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1.  ESTIMATION METHODS 

The position of a stationary transmitter or radiating emitter can be 
estimated from passive measurements of the arrival times, directions of arriv- 
al, or Doppler shifts of electromagnetic waves received at various 
stations.1'2 In the first three sections, the basic methods of estimation 
applicable to transmitter location and the accuracy of estimators are exam- 
ined. Passive location systems using arrival-time and bearing measurements 
are considered in detail in sections 4 and 5, respectively. The use of 
Doppler information is briefly summarized in section 6. 

The components of an n-dimensional vector x that is to be estimated are 
the position coordinates in two or three dimensions and possibly other param- 
eters such as the time of emission of the radiation. A set of N measurements 
rj, i » 1, 2, . . ., N, is collected at various positions. In the absence of 
random measurement errors, r. is equal to a known function f.(x). In the 
presence of additive errors, 

. 

.    • 

ri - fi(x) + ni If 2. t     • • * t    "  • (i) 

These N equations can be written as a single equation for N-dimensional column 
vectors: 

r « f(x) + n . (2) 

The  measurement  error  n is   assumed   to  be  a  multivariate   random vector with an 
N x N positive-definite  covariance matrix 

E[(n - E[n])(n - E[n])T]     , (3) 

where E[ J denotes the expected value and the superscript T denotes the trans- 
pose. 

If x is regarded as an unknown but nonrandom vector and n is assumed to 
have a zero mean and a Gaussian distribution, then the conditional density 
function of r given x is 

P(r|jl) " (2w)N^l»|1^  CXP {" 2 [r ' f(«)JT»"1[' - '<«>]}  • (4) 

where |>| denotes the determinant of M, and the superscript -1 denotes the 
inverse. Because N is symmetric and positive definite, its inverse exists. 
The maximum-likelihood estimator is that value of x which maximizes equation 
(4). Thus, the maximum-likelihood estimator minimizes the quadratic form 

1L. H. Wegner, On the Accuracy Analysis of Airborne Techniques for Passive- 
ly Locating Electromagnetic Emitters, Rand Corp» R-722-PR, Nat. Tech. Inf. 
Serv. AD 729 767  (1971). 

2H. B. Lee, A Novel Procedure for Assessing the Accuracy of Hyperbolic 
Mult Hate rat ion Systems, IEEE Trans. Aerosp. Electron. Syst. ABS-11 (January 
1975),  2. 

M ... . |<r -. •> —lLi..,._,.. i ••   i".«*^-'*- '•.:•.•—. --W-' ^....^••.^•J.A, 
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Q(x) = [r - fix) r - f(x) (5) 

Minimization of Q(x) is a reasonable criterion for determination of an esti- 
mator even when the additive error cannot be assumed to be Gaussian. In this 
case, the resulting estimator is called the least-squares estimator and H * is 
regarded as a matrix of weighting coefficients. 

In general, f(x) is a nonlinear vector function. To determine a reason- 
ably simple estimator, f(x) can be linearized by expanding it in a Taylor 
series about a reference point specified by the vector XQ and retaining the 
first two terms; that is, we use 

f(x) f(*o) • <s(" " *o) ' (6) 

where x and are n x I column vectors and G is the N x n matrix of deriva- 
tives evaluated at xr 

öx. 

3f. 

ta*o 

Hü 
8x„ X»X, 

(7) 

- 

Each row of this matrix is the gradient vector of one of the components of 
f(x). The vector XQ could be an estimate of x determined from a previous 
iteration of the estimation procedure or based upon a priori information. It 
is assumed in the subsequent analysis that xQ is sufficiently close to x that 
equation (6) is an accurate approximation. 

Combining equations (5) and (6) gives 

Q(x) = (r, - GxjV^r, - Gx)  , 

where 

ri - r ~ f(*o) + •«b • 

(8) 

(9) 

To determine the necessary condition for the estimator x that minimizes Q(x), 
we calculate the gradient of Q(x), defined by 

[3Q  3Q       3Q "IT 
(10) 

and then solve for the x such that 7 Q(x) = 0.  From its definition, N is a 
symmetric matrix? that is, N  = H.  Since (M

_1
)   = (H )"*,  it  follows that 

(H
_1
)  = H_1, which implies that N_1 is a symmetric matrix.  Therefore, 
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VxQ(x) x=x 2GTIT1GX - 2GTirlr1 (in 

We assume that the matrix G N~'G is nonsingular.  Thus, the solution of equa- 
tion (11) is 

x = (GTn"1G)"1GTlT1r1 

(12) 

! I 

. . 

Using equation (12), direct calculation shows that equation (8) can be written 
in the form 

Q(x) = [x  - xJTGTH~lG[x  - x] - r|W*l«(c%rl0)"lr1 + r^M-1^  , (13) 

where only the first term depends upon x. Since H is symmetric and positive 
definite, it has positive eigenvalues. if Be = Xe, then B_1e = X_1e. Thus, 
if e is an eigenvector of H with eigenvalue X, then e is also an eigenvector 
of H-1 with eigenvalue 1/X. Since it is symmetric and its eigenvalues are 
positive, H_1 is positive definite. Therefore, x = x minimizes Q(x). The 
estimator of equation (12) is called the linearized least-squares estimator. 

Substituting equation (2) into equation (12) and rearranging terms, the 
expression for x can be written in the form 

x = x + (cnrle)"lGnrl[f(*) - f(^,) - G(X - XQ) + n] (14) 

which shows how the estimator error is affected by the linearization error and 
the noise. The bias of the estimator x is defined as b = E[X] - x. Using 
equation (14), we obtain 

b = («HT1«)"1©**"1!«*) - f(xo) - G(x - x0) + Ein]} (15) 

If equation (6) is exact and E[n] • 0, then the least-squares estimator is 
unbiased. If systematic errors occur in the measurements, then E[n] * 0. To 
minimize the estimator bias due to systematic errors, the magnitude of each 
E[nj] should be minimized through system calibrations. If some of the E[n.] 
are known functions of various parameters and N is sufficiently large, these 
parameters can be made components of the vector x and estimated along with the 
other components of x. The bias due to the nonlinearity of f(x) can be esti- 
mated by expanding f(x) in a Taylor series about XQ and retaining second-order 
terms. 

Let P denote the covariance matrix of x.  Equation (14) yields 

P - E[(x - EtxlXx - E[x])T] - (GTn~lG)~l     . (16) 

The diagonal elements of P give the variances of the errors in the estimated 
components of x.  Since p is part of the estimator given by equation (12), one 

. ' 
—i^^.- A-..M,    .    ••.<,..-. «KL... . 



can compute both estimate and covariance simultaneously. If n is zero-mean 
Gaussian, the maximum-likelihood or least-squares estimator for the linearized 
model is the same as the minimum-variance unbiased estimator.3 

The measurement error vector n is assumed to encompass all the contribu- 
tions to error, including uncertainties in the system or physical parameters, 
such as the station coordinates or the speed of propagation. If q is a vector 
of the parameters, then the measurement vector r can often be expressed as 

r = f^x.q) + Bj  , (17) 

where f. ( ) is a vector function and i»1 is the random error due to causes 
unrelated to uncertainties in q. Let qu denote the assumed value of q. If q^ 
is sufficiently close to q, then a Taylor series expansion yields 

tylx,q)   = f^qg) + G,(q - t^) (18) 

where G.. is the matrix of derivatives with respect to q evaluated at q«. 
Equation (2) results from making the identifications 

f(z) = f^x,^)  ,  n = G,(q - qgj + n1 (19) 

If q is nonrandom, then the parameter uncertainties ultimately contribute to 
the bias of the least-squares estimator. If q is random, then the variance 
and possibly the bias are affected. 

