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§0. Introduction

A priority queue describes two M/G/1 service syvstems interacting
through a common server. The first svstem, to be called svstem I, has
a Poisson input stream of customers of intensity lI, and independent
service times with c.d.f. AI(x). Similarly, syvstem II has intensity
AII and c.d.f. AII(x). All interarrival times and service times are
independent of each other. A substantial literature dating back to the
fifties treats the interaction of the two customer streams when syvstem [
customers have preemptive priority over system Il customers. Abundant
results have been obtained giving first and second moments of interest
and some asymptotic results (see, e.g., Gaver [1], Heathcote [3],

Jaiswal [4], Keilson [5,8,9], Miller [18] and Prabhu [19]). The distri-
bution of random variates of interest required for svstem design have not
been available, however, because of Laplace transform difficulties. Many
asymptotic results such as heavy traffic approximations for waiting times
have been flawed by lack of error bounds and disturbing relaxation time
problems.

An algorithmic procedure has been needed providing accurate numerical
distributions for effective service times, busy periods, and ergodic
waiting times. The Laguerre transform method introduced by Keilson and
Nunn [11], Keilson, Nunn and Sumita [12] and studied further by Sumita [21]
provides a framework for evaluating multiple convolutions and other con-
tinuum operations. Many of the distributions required have been obtained
previously thereby [11,12,13,14,20,21]. For the total time in svstem of

low priority customers in the system of interest, however, new probabilistic
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analysis has been needed before the Laguerre procedure is applicable.
This analysis and related asvmptotic results are the focus of this
paper. The Laguerre transform will serve only as a tool, but one whose
power will be made evident hopefully through the results.

A recent paper by the authors, '"The Depletion Time for M/G/1 Svs-
tems and a Related Limit Theorem'" [14], discusses single server M/G/1
systems with many classes of customers and complex order of service dis-
ciplines. That paper provides a survival function bound for the time in
system of any customer at ergodicity, giving rise to a robust (but non-
exponential) limit theoretic bound for heavy traffic. In the present
paper, the significance of the service time distributions of competing
classes and of their traffic intensities is emphasi:zed.

In Section 1, the system studied is described and the main results
are summarized. A modified Lindley process is derived in Section 2,
which represents the waiting time until first entry into service of the
k-th low priority customer. In Section 3, the Laplace transforms of
stationary distributions of interest are given, and related heavy
traffic limit theorems are established. A final section is devoted
to numerical examples. All ergodic and transient distributions des-
cr?bed in the previous sections are evaluated numerically using the

Laguerre transform method.
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§1. The system of interest and main results

We consider the two customer streams described in Section 0 with

arrival intensities A, and A and service times TI and T with c.d.f.'s

I II I

AI(x) and AII(x). We assume that TI and TII have finite second moments
and that the ergodicity condition Pg = P * Py < 1 holds, where

oy = XIE[TI] and P11 = AIIE[TII]. The corresponding transforms are

-wT -wT

denoted by aI(w) = Efe I] and aII(w) = Ele 1

1. A class I customer
evicts any class Il customer from the service facility. When that class
1 customer and all subsequent class I customers with overlapping presence
complete service, the evicted class II customer resumes service. The
queue discipline of class II is FIFO. The queue discipline in class I
is irrelevant for class Il service delay provided the busy period for
class I customers is undisturbed.

A tool we shall appeal to frequently is that of effective service
time distribution. Suppose a random service time T in the absence of
interruptions has c.d.f. A(x). Interruptions 4 with c.d.f. B(x) arrive
in a Poisson stream of rate A, Let a(w) = E[e'WT] and B(w) = E[e'WA].

