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0. Introduction

The main thesis of the present paper is to view the martingale central limit

theorem as basically concerning summands which tend uniformly to zero, and with

squared variation (sum of squares) converging uniformly, and then to reduce

the most general situation to this case by (random) change of timescale and by

truncation. We think that this both appeals to the intuition and leads to quite

efficient proofs. The purpose of the paper tius is to give a selfcontained expo-

sition of the basic martingale central limit theory, using this point of view,

providing as simple and efficient proofs as possible. A second assertion we

would like to make is the usefulness of stochastic processes point of view:

that it is the functional limit results which are important, and not only their

one-dimensional versions. There is, of course, a cost associated with this: one

has to learn at least some elements on convergence of distributions on function

spaces, but the reward then is both better understanding and easier and shorter

proofs. One further feature of our development below is an emphasis on the

squared variation proce;s and a systematic use of Burkholder's square function

inequality. In particular this makes possible a very easy proof of tightness,

which in other approaches often requires the main effort.

The central limit theorem for discrete parameter martingales represents one

important stage in the development of central limit theory and has in the last

few years reached what seems to be essentially its final form and has also proved

its value in many applications to statistics and applied probability. The theory

has also been recast into the language of "the general theory of processes" of

the Strasbourg school and been extended to the continuous parameter case by the

work of Rebolledo [15,16], Lipster and Shirayev [13,14] and others. This has led

to a very satisfying formulation of the results and a rather complete extension

-. . - -. ++ • 4 + - +T3h
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of the theory. Nevertheless it may perhaps also be said that the essential dif-

ficulties are present already in the discrete case and that the basic continuous

parameter results are rather easy to obtain from the corresponding results for

discrete time, as shown by Helland [9].

'.xcept for the multidimensional result, Theorem 4.3, which is only a small

step away from the one-dimensional results (although it seems quite useful for

applications), none of the theorems of this paper is new. However, almost all

the proofs are new (the main idea was mentioned briefly by the present author in

[19] and was developed in some detail in mimeographed lecture notes fro)m the

Department of Mathematical Statistics, Copenhagen University). In particular

we would like to point out Lemma 2.5, which is a versatile tool and which is new

formulated in the present generality, although various special cases have been

used by many authors.

A related exposition, which starts, however, by assuming known a basic cen-

tral limit theorem for bounded martingale differences is given by Helland [9].

A further rather different exposition which uses the Skorokhod embedding is

contained in the recent book by Hall and Heyde [8]. Both expositions contain

extensive lists of references and accounts of the development of the subject, to

which we refer the reader. Later papers of interest include work by Klopotowski

and colleagues [2,12], the articles by Lipster and Shiryaev mentioned above, and

a series of papers by Jeganathan [10,11]. The approach in [11], which in turn

was partly inspired by Ros6n [20], is somewhat related to this paper and was

made independently of it.

The plan of the paper is as follows. Section 1 contains some notation, and

in Section 2 the results we need from other areas (functional limit theory and

martingales) are collected, and the basic truncation lemmas (Lemmas 2.5-2.7) are

7'*9



obtained. The functional central limit theorem for martingales is then proved in

Section 3, starting from scratch, and finally Section 4 contains a somewhat brief-

er discussion of one direction of extension of the results, to several dimensions

and to convergence to mixtures of normal distributions.

1. Notation

Throughout, we will consider doubly indexed arrays {Xnj, B ; j l. n-lj

where the X .'s are random variables or, in Section 4, random vectors, and forn,j

each n, {5B } 0 is an increasing sequence of sigma-algebras, i.e., 8
nj j=l n i- n,j+1

We will never assume that the Xn j Is are obtained by linearly renormalizing a

single sequence of random variables since that is not the case in many of the ap-

plications but will sometimes assume that the sigma-algebras are nested, i.e. that

B cB .n , for n,j

n,j- n+li

which seems to hold in most cases of interest. Possibly by going over to a pro-

duct space, we will assume that all X 's and B 's are defined on the same
n]n,

probability space (0,3,P). The array is said to be adopted if Xnj E Bn. for

j>l, nl, and it is a martingale difference array (m.d.a.) if in addition

tX ,B j ; j=l,2,.. . is a sequence of martingale differences, i.e., if

EIX Il < - and E(Xn I Bn.) 0 for j:l.
n~ nj+l1 8n,j)

A stochastic process {T(t)}, defined for t in some interval I is a time-seale

if it is nondecreasing, has left limits and is right continuous. A sequence {T nn

of time scales is adapted (to {B nj}) if for each n and tel, T n(t) is a stopping

time with respect to 8 n,, Bn, 2 *..

Let Sn(t) [t] X be the [t] th partial sum in the nth row, and let
nflj

..

S.,, ,A
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{8(t); tEl} be a standard Brownian motion. The problem we are concerned with is

convergence in distribution of time-scaled row-sums S OT to a Brownian motion,n n

or more generally a time-scaled Brownian motion. Here of course S OT is definedn n

by Sn OT n(t) = Sn (T n(t)). For brevity of notation we will usually write SOT1 for

S at O and E (-) for E(.IIB . ) (with Eo=E) when taking expectation of variablesn fl 1 n,i
th

in the n row.

A partition of an interval [O,T] is a finite set of points, O=tot < ...<t =T.

For a given partition, we will write

(1.1) A() = te - t , A = max A()
1!l_<k

ASOTn(C) = SOTn(t) - Srn(tl)

k
VSOT n ( t)= sup I I Xn,jI

T n(t/_l1)<k-<T n(t/ j=T n(t f_1)+I

Further, indicator functions will be written as 1B or 1{ }, i.e. 1B( ) is one
cB

if WEB and zero if WEB, and similarly I{ I is one if the event in curly brackets

occurs and zero otherwise. Finally, sums with u,per limits which are not integ.ers

are defined by l = Y[x] i.e. summation is up to the greatest integer whichare~ ~ dei=db1 ~

does not exceed the upper limit.

2. Prerequisites: Functional Limit Theorems, Martingales. Approximation

For easy reference and because one purpose of this paper is to make a complete

exposition of the martingale central limit theorem, we will in this section list

the results on convergence in distribution and on martingales which arc needed

for the proofs. The section furthermore contains three lemmas which are essential

for the truncation and approximation procedures we will use.

