CINDAS

THERMOPHYSICAL PROPERTIES RESEARCH CENTER
ELECTRONIC PROPERTIES INFORMATION CENTER
THERMOPHYSICAL AND ELECTRONIC PROPERTIES INFORMATION ANALYSIS CENTER
UNDERGROUND EXCAVATION AND ROCK PROPERTIES INFORMATION CENTER

SELECTED ELECTRICAL AND THERMAL PROPERTIES OF UNDOPED NICKEL OXIDE

J. E. Keem and J. M. Honig

CINDAS REPORT 52

August 1978 .

Prepared for

DEFENSE LOGISTICS AGENCY U. S. Department of Defense Alexandria, Virginia 22304

This decument has been approved for public release and sale; its distribution is unlimited.

SELECTE JUN 0 2 1983

IIIC FILE COPY

CENTER FOR INFORMATION AND NUMERICAL DATA ANALYSIS AND SYNTHESIS PURDUE UNIVERSITY

PURDUE INDUSTRIAL RESEARCH PARK . 2595 YEAGER ROAD WEST LAFAYETTE, INDIANA 47906

88 06 01 337

And Substitution of the su

SECURITY CLASSIFICATION OF THIS PAGE (When Dat , Entered)

ETING FORM OG NUMBER PERIOD COVERED CT REPORT EPORT HUMBER T NUMBER(s) BROJECT, TASK NUMBER:
EPORT HUMBER T NUMBER(*) 68 PROJECT, TASK
EPORT HUMBER T NUMBER(s) 58 PROJECT, TASK NUMBERS
T NUMBER(s) 58 PROJECT, TASK NUMBERS
PROJECT, TASK
PROJECT, TASK
this report)
this report)
this report)
f this report)
DOWNGRADING

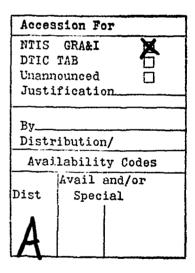
1 and a and have access

UNCLASSIFIED

A TO THE PROPERTY OF THE PROPE

SELECTED ELECTRICAL AND THERMAL PROPERTIES OF UNDOPED NICKEL OXIDE

J. E. Keem and J. M. Honig


Departments of Physics and Chemistry Purdue University West Lafayette, Indiana 47907

CINDAS REPORT 52

August 1978

Prepared for

DEFENSE LOGISTICS AGENCY U.S. Department of Defense Alexandria, Virginia 22304

mistantion the second second

alekabilen inakaran manistrak dan bangan bangan bangan kabanan bangan bangan bangan bangan bangan bangan banga

CENTER FOR INFORMATION AND NUMERICAL DATA ANALYSIS AND SYNTHESIS
Purdue University
Purdue Industrial Research Park
2595 Yeager Road
West Lafayette, Indiana 47906

to the second se

and the state of the

This technical report was prepared by the Thermophysical and Electronic Properties Information Analysis Center (TEPIAC), a Department of Defense Information Analysis Center. This Center is operated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS), Purdue University, West Lafayette, Indiana, under Contract No. DSA900-77-C-3758 with the Defense Logistics Agency (DLA), Alexandria, Virginia, with Mr. J.L. Blue (Hq. DLA) as the IAC Program Manager and Mr. Samuel Valencia (Army Materials and Mechanics Research Center) as the Contracting Officer's Technical Representative.

The report was authored by Dr. John E. Keem, who held a joint appointment in the Department of Physics and Department of Chemistry of Purdue University, and Dr. J.M. Honig, Professor of Chemistry at Purdue. Dr. Keem's present address is: Physics Department, General Motors Technical Center, General Motors Corporation, Warren, Michigan 48090. It was under a collaborative working arrangement between the two authors and CINDAS that this technical report was produced.

This report reviews the recorded world knowledge on the electrical and thermal properties of undoped nickel oxide in a most comprehensive and detailed form making it possible for all users of the subject to have access to the original data without having to duplicate the laborious and costly process of literature search and data extraction. Furthermore, for the active researchers in the field, a detailed discussion is presented for each property, reviewing the available information together with the considerations used by the authors in arriving at the final recommended reference values.

It is hoped that this work will prove useful not only to the scientists in the field but also to engineering research and development programs and for industrial applications, as it provides a wealth of knowledge heretofore unknown or inaccessible to many. In particular, it is felt that the critical data evaluation and analysis and reference data generation constitute a unique aspect of this work.

Y. S. TOULOUKIAN

Director of CINDAS Distinguished Atkins Professor of Engineering Purdue University nekaten kan di di batan di ba

August 1978 West Lafayette, Indiana

TABLE OF CONTENTS

1.	Intr	duction]
2.	Gene	al Background	2
	2.1	Physical Characteristics	2
	2.2	DC Electrical Resistivity	3
	2.3	Seebeck Coefficient (Thermoelectric Power)	5
	2.4	Heat Capacity (At Constant Pressure)	7
	2.5	Thermal Conductivity	8
	2.6	Elastic Constants	9
	2.7	Thermal Expansion	9
	2.8	Data Analysis and Further Comments	10
3.	Pres	ntation of Data	12
	3.1	Electrical Resistivity	12
		Table 1. Recommended Resistivity Values for Single Crystal	
		Ni $_{1-\delta}^{0}$ in the Range of its Kinetic Stability	13
		Figure 1. Resistivity ($ ho$) of Single Crystal of Ni $_{1-\delta}$ O in	
		its Kinetic Stability Range over the Temperature (T) Interval	
		250-1000 K for $0 \le \delta \le 5$ X10 ⁻³ . Data plotted as $\log \rho$ (ohm-cm)	
		vs. 10 ³ /T(K ⁻¹)	14
		Figure 2. Resistivity (ρ) of Polycrystal Ni _{l-δ} 0 in its	
		Kinetic Stability Range over the Temperature (T) Interval	
		250-1000 K for $0 \le \delta \le 5$ X10 ⁻³ . Data plotted as log ρ (ohm-cm)	
		vs. $10^3/T(K^{-1})$	15
		Table 2. Measurement Information on the Electrical Resistivity	
		of Single Crystal Ni ₁₋₆ 0	18
		Table 3. Tabulation of Resistivities of Single Crystal Ni $_{1-\delta}$ 0	20
		Table 4. Measurement Information on the Electrical Resistivity	
		of Polycrystal Ni ₁₋₈ 0	24

in the property of the contract of the contrac

The second of the second secon

- Ton Later State State Sand State S

	<u>Table 5</u> . Tabulation of Resistivities of Polycrystal $Ni_{1-\delta}0$.	•	27
3.2	Seebeck Coefficient	•	30
	Table 6. Recommended Values for the Seebeck Coefficients of		
	Single Crystal Ni $_{1-\delta}^{}$ 0 in the Range of Its Kinetic Stability .	•	31
	Figure 3. Seebeck Coefficients (a) of Single Crystal Ni $_{1-\delta}$ 0		
	in the Range of Its Kinetic Stability over the Temperature		
	(T) Interval 300-800 K for $0 \le \delta \le 5 \times 10^{-3}$. Data plotted as		
	$\alpha(mV/K) \text{ vs. } 10^3/T(K^{-1}) \dots \dots \dots \dots \dots$	•	32
	Figure 4. Seebeck Coefficients (a) of Polycrystal $Ni_{1-\delta}0$		
	in the Range of Its Kinetic Stability over the Temperature		
	(T) Interval 300-800 K for $0 \le \delta \le 5 \times 10^{-3}$. Data plotted as		
	$\alpha(mV/K) \text{ vs. } 10^3/T(K^{-1}) \dots \dots \dots \dots \dots$		35
	Table 7. Measurement Information on the Shebeck Coefficient		
	(Thermoelectric Power) of Single Crystal N $_{,-\delta}0$	•	36
	Table 8. Tabulation of Measured Seebeck Coefficient (Thermo-		
	electric Power) of Single Crystal Ni $_{1-\delta}$ 0	•	37
	Table 3. Measurement Information on the Seebeck Coefficient		
	(Thermoelectric Power) of Polycrystal $\mathrm{Ni}_{1-\delta} 0$	•	38
	Table 10. Tabulation of Measured Seebeck Coefficient (Thermo-		
	electric Power) of Polycrystal Ni $_{1-\delta}$ 0	•	40
3.3	Heat Capacity	•	41
	Table 11. Recommended Values for the Specific Heat at		
	Constant Pressure of NiO	•	42
	Figure 5. Specific Heat at Constant Pressure (C_p) as a Function	n	
	of Temperature for NiO Specimens in the Range 3.2 to 1100 K.		
	Data plotted as C_p (cal/g-K) vs. $T(K)$	•	43
	Table 12. Measurement Information on the Constant Pressure		
	Specific Heat of NiO		45

or of the contraction of the con

	<u>Table 13.</u> Tabulation of Measured Specific Heats of NiO	46
3.4	Thermal Conductivity	47
	Table 14. Provisionally Recommended Values for the Thermal	
	Conductivity of NiO in the Range 3-700 K	48
	Figure 6. Thermal Conductivity (κ) of NiO Specimens as a	
	Function of Temperature (T). Data plotted as κ (watts/cm-K)	
	vs log T(K)	49
	Table 15. Measurement Information on the Thermal Conduct-	
	ivity of NiO	51
	Table 16. Tabulation of Measured Thermal Conductivities of	
	NiO	52
3.5	Elastic Properties	53
	Table 17. Provisionally Recommended Values for Various Sets	
	of Elastic Constants of NiO in the Range 4-700 K	54
	Figure 7. Various E as: ic Constants $(c_{i,j})$ of NiO Samples	
	as a Function of Temperature (T). Data plotted as $\sum_{(i)} C_{i,j}$	
	$(dynes/cm^2 X10^{12})$ vs. $T(K)$	55
	Table 18. Measurement Information on the Elastic Constants	
	of NiO	56
	Table 19. Tabulation of Elastic Constant Measurements of	
	NiO	58
	Table 20. Provisionally Recommended Values for Young's	
	Modulus of NiO in the Range 295-595 K	59
	Figure 8. Young's Modulus (Y) of NiO as a Function of	
	Temperature (T). Data plotted as Y $(dynes/cm^2 \times 10^{11})$ vs T(K).	60
	Table 21. Measurement Information on Young's Modulus of	
	NiO	61

からないない かんしゅう かんしゅう アンドラング

* ;

A COLOR CONTROL CONTRO

the second of the little tendence of the second second second second second second second second second second

		Table 2	22.	Ta	bula	ti on	of	Me	as u	rem	ent	s o	fY	oun	g's	Mo	dul	us	of			
		NiO .	•	•		•	•	•		•	•	•	•		•	•	•	•	•	•	•	62
	3.6	The rma1	Ex	(par	sion	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	63
		Table 2	3.	Pr	ovisi	i on a	11y	Ra	COM	men	ded	Va	lue	s f	or	Me a	n a	nd				
		Instant	ane	ous	Coe	ffic	ien	ts	of	The	rına	1 E	хра	nsi	on	for	Ni	υ.	•	•	•	65
		Figure	<u>9</u> .	Со	effic	cien	ts	nf	The	rma	1 E	хра	กรi	on	for	Ni	0 i	n				
		the Ran	ge	80-	2190	K.	•	•	•	•	•	•	•	•	•	•	•	•		•	•	66
		Table 2	<u>4</u> .	Me	as ure	emen	t I	nfo	rma	tio	n o	n t	he	Coe	ffi	cie	nt	of				
		Therma1	Ex	p an	sion	of	Ni O	•	•	•	•	•		•	•	•	•	•	•	•	•	67
		Table 2	<u>25</u> .	Ta	bulat	ti on	of	Me	asu	red	Co	eff	ici	ent	of	The	erm	al				
		Expansi	on	of	NiO.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	68
4.	Refe	rences					•	•														69

1. INTRODUCTION

The objective of this project was to compile, critically evaluate, and analize available data and information on the dc electrical resistivity,

Seebeik effect (thermoelectric power), heat capacity at constant pressure, thermal and elastic properties of single crystal, polycrystalline, and annealed specimens of pure NiO in the temperature range of kinetic stability, and finally, to generate recommended reference values for selected properties of different forms of NiO.

Section ? provides certain necessary background information. Section 3 resents experimental data in graphical and tabular forms along with the critically evaluated and recommended values for dc electrical resistivity, Seebeck coefficient, heat capacity (at constant pressure), thermal conductivity, elastic properties, and thermal expansion. Also included in these sections is explanatory information for each property, on the basis of which the available data are reviewed and discussed. Statements are also provided concerning criteria and considerations used in obtaining the recommended values, over the temperature range of kinetic stability. The (provisionally) recommended values of various properties are exhibited along with the experimental data. The complete bibliographic citations for the references are given in Section 4.

A CONTROLL OF THE STATE OF THE SECOND SECOND

It should be carefully noted that we exclude from this report a considerable body of data pertaining to the properties of NiO above 1000 K or of doped NiO, including particularly Li-doped NiO, since the properties of these materials are not representative of pure NiO at ordinary temperatures.

The first of the second of the

2. GENERAL BACKGROUND

2.1 Physical Characteristics

Above 523 K NiO is an anion excess, paramagnetic material in the cubic rocksalt configuration with one molecule per primitive cell; the lattice constant is 4.1811 Å. (1) Below the Néel temperature of $T_N = 523$ K, NiO is a type 2 antiferromagnet, with a slight rhombohedral lattice distortion [0.15% contraction along a (111) axis] caused by magnetostriction. (3) The compound exhibits small deviations from strict stoichiometry, representable by the formula $Ni_{1-\delta}O$, with deviations in the range $0 \le \delta < 5x10^{-3}$. As δ is decreased by appropriate annealing (4) from its upper limit towards zero NiO transforms from a black opaque material, which may have a greenish cast, to a green translucent material. The resistivity at fixed temperature is increased many orders of magnitude as the material is rendered increasingly stoichiometric.

A striking feature of crystalline NiO is the inertness of this material toward chemical changes. Reduction to metallic Ni can only be achieved by heating under almost total exclusion of oxygen ($P_{0_2} < 10^{-20}$ atm) or by use of hydrogen at elevated temperatures. NiO can be dissolved only in molten salts such as $K_2S_2O_7$. Acids and bases have no noticeable effect on the properties of crystalline NiO. The density of NiO at room temperature is 7.45 gm/cm³; its melting point is approximately 2230 K.

<u>en de la compositación de la compartación de la compartación de la compartación de la compartación de la comp</u>

Single crystals of NiO may be prepared by at least five different techniques involving high temperature methods: flame fusic (also termed the Verneuil technique), (5) arc image furnace floating zone, (6) plasma torch, (7) solar furnace melting technique, (8) and arc-transfer. (9) Three others, halide decomposition and deposition on MgO substrates, (10) chemical vapor transport, (11) and growth from a flux, (12) are carried out at much lower temperatures. No measurements have so far been reported on NiO grown by chemical vapor transport.

Typically, samples obtained by the high temperature techniques are more strained and nonstoichiometric than those grown by halide decomposition, though halidedecomposition-grown specimens also exhibit strain caused by the mismatch between the MgO substrate and NiO lattice. It is possible, however, by annealing to improve the stoichiometry and to reduce internal strains to the point where the samples so treated become superior to the thin film material grown by halide decomposition. In general the electrical transport properties of NiO are much altered by changing the state of internal strain and degree of stoichiometry, whereas heat capacity and elastic properties seem less sensitive to these parameters. The critical evaluation of particular data with regard to these factors will be discussed in the following subsections, along with the general background information relevant to each set of experimental data.

2.2 DC Electrical Resistivity

Electrical resistivity measurements in transition metal oxides suffer from two classes of problems: those related to material quality (including thermal history) and those connected with measurement techniques.

The presence of voids and other crystal defects alters, both in quality and degree, the electrical conductivity in NiO. Empirically, it is found that fused polycrystalline material composed of macroscopic single crystal domains exhibit electrical transport properties very similar to those of single crystals. By contrast, sintered ceramic specimens show resistivity variations which cannot be simply associated with a decrease number of conducting paths due to the presence of voids. The details of these alterations depend on the sintering process such as the firing schedules, the firing atmosphere, and the compaction techniques. Further, different sintering processes produce various

Enthanting Mintelline and the second of

intellications and administration and administration or the

types of internal boundaries and surfaces whose electrical conduction characteristics are in general different from those of the interior of the grain.

Depending on the relative magnitudes of the surface and bulk conductivities, the electrical characteristics of one may overshadow that of the other and thus, lead to wide differences in observed characteristics. In addition, prolonged exposure to elevated temperatures during sintering may also inadvertently allow substantial amounts of impurities to diffuse into the material where their effects are sometimes compounded by the proclivity of certain cations to segregate on grain boundaries and at other defect sites.

Because of the ambiguity introduced by the sintering process, recommended resistivity values for ceramic specimens should be regarded with circumspection, because such measurements cannot be reliably reproduced. Electrical conductivity data for polycrystalline and single crystal specimens are relatively more uniform and reproducible in characteristics.

After the state of aggregation the next most important materials parameter is the past thermal history of the samples. Whenever single crystals of NiO are heated above approximately $1000~\rm K^{(13)}$ solid state reactions begin to occur on laboratory time scales. These reactions first involve equilibration of surface defects with the ambient oxygen partial pressure; also, changes occur which reduce the extent of high strain regions on the surfaces of the specimen. Above $1300~\rm K^{(13)}$ these processes begin to produce changes in bulk stoichiometry and give rise to relief of internal strain. Since charge transport occurs by motion of carriers (holes) which arise from the presence of cation defects (Ni⁺² vacancies) it is evident why various heat treatments under different atmospheres cause tremendous changes in the electrical resistivity of a sample. Hence, a major concern of this report is a careful, critical

n de la company de la comp

analysis of the data acquired from similar specimens with different thermal histories.

As concerns measurement techniques, it is important to note that the specimens in pure form have resistivities considerably in excess of 10^6 ohm-cm at temperatures below the Néel point $T_{\rm N}$ = 523 K. Electrical measurements in this temperature region require the use of very high input impedance devices such as electrometers, varactor bridge operational amplifiers, or FET input operational amplifiers for voltage sensing. (14) These precautions are particularly crucial in the measurement of Seebeck coefficients. Resistivities should always be determined by the standard four-probe technique to avoid complication due to junction impedances. Unless these precautions are taken electrical measurements at best are suspect and at worst, meaningless. In the data evaluations at later Sections an attempt has been made to take these various factors into account.

2.3 Seebeck Coefficient (Thermoelectric Power)

The Seebeck effect in a material is due to the production, under steady state heat flow and zero electrical current flow conditions, of a small gradient in electrochemical potential as the result of the imposition of a small temperature gradient. The magnitude of the effect is specified by the Seebeck crafficient*, $\alpha = \Delta V/\Delta T$, i.e., by the voltage difference per unit temperature difference across the sample, measured at a specified average sample temperature. (15) The variation of α as a function of temperature,

^{*}Strictly speaking, $\alpha \equiv \nabla(\zeta/e)/\nabla T$, where ζ/e is the electrochemical potential per unit electronic charge, and ∇ is the gradient operator, but for most cases this rigorous definition reduces to the one shown above.

the filter of the countries of the second se

in conjunction with a model for the electronic states in the material, provides information on the magnitude and temperature dependence of the carrier density and on the degree of electron-lattice and/or electron-magnon coupling. (16)

The experimental difficulties encountered in electrical measurements also have their counterparts in Seebeck coefficient measurements. Earlier remarks regarding sample quality are applicable to the present situation, particularly since Seebeck coefficients of different parts of a sample (e.g., surfaces and grains in sintered compacts) are weighted by the conductivity $\sigma_{\hat{i}}$ of that portion of the sample, relative to the total conductivity, $\sigma_{\hat{T}}$. The overall Seebeck coefficient is given by

$$\alpha_{\mathsf{T}} = \sum_{\mathbf{i}} \alpha_{\mathbf{i}} \frac{\sigma_{\mathbf{i}}}{\sigma_{\mathsf{T}}} \tag{1}$$

ne de la cominicación de la comunicación de la comu

where the sum lation i is taken over all different types of charge carriers which may be identified as contributing to the overall transport properties of the material.

Special difficulties are associated with Seebeck effect measurements and their interpretation in very high resistivity materials. These arise from the need to measure the small magnitudes of the Seebeck voltages, typically a few millivolts or less, on specimens whose total resistance may be in excess of 10¹² ohms for pure samples of NiO. Further, the accurate imposition of a small temperature gradient without disturbing the sample is a difficult, though important task. In general, the use of buffering circuitry for isolating the sample, and employing special predictive filtering techniques for optimizing the signal-to-noise ratio, as well as the use of nonelectrical

methods for imposing the temperature gradients with a four-probe technique are essential to obtain meaningful results on high resistivity specimens. The delicacy of such measurements frequently has not been sufficiently appreciated.