Any a priori information can be incorporated into the estimation procedure 
in several ways. It can be used to select an accurate reference point XQ for 
the first iteration of the least-squares estimator. If the transmitter is 
known to be located within a region, but the estimated position is outside 
this region, a logical procedure is to change the estimate to the point in the 
region that is closest to the original estimate. If an a priori distribution 
function for the transmitter position can be specified, a Bayesian estimator 
can be determined. However, the Bayesian estimator is usually too complex a 
mathematical function to yield a feasible computational algorithm unless 
simplifying assumptions are made about the a priori  distribution.1* 

The location estimate can be continually refined if a sequence of measure- 
ments is taken. If successive measurements are uncorrelated, a new least- 
squares estimate can be determined by combining new measurements with the old 
estimate.3 Since measurements do not have to be stored after processing, a 
significant computational savings is sometimes possible. 

3A. P. Sage and J. L. Helsa, Estimation Theory with Applications to Commu- 
nications and Control,  McGraw-Hill   (1971). 

"*P. J. Butterly, Position Finding with Empirical Prior Knowledge, IEEE 
Trans.  Aerosp.  Electron.  Syst.  AES-8  (March  1972),   142. 
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2.      ESTIMATOR   ACCURACY 

If  r is  a Gaussian  random  vector,   then equation   (12)   indicates   that  x is  a 
Gaussian  random  vector.     Its  probability density  function  is 

fx(C)   = [(2n)n/2|p|l/2]-l  exp[_ ±  (<  _ «)Tp-l(€  .  .)]     , 

where  • =  E[x]     is   the  mean  vector,   and 

P = E[(s - »)(r - «)T] 

(20) 

(21) 

is the covariance matrix given by equation (16). By definition, P is symmet- 
ric and positive semidefinite. Thus, it has nonnegative eigenvalues. Equa- 
tion (16) indicates that P_1 exists. Therefore, P does not have zero as an 
eigenvalue.  Thus, P is positive definite. 

The loci of constant density function values are described by equations of 
the form 

(c--)Tp-i(c--) = (22) 

where K is a constant that determines the size of the n-dimensional region 
enclosed by the surface. In two dimensions, the surface is an ellipse; in 
three dimensions, it is an ellipsoid; in the general case of n dimensions, it 
may be considered a hyperellipsoid. Unless P is a diagonal matrix, the prin- 
cipal axes of the hyperellipsoids are not aligned with the coordinate axes. 

PeU) = // . . . / f£(t) d5i d£2 
R 

The probability that x lies inside the hyperellipsoid of equation (22) is 

. dCn , (23) 

where the region of integration is 

R - {| i (£ - •)TP"1U -•><*}  . (24) 

To reduce equation (23) to a single integral, we perform a succession of 
coordinate transformations. First, we translate the coordinate system so that 
its origin coincides with • by making the change of variables f • € " •• 
Since the Jacobian is unity, we obtain 

P_U) = a // . 
R, 

where 

. . / exp(- \  YTP"W) dY, dY; 

*!   =   {Y  :   YTP_1Y <   <}     . 

a  =   [(270n/2|p|l/2]-l   . 

dYr (25) 

(26) 

(27) 

To simplify equation (25), we rotate the coordinate axes so that they are 
aligned with the principal axes of the hyperellipsoid. Because P is a symmet- 
ric positive-definite matrix, so is P~*. Therefore, an orthogonal matrix A 
(with eigenvectors as columns) exists that diagonalizes P"1. Thus, A • A~l 

and 

^_J  «Mi _^_,  - 
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ATP-1A = 
^ 

*? 
tf 

= [*-ll  . (28) 

where A-, A,, . . ., A are the eigenvalues of P. A rotation of axes results 
in new variables defined by 

T (29) 

Since ATA = I and the determinant of the product of matrices is equal to the 
product of the determinants of the matrices, the determinant of AT, which is 
the Jacobian of the transformation, is unity. Substituting eqaations (28) and 
(29) into equations (25) and (26) yields 

Pe("c) = a // . . . / exp(- \  CTlX"1]c) d^ d£2 . .. . dcn 

n    C? 
//.../ expl- \    I    rr)^  dC2 • • • *Cn ' 

i=l  i 

(30) 

where 

»2 " J5 ' J, i    * ]     • (31) 

and the ^. are the components of t.. Region R2 is the interior of a hyper- 
ellipsoid with principal axes of lengths 2/7XT» i = 1, 2, . . ., n. By intro- 
ducing new variables 

n^ = *•  ,  i = 1, 2, . . ., n , (32) 

we can simplify equation (30) further. Since the determinant of P is equal to 
the product of the eigenvalues of P, equations (27) and (30) to (32) give 

Pe(<) = (2it) -n/2 / / . . .  / exp (" * I <) *- dn- . . . dn (33) 

J, ^2 < K 

The region of integration, which is indicated below the integral signs, is the 
interior of a hypersphere. 

It is shown below that the volume of an n-dimensional hypersphere of 
radius 

10 
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p = 
/ n        \i/2 

is 

IT   '     p 

where   T(   )   is   the   qamma   function.     Therefore,   the   differen 
p and   p +  dp  is 

„.n/2 n-1 nTr  '   p 
dv  =  —  dp 

r(* + i) 

and equation (33) can be reduced to 

•"•wA»,iXw^,-(-4) dp 

(34) 

(35) 

volume between 

(36) 

(37) 

- 

j. t 

For n - 1, 2, and 3, this integral can be expressed in simpler terms: 

Pe(K) = erf(Vf)  ,  n = 1  , 

Pe(ie) = 1 - exp(- f\ ,     n  = 2  , 

Pe(ic) = eri 

(38) 

(39) 

(40) *fc/l) -V? «K- f)    r  . - 3  . 
where the error function is defined by 

erf(x) '-^Ioexp{-t2)dt    ' 
Equation (40) is obtained by integration by parts. 

To verify equation (35), we define the volume of a hypersphere of radius p 

(41) 

by 

VP>   "    // / dx1   dx2  .   .   .  dxn 
(42) 

y x? 2 < P2 

A change of coordinates shows that 

Vn(p) - pnVn
(1)  ' (43) 

where V (1) is the volume of a unit hypersphere.  Straightforward calculations 
give 

11 
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V^D  »  2     ,     V2(1)   - ir     , 

where   the   "volumes"   are   a   length   and   an   area,   respectively, 
sets 

B =   {(x1fx2)   :   xf + x2, <   1} 

(x3,    .   .    .,   Xn)   :     I     xl  i.  1   -   x? 
1=3 

(44) 

We   define   the 

(45) 

(46) 

For n >   3,   Fubini's   theorem  for   interchanging  the  order  of   integrations   and  a 
change  of  coordinates   in equation   (42)   give 

vn(D = / / ax, dx2 //.../ dx3 .. . dxn 

C(x1fx2) 

= ij  Vn-2 Nl   - x2 - x* ) dx, dx2  . 