-L -- '- r -.- ' .. ... ... . .
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,Let X, (X n he random variables with values in a complete separable metricn

space (S,p). With standard terminology and notation, X converges in distrihii-
n

tion to X, Xn * X in (S,P), if h(X n ) d* h(X) in PR , for all functions h: S - PR

which are bounded and continuous almost surely with respect to the distribution

P d
of X, and Xn converges in probability to X, X n  X if 0(X ,X ,0. If X has a

standard normal distribution in IPd we also write convergence in distribution as

d d dXn d Nd (0,I) and for d = 1, as Xn d N(0,1). Besides P , d, we will be inter-

ested in the metric spaces D[0,T] and D[O,*°) of functions on [0,T] and on [0,00)

which have left limits and are right continuous, with metrics described in [3,21]

and in the subset D0 [0,1] of nondecreasing functions in D0,1]. Convergence in

distribution of vectors will throughout be with respect to the relevant product

metric.

The first result is a criterion for convergence in D[O,o). It can be obtained

as an easy special case of the results of 121, Theorem 2.8] and [3, Theorem 15.5

amended with the argument of Theorem 8.3].

Proposition 2.1. With the notation of (1.1), suppose the following two conditions

hold:

(i) (tightness) for each positive T and c, there exists a function f such that

for any partition of [0,T],

k
limsup I P(vSOT n(Z)-) - f(A)

n-- f=j

where f(A) - 0, as A - 0, and

(ii) (finite dimensional convergence) if {k In is a sequence of integers andn n=1 asqec fitgr n

X a continuous stochastic process with SOTk 4 X in D[0,m) as k , it follows
nthat X has the same finite-dimensional distributions as B.

Then SoT d B in D[0,-), as n -n

The next results, on "random change of time" and approximation are phrased

" 1 t..dts
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in terms of general processes Xn Yn and Y in D[0,o ) or D[0,l1 and timescales {i n}.

Proposition 2.2. (i) Suppose Y d Y in D[O,-) and that {'r (t); t[0,1]} are
n n

timescales such that

(2.1) T (t) p T(t) as n

for each tE[0,1], where T is a non-random continuous function. Then Y oT d YOT.
n n

(ii) Suppose Y d Y in D[0,1] and that {X n are random variables in D[0,1], suchn n

that

sup IXn(t)-Y(t)1 p 0 , as n -
O!5t<l

Then X d Y in D[0,1].
n

Proof: (i) Since pointwise convergence of increasing functions to a continuous

d
limit implies uniform convergence, (2.1) implies that Tn d T in D 0[0,1] and the

result then follows from [21, Theorem 3.1].

(ii) See [3, Theorem 4.1].

From martingale theory we will use some simple consequences of the optional

sampling theorem (Proposition 2.3 below), the extension of Kolmogorov's inequality

to martingales (Proposition 2.4(i)) and one half of Burkholder's square function

inequality (Proposition 2.4(ii)). All of this belongs to the standard fare from

a first encounter with martingale theory, except perhaps the square function in-

equality. An elementary (albeit pedestrian) proof of this latter result is

sketched in the appendix for the special case we shall need--an elegant proof

for the general case is given in [4].

Proposition 2.3. Let {Xj, B; j_>l} ba a sequence of martingale differences, let

T 5T' be stopping times, and write BT for the pre-T-sigma-algebra. Suppose that

rT'T2E To X.2 < OD. Then

E{X Xjig I = 0
j=T+I
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and
T

t  
T 2E{Q x.3211 T1  .: x.Il B )

j-T+l "1 Tj=T+l

Proposition 2.4. Let {X.,B.} be a martingale difference sequence and let T51'

he stopping times. Then

(i) for any integer n and real numbers p>l, c>O,

k T'Al

P( max I X.I sr) -L El I xj1p

T<kT'An i=T+l 3 EP j=T+l '

(ii) for p>l and C a constant which only depends on p,

El * x lP < CE( I Xi)p2
J=1+l j=T+l

and

(iii) P( max )' X.i]E) -f-E( X
r<k-T' j=T+l "P'-+l

Proof: (i) is the extension of Kolmogorov's inequality applied to the martingale

{yT'Ak X n= and (ii) is one of Burkholder's square function inequalities.
.iJ=+1 i k=l

Further, combining (i) and (ii) we have that

k r' An

p( max kj X1I -c) ! C F( A X2) p / 2

T<k<-T'An i=T+1 3 - L " 1 '

and (iii) follows by letting n- .

As will he seen, it is convenient to have an easy means of comparinq 1he size

of a sum of positive variables with the sum of their conditional expectation. In

the present context, special cases of the following result hcs been used by

several authors, but the result itself--and its easy proof--is believed to he new.

Lemma 2.5. Suppose {Zn,ip B . is an adapted array of positive random variables'n,i

and that r is a stopping time with respect to 8 8n2' for each n. Then
n n,l'n,' "

T
n n

i-- FJ-I(Z 1 ) 0- Z . 0
j'rj=l n
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and

(ii) if { max Z is uniformly integrable thenl j< T nn,j n=l
n

T T
n n P

=1 i= Ej-1 n,.

Proof: (i) For any stopping time vn, letting N tend to infinity in the identity

V AN N

F y - = Elfi V }Z
n,1 .n n,j

N
= E{I{j< }E(Z 1n 1)

.

j=l n,J .i

V AN
n

-E : E(Z .1-1 nji n'j-

shows that
'On  V)n1: -7n~ E E . (Zn-~ ". = l )-1 n,j

Let
k

= inf{k>-l; Y Ej.l(Zn,.j)->l.1
n j=l

V = (v .-\T).r
n n n

and note that v'-l , and hence V , is a stopping time, and clearly P(V n# )x O
n n n n

T

sincej=l l(Zn) nj 0. Further, since v n!Tj= -n,j n1 n

v n

E P0, as n-.1=1

V

and 0 n n (Zn)51, since v 5 v'-1, so the sum is uniformly integrableJ1j-l . j n n"

and hence

ACV'
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VV
n n

E n,j = E j E. 1(Z n j 0 as n -i=1 .1 -

Thus, for any r>O,

T x
n n

P( ). Z .>C) - P(T ;vI) + P( [ Z .:c) + 0 as n
= n,j j=l n,j

using Chebycheff's inequality for the last term.

