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GEORGE PAUL BERNHARDT IV
1Lt, USAF

1983
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S.M. Physics
MASS. INSTITUTE OF TECHNOLOGY

ABSTRACT

An electron scattering experiment was performed at the MIT Bates Linear
Accelerator facility on a target of n Murally occurring silicon. Several
of the low-lying inelastic states of Si were examined to determine the

single-particle transitions which contribute to the states.

The levels examined where the second, third, eleventh, twelth, and thir-
teenth levels. Form factors for each of these states were determined
experimentally and the appropriate harmonic oscillator polynomial was then
extracted from the form factors. Derived polynomials, using a harmonic os-
cillator model, for single-particle transitions were then compared to the
fitted polynomials.

Tt +
The second and twelth levels, J = 2 , were Tround to be mostly a 2s-ld
transition while the third level, also J" = 2_, was found to be mostly a
id-ld transition. The eleventh state, J = 3 , was found to be+approxi-
mated best by a id-if transition. The 3 hirteenth level, J" = 4 , led to
the possibility of if strength in the Si ground state as other possible
transitions are unlikely.
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CHAPTER I

INTRODUCTION

In 1940, the first experiments on electron excitation of nuclei to

discrete levels were done by Collins and Waldman(1.1). The first theoreti-

cal discussions of this inelastic electron scattering were due to Mamasach-

lisor in 1943(1.2) and Snedden and Touschek in 1948(1.3). Lyman et al. in

1951, using a betatron, clearly saw effects due to deviations from point

Coulomb scattering, thus allowing nuclear sizes to be measured using elec-

tron elastic scattering(l.4). Since that time, linear accelerators have

become the standard source of high-energy electrons for such work. However,

due to the limited resolution, an experiment of the type done in this thesis

was not possible before, the current.,generation of linear accelerators and

spectrometers.

The machines used in the 1950's allowed electron scattering with a

resolution of 4p/p f5xlO- and with currents of a few tenths of a micro-

ampere. Work done using these machines, although including some excellent

work such as that done by Hofstadter(l.5) was limited to a few nuclei with

well-isolated levels due to inability to resolve closely spaced levels. By

the early 1970's, facilities existed with energy resolution of AP/pp 10

with useable currents of i-2 , A. To reach a resolution on the order of

10- 4 it was necessary to use an energy-loss spectrometer.

IL I .l . . . . I I I 11 l ... ._. . . .
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In previous systems, high resolution has meant throwing away most of

the primary beam on energy defining slits, since the beam incident on the

target was analyzed to the level of resolution required for the experiment.

Less than one percent of the primary beam was available for resolutions on

the order of 10- 4 since most linear accelerators have an inherent resolution

-2on the order of 10- . The most important improvement in electron scatter-

ing of the last decade has been the recognition that this loss of intensity

can be avoided by using energy-loss spectrometry. The two important reso-

lutions in a high precision measurement of an electron scattering cross

section are the resolution of the energy-loss of a scattered electron re-

flecting excitation of nuclear states and the resolution of the momentum

transfer to the nucleus. Many experiments, including this one, require the

nuclear level resolution AE/E to be on the order of 10 , but the defini-

tion of momentum transfer is usually adequate at Aq/q on the order of

3xl0 3 . Energy loss spectrometry exploits this relaxed requirement on

momentum transfer resolution, allowing most of the accelerator beam to be

used. High resolution is achieved if the accelerator, beam transport and

spectrometer form an achromatic system that images the beam on the focal

plane. Each monochromatic component is focused on the target. The beam is

dispersed spatially at the target to match the spectrometer dispersion(l.6).

Resolutions of the order of 10- 4 are required to perform 30Si scatter-

ing experiments on a naturally occurring silicon target. Since natural

silicon is 92.2% 28Si, the levels from this isotope will be dominant.

Therefore, it is necessary both to resolve 30Si levels from 28Si levels

29 30
and Si levels, and to achieve adequate signal-to-noise to see the Si

levels against the background of strong radiative tails from the levels

- t.
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in 28Si.

This thesis presents data for electron scattering from several of the

low lying states of 30Si. The form factors for these levels were measured

experimentally and compared to a theoretical form factor calculated accord-

ing to an independent-particle model using harmonic oscillator wave func-

28tions. Also, the form factors for the first three states of Si were com-

pared to the results of Whitner(l.7) as a check on the consistency of the

data analysis.

Basically, the organization of this thesis is given below. Chapter II

presents the theoretical formulation of the form factors using harmonic

oscillator wave functions in the reduced matrix. Chapter III presents the

experimental apparatus and procedure. Chapter IV covers the data analysis,

including extraction of the form factors from the spectra. Chapter V com-

pares the results of Chapters II and IV and gives conclusions.

';' 7 *
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CHAPTER II

ELECTRON SCATTERING THEORY

INTRODUCTION

The importance of electron scattering as a tool for studying nuclear

structure cannot be understated. The electron scattering experiments lead

directly to an understanding of the electromagnetic structure of nuclei.

Three considerations show this importance. First, the electromagnetic

interaction between the electron beam and the target is well understood,

thus allowing separation of electromagnetic effects and structural effects.

This is as opposed to experiments using strongly interacting nuclear pro-

jectiles, such as protons, in which neither the interaction nor the struc-

ture of the target is well known. Secondly, within the restriction that the

four momentum transfer [q, =(AJ)] be spacelike, the three momentum trans-

ferred to the nucleus (1) can be varied independently of the nuclear excita-

tion energy, allowing one to map the transition densities to discrete

nuclear states in momentum space. Thirdly, in many experiments,

c 137

is small compared to unity, allowing the computation of the transition rate

using the Born approximation for exchange of one virtual photon. In such a

j1i
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case, one can make measurements without greatly disturbing the structure of

the target.

This section presents the formalism of electron scattering largely

based on the development by Willey(2.1). Emphasis is on the kinematics and

the calculation of the form factor using a harmonic oscillator model.

