TRACTION LESS TIIAN TOTAL RESISTING FORCES
Mall e.e 4.9 8.8 MIOI 0.0 3.6 7.4 AMMO 0.0 5.5 8.6 AMMO 0.0 2.5 8.7 AMMO 0.0 2.5 7.1 AMMO 0.0 2.5 7.1 VSHELTER 0.0 2.5 7.1 VSHELTER 0.0 2.5 7.1	LOLW/M AMWH	0.1	4.5	7. 3	0.4
MIOI O.O 3.6 7.4 AMMO O.O S.S 8.6 8.7 AMMO O.O 2.5 8.7 8.7 O.O 2.5 3.5 8.7 7.1 VSHELTER O.O 2.5 7.1 7.1 VSHELTER O.O 2.5 7.1 7.1	M151 W/M416	0.0	4,9	8 8	1,7
AMMO C.O C.S R.L 0.0 2.5 8.7 8.7 0.0 2.5 8.7 73 0.0 2.5 7.1 7 /SHELTER 0.0 2.5 7.1 /SHELTER 0.0 2.5 7.1 /SHELTER 0.0 2.5 7.1	M561 W/M101	0.0	3.6	7.4	õ.S
0.0 2.5 8.7 0.0 2.5 7.3 0.0 2.5 7.1 /SHELTER 0.0 2.5 7.1	M151 W/ AMMO TRL	0.0	5.5	9.8	0.7
0.0 2.5 7.3 0.0 2.5 7.1 VSHELTER 0.0 2.5 7.1	M151A2	0.0	2,5	8.7	Ø.5
VSHELTER 0.0 2.5 7.1 VSHELTER 0.0 2.5 7.1	M561	0.0	2,5	7.3	5.0
2.2 2.5 2.1	1MMW VG	0.0	2,5	7.7	<i>4.</i> 0
	HMMWV W/SHELTER	0.0	2,5	1.2	4.0
		•			

•

AREAL OCCURRENCE OF FACTORS LIMITING VEHICLE SPEEDS

		L OBSTACLE INTERFERENCE	1	6	•	(1	1	1	•			
		ACCEL & DECEL BETWEEN OBSTACLES	20.3	27.3	6.91	27.5	28.7	204	21.9	217			
	ILICLE SPEEDS	ALL RESIST FORCES	4.1	1.8	4.3	2.1	1.4	3.9	2.7	3,1			
GERMANY - DRY	FACTORS LIMITING VEHICLE SPEEDS	MANEUVERING IN VEGETATION	22.1	4.4	21.3	9.3	9.7	20.6	21.9	22.1			
	FACT	VISIBILITY IN VEGETATION	22.2	21.5	10.5	22.0	22.2	7.7	22,0	22.1			
		SOIL & SLOPE Resist	3.4	6.2	6.5	5.6	4.9	5.7	3,5	3.5			
		RIDE	15.2	731	26.1	17.7	214	31.0	18.0	17.6			
		VEHICLE	LO LW/M AMWH	M151 W/M416	M561 W/M101	MI51 W/AMMO TRL	M151A2	M561	HMMMVG	HMMWV W/SHELTER			

AREAL OCCURRENCE OF VEHICLE NOGOS

JORDAN - DRY

		FACTORS CAUSI	FACTORS CAUSING VEHICLE NOGOS	
VLIIICLE	SURFACE STRENGTH LESS THAN VCI	AVAIL TRACTION LESS THAN SOIL & SLOPE RESISTANCE	OBSTACLE INTERFERENCE	AVAIL TRACTION LESS THAN TOTAL RESISTING FORCES
LOLW/M AMWH	0.0	0.0	<u> </u>	0,0
M151 W/M416	0.0	0.0	13.2	0.0
M561 W/M101	00	0.0	16.4	9.0
MI51 W/ AMMO IRL	0.0	0.0	13.1	0.0
M151A2	0.0	0,0	13.1	0'0
M561	0.0	00	16.4	00
	0.0	0.0	/ 6 .5	00
HIMMWY W/SHELTER	0.0	0.0	16.5	00
	·			