(ii) Define in this case
k

inf{k-l; z' z .>1}
n =1 n,

V %)'ATn n n

so that V again is a stopping time, and note that 0 n Z . 1 + max{Z ."n i a=p n,j n,

1-LJ!5 }. By the assumption this shows that n Z is uniformly integrable,n = n,j

and the proof can then be completed in the same way as part (i).

The proof of the following frequently used result is left to the reader.

Lemma 2.6. Let {X } be real random variables. Thenn

(M X P 0 if and only if there exists constants c - 0, such that P(X >Pn n n n

as n , , and

(ii) {X } is tight if and only if X /a p- 0 for any sequence {a I of constants
n n=l n n n

such that a x as n -0
n

Combining Lemma 2.6(ii) and Lemma 2.S, and noting that {max{Z ." li<i1 }
nj n n=l

ik uniformly integrable implies that {max{Z ./a ; lj5T I) is uniformly inte-
n. n n =l

grable if a ' leads to the next lemma.n

Lemma 2.7. Let tZ .,j8 . and {T n be as in Lemma 2.5. Then

M(if (j nI Ej_(n.)}n 0 is tight then 1 Z is tight, and(i i {j l j-(n,j n=l is1 t ht he n,} n=1

T
(ii) if {max{Znj; l<j-T,, nO is uniformly integrable, and { j= Znijn~ i is

-- n nl j=1 -
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T

tight, then { n E Z 0 is tight.'~J=1 J-1 n,J n=l'

3. Functional Central Limit Theorems for iNartiraqales

Perhaps the most intuitively appealing explanation of the martingale central

limit theorem is the L6vv-Doob-Dubins-Schwarz characterization of the Brownian

motion--a martingale which has continuous sample paths and squared variation

equal to the identity is necessarily a Brownian motion (see [6]). (However.

this of course goes both ways: The martingale central limit theorem on the

other hand throws light on the characterization, and it can be used to provide

a simple proof of it). We start by proving an approximation version of the

characterization, informally that if the jumps are uniformly small and the

squared variation is uniformly close to the identity, then a martinqale is ap-

proximately a Brownian motion. In the proof of finite dimensional convergence,

we use ideas borrowed from Kunita and Watanabe's proof of the characterization of

Brownian motion but could as well have used the customary proof of finite dimen-

sional convergence, as e.g. in [8], which simplifies considerably in the present

situation. However, the present proof seems to tie in better with our point of

view. Once this result has been proved, the most general central limit theorems

for martingales follow simply by random change of time and truncation.

Lemma 3.1. Suppose X n,JBn,j ; j_!l, n>l} is a m.d.a. and Tn (t); tWO1 adapted

timescales, with Tn (0)=O such that there exist constants c n -0 satisfying

Tn(t)

(3.1) IXn T £ x 2  t I E
nj n j=l n,j n

for all j,n>l and t-0. Then

SOT d B , as n o, in D[O,o).n

- - .-
~--~--



Pr'(of: llsin, the notat ion of (1 .1) and of Proposition 2.3 we will verify t he

hypothesis of Proposition 2.1.

(i) Tightness: By applying in turn Proposition 2.4(iii) for p 4 and (3.1)

we obtain that (t )

n~l C=1 4 j=T n(tt 1 )+l nj

k 
2<_CY (t -te-+2n)

E Z=I

Since
k k 2

limsup (t-tz12En) = (tz-tt- 1)n- ~ =

<AT

this proves tightness.

d(ii) Finite dimensional convergence: We have to prove that if SOTk d X as n- ,
n

where X is continuous, then X has the same finite dimensional distributions as

B. For simplicity of notation, we will assume that kn=n, so that SOT nd X. Then n

general case is then obtained simply by changing n to k in the computations he-n

low. By the continuity of X, SOT(t) d X(t), for tO, so that

iUSOT (t) -EeiX (t)
Ee n E= U (u),s,

for each u and each t>O and we only have to show that c$t (u) is the characteris-

tic function of B(t) and the corresponding fact for the k-dimensional charac-

teristic functions.

Again with the notation of (1.1),

(3.2) e iuSOTn (T) k iuSOTn(tz ) iuASOTn (t) )
e=l

k iuSoT (t ) 2-
-e {iuASoT (Z) u f() 2Z=l n 2 On n

• l
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where, by Taylor's formula

3 k
Irn I u - IASOTn( )I

Thus, using first Proposition 2.4 (ii) with p = 3 and then (3.1)

Cu k Tn 2t/ 2Elm n- 3' X E( x n,)3/l j=T n (t _) +1

Cu 3 k / 2

and hence, fer K = C u 3/3!,

(3.3) limsup Eirn I KA1/ 2 T

Now, with the obvious identifications, the hypothesis of Proposition 2.3 is

satisfied, and hence
k iuSo'rn (t/) k iuSOTn(t

(3.4) E ) e ASoT (1)= Y E{e n/-1)E(ASoT (t) IIn,T )
=t=1 n n(t )

=0

and

k iuSOTn(t/1) 2 k iuSOTn (t fl)2
(3.5) E X e ASOT ) = Ere E(ASOT n(R) JBn ( (

k iuSOT n (t- T n(t./) 2: Efe t/lE( x X2  JI

j n(t.l)+ll n -))

k iuSOTn(t/_ 1)
= Ee A(1) + R
t=1

where

(3.6) IR n 1<!5 El x X2 . - A(f-)
1 j:Tn(t) 2+

I , I . i
- - - - "-.. .-.- : " !i ,. - i l .]t lD i
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!5 k c -0 , as n -n

by (3.1).

Taking expectations of both sides of (3.2), inserting (3.3)-(3.6), and letting

n -> now proves that

2 k 1/2
[ (U) - I 1 L X - ( u)=1

T 2 & It- 1

Since the partition 0=t 0 <t 1<... <tk = T is arbitrary, this shows that t(1) is

Rieman integrable in t and that

2
q(U)  U = T --- 0 t(u ) d t

Since 40 (u) = 1, the only solution to this equation is
2

u
2 EiUB(t).

t(u) = e -t eiB)

To conclude the proof it only remains to prove the corresponding result for the

multidimensional characteristic functions. However, if uSOT n(T) is replaced by

fT u(t)dSoT (t) ' where the function u is assumed to be piecewise constant, with

only finitely many jumps, then the same calculations show that

E exp(ifT u(t)dX(t)) = exp(-l/2.T u(t)2dt)

= E exp(ifT u(t)dB(t)) F1

The first step in weakening the hypothesis of Lemma 3.1 is concerned with the

second part of (3.1).