Then it has been shown [4, 5] that the elapsed time Teff until service

of f eff reff

is completed has c.d.f. A w) = E[e™" ] given by

(x) with a
(1.1) oSfF () = aqw + 2 - ABW))

In particular, for the preempt-resume system described, the effective

. . ef . .
service time transform “IIf(w) of class II customers is given by

: ff
(1.2) a?l (w) = aII(w + AI - AIOBPI(W)) .
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since class I customers ignore all class II customers and see their own
M/G/1 system. Here onI(w) is the server busy period tra-sform for class I

M/G/1 systems. This transform oBPI(w) satisfies the classical Takics equa-

tion [22]
(1.3) oBPI(w) = uI(w + AI - AIGBPI(W))

Of related interest is the stationary waiting time distribution for

class 1 and class Il customers. That for class I is given by the familiar

Pollaczek-Khintchine distribution Fp.. (x) [16] with transform

-wiy 1 -»o

_ 1
] = 1 - al(w)

1 - OI{—W—}

(1.4) dp W) = Ele

where WPKI is the stationary waiting time for class I. For the class II
i customers, the discussion of waiting time is much more difficult. Such

a customer has a waiting time before first entry into service, and may be

evicted repeatedly by streams of overlapping class 1 customers. For the

b class II customers, the total time in system rather than the waiting time
is needed. Nevertheless, the waiting time before first entry into service
provides a stepping stone to the time in system. Let Wk be the time until

first entry into service of the k-th class II customer. It will be shown

in Section 2 that the sequence Wk has a Lindley process-like structure in

that one has

W, + : .
k €k+1 if “k + gk+1 20

(1.5) W

k+1

TXO if W

k" bk <0
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Here €k+1 = Siff - A]“1 where Sﬁff is the effective service time of the

k-th class II customer, i.i.d. with transform given in (1.2), and Ak+l is
the interarrival time between the k-th and the (k+1)-st class II customers.

The variate TXO is the first passage time of the server backlog process
BI(t) of class I M/G/1 system from BI(O+) = X to zero [14]. The variate

X is given, as we will see in Section 2, by X d BI(Xl— E) with E being the
exponential variate of the unit mean. The process wilmay be called a
Lindley process [17] modified by replacement. An algorithmic procedure

will be given for evaluating the sequence of distributions of Wk recursively
via (1.5) based on the Laguerre transform method, and in turn to the sta-
tionary distribution of Wk. The distributions of Wk are of separate inter-
est in that they display the approach to ergodicity and provides relaxation

time information numerically.

Alternatively, it will be shown that the stationary waiting time WII

before first entry into service of the class II customers is given by
(1.6) ¢II(w) = ¢PKS(W + AI - AIUBPI(W))

-wi
_ PKS . . . L. . .

where ¢PKS(“) = E[e ] and hPKS is the stationary waiting time seen by
all customers in the system when there is no priority and the service dis-
cipline is FIFO. A comparison of (1.6) with (1.1) then gives rise to the

following formal statement,

At stationanity a class 11 customer experdiences, bejcxe

L g i R

its §inst entry dinto service, the system P-K delay for
;Z" (1.7) Ag = Ap+ A and Ag(x) = [AA[(x) + Mt (9017 modd-
- §ied by intemwuptions at Poisson hate A with duration
= Tgp1-

3
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§2. The modified Lindley process with replacement for W,

In this section we establish the recursion relations (1.5) for the
waiting times Wk of the class II customers described in Section 1. The
total time in system of the k-th class II customer is then obtained using
wk as a stepping stone.

For notational convenience, we denote the k-th class II customer by

Ck' Let Ck arrive at the system at time T We note that the interarrival

times

(2.1) Ak+1 =T - T

are i.i.d. and exponentially distributed with parameter XIT. Let Ck first
%* * %
receive service at time Ty and leave the system at time T, SO that

* .. e > eff _ . eff
(2.2) T T Tt hk T STt Sk =Tt hk + Sk
Here S:ff, the effective service time of Ck’ is i.i.d. with transform
eff
a?ff(w) = Ii[e_“S ] given by (1.2). W¥e note that Wk and Sﬁff are inde-

pendent and that the total time in system, Uk’ of Ck is given by

ke o eff
{(2.3) U =r1 - Ty = “k + Sk .