2.4 Heat Capacity (At Constant Pressure)

One of the most fundamental thermodynamic measurements which can be executed on any material is the determination of its heat capacity at constant pressure, C_p . Evaluation of the integrals $\int_0^T C_p \, dT$ and $\int_0^T T^{-1}C_p \, dT$ yield the enthalpy and entropy, respectively of the material under study, and from the latter two quantities the Gibbs free energy of the compound may be evaluated.

To compare experimental measurements with theory, it is necessary to convert to the heat capacity at constant volume, C_V , via the expression

$$C_{p} = C_{V} + \alpha_{I}^{2} VT/\beta \tag{2}$$

wherein $\alpha_{\rm I}$ is the coefficient of thermal expansion for NiO, (17) β its compressibility, (18) T the temperature, and V, the volume. According to the Debye theory of lattice vibrations in solids, $C_{\rm V}$ is expected to approach asymptotically the limiting Dulong and Petit value of 3n? at high temperature, where R is the gas constant and n the number of atoms in the formula unit. Heat capacity measurements in NiO are subject to an additional complication: near 523 K the material undergoes a magnetic disordering transition in converting, on heating, from an antiferromagnetic to a paramagnetic insulator. In accordance with well-known theories of order-disorder transitions, (19) this gives rise to the so-called lambda-type anomaly in the heat capacity, i.e., a broad peak terminating in a rather abrupt spike, superposed on a normally rising background.

Wilder in his production of the contraction of the

As already mentioned, these measurements are expected to be rather insensitive to methods of sample preparation, thermal history, or state of aggregation of the material.

2.5 Thermal Conductivity

The thermal conductivity of a solid depends on the degree of aggregation if it is ceramic, and on the direction of heat flow with regard to crystallographic axes if it exhibits crystalline anisotropy. In a magnetically ordered crystalline material such as NiO, an additional dependence of the thermal conductivity on the degree of magnetic order is also observed. (20) effects are obscured in ceramic specimens due to the random orientations of the magnetic axes; in other respects, above room temperature the thermal conductivity of ceramic specimens is closely proportional to that of single-crystal material. In this regime the mean free path of phonons is small compared to the average distance between defects, and the magnitude of the thermal conductivity is governed solely by the porosity of the specimens: voids of any type may be considered to function as very high thermal resistances. It is only at lower temperatures, where the phonon mean free path becomes large, that the correlation between thermal conductivity of single crystal and ceramic specimen breaks down. Phonons then scatter off the macroscopic defects such as dislocations, voids, grain boundaries, magnetic domain, internal strains, and the like.

To determine the intrinsic lattice and magnetic contributions to the thermal conductivity, it is clearly necessary to rely exclusively on measurements performed on single crystals of the highest quality. Even so, the need for thermal shielding to avoid spurious heat transport by extraneous conditions and radiation, makes it difficult to obtain reliable data. (20,21) It should

Whise sections is the contraction of the contractio

be kept in mind that radiation effects are proportional to the fourth power of the temperature difference between the specimen and the surroundings, and therefore, particularly troublesome.

2.6 Elastic Constants

Because the electrical conduction in this material seems to be closely linked to the elastic properties of the crystal, $\binom{22}{2}$ precise values for the elastic coefficients and their variation with temperature are of considerable fundamental interest, as well as being important in determining the possible technological uses of this material. Measurement of elastic coefficients using low frequency ultrasound (10^7 hz) are relatively unaffected by the state of sample subdivision so long as the density is close to that of the ideal material. An alternative method consists in determining phonon dispersion curves from inelastic neutron scattering. Data using both types of techniques are cited in Sec. 3. All elastic constants normally are weakly dependent on temperature; however, one anticipates rather drastic changes in these quantities and in Young's modulus as the material passes through the magnetic ordering temperature.

2.7 Coefficients of Thermal Expansion

and the Ministeria for the few and an include the constant.

Thermal expansion is usually monitored by dilatometric techniques or by direct optical studies. On occasion, X-ray diffraction experiments have been utilized to determine the variation of lattice parameters with temperature, and the coefficient of thermal expansion is then calculated from these data. All three techniques have been utilized in the determinations cited in Sec.

3. These studies are not very sensitive to departures from stoichiometry,

The transfer of the second of the transfer of the second o

but they are dependent on the availability of specimens with relatively low porosity.

2.8 Data Analysis and Further Comments

The Hall effect, normally an important part of any study of electrical transport properties, is not considered in this report. This omission is justified on three grounds: First, there are very few reports of the Hall effect on single crystals; thus, no real basis for critical evaluation exists. Second, in the few instances where Hall effect is reported, the results are at extreme variance with one another. There is no agreement on such fundamental quantities as the sign, or the sign reversals near the Néel transition, let alone the magnitude of the Hall coefficients, even when measurements are carried out on nominally similar material. Third, in an antiferromagnetic material such as NiO where hopping conduction may dominate (see Sec. 3.2), the theoretical basis for interpreting, and hence, for generating recommended values of the Hall effect are exceedingly complex. (23) Moreover, the predictions vary, depending on the precise model and on the particular charge carrier transport configuration which is assumed.

As regards data evaluation for the remaining transport coefficients, critical analysis and careful comparative evaluation are essential in the generation of reliable recommended values for the thermophysical properties. Procedures for data analysis for single crystals and polycrystalline ceramic specimens are similar. They consisted in assessing, where possible, the validity and reliability of the data, based on description of experimental procedures, related information, and internal consistency. It was further attempted to resolve conflicts and discrepancies in data, to correlate data in light of

<u>Konttoning tangga panandang panandang panang panan</u>

various controlling parameters, to carry out curve fitting with theoretical or empirical equations, and to compare results with theoretical predictions or generalized empirical correlations. Theoretical methods and semiempirical techniques have also been employed to fill data gaps so that the resulting recommended values would be internally consistent and cover as wide a range in the relevant controlling parameters as possible. Such analyses were carried out only for those properties on which a considerable selection of data were available.

Considering electrical resistivity, for example, in the evaluation of a particular set of measurements, the temperature dependence of the data was examined and any unusual feature or anomaly carefully investigated. The experimental technique was reviewed to be certain that contact effects, unwanted loading, spurious voltage sources, and inappropriate physical conditions of the measurement are accounted for, and that the samples were carefully prepared in a suitable atmosphere by reliable techniques. Also, as far as possible, estimates of uncertainty were checked to ensure that all sources of error had been considered. Data were considered reliable only if all sources of systematic error had been eliminated, or minimized and accounted for.

The selected sets of data were classified according to values of important controlling parameters, and recommended or provisional values of the electrical resistivity were generated for each value of the controlling parameters. For unannealed single crystals, a theoretical curve is available and is compared with the appropriate data over the temperature range for which the theory is considered valid.

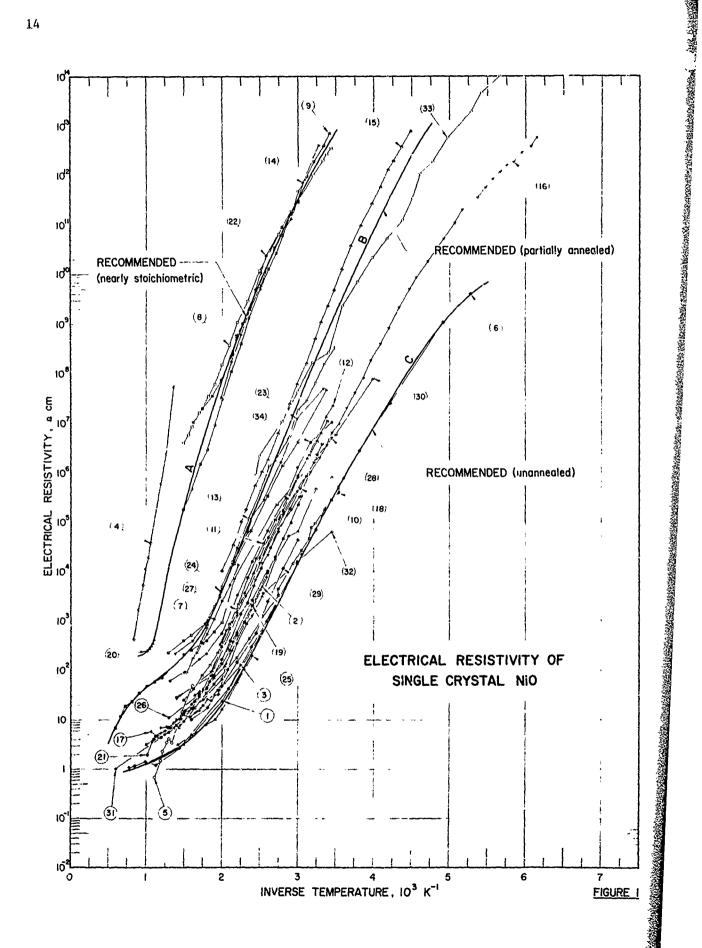
The state of the s

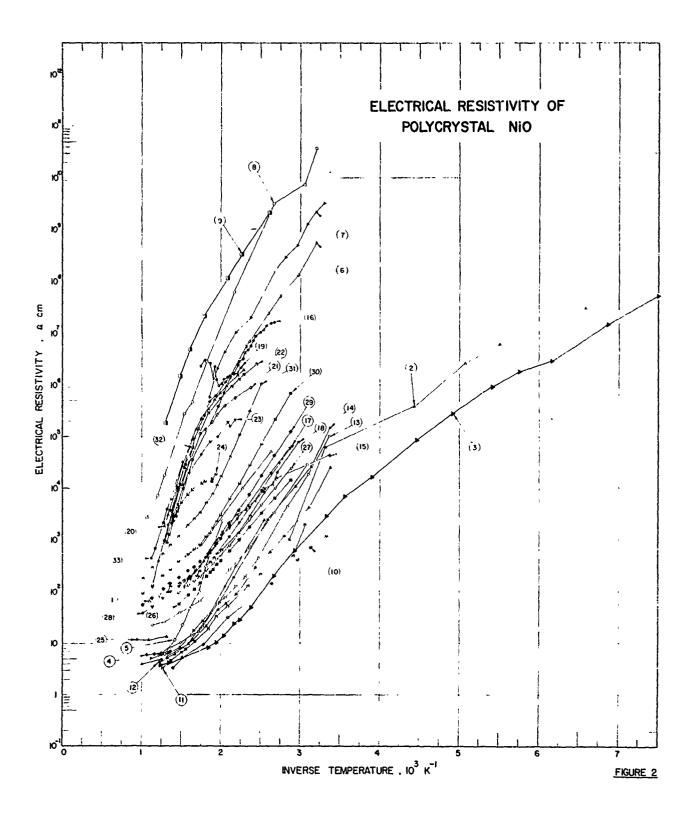
Ballist sometimes standalistics and the

PRESENTATION OF DATA

Each of the subsections shown below deals with data pertinent to undoped single crystal or polycrystal specimens of Nickel Oxide. The experimental results are exhibited in graphical and in tabular form, along with information covering sample preparation and measurement techniques. In addition, where possible, we have generated sets of recommended values for the property under consideration. These are entered in graphical form on the various figures; representative numerical values read off from these smoothed graphs are entered separately in appropriate tables.

a sing der exploration of a consequence of the second of t


One should recognize that the electrical properties are very sensitive to departures from the ideal 1:1 ratio of O/Ni; hence in resistivity and Seebeck coefficient measurements, distinctions have been made between samples of different stoichiometry by referring to Ni_{1- δ}0, with $0 \le \delta \le 5 \times 10^{-3}$. The mechanical and thermal properties are far less sensitive to these effects; consequently, the distinction has been dropped in later sections and all samples have been designated simply as NiO.


3.1 Electrical Resistivity

Recommended values for the resistivity of undoped single crystal specimens of Ni $_{1-\delta}$ 0 in the range of its kinetic stability are shown in Table 1. The procedure for obtaining these values is discussed in Sec. 3.2. The results of resistivity measurements are displayed as plots of log ρ (ohm-cm) vs. $10^3/T(K^{-1})$ in Fig. 1 for single crystals and in Fig. 2 for polycrystalline materials. The temperature range for these investigations extends from ca. 250 K to 1000 K, over which the density of Ni ion vacancies remains constant, being determined

TABLE 1 RECOMMENDED RESISTIVITY VALUES FOR SINGLE CRYSTAL Ni $_{1-\delta}0$ JN THE RANGE OF ITS KINETIC STABILITY

		ISTIVITY, ohm-cm	
Temperature, K	Nearly Stoichiometric Sample A	Partially Annealed Sample B	Unannealed Sample C
2000		3.34	
1430	and the second second		9.00 x 10 ⁻¹
1330		1.75 x 10 ¹	
1110	2.04×10^2		The state of the s
1000	2.41 x 10 ²	4.56 x 10 ¹	1.30
910	4.13 $\times 10^2$		
008	5.00×10^3	9.10 x 10 ¹	1.92
670	2.15×10^5	2.00×10^2	3.30
570	4.65 x 10 ⁶	6.15×10^2	7.28
500	7.18×10^{7}	3.95×10^3	2.08×10^{1}
440	7.84 x 10 ⁸	3.68 x 10 ⁴	9.10 x 10 ¹
400	7.24 x 10 ⁹	3.23 x 10 ⁵	4.62×10^2
360	5.05×10^{10}	2.90 x 10 ⁶	2.47×10^3
330	3.45×10^{11}	2.50×10^{7}	1.45×10^4
310	1.80 x 10 ¹²	2.18 x 10 ⁸	7.98 x 10 ⁴
290	8.10×10^{12}	1.63 x 10 ⁹	4.10 x 10 ⁵
270		1.17 x 10 ¹⁰	1.94×10^6
250		8.20 x 10 ¹⁰	8.20 x 10 ⁶
240		5.00 x 10 ¹¹	3.43×10^{7}
220		2.67 x 10 ¹²	1.38×10^8
210		1.15 x 10 ¹³	4.95×10^8
200	***********		1.50 x 10 ⁹
190	**********		3.68 x 10 ⁹
180			7.00 x 10 ⁹

AND White Bridge is the second second the second second

by the thermal history of the sample prior to being cooled to constant composition. A number of studies covering temperature ranges above 1000 K are not included, because in this region the O/Ni ratio changes with temperature, due to rapid equilibration involving the exchange of oxygen between the solid and the ambient. The measurements in this high temperature range are therefore crucially dependent on the partial pressure of oxygen in the atmosphere surrounding the sample and are not intrinsic to NiO.

Several features of Fig. 1 are noteworthy: There is an enormous spread in resistivity values; at room temperature ρ lies in the range 10^3 to 10^{13} ohm-cm for single crystals. The particular value depends, among other matters, quite sensitively on δ , which quantity is restricted to the range $0 < \delta \le$ $5\text{X}10^{-3}$ in the homogeneity domain for nickel oxide. As δ decreases towards its lower limit the resistivity increases; the most nearly stoichiometric specimens become good insulators. This is so because the density of holes is controlled primarily through the density of nickel ion vacancies, which, having an effective double negative charge each, are associated with two holes that maintain electroneutrality. In a perfect crystal for which δ = 0, there would be no excess charge carriers for net charge transport; in actuality, the exact 1:1 O/Ni stoichiometry cannot be realized, and the presence of impurities and other types of defects furnishes sufficient carriers for some observable conductivity. The upper limit on the resistivity which can currently be achieved with the best available samples is shown as the uppermost curve, Curve A, in Fig. 1. The lone curve (curve 4) which is shown as lying higher in resistivity was reported for a thin NiO film on MqO and appears to be spurious. For intermediate stoichiometry the recommended values are shown in Curve B. The lower limit, attained for $\delta \approx 5 \times 10^{-3}$, is shown as Curve C in Fig. 1. It is seen that nearly all the measurements reported in the literature fall within the indicated

range; there seems no reason for questioning any of these results. Whatever differences are encountered presumably are due to differences in δ among the various samples.

The variation of resistivity with temperature is rather complex. Most noticeable are the rather marked changes of slope in the plots of Fig. 1 close to the vicinity of the Néel point at $T_N \approx 523$ K. These changes are not abrupt but occur over an interval of 40-70 degrees in the vicinity of T_N . At higher temperatures the resistivity activation energies ε_ρ range between 0.30 eV for $\delta \approx 0$ to 0.20 eV for $\delta \approx 5 \times 10^{-3}$. For most of the data reported at lower temperatures it is not possible to specify a unique conductivity activation energy since the plots in this range of temperatures are not strictly linear. However, the average values of ε_ρ are approximately 0.80 eV for $\delta \approx 0$ and 0.66 eV for $\delta \approx 5 \times 10^{-3}$. An interpretation for these facts is offered in Sec. 3.2 where the curves for the recommended values will also be explained.

Reasons have already been adduced why resistivity measurements carried out on polycrystalline, ceramic, sintered, pressed, or powdered specimens should be regarded with great caution. Aside from the difficulties introduced earlier, the problem which is peculiar to NiO is that untreated surface layers tend to be strongly Ni-deficient, as judged by XPS (ESCA) experiments. We therefore do not recommend any of the resistivity values in Fig. 2 as being representative of bulk NiO, although these measurements are of intrinsic interest in certain industrial and engineering applications. It is to be noted that at room temperature quoted resistivities lie in the range 3×10^2 to 10^{10} ohm-cm, i.e., considerably below the range of ρ values quoted for single crystals. Also, the conductivity activation energies tend to be lower and the changes in slope near the Néel point less than for single crystals. The limiting curves shown in Fig. 2 represent empirical boundaries within which all

ANTICAL SECTION OF ANTICAL SECTION OF A SECT

		TABLE 2. MEA	MEASUREMENT		INFORMATION ON TH	THE ELECTRICAL	RESISTIVITY OF SINGLE CRYSTAL Ni ₁₋₆ 0
Cur.	Ref. No.	Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
_	28	Parravano, G.	1955	۸	333-1000		No details reported.
8	53	Austin, I. G., Springthorpe, 1967 A. J., Smith, B. A. and Turner, C. E.		V and A	386-613		Single crystal grown on <111> axes. Rectangular block cut. Annealed at 1400 K. Stressed on <i11> axis. I_N=523 K. Measured in air.</i11>
м	30	Friedman, F., Weichman, F. L., and Tannhauser, D.	1975	o.	444-780		Single crystals $1x2x(0.01$ to $0.02)$ cm³ made by halide decomposition method. Brought to equilibrium with oxygen and argon at 1173 K. Measured in oxygen partial pressure of $3x10^{-1}$ torr.
4	33	ksendzov, Ya.M. and Drabkin, 1965 I. A.	1965		670-1190		Made by halide decomposition method. Measured at pressure in vacuum of 10^{-4} mm Hg.
ß	32	Koide S.	1965	¥	620-891	۲.0	Single crystal film 8 mm \times 8 mm \times 13 μ epitaxially grown by halide decomposition method. $T_N=523~K.$ Measured in argon.
9	33	Morin, F. J.	1954		190-1385		No details reported.
7	3 6	Yamaka, E. and Suwamoto, K.	1958	⋖			Single crystals cleaved into rectangular parallelopipeds. Manufactured by Tochigi Chemical Industrial Company, Ltd., Osaka, Japan. Grown by Verneuil method. Stress-annealed through $T_C \simeq 250^\circ$ along direction <111>. Measured in air.
æ	35	Vernon, M.W. and Lovell, M.C.	1966	>	291-669	A.2	Single crystal 1 mm x 1 mm x 200 μ grown epitaxially by halide decomposition method. $T_N=523~K.$ Measured in air.
თ	32	Vernon, M.W. and Lovell, M.C.	1966	>	291-670	A.2	Same as above, but annealed.
90	32	Vernon, M.W. and Lovell, M.C.	9961	>	301-657	8.3	Single crystal grown by floating zone method using carbon arc image furnace. $TN=523~K$. Measured in air.
=	32	Vernon, M.W. and Lovell, M.C.	1966	>	295-663	8.1	Same as above, but annealed.
12	35	Vernon, M.W. and Lovell, M.C.	1966	>	289-654	r.3	Single crystal. Small parallelopiped measuring few mm cleaved from as grown crystal. Manufactured by Fuji Titanium Co., Ltd., Japan. Grown by Verneuil technique. T _N =523 K. Measured in air.
13	35	Vernon, M.W. and Lovell, M.C.	1966	>	287-652	C.1	Same as above, but annealed.
14	36	Aiken, J.G. and Jordan, A.G.	A.G. 1968	>	306-502		Single Crystal grown by halide decomposition method. Measured in dry nitrogen.
15	36	Aiken, J.G. and Jordan, A.G. 1968	1968	>	223-500		Single crystal grown by flame fusion method. Annealed. Measured in dry nitrogen.