Lemma 3.2. Suppose {X n,B n,j } is a m.d.a. and {T n(t); tE[0,1]} are timescales

such that

Xn  I 5 C n 0 , as n + Q, and

(3.7)

T n(t)n 2 p

Y. . + T(t) as n +

-n- j

-.. . ..- t * , - _. -: . ._:. . . .i _ ... . .
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for all n,j-!l and tc[0,1], where T is non-random and continuous, then

d
(3.8) SoT n B , asn , in D[O,).n

Proof: Define, for tO

t
Tn = X2

j=l

n t) = inf{s>o; j (s)>t}
n t)a.s.

(where we, without loss of generality, assume that nn (t) as t so

that {n } and In- are timescales and nn1 in addition is adapted. Clearly
n n

-1I
n(t)
n X2 2

jYl n n

and hence S 0n 1  B in D[O, ) , by Lemma 3.1. Since furthermore {n OT n } are

ne n n

timescales, and

T n(t)
X2 P

n nO (t) = X + t as n 00
j1= nj

for tE[o,l1, by assumption,Proposition 2.2 (i) implies that

-1 dSno or nO T  BOT , in D[O,l].nn n

It is easily seen that moreover

sup ISOt(t) S Or- 1orl OT (t)I -< sup ISn(k)-Sonrl 
1 on(k)I

0-<t-<l n nn nnk_>l nn

!5 6 Go ,as n - c,

and, by Proposition 2.2(ii), this proves (3.8). F1

In a serse, Lemma 3.2 says all there is to say about the central limit theorem

for martingales, since if SoT converges to Brownian motion, then the maximum of the

n.
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X .'s has to tend to zero, which (more or less) leads to the first part ofn , .1

(3.7), and then the second part, with T(t) = t is minimal. However, we will

derive further conditions, which may be easier to check. The first result

applies not only to m.d.a.'s, but to arrays which are asymptotically close to

m.d.a.'s in an appropriate way.

Theorem 3.3. Suppose that {X n,jB nj; jel, nl} is an adapted array and {T n(t);

tf[0,1]1 are adapted timescales such that, for some a>0,

T (t)

SIEj-1(Xnjl{IXnj _ a})] P 0
j=l

(3.9)
T ( t ) 2 Pn j 2  T(t) , as n -o

j=l n,j

for tc[0,1], where T is non-random and continuous. Then

d
(3.10) SOT + BOT , as n -o , in D[0,11.n

Further, if (3.9) holds for one a>O, then it holds for all a>O.

Proof: It is easily seen that the second part of (3.9) implies that

max{lX nj1; l<-j-n(1)} P 0, and thus, by Lemma 2.6(i), there exist constants

C + 0 such that
n

(3.11) P( max IX n,j > Fn) n 0 , as n -o
1-<j-(1) n

Hence
T n(1)

SIXn,j Il{a-lX j> 0  asn ooj-l flJ n,j n'

since all the summands are zero on the set { max IX nj c }, and then, accordinglfj-<Xn(1)nj nthn acodg

to Lemma 2.5(ii),

T (1)
n

(3.12) Ej l(IXnjll{alXniI>En}) I 0 as n-
j -

-1

" "' : .* , ..
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Thus, using the first part of (3.9),

T (1) T (1)
n n

(3.13) jZ I._ 1(in, jl{IxnY JI1-} j 1 E-I (n, jlf{IXniIla}) n

T (1)
n
+ E. (X {Il{a_>X *I> n})
j= - nj nj

P 0 , as n-*o

Now, put

x' = x l I f I x x - ,n,) n,J .~ n n,j n.3 n~j

T (t)n

Y. = - E (X' .) S'OTT (t) .1 Y,1,) nj j-1~ j s'T()-' - .' nj-- n,)

Then by (3.11) and (3.13)

Tn(l) T (1)

Sup Is (t) - sTo(t) -I x-j I + IE
_nj 

= l - -(X , .)

PP*0 , asn+ ° ,

and thus, according to Proposition 2.2(ii), the conclusion (3.10) will follow if

we prove that TOTn satisfies the conditions of Lemma 3.2. Clearly {Y ,Bn,) } is

a m.d.a., and IY nj1 !5 2En, so it only remains to be shown that

T (t)
n 2 P

(3.14) Y Y T(t) , as n-*
j=l n,]

for all tE[0,1]. Here

S. . -, ". . .
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n(t) 2 n(t) n (t) n M

where

T yn (t) .1 2t 22 t) ( V

Y Xnj2 Y ~ 2

)-I"' (X,. -= [ X2 .
j=l j., n 'j j-1 n} +  j_( ,j ,

p

since the X" Is are zero on { !lX Jx .!5F }. Further, by (3.13),
nlj ls]j (1) ni,])

T t(t) Tn(l)

n_ X E (X' .) 2 !9 Y
j ~ l n, n j=l n -l(ljj 1

P0 , as n-

and similarly

T (t) 2 (1)

I  nE -l nj) < J E i- nX,

J=1 j-I lj) - n j=lj-1

p
+ O , asn ,

by (3.13) and thus (3.14) holds.

Finally for the last assertion of the theorem, if a<a', say, using that

max{j I ,jj l! j!T n(1)1 0, we have

T (l) TF (1)

j- nj nj j- nj nj,

T n(1)

5 Y E 1(X .1a<[X .ksa',)
j=l T,

0 as n

by the same argument as for (3.12).

Finaly fr th las assrtio oteterm fa~' auigta

-a~~~[ 1<-T() PO, we- have

T (])In~V
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As an easy corollary, we will now obtain conditions which insure that norminl

with sums of squares and with conditional variances is asymptotically equivalent.

Corollary 3.4. Let {X n.,B n j } be an adapted array, and T n(t); tE[0,1]} idapted

timescales.