Since the distribution of Siff is known, the distribution of Wk leads to

that of Uk'

Suppose that is .ready present when Ck leaves the system at
L2 4

L : _ . O eff v
T This is equivalent to saying that Ak*l < Uk = hk + Sk . Hence

“k+1 is given by (cf. Figure 2.1a),




& . eff
Lﬁ : w Sy
- fxa1 Mke1 —
-« *® t
T T T T
k X k+1 X
. . eff
Figure 2.1.a. Ak-rl < h]_ + S]____
BI(w,t) ,
X = B Wy - &)
k Txo >
X
i t
* % T * )
'l'k k+1 Tk*‘l
eff
% S AN o e
b Ak+1 ot
* *e * ) t
T T
K k Tk Tkel Tkel
< . eff
Figure 2.1.b. A‘.:+1 > W * S
e e i . e
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(2.4) “k+1 hk + 5k+1 if hk + €k+1 20 |,
where
_ oeff
R TS

We note from (2.2) and (2.4) that the first service entry epoch of Ck*l’

when Wk + £k+1 2 0, is

(2.6) Teep = T + W =T, + W +5

k+1 k+1

since no class I customers are present at departures of class Il customers.

We now suppose that Ck+1 has not arrived vet when C, leaves the svs-

K
tem (cf. Figure 2.1b). This means that the server becomes idle at the
departure of Ck’ and Ck+1 arrives at the svstem after a delay of - “k - e

subsequent to the departure of Ck' Let BI(t) be the server backlog process

of class I M/G/1 system when BI(O) = 0. When Ck+l arrives at the svsten,

the server has backlog BI(-h‘k - €k+1)' While the server works on his back-

log, other class I customers may arrive who also precede C Hence, when

k+1"°
“k + £k+l < 0, the waiting time of Ck+1 is the first passage time TXG
of BI(t) from its initial load X to zero where X d BI(-Wk - £k+l)' For

. . . d
notational convenience, we define T, ., = 0.

00
. . . , eff
The negative support of the variate hk + €k+1 = “k + Sk - Ak+1

is contributed only by Ak+1’ which is exponentially distributed. Hence

the p.d.f. of Wk + Ek+l on the negative real axis is of the form
Ag X
- Il . - .
PiArr® U(-x) with Py = P[l\k + £k+l < 0] where U(x)

n

1, x =2 0, and

U(x) = 0, x < 0. Hence when hk + £k+1 < 0, one has
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(2.7) X = BI(-l\k - £k+1) = — E) , W, * Eral © 0o,
where E is the exponential variate of mean one. From this we have the

following theorem,

Theorem 2.1

Let Wk be the waiting time before first entry into service of the

k-th class II customer. Then

h'k + €k+1 if WI\‘ + Ek+1 20 |,
(2.8) “k+1 =
TXO if “k + £k+l <0 ,
where £ = Seff A and T is the first passa time of the server
€ k+1 = Tk T Tkl X0 p ge € serve

backlog process BI(t) for class I M/G/1 system from X to zero. The distri-
bution of X is given by (2.7).

The process Wk+1 in (2.8) may be called a modified Lindley process in
that the homogeneous process Wk + €k+l is modified bv a retaining boundary

at the origin with replacement at independently chosen TXO' We note that

the Laplace transform Bx(w) = E[e°wx] of X in (2.7) can be written as

) 1
’“BI(TI‘I” B) = At -wB (D)
(2.9) By (w) = E[e 1= e Ele ]dt
0
T st TWBp(V)
The double Laplace transform f e " E[e Jdt is given [14, 22] by
0
® -wB_(t) 1 - we, (%)
-st I _ 1
(2.10) ée Efe Jdt = S + Al(l - O.I(\\')} - W

TIPS N VT ST VI U W S e A e PP S O W Y e

P
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oo

Here € (s) = [ e”>"E (t)dt where E,(t) = P[B,(t) = 0]. From Equations (2.9)
0

and (2.10), one then concludes that

AII{I - WEI(AII)}
AII + AI{l - aI(w)} - W

(2.11) Bx(w) =

The following theorem can now be readily shown.