Equation (43) and further coordinate changes yield 

V1> • Wf> [fa - xi - 4)(n"2)/2 d*i dx; 

/"2n/*1 
= vn.2(i)J   J    (.1 - r*)<»-2>/2 r dr d6 

Jo = 1,Vn-2(1) 

2wV     _(1) 
n-z 

i-2)/2 

By induction,   this  recursion  relation and equations   (44)   imply that 

_L2JÜ 2ÜÜÜ 
m-1 

v2m">   -  2  »  41?".   .   (2m)     •    v2m-1(1 >   ' T-rT^t^TTSm-^TT    • 
m   =   1 /    2,    •   •    • 

(47) 

(48) 

(49) 

We  can  express  V-d)   in   terms   of  a  compact  formula  by using_ the  properties  of 
the gamma  function:     f( 

i   terms   of  a  compact  formula  by using  1 
t + 1) - tr(t); rd) - i» m/2) - A. We obtain 

,n/2 
Vn(1)   " "Tn *     ' n - 1,   2, (50) 

12 
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Combining equations (43) and (50) yields equation (35). 

If Pe is specified, say Pß • 1/2, then equation (37), (38), (39), or (40) 
can be solved numerically to determine the corresponding value of <, which in 
turn defines a hyperellipsoid by equation (22). The concentration ellipsoid 
corresponding to probability P is defined to be the particular hyperellipsoid 
for which P is the probability that z lies inside it. Thus, the concentra- 
tion ellipsoid is a multidimensional measure of accuracy for an unbiased 
estimator. 

A scalar measure of estimator accuracy is the root-mean-square error, e , 
which is defined by 

•I • {,1, ft - H)2] • 
Expanding equation (51) and using equation (21), we obtain 

n 
e2. = tr(P)   +      y    b?     , r i=1     x 

(51) 

(52) 

where   tr(P)   denotes   the   trace   of   P and b^  =  E[XJ]  -  Xi   denotes   a  component  of 
the  bias  vector  b. 

3.     TWO-DIMENSIONAL   ESTIMATORS 

For the estimator of a two-dimensional vector, such as position coordi- 
nates on the surface of the earth, the bivariate covariance matrix can be ex- 
pressed  as 

P = 
'12 

L°12        a2j 

(53) 

A straightforward-calculation yields the eigenvalues: 

X1 * 1  [°f + °2 + "N/t0? " °i)2 + 4o12j  ' 

X2 = \  [a? + a
2 - ^(o2 - o|)2 + 4o

2
2J  , 

where the positive square root is used.  By definition, X1 > X2« 

Suppose that new coordinates are defined by rotating the axes of the old 
coordinate system counterclockwise through an angle 8 as shown in figure 1. A 

(54) 

(55) 

13 
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vector represented by y  in the old coordinates is represented in the new 
coordinates by c = A -y» where A is the orthogonal matrix 

I cos 6 

sin 6 

-sin 6 

cos 6 

\ 
2 

f, 

S  1 \ ' 
/    \   \ y> 

\ V 

yf2v
/>cX2 

(56) 

Figure 1. Concentration ellipse and 
coordinate axes. 

T — 1 From equations (53) and (56), direct but lengthy calculation shows that A P lA 
is a diagonal matrix and the columns of A are eigenvectors if 

8 = -j tan' •1 (-^h)    > V? - °2/ 
-1 < e i-J (57) 

If o^ • o| and a12 • 0» 
we take 6 = 0. Since the determinant of a matrix is 

equal to the product of the eigenvalues, X-X, • °«°7 " a?^' Using this 
result, the diagonal matrix can be written in the form 

[*"*] 

[x-»] 

"jo   x-ij 
of > o| 

of < oi 

(58) 

(59) 

Since  P  * exists according  to equation   (16),   neither eigenvalue can equal  zero 
and   [X-1]  is well defined. 

14 
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A concentration ellipse defined by yVy • * in the old coordinates is 

described by (5,/A,)2 + (c2/*2) " K or (Ci/'X2^ + ^2/X1^2 " K in the neW 

coordinates, a fact which indicates that the new axes coincide with the prin- 
cipal axes of the ellipse. Thus, equation (57) represents the angular offset 
of one of the principal axes of the ellipse relative to the old coordinate 
axes. Figure 1 depicts a concentration ellipse and the appropriate angle of 
axis rotation.  Since X, > X0# the major and minor axes have lengths 2/KX, and 

respectively. 
1 \-i   the major and minor axes have lengths 2V ^„ 

If the ellipse encloses a region that includes 
Gaussian random vector with probability P , then equation (39) implies that 

= -21«(1 - Pj (60) 

Suppose that a two-dimensional Gaussian random vector describes the esti- 
mated location of a transmitter. A crude but simple measure of accuracy is 
the circular error probable (CEP) (often erroneously called the circular error 
probability, despite the fact that it is not a probability). The CEP is 
defined as the radius of the circle that has its center at the mean and con- 
tains half the realizations of the random vector. The CEP is a measure of the 
uncertainty in the location estimator, x, relative to its mean, E[xj. If the 
location estimator is unbiased, the CEP is a measure of the estimator uncer- 
tainty relative to the true transmitter position. If the magnitude of the 
bias vector is bounded by B, then with a probability of one half, a particular 
estimate is within a distance of B + CEP from the true position. The geomet- 
rical relations are depicted in figure 2. 

TRANSMITTER 

BIAS 
VECTOR 

PARTICULAR 
ESTIMATE 

Figure  2.     Geometry of  transmitter position,   mean 
location estimate,   CEP,   estimator  bias  vector,   and 
a particular   location estimate. 

From   the  definition,   it   follows   that  we   can  determine   the CEP  by  solving 
the equation 

i-  /_/  £J<E)   dd   dl-2     , (61) 

where 
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It • {( I If - »I < CEP}  . (62) 

In a manner analogous to the derivati n of equation (30), we successively 
translate and rotate coordinates to obtain 

2     r2 

2WXTTÖ 
a^JT /-»(- i&i) «, «, , 

where 

»,   "   ((C,»C2)   :   U2  +  C|)l/2$C»|     f 

(63) 

(64) 

and the A. are given by equations (54) and (55).  Changing to polar coordi- 

nates by substituting r,. « r cos 9 and c, * r s^-n ®» ** 9** 

^-rr—kh^*^)] + 4^=-^) dr d6 . (65) 

To simplify equation (65), we do some preliminary manipulations.  The 
modified Bessel function of the first kind and zero order can be expressed as 

I0(x) = -^ /  exp(x cos 9) d9  . (66) 

Because of  the periodicity of   the  integrand,   we also have 

I 
exp(x cos   6)  dB I0(x)   -•£ 

r2it(n+1) 
/ < 

-»2irn 
(67) 

for any integer n.  Adding m equations of this form with successive values of 
n, we obtain 

,  f"2irm 
ml0(x) * -Jy I   exp(x cos 6) d9  ,  m • 1, 2, . . . (68) 

Changing coordinates with 9 = m$ gives 

1  f2w I
0^x^ a 2? /  exp(x °os ">•) <*• >     m * 1, 2, 

<J 0 
(69) 

Trigonometric identities yield 

^ • *^ - ^ * idtr (^ - idt;) •»• « (70) 

lb 
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Substituting equation (70) into equation (65) and using equation (69), «re 
obtain 

3s -ST' -[-(* * ^>2] «•[(* - *>2] dr 
A final change of coordinates yields 

-4(1 • Y2) = / 
4Y
2 JO 

"I^W) 
exp(-x) I •fcH') dx, 

(71) 

(72) 