(i) If

tn(1)
Tn2 p

(3.15) E. (X {Ix I>6}) +0 , asn cc , V>O
j=l nj nj

and if either {Tn (1) E l (x2 , )) 2 or (1) 2 is tight (which in par-
_= E. 1 (X. n=l or t j~l Xnj n=1

ticular holds if either sum converges in probability) then

T(t) T (t)
n 2 n2

supf Z x.- Ej (X .) 0 as n--O t l j=l n~ j j=l j-1 n , i

(ii) The hypothesis (3.15) is equivalent to the assumption that (3.15) holds for

one fixed c>0, and that max{IX nj1; l<j! n(1)) p 0.
'Tn(1) n-2 P

Proof: (i) Write X nj = X njl{IX nj1>1). Then by (3.15), )j;l E (X1 ) n. 0

Tn(1)2 P
and it follows from Lemma 2.S(i) that jj=l nj - 0, so we may in the proof

assume that IX n,j1 ! 1, for n,j>_l.

T (1) T(1)
Then both2 E. lXj} and { 2 0 are tight, by the assump-

The boh'{j~lE j1 (Xn , j n = I n pij1 X n j n=l

tion combined with Lemma 2.7. Further, (3.15) implies that

(3.16) M max E j_(X2 P 0 , as n ool-<1!j- n (1)n

and by Lemma 2.5(i), that

n (1)

n x Il.xI>F-} - 0 as n -V c ,V>Onn, , , ,

which in the same way gives that

I .. ;
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p
(3.17) Mn = max X -P 0 , as n -on j5J 1 n (l)n j

2 2

Cle'rl, {Y. - Ej1 X n,j  is a m.A.a. with IY n,j1 5 2, and since

T Mt T (1) ()n n n

Y, !5 2{ y X4 . + Ej(X2  ) 2}

,l j=l n,)j j 1 n,

T (1) 2 i (l)
" 2

2M n + 2P n Ej a(X n, )
j=ln j=l

0 , as n

by tightness and (3.16), (3.17), and the Corollary then follows from the theorem

(with T(t) = 0).

p
(ii) From (3.17) follows that (3.15) implies that max{IX n,j1; ljT n (1)) p 0.

The other implication follows in the same way as the last assertion of the theo-

rem. F1

We can now prove the general functional central limit theorem for martingales.

Of course, the most important special case of it is when T(t) -t, and the limiting

process is an ordinary Brownian motion.

Theorem 3.5. Suppose {X n,jB n,j  is a m.d.a., {Tn(t); tc[0,1]} are adapted time-

scales and T(t); tE[0,1] is a continuous, non-random function and suppose that

one of the following three sets of conditions holds:

E max IX .1 0 , as n.+o
l j T ( 1 ) n , j

(3.18)n

T (t)

Xn . T(t) , as n , for tE[0,l]
j= ,

or

-" " -9." - 1 1 1-- ... .......
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n(l)
2

E. (X.il{IXn,)c} > 0 , as n -V- , V_>o
j=l1 n,) nj

(3.19)

I (t)

I E (X 2) P
- t) , as n , for tE[0,1]

j=l j-1 nJ

or

(3.20) (3.19) holds for one c>0, and max Ix j p 0) as n o1
1j!T n(1) n

Then

SOT d BOT asn-*c , in D(0,1]n

Proof: Assume first (3.18) is satisfied. Then . max IX. is uniformlyl~i<-T (1) n,.i nfl isuior

integrable and 
n ,

T (1)

Y. IX n,jil {X j1>1 -* 0 , asn -

j=1 nj

Since {X n j } is a m.d.a., it follows, using Lemma 2.5(ii) that

T (l) T (1)n n

Y IE. 1(X .i{Ix .I })l Y jE Cj (X ilnIX I>0)tj=l 1 jj=l

n(1)
5 ) .E j 1 (IX _*JI1I{IX nihl*>1)

+ 0 , as n- ,

and thus the conditions of Theorem 3.3 are satisfied, and SOT - BOT , as required.

Next, assume (3.19) holds. By Corollary 3.4, it follows that

.. 0,
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T (t)

n X2 . 1 (t) as n ,' , for tc[O,11i-I n,i

and, again using that {X .} is a m.d.a.,n,1

rn(1) In(1)

ILE. (X.l{nIX. <11) I .{I E>(1)l
j=l j-1 n,j n,j 1 n,i ni'

T (1)2

j=l -1 (X 
n,j

P0

by assumption, so again the conditions of Theorem 3.3 are satisfied, and

SOT d BOT.
n

Finally, by Corollary 3.4(ii), the conditions (3.19) and (3.20) are equivalent,

so the result holds also under (3.20). F2

Corollary 3.6. Suppose {X n,j ,Bn}. is a m.d.a. and for each n, Tn is a stopping

time with respect to Bn 2' and suppose one of the following three sets

of conditions holds:

E max lX .1+ 0 as n ol_<j<5,[ n j'
n

(3.21)

T

n I . 1 as n- ,
i=l nj

or

T
n 2 P
L .E (X .1{IX .l>6}) 0 , as n , VE>o

j=l n j

(3.22) T
n E 2 P

LE.l - X .) (1 , as n c,
j=l

- - -. h. q s wf
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o r

(3.23) (3.22) holds for one r;>0, and

P
max !X n 1 0

n

Then

T
n

(32) X. d N(O,l , as n.j l n ,.J,

Proof: To prove the result assuming (3.21), define adapted timescales

{(t) ttI[O,i =1 (similar to ?n (t) in the proof of Lemma 3.2) by

k I
n M inffk; Y X' .>t}AT for OCt<l
n nn

T ~ nn,

It is easily seen that {T n(t)} satisfies the condition (3.18) of the theorem (cf.

the proof of Lemma 3.2), so in particular SOT (1) d B(l), which is Just anothern n

way of writing (3.24).

The proof unde- (3.22), or the equivalent condition (3.23) is similar; one

just has to replace X.2 by .) in the definition of (t).
-n,j bd

We conclude this section with several comments on the results.

(i) In reasonable circumstances the conditions are also necessary for the func-

tional martingale central limit theorem. In fact, if {max{jX n,.; 11 (1W))

is uniformly integrable, and if "T takes all relevant values" (see 1191 for jn

definition--this holds in particular if T n(t) only has jumps of size one, as

e.g. when T (t) = fnt), then SOT d BOT implies (3.18), see [19]. Easy examples
n n *

show that neither uniform integrability nor "T takes all relevant values," can he

entirely dispensed with in this statement.
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T(In )

Simi larlv, if I imsup F' X- then SOT implies (3.19) and the eciiii-
"- - = nJ 1l

valent condition (3.20), see 171 1191. Furthermore, {max{Ix I 1 lo<- ( i''
n,. " n n=l

then is uniformly integrable, and (3.18) follows from (3.19) and (3.20) by Corol-

lary 3.,1.