KINEMATICS

The kinematic parameters are shown in Figure II.1 for an electron-

nucleus scattering event. The electron is extremely relativistic at even

the lowest incident energy used in this experiment (148 MeV). Hence, the

electron rest mass may be ignored since it is only on the order of .5 MeV.

Conservation of linear momentum yields two equations

PC = Pf cos e (2)

and

0 0 e + sin )

Conservation of mass and energy, in a relativistic form, yields

+ Mf + 
(4)

In the above equations Ex is the excitation energy of the nucleus and M T

is the rest mass of the nucleus. The other parameters are shown in the

figure. Using these equations, one may derive the following expression for

I
-~ r ~ ..



FIGURE 11.1

KINEMATIC PARAMETERS

Ic
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the final electron momentum:

P- E Ex /a M (5)

The denominator is known as the nuclear recoil factor and is usually denoted

by drL . If one solved equations 2-4 for q instead of for Pf, the results

would be

where

P..r (7)

This leads to the restriction on the four momentum mentioned earlier,

In analyzing the data, the kinematic shift caused by mass differences

between isotopes must be taken into account. The excitation energy scales

for the spectra are determined for 28Si, the dominant isotope. The peaks

due to levels in 30Si will appear on this scale, but will be shifted. The

shift arises from the recoil factor 'k because of the mass difference

between 28Si and 30Si. The apparent 30Si levels will appear to be lower

than their true energy. If Ex is the apparent energy, it is found to be

M + (9)
"I

j
E 

"1
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where

eL ).- (Z / L1 (0

In these equations, Ex2is the actual excitation energy. The convention is

that a subscript 1 relates the factor to 28Si and a subscript 2 is the

actual value.

SCATTERING FORMI1 FACTOR

Matrix Formulation

The interaction between the electron as it scatters and the nucleus

leads to nuclear transitions. The invariant interaction matrix element is

L (X))<f/H'/'> A.(r ) f Cx) d

Here A,(x), the electron four-potential, describes the electron current and

is composed of a time-like part, the scalar notential 4 and a space-like

part, the vector potential A (A(x)=( (x),.A(x)). The nuclear four-current,

J (x), is composed of the time-like part, the nuclear transition charge
n

density p (x), and the space-like part composed of two pieces: (1) in(x),

the nuclear current transition density, and (2)VX M&n (x), the magnetiza-

tion transition density (J'(x) (X)fi; cjxfi +Vz'ix ))

For a gauge invariant interaction, the nuclear current must be con-

served, requiring the constraint

.(

,, , lii I I , • ..
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The Lorentz gauge places the constraint

A (13)

and Maxwell's equations require

(14

where is the d'Alembertian operator, - is the electron four-current,

K is the appropriate Dirac matrix, q is the four-momentum transfer

(q =(,W)), and ui and uf are the initial and final electron spinors. The

appropriate Green's function, or propagator, for this equation is, by

Bjorken and Drell(2.2), _(1/2 yielding the solution

4. (15).

The transition matrix elements can now be written as

t-I'lT> f ALX x dI x (16).

The transition probability per unit time is

Tr . f 1 I'/> (17)
W W(t) - T *I I M .k Sf S.

where Ji is the spin of the initial state, Mi and Mf are the initial and

final nuclear spin rates, Si and Sf are the initial and final electron spin

states, and (Ef) is the density of final states and is given by

I< F d YI ' ITCa r) ., C_

where Kf is the final electron momentum, dA/ is the element of solid angle,

and I% is the recoil factor defined in equation 5. The cross section can

;7
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now be written 
as

i/ > (18).

The cross section may be broken up into components consisting of the coulomb

multipole term (c), the transverse electric uiultipole term (E), and the

transverse magnetic multipole term (M) giving

00 00 00(19).

In this formulation, transverse and logitudinal components are defined rela-

tive to the direction of q. In the above equation,. is the multipolarity

of the transition and is given by

T~Y I z< 5~~ (20).

In the present case,. = Jf since Ji=0 for 30 Si.

The transverse multipoles arise from a spin flip of the incident beam.

Originally, the spins of the electrons are aligned in either the direction

of the electrons (+) or opposite the direction (-) or momentum. After

scattering, the electrons must conserve momentum and spin. The final state

is now a linear combination of initial + and - states. The portion which

flipped spin from either plus to minus or minus to plus accounts for the

transverse electric and magnetic multipoles. Thus, the longitudinal coulomb

multipole results from that portion of the wave function which did not flip

spin.

Just as important as the origin of the miltipoles is the parity selec-

tion rules governing them. The coulomb and transverse electric multipoles

have normal parity (-1) , whereas the transverse magnetic multipole has

l l ,.= = , ..
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abnormal parity (-1) A.

Returning to the formalism, the matrix elements from equation 18 become

S A J.A 4 A (

and

<I(~ A , )L ~ (~)S LAV Y A4. r) (21c)

where 3 (qr) is the spherical Bessel function, L is -ir X V , and YA is the

spherical harmonic. These equations reduce by the well-known Wigner-Eckart

theorem, which factors out the dependence on the magnetic quantum numbers M.
1

and Mf, to the following:

Md M ) mzv>z (I)f ' X Jr,. (22)

The separated cross sections may now be written as

4 Ir X(C X,(23a)
(C N) ),. a A 13(C),-CPA

' . ... . .. .I lm II I I III I I I I I -L
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(jr ~ (ro 2 +9 IT#z. (x tr (23b)- (E) - ) _or______.

and

" - a ) qrr 0__ (23c)

where

and

(dJM-0 S (25)
tdn.)orr E n'ia ,"(5

and'1 is the nuclear recoil term. The factor

IL( a W1(26)

takes out the lowest order of q-dependence of B, so thatC 2:ff4.1 /(27)

where B (M Jf- J ) is the gamma-ray reduced transition strength. In this

notation the form factors may be written as

IN - (28a)
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13FA f¢'so i,->Tor)

and

:1 (._ + [ a ,t ; (28c).