I 

^# 

L^ 

The form of this relation implies that the CEP has the form CEP « /T^ f(Y) for 
some function f( ).  If o19 * 0 and o, » a, • o, then X, • X, • a2 and equa- '12 '1 
tion (72) can be solved to show that CEP • 1.177o.  In the general case where 
v1 X2, numerical integration is necessary to solve for the CEP. 
approximation is 

CEP - 0.563^7^ + 0.614»/TJ 

A simple 

(73) 

which is accurate to within 1 percent for Y 
a 0*3 or larger, underestimates 

the CEP by less than 10 percent for 0,1 < Y < °«3, and underestimates by less 
than 20 percent elsewhere. Although approximations that are more accurate for 
small Y are easily produced, they are usually irrelevant because the eccentri- 
city of the concentration ellipse for small Y "»ay be too pronounced for the 
CEP to be an adequate performance measure. An approximation that is accurate 
to within approximately 10 percent for all values of Y is 

CEP - 0.75-y^i + *2 " °'75V^ 2 + a
2 (74) 

where the last relation follows from the fact that the trace of a matrix is 
equal to the sum of its eigenvalues. Above Y * 0.4, this approximation under- 
estimates the CEP; below Y • 0.4, it overestimates the CEP. For an unbiased 
estimator, equation (52) implies that CEP « 0.75 e . 

4.  HYPERBOLIC LOCATION SYSTEMS 

Hyperbolic location systems, which are often called TDOA (time difference 
of arrival) systems, locate a transmitter by processing signal arrival-time 
measurements at three or more stations. Measurements at two stations are 
combined to produce a relative arrival time that, in the absence of noise and 
interference, restricts the possible transmitter location to a hyperboloid 
with the two stations as foci. Transmitter location is estimated from the 
intersections of three or more independently generated hyperboloids determined 
from at least four stations.  If the transmitter and the stations lie in the 
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same plane, location is estimated from the intersections of two or more hyper- 
bolas determined from at least three stations, as illustrated in figure 3. 
Two hyperbolas may have more than one point of intersection. The resulting 
location ambiguity may be resolved by a priori information, bearing measure- 
ments at the stations, or the use of additional hyperbolas. 

HYPERBOLA FROM 
STATION 1 AND 2 

HYPERBOLA FROM 
STATION 2 AND 3 

Figure 3.  Intersecting hyperbolas from three 
stations. 

Suppose that the arrival times t., t,, ., tj. of a signal transmitted 
at time tQ are measured at N stations having positions specified by the column 
vectors m», s2/ . . ., s^j. The geometrical configuration is illustrated in 
figure 4. The stations may be at fixed positions or represent various points 
along the trajectory of an aircraft. If the signal velocity is c and D. is 
the propagation path length between the transmitter and station i, then 

H = *o*t + tt 1,   2, (75) 

0 

STATION 
1 

TRANSMITTER 

N 

/ 
0 

STATION 
2 

•      •     • STATION 
N 

Figure 4. Geometry of transmitter 
and N stations. 
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The arrival-time measurement error e^ accounts for propagation anomalies, 
receiver noise, and errors in the assumed station positions. In matrix form, 
equation (75) becomes 

t = V + c  D + (76) 

where t, D, and e are N-dimensional column vectors with components t,, D., 
and e., i = 1, 2, . . ., N, respectively, and 1 is a column vector of ones. 
Suppose that we seek to estimate both tQ and the column vector R, with compo- 
nents x, y, and z, that specifies the transmitter position. Equation (76) has 
the form of equation (2) with r • t, ff(jr) = tQ1 + D/c, n = e, and z • 
[tQ x y z] . For line-of-sight propagation from the transmitter to the sta- 
tions, D^ = |R - s.|, where I I represents the Euclidean norm. Let the 
column vector R_, with components xQ, yQ, and zQ, specify a reference point 
near the transmitter position. Let DQ- = IRQ ~ SJI denote the distance from 
station i to the reference point. Using equation (7) with XQ = [o x« y^ zn] 
after expressing each JR - s^I in terms of its components, we obtain 

where 

G = [l F/c]  , 

(*o " 8i)T/°oi 

(«o - *N)T/D 

(77) 

(78) 

ON 

Each row of P is the unit vector pointing from one of the stations to the 
reference point. Equation (12) with the above relations and substitutions 
gives the least-squares or maximum-likelihood estimator; equation (16) pro- 
vides the covariance matrix of the estimator. 

In hyperbolic systems, no attempt is made to estimate tQ. We eliminate it 
from consideration by measuring the relative arrival times: 

(Di " Di+J tL  - ti+1 -  * c *"  + ni ,  i - 1, 2, . . ., N - 1  , (79) 

where n. is the measurement error. Measuring time differences is not the only 
way to eliminate tQ, but it is the simplest. If the relative arrival times 
are determined by subtracting measured arrival times, then 

£i " Ei+1 
i » 1, 2, N - 1 (80) 

The n^ have zero means if successive e. have equal means, even if the latter 
means are nonzero. A nonzero E[n^J may result from uncalibrated different 
time delays or unsynchronized clocks in two receivers. If the relative arriv- 
al times are determined by cross correlation, then equation (80) is not neces- 
sarily valid. 

iy 
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If the transmitter produces a sequence of pulses, the corresponding re- 
ceived pulses at stations i and i + 1 must be correctly associated in measur- 
ing the time difference t^ - t^.-. A potential ambiguity arises when the time 
difference exceeds the time between successive pulse transmissions. This 
ambiguity may be resolved by using bearing measurements or a priori informa- 
tion to eliminate associations that lead to impossible location estimates. 

In matrix form, equation (79) becomes 

Ht = ~ m + n 

where we use the (N - 1) x N matrix 

(81) 

H = 

0 

-1 

0 

0 

_0  0 

If equation (80) is valid, then 

1      -1 

(82) 

n = He (83) 

Since we seek to estimate the position vector R, equation (81 ) has the 
form of equation (2) with r = Ht, f(x) = H)/c, and x = R. A direct calcula- 
tion  of  G yields 

G=£HF (84) 

where F is defined by equation (78). Let M denote the covariance matrix of 
the arrival-time errors. If equation (83) holds, then the covariance matrix 
of the measurement errors, defined by equation (3), is related to B£ by 

H  • HMj.H* (85) 

Using equation (84), equation (12) implies that the least-squares estimator is 

R = RQ + c(FTHTH~1HP)~1FTHTH"1(Ht - £ HDQ)  , (86) 

where DQ has components DQ^, i = 1, 2, . . ., N. The estimator is unbiased if 
n is a zero-mean random variable and the linearization error is negligible. 
The covariance matrix of R, given by equation (16), is 

P  = c2(FTHTR:"1HF)" (87) 

Equation (86) is valid for line-of-sight propagation. If the signal 
propagation to the stations involves atmospheric reflections, the equations 
for the Dj change and thus the estimator changes. 
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In general, the least-squares estimator requires knowledge of the statis- 
tics of the measurement errors. However, if equation (85) applies, if the 
covariances of the E^ are zero, and if the variances of the e^ have the common 
value a2., then cancellation in equation (86) leaves an estimator that is 
independent of o£. Equality of the variances is a reasonable assumption for 
stations with identical receivers that are much closer to each other than to 
the transmitter. 

