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Summary

-We study flow fields with concentrations of large vor-

ticity in spots or in slender tube-like regions, known as

filaments, by a combination of the method of matched asymptotic

analyses and numerical method.

When the background flow field is potential, the resul-

tant flow is a superposition of the background potential

flow and that induced by the vorticity distribution in the

vortex filament. The matched asymptotic analysis is used to

study the motion of the filament and the decay of the core

structure in regions where the core size is much smaller

than the curvature of the filament and the distance to an

adjacent filament. In the local regions (or in a time

interval) where a part of the filament merges with itself

or with that of an adjacent filament, numerical solution of

the time dependent Navier Stokes equation for the "local"

region has to be constructed. The asymptotic analysis pro-

vides the initial data and also the appropriate boundary data

for the numerical analysis. Numerical results demonstrate

that the trajectories of the filaments differ significantly

from those predicted by the matched asymptotic analysis

after merging as expected.

When the background flow field is rotational with high

Reynolds number, the asymptotic analysis can again be employed

to study the decay of high vorticity concentration in spots

but the motion of the strong vortical spots is now coupled

with the variation of the background vorticity. To study

their interaction numerical solutions of the Euler equation

0are constructed. The particular feature of the numerical [

scheme is that the grid size and time step depend only on

the length scale of the background flow and its velocity and

the total strength of the vortical spots. They are independent

of the effective size of the spot which can be much smaller des
jr
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than the grid size. Numerical results of the trajectories

of vortical spots in a nonuniform shear flow are obtained.

The trajectories differ substantially from the corresponding

ones in a linear shear flow or in a uniform flow. The

differences are due to the interaction of the vortical spot

with the variation of the vorticity in the background flow.

Brief Description of the Investigations

In many flows of interest, where vorticity effects are

important, the flow field may be considered as inviscid and

irrotational everywhere except in slender tube-like regions,

called vortex filaments; here the vorticity is concentrated.

In the usual classical idealization, where the diameter of

the filament is small compared to the other scales charac-

terizing the problem, the crossectional area of the tube is

neglected and the slender tube-like filament is reduced to a

curved line, called a vortex line, which is submerged in the

fluid field.

Classical inviscid theory describing the motion of vortex

lines [1] suffers from two essential defects: The violation

of the boundedness on the fluid velocity defined on the vor-

tex line and the nondeterminacy of the velocity of the line

itself.

In real fluids the velocity field must remain finite

everywhere; this means that when, in local regions (the inner

regions), the velocity becomes large the gradient of the

velocity must also become large. Consequently, viscous terms,

no longer negligible in these regions, become the mechanism

by which both the velocity gradients are attenuated as well

as causing the vorticity to decay. The defects of the classi-

cal inviscid theory for vortex motion can therefore be

eliminated if the inviscid solution is identified as the

leading term of a matched asymptotic solution of the Navier

Stokes equations in the region (the outer region) sufficiently

WAMP 9
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away from the filament. The condition that the velocity

should be finite everywhere should enable us to define the

velocity of the vortex filament with a decaying vorticity

distribution. With this basic premise, the matched asymptotic

solutions for a viscous vortex filament submerged in an outer

potential flow field were constructed in a series of papers

[2-6] from the simple two dimensional problem to the three

dimensional problem with large circumferential and axial

velocity components in the vortex filament. The general

procedures and the essential conclusions of the analyses

[2-6] are described in section II of an invited lecture [7].

Formulas for the velocity of the vortex filament and the

circumferential and axial velocity variations in the vortex

filament are presented. The influences of the vortex fila-

ment on the background potential flow are of higher order.

Comparisons are made between the matched asymptotic solu-

tions and the relevant patched solutions [8,9,10]. In

addition, several applications of the asymptotic solutions

to simulated flow fields [111 and jet noise [12,13] are

mentioned. Similarity solutions for the core structure are

obtained and identified as the asymptotic solutions for long

time. The "optimum" similarity solution corresponding to a

given initial core structure is defined and their physical

meaning is identified.