Individual Particle Model

It is now necessary to develop equation 24 by using an appropriate

model. Before applying the model, it is instructive to briefly examine the

general case as presented by Donnelly and Walecka(2.3). In second quanti-

zation, the multipole operators have the form

,?j % 10 > (29)

where 4 and 0 form a complex set of single particle quantum numbers, T and

Tz refer to isospin and isospin in the Z direction,Ck is the creation

operator for the state d%, and C, is the destruction operator for the

state 4 Taking the matrix elements between exact nuclear states yields

-f I /V" I M :TX (vI) (30)

where 4

Iva C6A C I./(31).
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Equation 30 expresses the matrix element of an arbitrary multipole operator

as a linear combination of single-particle matrix elements multiplied by

equation 31, which are simple numerical coefficients. The basis of equa-

tion 30 can be doubly reduced with respect to both angular momentum and

isospin yielding

0, 7 TJIIII? AC (TiI L J* c" , 7 (32).

Once the set of numerical coefficients J, (Ab) have been determined,

the exact transition matrix element of any multipole operator can be expressed

as a linear combination of single-particle matrix elements. In the present

case, the transition was assumed to be single-particle only. Therefore,

(,(,6) was assumed to be a delta function.

In the individual particle model, the nucleus is considered to be a

collection of nucleons. Therefore, the nuclear charge, current, and mag-

netization density operators are, in Willey's notation,

P,(7)t I te1 4 rj 4 -f( r - ;) (33a)
( , c~ ~ - le r.t - ) s , (33b)

- Iei A -(33c)

where

LWV. (34).

The symmetrized form for equation 33b is necessary for the nuclear current

in order to satisfy hermiticity and the continuity equation

______(35).

V C-

Im.
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in isobaric spin notation

(36b)

where C, 2tz' Cp f 1, i. 0, (p - 2.79 and 4 = -1.91. Using

these results, the multipole operators become

Slei _ ) (37a)

>A-*I )! I

M- -
r,

M1- a~ I J( 0 ))

En the above equations, (rj) is the spherical Bessel function, (3b)

is the vector spherical harmonics, Y ( ') is the spherical harmonics,

and ijis -irrX .

jV J:

The last step in developing the form 
factors is to use a model for

the initial and final states of equation 
24. In this case, a harmonic

oscillator model was used. The reduced matrices have been calculated by
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Donnelly and Haxton using 
this model. The general result is

" .a (38),13( ,xT, l, - , Y e r'

where 5 can be related to the gamma ray transition strength, y is 2,

b is the harmonic oscillator length parameter, and P(y) is a polynomial

of y whose coefficients are given in the tables by Donnelly and

Haxton(2.4).

In this work, the transverse electric and magnetic multipoles are

assumed to be very small for the data taken. Hence, only the longitudinal

coulomb form factor is calculated in Chapter V.

Amon -_.__,
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CHAPTER 
III

EXPERIMENTAL APPARATUS

INTRODUCTION

The data presented in this thesis are the results of an electron-

scattering experiment on natural silicon performed at the MIT Bates

Linear Accel-rator. The discussion in this chapter is limited to a des-

cription of those unique features of the facility relevant to this exper-

iment, as the accelerator has been described in detail in the literature

(3.1-3.2).

The facility provides an average electron beam current of 2-4O A

without sacrificing resolution (^'2 x 10- 4 4 ) through its unique energy-
p

loss spectrometer. The high beam current was necessary to provide a

reasonable measurement of the small experimental cross sections due to

the low percentage of 30Si in the target. In natural silicon, the percent-

age of 30Si is only 3.1%. The resolution must also be high enough to pro-

vide a reasonable signal-to-noise ratio in the measured spectrum. Without

the high beam current and good resolution, the experiment would have been

impossible with natural silicon.
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SPECTROMETER AND DATA ACQUISITION

In the Bates energy-loss system, the incident beam dispersal on the

target allows the position on the target to be correlated with the incident

energy to an accuracy of better than one part in 10 4 . A quadrupole sing-

let controls the dispersion at the target in order to match the dispersion

of the beam transport system to that of the spectrometer. In order to

achieve 10- 4 resolution, the scattered electrons are bent through ninety

degrees by the split-pole spectrometer in proportion to their momentum

and, therefore, their position. This differential bending brings electrons

that underwent the same energy loss in the target to a common focus in

the spectrometer focal plane(3.3).

In the detector system, an electron passes first through two multi-

wire proportional counters, then into two lucite Cerenkov counters. The

planar surfaces of all four detectors are at an angle of forty-five

degrees to the central ray of the spectrometer.

The first proportional counter has sense wires tapped by three differ-

ent delay lines read by time-to-digital signal convertors. The drift time

of the ions to these wires can be used to measure both the track position

and the angle of entry into the chamber. Drift times are measured perpen-

dicular to the plane of the sense wires and, therefore, this counter is

known as the vertical drift chamber. The sense wires give information

about particle trajectories in the direction of particle momentum.

The second proportional counter is known as the transverse array and

has sense wires read on only one delay line in the direction transverse

to the momentum of the particle. Since the optics of the spectrometer are

point-to-parallel in this plane, this chamber provides a measurement of

. . . . . m | , l . . . . .
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the scattering angle of the particle within the acceptance of the spec-

trometer(3.4).

The coincidence between the two Cerenkov counters provides a start

signal for the delay time measurements of the time-to-digital signal con-

vertors. A coincidence between two Cerenkov counters is used due to the

need for efficiency. The discriminator on each Cerenkov must be set very

low for good efficiency, which would result in a high noise background if

only one were used. The Cerenkov threshold also discriminates against

heavy charged particles whereas a plastic scintillator would not.

Storage of the event parameters (momentum position, vertical angle,

and horizontal angle) and event classification are done by the data

acquisition programs in the on-line PDP-11 computer. Communication be-

tween the PDP-11 and the detectors is done through the Camac Dataway

interfaced by a microprogrammed branch driver.