ţ

AREAL OCCURRENCE OF FACTORS LIMITING VENICLE SPEEDS

JORDAN - DRY

_

			I'ACT	FACTORS LIMITING VEHICLE SPEEDS	IICLE SPEEDS		
VEHICLE	RIDE	SOIL & SLOPE Resist	VISIBILITY IN VEGETATION	MANEUVERING IN VEGETATION	ALL RESIST FORCES	ACCEL & DECEL BETWEEN OBSTACLES	OBSTACLE INTERFERENCE
LOIW/M VMMH	36.0	0.1	. 11. 3	7.8	0.0	26.6	1
M151 W/M416	42.3	17	7.9	2.6	O'O	26.0	1
M561 W/M101	44.9	1.4	2.0	8.6	0.1	26.7	3
M151 W/AMMO TRL	42.3	1.2	8.9	8.4	0.0	26.2	•
M151A2	42.7	1.0	8.6	8.6	0.0	26.1	1
M561	46.5	11	0.7	8.6	0.0	26.7	8
HIMMING	36.7	0.7	10.5	7,9	0.0	27.6	1
HIMMUV W/Shelter	36.2	0,8	11.2	7.9	0,0	27.6	1
1							
-							

.

PREDICTED VEHICLE MOBILITY

CUMULATIVE AVERAGE SPEEDS

		GERMANY - WET	L	ŗ	JORDAN - WET	
VEILICLE	V ₅₀ MPII	<mark>У</mark> 90 МРН	PERCENT* HOGO	V 50 MPII	V 90 N HdM	PERCENT* NOGO
101M/W VWWH	14.2	N0.60	28.6	12.5	09-0N	19.0
M151 W/M416	5	NO-60	30.1	9.7	N0-60	15.5
M561 W/M101	12.3	No-60	255	6.11	09-07	18.1
M151 W/AMMO TRL	4.11	09-0N	32.3	9.6	ND-GO	19.0
M151A2	14.5	No-60	14.8	101	09-0N	14.0
M561	13,8	N0-60	18.4	12.2	ND-GD	16.2
HMMMVG	16.3	N0-60	18.6	13.0	No-60	16.8
HMMWV W/SHELTER	16.1	09-00	12.3	13.0	09.00	16.8

*DFNOTES PERCENT OF AREA

AREAL OCCURRENCE OF VEHICLE NOGOS

AVAIL TRACTION LESS THAN TOTAL RESISTING TORCES 2.3 5 0.0 1.3 1.3 -1.1 OBSTACLE INTERFERENCE FACTORS CAUSING VEHICLE NOGOS 7.0 8.6 6.8 3.00 6.2 6.9 e 8.7 GERMANY - WET AVAIL TRACTION LESS THAN SOIL & SLOPE RESISTANCE 19.3 19.0 17.2 21.8 10.3 10.1 10.2 9.7 SURFACE STRENGTI LESS TIIAN VCI 0 0.7 0.4 0.7 0.4 2.0 0.1 0.1 HIMMUV W/SHELTER MI51 W/ AMMO TOTM/W VEMMH M151 W/M416 M561 W/M101 VEHICLE **M151A2 HMMI/VG** IRL M561 •

i

.