Theorem 2,2

i -wTXO

Let oxo(w) = Efe ] where T\O is given in Theorem 2.1. Then

Oxo(¥) = Opp/Cpp = WL - ef O v+ Ap - Aopp (W) 1]

Proof

As shown in (2.1) of [14], one has

Oyo (W) = Bylw + A - Aogpr (%))
. _ B!
i i AII[] - eI(lII){“ + AI XICBPI(\),]
S I A SO I M PP O D) IR T MR WE A OO

The theorem then follows from the Takdcs equation (1.3). O

One easily finds that oxo(w) > AIICI(AII) as w =+ +o so that T 0 has mass

X
XIIEI(AII) at the origin. Let rxo(x) be the probability density of Txo on

@
. the positive real axis and define yxo(w) = f e'“xrxo(x)dx. One then has
g 0

yxo(w) = oxo(w) - AIIEI(AII) and the next corollary is immediate from

v,
Vo

Theorem 2,2,

T

Corollary 2.3

(3) PlTyy = 0] = P[X = 0] = A e (hp))
-
: M1
. Y o™ = T 1= A Gyp) * AqegOyplogpp (9]
]

VP S  — diadmittintodieiiofal ol adveslinssinnairsstmeiiosiuatinstmtinmaiuiluath




e r
L]

SRm e A 1
':_l‘." r

-11-

As we will see in Section 4, Corollary 2.3 plavs a key role for cvaluat-
ing the distribution of Wk recursively via the Laguerre transform method.
The numerical value of eI(AII) is therefore needed.
Theorem 2.4

Let h{s,w) = s + XI{I - aI(w)} - w. For each s > 0, h(s,w) is strictly

monotone decreasing in w, w 2 0, and has a unique :zero at wo(s) = l/el(s) > 0,

Proof

A

We note that h(s,w} = (s + XI - w){l - T AI — al(w):. Then from

Rouche's theorem, h(s,w) has only one zero. This unique zero is attained

on the positive real axis when s > 0, since

9 N d .
™ h(s,w) = -1 - AI a;—al(u) < -(1 - oI) <0

and h(s,0) = s and h(s,w) - -» as w -~ =, Hence h(s,w) attains zero at

. -1
wo(s] > 0. It is known that eI(s) = [s + XI - XIGBPI(S)] . One then
sees, from the Takdcs equation (1.3), that
1, 1 )
N O LS S & T O LN )
1 I I
=5+ A - MOgpp(8) -5 - Ap + Apopp(s) = 0

Hence wo(s) = -—1—73 proving the theorem. [

CI(S

Since h(AII, w)} is strictly monotone decreasing in w, w 2 0, one can numer-

ically evaluate sI(AII) = l/wO(AII) straightforwardly.

e e o




Remark 2.5

1

We note that the numerator of (2.10) vanishes at w.(s) = T lence
p s

(
© . -wB (1) 0
f e " Ele ]Jdt is regular for Re(w) 2 0 when s > 0, and the transforn
0

in (2.10) has only nonnegative support. This, in turn, implies that ¥ S (W)

X
in Corollary 2.3 has nonnegative support only, as required.
It has been shown (cf. [10], p. 233, item (d)) that the ordinarv

Lindley waiting time process is stochastically monotone. In particular,

for the sequence of the ordinary waiting times Wt, one has W£‘1>~ wi,
. L .L .L cs
k=0,1,2,..., i.e., P[hk+1 > x] 2 P[hk > x], when “0 = 0. The waiting

times may then be said to be sequentially monotone. The modified Lindley

process (2.8) is also sequentially monotone when W, = 0, as we prove next.

0

Theorem 2.6

Let Wk be defined as in (2.8) with WO = (0. Then Wk are sequentially

monotone, i.e., wk+]>» W, k=0,1,...

k)
Proof

3 v - - . . . - . - +
It is clear that h1>»k\0 = 0. Suppose hk>~ “k—l' Let \k = [hk + gk*l]
where [X]+ = max{0,X} and define the survival functions ?W L (X) = P[Wk > x]

and Fy | (k) = P[V} > x]. We note that W > K . implies V, >~V, . (cf.