In section III of [7] investigations for the motion of

a vortex filament in a background rotational flow field are

outlined. A method of analysis is outlined for the two

dimensional problem. Since the governing equations for the

background flow are nonlinear and involve the velocity

induced by the vortex, the motion of the vortex with a

viscous core is now coupled with the temporal variation of

the background flow.

In section IV of [7] several numerical solutions of

Navier-Stokes equations for merging of vortex rings are

N 7~7,,
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reported. The asymptotic analysis provides the initial data

prior to merging. These results, together with previous

results for two dimensional problems [141, are employed to

establish a practical upper bound for the expansion para-

meter within which the match asymptotic solutions are

applicable.

Based on the matched asymptotic analyses [7], the equa-

tions governing the motion of the vortex filament and the

decay of its core structure are a system of integral differen-

tial equations in two independent variables, the time t and

the parameter s which characterizes the center line of the

vortex filament. Stability analyses are made for a simplified

system of equations which retain the dominant terms in the

original set of equations. It is shown that the explicit

scheme is always unstable although it is conditionally stable

for simple heat flow equations [15]. A modified Du Fort-

Frankel (D-F) scheme is shown to be stable. These results

were reported as a contributed paper in the SIAM 30th

Anniversary meeting July 1982, Stanford, Ca. The title and

the abstract are:

Numerical Study of the Motion of a

Viscous Vortex Filament

by John Tavantzis and Lu Ting

Based on asymptotic analysis, the motion of a viscous
vortex filament submerged in a background potential
flow was shown by A. J. Callegari and L. Ting [SIAM J.
Appl. Math., 35 (1978), pp. 148-175) to be governed by
a system of integral differential equations in two
independent variables, time t and arc length s .
For the stability of the finite difference scheme, a
simplified model equation of the form xt = Bxss is

analyzed where x is the position in R3 and B is a
skew-symmetric matrix. It is found, for this system,
that the standard explicit scheme is unstable. The
modified Du Fort-Frankel scheme is stable and is then
adapted to the original system of equations. Accord-
ing to the asymptotic analysis, these equations contain

Vil -e a
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two parameters which are defined explicitly by the
initial data of large circumferential and axial
velocity profiles in the inner viscous core.
Numerical examples will be presented.

The D-F scheme was further modified to involve five

points in the spatial variable instead of the usual three

points. Thus for the same degree of accuracy we can use

larger spatial grid size. Additional attempts are being

made to improve the accuracy by using the modified D-F

scheme as the predictor for an iteration scheme. The

schemes are being adopted for the original system of inte-

gral differential equations. A paper [11) is being prepared

to report the numerical scheme, the stability analyses and

the numerical examples, demonstrating the effects of the

initial shape of the center line of the filament and its

initial core structure, i.e., the axial and circumferential

velocity components. The paper should be completed in the

coming summer and will be sent to the contractor upon its

completion.

It was pointed out before [see also Ref. 7] that there

are problems for which the asymptotic method is not applicable

and numerical solution of the Navier Stokes equation is needed.

Since numerical solutions can be constructed only for a

bounded domain we have to impose appropriate boundary condi-

tions and assess the error introduced by these conditions as

compared to the real conditions corresponding to the flow

field in the unbounded domain. 'Therefore, we have to develop

far field behavior of flow field. For the same degree of

accuracy of the difference scheme, a more accurate knowledge

of the far field behavior will enable us to use a smaller

domain thereby to reduce substantially the total number of

grid points and the computational time. By using the integral

invariants of Truesdell, Moreau and Howard [17,18] the far

field behavior is established and reported in [19]. The
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summary of the paper is:

"Unsteady three-dimensional incompressible viscous
flow fields induced by initial vorticity distribu-
tions are studied. Relevant invariants and decay
laws of the moments of vorticity distributions are
presented and shown to be useful in the numerical
calculation of flow fields in two ways. First, the
moments determine the leading terms of the far-field
velocity, which can be employed as boundary condi-
tions for the numerical calculation. Secondly, the
deviations of the numerical results from the invari-
ants and the decay laws can be used to measure the
error of the numerical solution."