Marine Marie

an constitution of the contract of the contrac

.0 (continued) TABLE 2. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF SINGLE CRYSTAL NI,

The second second second

T. C. THE HISTORY OF THE PROPERTY OF THE PROPERTY OF THE

Single crystal grown by flame fusion method. Measured in dry nitrogen. Single crystals manufactured by Argonne National Laboratories. Single crystals prepared by Verneuil method. Measured in air.
nufactured by Argonne National Laboratories. epared by Verneuil method. Measured in air.
epared by Verneuil method. Measured in air.
Single crystal 10x4x4 mm. Manufactured by Marubeni-Osaka. Measured in 1 atm of 0_2 .
Single crystals cleaved to 2x2x10 mm. Measured in $9.7 \text{x} 10^{-2}$ atm. of oxygen. Report temperature accurate to within ±1 K.
Single crystuls prepared by A. A. Popova of Institute of Crystallography AN SSSR. Measured in air.
Single crystals prepared by arc-transfer technique. Measurod in air.
Single crystals prepared by arc-transfer technique. Measured in air.
Single crystals grown by arc-transfer technique. Measured in air.
eaved mperati in ail in

ī	_
Ä,	Ş
TAL	Opin Opin
CRYS	á
OF SINGLE	Resistivity, p, Ohm-cm]
ITIES	: Re
ISTIV	- - -
OF RES	10 ³ /T
TABLE 3. TABULATION OF RESISTIVITIES OF SINGLE CRYSTAL Nij.	[Inverse Temperature, 103/T, K ⁻¹ :
TABLE 3.	[Inverse

1 . The Line of the Control of the State of

***************************************				1111A	erse lempera	Inverse lemperature, 10-/1, K	. Kesist	Kesistivity, p, Unm-cm	7				
	103	ā	103	c.	103	Ω	103	G	103	()	103	u	
	J	CURVE 1	CURVE	4 (cont.)	CURVE 7	(cont.)	CURVE	8 (cont.)		8 (cont.)	CURVE 9	(cont.)	
		1.3186+00	0.99	1.122E+04	1,750	4.055E+02	2.5/6 2.546	1.8/8E+10* 1.470E+10*	1.520	4.399E+06*	2.032	6.406E+07*	
,	2.0	3.162£+00 2.454£+01		3.715E+04	1.800	4.79/E+02 5.546E+02	2.529	1.295E+10*	1.506	4.013E+06* 3.891E+06	2.048	5.128E+07*	
	2.5	5.012E+02	1.19	5.888E+05	1.825	6.622E+02*	2.462	٠.		•	2.010	2.952E+07	
	3.0	1.4456+04	1.39	5.370E+07	1.875	9,120E+02*	2.435	6.658E+09*	CURVE	VE 9	1.918	1.0805+07*	
	O,	CURVE, 2			1.900	1.1095+03	2.336	2.818E+09	3.411	6.761E+12	1.908	8.842E+06	
	1.63	3.090E+01	CURVE	VE 5	1.925	1.367E+03*	2.296	2.1225+09*	3.381	5.666E+12*	1.895	6.506E+06*	
	1.66	3.311E+01*	1.122	6.887E+01	1,975	2.055E+03*	2.243	1.514E+09*	3.34/	3.831E+12.	1.8/9	5.53/E+U6*	
	1.70	3.630E+01	1.146	8./26E+UU* 1 225E+OO*	2.000	2.523E+03	2.230	1.039E+09*	3.238	2.089E+12*	1.840	4.734E+06*	
	1.80	4.571€+01	1.193	1,467E+00	2.025	3.040E+03*	2.190	9,259E+08*	3.217	1.806E+12	1.823	3.659E+06*	•
	1.83	5.012E+01*	1.193	1.551E+00*	2.030	3.04/E+U3" 4 425F+03*	2.176	9.675E+08*	3.192	1.370E+12*	1.809	2.862E+Ub 2.344E+O6*	
~	1.87	5.888E+01*	1.233	2.263E+00	2.100	5.407E+03	2.166 2.168	7.825E+08* 6.309E+08*	3.148	9.1246+11*	1.769	2.22E+06*	
	96.	7.0/9E+01	1.271	3.419F+00	2, 125	6.653E+03*	2.123	4,4335+08*	3.112	9.124E+11	1.745	1.820E+06*	•
	2.05	1.230E+02	1.294	4.160E+00	2, 150	7.962E+03*	2.102	3.631E+08	3.095		1.731	1.634E+06*	•
	2.07	1.820€+02	1.332	3.369E+00	2.200	3.040E+U3"	2.094	3.020E+08*	3.073	6.689E+11*	1.718	1.4135+06	-,,
•	2 13	2.570E+02	1.475	1.473E+01	2,215	1.371E+04	2.061	2.650E+08*	3.042	4.5/0E+11	1.696	1.1/5E+U6~ 7.194F+05*	
	∹`	4.467E+02*	1.610	4.95/E+01		•	2.045	2.222E+U8"	2.914	1.597E+11	1.660	7.413E+05*	
	2.45	Z.63UE+U3	CHRVE	VF 6	CURVE	8 8	1.988	1.402E+08*	2.892	1.166£+11*	1.642	6.863E+05*	• ***
	. 2	7.943E+03	022 0		3 431	2 441F+12	1.948	1.023E+08*	2.815	7.413E+10*	1.623	5.580E+05*	. ,
			0.850	1.155E+00	3.379		1.928	7.587E+07*	2.802	5.935E+10	1.585	4.000E=03	v ₂ , c ₃
		CURVE 3	0.990	1.380E+00	3, 339	1.935E+12	1.910	5.981F+07	2.714	2.531E+10	1.567	3.261E+05*	W. L.
	1.20	6.457E+00	1.130	•	3.259	1.308E+12*	1.885	5.170E+07*	2.679	2.531E+10*	1.547	2.818E+05*	******
	1.27	7.079E+00	1.330	1.200E+00 2.640E+00	3.210	1,2215+12*	1.872	4.897E+07*	2.652	2.042E+10*	1.532	2.417E+05*	e de la composição de la c
	1.39	.1.00 E+01	2.080	4.286E+01	3.200	9.40, 11	1.861	ct c	2.619	1.249E+10	1.504	1.7516+05	ie sz
Section 1	1.44	1.00 E+01	2.390	2.952E+02	3.147	135 11	1.852	4.299E+U/*	2.562	7.587E+09*	-		4.5.21
	1.48	1.230E+01	2.590	9.960E+02	3, 122	5.580E+11*	1.810	3.389E+07.	2.523	5.288E+09*	CUR	CURVE 10	(- - 4-44)
	1.52	1.259E+01*	3.050	2.200E+04	3.0/3	4.535E+1;*	1.793	2.928E+07*	2.500	4.897£+09			PAT-WAY
	86.	1.122E+UI	3.230	0.88/E+U4	3.014	2.362F+11	1.778	2.610E+07*	2.457	3.521E+09*	3.321	3.6872+06	****
	1.82	2.570E+01	3.600	7.692E+05	2.919	1.877E+11	1.759	2.326E+0/*	2 300	1 7655±00*	3.575	2.256E+06	e gara
	1.86	2.454E+01	3.810	2.780E+06	2.878	1.446E+11*	1.728	1 820F+07*	2.377	1,230E+09*	3,224	1.905E+06*	program.
-	1.91	3.162E+01	4.220	2.466E+07	2.848	1.105E+11*	1.709	1.597F+07	2.359	1.230E+09	3.210	1.585E+06	
	1.96	3.162E+01	4.920	1.028E+09	2.832	9.700E+10*	1.691	1.402E+07*	2.322	7.764E+08*	3.181	1.391E+06*	. Azméra
	9.3	3.981E+01		3.964E+09	2.813	9.124E+10*	1.668	1.240E+07*	2.305	5.935E+08*	3.159	1.202E+06*	9.53
	5.25	1.288E+02	CHBVE	VE 7	2 759	6.005E+10°	1.656	1.175E+07*	2.266	4.466E+08*	3.117	8.511E+05	S. A. S.
		CHDVF A		, , , , , , , , , , , , , , , , , , ,	2,727	5.013E+10*	1.646	1.080E+07*	2.256	3.715E+08	3.096	/./USE+US*	T SAS
\$3 \$2		T TO THE T	660	2.259E+02	2.684	3.687E+10*	1.621	9.4/9E+06*	2 184	1 0055+00*	3.076	4 8515+05	ivae.
	0.8	4.169E+02	2002	7. 466E+UZ*	2.638	2.775E+10*	1.502	5.130E+00 7 133E+06*	2.156	1.468E+08*	2.999	3.802E+05*	ir še. og
	0.90	1.698E+U3 5.129E+03	1.725	3.467E+02*	2.612	2.325E+10*	1.574	6.557E+06*	2.141	1.230E+08*	2.949	2.551E+05	e Gosta
													early.
	W. Commercial Street, S	W. W. S. Shown in floure.	W. Let Zien att January 2000	And the destite and state of the second		4				,		Angele of the contract of the	Control of
		en de la company	assembly and section in the	Three sections and section of the se	Township Agents	ARCONE WATER STATE		A Charles Services	であるというないのから	Social designations of the second sec	ではないなどのではいってい	はないでんないとれないまでもついと	が かんかん

n of the complete of the compl

	a	E 13 (cont.)	1.288E+04* 1.113E+04*	4.762E+03 4.739F+03*	3.52 E+03*	1.965E+03	1,537E+03*	8.065E+02*	6.812E+02 6.557E+02*	4.936E+02*	3.715E+02	2.797E+02*	7.010E+02*	1.7116+02	1.359E+02* 1.202E+02*	1.080E+02*	8.9132+01	CURVE 14													0.821E71 1.413E412* 3.673E412	
	103	CURVE	2.099	2.000	1.968	1.901	1.875	1.827	1.806	1.774	1.723	1.696	1,638	1.612	1.578	1.548	1.535	01	000	2.030	2.090	2.190	2.250	2.370	2.440	2.590	2.649	2.690	2.10	2.980	3.270	
(pa	σ	12 (cont.)	1.672E+01* 1.514E+01*	CURVE 13	3.1385+08	4.433E+08* 2.058E+08*	1.968E+08	8.985E+07*	6.215E+07 4.367F+07*	4.787E+07*	3.2115+07*	1.995E+07*	1.778E+07 1.278E+07*	9.921E+06*	1.15/E+06* 8.71 E+06*	4.502E+06	4.502E+06*	3.415E+06*	2.326E+06*	1.891E+06*	1.328E+06	7.138E+05*	4.011E+05*	5.411E+05*	2.273E+05*	2.273E+05*	1.659E+05*	1.193E+05 8 913E+04*	5.981E+04*	4,606E+04*	2.915E+04 1.871E+04* 1.537E+04	
Ni _{1—§} O (continued)	103	CURVE	1.543	핑	•	3.475			3.228	3.157	3.087	3.073	3.007	2.960		به	•	2.742	•		•		•					•		•	2.204 2.149 2.132	
SINGLE CRYSTAL Nij	ā	12 (cont.)	1.965E+04 1.433E+04*	1.359E+04* 1.148E+04*	9.259E+03	7.413E+03* 6.605E+03*	4.399E+03*	2.436E+03*	1.585E+03	1.148£+03*	1.000E+03* 8.643E+02*	6.812E+02	6.064E+02*	4.137E+02*	3.043E+02 2.122F+02*	2.436E+02*	1.549E+02*	2.692E+02*	1.672E+02*	1.318E+02*	9.775E+01	7.825E+0]*	7.704E+01*	5.797E+C1*	5.453E+01*	4.935E+01* 4.167E+01	4.167E+01*	3.802E+01* 3.163E+01*	3.163E+0!*	2.754E+01*	2.205E+01* 2.058E+01 1.320E+01*	
96	<u>دی ا</u>	CURVE	2.501	2.440	2.411	2.385	2.326	2.249	2.202	2.173	2.146	2.105	2.073	2.052	2.000 1.995	1.978	1.969	1.948	1.932	1.891	1.872	1.846	1.835	1.81	1.783	1,755	1.737	1.720	1.660	1.546	1.631 1.600 1.575	
TABULATION OF RESISTIVITIES	ი	11 (cont.)	4.105E+02* 3.575E+02	2.510E+02* 2.222E+02 2.22E+02	2.010E+02*	1.751E+02*	1.259E+02	1.000E+02*	1.000E+02* 7.943E+01	6.215E+01*	5.089E+01* 4.824F+C1*	4.202E+01*	4.202E+01	3.211E+01*	3.067E+01*	2.473E+01	01.6 10	2007E 12	2.171E+07	1.606E+U/* 1.339E+07	6.072E+06	2.650E+06*	1.905E+06	9.922E+U5* 7.880E+05	5.580€+05*	4.751E+05* 3.236F+05*	1.7248+05	1.157E+05*	7.299E+04*	4.975E+04	3.289E+04* 2.797E+04* 2.571E+04*	
•	103	CURVE	2.024	1.955	1.923	1.905	1.855	1.83/	1.769	1.695	1.672	1.638	1.623	1.563	1.545	1.509	į		•		•		•			•		•		•	2.595 2.550 2.525	
TABLE 3.	a	11 (cont.)	4.011E+06 3.311E+06+	3.043E+06* 2.186E+06 1.778E+06	1.328E+06*	1.008E+06*	5.051E+05*	4.5/UE+U5* 3.861E+O5*	3.414E÷05*	2.154E+05*	1.711E+05*	1.088E+05	7.704E+04* 6.506E+04*	3.6045+04	2.512E+04* 2.754F+04*	1.738E+04	1.328E+04*	7.299E+03	4.713E+03*	3.494E+03* 2.630E+03*	2.344E+03*	1.525E+03*	9.775E+C *	8.319E+02 7.358E+02*	5.754E+02*	4.537E+02						
	103	CURVE	3.251	3.193 3.151	3.082	3.034	2.947	2.832	2.875	2.816	2.751	2.704	2.659	2.550	2.534	2.459	2.438	2.338	2.281	2.261	2.245	2.176	2.128	2.083	2.065	2.040						
	a.	10 (cont.)	1.862E+05* 1.240E+05*	6.309E+04	2.928E+04	1.685E+04*	6.9745+03*	3.861E+03*	2.256E+03	1.3396+03	1.063E+03* 7.290F+02*	5.051E+02*	3,891E+02	2.418E+02*	1.950E+02* 1.647E+02	1.359E+02*	1.000E+02*	7.825E+01	7.077E+01*	5.981E+01 4.677E+01*	4.331E+01*	3.285E+01	2.650E+01*	2.058E+01*	1.685E+01*	1.502E+01	IVE 11	1 0995107	8.984E+06*	7.246E+06*	6.812E+06* 6.072E+06 4.824E+06*	wn in figure.
	103 T	CURVE	2.899	2.742	2.631	2.566	2.462	2.387	2.349	2.257	2.226	2.141	2.112	2.051	2.022	1.976	1.936	1.904	1.880	1.801	1.786	1.707	1.669	1.577	1.538	1.522	CURVE	2 302	3.371	3.334	3.319 3.305 3.260	*Not shown

Linder of the Sold of the Sold

The state of the s

es establica de la companiona de la comp

Linkship Salah Salah

	ā	CURVE 29	1.000E+01	4.870E+01 1.454E+02	5.623E+02	2.441E+03 1.122E+04	4.340E+04	CIIRVE 30	30.000	1.155E+01	1.884E+01	2.304E+01 3.447F+03	4.730E+01	5.960E+01	7.0/9E+01	2.585E+02	3.548E+02	3.981E+02	8.175E+02	7.286E+03	2.238E+U5 5.623E+06	7.943E+07	;	CURVE 31	7.940 E+05	4.597E+05	5.010E+04	1.728E+04	8.414E+02	3.447E+02	1.000E+02	3.980E+01	9.173E+00	1.000E+00	
	103 103	O ₁	1.60	2.00	2.45	2.80	3.00	_	' (0.56	0.72	0.0	1.01	Ξ.	1.2.1	1.69	1.75	8.6	.83	2.17	3.5	3.99		O 1	3.45	3.24	3.00	2.70	2.32	2.20	2.07	1.75	1.50	09.0	
ned)	Ω	E 24 (cont.)	6.685E+04 1.454E+05*	3.350E+05 1.334E+06	4.097E+06	4.59/E+U/	CURVE 25	3.073E+00	4.873E+00	1.000E+00	1.679E+01	5.957E+01 1.995F+02		CURVE 26	1 0005+03	2.054E+01*	4.4675+01	1.372E+C2*	2.585E+03	1.00 E+04	CURVE 27		2.661E+01	9.441E+01	1.939E+04*	1.679E+05	1.939E+06	CURVE 28	2.175E+91	7.943E+03	3.162E+02	1.4545+04	1.3725+05	4.03/ETUS 4.870E+06	
Ni _{1-x} 0 (continued)	103	CURVE	2.38	2.80	3.00	3.38	O 1	1.42	1.60	 	2.00	2.20 40 40	2	O 1	~		8	2.0	2.4	5.6	0		1.40	7.86 200	2:50	2.80	3.25	Οl	1.40	1.86	8.8	2.5	8.8	3.45	
OF SINGLE CRYSTAL Ni ₁₋	a	CURVE 21	-1.023E+01 8.710E+00	6.918E+00 5.754E+00*	4.677E+00	3.630E+00 1.905E+00	20 JA	רחואב כל	1.002E+07	1.995E+0/ 3.447E+07	7.079E+07	2.304E+08 5.463F+08	9.716E+08	1.996E+09	1.0505+09	2,304E+10	8.660E+10	2.818E+11	CURVE 23		2.113E+02 3.981E+02	8.410E+02	2.900E+03	1.330E+04 6.130E+04	1.413E+05	2.738E+05	1.585E+06	4.730E+07	CURVE 24		1.000E+02	3.981E+02	5.158E+02	3.981E+03	1.1016.01
LES OF SING	103	리	1.462	1.307	1.126	280.1 280.1	=	31	1.61	1.73	1.99	2.13 2.19	2.27	2.36	2.43 5.13	2.58	2.78	3.00	3	\	1.37	1.//	1.97	2.14	2.42	2.55	2.78 2.48	3.33	3		9.6	.50	9.5	1.99	2
TABULATION OF RESISTIVITIES	a	18 (cont.)	1.778E+02 4.365E+02		4.365E+03		4.677E+04					CURVE 19	3.0905+00	3.981E+00	4.365E+00 5.405E+00	7.413E+00	1.00 E+01	1.698E+01	4.786E+01*	8.128E+01*	1.380E+02 2.512E+02	5.012E+02	9.550E+02	1.995E+03 4.266F+03	9.333E+03	1.950E+04	4.571E+04 9.772F+04	2.291E+05	3.3115.03	CURVE 20	2 4005 100	2.7545+02	3.090E+02	4.074E+02	
TABULATI	103	CURVE	2.20	2.55	2.74	3.05	3.15	3.22	3.43	3.53		러	1.00	1.10	9.F	1.40	1.50	9.5	2.8.	1.90	2.18 2.10	2.20	2.30	2.40	2.60	2.70	2.80	888	5.0	3	ָ ֡ ֡	1.037	1.062	1.107	
TABLE 3.	a	16 (cont.)	6.821E+04 1.730E+05	3.133E+05 6.223E+05*	9.996E+05	1.986E+U6 3.467E+O6	6.053E+06	1.941E+07	3.945E+07	7.981E+07	3.733E+08	7.837E+08 2.070F+09	4.897E+09	8.3195+09	1.//8E+10 2 938E+10*	5.013E+10	6.309E+10*	1.087E+11	.435	5.470E+11	8.091E+11 1.112E+11	1.578E+12	.714E+1	2.871E+12	.766E+1		CURVE 1/	5.610E+00	5.967E+00	6.668E+00	10	CURVE 10	7.413E+00	3.467E+01 5.248F+01	
	103	CURVE	2.740	3.010	3.180	3.280	3.450	3.630	3.750	3.860	4.090	4.200	4.470	4.560	4.710	4.920	4.980	5.070	5.370	5.480	5.570	5.750	5.830	5.950	6.150		3	1.062	1.259	1.377	į	3	1.44	888	?
	a	CURVE 15	1.005E+04	3.373E+04 6.698E+04*	1.000E+05	1./62E+05 3.034E+05*	5.322E+05	1.738£+06	3.236E+06*	3.91/E+U6 1.208E+07*	2.366E+07	5,999E+07	4.808E+08	1.009E+09	Z.168E+09	1.208E+10	3.580E+10	5.249E+10*	1.607E+11*	2.547E+11	3.59/E+11 5.624E+11	8.354E+11*	1.236E+12	1.871E+12 3.664E+12	7.587E+12	•	CUKVE 10	3.281E+02	9.251E+02	1.361E+03	2.168E+03*	6.541E+03	9.506E+03	2.168E+04 3.873E+04	100000
	103	흸	2.000	2.150	2.250	2.380	2.440	2.600	2.640	2.790	2.870	2.970 3.110	3.220	3.300	3.390	3.580	3.700	3.770	3.890	3.970	4.020	4.120	4.190	4.260		Š	5	1.970	2.130				2.480	2.600	. 13