The detection system requires 300 nano seconds to process the infor-

mation from a given event. Should another event occur during this time

span, both the start and the new event are disqualified by the system and

stored in a special register. The recorded signals are tested by known

timing criteria to determine whether the signals are consistent with a

"good" event. Inconsistent signals are also disqualified and stored in

registers according to the criterion covering the disqualification.

Typical resolution values for this experiment ranged from 1.6 x

-4 -442, 30S10 to 2.0 x 10 - -  inside the range necessary for Si. Average beam

currents on the target during the experiment ranged from 4 to 40 A1 A,

with 20-30 AkA most typical.

-wI



22

TARGETS

The targets used in this experiment were natural silicon crystals

provided by Dr. Robert Wolfson and Mr. Paul Grubenskas of Varian Vacuum

Division. The targets were etched to their thickness used in the experi-

ment from 10 mil thick blanks using a blend of hydrofluoric, nitric, and

acetic acids. No contamination as a result of this process was observed.

A carbon elastic peak was observed in three of the data runs used for

this analysis. However, this contamination was most likely an impurity

in the vacuum system, and not a result of the etching process. The car-

bon peaks did not interfere with any of the data analysis. No other con-

tamination was observed at the level of this experiment.

An analysis of target thickness was done by Whitner(3.5). Summari-

zing her work, she found the thickness of the standard target by using the

focal plane calibration program, FPCAL 1, described later. The silicon

target was used with other targets of known thickness to calculate a fit

to the focal plane and accelerator energy parameters of the run. A map

of the fit chi-square as a function of target thickness was produced by

varying the silicon target thickness in the calibration program. The

target thickness corresponding to the minimum of the chi-square was chosen

as correct.

Target thicknesses were compared by measuring the form factor of the

28 i 2+ level under the same conditions with the four individual targets.

The ratio of these form factors to the standard target form factor was

then used to find the other target thicknesses. A summary of the thick-

nesses according to the measurements of Whitner is shown in Table 111.1.

Target uniformity was measured by attenuation of 225 MeV electrons from
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14 7Pm in the material(3.6). The average thickness in the beam spot area

was found to vary ±3% in the center of the target.

Table (3.1)

Target Thicknesses

Target Thickness Uncertainty

(mg/cm 2%)

26.50 5.0

25.37 5.4

28.83 9.4

31.83 6.4
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CHAPTER IV

DATA ANALYSIS

INTRODUCTION

A raw experimental datum is simply the number of events per detector

channel. To relate these events to the form factors of Chapter II, the

relationship between the experimental parameters and those scattering

properties of interest must be used to reduce the data to useable form.

The reduction is done by creating a spectrum of true events as a function

of nuclear excitation energy, by finding the area of the peaks in that

spectrum, and by then calcul.ating the form factors of those peaks from

that area using the known values of target thickness and integrated change.

ENERGY SPECTRUM

In order to determine the nuclear excitation energy corresponding to

a given detector channel, it is necessary to use the design parametrization

of the spectrometer and the focal plane. In this experiment, two programs

were used to achieve the spectrum, FPCAL 1, which determines the focal

plane parameters and accelerator energy, and SORT, which combines spectra

at the same magnet settings.
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FPCAL 1, although used for some time at MIT, has not been documented

to the extent given here. The model used in the analysis is Model 1, the

model used for the design of the spectrometer. In general, the program

performs a least squares fit to determine three focal plane parameters

and the bombarding energy.

The kinematics are those of Chapter II with one addition. The rela-

tionship between the scattered electron momentum and incident momentum is

given by

e - , - (, 1 /2rA (39)

where A is the most probable energy loss in the target and all other

parameters are the same as in Chapter II. The quantity A is given by

Landau(4.1) as

t~ L v' 3. 4- S /0I~ (i/ef) (40)

where (

-7 (41)

and

(42

The quantities in the above equations are defined as fi being the fraction-

al abundance of the i'th species in the target, Zi being the atomic num-

ber of the i'th species in the target, Ai being the atomic weight of the

i'th species in the target, et being the angle between the beam and the

2
normal to the target, and a is the target thickness in mg/cm . The
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unknown quantity which will be fitted from equation 39 is the incident

momentum, Pt"

The displacement from the central ray along the focal plane is

assumed to be Xe f- (X< 1 (43)o " x~ ) (eo'O) .

Defining 6, to be (Ck4fJ),  /cl/), yields

x :f- -0<'" ( ?s _ _ ) f L, ' -s- (44)

where x is the distance from the central ray, (x/) 1 is the first order

dispersion, C, is the second order dispersion, Pf is defined above, and

P is the electron momentum corresponding to the central ray. The form of

P is given by0

where (r is a linear constant with a derign value of 66.90 MeV/KG, and B

is the magnetic field strength in KG. The form of P may be revised to0

include possible non-linearities if necessary. The unknowns from equation

44 which must be fitted are the two dispersion terms. Equation 44. may

be solved for Pf to yield

ef 2 .L. -L [I, - + I ,,46).

This equation may be expanded and approximated by

A L tf($,_ (47).,>, P.o +, ,,j .,.)7 "

For the Bates spectrometer, 6, S' .4,(/J1), a 372 inches and X V 12 in.

These terms are good initial guesses for the least squares fit. Using

- . . ... - ,mi m i. . .. . . . e , m
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these approximations, equation 47 should be valid to about I x 154 over

the entire focal plane.

The data acquisition code used in this experiment creates, by soft-

ware, 3072 channels of equal space across the focal plane into which the

data are collected. The distance X can be obtained from the focal plane

geometry by the equation

?L- ) /(48)

where 1536 is the central channel, J is the channel in question, W is the

width of the channels, presently 1/128 in., F is the focal plane reference

reading, presently 1500, and Z is the readout value when the focal plane

array is positioned so that the central ray passes through the central

channel of the focal plane array. In equation 48, the quantity Z is the

quantity which must be fit.

To calibrate the energy spectrum, one must use known peaks in the

spectrum to determine the focal plane parameters. Combining equations 44

and 48 and solving for the channel number in which the i'th peak falls,

i yields

+, (49).)i

The energy of the peak must be known and associated with the !'th channel.