(ii) One important special case of the theorem is the degenerate one. when

(t) 7 . From the theorem, if {max{IX I : l i T I is uniformly integrahle,
n J " n n li

n .2 p

-Ind P n, for some sequence T Il of stopping times, then
- n n nii~

k
i il n , .i P 0 n -I -, sti- I ',,s

1' k T i= 1n ,.
-K ;T11 "

:ald conversely, if (3.25) holds, and {max{IX I ! 'T is unifor-lv inteara-

me, then y n X2  0.
I n i

ip

similarlv, if j (X "
) 

P 0 , then (3.25) holds, and conversely, (3.2S)
J=1 .j-1 j~

and limsup E X < - implies that 2i Ei-x 2 p
- 1 n,J _1  0

(iii) If the Xn, 's in each row are independent, and the T n(t)'s are non-random,

then for Gn,j = T(n, .... )Xn,j) the second part of (3.19) just says that the

T(t)2

that the normalization is such that V( n Xn.) 2 T(t) , and the first part is

j=l n.i

J1indCh.ri's condition.

(iv) There is another important special case in which the conditions of the theorem

are particularly easy to check: if the X n,J s are obtained by normalizing a single

stationary ergodic sequence ... X_l XO, X1 .... I

x - E(X. II 8 1)

2 - -
n , j -

with B. = Bn. = o(..., j.1 , X.) and u2 = E(X. - E(X i Jj1)) assumed to be
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strictly positive and finite, then, for r n(t) = [nt], it follows at once from

the ergodic theorem that (3.19) holds and hence

[ntl
7 X - E(X. 11 1 /i n  d n B(t)
S= 1 . 8.i -l~'~ *cBt

In nonstationary cases, the conditions of the theorem often have to be checked

by computing higher moments, e.g. the first parts of (3.18), (3.19) follow if

T (1)
F Xl - 0 , as n - for some c'.2,

S n, J
j=l

and the second pa-ls of (3.18), (3.19) may be obtained by computing means and

variances of the sums on the left hand sides.

(v) Throughout, we have (implicitly) assumed that r (1), and hence T (t) for t.-I

is finite a.s. However, a small further argument, using (ii) above shows that

this can be dispensed with, and that the theorem (and the corollary) holds also

if rn(1) (or T n) are extended stopping times which may be infinite with positive
'tn(1)

probabilities provided y. X. converges with a probability which tends to

one (this is automatic under (3.19), (3.20)).

(vii) It is obvious from the proo' of Drorosition 2.2(i) tbot th second n",t
T H d

of (3.18) can be weakened to requiring that *n1  X2 d T(') in D[0,11, with

T(-) non-random, but possibly discontinuous, and similar remarks apply to (3.19)

and (3.20).

4. Mixing and Multidimensional Processes

In this section, the convergence in the previous results will be strengthened

to RAnyi-mixing--which in turn will make it possible to remove the condition that

T(t) is non-random--and multivariate versions of the results will le obtaiiied.

- - r-_,. - *. - -4. .
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hhi Io the purpose of the previous sections is to provide complete proofs,

starting from scratch, of the basic results of martingale central limit theory,

the intention of the present section is only to indicate one possible di rect ion

for developing the results further--examples of other directions being provided

by limit theory for continuous parameter martingales and diffusion approximations--

and we will accordingly give a more sketchy development, sometimes leaving details

of arguments to the reader, and referring to results from other areas as they are

needed, rather than explicitly collecting them at the beginning.

Some further notions are needed for the results. As in Section 2, let X,

fie random variables in a complete separable metric space (S,p), and in
n n~l

Additim asumC that all the X 's are defined on the same probability space

N ,8.). Then 1 s.\z~ -min£ (or just mixing) with Zimit X, X d X (mixing)

it \ X in (S,1), with respect to the conditional probability P(.1B), for any

BB with P(B)>O. Further, {X n is Rdnyi-stable (or just stabZe) if X convergesn n

in distribution to some limit, with respect to P(.!B), for any BES with P(B)>O.

Thus a mixing sequence is stable, and conversely if a stable sequence has the

same limit with respect to P('IB), for all B, then it is mixing. Loosely,

speaking, a sequence is mixing if it converges in distribution and is "asymp-

totically independent" of any fixed events. Prominent examples of sequences

which are stable but not mixing is given by sequences which converge in proba-

bility, or almost surely, to a non-degenerate limit. Some indication of the use

and interest of mixing is given by the following result.

Proposition 4.1. The following three assertions are equivalent:

i) Xn X (mixing),
d

(ii) X X I as n , with respect to P('[B) for all BEB 0 with P(B)>O

for some algebra 9 0 which generates O(Xl, X2 ...), and

... j. .,j _ . , ", .
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(iii) if Y, {Yn= are random variables in another complete separable metric
n n=l 3
d dspace, with Y * Y, as n - o, then (X n,Y n ) - (X,Y).

Sketch of proof. Clearly (i) is equivalent to

(4.1) Eh(Xn)lB - Eh(X)P(B) , as n - - ,

for any bounded continuous function h: S - ]R and event BEB, and similarly for

(ii), with B replaced by BO. Clearly (i) implies (ii). Further, to an' C>O and

BEB there exists a B6 EB0 with P(BAB ) < c, cf. [51, p. 606, and hence if ]hi _ C,

then

fEh(Xn)I B - Eh(Xn)l B I cc

This is easily seen to imply (4.1), if Eh(X )I Eh(X)P(BE), for all >(. and
n B

hence (ii) implies that (4.1) holds for B E o(XlX . . The case of general

BE6 then follows by a further small argument, as in [1].

d
It is straightforward to see that (iii) holds if and only if (XnY) d (X,)

or any fixed random variable Y in (S',p'), and this in turn is equivalent to
(4.2) E h(X nl{YEB) d Eh(X)P(B) , as n - - ,

for any continuous bounded h; S R It and any Y-continuity set B, cf. 131, p. 2o.