*Not shown in figure.

on of the contraction of the con

A POLICIO DE LA CONTRETA DE LIGITADE DE COMO DE CONTRES DE CONTRES

The second design and the second design and

A Little Color of Tan Tan The State of the Color of the State of the S

The state of the s

a.	CURVE 32	1.330E+01 2.510E+01 6.490E+01 3.760E+02 1.260E+03 3.548E+03 1.540E+04 6.310E+04	CURVE 33	8.913E+05 2.180E+06 1.060E+07 4.100E+07 1.630E+08 2.239E+09 7.286E+09 2.110E+10 5.16 E+10 1.223E+11 1.092E+12 1.092E+12 1.092E+13 1.092E+13 1.092E+13 1.092E+13 1.092E+13	URVE 34	6.131E+01 9.173E+01 1.679E+02 2.113E+02 5.463E+02 3.256E+03 1.585E+04 6.683E+04 6.683E+04 1.585E+04 6.4.097E+06 1.000E+07
103	O,	1.50 2.00 2.15 2.40 2.54 3.00 3.45	O,	2.2.2.2.6.6.6.6.4.4.4.4.4.6.6.6.4.4.4.4.	5,	3.3.9866.46 3.3.9866.46 3.45866.46 3.45866.46

Rectangular bars. 99.999% pure NiO powder from Johnson-Matthey Co. Air fired at 1173 K for 10 h, ground, dried for 24 h at 413 K. Pressuresintered at 10 000 psi and 1373 K for 90 min. Density 92.0-99.93% of x-ray density. $T_N=523$ K. Contacts were Pt. Measured in air. Bars or discs. NiCO, fired at 900°C, milled, and hydrostatically pressed at 10 tons/cm². Fired in air at 1823 K. Cooled from 1073 K in N_2 . Density 88-95% of maximum. Contacts were graphite or In-Hg amalgam. Sample prepared by thermal decomposition of solutions of cp nitrates, ground, and fired in air for 4 h at 1173 K. Contacts were platinum foil. Measured in air. Measured in air. Alkaline NiCO, fired, compacted at $9000~{\rm Kg/cm^2}$, annealed in air for 6 h at 1473 K. Density 80-85% of x-ray density. Measured in air. as above except decomposition temperature was 1173 K and density Same as above except decomposition temperature was 1273 K and density 87.0% of maximum. Same as above except decomposition temperature was 1073 K and density Same procedure. Same procedure. Same procedure, Cylindrical sample. Thermal decomposition of NiCO $_3$ at 873 K. Pres at 1.5 t/cm^2 . Heated in air for 20 h at decomposition temperature. Density 76.5% of maximum. $_1N=523$ K. Contacts were Pt. Measured i Sample obtained by thermal decomposition of Ni(N0 $_3$) $_2$ at 1473 K for Sample obtained by thermal decomposition of Ni(NO $_3$) $_2$ at 1773 K for Composition (weight percent), Specifications, and Remarks Same as above except decomposition temperature was 973 K. Samples obtained from Argonne National Laboratories. Specimen from the same batch as the above specimen. Specimen from the same batch as the above specimen. Specimen from the same batch as the above specimen. MEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF POLYCRYSTAL NITLA 81.0% of maximum. 84.0% of maximum. Measured in air. 16 h in 0₂. 2 h in air. Name and Specimen Designation ◂ ω C a u Temp. Range, K 83-1220 87-813 728-943 495-775 315-775 313-935 301-719 303-725 383-769 300-794 298-820 297-893 294-752 296-826 380-901 Method Used > 4 ⋖ ⋖ Year 1960 1960 1960 1960 1973 TABLE 4. 1955 1954 1954 1963 1965 1965 1965 1965 1965 197 Notis, M. R., Spriggs, R. M., and Hahn, W. C.,Jr. Nachman, M., Cojocaru, L. N., and Ribco, L. V. Nachman, M., Cojocaru, L. N., and Ribco, L. V. Nachman, M., Cojocaru, L. N., and Ribco, L. V. Nachman, M., Cojocaru, L. N., and Ribco, L. V. Nachman, M., Cojocaru, L. N., and Ribco, L. V. Osburn, C. M. and Vest, R. W. V. P. and Author(s) Shelykh, A. I. van Houten, S. van Houten, S. van Houten, S. van Houten, S. F. J. F. J. Parravano, G. Morín, Morin, Ref. 33 88 33 33 37 4 4 4 42 42 42 42 42 25 8 ç. 2 S 20 12 33 7 15 =

So.	Ref.	Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
91	43	Shimomura, Y. and Tsubokawa, I.	1954		375-573		3.5 mm diameter and 6 mm length.
11	44	Cimino, A., Molinari, E., and Romeo, G.	1958	>	345-654		Thermal decomposition of nickel nitrate at 573 K. Heat treatment 3 h in air at 913 K. Measured in air at slowly rising temperature.
18	4	Cimino, A., Molinari, E., and Romeo, G.	1958	>	335-654		Same as above, but measured at slowly decreasing temperature.
19	45	Wright, R. W. and Andrews, J. P.	1949	>	443-662	A ₁	Nickel foil oxidized at 1273 K for 30 h. Contacts silver. Measured in air.
50	45	Wright, R. W. and Andrews, J. P.	1949	>	437-771	A _S	Sample from same batch as the above. Same procedure.
21	45	Wright, R.W. and Andrews, J. P.	1949	>	420-779	81	Sample from same batch as the above. Same procedure.
22	45	Wright, R. W. and Andrews, J. P.	1949	>	408-788	82	Sample from same batch as the above. Same procedure.
23	45	Wright, R. W. and Andrews, J. P.	1949	^	458-726	ш	Sample from same batch as the above. Same procedure.
24	45	Wright, R. W. and Andrews, J. P.	1949	>	516-758	o	Sample from same batch as the above. Same procedure
52	4	Melik-Davtyan, R. L., Shvartsenau, N. F., and Shelykh, A. I.	1966		760-1006		Nickel nitrate dried at 393-423 K, roasted at 1573 K for 2 h and converted into NiO. Measured in air.
56	46	Foex, M.	1952	>	347-680	Ą	Rods 10 mm long, 7 mm diameter; thermal decomposition at 773 K of Ni(N0 $_3$ 2; pressed NiO powder; platinum electrodes.
27	46	Foëx, M.	1952	>	347-735	æ	Same as above except decomposed at 873 K.
58	46	Foëx, M.	1952	>	347-980	ပ	Same as above except decomposed at 1073 K.
56	46	Foëx, M	1952	>	347-980	Q	Same as above except decomposed at 1373 K.
30	46	Foëx, M.	1952	>	347-980	ш	Same as above except decomposed at 1673 K.
31	46	Foëx, M.	1952	>	398-980	L	Same as above except decomposed at about 2273 K, or near the melting point of NiO.
32	47	von Baumbach, H. H. and Wagner, C.	1933	>	620-871	Probe 2	Nickel strips 0.05 to 0.07 mm thick oxidized for 1 to 2 days at 1273 K in air.

The state of the s

and the state of t

TABLE 4. MEASUREMENT INFORMATION ON THE FLECTRICAL RESISCIVITY OF DOLYCRYSTAL NE

Children Children Control of the Con

con crimed)	Composition (weight percent), Specification, and Remarks		h at 1273 K, washed in H ₂ O then sed NiO powder; silver paste
TABLE 4: TEASUREMENT INFORMATION ON THE ELECTRICAL RESISTIVITY OF POLICIESTAL NITES (CONCUMENT)		Same as above.	Thermal decomposition of NiCO $_3$ for 5 h at 1273 K, washed in $\rm H_2O$ then heated again to 1273 K for 5 h; pressed NiO powder; silver paste electrodes.
ומב ברברו זורי	Name and Specimen Designation	Probe 3	
UNITAL LUM UN	Method Temp. S Used Range, K De	653-889	323-873
FIGURE LINE	Method Used	^	>
TEASON.	Year	1933	1961
HADEC 4	Author(s)	von Baumbach, H. H. and Wagner, C.	Schlosser, E. G.
	Cur. Ref. No. No.	33 47	48
	Cur. No.	33	34

TABLE 5. TABULATION OF RESISTIVITIES OF POLYCRYSTAL Ni $_{1-\delta}$ [Inverse Temperature, $10^3/T,\ K^{-1};$ Resistivity, ρ , 0^{hm} cm]

Continued to the Continued State of the Conti

Control of the state of the sta

CURVE CURV	CURVE 1 6.310E+01 7.943E+02 5.012E+02 7.943E+02	103 CURVE 5.410 5.750 6.170	m	[Inverse Ter 10 ³ <u>10³</u> CURVE 2.76 2.98 3.20	6 (7	Resistivity, p , Ohm cm CURVE 10 CURVE 10 1.202E+03 1.45E+02 1.45E+02 1.45E+02 1.45E+02 1.45E+02 1.45E+02 1.45E+02 1.45E+02	_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 VE 13 1.000E+05 1.862E+04 4.467E+03 4.467E+03	10 ³ CURVE 2.37 2.55 2.70 3.38	p 15 (cont.) 2.987E+03 8.384E+03 1.580E+04 4.376E+04
CUINVE 4 1.77 2.1488+05 CUINVE 11 1.76 2.0885+01 2.57 1.55 1.0CG 5.943E+00 1.95 5.792E+05 3.33 2.91E+03 1.67 1.6885+01 2.545 1.68 1.159 6.124E+00 2.05 4.99E+06 3.05 1.99E+03 1.63 1.412E+01 2.545 1.68 1.256 6.130E+00 2.19 1.022E+07 2.92 4.99E+02 1.256 6.16E+00 2.49 8.218 1.256 6.16E+00 2.19 1.202E+03 2.29 4.99E+02 1.225 6.16E+00 2.37 4.77 1.27 2.49 8.29E+03 2.29 4.99E+03 1.22 6.16E+00 2.37 4.77 1.22 2.24 4.99E+03 1.20 2.18E+02 1.28E+03 1.28E+03<	88	7.500 8.210 9.670 11.500			CURVE 7 6.168E+03 2.428E+04	2.09 1.77 1.52 1.39	3.162E+01 9.333E+00 5.248E+00 3.236E+00	2.30 2.05 1.95	1.905E+02 1.259E+02 7.762E+01 5.754E+01	<u>CBR</u>	7E 16 1.608E+07
1,055	00 1::		RVE 4	1.77	2.148E+05 3.955E+05 5.792E+05	CUR	<u>11</u>	1.76 1.71 1.63	2.089E+01 1.698E+01 1.412E+01	2.638 2.577 2.545	1.552E+07 1.334E+07 1.168E+07
CUNVE 5 CUNVE 6 1.520E+03 2.34 1.288E+02 2.88 1.520E+04 2.347 4.772 2.345 2.345 4.772 2.345 2.345 4.772 2.345	9995		5.943E+00 6.124E+00 6.310E+00	1.95 2.05 2.19	2.089E+06 4.499E+06 1.022E+07	3.33 2.92 5.92	2.951E+03 1.950E+03 4.898E+02 2.188E+02	1.49	1.000E+01 8.318E+00 6.166E+00* 5.754E+00	2.500 2.439 2.415 2.375	1.024E+0: 8.42 E+06 7.14 E÷06 5.77 E+06*
1.29 6.166E+00 3.09 1.28EE+09 1.84 1.862E+01 3.17 1.479E+05 2.272 3.17 1.479E+01 3.20 2.182E+09 1.67 1.096E+01 3.13 2.182E+09 1.67 1.096E+01 3.13 2.182E+09 1.67 1.096E+01 3.13 2.182E+03 2.18 2.272 2.81 1.43 1.096E+01 3.20 2.182E+09 1.67 1.096E+01 2.182E+03 2.182 1.89 1.692E+01 3.13 2.182E+02 3.13 3.13	E+05		RVE 5	.2.88 8.83 8.83 8.83	1.520E+08 2.893E+08	25.34	1.288E+02 5.128E+01	SUS	VE 14	2.347	22.0
1.43 1.3999+01* 1.50 6.457F+00 2.159 2.455E+03 2.188 1.8	#+04 #+06		6.166E+00 7.244E+00* 1.096E+01	3.20	1.288E+09 2.162E+09 3.173E+09	1.67	1.862E+01 1.096E+01 7.586E+00	3.37	1.479E+05 2.570E+04 1.096E+04	2.272	75.83
151 2.291E+01 1.07 2.695E+03 1.31 3.631E+00* 1.76 2.570E+01 2.077 1.20 1.258E+C. 1.26 3.236E+00 1.65 1.738E+01 2.007 1.20 1.228E+C. 1.26 3.236E+00 1.65 1.738E+01 2.007 1.20 1.208E+02 1.20 1.208E+02 1.20 1.208E+02 1.31 2.808E+02 1.31 2.808E+03 1.328E+00 1.976 1.9	5E+U/ 5E+07 5E+08		1.349E+U1* 1.659E+O1* 1.995E+O1*			1.50 1.44 1.37	6.457E+UU 5.495E+OO* 4.575£+OO	2.59 2.16 1.97	2.455£+U3 1.820£+O2 6.166£+01	2.160 2.160 2.110	1.88 E+Ue' 1.69 E+Ce 1.50 E+Ce
1.82 3.020E+02 1.64 4.625E+05 3.38 2.512E+04 1.12 5.012E+00 1.976 0.94 1.23 1.976 0.94 1.23 1.976 0.94 1.23 1.976 0.94 1.23 1.942 1.23 1.942 1.23 1.942 1.24 1.24 1.24 1.38 1.34	£+08*	. h h h	2.291E+01 4.109E+01 1.00 E+02 1.380E+02*	1.20	2.695E+03 7.258E+C 1.776E+04 2.775E+05	1.31 1.26 CURN	3.631E+00* 3.236E+00 /E 12	1.65 1.48 1.33	2.570E+01 1.738E+01 8.128E+00 6.210E+00	2.079 2.037 2.016 1 984	1.25 E+06- 1.27 E+06- 1.02 E+06- 0.94 E+06-
CURVE G. S.	6E+00	1.88	3.020E+02 4.266E+02* 6.166E+02*	1.64 1.81 2.17 2.19	4.625E+05 2.833E+06 6.075E+07	&=8	24-	1.12 CUR	5.012E+00 VE 15	1.942 1.938 1.938	0.94 E+06 1.23 E+06 1.34 E+06
1.29 9.759E+02 1.818 1.918 1.49 1.435E+02 1.828 2.84 1.43 2.849E+03 1.30 1.888E+05 1.96 4.467E+01 1.53 1.642E+02 1.812 2.97 1.46 4.137E+03 1.30 1.888E+05 1.81 1.397 1.60 1.931E+02 1.812 2.97 1.47 3.451E+05 1.49 1.477E+06 1.64 1.148E+01 1.70 1.948E+02 1.776 2.63 1.97 3.851E+05 1.50 4.852E+06 1.42 6.166E+00 1.73 2.410E+02 1.751 2.39 2.04 6.924E+05 1.79 2.173E+07 1.32 5.129E+00 1.86 3.635E+02* 1.742 2.29 2.11 1.399E+06 2.26 3.357E+08 1.27 4.266E+00 1.92 4.433E+02* 2.60 2.372E+07 2.106E+09 1.27 4.266E+00 1.97 5.439E+02* 2.75 5.137E+07 2.138E+03 1.386E+03 3.834E+02 2.137E+07 2.138E+03 3.834E+02 2.137E+07 2.138E+03 3.834E+02 2.137E+07 2.138E+03 3.834E+02 2.137E+02 2.138E+03 3.834E+02 2.137E+02 3.834E+02 3.372E+03 3.834E+02 3.834E+02 3.372E+03 3.834E+02 3.834E+03 3.834E+03 3.834E+03 3.834E+03 3.834E+03 3.834E+03 3.834E+03 3.834E+03	3000	3	RVE 6		7.389E+09 3.757E+10	2.61 2.19 2.19	5.754E+02 2.951E+02 8.912E+01	1.33	9.912E+01 1.268E+02 1.252E+02*	1.923	2.22 E+06 2.57 E+06 2.75 E+06
1.46	## # # 10 - 3	1.29	9.759E+02 2.849E+03		RVE 9	2.06 1.96	5.888E+01 4.467E+01	1.49	1.435E+02 1.642E+02	1.828	2.84 E+06 2.97 E+06
2.34 5.450E+06 2.61 2.106E+09 1.27 4.266E+00 1.97 5.439E+02* 1.74 2.25 2.36 6.872E+07 2.36 6.872E+07 2.37 6.372E+07 2.37 6.372E+07 2.37 6.372E+07 2.37 6.372E+07 2.37 6.377E+07 2.37 6.377E+07 2.08 6.377E+02 2.08 6.377E+03	4E+01 7E+01 4E+02 4E+02	1.63 1.63 2.04	4.127E+03 3.530E+04 3.851E+05 6.924F+05	1.30 1.49 1.60	1.888E+05 1.477E+06 4.852E+06 2.173E+07	1.64	2.188E+01 1.148E+01 6.166E+00 5.120F+00	1.60	1.931E+02 1.948E+02 2.410E+02 3.636E+02	1.802 1.776 1.751	3333
	4E+03 4E+03 8E+04 4E+04 3E+05	2.33 2.36 2.60 2.75	1.39E+06 5.450E+06 6.872E+06 2.372E+07 5.137E+07	2.08 2.26 2.56 2.61	1.1515+08 3.3575+08 2.1065+09	1.27	4.571E+00* 4.266E+00	2.02 2.02 2.23	3.833E+02* 4.433E+02* 5.439E+02* 6.377E+02	; •	n J