The program now has a series of known J i's associated with a number of

known peaks. A least squares fit is now performed on equation 49, varying

the parameters Pi. Z, X/j, and 69 . The quantity Pi is related to the

quantity Pf in equation 49 by equation 39.
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The program FPCAL 1 can also take into account the change in momentum

from one end of the focal plane to the other. In Model 2, equation 43

becomes
X/4o (so)

Solving this equation for Pf yields

Pf -_ P.(S1).

In equation 51, the first term explicitly takes into account the change

in momentum from one end of the focal plane to the other and the second

term corrects for spatial variation in this change in width. The procedure

from this point on is identical to that of Model 1.

The program SORT uses the focal plane parameters to produce a spec-

trum of events as a function of excitation energy. The spectra can be

reorganized into channels of uniform excitation energy size. Since each

detector channel has a spread &p/p = 2 x 10- 5, the energy size, &p, depends

on the value of p. A rehistogramming subroutine in the program SORT will

reorganize the data into bins of uniform excitation energy width.

The program SORT will also combine data files taken at the same inci-

dent energy, scattering angle, and magnet setting, but at different focal

plane positions. The distance X along the focal array is given in terms

of a known reference position. Therefore, data from another focal plane

position can be added by specifying the new reference position.

The program SORT also uses information about the total charge accumu-

lated in each data run by the beam charge integrators. The integrator
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calibration constant is used with this information to determine the events

as counts per microcoulomb of incident charge.

The final sorted data file contains the events in counts per micro-

coulomb as a function of nuclear excitation energy. The energy channels

have been reorganized into a constant width across the focal plane. A

typical sorted spectrum is shown in Figure IV.l.

CROSS SECTION

The program FITAB was used to extract the cross sections from the

sorted energy spectra. The code uses a least squares fitting routine, by

J. Bergstrom, to approximate a line shape to the peak in question. By

integrating over some energy range, the peak area can be determined and,

thus, the differential cross section may be determined as it is propor-

tional to the peak area.

The shape of the peak can be fit with a deformed Gaussian function of

the form

HT t A. sX )e C .7 (52)

where HT is the height of the peak, R and P are parameters to be fit, and

Z C LC(53))" : ( E - Ec3

where E is the excitation energy (MeV), E peak is the excitation energy of

the peak, and width is the full width of half maximum. The deformed Gauss-

ian is joined to an inverse polynomial tail of the form



LL Z~

t . I
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(54)TI 4L A 1A I 61/I a + c/x 3

where X1 = X-S. These radiative tails, which appear on the lower scattered

electron energy side, are mainly due to electrons that have emitted a

photon of sufficient energy to reduce their final energy below the energy

cutoff. The peaks, in the program, are defined to this cutoff energy,

given by A E, which includes parts of the peak and radiative tail. Radia-

tion tails of preceding peaks form a background to each succeeding inelastic

peak in the spectrum. The parameters of the tail function, A and B, are

evaluated internally by the program from continuity conditions at the join-

ing point. The radiative tail is joined to the peak function at the point

YM, where the total function and its first derivatives must be continuous,

and YM is given by

Y M LE 1 ' E . I (/. +55)

where E' is the excitation energy at the joining point.

The parameters HT, E peak, width, R, P, S, C, and YM can be varied to

minimize the chi-square of the fit. In practice, R, P, S, C, and YM are

varied for a reference peak only. These same parameters for all other

peaks are then fixed equal to those of the reference peak. This fact en-

sures that peak shapes do not vary widely from peak to peak. Initial

guesses for HT and width were obtained by examination of the sorted spec-

trum. The initial guess for E peak was the known excitation energy for

that peak. The initial guesses for the other five parameters were the de-

fault values which have been set by experience.
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Background events, including the radiative tails mentioned above,

must also be fit to insure proper subtraction. The model used in this

experiment is given by

k A () A(56)

where the four A parameters can also be varied to minimize the chi-square

fit. An inverse polynomial background can also be chosen but was not

used in this work.

The errors associated with the fitting technique were also calculated

by the program according to the algorithm established by Bevington(4. 2)

using statistical weighting factors and the inverse derivative matrix.

The peak function and radiative tail are integrated to the cutoff

point as mentioned above. At this point, theoretical radiation corrections

can be applied to obtain the total peak area(4.3-4.4). These corrections

are documented fully by Whitner(4.5) and will be summarized here. The

total correction to the experimental cross section can be represented by

a multiplicative factor CR by RI
where CR is given by Fl F2 F3 . F1 is the Schwinger factor and is the most

important correction. The term arises from the coherent emission and

reabsorption of virtual photons by the electron, and the coherent emission

of real photons during the scattering event. As stated above, the majority

of the radiative tail is from electrons that have emitted a photon of

sufficient energy to reduce their final energy below A E. The term F2 is



33

the Bremsstrahlung factor and arises because the electron passes through

a target of finite thickness. Hence, the electron can be deflected

slightly by other nuclei before and after the scattering event. Thus,

F2 is a "thick target" or incoherent bremsstrahlung correction. Finally,

F3 is the Landau straggling factor. This factor corrects for energy loss

straggling which occurs when the electron ionizes an atom in the target.

The total peak area, after the corrections have been applied, should be

independent of the cutoff energy A E.

To ensure reasonable values for peak areas, each fit was evaluated

on whether the reduced chi-square was small, generally less than 3, and

if the corrected peak areas were independent of AE to better than 3%.

This last step was done by using five different cutoff energies. Finally,

when very small counting statistic uncertainties meant a large reduced

chi-square, the human eye was the final judge of the acceptability of the

fit.

After determining the peak area, the differential cross section was

calculated by the equation

where - is the peak area in counts/microcoulomb, e is the change of one
Q

electron,i Ai is the spectrometer solid angle acceptance, and N tis the

number of nuclei in the target per unit area.