[10]). From (2.8) one sees that
(2.12) By 00 = By ) « By (08 Reg (), x> 0

Here Rxo(x) = P[TXO > x] is the survival function of the replacement distri-
bution for the modified Lindley process. From the induction hvpothesis,
one has Fv,k(x) 2 FV,k-l(x)’ x 2 0, so that FW,k+1(x) 2 F.‘k(x), X 20,

proving the theorem. (
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Corollary 2.

(a) Let E

#

. = = - . ) .) .. . .
K P[“k 0]. Then Ek Fv,k(0+] HIICI(AII) is monotonically
decreasing in K.
(b) E[Wk] is monotonically increasing in k.

Proof

Part (a) follows from Corollary 2.3, Theorem 2.6, and (2.12). Part

(b) is immediate from Theorem 2.6. [
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§3. The ergodic distribution of total time in svstem for low priority
customers; its heavy traffic approximation

As shown in Section 2, the sequence Wk of time spent before first
entry into service of the k-th class II customer is a modified Lindlev
process with replacement. For the ordinary Lindleyv process, when the
virtual value Wk + €k+1 is negative, replacement is at zero. For our
case replacement distribution has support on the positive continuum as
well as at zero and the standard Wiener-Hopf methods must be altered.
The compensation method introduced earlier in [6, 7] and presented in
simplified form in [ 2], provides a quick analvsis. One sees that the

required c.d.f. FWII(X) of Wk at ergodicity is given by

(D) Fygp0 = [ e )

Here GZ(x) is the ergodic green distribution of the underlving homogeneous

H

H . .
process “k+l = “k + €k+1’ and C(x) is the c.d.f., of the compensation. In

transform notation (3.1) becomes

(3.2) 6 (") = X(W)yh(w)
where
H 1
(3.3) ‘Ym(w) = T
1 - 1, 0‘ef’f(w)
XII - W 11
and
< . XII
4 (3.4) X0 = Klogy () - 5—=]]
) ‘ 11
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In (3.3) and (3.4), ufff(w) and oy (w) are described in (1.2) and

Theorem 2.2, respectively. K is a normali:zation constant.

i)
Sodh o
"

Consider next the M/G/1 system for which KS = XI + lII and
A A
AL(x) = —l-A (x) + —ll-A (x) describing the service stream seen by
S AS I AS II

.o

Y

the server when the two classes are given equal priority. If the

service discipline is FIFO, the Pollaczek-Khintchine transform for

the stationary waiting time is

(3.5) w

The statement in (1.6) may now be given formally.
Theorem 3.1

Let og = ASE[TS] =0p *Pqp < 1. Then the ergodic distribution of
the time until first entry into service for class II customers with FIFO

discipline has the transform

- (3.6) pp (W) = wpgg (¥ *+ Ap - AOgpr (W)

%& Proof

;z Let Z(w) = w + A, - AIGBPI(W)' From Theorem 2.2 and (3.4), one has
2 X(w) = -K,Z()/(A;; - ¥). From (1.2) and (3.3), one also has

o H 1 -1

Fi Y (W) = (1 - T aII(Z(w))] . Hence from (3.2), onc sees that
= I1

: ’ K200

b tw11 () = XON () = T T o

;!

{

pt

. ‘v

L

E‘L-FLA-‘ PSPV DAY SN SUNE T Vs W 1 Y AL e st antcninst atntmainadiod
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Since w = Z(w) - AI{I - chI(w)} = Z(w) - AI{I - aI(Z(w))}, one then

has

KIZ(W)
¢ 7 (w) =3 - -
WII Z(w) - AI{I - uI(Z(w))} - XII{I - oII(_(w)):

Dividing both the numerator and the denominator by Z(w), the above equa-

tion leads to

K

1
rr (W) = T~ ag(Z(v))
TP TIIElTST
* M
where a_(w) = — o, {(w) + — o, (w). From ¢.. .(0+) = 1, one easily finds
S Xs I AS II WIT