Total of Allicaning the bearing and the second of the seco

3.020E+05 3.020E+05 3.020E+05 3.698E+04 1.148E+04 7.762E+03 5.76EE+03 5.76EE+03 3.3112E+03 1.905E+03 1.905E+03 1.905E+03 1.305E+03 1.305E+03 1.305E+03 1.305E+03 1.305E+03 1.305E+03 344E+03 1.738E+03 1.380E+03 1.175E+03 1.175E+03 1.380E+02 1.370E+02 1.370E+02 1.313E+02 1.313E+03 1.313E+03 1.313E+03 1.313E+03 1.313E+03 1.313E+03 1.313E+03 .230E+02 .890E+02 .950E+03 .202E+04 (cont.) 30 CURVE CURVE 1.216 1.216 1.345 1.480 . 259E+05 1. 266E 04 1. 738E+04 1. 586E+03 3. 715E+03 1. 950E+03 3. 515E+03 3. 516E+02 5. 607E+02 5. 607E+02 7. 58E+02 1. 145E+02 1. 145E+02 1. 145E+02 1. 145E+02 1. 122E+02 1. 122E+02 1. 122E+02 1. 122E+02 1. 122E+02 1. 145E+02 1. 145E+ 2.138E+03 1.148E+03 6.607E+02 5.375E+02* 4.365E+02* 3.631E+02* 3.631E+02* 1.995E+02* 1.738E+02 1.738E+02 1.738E+02 1.738E+02 1.738E+03 1.738E+01 1 6.918E+05 2.138E+05 7.244E+04 2.818E+04 1.259E+04 6.310E+03 3.090E+03 (cont.) 30 29 CURVE CURVE 28 TABULATION OF RESISTIVITIES OF POLYCRYSTAL Ni₁₋₆0 (continued) CURVE 2.88 2.68 2.51 2.36 2.23 2.11 2.11 2.40 E+04 1.00 E+04 4.78EE+03 4.78EE+03 1.349E+03 7.762E+02 5.012E+02 3.46E+02 2.884E+02 2.884E+02 2.512E+02 1.995E+02 1.318E+02 1.318E+ 1.445E+04 6.456E+03 3.236E+03 3.236E+03 1.00 E+03 6.026E+02 3.391E+02 3.311E+02 2.344E+02 1.950E+02 1.950E+02 1.950E+02 1.950E+02 8.511E+01 5.623E+01 .. 888E+04 .. 138E+04* .. 120E+03 1.349E+01 1.148E+01 1.175E+01 CURVE 25 27 CURVE CURVE CURVE 1.316 1.099 0.994 2.88 2.23 2.23 2.23 2.23 2.23 2.1.95 1.95 1.74 1.66 1.59 2.88 2.68 2.51 2.36 103 2.089E+03 2.512E+03* 2.884E+03 3.83E+03 4.898E+03 9.772E+03 1.122E+04* 1.950E+04 4.365E+04 7.762E+04 7.762E+04 1.826E+04 1.826E+04 7.762E+04 1.826E+04 7.762E+04 7.762 . 202E+03* . 202E+03* . 249E+03 . 349E+03 3.370E+03 7.413E+03 9.333E+03 3.631E+03 9.333E+03 2.889E+04 5.370E+05 5.888E+05 9.333E+05 1.259E+06 1.259E+06 2.512E+06 22 CURVE 23 24 CURVE CURVE 1.456 1.558 1.948 2.019 2.147 2.235 2.238 2.347 1.378 1.398 1.406 1.406 1.460 1.526 1.537 1.603 1.666 1.759 1.969 1.969 2.095 2.110 .320 .345 .355 .355 .453 .581 .581 .633 .890 .890 .890 103 TABLE 5. 5.026E+04
9.333E+04
1.380E+05
2.570E+05
4.786E+05
1.186E+06
1.585E+06
2.188E+06 8.913E+02 3.162E+03 8.913E+04 2.239E+04 8.913E+04 1.175E+05 1.380E+05 1.995E+05 2.457E+05 5.623E+05 8.913E+05 1.820E+03 3.020E+03 3.03E+03 2.03E+04 4.571E+04 4.571E+04 8.710E+04 1.380E+05 5.129E+05 6.918E+05 6.918E+05 1.545E+06 1.545E+06 (cont.) 20 21 19 CURVE CURVE CURVE 1.297 1.334 1.335 1.439 1.560 1.634 1.756 1.999 1.999 2.145 2.215 1.678 1.713 1.789 1.852 1.939 2.069 2.176 2.205 1.283 1.384 1.675 1.608 1.694 1.744 1.887 1.957 2.055 2.175 259E+02 479E+02* 1.905E+02 3.805E+02 5.129E+02 6.026E+02 7.244E+02* 8.709E+02 1.148E+03 1.598E+03 1.698E+03 1.598E+03 1.596E+04 3.020E+04 6.457E+04 1.230E+02*
1.950E+02*
3.090E+02*
3.090E+02*
5.623E+02*
7.762E+02
1.643E+03*
1.643E+03*
2.138E+03*
3.38E+03*
3.38E+03* 1.148E+04 CURVE 17 CURVE 18 CURVE 1.510 <u>~</u>

on of the contract of the cont

*Not shown in figure

San Carago Control Control Control

TO THE SECOND PROPERTY OF THE PROPERTY OF THE

TABLE 5. TABULATION OF RESISTIVITIES OF POLYCRYSTAL Ni_{1-£}O (continued)

THE THE THE THE PROPERTY OF TH

103

CURVE 33 1.125 4.365E+02 1.175 6.918E+02 1.276 2.138E+03 1.328 3.981E+03 1.427 1.072E+04* 1.528 3.162E+04

CURVE 34

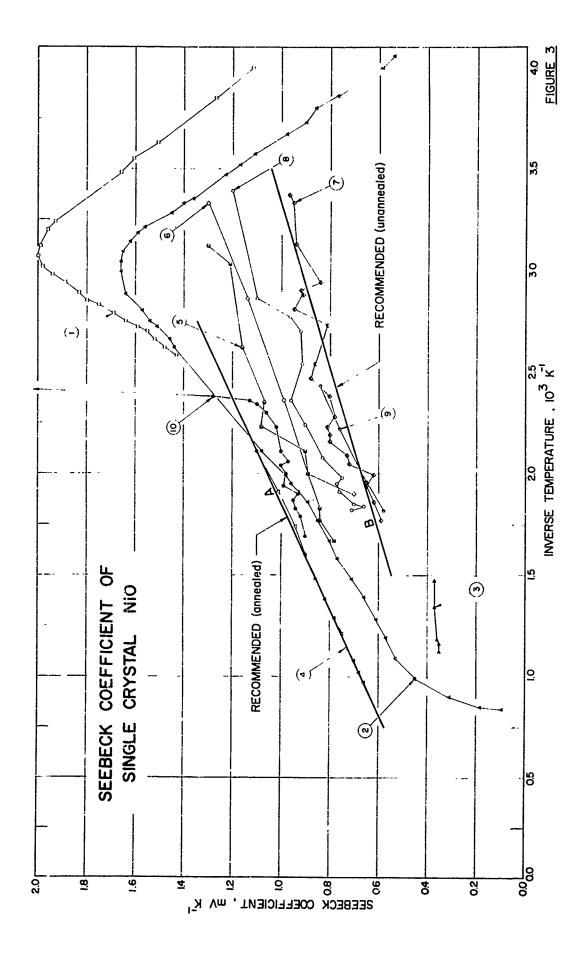
3.096 2.857E+04*
2.681 3.389E+03*
2.364 7.163E+02*
1.745 6.605E+01*
1.294 2.511E+01*
1.145 2.213E+01*

data so far reported are encountered. No recommended curve is offered for polycrystalline materials.

Measurement information is provided in Table 2 for resistivity measurements on single crystal NiO; the actual experimental results are collected in Table 3. Similar information for polycrystal NiO is displayed in Table 4, and the experimental data are tabulated in Table 5.

3.2 Seebeck Coefficient

Recommended values for the Seebeck coefficient of undoped single crystals of Ni $_{1-\delta}0$ in the range of its kinetic stability are shown in Table 6. The construction of these values is discussed below.


Seebeck coefficient measurements on single crystal specimens are rather few in number; available data are summarized in Fig. 3 as plots of $\alpha(mV/deg)$ vs. $10^3/T(K^{-1})$. As expected for insulators, α values are large, falling in the range 0.4 to 2.0 mV/deg. Above room temperature the data are relatively concordant, in that in almost all cases α increases as T is diminished; however, while some measurements show a change in the slope of α vs. 1/T as magnetic order sets in, no magnetic ordering effects are detectable in other sets of measurements. At room temperatures, the data diverge; in curves 1 and 2, α passes through a maximum and then decreases on cooling; whereas the remaining plots in Fig. 3 are continuing straight lines. We believe that below approximately 350 to 400 K sample resistivities of single crystals are so large that special precautions must be taken with regard to sample isolation and data acquisition to avoid serious error. Furthermore, internal strains can lead to divergencies from straight line behavior in Fig. 3. Accordingly, our recommended values left the low temperature variations of curves 1 and 2 out of account.

HERECONSTITUTED CONTRACTORISM CONTRACTORISM

 $\frac{\text{TABLE 6}}{\text{RECOMMENDED VALUES FOR THE SEEBECK COEFFICIENTS OF SINGLE CRYSTAL}}$ Ni $_{1-\delta}0$ in the range of its kinetic stability

	SEEBECK COE	FFICIENT, mV/K
Temperature, K	Annealed Sample A	Unannealed Sample B
1330	0.576	
1000	0.671	
800	0.768	
670	0.864	0.547
570	0.960	0.609
500	1.056	0.671
440	1.152	0.733
400	1.248	0.797
360	1.346	0.859
330		0.920
310	_	0.982
290		1.044

C. C. C. Ellis Carl Made and Carles and Carl

of the second contraction of the second contraction of the second contraction of the second contraction of the

The simplest interpretation of the data in Figs. 1 and 3 is to assume that charge carrier transport in Ni $_{1-\delta}0$ occurs by a hopping process. This is substantiated by the fact that: (i) plots of α vs. 1/T extrapolate to zero or very small intercepts at 1/T = 0; (ii) that estimated charge carrier mobilities are less than $10^{-2} \text{cm}^2/\text{V}$ -sec below 1000 K, and assume values of $2\text{X}10^{-5} \text{cm}^2/\text{V}$ -sec at room temperature; and (iii) that whereas the resistivities are enormously sensitive to stoichiometry, the Seebeck coefficients are not. [Other authorities disagree with such a view and postulate that charge carrier transport occurs in very narrow bands; however, we feel that their conclusions are based primarily on measurements of Li-doped NiO where the situation is quite different, since even very small additions of this dopant significantly alter the properties of the host lattice. (25)]

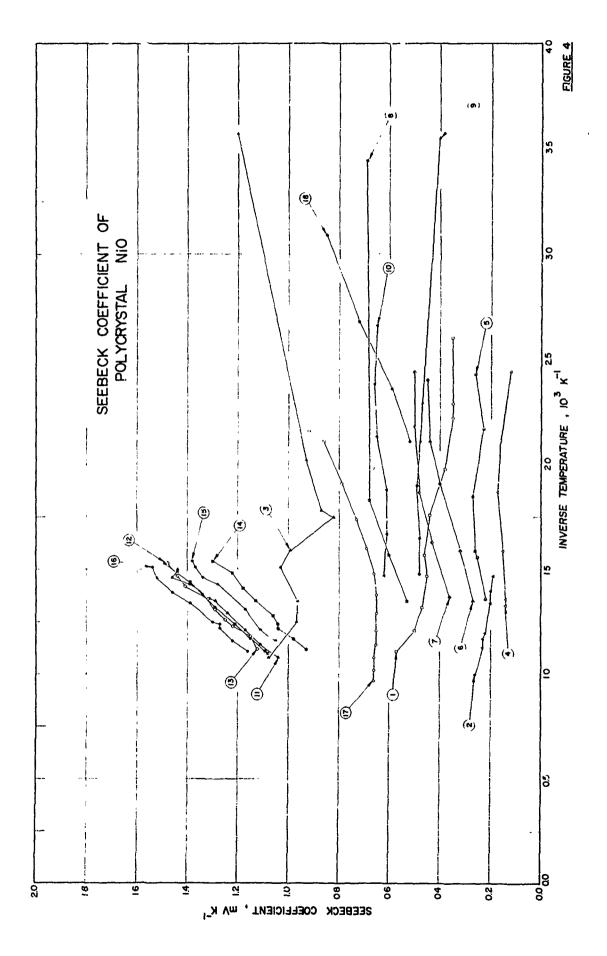
with the second of the second

On the hopping model the slopes of the straight line portions of Fig. 3 are proportional to the dissociation energy ϵ_d required to remove one hole from the nickel ion vacancy to which it is bound in the ground state. The theoretical analysis leads to the result⁽²⁶⁾

$$\alpha = e \, \varepsilon_d / kT + A \tag{3}$$

where A is a small numerical constant. The recommended graphs in Fig. 3 for δ = 0 and δ \approx 5X10⁻³ corresponds to Eq. (3) with ε_d = 0.3 eV and A \approx 0.30 or ε_d = 0.2 eV and A \approx 0.16 for Curves A or B respectively.

The above model also leads to the following schematic expression for the conductivity $\sigma \equiv \rho^{-1}$:


$$\sigma = ne\mu = n_0 e\mu_0 \exp\{(-\epsilon_n + \epsilon_\mu(T))/kT\}$$
 (4)

wherein n is the charge carrier density, μ the mobility, e the electronic charge, ε_n and ε_μ the charge carrier density activation and mobility activation energies. This last quantity is given by $\varepsilon_\mu = \varepsilon_\text{C} - \varepsilon_\text{m}(T)$, where ε_C is

the energy required to bring the initial and final sitesinto energetic coincidence so that a charge transfer between these sites may occur when complete magnetic order prevails, and $\varepsilon_{\rm m}(T)$ is the contribution of magnetic disorder which adds to the energy of the charge carrier and therefore diminishes the overall energy required for coincidence. The actual theoretical expression is rather complicated; interested readers should consult Ref. 4 for details. The recommended curve C in Fig. 1 for $\delta=5$ X10 $^{-3}$ was based on calculations involving Eq. 4, with a variety of required input parameters taken from the literature. No such parameters are available for the strictly stoichiometric compound ($\delta=0$); hence the upper limiting curve A of Fig. 1 is provisionally adopted for single crystals with nearly perfect stoichiometry.

We now turn to a consideration of Fig. 4. Here again, considerable caution is required in acceptance of data for polycrystalline samples. It is generally thought that Seebeck coefficients are not very sensitive to the state of subdivision of specimens; nevertheless, when the properties of surface layers differ appreciably from those of the bulk, Eq. (1) applies; Seebeck coefficients may be drastically altered for cases where the surface or boundary conductivity considerably exceeds that of the bulk of the grains. Curves 11-16 of Fig. 4 appear to be characteristic of polycrystalline materials where grain boundary effects are dominant. Most of the remaining graphs are relatively temperature independent, as would be the case if carrier transport occurred by a hopping process with a constant density of charge carriers. It is of interest that α falls in the range 0.2 to 1.6 mV/deg for polycrystalline samples, as compared to 0.1 to 2.0 mV/deg for single crystals. The recommended curves are the same as those given in Fig. 3.

Measurement information on the Seebeck coefficients of single crystal
NiO is displayed in Table 7, and the experimental results are shown in Table 8.

The Darth The Section of the Mark States of the Architecture of the Constitution of th

7 WEASUREMENT INFORMATION ON THE SEEBECK COEFFICIENT (THERMOELECTRIC POWER) OF SINGLE CRYSTAL Ni, O

		TABLE 1. "TEASUR	יים ושכשו	מיני איט אוסון ואיזאס	Steden court	TABLE 1, "TEASUREMENT INFORMATION ON THE SECUED COLFTICIENT (THENDELECTRICS SHEW) OF STREET COLFF.
No.	Ref. No.	Author(s)	Year Method Used	Method Temp. Used Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
-	53	Austin, I. G., Springthorpe, 1967 A. J., Smith, B. A., and Turner, C. E.	1967	250-388		Single crystals made by arc-transfer process, $T_N=523~{\rm K}$. Indium or silver paste used as contact material. Differential thermocouple pressed into grooves in ends of sample.
0	53	Austin, I. G., Springthorpe, 1967 A. J., Smith, B. A. and Turner, C. E.	1967	246-1190		Same as for Curve 1, this page.
ю	13	Osburn, C. M. and Vest, R. W.	1971	678-886		Single crystals manufactured by Argonne National Laboratories. Electrical resistivity measurements also reported.
·#	9	Melik-Davtyan, R. L., Shvartsenau, N. F., and Shelykh, A. I.	1966	473-1024		Single crystals prepared by A. A. Popova, Institute of Crystallography AN SSSR. Measured in air w.r.t. Pt.
ហ	4	Keem, J. E.	1976	300-562		Single crystals prepared by arc-transfer technique. Measured in air.
ø	4	Kecm, J. E.	1976	300-846		Same as above.
7	4	Keem, J. E.	9261	300-846		Same as above.
ဆ	4	Keem, J. E.	1976	300-846		Same as a e.
5	4	Keem, J. E.	1976	410-846		Same as above.
10	4	Keem, J. E.	1976	410-846		Same as above.

An increase the second second

TABLE 8. TABULATION OF MEASURED SEEBECK COEFFICIENTS (THERMOELECTRIC POWER) OF SINGLE CRYSTAL Ni $_{1-\delta}^0$

a in institution designates and an institution of the second second of the second second second second second

25.40

	103 T	CURVE 10 (cont.)	1.69 0.90																								
α,mV/K]	Ö	7 (cont.)	0.65 0.62 0.59	VE 8	0.71	0.66	0.76	0.75	0.90	0.96	0.92	1.10		VE 9	0.84	0.58	VE 10		2°8*	2,26*	1.28	1.10	1.02	0.97 1.00	0.99	0.95 9.95 9.95	;
••	103	CURVE	1.94	CURVE	1.82	1.84	6.6	86.6	2.24	2.36	2.70	2.86 3.30	?	CURVE	2.439	1.182	CURVE		2.46	2.41	2.38	2.34	2.23	2.06	1.90	1.83	:
[Temperature, $10^3/T$, K^{-1}	10 ³	CURVE 4 (cont.)	1.145 0.733 1.083 0.708 1.028 0.685	ליוני	ויי	1.67 0.78		3=8	35	29.	.12	CURVE 6	.33	.66	2.00 0.89* 1.90 0.7	CURVE 7	.37	33	E 5	90	88.8	54	.38	23	91.9	2.09 0.73 2.05 0.72 1.99 0.62	·
	o F	URYE 2 (cont.)	2.66 1.464 2.69 1.490 2.72 1.514	.75	.84	94.	. 04	. 09	.23	.28	.35	.52	. 57	.73	886	90:	CURVE 3	Ċ.	Ö	o c	1.475 0.379	CURVE 4	.114	.745	1.4860.860 1.383 0.825	.294 .215	
	<u>10</u> 1 ±	<u>-</u>	7.432 2 1.482 2 1.526 2	559	649	.699	.803 .839	.893 945	985	. 993	.967	.666	.518	.123	12 4	960	7.315).45/) 529	7.57	0.619	0.665 0.718	0.770 3.809	394	. 960 960	1.081 1.081	:	
	103	CURVE	2.58	22	5	စ္ ဗ္ဗ	35 35 35 35 36 3	4 &	222	4	20.0	555	83	88	CURVE	84 48	38.	g, 6	6	87	န်- နှင့်	67.8	.86	- 66	2.13	{	

K.

n in the company of t

1. Son to interfer the Medical Commission of the second

Control of the Contro

Bars or discs. NiCO₃ fired at 1173 K, milled, and hydrostatically pressed at 10 tons/cm². Fired in air at 1823 K. Cooled from 1073 K 11 N $_{\Sigma}$. Density 88-95% of maximum. Measured in air w.r.t. Pt. Cylindrical sample. Thermal decomposition of NiCO $_3$ at 873 K. Pressed at 1.5 t/cm². Heated in air for 20 h at decomposition temperature. Density 76.5% of maximum. I_N =523 K. Contacts were Pt. Measured in air w.r.t. Pt. as above except decomposition temperature was 1073 K and density Same as above except decomposition temperature was 1173 K and density 84.0% of maximum. Same as above except decomposition temperature was 1273 K and density 87.0% of maximum. solution of c.p. nitrates. Contacts were Pt foil. Contacts silver. Measured Composition (weight percent), Specifications, and Remarks Same as above except decomposition temperature was 973 K. Same procedure. Same procedure. Samples obtained from Argonne National Laboratories. Same procedure. TABLE 9. MEASUREMENT INFORMATION ON THE SEEBECK COEFFICIENT (THERMOELECTRIC POWER) OF POLYCRYSTAL NI, ۲. ۲. Measured in nitrogen at 280 mm Hg pressure. Sample prepared by thermal decomposition or ground, and fired in air for 4 h at 1173 leasured in air, w.r.t. Pt. Nickel foil oxidized at 1273 K for 30 h. Measured in air at 600 mm Hg pressure. Sample from same batch as the above. Sample from same batch as the above. Sample from same batch as the above. Same as above exc 81.0% of maximum. in air w.r.t. Pt. Name and Specimen Designation 8 0 ш Ç 0 8 82 Temp. Range, K 682-1000 667-923 280-919 410-750 416-738 645-380 375-895 411-734 409-730 291-740 281-673 375-679 652-902 652-886 Method Used Year 1960 1965 1965 1965 1965 1965 1966 1966 1949 1955 1949 1949 1949 1971 Osburn, C. M. and Vest, R. W. Machman, M., Cofocaru, L. N., and Ribco, L. V. Nachman, M., Cojocaru, L. N., and Ribco, L. V. Nachman, M., Cojocaru, L. N., and Rîbco, L. V. Nachman, M., Cojocaru, L. N., and Ribco, L. V. Nachman, M., Cojocaru, L. N., and Rîbco, L. V. Wright, R. W. and Andrews, J. P. Author(s) Ġ van Houten, S. Deren, J. and Ziółkowski, J. Deren', J. and Ziółkowski, J. Parravano, Ref. 33 4 42 42 42 42 42 49 **\$** 45 45 \$ 5 ξ. Š. ω 6 2 = 2 3 7

on the contraction of the contra

ļ		TABLE 9. MEASUREMENT INFORMATION	-	THE SEE	BECK COEF	FICIENT (THERM	ON THE SEEBECK COEFFICIENT (THERMOELECTRIC POHER) OF POLYCRYSTAL Ni _{l-6} O (continued)
Cur. No.	Cur. Ref. No. No.	Author(s)	Year We	Method Temp. Used Range,	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
15	45	Wright, R. W. and Andrews, J. P.	1949		647-857	ш	Sample from same batch as above. Same procedure.
16	45	Wright, R. W. and Andrews, J. P.	1949		668-099	g	Sample from same batch as the above. Same procedure.
17	40	Melik-Davtyan, R. L., Shvartsenau, N. F., and Shelykh, A. I.	1966		463-1023		Nickel nitrate dried at 393-423 K, roasted for 2 h at 1573 K and converted into NiO. Measured in air w.r.t. Pt.
18	48	Schlosser, E. G.	1961		323-473		Thermal decomposition of Ni(NO ₃) ₂ for 5 h at 1273 K, washed in H ₂ O,then heated again to 1273 K for 5 h; pressed NiO powder. Measured in air w.r.t. Pt.