The leading three terms in the far field behavior

developed in [19] was employed by Weston and Liu [20] to

study the roll-up of vortex wakes. They show that their

numerical scheme is much more efficient than the scheme [21]

imposing stream function = 0 on the boundary.

The far field behavior [191 was also employed in [22]

to study the self-merging of a circular vortex ring, i.e.,

the core size is comparable to the ring radius. The scheme

is much more efficient than the previous one used in [7]

which used the Poisson integral to evaluate the boundary data.

For the study of the merging of two vortex rings while their

core sizes are still much smaller than their radii, the size

of the domain for the numerical solution can be larger than

the merge region but smaller or much smaller than the radii

of the rings. Appropriate far field behaviors were developed

and then used to specify the boundary data for the numerical

solution. Numerical examples for the head-on collision of

two rings show that the trajectory of the ring (the point

of maximum vorticity) differ from that of the classical

inviscid theory and that of the matched asymptotic analysis

when the merging of the two rings begins. The points of

maximum (or minimum) vorticity begin to move away from each

other and the value begins to decrease. Both facts can be

attributed to the merging of the vortical cores, i.e., the

i1
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mutual cancellation of vorticity in the overlapping region.

Similar qualitative experimental observations were reported

by Prof. K. Oshima, Tokyo, Japan. Details of those investi-

gations were reported in a paper by Liu and Ting [22]. The

abstract of the paper is:

"Incompressible viscous flow fields induced by initial
vorticity distributions with bounded support or
exponential decay in the far field are investigated.
A numerical scheme for the solution of the vorticity
distribution and the velocity field is presented
with special emphasis on the treatment of the boundary
data. The efficiency of the scheme is demonstrated.
The present method has been applied to the study of
the merging and collision of vortex rings."

When the background flow is rotational with high Reynolds

number, the viscous terms are important only in the region

where there are large velocity gradients, i.e., high vorticity

concentrations. For two dimensional problems we call them

vortical spots. The presence of the vortical spots and

their movements will induce variations of the vorticity

distribution in the background flow. The variations will in

turn change the background flow and the motion of the spots.

This interaction between the vortical spots and the background

flow will of course be absent if the background flow is of

constant vorticity or a potential flow.

Study of the flow field of vortical spots submerged

in a rotation flow by numerical solution of the Navier-Stokes

equations is very inefficient since the viscous terms are

important only in small spots of high vorticity concentration

and the grid size would have to be smaller than the size of

the spots. Multiple scale analysis is introduced to

isolate the viscous decay of vorticity in the spots as solu-

tion of the "small" scale variables while the governing

equation for the "normal" scale is the inviscid equation,

the Euler equation. The decay of the vortical core in each

spot can be described by the matched asymptotic solution [71

vi
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while the motion of the vortical spots is coupled with the

variation of the vorticity distribution in the background

flow and numerical solution of the unsteady Euler equation

is required.

In the Euler equation, the spatial variables are of

"normal" length scale. The velocity induced by each vortical

spot is replaced by the spatial average <V> . In the theory of

multiple scale analysis, <V> is a function of the spatial

variables of normal length scale and the average is evaluated

over a domain of size much smaller than the normal scale bu+

much larger than the size of a vortical spot. Consequently

the grid size for the difference equation should be smallex

than the normal length but the grid size and the time step

should be independent of the core size.

The value of the average <V> at a grid point far away

from the vortical spot shall agree with that given by the

classical inviscid theory for a point vortex. When the

distance between a grid point and a vortical spot is of the

order of the core size, the average value differs from the

classical theory which becomes infinity as their distance

vanishes. The question is how to evaluate <V> at a grid

point close to a vortical spot.