-

that K1 =1 - Pg and the theorem follows from (3.5). [
From Theorem 3.1 and (2.3), the transform of the time in svstem of class II
customers at ergodicity is immediate. One has:

Theorem 3.2

Let p. <1 and let U, = W._ + Seff be the total time in svstem of
S II I1 IT U .
class II customers at ergodicity. If ¢U11(w) = E[e H ], then

2 (3.7) bypg (W) = wpgg (W *+ Ap = Agoppr (W)agp (W + Ap = Aopap (W)
&! The transform results given in (1.2), (1.3), (3.5), Theorem 3.1 and Thecorem
:i 3.2 lead to the following relations between the first moment of various
fi variates of interest.
L

B

Ad
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(3.82)  E[T(] = E[T,] + E[T}{] )
(3.80)  E[T...] FTy ]
: BP1 1 - Ch
eff _ElTy]

(3.8¢)  E[S];'] = E[T;[](1 + AE[T

BPI]) 1 - 01

o E(T;]
pks! = T P ) E[Tg]

(3.8d)  E[W

ElWpys)
(3.8¢) BNy} = Elfpygl (1 + ME[Tgpr]) = 75—
E[W,..] + E[T,,]
, eff, _ El'pxs 11
(3. 8f) E[UII] = E[hII] + E[TII ] = T

I

The heavy traffic limit theorem for class II customers can now be given.
Theorem 3.3

Let the competing service times TI’ TII have finite second moments.

Let (AIj’ AIIj) be a sequence of arrival rates for which in = K XIIi’

K > 0, and let g 1-. Then both WII/E[WII] and UII/E[UII1 convergé in

distribution to the exponential variate with mean one.

Proof

LRkl 4 4
¢

When AI and AII are in fixed ratio, the syvstem service time TS has
i i
the transform as(w) = (XI./Asj)aI(w) + (Alli/lsi)all(w) so that the distri-

bution of TS does not chahge with i. From Theorem 3.1, (3.5) and (3.8e},

one has

Ty
A
P

Bl i
KRRy P~ AR

PRI R RN GV PRI CEP I I Wy S W s ey iadmsadiisndions P P - o .
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1 -0 -
v S

(3.9 4y (=) =
W

DI -

W N
T s; GBPI(R )7)
I I

* w
II 1 - pgag(—— {1 +
i

*
where ¢X(w) = {1 - ¢x(w)}/wE[X] and E[WII] = RII' Further, from (3.8)
and (3.9),

W

- 2yt
"

W * *
(3.10) ¢WII(E_—) = (1 - ps)[l - DSOS(“ {1 - oI(l - OBPI(\
II PKS I

*
One may then employ the Taylor expansion with remainder of both a (w)} and
*
oBPI(w) out to the linear term in w, and proceed classically invoking the
continuity theorem for characteristic functions to find

w 1
(3.11) ¢WII(-._) - Tow as og * 1-
I1

demonstrating the convergence of WII/E[WII]. The convergence of UII/E[UII]

is immediate since the effective service time is bounded stochastically

from above. [

Remark 3.4

One could also inquire about the limiting behavior when AI and AII

] J
are not in fixed ratio. For application of heavy traffic approximation,

WY
.

i B mmAT

however, one has specified values of AI and AII with og = l-¢ for ¢ > 0,

small. The approach path of AI and AII to the values XI and 111 is then
i i

irrelevant,

g P
N et
SERY R

L N

Cat a2l

‘.
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§4. Evaluation of the distributions of interest via the Laguerre transform

In this section the distributions of interest described in the pre-
vious sections are evaluated numerically via the Laguerre transform. The
reader is referred to [11,12,21] for the underlving theory of the Laguerre
transform. All figures are given at the end of this section. The follow-
ing example is considered:

System I: High prioritv class

1 -5X -X -3X
A\ =7 Ap(x) = P[T; > x] = e T ee T+ e
E[T,] = 32 , o, = A E[T.] = 0.278
I 9’ 1 1 1 )

System II: Low priority class

S _ L
AII =5, AII(x) = P[TII > x] = 2[e + e

= 2 - -0 3
E[TII] =7 DII AIIE[TII] 0.375
0, Total svstem
- .3 . _ 1 2;
= Ag = Ap*+ A =7 Ag(x) = PITg > x] = = Aj(x) + 3 App(x)
r: T ! 2 = 0.653
a E[lS] =3 E[TI] * 3 E[TII] = 0.870 , pg = oy * Py = 0.653
b,
- Y .
:f' (A) Ergodic distributions of “II and UII
2 From the transform results (1.2), (1.3) and (3.5), one obtains
Pt
jﬂ easily the corresponding (generalized) probability densities as given
fﬁ below.
S
e
b
P
P.-'_
o
P
{

v
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o «A.x (A x)n

N = I (n*l)

(4.1) spp (x) = ngo e ' mprat

o ax 0,x)"

ff I I
@2 st s ]ote T ay s U
(4.3) fPKS(x) = (1 - cs)é(x) + kaS(x)
where
+ B} SR R SRR

(4.4) fors(X) = (1 - o) ngl °s {ETT ] A ()}

Here a(n)(x) is the n-fold convolution of a(x) with itself. The asterisk

also denotes convolution and §(x) is the delta function.

Similarly from Theorem 3.1 and Theorem 3.2, the probability densities

fWII(x) and fUII(X) take the forms

(4.5) £,1000 = (1= 0)8(x) + o1 (%)
where
© =h.x (A x)
I I +
(4.6) £ () = nZO {e —r— fprs (X)¥*s ég%(x)
and
4.7) £, 00 = (1 - og)s fff(x) v fr 00 1 £

The Laguerre transform enables one to evaluate systematically all of

these probability densities which heretofore have been behind "the




LA g

Laplacian curtain'. The Fourier-Laguerre sharp coefficients o% aI(x)

and aII(x) are readily obtained analytically. Using the relevant opera-

tional properties of the transform, Equations (4.1) through (4.7) lead

to the coefficients of each density. They, in turn, can be converted to

the coefficients of the corresponding survival functions, thereby bipass-
ing numerical integration. The final inversion from the Laguerre coeffi-

cients to function values is straightforward. 1In Figure 4.1, the survival

=eff eff

functions S = P[T > x] and S .7 (x) = P[S;;" > x] are plotted.

gp1 (X) BPI

Figure 4.2 depicts the survival functions Fsz(x) = P[hpKS > x],

FWII(X) = P[wII > x] and FUII(X) = P[UII > x]. We note that both oks

and WII have mass 1 - p_ at the origin.

S

(B) Modified Lindlev process with replacement

It has been seen in Theorem 2.1 that the waiting time before first
entry into service, wk, of the k-th class II customer follows the modified

Lindley process given in (2.8), i.e.,

Wk + Ek+l if hk + £k+l >0 ,
(4.8) wk*l =
TXO if Wk + gk+1 <0 ,
££ g
where Ek#l = SE - Ak+1 and the transform cxo(w) = Efe ] is given

in Theorem 2.2. As shown in (2.3), the total time spend in the system

Uk by the k-th class Il customer is then given by

(4.9) u, = w + s&ff

k k k
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We now show how these transient distributions can be evaluated via the
Laguerre transform.
Let a(x) be the p.d.f. of the i.i.d. random variates Ek. The Laguerre

#
sharp coefficients (an)mw of a(x) are easily obtained from those corre-

sponding to Siff and Ak+1' From Corollary 2.3, the variate TXO has mass
R0 = AIIEI(AII) at the origin, which can be calculated using Theorem 2.41.

In our example, R0 = 0.848., The probability density rxo(x) of T\.0 on the
positive real axis has the Laplace transform YXO(W) given in Corollarv Z.5.