Let aii denote the variance of the measured arrival time t- at station 
i. When equation (83) is valid, the mean-square ranging error is defined 
as c2o2, where 

N 
«2-1 -1 y 

i=1 'ti (88) 

is the average variance of the arrival times. The geometric dilution of 
precision (GDOP) is defined as the ratio of the root-mean-square position 
error, e , to the root-mean-square ranging error. It follows from equation 
(52) that the GDOP associated with an unbiased estimator and a hyperbolic 
system is 

GDOp = /trace[PJ 
ca. (89) 

The GDOP indicates how much the fundamental ranging error, intuitively meas- 
ured by cog, is magnified by the geometric relation among the transmitter 
position and the stations. If the geometry is such that the arrival-time 
variances ar* nearly equal, then the GDOP is only weakly dependent on them. 
For the two-dimensional location problem, equations (74) and (89) yield 

CEP • (O.75C0 )GDOP (90) 

Since the arrival-time variance a? is due primarily to the thermal and 
environmental noise, it is often reasonable to model £. as the sum of a con- 
stant bias plus zero-mean white Gaussian noise. The Cramer-Rao bound for an 
arrival-time estimate in the presence of white Gaussian noise gives" 

°li «>r (91) 

where E is the energy in the received signal, NQ/2 is the two-sided noise 
power spectral density, and f52 is a function of the bandwidth of the signal. 
If S(w) denotes the Fourier transform of the signal, then 

JZ.  u)2|s((o)|2 du> 

r '    /!. |s(»)|2 am 
(92) 

If the received signal consists of pulses, then E is the sum of the energies 
of the individual pulses. An approximate model for many radar signals is a 
series of pulses, each of which results from passing a truncated sinusoid with 

5A. D. whalen,   Detection of Signals in Noise,  Academic Press  (1971). 
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an ideal rectangular envelope of duration T through an ideal rectangular 
bandpass filter of bandwidth B centered at the sinusoidal frequency. For each 
pulse and for the entire radar signal, equation (92) yields 

ß2 „ 2B/T  ,  BT  » 1  . (93) 
» ir Er 

In contrast, for a signal with a uniform Fourier transform over a bandwidth B, 

equation (92) gives 

ßZ = „^BV3  • i2. = ir2B2, 

This model might approximate a communications signal. 

(94) 

Let T denote the total signal duration, Rg = E/T denote the average signal 
power at the receiver, and D denote the distance between the transmitter and 
the receiver. Over a large range of values of D, it is often possible to 

approximate R by6 

R = 
s 

K exp(-aD) 
(95) 

- 

where a, n, and K£ are independent of D, but may be functions of other param- 
eters such as the transmitter power, antenna gains, antenna heights, and the 
signal frequency. For optical and millimeter-wave frequencies, accurate 
modeling requires a > 0, but we may usually set a = 0 at other frequencies. 
Inequality (91) and equation (95) relate a2, to D. 

As an important special case, we consider a transmitter and three stations 
in the same plane so that only two position coordinates are to be estimated. 
The planar model is reasonable if a transmitter and stations are near the 
surface of the earth and close enough that the curvature of the earth's sur- 
face can be neglected. One of the stations is designated the master station, 
and the other two are called slave stations. Arrival-time measurements at the 
slave stations are sent to the master station, where the time differences and 
then the position estimate are computed. 

We assume that the e^ are uncorrelated random variables so that 

Jt1 

0 

0 

't2 

0 

0 

-I 

't3 J 

(96) 

6D. J. Torrierl, Principles    of   Military   Communication   Systems,    Artech 
(1981). 
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The  H matrix  for  N =  3 is 

-t •:.:]• (97) 

Let $Q. denote the bearing angle from station i at coordinates (x.,y.) to the 
reference point at coordinates (*o'vo)' as illustrated in figure 5. Thus, 

POi - -' fe^t) " i   •   1,   2,   3 (98) 

STATION 2 

STATION 30-^T_ 

STATION ic/-*oi 

REFERENCE 

Figure 5.  Angle definitions for reference and 
three stations. 

Equation (78) may be expressed as 

*.* 

cos   <J>01       sin  <j>01 

cos   <)>02       sin  $02 

_cos  (|>03       sin  <t>03 

(99) 

The covariance matrix P can be evaluated by substituting equations (85), 
(96), (97), and (99) into equation (87). The components of P defined by 
equation (53) are 
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a1   =  a[otJsin   *02  "  sin   ^O^2   +  °t2^sin   *01 

+  o|3(sin  ((>01   -  sin  <t>02)
2]     . 

Ln *oz)' 
(100) 

a2  =  a[°t1^cos *02  "  cos   ^03^Z  +  Ot2^cos   *01   "  COS   W* 

+  a23(cos <j>01   -  cos   *02)
2]      . 

°12  =  a[°t1^cos *03 "  COS   4'02Ksin  $02  "  sin  *03) 

+  a2
2(cos (Ji03 -  cos   4>01)(sin  <()01   -  sin  <t>03) 

+ o|3(cos *02 - cos  <t>01)(sin ^01  - sin <t>Q2)]     , 

(101) 

(102) 

where 

•   - 

a = c2[(cos  4>01   - cos   (j>02)(sin  <t>02 - sin <J>03) 

-   (cos   <(>02 -  cos   (J.03)(sin  $01   -  sin  <t>02)]~2 
(103) 

If any two bearing angles are equal, then a2, a?,, and o12 * ". These events 
correspond to reference points that lie along a line passing through two of 
the  stations. 

The   least-squares   or   maximum-likelihood   estimator,   determined   from   equa- 
tion   (86),   is 

X - XQ • /S [(t,   - D01/c)(sin  4,02  - sin $Q3) 

+   (fc2 "  D02/cKsin   *03 "  Sin   •oi) 

+   (*3  _  D03/cKsin   *01   "  sin  •02M ' 

y - y0 + /a [(t,   - D01/c)(cos  <fr03 - cos 4>Q2) 

+  (*2 " D02/c)(cos  *01   - cos  4>03) 

+  (*3 " D03/C)(cos   *02  "  COS  *0t)] ' 
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To determine the transmitter range, which may be defined as the distance 
between the transmitter and the master station, it is convenient to align the 
x-axis with the line »>etween the master station and the reference point and to 
place the origin of the coordinate system at the master station. If the 
reference point is near the transmitter position, then x is a suitable range 
estimator and a? approximates the variance of the range estimator; otherwise, 
the range can be estimated by (x2 + y2)*'2. 
bearing with respect to the x-axis is 

A suitable estimator for the 

--(!)• 

The estimator bias can be determined from equation (15). 
linearization error and using equation (83), we obtain 

(106) 

Neglecting   the 

b1   =  f*   (E(Ei](sin   4>o2   ~ sin   *03)   +  EfE2Ksin   *03   ~  sin   *0l) 
(107) 

+  E[e3](sin  <()01   -  sin  <t>0->)}     , 

b2  • /ä  {E^^COS   $03  - cos   ())02)   + E[e2](cos   <J>01   -  cos   <|»03) 

+  E[e3](cos   4>02 -  cos   <()01)}     . 

(108) 

Nonzero values of the E[EJ] are caused primarily by uncertainties in the 
station positions, synchronization errors, and the temperature dependence of 
the receiver delays and filter characteristics. 