The spectrometer solid angle is by horizontal and vertical slits set

by the experimenter. Most of the work in this case was done at a horizon-

tal setting of two inches and a vertical setting of ten inches, giving a

solid angle of 3.325 millisteradians.
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The number of target nuclei can be calculated from

N No £ N (59)

where N is Avogadro's number, teff is the effective target thickness in

mg/cm 2, N is the number of atoms of species per molecule, and W is the

molecular weight of species in mg/moles. The effective target thickness

depends on the orientation of the target with respect to the beam. The

data were taken at scattering angles of 45 and 90 degrees. This fact

allows the targets to be oriented in a transmission mode in the target

chamber (Figure IV.2). In this mode, the effective thickness of the tar-

get to an electron is independent of where the scattering occurs in the

target. An electron scattering anywhere in the target travels through the

same amount of material. The effective thickness is given by

e€€ :t/c o/a(60)

where t and & are defined in Figure IV..

FORM FACTOR

The form factor may then be calculated for the differential cross

section. The multipole of interest was the coulomb multipole. Since only

forward angles were used to take the data, the coulomb term will be much

greater than the transverse terms. Combining equations 23a, 24, and 26

from Chapter II yields a differential cross section of the form

dz -(61)
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Therefore, the form factor squared may be determined by multiplying the

2differential cross section by the nuclear recoil factor and by Z , then

dividing by the Mott cross section. The program FITAB calculated both the

differential cross sections and the form factors.

The polynomial of equation 38 was then extracted by using the program

SMFIT. The program uses a least squares fitting routine to determine the

coefficients of the polynomial. The parameters of the program are the

harmonic oscillator length parameter of Chapter II, the single particle

normalizing factor, and the coefficients of the polynomial.

The experimental form factors for a given transition were divided

by the terms in front of the polynomial in equation 38. The remaining

function was then fitted by a least squares fit to determine the form of

the polynomial. The results of the fit could then be compared directly to

the tables of Donnelly and Haxton to determine if single particle transi-

tions are realistic approximations to those that occur in 30Si.

The results of the data analysis are given in Chapter V and discussed

in detail there.

SYSTEMATIC ERRORS

In addition to the statistical errors from the program FITAB, there

are several sources of systematic errors listed in Table 4.1 and discussed

below.

Errors from scattering angle measurement, change integration, detec-

tor inefficiency, and solid angle measurement are errors t uilting from
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the limitations in the actual physical measurement of equipment parameters.

errors in energy calibration, count-rate corrections, and target parameters

are, in principle, difficult to generalize and must be determined separ-

ately for each data run. However, in practice the main limitation on ex-

perimental accuracy is the precise knowledge of the target thicknesses

and uniformities, while other corrections vary little from run to run.

Table 4.2 shows the different energies, angles, and targets used to provide

the data in this experiment.

The energy calibration uncertainties depend on the individual data

run. The error in machine energy measurement was less than .2% for most

of the runs.

The uncertainties in the target parameters were determined by Whitner

and form the largest contribution to the systematic errors. The target

thickness was known to within 5%. The error associated with assuming

natural abundances in the target was probably less than 1%.

It is difficult to combine systematic errors from different sources

because they do not obey statistical distribution laws. However, the

best upper limit estimate of the systematic errors for each data point is

7-10%.
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Table 4.1

Main Sources of Systematic Errors

Machine Energy Calibration .3 MeV
+

Scattering Angle - .05 degrees

Charge Integration 1.0%

Solid Angle .5%

Overall Detector Inefficiency 2.0%

Dead-time Corrections .20 (f)

Target Thickness 5-10%

Target Composition 1.0%

Target Uniformity 3.0%
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Table 4.2

Incident Energy Angle (degrees) Target Thickness (mg/cm )

148.678 45 26.5

174.503 45 26.5

199.141 45 26,5

224.552 45 26.5

166.360 90 26.5

170.814 90 26.5

199.994 90 31.83

228.780 90 26.5

251.036 90 28.83

265.451 90 28.83

279.569 90 26.5

292.968 90 26.5
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CHAPTER V

RESULTS AND CONCLUSIONS

This chapter will examine each state, comparing the extracted polynomial

with the polynomials calculated by Donnelly and Haxton(5.1) using a harmonic

oscillator model. Also, the form factors calculated for the first three

states of 28Si will be compared to those of Whitner(5.2) to ensure there are

no anomalies in the data.

The form factors extracted from the data by the program FITAB are shown

in Tables V.1 through V.6 and in Figures V.1 through V.6. Each figure is di-

vided into two parts. The upper portion is the form factor plotted versus

q effective and the lower portion is the extracted polynomial of Equation 38,

which is given as '(y). It is this polynomial which may be compared to

those derived by Donnelly and Haxton. The form factor plot contains three

sets of data, the experimental form factors, the form factors calculated from

the fitted polynomial, and the form factors determined in a previous electron

scattering experiment by Brain, et ai(5.3).

The levels shown are levels two, three, eight, eleven, twelve, and thir-

teen. The eighth state is an unnatural parity state and is transverse mag-

netic. Hence, the polynomial, p', cannot be extracted in the same manner and

is not included. Other levels are not included for two reasons. First, for
30S28

some Si levels, the 28Si peaks lie too close in the spectrum to allow mean-

30Siingful separation. Secondly, some Sipeaks are so weakly excited that they
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TABLE V.1