The Laguerre sharp coefficients (r;); of rXO(x) are then obtained, using

k-l-

Corollary 2.3(b), from those corresponding to TBPI and Ak. Let
Ek = P[l\'k = 0] and let fk(x) be the probability density of Wk on (0,=) so
that E,_ + f

0

fk(x)dx = 1. Assuming that Ey and the Laguerre sharp coeffi-

# .
cients (fn(k))z of fk(x) are known, we next establish an algorithm for

£
N

c s # o ¥ o .
obtaining Ek+1 and (fn(k+1))0 in terms of (an)_m, RO’ (rn 0’ Ek and
# o
(£, ()
H sl o . .
Let fk+1(x) be the probability density of “k + Ck&l' One then has
H - X *a(x o o
(4.10) fk+1(x) = Eka(x) + fk(x) a(x) , -w<x <

# o
The associated Laguerre sharp coefficients (f: (k+1)) _ of f¥+l(x) are then

given by

M
a f (k < < ®
nemim(K)

HL‘
(4.11) £ (k+1) = E
n 0

+

kan

Nt~ 8

Let f;+l(x) = f?+l(x)U(x) where U(Xx) = 0, x < 0 and U(x) =1, x 2 0. The
+

s o @
coefficients (fn (k#l))0 of fk+l

(x) are found from
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# o E] i= il
(4.12) £ ke = - [ £ 5 £ e - e, r2
n=1
0 -
= - . - - . i f . .
Let pk+1 = P[l\k + £k+l < 0]. Then Pyyy = {m k+1(x]dx =1 - 6 fk+l(x)dx

so that

£ L (k+1)

(4.13) I+

pk+1 =

| ol

+

¢
W~ 8

n=0
From (4.8), one finally has

(4.14) E)”1 = pk+1R0

and

# + ¥ - &
(4.15) fn(k+1) = fn (k+1) + pk+lgn , n20

Equations (4.11) through (4.15) enable one to calculate Ek+l and (f;](}\«»',foc

recursively for k = 0,1,2,..., starting with W Q 0 (i.e., E

0 o= bt

# # ©
and fn(O) = 0, n 2 1). The coefficients (fUn(k))0 corresponding to U

given from (4.10) by

¢ . oefft D & effe
(4.16) fUn(k) = E s + Z £ (k)s_

eff#

where (sn eff

I1

In Figure 4.3, the survival functions ﬁwk(x) = P[Kk > x] are plotted

); are the Laguerre sharp coefficients of s (x).

for k = 1,2,3,4,5,10,20,30,40,50 and 0 < x < 10. The absolute difference
between FWSO(X) and its ergodic survival function Flltx) = fWII(y)d“
obtained in (A) is bounded by 10'6 for 0 < x < 10, using the first 130
Laguerre coefficients. This assures numerical stability and accuracy

of the Laguerre transform procedure. We note that thc¢ stochastic mono-

tonicity of Wk in k given in Theorem 2.6 can he observed in Figure 4.3,
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K to 1 -~ OS

of E[Wk] to E{W,;] as k > =, respectively. Both E, and'E[Wk] are calcu-

Figure 4.4 and Figure 4.5 show the convergence of E and that
lated using the Laguerre sharp coefficients. It has been shown [15, 21]

that the Laguerre sharp norm defined by
“an gl = /1 f

provides a distance between any two distributions. In Figure 4.6 this
Laguerre sharp norm distance between Wk and WII for 1 < k £ 50 is exhibited
thereby quantifying the rate of approach to ergodicity. These distances
also provide convenient stopping criterion for the computation. One can
see that for k 2 25 the distance is bounded by 0.01. Finally, in Figure
4.7 the survival functions ?Uk(x) = P[Uk > x] are plotted for k = 1,2,3,43,
5,10,20,30,40,50 and 0 £ x < 10. All computations were done on a DEC 10
computer in a timesharing mode using APL as the programming language.
Relevant formulae were usually coded in a straightforward way using the
first 150 Laguerre coefficients. The results displaved here were typically

obtained with CPU time in seconds.
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