One method to evaluate <V> is proposed in 17]. The

classical inviscid theory shall be used to define <V> for

grid points away from vortical spots, i.e., the distance

from the grid point to a nearby vortical spot is greater or

equal to a half grid size. For those points the maximum <V>

shall be inversely proportional to the half grid size. For a

grid point close to a vortical spot, i.e., their distance

is less than a half grid size, we evaluate the value of <V>

by an interpolation formula from the values at the neighboring

grid points which are known and the value at the center of

the nearby vortical spot where <V> = 0

w ~p- -~ ft
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Based on this method, a numerical code was developed

and the results were presented in the 35th annual meeting of

APSDFD in November 1982 by Ting and Liu. The title and

the abstract of the talk are:

"Strong Vortical Spots in a Shear Flow. The motion
and interaction of strong vortical spots submerged
in a background rotational flow are investigated.
The reference length of the background flow is much
larger than the size of a vortical spot but the
velocity near a spot is much larger than the back-
ground velocity. The decay of the inner structure
of each vortical spot is obtained by the matched
asymptotic analysis. The motion of the spots is
coupled with the background flow which is governed
by the unsteady vorticity transport equation and
the Poisson equation for the stream function. Since
the vorticity distribution does not decay exponen-
tially in the far field, invarients for the moments
of the redistribution of the initial vorticity are
derived. The far field behaviors are then generated
and employed to specify boundary conditions for the
numerical solutions. Numerical schemes are formu-
lated so that the time step is controlled by the
reference velocity of the background flow instead
of the maximum velocity near a vortical spot. The
numerical schemes will be employed to study the
motion of vortical spots in the ground she~.r flow."

Upon careful examination of the numerical examples

we noted a small oscillation of the trajectory of vortical

spot whenever it crosses over the threshold of a circle

around a grid point with radius of a half grid size. This

phenomenon is traced to the switching back and forth of the

formula for the evaluation of <V> from the classical inviscid

theory to the interpolation formula. In order to provide a

smooth transition across the threshold, we evaluate the

average <V> over a square domain. Its size h is of

the order of the grid size, say a half or a quarter of a grid

size. Therefore h is much less than the normal length

scale but is independent of the small core size. Whenever

the distance d from the grid point to a nearby vortical

spot is larger than h the difference between the average
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and the classical theory becomes very small for small h/d,

e.g., when h/d < 0.4 the difference is less than 1%.

Therefore the transition from the classical solution to the

average can be made smaller than the error of the difference

scheme. A numerical code based on this procedure has been

completed and trajectories for the vortical spots differ

insignificantly from those obtained from the previous compu-

tational code minus the small oscillations in the latter.

Numerical results of the trajectories of the vortical

spots submerged in a nonuniform shear flow differ substantially

from the corresponding ones in a linear shear flow or in a

uniform flow. For the latter two cases, there is no varia-

tion of the background vorticity distribution. The differ-

ences can therefore be attributed to the interaction of the

vortical spots with the vorticity distribution in the

background.

Details of these investigations will soon be reported

in a paper by Ting and Liu [23]. Copy will be sent to the

contractor after completion.

Under the support of a previous ONR contract, the planing

of a flat plate at high Froude number was investigated by

Ting and Keller [24]. The asymptotic solution of this two

dimensional problem was constructed and unique solution was

obtained when the effect of the impact on the free surface of

the jet thrown up by the plate was included. The effect of

the impact was shown to be equivalent to a suitable pressure

distribution moving along the free surface by physical

arguments.

Recently, these results were reconfirmed by a systematic

asymptotic analysis and solutions for the thin wake region

trailing the impact region were obtained. In addition, the

analysis was carried out for the three dimensional problem.

These results were reported in a paper entitled "Surface

I
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waves induced by an impinging jet," by Miksis and Ting [25].

The paper is accepted for publication in the Physics of Fluids.

The abstract of the paper is:

"The oblique impact of a thin or slender jet on
the free surface of a semi-infinite stream is
studied. The Froude number based on the thickness
or radius of the jet is assumed to be large. Based
on the matched asymptotic analysis, the leading
term of the solution behind the impact area is
constructed. The perturbation solution for the
stream away from the impact region and its wake
is shown to be equivalent by the linear theory of
surface waves with a concentrated load at the
impact point and a distributed line load along the
wake. These equivalent loads are consistent with
considerations of mass and momentum balances and
other judicial arguments."

30m
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