AREAL OCCURRENCE OF FACTORS LIMITING VEHICLE SPEEDS

GERMANY - WET

			FACT	FACTORS LIMITING VEHICLE SPEEDS	IICLE SPEEDS		
VEHICLE	RIDE	SOIL & SLOPE Resist	VISIBILITY IN VEGETATION	MANEUVERING IN VEGETATION	ALL RESIST FORCES	ACCEL & DECEL DETWEEN OBSTACLES	OBSTACLE INTERFERENCE
LOIM/W VWWH	9.4	1.5	25.3	17,9	5.4	13.0	1
M151 W/M416	9.9	3.1	22.6	6.6	5.2	22.5	D
M561 W/M101	13.7	5.8	15,3	12.1	7.4	14.3	1
151 W/AMMO	9.9	2.4	23.4	6.5	3.4	22.1	
M151A2	152	ر.ع	26.9	8.4	2.3	25.5	1
M561	8.21	4.0	15.7	20.1	5.9	17.2	1
HMMWVG	12.7	1.2	25.1	20.8	3.6	17.9	١
HMMWV W/SHELTER	12.5	5-	24.2	20,7	4,9	17.8	1
				-			
:							
		· ·····					

AREAL OCCURRENCE OF VEHICLE NOGOS

JORDAN - WET

AVAIL TRACTION LESS THAN TOTAL RESISTING FORCES 0.4 0.4 0.3 0.6 3.6 0.4 n 0). 0 OBSTACLE INTERFERENCE FACTORS CAUSING VEHICLE NOGOS 16.5 17.4 16.4 16.5 13.9 13.9 13.9 16.4 AVAIL TRACTION LESS THAN SOIL & SLOPE RESISTANCE 0 0 0 00 0.0 1:5 1.2 1.2 1.1 SURFACE STRENGTH LESS TIIAN VCI ₁ 0.0 0.0 0 00 00 0.0 0.0 00 HIMMUV W/SHELTER 101M/W VWWH MI51 W/ AMMO M151 W/M416 M561 W/M101 VEHICLE M151A2 **HMMWVG** IRI. M561 . . .

AREAL OCCURRENCE OF FACTORS LIMITING VEHICLE SPEEDS

JORDAN - WET

				ODC I TMITINC VEH			
			11/1	IVELOKS FIMILING AFTICLE STEEDS			
			VISIBILITY	MANEUVERING		ACCEL & DECEL	ORSTACLE
VEHICLE	RIDE	SOIL & SLOPE RESIST	IN VEGETATION	VEGETATION	FORCES	0BSTACLES	INTERFERENCE
LO LW/M AMWH	200	0.0	176	2	0.1	25.2	ſ
M151 W/M416			13.4	8.5	0.6	2 5.1	1
M561 W/M101	1		11.6	6.1	0.1	26.0	1
	<u> </u>		13.5	<u>6</u> ,3	0,2	23.7	E
28 M151A2		0.1	12.9	8.5	0.2	26.0	1
M561	38.2	0.8	9.2	9.6	Ø. 2	26.4	1
HMMWVG	33.7	0.0	15,2	7,7	<i>0</i> .7	26.5	1
HMMWV W/SHELTER	33.9	0.1	14.9	7.7	0, 2	26.5	1
1	-						
			1				

PREDICTED VEHICLE MOBILITY

F

CUMULATIVE AVERAGE SPEEDS

	19	GERMANY - SNOW				
VEILICLE	V ₅₀ MPII	ндм 06 <mark>у</mark>	PERCENT* 10000	у 50 МРН	06 A	PERCENT * NOGO
LOIM/W VWWH	No.60	No-60	50.3			
M151 W/M416	ND- 60	N0-60	51,9			
M561 W/M101	7.8	ND-60	38,7			
MI51 W/AMMO TRL	N0-60	N0-60	63,0			
M151A2	16.8	20-60	26.7			
M561	11.5	09-01	25.0			
HMMMVG	18.6	09-00	25.2			
HMMWV W/SHELTER	17.3	09-07	25.4			
					-	