- 

Assuming that n = He has a Gaussian distribution, equations (54), (55), 
(73), and (100) to (103) give the CEP in terms of the bearing angles and the 
arrival-time variances. For a fixed deployment of stations, the locus of 
transmitter positions with a constant value of the CEP can be determined 
numerically. For this purpose, the equations may be expressed in terms of the 
Cartesian coordinates by using equation (98) and it is assumed that the refer- 
ence point coincides with the transmitter position with negligible error so 
that D Oi = D, 

Let L denote the length of a linear array of three stations with coordi- 
nates (0,-L/2), (0,0), and (0,L/2). Assuming that the lower bound of inequal- 
ity   (91)   is  nearly achieved and using equation   (95),   we  obtain 

'ti '< ft)" exp[o(Doi   -  L)] i   =   1,   2,   3 (109) 

JtL 
NQLn exp(otL) 

2ß2TKE 

(110) 
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where   0 .   denotes   the   lower   bound  of   ofci   when  DQi   =  L. 
n,   K„,   and  hence  ofcL are   identical   for  all   three  stations, 
transmitter  and   the  stations   have  omnidirectional  antennas   so  that  K 

It  is  assumed  that  a, 
We  assume   that  the 

does  not 
depend upon the bearing angle to the transmitter. Figures 6 and 7 depict loci 
of constant values of CEP/cafcL for a = 0. Only the first quadrant is dis- 
played because of the symmetry of the loci. Figure 6 assumes n = 2, which 
corresponds to free-space propagation. Figure 7 assumes n = 4, which might 
model vhf propagation near the earth's surface. 

In figure 8, the stations form a nonlinear array with coordinates 
(0,-L/2), (-L/2,0), and (0,L/2), respectively. The most significant features 
are the singularities in the values of the CEP along the lines passing through 
two of the stations. Consequently, only a slight spatial nonlinearity is 
permissible if a broad field of view is required. However, other important 
factors in the choice of station positions are the needs to maintain line-of- 
sight paths from potential transmitter positions and to minimize the potential 
multipath interference. 

2.0-1 _ 
O   STATION 

—-—   \3I\A ^0.01 

— X2/X1 >0.01 

1.5- 

1.0- 

•^>^. CEP/co,. 

V ^100 

//  \ x 

- 0.8-0 

Figure 6. Loci of constant CEP/catL for linear 
array of three stations with n = 2. 
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2.0-1 

1.5-^ 

1.<H 

O   STATION 

—_—  XjlX,   -»0.01 

•^ CEP/CO,, 

\200 

^J00 \ 

//•' ^xso       \ \ 

rSAn j * * -4 •' ' •'  ' • '—!—' 0.5 1.0 1-5 2.0 

-0.5 O 

x/L 

2.5 3.0 

Figure 7. Loci of constant CEP/cotL for Linear 
array of three stations with n = 4. 

2.0-I 

1.5 A 

O   STATION 
_•—  tyA, -= 0.01 

200    Xj/X^O.01 

'  1»   ! 

CEP/co. 

\200 

\ 

2.0 2.5 

.X/L 

S.0 

-0.5-O 

Figure 8.    Loci  of  constant CEP/cotL for 
nonlinear array of  three  stations with n 
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In figures 6 to 8, the parts of the loci for which X2 < 0.01 X. are indi- 
cated by dotted lines. For these small values of ^2/X. the CEP is a ques- 
tionable measure of performance of the passive location system. A more suit- 
able measure may be the length of the major axis of the concentration ellipse, 

Le = 2/^X7 

It follows from equation (7 3) that 

(111) 

CEP 
0.563Le 

\2   < 0.01X., (112) 

where <  is given by equation (60).  Thus, the dotted lines approximate the 

loci of constant values of L /3.552/iccotT • 

5.  LOCATION USING BEARING MEASUREMENTS 

The bearing measurements of passive direction-finding systems at two or 
more stations can be combined by a direction-finding location system to pro- 
duce an estimate of transmitter position. The transmitted signal may be 
received at a station by line-of-sight propagation or after atmospheric re- 
flection at a known altitude. A single bearing angle may be measured at each 
station of the location system. Alternatively, separate azimuth and elevation 
angle measurements, possibly made by orthogonal interferometers, can be used 
to determine transmitter position. In the absence of noise and interference, 
bearing lines from two or more stations will intersect to determine a unique 
location. In the presence of noise, more than two bearing lines will not 
intersect at a single point, as illustrated for a planar configuration in 
figure 9. Consequently, processing is required to determine the optimal 
position estimate. Let 6^ denote the bearing angle measured at station i 
relative to a base line in a three-dimensional coordinate system defined so 
that the x-axis is parallel to the base line, as shown in figure 10. If the 
coordinates of the station are (xj,y.,z.) and the coordinates of the transmit- 
ter are (xfc,yt,zt), then in the absence of measurement errors, line-of-sight 
propagation implies that 

9^   = cos -1 
xt -  xi 1 

V(*t - *J2 + (yt - vJ2 + («t - zi)2J 
D  <   9i   <  1 (113) 

In figure 10, the azimuth angle $. is defined in the plane passing through the 
transmitter and perpendicular to the z-axis. It is positive in the counter- 
clockwise direction relative to the positive x-axis. If the elevation angle 
$i of the station relative to the transmitter is known approximately or is 
estimated by a suitable means, such as a vertical interferometer, then 4>i may 
be calculated using the geometrical relation 
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cos 9, • cos ^ cos ^  , (114) 

which is easily derived from figure 10.  If <K is sufficiently small, the 
measured bearing is well approximated by the azimuth, which is defined by 

•i = -" (^t) • (115) 

TRANSMITTER 
POSITION 

STATION 
1 

STATION 
2 

Figure 9.  Bearing lines from three direction- 
finding systems. 

STA- noN        W 

IAS 

/   «*i-yi*t> 

TRANSMITTER 
<*,. y,.i,> 

Figure 10. Angle definitions for direction- 
finding system. 
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In most applications, the transmitter is known to lie on the surface of the 
earth or at a fixed altitude so that zt is known and does not have to be 
estimated. Equation (115) is used in the estimation of the (xfc,yt). The use 
of this equation is equivalent to the representation of the three-dimensional 
problem by a two-dimensional model. In the model, the transmitter and the 
stations are assumed to lie in the same plane so that the azimuths are identi- 
cal to the bearings. If the transmitter and the stations actually lie on the 
earth's surface, the model is an idealization that neglects the curvature of 
the surface. Two-dimensional position estimation using bearing information is 
often called triangulation. 

We consider in detail the estimation c* t-*» two-dimensional column vector 
R having components x and y. Line-of-sight propagation is assumed. The 
measured bearing angle $. and the measurement error n. satisfy 

^ = fi(R) + nt 1» 2, 

where 

f^R) = tan-1 (     _ XH  ,   i = 1, 2, . . ., N  , 

and the station coordinates are x^ and y^.  In matrix form, we have 

+ = f(R) + n  . 

(116) 

(117) 

(118) 

Let the column vector RQ with components xQ and yQ specify a reference point, 
which may be chosen to be in the middle of the polygon bounded by the measured 
bearing lines. Let $Qi denote the bearing angle from station i to the refer- 
ence point.  Then, 

jfQ — i; An —  i 
sin *0i "   Doi    '  COS *0i •   DQi    '  l * 1' 2' •    .,   N      , (119) 

where 

D0i  "   t(x0 "  xi)2  +   (v0 -  vi)2]l/2     •     i  =   1.   2, 

From equation   (7)  with  x = R and  x- • RQ,   we obtain 

•(sin  *01]/D01        (cos   •01)/D01 

•(sin  •0N)/D0N       (cos   ^„J/D, ON 

The least-squares or maximum-likelihood estimator is 

R - RQ + (GV^G)-1 G1*"1^  , 

• $    N  • (120) 

(121) 

(122) 
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where H is the covariance matrix of the bearing measurement errors and 

•r=*-f(Ro)  . (123) 

The ith component of 4> is 

*ri = h  " *0i - *i " tan"1 (sjp^q) ' i=1/ 2?   • • • # N (124) 

which is the bearing angle relative to the line between station i and the 
reference point, as depicted in figure 11. 