Level Two, J = 2 Excitation Energy 2.234 MeV

Harmonic Oscillator Length Parameter 1.898 ± .025 FM

Single Particle Unit Strength 9.0081 ± .1023

Slope -.4197 ± .0173 Chi Square 1 Deg of Freedom .3817

QEFF FF %ERROR FF CALE Y P + OR -

.594 3.83E-3 38.376 3.01E-3 .3177 .979 .173 .21

.691 3.66E-3 24.494 3.86E-3 .4300 .798 .0924 .105

.792 4.07E-3 13.180 4.31E-3 .5648 .741 .0473 .0506

.894 4.35E-3 15.276 4.19E-3 .7197 .711 .0524 .0566

1.226 1.46E-3 5.861 1.45E-3 1.3535 .434 .0125 .0129

1.258 1.18E-3 5.693 1.19E-3 1.4251 .400 .0112 .0116

1.461 2.02E-4 23.788 1.72E-4 1.9221 .209 .0236 .0266

1.072 2.07E-5 48.809 7.04E-6 2.5174 .0967 .0213 .0275

1.829 8.27E-5 19.814 7.67E-5 3.0124 -.274 .026 .0287

1.932 1.13E-4 14.947 1.10E-4 3.3612 -.417 .031 .0324

2.032 1.20E-4 13.470 1.17E-4 3.7181 -.568 .037 .0396

2.126 9.87E-5 12.452 1.06E-4 4.0701 -.684 .0413 .0440



TABLE V.2

Level Three, J T = 2 +Excitation Energy 3.499 MeV

Harmonic oscillator Length Parameter 1.880 FM

Single Particle Unit Strength 1.811 - 0783

Slope -.3319 - 0397 Chi Square 1 Deg of Freedom 1.4224

QEFF FF % ERROR FF CALC Y P + OR -

.592 1.33E-3 74.835 6.62E-4 .3097 1.37 .440 .680

.694 9.38E-4 69.047 8.90E-4 .4256 .882 .265 .391.

.790 1.09E-3 8.210 1.03E-3 .5515 .839 .0338 .0352

.892 9.59E-4 7.401 1.06E-3 .703 .729 .026 .027

1.221 5.75E-4 33.611 5.33E-4 1.317 .585 .091 .108

1.253 4.97E-4 19.011 4.67E-4 1.387 .557 .051 .055

1.456 1.59E-4 40.165 1.47E-4 1.873 .393 .072 .089

1.667 2.64E-5 31.957 1.73E-5 2.4554 .229 .034 .040

1.825 2.36E-6 360.343 1.38E-7 2.943 .096 .110 -

2.027 1.48E-5 33.376 3.77E-6 3.640 -.406 .063 .074

2.122 1.40E-5 34.239 5.28E-6 3.978 -.523 .083 .098



TABLE V.3

Level Eight, J 3

Excitation Energy 5.23 MeV

QEFF FF %ERROR

.588 2.20E-4 452.93

.786 1.62E-4 194.17

.889 3.82E-4 87.92

1.247 5.98E-5 41.85

1.45 7.IOE-5 68.63

1.818 7.21E-6 411.93

1.921 1.79E-5 155.35

2.115 1.11E-4 11.046



TABLE V.4

Level Eleven, J = 3 Excitation Energy 5.487 MeV

Harmonic oscillator Length Parameter 1.901f .146fm

Single Particle Unit Strength 7.9467! .511

Slope -.2639:t.1088 Chi Square/Deg of Freedom .937

QEFF FF %ERROR FF CALC Y P + OR -

.588 8.25E-5 1096.5 2.63E-4 .312 .516 1.27 -

.690 7.36E-4 73.06 4.96E-4 .430 .98 .34 .52

.786 8.72E-4 35.51 7.60E-4 .558 .91 .15 .18

.888 7.28E-4 45.31 1.03E-3 .712 .68 .14 .18

1.214 1.14E-3 5.08 1.13E-3 1.3314 .66 .02 .02

1.246 1.10E-3 4.665 1.07E-3 1.4025 .64 .02 .02

1.449 5.41E-4 9.017 5.73E-4 1.897 .48 .02 .02

1.66 1.59E-4 10.938 1.72E-4 2.489 .33 .01 .02

1.817 6.11E-5 30.661 3.97E-5 2.9825 .26 .04 .04

1.92 1.50E-5 87.96 8.52E-6 3.3302 .16 .06 .10

2.02 1.36E-5 54.029 2.72E-7 3.6861 .19 .04 .06



TABLE V.5

Level Twelve, J = + Excitation Energy 5.613 Mev

Harmonic Oscillator Length Parameter 2.211 .178 FM

Single Particle Unit Strength 1.02271 .2438

Slope -.411 Chi Square/Deg of Freedom .3187

QEFF FF %ERROR FF CALC Y P + OR -

.786 2.79E-4 102.577 3.66E-4 .7546 .603 .255 -

.888 4.25E-4 73.02 2.95E-4 .9631 .727 .229 .349

1.213 2.14E-5 128.25 3.34E-5 1.797 .209 .107 -

1.245 2.60E-5 88.95 2.19E-5 1.8932 .242 .091 .162

1.659 1.73E-5 71.69 9.46E-6 3.362 .515 .160 .24

1.817 3.47E-6 412.06 9.99E-6 4.032 .387 .489 -

2.019 4.08E-6 144.789 5.39E-6 4.97 .92 .514 -



TABLE V.6

Level Thirteen, J = 4 Excitation Energy 5.95 MeV

Harmonic Oscillator Length Parameter 1.737 - .126 FM

Single Particle Unit Strength 5.9952t .3861

Slope -.17661 .099 Chi Square/Deg of Freedom .517

QEFF FF % ERROR FFCALC Y P + OR -

.69 1.67E-4 649.39 2.45E-5 .359 2.45 4.26 -

1.212 2.99E-4 13.862 3.15E-4 1.107 .784 .05 .05

1.244 3.44E-4 10.466 3.32E-4 1.166 .809 .04 .04

1.447 3.90E-4 12.03 3.72E-4 1.578 .739 .04 .04

1.658 2.72E-4 7.076 2.91E-4 2.073 .613 .02 .02

1.816 2.11E-4 10.569 1.91E-4 2.487 .588 .03 .03

1.918 1.29E-4 12.378 1.31E-4 2.77e8 .506 .03 .03

2.018 9.07E-5 13.793 8.35E-5 3.07 .477 .03 .03

2.113 4.45E-5 15.144 4.99E-5 3.3665 .383 .028 .03
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are lost in the radiative tails and in the background.
Tables V.7 through V.9 show the experimental form factors for 28Si

extracted in the present analysis and the form factors obtained by Whit-

ner(5.h). The two sets compare very well. Minor differences in the form

factors can be accounted for by the fact that Whitner was unable to fit all

levels in a single computer run. Hence, at higher q the radiative tails

and background must be approximated. The comparison indicates that no ano-

malies have crept into the data from any of the programs used.