*DENOTES PERCENT OF AREA

AREAL OCCURRENCE OF VEHICLE NOGOS

		GERMANY - SNOW	MON	
		FACTORS CAUS	FACTORS CAUSING VEHICLE NOGOS	
VLIIICLE	SURFACE STRENGTH LESS THAN VCI	AVAIL TRACTION LESS 111AN SOIL & SLOPE RESISTANCE	OBSTACLE INTERFERENCE	AVAIL FRACTION LESS THAN TOTAL RESISTING FORCES
LOLW/M APWWH	Q	40.6	7. /	2.6
M151 W/M416	0.0	44.6	8,6	1.7
M561 W/M101	0.0	29,4	6.8	2.5
MI51 W/ AMMO	0.0	533	7.5	2.0
M151A2	0.0	13.5	8,6	4.6
M561	0.0	13.7	6.8	4,5
97. годин	0.0	13,7	7,0	4,5
	0.0	178	2.0	4.6
	•			
			and any state and the second state on the second state of the second state of the	

AREAL OCCURRENCE OF LACTORS LIMITING VENICLE SPEEDS - 4

× .

UP MMP ELI

. Star e stariji Materiani Materia

THE REPORT OF A DESCRIPTION OF A DESCRIP

and the second second second

المجاولاتين برجانية

.....

APPENDIX B

. مع عد

÷

÷

. .

actor.

> 1.2

DISTRIBUTION LIST

No. of Copies	ORGANIZATION
12	Commander Defense Technical Information Center ATTN: DDC-TC Cameron Station Alexandria, VA 22314
1 ea	Commander US Army Materiel Development & Readiness Command ATTN: DRCCP DRCDM-S DRCDE-F DRCRE DRCCE DRCDE-A DRCQA 5001 Eisenhower Avenue Alexandria, VA 22333
2	Commander US Army Armament Research & Development Command ATTN: DRDAR-SEA Technical Library Dover, NJ 07801
1	Commander Rock Island Arsenal ATTN: Technical Library Rock Island, IL 61299
1	Commander USAERADCOM ATTN: DRDEL-CM (Mr. W. Pepper) 2800 Powder Mill Road Adelphi, MD 20783
1	Commander US Army Test & Evaluation Command ATTN: STEDP-MT-L Dugway Proving Ground, UT 84022
1	Commander US Army Aviation R&D Command ATTN: DRDAV-BC 4300 Goodfellow Blvd St. Louis, MO 63120

50 A

No. of Copies	ORGANIZATION
1	Commander US Army Electronics R&D Command ATTN: DRDEL-SA Fort Monmouth, NJ 07703
1	Commander US Army Electronics R&D Command ATTN: DRDEL-AP-OA 2800 Powder Mill Road Adelphi, MD 20783
2	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL ATAA-T While Sands Missile Range, NM 88002
1	Commander US Army Missile Command ATTN: DRSMI-DS Redstone Arsenal, AL 35898
I	Commander US Army Troop Support & Aviation Materiel Readiness Command ATTN: DRSTS-BA 4300 Goodfellow Blvd. St. Louis, M0 63120
2	Commander US Army Tank-Automotive Command ATTN: DRSTA-TSL

DRSTA-V Warren, MI 48090

1 Commander US Army Mobility Equipment R&D Command ATTN: DRDME-0 Fort Belvoir, VA 22060

153

DISTRIBUTION LIST (continued)

No. of

Copies ORGANIZATION

- 1 Commander US Army Natick R&D Command ATTN: DRDNA-0 Natick. MA 01760
- 1 Commander US Army Concepts Analysis Agency 8120 Woodmont Avenue Bethesda, MD 20014

Pentagon Library ATTN: ANR-AL-RS (Army Studies) Pentagon, RM 1A518 Washington, DC 20310

No. of

2

Copies ORGANIZATION

- Chief Defense Logistics Studies Information Exchange US Army Logistics Management Center ATTN: DRXMC-D Fort Lee, VA 23801
- 1 Reliability Analysis Center ATTN: Mr. I. L. Krulac Griffis AFB, NY 13441

ABERDEEN PROVING GROUND

2 Cdr, USATECOM ATTN: DRSTE DRSTE-CS-A Bldg 314

Dir. BRL, Bldg 328

Dir, BRL ATTN: DRDAR-TSB-S (STINFO Branch) Bldg 305

Dir, HEL, Bldg 520 ATTN: DRXHE-FSD