-* «. 

BEARING 
LINE 

• TRANSMITTER     y 

M 
REFERENCE 

Figure 11. Geometry of transmitter, 
reference point, and a station. 

STATION 

If the bearing measurement errors are independent random variables with 
variances °*i' i = 1» 2, . . ., N, then 

'•1 

'<t>N_ 

(125) 

Direct calculation using equations (16), (121), and (125) establishes that the 
elements of the covariance matrix of R are 

of - E[(x - x)2] 

°1 * E[(y - y>2] 

lU - v2 

2» 
.. - - , 

°i2 " Et(x - x)(v - y)] lA - v2 

(126) 

(127) 

(128) 

where 
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N  •«.2 COS * k 

v'& D§iii 
21 

*« .1 151  DOi°Ji 

(129) 

(130) 

v- .1 
sin »Qi cos »Qi 

iä1    D0iii 
(131) 

It follows from equations (121), (122), and (125) that the components of 
the linearized least-squares estimator are 

C - x      1    ? A  (v cos »Qj - w sin »pj 

UX - v2 1*1  rl B01o}i 

y = y0 

j  y     (A cos »0i - v sin »Q1) 

' *  ri       Da2. 

(132) 

(133) 
yX - v2 i=1 

Similarly, if the linearization error is negligible, the bias components are 

N 

U\ - v*    i=1 .L "W 
(v cos <j>0i - u sin $0i) 

D0i°U 

1     v Frn i (X cos »0i - v sin 
= — j  it,  Lni   ^ 2  liA - v2 1=1 Doio?i 

QL 

•oi) 

(134) 

(135) 

The dependence of the estimator and bias on 0*^, i = 1, 2, . . ., N, is 
eliminated because of cancellation in equations (132) to (135) if these vari- 
ances are all equal. This equality is a reasonable assumption if the receiv- 
ers are identical and much closer to each other than to the transmitter. 

Let p. denote the shortest distance from the reference point to the meas- 
ured bearing line at station i, as depicted in figure 11. Suppose that the 
reference point is close to the true transmitter position, and that the meas- 
urement errors are small.  Then 

'ri Oi 
i - 1, 2, . . ., N (136) 

cos $Qi « cos i^,     sin $Q^  « sin i^  ,  i • 1, 2, . . ., N  . (137) 
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Substituting equations (136) and (137) into equations (129) to (133), we 
obtain the components of an estimator that depends upon the measurements p. 
and $., i = 1, 2, . . ., N. This estimator, called the Stansfield algorithm, 
was originally derived from heuristic arguments and the assumption of small 
bearing measurement errors.7 If R- is close to R, then the linearized least- 
squares estimator is preferable to the Stansfield algorithm, which produces a 
larger estimator bias unless the bearing errors are small. However, if the 
bearing errors are large, it may not be possible to choose RQ close to R. In 
this case, it is not clear which estimator is preferable. 

The mean-square ranging error associated with direction-finding systems is 
defined as the average variance of DQi$ri: 

«i- i X °8 i°$i (138) 

I 

< i 

v 

In analogy to equation (89), the GDOP associated with an unbiased estimator 
and a direction-finding location system is defined as 

GDOP • trace FH (139) 

If the geometry is such that the bearing variances are nearly equal, then the 
GDOP is only weakly dependent on them.  From equation (74), it follows that 

CEP * (0.75od)GDOP (140) 

The variance of a bearing estimator, a?, is due primarily to the thermal 
and environmental noise. Approximate expressions for a? are known for various 
direction-finding systems operating in white Gaussian noise." In most cases, 
if E/N0 is sufficiently large, o? can be expressed in the form 

• («5 4 (141) 

where ($? is a function of the system parameters other than E/NQ, and the 
variation of the signal energy with the distance to the transmitter can be 
determined from equation (95). For example, consider a planar configuration 
and a phase interferometer with its antennas pointing in the direction of the 
positive x-axis.  It can be shown that if the estimator bias is small, then6 

>l>- (»*£ cos »)2 (f^) !   •   !•! (142) 

6D. J. Torrieri, Principles of Military Communication Systems, Artech 
(1981). 

7C. J. Ancket, Airborne Direction Finding—The Theory of Navigation Errors, 
IRE Trans.  Aeronaut.  Havig.  Electron.  ASE-5  (December  1958),   199. 
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where fQ is the carrier frequency of the received signal, d is the maximum 
separation between the interferometer antennas, and $ is the true bearing 
angle. 

As a specific example, we consider identical stations that are symmetri- 
cally located with respect to the reference point so that 

•oi >0<N-i+1) 1, 2, ., int(N/2) (143) 

DOi°|i = D0<N-i+1)°$(N-i+1) ' 1, 2, ., int(N/2) (144) 

where  int(x)  denotes  the  largest  integer in x. 
that 

If N  is  odd,   we  further assume 

(j>oi  = 0   ,     i  =  int(N/2)   +  1   ,       N   is  odd. (145) 

A possible configuration for N • 5 is illustrated in figure 12. This example 
is probably unrealistic for ground stations if N > 4, but might adequately 
represent location estimation by an aircraft that samples bearing data at 
evenly spaced points along its trajectory. Substitution of equations (143), 
(144), and (145) into equation (131) yields v = 0, which implies that o,, * 
0. We conclude that the symmetrical, but not necessarily linear, placement of 
the stations with respect to an accurately located reference leads to uncor- 
related coordinate estimates. For an aircraft, o12 

= ° allows interpretation 
of o| as the variance of the "cross-range" estimation error and a* as the 
variance of the "down-range" estimation error. 

- 

Figure 12. Configuration of five symmet- 
rically located stations. 

If N - 2, equations (126) to (133) give 

Doi°|i 
'1 2 sin' »01 

(146) 

34 

  "    - Mi   •. -   '••*•       • • .^  :».    .   ...,-j—fc^.   --•* • -|   ».a   tkl 



-"~ 

D01q|l 

2 cos2   <t>01 

(147) 

X = Xn - 2 sin <t.m (*r1 " *r2) •"Öl 
(148) 

y - Vo + 2 cos »ni (*r1 + *r2) 01 
(149) 

If the reference point is located at the intersection of the two measured 
bearing lines, then $r1 * $r2 = 0. It follows that (x,y) * (xO'vo)' as ex~ 
pected. From equations (138), (139), (146), and (147), we obtain 

GDOP rt 
sin  2<t>01 

(150) 

••': 

The minimum value of the GDOP, equal to /7, is attained when $Q. * n/4.  Since 
a15 = 0, equations (54), (55), and (73) give 

CEP = 0.563 max(a1,o2) + 0.614 minfa^Oj)  • (151) 

If N = 3, the variance of x remains the same, but the variance of y becomes 

(2 cos2 »oi + 1 Y 
\ D01°|l    D02°j2/ 

(152) 

which shows that the extra station only improves the estimation of the y- 
coordinate of the transmitter, 
creases and thus o2/a| increases. 

As the transmitter range increases, $Q1 de- 

If n in equation (118) has a Gaussian distribution, equations (54), (55), 
(73), and (126) to (131) give the CEP in terms of the bearing angles and their 
variances. Assuming that the reference point coincides with the transmitter 
position so that DQ. =» D. and $Q. is equal to the bearing angle to the trans- 
mitter position, the locus of positions with a constant CEP can be determined 
numerically by using equations (119) and (120). 