Obviously (i) implies (4.2), and conversely, for an arbitrary event BEB, taking

Y = 1B and B (1/2,3/2), say, (4.1) follows from (4.2). Hence (i) and (iii) are

equivalent.

Additional interesting properties of R6nyi-mixing is that it is preserved

under absolutely continuous change of measure, and that it implies that the sample

paths fluctuate strongly, see fl,17,19]. Furthermore it should be noted that,

with obvious changes only, Lemma 4.1 holds also if mixing convergence is replaced

by stability. Using Pro-osition 4.1(ii) it is easy to see that the limits of the

previous section are mixing.
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Theorem 4.2. If the o-algebras {B . are nested , i.e. if B B Cn13 for

n ,j n~j n+l,)''

all n,j, then the conclucions of Theorems 3.3 and 3.5 can be strengthened to

dmixing convergence, i.e., under the same hypotheses, SOT ). Ba (mixing), and
n

similarly for Corollary 3.6.

Proof: the proofs under the different hypotheses are all similar, so we will

only give one as an example, say the first part of Theorem 3.5.

Thus, we will assume (3.18) holds. According to Proposition 4.1 it is suf-

ficient to show that if B is a fixed event in the algebra U n>l_.13j  . with

P B)>O, then

(4.3) Son d BOT , as n + o P in D[0,1]
n

with respect to P(IB). Since B c Un>l jl 8.nj , there are n0 ,J0 with

BEBnJ , and since the B 's are nested and increasing, it follows that
no, 0 0n,j

B E B , fornn , J J0
Tn(t)

Let XI X lf{j:j } and write S'oT (t) = Y.' X' . Then
n,j n,j 0 n j=l n,j

jo
sup ISOT n(t) - S'otn(t) - " I Xnj1 -0 max IX n.j

0 tl j=l l5j-5T n(1)

0 ,

in P-prcbability, and thus, as is immediately seen, in P(-IB)-probability. Hence

by Proposition 2.2(ii), (4.3) follows if

(4.4) S'oT d BOT , as n + , in D[O,1]
n

under P('IB). Clearly, {Xn j , Bn j ; n?n O , j:l} is a P('IB)-m.d.a.

E( max lX jllB) <- E max Ix 1
lj!T n(1) -l) U5jT n (1) n

+0 , asn o ,

*1 ,' , *, • 4
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and Tn(t) r ( t) j AT n(t)
I2 X2  O 2

j=lj= n,j j=l n,j

T T(t) - 0 T(t) ,

in P--and hence in P(IB)-probability, and thus (4.4) follows from the first part

of Theorem (3.5), applied to {X' I,, }.I

For the extension to several dimensions it will be useful to have a slightly

different description of the limit process BoT, and to emphasize this we will

change notation and will in the sequel write B instead of BOT. Clearly, B canIr

be characterized as the normal process which has mean zero, variance function

T(t) and independent increments. Further, of course, B = BoT makes sense alo

if T is a stochastic process, and, in particular, if T is independent of B, which

we will assume throughout, then BT can be described by saying that conditional on

t, B is normal, with zero mean, variance function 1(t), and with independent in-

crements. Similarly, given a nonnegative definite, nondecreasing matrix valued,

possibly random, function T(t) = (Tj,k(t); lj,kd), we define a d-dimensional

process B = (B(''''B (d)) by requiring that conditional on T(t) it is a normal

process with mean zero, variance matrix V(BT(t)I T) = T(t), and with independent

increments. We then have the following extension of Theorem 3.5. (Theorem .3

has the analogous extension--this is, however, left to the reader).

Theorem 4.3. Suppose {X , .} is a d-dimensional m.d.a., i.e., that Xn. -n,j' n,j nji

( (1) x(d)T.) are d-dimensional random vectors, such that {X(k )  I . is an,i'"' nj n,j n,J

m.d.i., for k = 1,2,...,d, that {t n(t); tE[0,1]} are adapted timescales, and

that T(t) = (Tj,k(t); ljk-.kd) is a continuous, possibly random, matrix function.

(i) If one of the following three sets of conditions holds,

E max Ix(k)lj - 0 , as n , , for k=l,...,d,
1 j < -n() n
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(4.5)

T n(t)

) .X P T(t) as n = , for tE[0,1]
j.1 n,) n,j

or

T n(1)

Y. E 1 ((X n) { {I I>)D 0 as n - . V E>0, and for kl, •d,
j=l

(4.6)
T n(t)

SE T ( n(t) as n , for tE[0,l]jl (Xn,jXn~j) , •~t
j=l

or

(4.7) (4.6) holds for one E>O, and max j (kjj P 0 , as n-,for k=l,...,d,
l j5T n(1)

and if in addition the a-algebras {B n,j} are nested, then

SOTn d B , asn-+ , in D[O,1] d

P dand the convergence is stable: If Y n* Y in (S',o'), then (SOT ,Yn) -• (B TY)

in 1)[0,1] d x S', where the distribution of (B TY) is determined by the require-

ment that B and Y are independent, and that the distribution of (T,Y) is the
T (.X T T),Yn )T

limit of the distributions of (j=I X n, n,J Yn) or of j=l Ej nj X ),Y),

respect ively.

(ii) If in (i) the limit T(t) is non-random, then the hypothesis that the B .'sn,3

d kare nested can be deleted, and it still follows that SoT n * B in D[0,11 , but

the convergence is not necessarily stable.

Proof: Suppose first that d=l and that (4.5) holds. Without loss of generality

we may as in Lemma 3.2 assume that the m.d.a. {X n,B n j  satisfies E maxiX n,j I-
yk X2 a.s .