THE CONTRACTOR OF THE PROPERTY OF THE PROPERTY

THE THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE P

SEEBECK COEFFICIENTS (THERMOELECTRIC POWER) OF POLYCRYSTA K ⁻¹ ; Seebeck Coefficient, α, mV/K]	ø	/E 18	0.856 0.723 0.598 0.521		,	
MOELECTRIC POW α, mV/K]	103	CURVE	3.096 2.681 2.364 2.114			
ICIENTS (THER! Coefficient,	ರ	14 (cont.)	1.227 1.302 1.302 1.050 1.119 1.179 1.376 1.385	<u>/E 16</u>	1.253 1.223 1.274 1.277 1.307 1.396	000000000000
	103	CURVE	1.482 1.549 1.549 1.167 1.219 1.317 1.467 1.510	CURVE	1.112 1.167 1.226 1.247 1.250 1.340	2.160 2.160 2.114 1.514 1.745 1.605 1.294 1.215 1.018
TABULATION OF MEASURED see Temperature, 10 ³ /T,	s	/E 11	~~~~~~~~~		1.082 1.096 1.153 1.23 1.291 1.363*	
ĕ	103	CURVE	1.083 1.085 1.149 1.212 1.353 1.367 1.465 1.465	CURVE	1.109 1.114 1.224 1.324 1.382 1.382	CURVE 1.533 1.129 1.129 1.1353 1.249 1.249 1.284 1.284 1.284
TABLE 10.	ಶ	5 (cont.)	0.276 0.263 0.253 0.225 0.225 0.458 0.447 0.320 0.272	/E 7	0.509 0.507 0.480 0.432 0.364	
	103	CURVE	1.850 1.590 1.363 1.363 2.124 2.124 1.911 1.599	CURVE	2.444 2.182 1.870 1.631 1.370	3.440 1.572 1.572 1.572 2.299 2.114 1.656 1.486 2.387 2.132 1.880 1.672 1.473
	ಶ	WE 1	0.359 0.352 0.359 0.389 0.440 0.458 0.471 0.571	0.263	0.234 0.234 0.223 0.203 0.192	1-0000-00- 1000000 100
	103	CURVE	2.660 2.294 2.227 1.988 1.761 1.575 1.474 1.325 1.117 0.0RVE	1.000	1.170 1.200 1.343 1.400 1.470	2.435 2.435 2.435 2.435 2.435 2.435 2.435 2.435 2.435 2.435 2.435 2.435

national and guid consideration which continues brackets and considerations and continues and continues and con-

on of the contraction of the con

The corresponding information for polycrystal NiO is provided in Tables 9 and 10 respectively.

3.3 Heat Capacity

Recommended values for the heat capacity of NiO are collected in Table 11. Its construction will be commented on below.

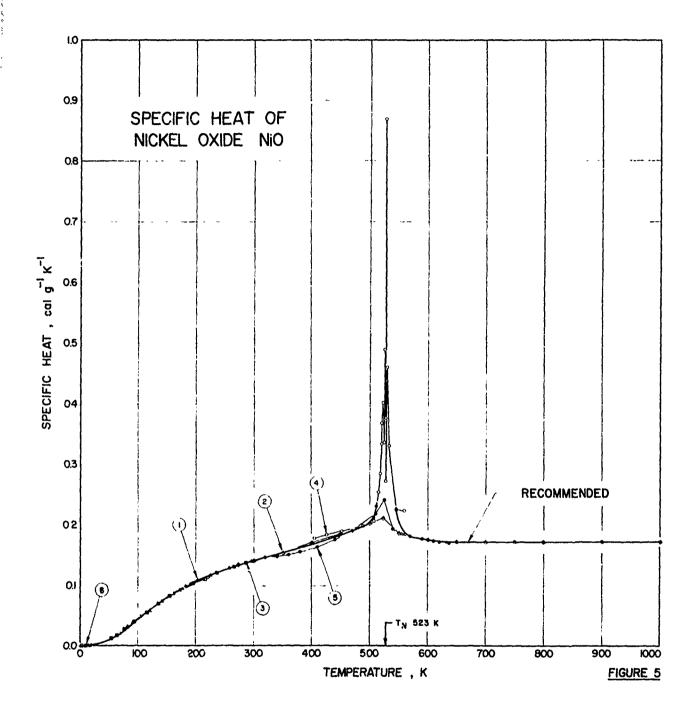
Heat capacity measurements at constant pressure are shown as plots of $C_{\rm p}$ vs T in Fig. 5. The results of investigations are nicely concordant, except in the temperature region near $T_{\rm N}$, where the measurement depends not only on the manner in which the sample is passed through the Néel point but also on the precise variation of long and short-range magnetic order as a function of temperature. Heat capacity properties outside the anomalous region are insensitive to the state of subdivision, impurity content, and stoichiometry of the sample. According to standard theory, the gradual disappearance of magnetic order on heating should lead to a second-order transition, which, in the simplest cases, manifests itself as a λ -anomaly in the heat capacity. (19) Such anomalies have been observed in most cases, but in one particular instance a much sharper peak has been reported (Curve 4) which is more reminiscent of a first-order transition.

Above the Néel point, T_N = 523 K, the heat capacity C_p reaches an asymptotic value of 0.172 cal/g-deg which lies higher by 3% than the anticipated Dulong and Petit value for the heat capacity of constant volume, C_V = 11.92 cal/mole-deg for NiO; this discrepancy is expected on the basis of Eq. (2).

in il entelli di distributa del dell'internativa di di distributa di di

The recommended curve is an average of the various reported values outside the temperature range of the \mathcal{C}_p anomaly, for which no recommendation is possible for reasons outlined above.

in in the best of the same of


TABLE 11

RECOMMENDED VALUES FOR THE SPECIFIC HEAT

AT CONSTANT PRESSURE OF Nio

Temperature, K	Specific Heat, cal g ⁻¹ K ⁻¹
0	0.001
50	0.011
100	0.044
150	0.080
200	0.107
300	0.141
400	0.168
480	0.194
500	0.204
505	0.211
510	0.230
545	0.226
550	0.205
560	0.189
580	0.179
600	0.175
700	0.172
800	0.172
900	0.172
1000	0.172

HENGE FOR SOME SERVICE FOR SOME SERVICE SERVIC

The experimental data of Fig. 5, after subtraction of the anomalous portion due to the second order transition, may be interpreted within the framework of the Debye theory, according to which for each elementary lattice constituent the molar heat capacity reads:

$$\tilde{C}_V = 9 \text{ Nk } \left(\frac{T}{\theta}\right)^3 \left\{4D\left(\frac{\theta}{T}\right) + TD'\left(\frac{\theta}{T}\right)\right\}$$
 (5)

in which N is Avogadro's number and

$$\mathcal{D}\left(\frac{\theta}{T}\right) = \int_{0}^{\theta/T} \frac{x^{3}}{e^{X} - 1} dx, \quad \theta = hv_{m}/k$$
 (6)

 θ being termed the Debye temperature, which is related to the maximum lattice vibration frequency ν_m as shown above. It is worth noting that at low temperatures T $<<\theta$, the above relation approximates to $\tilde{C}_V\approx (12/5)\pi^4 Nk(T/0)^3$, whereas at high temperatures it approaches the Dulong and Petit value $\tilde{C}_V\approx 3$ Nk per atomic unit. The above quantities must be doubled to take account of the fact that NiO contains two atomic species per formula unit. Since tabulations of $\mathcal{D}(\theta/T)$ are available, it is possible to test the data for their fit to Eq. (5); it is found that reasonable though not excellent agreement may be attained in the range 0 < T < 250 K with a value of $\theta = 580$ K. Obviously such a fit cannot cope with the λ -anomaly; also, above 300 K the difference between \tilde{C}_p and \tilde{C}_V becomes sufficiently noticeable so that values calculated according to Eq. (5) are expected to lie by several percent below the measured \tilde{C}_p values. Finally, one should recall that the lattice symmetry changes as the NiO passes through the artiferromagnetic ordering temperature: one would thus expect θ for T > TN to be different from θ for T < TN.

Information on measurement techniques of heat capacity determinations is accumulated in Table 12; the actual data are tabulated in Table 13.

A CONTROL OF THE CONT

TABLE 12. MEASUREMENT INFORMATION ON THE CONSTANT PRECSURE SPECIFIC HEAT OF NIO

A CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE PARTY

Cur.	Ref.	Author(s)	Year	Year Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
-	90	Seltz, H., DeWitt, B. J., McDonald, H. J.	1940		68-298.1		Chemical pure NiO powder with less than 0.2% impurities dried for several days at 373 K; molal heat capacity in calories per °C given in graphical form.
2	51	Tomlinson, J. R., Domash, L., Hay, R. G., and Mont- gomery, C. W.	1954		300-1100.0		Thermal decomposition of Ni(NO $_3$) $_2\cdot 84_2$ O; maintaineù after decomposition at 1273 K for 8 h; TN=523.
m	25	King, E. G.	1956		50-298		Thermal decomposition at 1273 K for 9 days of Ni(NO ₃)2;synthesized from Ni(NO ₂)2.8H ₂ O and NiSO ₄ .8H ₂ O dissolved in water by precipitation using NH ₃ OH and CO ₂ gas; heat capacity data given in graphical form.
4	53	Zhuze, V. P., Novruzov, O. N., and Shelykh, A.I.	1969		400-570		Single crystal grown by flame fusion technique; T _N =522 K; heat capacity data given in graphical form; relative heat capacity measured by pulse technique normalized to literature value at 400 K. Very large, very narrow peak observed (65 cal per mole-deg.) at 522 K.
ശ	5.1	Lewis, F. B., and Saunders, N. H.	1973		310-650	NiO(I)	Single crystal (100) direction; $4x4x25$ mm; grown by flame fusion technique; $T_{N}=525$ K; heat capacity data given in graphical form; measured using a differential scanning calorimeter comparing to Al_2O_2 and assuming C_D "approximately constant over the temperature excursion employed (usually approximately 10 K)."
ø	54	White, H. W.	1974		3.2-18.75		Single crystal, 99.99% pure; rod 12 mm diameter, 40 mm long; $\phi_{\rm D}$ =595±20 K; data presented in graphical form; heat pulse technique used.

and the state of the missister of the second sections.

The second of the second leaves and the second seco

TABLE 13. TABULATION OF MEASURED SPECIFIC HEATS OF NiO [Temperature, T, K; Specific Heat, $C_{\rm p}$, cal $g^{-1}K^{-1}$]

ر <i>ه</i> .	E 6 (cont.)	1.613E-01* 1.648E-01	1.6325-01*	1.761E-03	1.8086-01*	1.859E-01*	1.916E-01	2.035E-01*	2,119E-01*	2.195E-01	2.334F-U1" 2.422E_01	2.047F-01*	1,945E-01		1.851E-01*	1.8235-01	1.801E-01*	1.7635-01	1.7445-01	1.732E-01	1.720E-01	1./136-01														
⊢ -	CURVE 6	400.	420.	440.	450.	460.	470.	490.	500.	510.	520. 625	530	540.	550.	560.	570.	280.	600	610.	620.	630.	637.														
ر من	· . (COUC.)	3.549E-06* 3.709E-06*	5.596E-06* 6.523F-06*	7.035E-96*	7.70E-06*	8.346E-06*	1.046E-05*	1.049E-05*	1.1935-05*	1.417E-05*	1.5675-054	1.695E-05*	1.9735-05*	2.256E-05*	2.705E-05*	3.1852-05*	4.080E-05*	4.805E-05*	6.040E-05	7.211E-05*	8.758E-05*	1.198F-04*	1.426E-04*	1.521E-04*	1.794E-04*	1.985E-04*	3 2015-04*	3,729E-04*		CURVE 6	1.472E-01	1.487E-01*	1.507E-01*	1.541E-01*	1.562E-01 1.585E-01*	
	4	3.89	4.48	4.83	5.02	5.21	5.56	5.69	5.83	6.18	02.0	6.60	7.04	7.27	7.74	2.21	8.90	6.63	10.45	10.77	11.51	12.30	13.59	13.85	14.63	m, a	ې د	18.75		라!	320.	330.	380.	370.	380. 390.	
	4 (cont.)	1.861E-01* 1.901E-01	1.874E-01*	1.994E-01	1.994E-01*	2.0758-01	2.543E-01	2.342E-01*	2.503E-01*	2.851E-03	3.212F-01*	3.346E-01	3.6816-01	4.016E-01	3.360E-01	4.364E-UI*	4.8995-01	3.761E-01	8.700E-01	2.731E-01	4.671E-01*	4.004E-01	3.614E-01*	3.065E-J1*	2.650E-01*	3.734E-01*	2.39/E-UI* 3.310E_01	2.717E-01*	2.262E-01	2.449E-01*	2.275E-01*	2.249E-01	, i	2.075E-06	2.248E-06* 2.833E-06*	
F 5	CURVE 4	435. 452.	473.	488.	499.	507.	514.	517.	517.	518	519.	520.	520.	522.	523.	523.	525.	526.	527.	527.	528.	520	529.	529.	529.	532.	532.	233.	546.	548.	552.	559.	JAN.	3.29	3.27	
	2 (cont.)	1.7286-01	1.7286-01	1.728E-01	1.728E-01*	1.728E-01	CHRVE 3		1.205E-02	1.488E-02*	2.118F-02*	2.433E-02*	2.745E-02	3.009E-02*	3.271E-02*	4.090E-02	5.5065-02	6.279E-02*	7.053E-02	7.679E-02*	8.327E-02	9.424F-02*	9.941E-02*	1.042E-01	1.089E-01*	1.1325-01	1.1/3E-01*	1.246E-01*	1.285E-01*	1.318E-01	1.381E-01	1.422E-01*	CURVE 4	1.7805-01	1.820E-01* 1.847E-01	
-	CURVE 2	700.00	800.00	900.00	950.00	1000.00	3		54.28	58.92	68.10	72.47	76.74	80.22	83.81	94.66	115.57	124.60	135.88	145.85	155.86	175.84	185.78	195.94	206.13	216.19	23.63.07	245.63	256 73	266.15	286.43	295.94	?	404.	413.	
م _ي ا	WE 1	2.151E-02 2.556E-02*	2.925E-02*	3.515E-02*	3.540E-02*	3.919E-02	4.416F-02*	4.94E-02	5.481E-02*	5.679E-02* 5.077E-02	6.6925-02*	7.469E-02	7.937E-02*	8.058E-02*	8.756E-02	9.204E-02*	9.854F-02	1.004E-01	1.023E-01	1.087E-01	1.143E-01*	1,217F-01*	1.275E-01*	1.305E-01	1.375E-01*	1.396E-01*	1.4135-01	URVE 2		1.357E-01	1.547E-01	1.700E-01	2.036E-01	7.861E-31	1.753E-01 1.728E-01	
1-	CURVE	68.05 71.96	78.19	85.89	86.70	80.18	96.32	103.12	11.70	115.71	131, 13	141.72	150.08	151.86	162.37	158.09	181.22	183.01	190.75	204.20	213.13	235.37	247.81	257.49	277.20	286.32	00.067	SUL SUL		300.00	350.00	400.00	200.00	550.30	600.00	:

*Not shown in figure

<u>United Control of the Control of the Control of the Control of Co</u>

3.4 Thermal Conductivity

Recommended values for the thermal conductivity are shown in Table 14; comments concerning these are provided below.

Thermal conductivity (κ) curves are shown in Fig. 6 as plots of $\log \kappa$ vs $\log T$. Various sets of data are widely different, as is expected from the fact that κ is very sensitive to the state of subdivision of the sample. Nevertheless, the general character of the data follows the anticipated pattern. The thermal conductivity passes through a maximum; at higher temperatures κ is governed primarily through the mean free path, as determined by phonon-phonon scattering processes; since with rising temperature the phonon density increases according to the Bose-Einstein law, the mean free path decreases and κ diminishes correspondingly.

The only really effective phonon collisions are the so-called umklapp processes $^{(27)}$ which require that at least one of the phonons have a wave vector greater than half of the maximum possible value, i.e., greater than $(1/2)\nu_m = (1/2)k \theta/h$, where θ is the Debye temperature introduced earlier. The probability of encountering such phonons at temperature T is proportional to $\exp(-h\nu_m/2\ kT) = \exp(-\theta/2T)$. To find a second phonon of an appropriate wave number so as to make an umklapp process feasible involves a probability which varies as $(\theta/T)^3$. Therefore, the anticipated temperature behavior for κ in this regime is

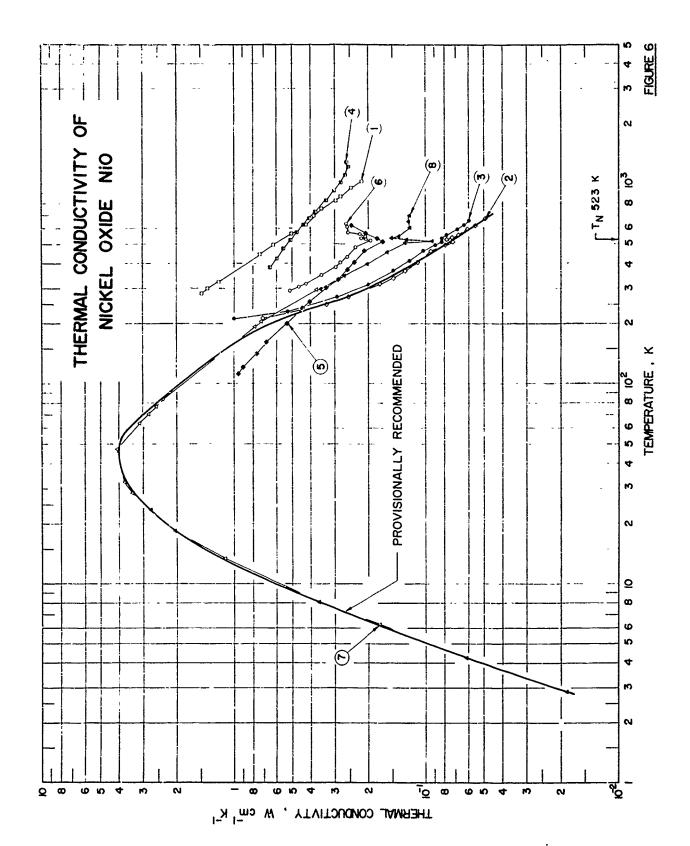
$$\kappa = \kappa_0 (T/\theta)^3 \exp(\theta/2T) \tag{7}$$

where $\kappa_0^{}$ is a parameter independent of κ and T.

At lower temperatures the phonon density becomes sufficiently low so that the mean free path, ℓ , of phonons increases to a point where it is limited by the average distance between defects or by the grain size in the specimens. In this region the thermal conductivity is given by

12 Bahan Bahan Karaman Kanan Kan

TABLE 14


PROVISIONALLY RECOMMENDED VALUES FOR THE THERMAL

CONDUCTIVITY OF NIO IN THE RANGE 3-700 K

Temperature, K	Thermal Conductivity, W cm ⁻¹ K ⁻¹
2.8	0.0172
4	0.0512
6	0.163
8	0.352
10	0.615
15	1.45
20	2,26
25	2.95
30	3.49
35	3.82
40	3.97
45	4.01
50	3.97
55	3.84
60	3.54
80	2.54
100	1.90
150	1.08
200	6.640
250	0.338
300	0.202
400	0.115
500	0.0785
700	0.0455

o of the complete of the contract of the contr

o de la completación de la compl

では ない かんかん かんしょう こうしょう

al dan biling and significant substantial and all the same and the

$$\kappa = \frac{1}{3} \widetilde{C}_{V} \widetilde{V}_{S} \ell / \widetilde{V}$$
 (8)

<u>etro del como destructura estructo de destructura e constanta de cons</u>

where \tilde{C}_V is the molar heat capacity, \overline{v}_S the sound velocity, and \tilde{V} the molar volume, and ℓ , the mean free path. In the temperature range where (8) holds, \overline{v}_S and ℓ are essentially constant, so that κ varies with T in the same manner as \tilde{C}_V . According to the preceding section, in this regime, $\tilde{C}_V = (12\pi^4 \text{ Nk/5 } \theta^3) \text{T}^3$, so that $\kappa \sim \text{T}^3$.