Consider a linear array of three stations with coordinates (0.-L/2), 
(0,0), and (0,L/2). Each station has an interferometer with omnidirectional 
antennas pointing in the direction of the positive x-axis. Let a., denote the 
value of <Jii when DQ. • L and $Qs • 0. Assuming that j^ is identical for all 
three stations and that the lower bound of inequality (142) is nearly 
achieved, equation (95) yields 
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a\h 

COS' 
»Oi 

(>> exp[a(Doi  -  t)] 1*1 1 •  1,   2,   3, (153) 

i 

'(j»L   " 

c2NQLnexp(aL) 

(2irf0d); TKr 
(154) 

Figures 13 and 14 depict loci of constant values of CEP/La ,T for a • 0.  The 
ml» 

loci are similar in form to those for hyperbolic location systems. From 
equation (112), it follows that the dotted lines approximate the loci of 
constant values of Lft/3.552/ic Lo„. At equal distances from the array, direc- 
tion-finding location systems produce less eccentric concentration ellipses 
than similarly deployed hyperbolic location systems. This feature may be a 
significant factor in selecting the appropriate location systems for specific 
applications. 

O   STATION 
---    X2/>1^0.01 
—    \tlM »0.01 

• 

-0.5-Ö 

Figure   13.    Loci  of  constant CEP/La.,   for  linear 
array of  three stations with n =   2. 
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O STATJOW 
— A2'*1- 0.01 
— X^X, »0.01 

-0.5-Ö 

Loci of constant CEP/Lo^ for linear Figure 14 
array of three stations with n = 4J 

V 

In figure 15, the stations form a nonlinear array with coordinates 
(0,-L/2), (-L/2,0), and (0,L/2).  A comparison with figure 8 indicates that 
the adverse effect of the nonlinear configuration is usually less for direc- 
tion-finding systems than for hyperbolic systems. 

Figure 16 plots the constant CEP/La^ loci for a linear array of five 
stations with coordinates (0,-L/2), (0,-L/4), (0,0), (0,L/4), and (0,L/2). A 
comparison with figure 14 shows the CEP improvement from adding two stations 
while maintaining a constant baseline length equal to L. In general, the CEP 
is roughly inversely proportional to /lT. 

For two-dimensional transmitter location with three stations, a comparison 
of figures 13 to 15 with figures 6 to 8 indicates that for hyperbolic systems 
to offer a significant performance advantage over direction-finding location 
systems when a = 0, it is necessary that 

<*cotL < LV (155) 

where q - 5. Substituting equations (154) and (110) and assuming equal param- 
eter values for the two systems, we obtain the criterion 

/7 irqf0d < L0r (156) 
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2.0- 

1.6- 

1.0- 

O    STATION 

"~  *Zl M^O.01 
—   Xj/X, >0.01 

r^ ... 
2 ! /   ' m—• 

CEWL«. 

9- 
•0.5 

-X/L 
3.0 

-0.5-Ö 

2.0- 

Figure   15.    Loci of constant CEP/La.,   for 
nonlinear  array  of   three  stations   with  n  =  4. 

O   STATION 
— —— *2'M <0.01 
—— X2/X1 *0.01 

Figure   16.    Loci  of constant CEP/Lo,-   for  linear 
array of  five  stations with n = 4. 
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Consequently, for the radar signal leading to equation (93), hyperbolic 
systems offer a potential advantage only if 

Tp(*qf0
d)2 < BL2 (157) 

For the communications signal leading to equation (94), a significant advan- 
tage requires 

/6" qfQd < BL  . (158) 

Inequalities (157) and (158) indicate that hyperbolic systems increase in 
desirability as the array length and signal bandwidth increase. 

6.  OTHER LOCATION METHODS 

When the receivers are moving, it may be possible to use the known receiv- 
er trajectories to enhance the accuracy of the transmitter location. For 
example, three bearing measurements and two turns by an aircraft can be used 
to greatly reduce the effect of strong unknown biases in the measurements.8 

Moving receivers can exploit the Doppler shift in several ways. In the 
absence of noise, the measured frequency at a receiver, f , is related to the 
transmitted frequency, ffc, by 

fm = ft + 
£^ ft+ 

ffcv cos $ 
(159) 

where c is the signal velocity, v is the velocity of the receiver in the 
direction to the transmitter, v is the receiver velocity, and <{> is the bearing 
angle to the transmitter relative to the velocity vector, as shown in figure 
17. Therefore, the bearing angle can be estimated if f is measured and ft, 
v, and c are known. Bearing measurements from several receivers can be com- 
bined to obtain a transmitter location estimate as in section 5. Another 
approach, which may be less sensitive to inaccuracies in the assumed value of 
ft, is to measure the Doppler difference, which is defined as 

(v1 cos 4>1 - v- cos $~) i (160) fm1 - fm2 c 

• 

where the subscripts 1 and 2 refer to receivers 1 and 2.  The differential 
Doppler is defined as the integral of f - fm- over time. If ft does not 
change too rapidly over the integration interval, the differential Doppler is 

C3 (*»i -*»*) * •-?tDi(t2) - Di(*i) -°a(*2) + 0a(ti)3   »        (161) 

1
 i 

BM. Mangel, Three Bearing Method for Passive Triangulation in Systems with 
Unknown Deterministic Biases, IEEE Trans. Aerosp. Electron. Syst. AES-17 
(Sovember 1981),  814. 
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where f\ is the average transmitted frequency and D.(t.), i, j = 1, 2, is the 
distance of receiver i from the transmitter at time j. The right-hand sides 
of equations (160) and (161) can be expressed in terms of the transmitter 
coordinates. Thus, in the absence of noise, a Doppler difference or a differ- 
ential Doppler measurement determines a surface on which the transmitter must 
lie. A location estimator can be derived in a manner analogous to the deriva- 
tions of sections 4 and 5.  Because of the need for a precise estimate of f.. 
or f ta' Doppler location systems appear to be most useful in the location of 
transmitters of narrowband signals. 

TRANSMITTER 

Figure 17. Moving receiver. 

VELOCITY 
VECTOR 

RECEIVER 

Doppler, arrival-time, and bearing measurements at the same or different 
receivers can be combined in hybrid location systems. The combined measure- 
ments may allow a reduction in the number of receivers required for a given 
location accuracy and may facilitate the resolution of ambiguities. 

f 

* ' 

To accommodate a moving transmitter, the observation interval can be 
decreased so that the transmitter is nearly stationary during the interval and 
points on the trajectory can be located. However, decreases in the observa- 
tion interval eventually lead to unacceptably large estimation errors, and 
other methods must be adopted. If the trajectory can be described by a low- 
order polynomial in time and if a sufficient number of stations or measure- 
ments are available, it is possible to estimate the coefficients by expanding 
the dimension of the estimator x. Alternatively, if the differential equa- 
tions of motion are known, Kaiman filters can be used to track the transmitter 
movement.9'10 However, the implementation complexity of a passive location 
system with Kaiman filters is usually considerably greater than that of a 
hyperbolic or direction-finding location system for stationary transmitters. 

10 
*A.  Gelb,  ed..  Applied Optimal  Estimation,  MIT Press  (1974). 
P.    S.    Maybeck,    Stochastic   Models,    Estimation,    and   Control,   volume   1, 

Academic Press  (1979). 
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