!5

as and that as k c for each n. We will now proceed as

in Lemma 3.2, defining
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t
nn (t) = x

j=l n.3

(4.8)
-1

n (t) = inf{s_0; n (S)>t}

n- d

It follows at once from Theorem 4.2 that Son-I d B (mixing) in D[0,1]. Clearly
n

Theorem 4.2 can be immediately translated to D[0,T], for any T>O, and it follows

that Son-1 d B (mixing) in D[O,T], for any T>O, which in turn implies that
n

Son - I  B (mixing) in D[O,o), cf. [21]. By assumption,
n

T (t)
n 2 P

no OT X T -- (t)n n j=1 n,o

P
and if in addition Y n Y , then by Proposition 4.1,n

-1 d (B,TY)(Sonn , nnOrn, Yn) -(,r,
n n n

where B is independent of (T,Y). By a minor extension of Proposition 2.2(i), it

follows that

-1 d
(Son n onOT n ' y) d (B T, Y)

and then since

sup ISOT (t) - SonnIonnOTn(t)l maxjX I
0nt l nn<_j nj

P+0 , asn-

the desired result follows, that

d
(SOTn P d n ( ,

this time by a small extension of the second part of Proposition 2.2

Still assuming (4.5), {SOT } is tight also for d'l, since by what just has

been proved its components converge in distribution, and hence are tight. Thus,
d

similarly for convergence in D[0,1] as in D[0,1], it only has to be shown that

W' cot,
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the finite dimensional distributions converge. Equivalently, as is easily seen

by considering multidimensional characteristic functions, it is sufficient to

prove that

(4.9) f u(t)dSOT n(t) df u(t)dBT~t M

as n - , if u(t) is non-random, piecewise constant and with only finitely many

jumps (this is just the Cram6r-Wold theorem, [3], p. 49). However, clearly the

left hand side of (4.9) is a sum of martingale differences and the convergence

follows easily--though with some notational qualms--from what has been proven

for the case d=l.

[he proof of part (i) under the hypotheses (4.6) or (4.7) differs from the

above in only one place--instead of defining qn, nn1 by (4.8) it is convenient to

use

t
n (t) E (X )

n j=l -

Finally, the one-dimensional version of part (ii) is just Theorem 3.5, and

the multidimensional version is then obtained in precisely the same way as above. F1

CorLllary 4.4. Suppose {X n,jn,j } is a d-dimensional m.d.a.,' tn } is a sequence

of stopping times, and T = (Tj,k; l_<j,ksd) a, possibly random, matrix.

(i) If one of the conditions (4.5)-(4.7) holds, with Tn (1), T (t) replaced byn n

I and T(t) replaced by T, and if the a-algebras {B .} are nested, then

T
X dB as n - oo

j=l n.) T

where conditional on T, B is normal with mean zero and variance matrix T. If

furthermore T is strictly positive definite a.s. and the modified version of

(4.5) holds, then

Tn .n -/

( X T -1/2 nX d Nd(O,I) , as n
*-1 n,j n,j-
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and if the modified version of (4.6) or (4.7) holds, then

T Tn n

1 j F (X x T j))-l/ 2  n X Nd(0,I) as n
j=l j- n,j n, 1 n,j d

(ii) If T is non-random, then the hypothesis that the o-algebras are nested can

be deleted.

Proof: The first part of (i) follows from the theorem in a similar way as Corol-

lary 3.6 follows from Theorem 3.5, after reducing the problem to the case d=l by
T

considering linear functionals, =1I Uk jn x(i) (the Cram6r-Wold theorem). The
k J= n,J

second part is then immediate after noting that stability implies that, e.g. under

the modified version of (4.5), there is joint convergence,

T T

n T n dL xl n,j xn,j' I~ n, ' B

and hence

T Tn nT -1/2 n d -1/2
j=l n,j n,j j=l n T B T

d= N d(0,I).

The proof of part (ii) is similar.

Clearly the remarks (iii)-(vii) after Corollary 3.6 apply,

also to the present situation. Further, as a final remark, considering e.g. d=l

and Condition 4.5, the requirement that the sums of squares converge in probabil-

ity, and not only in distribution is only used to insure asymptotic independence,

so that the marginal convergences Xjn Xn,j + T and Son - 1 B imply joint con-

vergence
T n ( " )n n 1

-, -B)n l
(4.10) . X' .,SOTl ) (TB) as n oj=l n.3

where T and B are independent, and hence convergence in probability can be re-

7I
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placed by any weaker condition which still insures (4.10). One set of such con-

ditions is given in Theorem 3.4 of Hall and Heyde (8].

APPENDIX

Itere we will prove the simple special case p=4 of the Burkholder inequality

stated in Proposition 2.4(ii), which is the only case needed for this paper. In

fact the proof of finite dimensional convergence, p. 12, Z 4 also uses p=3, but

that might as well have been reduced to p=4 by first using the Liapunov inequality.

EJASOTn(e) 13 < {EASOT R)4} 3 / 4

n n

Thus let {Xj,BjI be a martingale difference sequence. We will start by as-

suming that Doob's inequality

k n
(A.1) E max Y X.1 - C'E( Y X.)

l<-k-<n jl jl

is known, and prove that then
n n

(A.2) Ec y X ) 4 < CE( X x2) 2

j= - j-l -

where (' and C are universal constants.

Let S(n) = IX and M(n) = max{I 1  k X1; l_<k!<n}. By the martingale dif-
. 3

3 E{S(j) 3 E4
ference property, S(j) X(Xj+ ) = 0, so that, expanding S(J+I)

+14
(S.) +X j) we have

ES(j+l) 4 ES(j)4 = EX4 + 4ES(j)X + 6ES(j) 2X12
j+1 5+ +1

nd thus, summing over j,

n n 3

(A.3) ES(n) 4 = EX. + 4 1 ES(j-)X + 6 1 ES(j-1)2X
2.

j=l i j=l i j=1 i

Inserting the obvious inequalities jS(j 7 )l S M(n) and IX.1 < 2M(n) into (A.3)

we obtain

0A 4) ES n)4 < (41+8+6)E(M(n) 2 Yx2
j=l -

"-tip
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Now, by the Cauchy-Schwarz inequality and by (A.1)

"' -' 4}1/2 il2i)

EM(n)" X' <- {EM(n)} 1 {E( X 2 ) /2

j=l J "1 "

n

{C'ES(n) 41/2 fE( X ) 2 1/21 ,

j4

and inserting this into (A.4) and dividing through by {ES(n) 4 1 2 we obtain (A.2

with C = 182C' (which is not the best possible value of C, cf. [4]).

The general assertion of Proposition 2.4(ii), for p=4, now follows easily by

replacing X,. by Xjl{T<X.<_'} in (A.2) and letting n tend to infinity, using

Fatou's lemma on the left hand side. (In fact the proof works not only for p=,l,

but for any even integer p.)
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