The data of Ref. 57 were found to be consistent with Eq. (7) for temperatures above the maximum in κ . The results below 20 K were fit to Eq. (8) with a mean free path of 30 microns. However, the θ value of 510 K required for a fit to the experimental κ is well below the θ value of 580 K used to fit the heat capacity result.

All data exhibit a kink in the vicinity of the Néel point. This may be ascribed to the fact that the lattice symmetry and dimension change slightly in the transition, thus altering the Debye temperature θ , and thereby, \tilde{C}_V . Furthermore, as will be seen shortly the mechanical properties of the lattice are also changed as the samples are heated through the Néel point; hence \overline{v}_S changes as the magnetic order is altered. Both factors affect κ in the manner depicted in Fig. 6.

The provisionally recommended curve coincides with the data of Ref. 57 for T < 20 K and Ref. 55 for T > 20 K, as being representative for annealed single crystals of NiO. It should be clearly recognized that much more experimental work must be accumulated in the cryogenic temperature range before a reliable trend in the low temperature thermal conductivities can be established.

The measurement information for these experiments is provided in Table 15, and the tabulation of measurements is assembled in Table 16.

Author(s) Year	Davtyan, R. l., 1966 Senau, N. F., and h, A. I.	kotunov, V. A. 1971 .nilov, V. M.	kotunov, V. A. 1971 nilov, V. H.	y, W. D., Francl, 1954 ble, R. L., and s, f.	F. B., and 1973 rs, N. H.	F. B., and 1973 rs, N.K.	G. A., and 1958 , R.	V. P., Movruzov, 1969 Shelykh, A. I.
		<u>نو</u> .	Shchelkotunov, V. A. and Danilov, V. N.	Kingery, W. D., Frar J., Coble, R. L., ar Vasilos, F.	Lewis, F. B., and Saunders, N. H.	Lewis, F. B., and Saunders, N.K.	Slack, G. A., and Newman, R.	Zhuze, V. P., Movruzov, O. N., Shelykh, A. I.
Ref.	40	52	22	92	ຣ	23	57	53
Cur.		8		4			7	۵

The state of the s

,,,

. }

-

A Line of the Contract of the

And the second of the second

فالمنافقة الإنتيانية والمتعارض والمتراك والمترك والمترك والمترك والمتراك والمترك والمترك والمتراك والمتراك والمتراك والمتراك والمتراك والم

-1988 To

TABLE 16. TABULATION OF MEASURED THERMAL CONDUCTIVITIES OF MIO

and the the the transfer of th

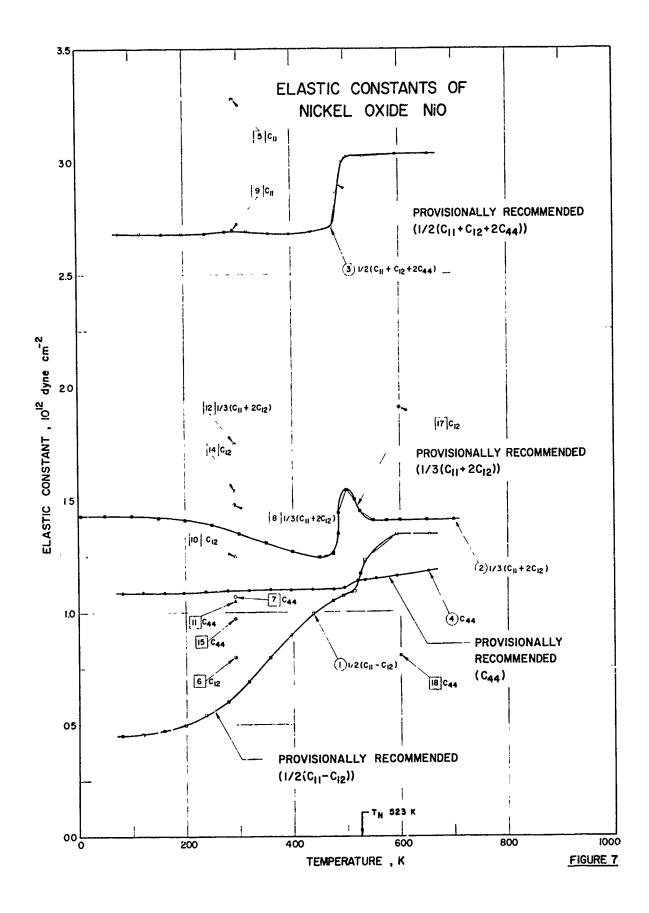
	×	VE 8 (cont.)	4.613E-01 4.236E-01	3.962E-01*	3.155E-01*	3.347E-01*	2.964E-01*	3.169E-01* 2.958E-01*	2.824E-01	2.594E-01* 2.624E-01	2.344E-01	2.0/9E-01" 1 958F-01	2.023E-01	2.070E-01	2.084E-01	2.218E-01	2.558E-01	2.588E-01	2,624E-01																
<u>-</u> -	- -	CURVE	30 ⁷ 318	333	366	372	38	388 388 388	405	431	483	508	523	530	542	561	2/5 584	612	633																
ty, <, watts cm ⁻¹ K ⁻¹	¥	E 6 (cont.)	3.273E-01 2.897E-01*	2.779E-01	2.5825-01	2.4665-01	2.371E-01	1036-01	1.963E-01*	1.757E-01	1.6405-01*	1.923E-01*	2.079E-01	2.182E-UI 2.466F-01	3	CURVE 7	1,000E+00	5.263E-01	2.941E-01	1.449E-01	1,220E-01	1.031E-01	8.547F-02	8,264E-02*	8.000E-02*	8.000E-02*	8.264E-02*	8.065E-02 7.813E-02	7.636E-02	6.897E-02	5.988E-02		CURVE 8	5.164E-01	4.909E-01*
iductivi	-	CURVE	322	333	374	395	405	462	488	525	527	545	564	285		리	211	230	27.1	369	411	465	505	נונ	516 [53	528	535	542 552	564	593	654	į	밁	162	293 295
, T, K; Thermal Conductivity,	¥	4 (cont.)	1.162E-01* 1.273E-01	1.249E-01	1.139E-01*	1,2335-01*			•	3.330E-01 2.560E-01	2.0806-01*	1.493E-21	86;	0 434F-05	8.264E-02	7.937E-02	7.463E-02	7.299E-02*	7.407E-02	7.874E-02*	7.634E-02*	7.353E-02	7.042E-02*		5.587E-02	4.926E-02*		CURVE 6	9.571E-01	9.057E-01	6.839E-01	5.915E-01*	5.370E-01	4.083E-01	3.845E-01* 3.372Ľ-01
[Temperature,	-	CURVE	610	651	, 65	694	ŧ		נופ	271	293	339	367	403 465	491	499	513	515	520	523	535	540	55.0 0.55.0	594	620	570	i	링	112	5	162	176	200	259	267 301
Temp	¥	3 (cont.)	3.427E-00 3.741E-00	4.102E-00 3.118E-00	2.805E-00	2,582E-00	7.3/1E-UU	7.261E-01	3.7416-61	<u>(E</u> 4	3.5705-03	3.7206-01	3.0776-01	2.317E-01*	2.427E-01*	2.278E-0i*	1.947E-01*	1.868E-01*	1.608E-U1	1.600E-01*	1.482E-01*	1.430E-01*	1.387E-01*	1.281E-01*	1.158E-01*	1.021E-01	1.107E-01*	1.422E-01 1.277E-01*	399E-01	1.462E-01*	383E-01	1.4/0E-C1*	1.391E-01*	1.304E-01*	1.222E-01*
	 	CURVE	28.51	63.67	70.45	76.91	19. 7. 78.	205.58	295.12	CURVI	297	299	333	373	375	378 399	413	413	459	465	481	432	504	209	515	520	125	523 523	526	528 537	543	54/ 557	22C 560	562	584 601
	¥	CURYE 1	1.38	1.21	0.629	0.502	0.426	0.351	0.297	0.247*	0.239 0.239	. 01770	VE 2	6.522E=03	6.068£-01	5.566E-01	4.7306-01	4.396E-01	4.085E-01	3.584E-01	3.368E-01	3.1776-01*	2.89?E-01*	2.795E-01	2.723E-01	2.604E-01	2.556E-01*	2.532E-0 * 2.604E-0]*		WE 3	1.866E-02	6.151E-02	1.753E-01 3.622E-01	1.135E-00	2.051E-00 2.741E-00
	-	3	283	324 468	498	564	6/9	751	826	954	985	4	CURYE	380	423	473	573	623	723	773	823	873	973	1023	1073	1173	1223	1273		CURVE	2.85	4.24	8.20 8.03	3.42	3.55

3.5 Elastic Properties

Since only one set of measurements is available over a wide range of temperature, these must serve as provisional recommended values; smoothed values are assembled in Table 17.

A variety of elastic constants are plotted in their dependence on temperature in Fig. 7; these measurements were obtained on single crystals. As is seen, the experimenters report discontinuities or anomalous thermal variations near the Néel point for all elastic constants save C_{44} . The anomaly is to be expected since the second order transition is associated with magnetostriction effects which alter the structure and mechanical characteristics of the lattice. It is of interest that for some of the elastic constants the anomalies occur over a considerable temperature range well below the temperature $T_{\rm N}$ for which the heat capacity anomaly reaches its maximum value; this shows that structural relaxation effects begin to be noticeable before the total disappearance, on heating, of magnetic ordering effects.

Measurement information on elastic constants is assembled in Table 18 and the literature data are compiled in Table 19.


Young's modulus Y is shown as a function of temperature in Fig. 8. Of the two measurements the lower set is suspect because these measurements were carried out on untreated powdered specimens. The upper curve represents data taken on polycrystalline, sintered samples and is provisionally recommended. The recommended values are listed in Table 20; measurement information and literature values are exhibited in Tables 21 and 22 respectively.

and the table to the second second to the second second second second second second second second second second

TABLE 17

PROVISIONALLY RECOMMENDED VALUES FOR VARIOUS SETS OF
NiO IN THE RANGE 4-710 K

	EL	ASTIC CONSTANT, 10	12 dyne/cm ⁻²	
Temperature, K	$\frac{1}{2}(c_{11} - c_{12})$	$\frac{1}{3}(c_{11} + 2c_{12})$	$\frac{1}{2}(c_{11}+c_{12}+2c_{44})$	C ₄₄
4		1.430		
50		1.430	*****	1-00-0-0
70	0.450		2,683	1.088
100	0.455	1.428	2.680	1.086
150	0.468	1.422	2.680	1.086
200	0.502	1.412	2.682	1.088
250	0.558	1.387	2,685	1.093
300	0.650	1.352	2,690	1.095
350	0.780	1.308	2.684	1.097
400	0.905	1.268	2.680	1.099
450	1.013	1.244	2.694	1.100
470		1.257	2.708	
480		1.300	2.755	
490		1.520	2.945	1.105
500	1.082	1.544	3,010	1.113
510	1.093	1.525	3.022	1.126
520	1.135	1.469		1.135
550	1.270	1.407	3.026	1.147
600	1.343	1.405	3.029	1.161
650		1.407		
670	1.345		3.031	1.186
710		1.409		

A Control of the

TABLE 18. MEASUREMENT INFORMATION ON THE ELASTIC CONSTANTS OF NiO

Life in the the state of the st

Composition (weight percent), Specifications, and Remarks	Single crystal cut from crystal obtained from Marubeni Iida, Japan. Ultrasonic waves propagated along [110] direction, velocity measured by pulsectho method. Rocm temperature density 6.85 gmcm $^{-3}$. $_{1}$ =522 K. Measured in air.	ibove.	above.	above.	Flame-grown crystals 3-4 cm 3 from Sitronix, Geneva and Nour-Light cases tories. Colmbrook. Calculation from phonon dispersion curves obtained by inelastic neutron scattering. $T_{\rm H}$ =523 K. Measured in air at room temperature.	above.	абоvе.		Single crystal plates 0.3-0.7 cm thick and 0.5-1.0 cm in area. orowing by flame fusion by Nakazumi Crystals Corp., Osaka, Japan. Annealed at 1500°C for one day in air. Calculation from velocity data obtained by pulse-superposition method. T _N =523 K.	Same as above.	Same as above.	c	Single crystals of 2 cm² volume. Calculation from data obtained by coherent inelastic neutron diffraction.	Same as above.
	Single sonic w echo me in air.	Same as above	Same as	Same as	Flame- tories inelas ture.	Same as	Same as	Same as	Single by fla 1500°(pulse	Same	Same	Same	Single coheren	Same
Name and Specimen Designation														
Temp. Range, K	80-655	5-700	79-654	82-653	293	293	293	293	293	293	293	293	293	293
Year Method Used	1971	1971	1971	1971	1975	1975	1975	1975	1972	1972	1972	1972	9261	1976
	du Plessis, P. de V., van Tonder, S. J., and Alberts, L.	dư Plessis, P. de V., van Tonder, S. J., and Alberts, L.	du Plessis, P. de V., van Tonder, S. J., and Alberts. L.	du Plessis, P. de V., van Tonder, S. J., and Alberts, L.	Reichardt, W., Wagner, V., and Kress, W.	Reichz.dt, W., Wagner, V., and Kress, W.	Reichardt, W., Wagner, V., and Kress, W.	Reichardt, W., Wagner, V., and Kress, W.	Uchida. N. and Saito, S.	Uchida, N. and Saito, S.	Uchida, N. and Saito, S.	Uchida, N. and Saito, S.	Coy, R. A., Thompson, C. W., and Gürmen, E.	Coy, R. A., Thompson, C. W., and Gürnen, E.
r. Ref.	18	18	82	18	88	58	28	28	69	59	99	59	9 60	f.
Ser.	! _	8	m	4	'n	ø	7	æ	6	10	Ξ	15	13	14

100 mg 12

1

TABLE 18. MEASUREMENT INFORMATION ON THE ELASTIC CONSTANTS OF NiO (continued)

Since the second

A STATE OF THE STA

- Indian and the commence of the second seco

a reaction of the contract of the second of the contract of th

		2	ABLE 18.	MEASURE	ENI INFORMALION ON INE	IABLE 16. MEASUREMENT INFORMATION ON THE ELASTIC CONSTANTS OF MID (CARCITUM)
Cur.	Cur. Ref. No. No.	Author(s)	Year	ethod Used	Method Temp. Specimen Used Range, K Designation	Composition (weight percent), Specifications, and Remarks
15	09	60 Coy, R. A., Thompson, C. W., and Gürmen, E.	1976		293	Single crystals of 2 cm ³ volume. Calculation from data obtained by coherent inelastic neutron diffraction.
91	09	Coy, R. A., Thompson, C. W., and Gürmen, E.	1976		600	Same as above.
11	99	Coy, R. Á., Thompson, C. W., and Gürmen, E.	1976		009	Same as above.
18	90	Coy, R. A., Thompson, C. W., and Gürmen, E.	1976		009	Same as above.

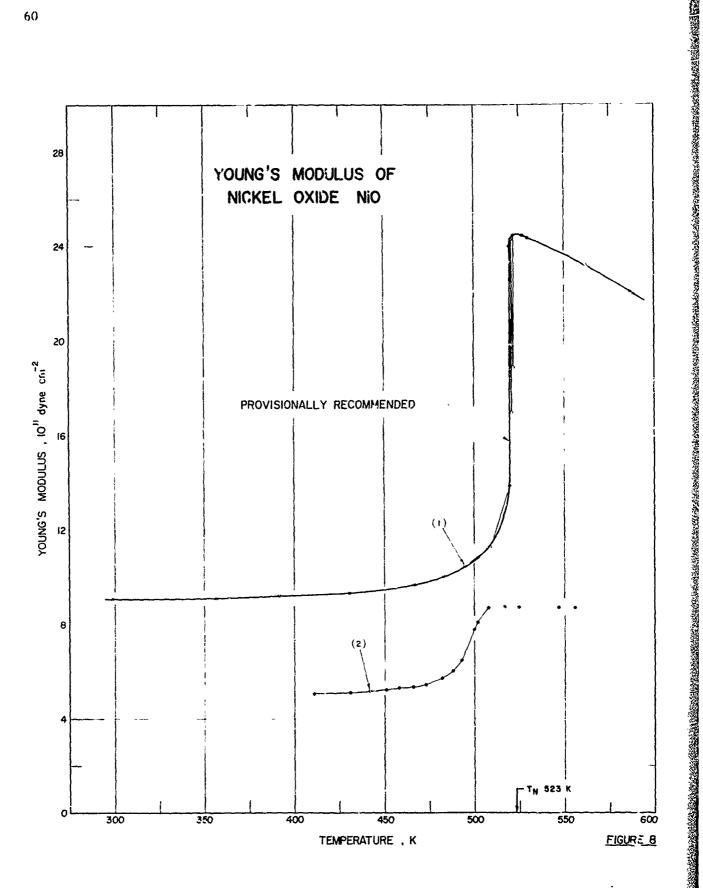
TABLE 19. TABULATION OF ELASTIC CONSTANT MEASUREMENTS OF NiO [Temperature,T, K; Elastic Constants, $C_{i\,j}$, dynes/cm²x10¹²]

. The second second

·																							
, "1j, ",""	د _{ر ن}	CURVE 17	C ₁₂ =1.917	CURVE 18	908.0=′′′′	;																	
cuis can ca	-	리	009	ರ	009																		
Liemperature,, v, tiastic constants,	ر ر _ز غ	CURVE 7	293 C ₄₄ =1.07	CURYE 3	$293 \frac{1}{3} (C_{11} + 2C_{12}) = 1.48$	CURVE 9	293 C ₁₁ =2.70	CURVE 10	293 C ₁₂ =1.25	CURVE 11	293 C ₄₄ =1.05	CURVE 12	293 ½(C,,+2C,2)=1.75	CURVE 13	293 C _{1,*} 5.031*	i i i	2	293 C ₁₂ =1.543	CURVE 15	293 C _{.,} =0.974	;	CURVE 16	600 C ₁₁ =4.415*
	•	2 ^{+2C} 44)			2		2		2		2		8		(4)		•						
	; ;	CURVE 3 2(C11+C12+2C44)	2.684	2.684	2.684	2.690 2.686	2.686 2.694	2.719 2.868 3.009	3.020 3.024 3.024	3.034	CURVE 4 C44		1.093	1.097 1.096 1.01	 	1.107	1.140	1.150		CURVE 5	C ₁₁ =3.28	CURVE 6	C ₁₂ =0.58
	-	Ol	79	129	239	317 358	397	4/5 484 496	502 535 505			282 2021 2021	197	318	396 436	476	250 234	555 595			293		293
	, t, t	CURVE 1 3(C11-C12)	0.450	0.471	0.542 0.542	0.690 0.690 0.799	0.899	1 051 1.073 1.094	1.273	1.345 1.345	. 0	٠	1.434	1.414	1.313	1.245	1.353	1.541 1.507	1.450 1.414	1.410	1.410	014.	2
	-	CURV		1.8 158	198 237	278 317 357	396 437	474 494 515	519 526	534 555	CURVE	ស្ដ	001 001 001	520 520 520 520 520 520 520 520 520 520	350 350 400	450 475	485 485	500 515	525 550	575	625	675	3

*Not shown in figure

THE THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE PART


TABLE 20

PROVISIONALLY RECOMMENDED VALUES FOR YOUNG'S MODULUS

OF Nio IN THE RANGE 295-595 K

Temperature, K	Young's Modulus, 10 ¹¹ dyne/cm ²
295	9.07
320	9.08
340	9.09
360	9.10
380	9.14
400	9.20
420	9.27
440	9.38
460	9.56
480	9.90
500	10.68
515	12.24
520	14.00
520	24.18
525	24.48
540	24.00
560	23.24
580	22.36
595	21.66

The state of the second second

The state of the s

Long destinated and the contract of the contra

				TABLE 21	. MEASUREM	ENT INFORMATIO	E 21. MEASUREMENT INFORMATION ON YOUNG'S MODULUS OF NiO
Cur.	Cur. Ref. No. No.	Author(s)	Year	Year Method Used	d Temp. Range, K	Name and Specimen Designation	Composition (weight percent), Specifications, and Remarks
-	52	Notis, M. R., Spriggs, R. M., and Hahn, W.C., Jr.	1973		299-589		Sintered. Rectangular bars. 99.999% pure NiO powder from Johnson-Matthey. Co. Air fired at 1173 K for 10 h, ground, dried for 24 h at 413 K. Pressure-sintered at 10,000 psi and 1373 K for 90 min. Density 92.0-99.93 of x-ray density. TN=523 K. Room temperature elastic moduli found by resonant sphere method. Young's modulus also determined by three-part composite oscillator method. Measured in air.
8	19	Street, R. and Lewis, 3. 1951	1951		411-556		Bars with square cross-section. Manufactured by Murex, Ltd. Longitudinal oscillations generated by quartz crystals cemented to bars. Massured by dynamic method.