It is known the 30Si is not a perfectly spherical nucleus. Therefore,

the 30Si states are most probably admixtures of various spherical shell

model components. Comparing the extracted polynomials with those derived

by Donnelly and Haxton places experimental limitations on the possible ad-

mixtures of spherical shell model states.

In general, one cannot identify uniquely a transition from the shape

of its fitted polynomial. In particular, any first-order polynomial can be

generated as a linear combination of two or more arbitrary first-order poly-

nomials. However, if the fitted polynomial lies close to one of the derived

polynomials corresponding to a particular single-particle transition, there

is a strong suspicion that this particular single-particle configuration

contributes significantly to the transition. An accidental fit due to

particular combinations of other single-particle transitions cannot be ruled

out, but such combinations are rather unlikely. It is in this spirit that

the identifications discussed below are made.

The excited state in 30Si is J 2+ . The fitted polynomial has a

slope of -.42 .02 which compares to a slope of -.5 for 2S-ld. The lower portion

of Figure V.1 shows the fitted polynomial as well as 2S-ld and ld-ld transi-

,,4" I I i_



TABLE V.7

SILICON 28,0.0 MeV

QEFF FF EXP WHITNER FF

.6079 1. 7741E-3

.7015 2.0569E-1 1.995E-1

.7971 1.179E-1 1.147E-1

.8962 6.0985E-2 6.127E-2

1.2346 1.0492E-3 1.058E-3

1.2668 5.6132E-4 5.885E-4

1.4698 6.5732E-4

1.6804 8.1412E-4 8.222E-4

1.8380 5.024E-4 4.598E-4

1.8945 2. 7193E-4

2.0402 1.0750E-4 1.119E-4

2.1437 3.7682E-5 4.173E-5

.



TABLE V.8

SILICON 28,1.78 14eV

QEFF FEXPWHITER 
FF

.604 2.260E-3

.6 08 5.903E 3 6.166E 3

. 9 8 6 .7 1 6 E 3 6 .5 2 E 3

.8964.10' 
6. 910E- 3

1.289 3.232E3 3.238E-3

1.260281 E 2.706E 3

1.46 0 7.217E 4 6.328E 4

1.64 3.424E-5 3.624E5

1.831 
3.484E-5 

. 0E

1.934 
~7.947E-5 

786~

2.3404E4 
1. 049E-4

2.128 .077E 4 1.090E 4



TABLE V.9

SILICON 28,4.62 MeV

QEFF FF EXP WHITNER FF

.692 4.33E-5 4.100E-5

.788 6.716E-5 7.312E-5

.890 1.613E-4 1.525E-4

1.217 4.164E-4 4.256E-4

1.250 4.169E-4 4.468E-4

1.453 4.958E-4 4.956E-4

1.663 3.590E-4 3.593E-4

1.821 2.47E-4 2.340E-4

1.923 1.650E-4 1.528E-4

2.023 8.679E-5 8.807E-5

2.118 4.665E-5 4.984E-5
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tion polynomials. Also included are representative polynomials for higher

transitions, 2&. It is important to note that the form factors, at least

in the momentum range considered, can be fitted by a linear polynomial.

Hence, the higher order polynomials of the 2A- transitions do not contrib-

ute. This particular state can be part Id-ld transition, but the main por-

tion is most likely a 2S-ld transition.

The transition to the second excited state (3 2 ) appears to be due

more to Id-ld transitions. The fitted polynomial has a slope of -.332

.040 as compared to a slope of -.286 for Id-ld transitions. Figure V.2

shows the fitted polynomial as well as the derived polynomials for 2S-id and

Id-ld transitions.

The eleventh state has J= 3. The state appears to be a Id-if trans-

ition. The fitted polynomial is a straight line with a slope of -.264

.109 as compared to the calculated polynomial slope of -.222. Other transi-

tions which might contribute are 2S-If, 2S-2p, and Id-2p transitions, but the

Id-If transition appears to be dominant (see Figure V.4). Another possibil-

ity for creating a 3 state is a ip-ld transition. Such a possibility is

highly unlikely due to the necessity for a hole buried in a shell below the

active shell. Furthermore, this transition cannot account for the entire

strength because its polynomial has zero slope, and as indicated above, the

fitted polynomial has a finite negative slope.

V' +The twelth state is J , 2 and appears to be dominantly a 2S-id

transition, as in the first excited state. The fitted slope is -.411

.104 whereas the slope calculated for a 2S-id transition is -.5 (see Figure

V.5).

I +
The last state is the thirteenth state which has J =4 . If the

& '~ - .~.
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transition were purely a Id-ld transition, the polynomial would be a hori-

zontal line. However, the polynomial has a slope of -.177 1 .099. Since the

id-ld transition does not contribute to this slope, only higher transitions

can be responsible. The Id-lg transition, as well as the If-lf transition,

has a slope of -.182 and either or both could possibly be responsible (see

Figure V.6). What is needed are data taken at a higher momentum transfer

to determine where the minimum occurs.

Several conclusions can be reached by looking at the 2+ states, the 3-

state, and the 4+ state. separately. The 2+ states have form factors which

are fitted well by linear polynomials. Therefore, the single-particle transi-

tions responsible for these states are transitions within one shell. Transi-

tions of 2X4 were not detected within this momentum range. The 3- state

appears to be a result of a id-lf transition. Again, the extracted poly-

nomial is linear. The 4 state is interesting. it appears as if one of

two situations is occurring. Either there is some If strength in the 30Si

ground state or a single-particle transition of 246 is being seen, a id-Ig

transition. Should the ground state have some If strength, then a If-lf

transition would yield a polynomial with slope -.182, just as a Id-lg transi-

tion would. Due to the large gap between the id state and the Ig state, it

is more likely that the ground state has some If strength.
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