The second of the second secon

The second state of the best of the second of the best of the second of

TABLE 22. TABULATION OF MEASUREMENTS OF YOUNG'S MODULUS OF NIO

o de la compactica del

athe the administration of the same and the same at the same

[Temperature,T, K; Young's Modulus,1, dynes/cm²X10¹¹]

2 (cont.)	6.667 7.224447 7.42447 7.7947 7.79 8.008 8.008 8.00454 8.754		
CURVE	495.36 496.76 498.36 498.36 40.35 500.35 501.26 504.16 507.76 507.76 508.86 512.16 512.16 532.36 5332.38 556.46		
<u>(E 1</u>	9.08 9.09 9.21 10.09 11.28 13.86 18.95 18.	ທູດ.ທູດ,ທູດ,ທູດ,ທູດ ວິດ.ຕິດ. ວິດ.ຕິດ.ທູດ,ທູດ,ທູດ,ທູດ ວິດ.ຕິດ.ທູດ,ທູດ,ທູດ,ທູດ,ທູດ,ທູດ,ທູດ,ທູດ,ທູດ,ທູດ,	6,000,000,000,000,000,000,000,000,000,0
CURVE	299.16 357.16 462.16 463.16 463.16 463.16 463.16 509.16 520.16 521.16 521.16 522.16 522.16 527.16 527.16 587.16 589.11	411.56 431.86 431.86 451.216 461.236 462.36 469.06 473.16 475.16	882.3 882.3 882.3 882.3 882.3 882.3 882.3 882.3 883.3 883.3

na proposition de la compación de la compación

*Not shown in figure

Editorial description description of the second of the s

3.6 Thermal Expansion

The thermal properties of a crystal are generally characterized by the coefficients of thermal expansion of the material. These may be specified in two ways:

The instantaneous (linear) coefficient of thermal expansion is defined by

$$\alpha_{\rm I} = \frac{1}{\ell} \left(\frac{\partial \ell}{\partial T} \right)_{\rm p} \tag{8}$$

where £ is the length of the specimen along a given direction and T the absolute temperature; as shown by the formula, the measurements are taken at constant pressure. The mean coefficient of thermal expansion is defined by

$$\alpha_{\mathsf{M}} \equiv \frac{1}{k_{\mathsf{O}}} \frac{k - k_{\mathsf{O}}}{\mathsf{T} - \mathsf{T}_{\mathsf{O}}} \tag{9}$$

where ℓ_0 is the length of the specimen along a given direction at a reference temperature T_0 , and ℓ is the length at some other absolute temperature T_0 . It is common practice to set T_0 = 298 K, i.e., to refer all measurements of ℓ to the prevailing value, ℓ_0 , at room temperature. As is implied by the wording, Eq. (8) provides information concerning the expansion properties of the material at temperature T, whereas Eq. (9) represents a quantity which is averaged over the temperature range $|T-T_0|$.

Winding to the second s

As is well known, the coefficient of linear expansion is proportional to the molar heat capacity at constant volume, \tilde{c}_{V} , through the relation

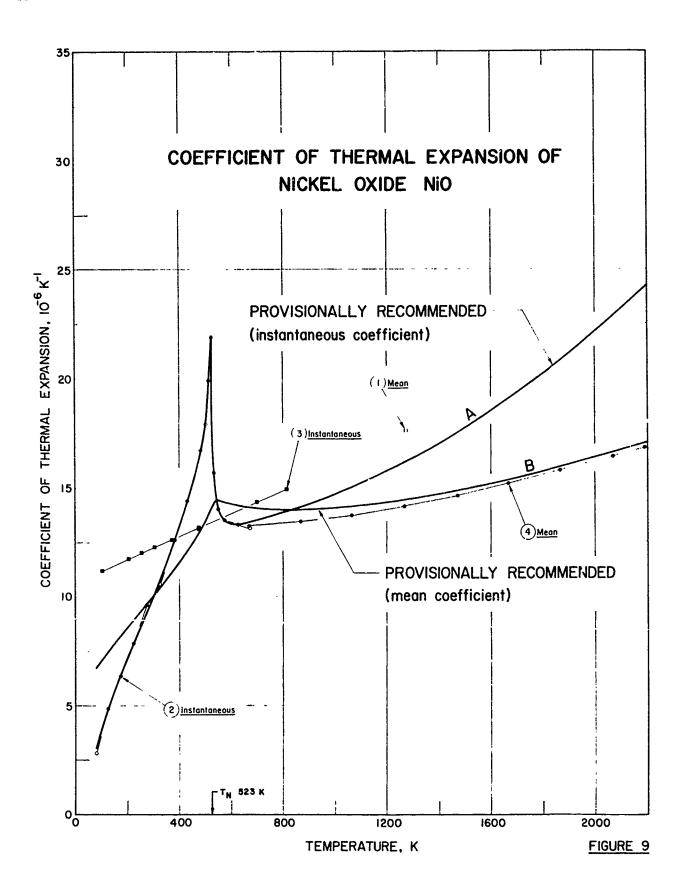
$$\alpha_{\tilde{I}} = \gamma \tilde{C}_{V}/3B\tilde{V}$$
 (10)

where γ is the Grüneisen constant, B is the bulk modulus, and \widetilde{V} the molar volume of the solid. This proportionality is found to be quite well satisfied for cubic crystals.

Which the second of the second

The provisionally recommended values for both $\alpha_{\rm I}$ and $\alpha_{\rm M}$ are cited in Table 23. For T \leq 600 K, $\alpha_{\rm I}$ was taken from Curve 2; while at higher temperatures $\alpha_{\rm I}$ was calculated from the $\alpha_{\rm M}$ values of Curve 4, by converting the data, represented by Eq. (9), so as to conform to Eq. (8). The two portions of the curve were smoothly joined in the region near 600 K. The recommended $\alpha_{\rm M}$ values were then obtained by the inverse process of treating the recommended $\alpha_{\rm I}$ curve, subject to Eq. (8), so as to assume the form demanded by Eq. (9) with T_O = 298 K.

The original data sets and the recommended values are plotted in Fig. 9. Measurement information for the determination of α_I or of α_M is provided in Table 24. The tabulation of the experimental data is shown in Table 25.


One should note that Curve 3 has been ignored in setting up the recommended curves. This was done on the basis that according to Eq. (10), $\alpha_{\rm I}$ should follow the heat capacity anomaly, exhibited in Fig. 5, which is associated with magnetic ordering effects near 523 K. These effects show up in Curve 2 but not in Curve 3. Apparently, complications arise in the conversion of lattice parameter data to linear thermal expansion coefficients. Below the Néel point, NiO undergoes a rhombohedral distortion, so that it is not really correct to characterize the unit cell dimension by a lattice parameter appropriate to the cubic phase of NiO which prevails only above the Néel point. These difficulties are avoided in the direct dilatometric measurements reported in Refs. 17 and 46.

indickly of the companies of the compani

TABLE 23. PROVISIONALLY RECOMMENDED VALUES FOR MEAN AND INSTANTANEOUS COEFFICIENTS OF THERMAL EXPANSION OF NICKEL OXIDE NIO

	α,	, 10 ⁻⁶ K ⁻¹	
Temperature, K	Instantaneous	۵۱./L _o (%)	Mean
***************************************	, A		
80	3.05	-0.1463	6.71
100	3.90	-0.1394	7.04
200	7.17	-0.0840	8.57
298	9.98	0.0000	
300	10.04	0.0020	10.00
400	13.25	0.1184	11.61
420	13.96	0.1457	11.94
440	14.72	0.1743	12.27
460	15.54	0.2046	12.63
480	16.52	0.2367	13.01
500	17.80	0.2710	13.42
520	21.15	0.3100	13.96
525	21.90	0.3207	14.13
540	15.00	0.3484	14.40
560	13.78	0.3772	14.40
580	13.48	0.4044	14.34
600	13.35	0.4313	14.28
620	13.31	0.4579	14.22
640	13.35	0.4846	14.17
700	13.53	0.5652	14.06
800	13.86	0.7022	13.99
900	14.25	0.8427	14.00
1000	14.71	0.9875	14.07
1100	15.21	1.1371	14.18
1200	15.75	1.2919	14.32
1300	16.48	1.4531	14.50
1400	17.00	1.6205	14.70
1500	17.88	1.7949	14.93
1600	18.52	1.9769	15.18
1700	19.35	2.1662	15.45
1800	20.20	2.3640	15.74
1900	21.15	2.5707	16.05
2000	22.14	2.7872	16.38
2100	22.98	3.0128	16.72
2200	24.28	3.2491	17.08
FEAG	47.4U	J. 6731	17.00

is thin in the contraction of the contraction of the countries of

The state of the s

The following the contraction of the contraction of

TABLE 24. MELSUREMENT INFORMATION ON THE COEFFICIENT OF THERMAL EXPANSION OF NIO

the the second on the think the transmission of the transmission of the transmission of the transmission of the

Commence of the second of the

ons, and Remarks	oc for 20 h in arr; er measurement of mean	ession at 3 tons/cm ² . ients of thermal	m which instantaneous	essed to greater than in. at 1000°C. Sample tmospheres for 1 hour. esurements up to 1930°C
Composition (weight percent), Specifications, and Remarks	NiO compressed to 24.3 tons/in ² , sintered at 1400°C for 20 h in air; 83.5% of theoretical density achieved. Dilatometer measurement of mean coefficient of thermal expansion.	Calcination of Ni(NO ₂), in air, followed by compression at 3 tons/cm ^C . Dilatometer measurements of instantaneous coefficients of thermal expansion.	X-Ray measurements on unspecified NiO sample, from which instantaneous coefficients of thermal expansion were calculated.	NiSO, calcined at 900°C for 20 hours, then hot pressed to greater than 95% of theoretical density at 10,000 psi for 90 min. at 1000°C. Sample subsequently heated to 1800°C in 95% 0_2 - 5% N_2 atmospheres for 1 hour. Dilatometer measurements up to 1000°C, optical measurements up to 1900°C, optical measurements up to 1930°C of the mean coefficient of thermal expansion.
 Name and Specimen Designation	Ni/Ni0			
Temp. Range, K	1273	80-650	105-813	472-2190
Year Method Vear Used				
Year	1960	1948 1952	1977	
Author(s)	Tylecote, R. F.	Foëx, M. Foëx, M.	Srivasta, S. P., Srivasta R. C., Singh, I. D., Pandey, S. D., and Gupta,	Nielsen, T. H. and Leipold, M. H.
Cur. Ref. No. No.	62	17	63	64
Cur. No.	_	8	m	4

و درون المورد مارون المورد مارون المورد

TABLE 25. TABULATION OF MEASURED COEFFICIENT OF THERMAL EXPANSION OF NiO [Temperature, I, K; Thermal Coefficient of Expansion, $c_{\rm M}$ (mean) or $\alpha_{\rm I}$ (instantaneous), $10^{-6}~{\rm K}^{-1}$]

and the first of the state of t

Curve 1 (Mean) 1273 17.1	Curve 2 (Instantaneous)		125 4.87		270 9.64							Curve 3 (Instantaneous)	,	- •	-	_	_	700 14.35	_	Curve 4 (Mean)		13.43			2070 16.42	2190 16.81
	zacheron:	MET/M	e constant	A. Care	-			 	 	 	 	P	 											_		

THE STATES OF THE SECOND SECON

4. REFERENCES

- Brownlee, L. D. and Mitchell, E. W. J., Proc. Phys. Soc. (London) <u>B65</u>, 710-716 (1952).
- 2. Roth, W. L., Phys. Rev. <u>110</u>, 1333-1341 (1958); <u>111</u>, 772-781 (1958).
- 3. Alberts, L. and Lee, E. W., Proc. Phys. Soc. (London) 78, 728-733 (1961).
- Keem, J. E., Thesis, Purdue University, West Lafayette, IN, 1976 (unpublished).
- Nakazumi, Y., Nakazumi Crystals Corp., Kobe, Japan.
- Okada, T., Matsumi, K., and Makino, H., Solid State Phys. (Japan) <u>6</u>, 170-175 (1971).
- 7. Clausen, E. M. and Rutter, J. W., General Electric Research Laboratory Report, Schenectady, NY, 1964.
- Sakurai, T. and Ishigame, M., J. Cryst. Growth <u>2</u>, 284-286 (1968). Sakurai,
 T., Kamada, O., and Ishigame, M., J. Cryst. Growth <u>2</u>, 326-327 (1968).
- 9. Eklund, P. C., J. Crystal Growth 16, 271-273 (1972).
- Cech, R. E. and Allessandrini, E. I., Trans. ASM <u>51</u>, 56 (1959).
- Kurosawa, K., Saito, S., and Takemoto, T., Japanese J. Appl. Phys. <u>11</u>, 1230 (1972); <u>14</u>, 887-888 (1975).
- 12. Hill, G. J. and Wanklyn, B. M., J. Cryst. Growth 3/4, 475-479 (1968).
- 13. Osburn, C. M. and Vest, R. W., J. Phys. Chem. Solids <u>32</u>, 1355-1363 (1971).
- 14. Keem, J. E., Chem. Instr. <u>6</u>, 133-141 (1975).

Link State S

- 15. Harman, T. C. and Honig, J. M., "Thermoelectric and Thermomagnetic Effects and Applications" (McGraw-Hill, New York, 1967), Chap. I.
- Herring, C., in Semiconductors and Phosphors, Schön, M. and Welker, H. M.,
 eds. (Vieweg, Braunschweig, 1956), p. 184-235.
- 17. Foëx, M., Compt. rend. Acad. Sci. (Paris) 227, 193-194 (1948).

- Du Plessis, P. de V., van Tonder, S. J., and Alberts, L., J. Phys. C. Solid State Phys. 4, 1983-1987 (1971).
- 19. Guggenheim, E. A., "Thermodynamics, an Advanced Treatment for Chemists and Physicists" (North-Holland, Amsterdam, 1950), Chap. 8.
- 20. Lewis, F. B. and Saunders, N. H., J. Phys. C. Solid State Phys. <u>6</u>, 2525-2532 (1973).
- 21. Heikes, R. R. and Ure, R. W., "Thermoelectricity: Science and Engineering" (Interscience, New York, 1961), Chap. 4.
- 22. Keem, J. E., Honig, J. M., and Van Zandt, L. L., in "Valence Instabilities and Related Narrow-Band Phenomena," Parks, R. D., ed. (Plenum, New York, 1977), p. 551-554.
- Emin, D. and Holstein, T., Ann. Phys. (NY) <u>53</u>, 439-520 (1969). Friedman,
 L. and Holstein, T., Ann. Phys. (NY) <u>21</u>, 494-549 (1963). Emin, D., Ann.
 Phys. (NY) 64, 336-395 (1971).

on the contraction of the contra

- 24. Kim, K. S. and Winograd, N., Surf. Sci. <u>43</u>, 625-643 (1974).
- 25. Notis, M. R., Spriggs, R. M., Hahn, Jr., W. G., J. Appl. Phys. <u>44</u>, 4165-4171 (1973).
- 26. Emin, D., in "Physics of Structurally Disordered Solids," S. S. Mitra, ed. (Plenum, New York, 1976), pp. 461-505.
- 27. Rosenberg, H. M., "Low Temperature Solid State Physics" (Clarendon, Oxford, 1963), Chap. 3.
- 28. Parravano, G., J. Chem. Phys. 23, 5-10 (1955).
- 29. Austin, I. G., Springthorpe, A. J., Smith, B. A., and Turner, C. E., Proc. Phys. Soc. (London), 90, 157-174 (1967).
- 30. Friedman, F., Weichman, F. L., and Tannhauser, D., Phys. Stat. Solidi (a)27, 273-279 (1975).

- 31. Ksendzov, Ya. M. and Drabkin, I. A., Fiz. Tverd. Tela <u>7</u>, 1884-1886 (1965) [Soviet Phys.--Solid State <u>7</u>, 1519-1520 (1965)].
- 32. Koide, S., J. Phys. Soc. Japan 20, 123-132 (1965).
- 33. Morin, F. J., Phys. Rev. 93, 1199-1204 (1954).
- 34. Yamaka, E. and Sawamoto, K., Phys. Rev. 112, 1861-1862 (1958).
- 35. Vernon, M. W. and Lovell, M. C., J. Phys. Chem. Solids 27, 1125-1131 (1966).
- 36. Aiken, J. G. and Jordan, A. G., J. Phys. Chem. Solids 29, 2153-2167 (1968).
- 37. Zhuze, V. P. and Shelykh, A. I., Fiz. Tverd. Tela <u>5</u>, 1756-1759 (1963)
 [Soviet Phys.--Solid State 5, 1278-1280 (1963)].
- 38. van Daal, H. J. and Bosman, A. J., Phys. Rev. 158, 736-747 (1967).
- Nowotny, J. and Wagner, Jr., J. B., Bull. Acad. Polon. Sci., Ser. Sci.
 Chim. 21, 931-936 (1973).
- 40. Melik-Davtyan, R. L., Shvartsenau, N. F., and Shelykh, A. I., Izv. Akad.

 Nauk. SSSR, Neorgan. Mat. 2, 21-31 (1966) [Inorg. Mater. 2, 16-24 (1966)].
- 41. van Houten, S., J. Phys. Chem. Solids 17, 7-17 (1960).
- 42. Nachman, M., Cojocaru, L. N., and Rîbco, L. V., Phys. Stat. Solidi <u>8</u>, 773-783 (1965).
- 43. Shimomura, Y. and Tsubokawa, I., J. Phys. Soc. Jap. 9, 19-21 (1954).
- 44. Cimino, A., Molinari, E., and Romeo, G., Zeits. Phys. Chem. (Frankfurt) 16, 101-125 (1958).
- 45. Wright, R. W. and Andrews, J. P., Proc. Phys. Soc. (London) <u>A62</u>, 446-455 (1947).
- 46. Foëx, M., Bull. Soc. Chim. (France) 5th Ser., 373-379 (1952).
- 47. von Baumbach, H. H. and Wagner, C., Z. Phys. Chem. <u>B24</u>, 59-67 (1933).
- 48. Schlosser, E. G., Z. Elektrochem. <u>65</u>, 453-462 (1961).
- 49. Dereń, J. and Ziółkowski, J., Bull. Acad. Polon. Sci., Sér. Sci. Chim. <u>14</u>, 443-448 (1966).

- 50. Seltz, H., DeWitt, B. J., and McDonald, H. J., J. Am. Chem. Soc. <u>62</u>, 88-89 (1940); <u>62</u>, 3527 (1940).
- 51. Tomlinson, J. R., Domash, L., Hay, R. G., and Montgomery, C. W., J. Am. Chem. Soc. <u>77</u>, 909-910 (1955).
- 52. King, E. G., J. Am. Chem. Soc. 79, 2399-2400 (1957).
- 53. Zhuze, V. P., Novruzov, O. N., and Shelykh, A. I., Fiz. Tverd. Tela 11, 1287-1296 (1969) [Soviet Phys.--Solid State 11, 1044-1051 (1970)].
- 54. White, H. W., J. Chem. Phys. 61, 4907-4909 (1974).
- 55. Shchelkotunov, V. A. and Danilov, V. N., Izv. Akad. Nauk. SSSR, Ser. Fiz. 35, 1158-1162 (1971).
- 56. Kingery, W. B., Francl, J., Cobe, R. L., and Vasilos, T., Jour. Am. Cer. Soc. <u>37</u>, 107-110 (1954).
- 57. Slack, G. A. and Newman, R., Phys. Rev. Lett. 1, 359-360 (1958).
- 58. Reichardt, W., Wagner, V., and Kress, W., J. Phys. C. Solid State Phys. 8, 3955-3962 (1975).

- 59. Uchida, N. and Saito, S., J. Acous. Soc. America 51, 1602-1605 (1972).
- 60. Coy, R. A., Shompson, C. W., and Gürmen, E., Solid State Comm. 18, 845-847 (1976).
- 61. Street, R. and Lewis, B., Nature <u>168</u>, 1036-1037 (1951).
- 62. Tylecote, R. F., J. Iron and Steel Inst. 196, 135-141 (1960).
- 63. Srivasta, S. P., Srivasta, R. C., Singh, I. D., Pandey, S. D., and Gupta, P. L., J. Phys. Soc. Japan 43, 885-890 (1977).
- 64. Nielsen, T. H. and Leipold, M. H., J. Amer. Ceram. Soc. 48, 164 (1965).